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SUMMARY

A new explicit method for solving the transonic smail-
disturbance potential equation is presented. This algorithm,
which is suitable for the new vector-processor computers such as
the CDC STAR~100, is compared to successive line over-relaxation
{SLOR) on a simple test problem, The convergence rate of the
explicit scheme is slower than that of SLOR. However, the
efficiency of the explicit scheme on the STAR-100 computer is
sufficient to overcome the slower convergence rate and allow an

overall speedup compared to SLOR on the CYBER 175 computer.
INTRODUCTION

The state-of-the-art of transonic flow calculations has
advanced to the point where two-dimensional flows, including the
effects of viscosity, can be computed in a relatively short time
on modern serial-type cumputers. For example’, many people are

using a program developed at the Courant Institute of New York
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University for the analysis of transonic flow past airfolls

(ref. 1). This program gives accurate solutions to the full-
potential equation, including the effects of boundary-layer
displacement, in about 2 or 3 minutes on a CDC CYBER 175 computer.
Three-dimenslonal, transonic, finite-difference calculations,
however, are expensive on this type of computer., The threo-
dimensional program described in reference 1 takes about half an
hour for an inviscid calculation on a fairly crude grid.

It is hoped that the use of the STAR-100 computer will allow
accurate, three-dimensional, transonic flow calculations to he
done economically. One way to achieve this goal is through the
development of algorithms which can make full use ol the unique
architecture of the STAR-100. The STAR computer has a "pipeline"
type of processor which is very efficient in doing arithmetic
operations on long vectors (ref. 2). Unfortunately, the hest
available method for solving the transonic potential eguation is
successive line over-relaxation (SLOR), which is not amenable to
vector arithmetic. The reason for this is the semi-implicit
nature of the iterative method; that is, the calculations at a
particular grid point require results from the current iteration
at neigliboring grid points and thus cannot be done in long vector
operations.

This paper describes a new explicit algorithm which can be
vectorized for use on the STAR-100., The new algorithm is applied

to a simple test case and compared to SLOR on the CYBER 175



computer. A simple STAR program, including vector instructions,

is piven in the appendix.

TEST PROBLEM

The test problem chosen for this preliminary study is to
solve the transonic, nonlinear, small-disturbance potential equa-
tion for a nonlifting parabolic—arc airfoll in a finite box with

uniform grid, as shown in the sketch below.
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Although this is a very simple physical situation, it still has
some of the most difficult features of {ransonic flow fields as far
as programing for the STAR is concerned. The governing partial

diftferential equation is

[l - Mi - (y+1) Mz ¢x]¢xx *dgy =0

The boundary conditions to be applied are



¢ = 0 on the outer boundary
and

¢y =f41x on vy = %0, -.5 2 x £ .5

where 1T is the thickness of the parabolic-arc airicil (which has
a unit chord}, For T = 0.1 and M, = 0.2 the flow is super-

critical. In regions where the coefficient of ig positive,

Pxx
the flow is subsonic¢ and the cequation is elliptic type. In regions
where the coefficient of ¢xx igs negative, the flow is supersonic
and the equation is hyperbolic tvpe. The general procedure for
solving this equation is to replace the partial differential equa-
tion with a finite difference equation al each grid point. These
finite difference equations are then solved iteratively.

This test problem represents a simple physical situation which
ig of little practical interest. A more useful program should
allow for 1lifting flows and should extend the outer bouhdary
farther away from the airfoil, This could be done either by using
a stretched grid or by some type of grid nesting using additional
coarse grids around the small region cbns;dered here. The test
case does, however, include the major difficulties to bhe overcome
in using the STAR-100 domputer for transonic flows. TFor example,
it has supercritical flow which réquires a change from one type of
difference equation at subsonic (elliptic) points to another type
of difference equation 5% supersonice (hyperbolie) points. It also

requires the use of an explicit iterative scheme to solve the



difference equations if the arithmetic operations are to be done

uging long vector instructions.
SEMI-IMPLICIT SOLUTION METHOD

The most common method used to solve the finite difference
equations is successive line over~relaxation (SLOR)., This itera-
tive scheme is implemented as follows:

- 2 2

Compute U 2 1 - M| — (y+l) M_ ¢x

using

n n
o = $ie1,4 = P31,
X 2Ax%

If U > 0 (subsonlic points), central differences are used

together with over-relaxation (w > 1) to give:

1 2 n+l ) n n+l

Piv1,g T %4,y T 2<1 - a’)‘*’i,j aT
u 3

Ax

ntl n+l. n+l
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where the superscript indicates the iteration number.
If U < 0 (supersconic points), an upwind difference is used

for to give:

Pxx "
?AGE
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At the airfoil boundary the ¢ term is replaced by

yy
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which takes into account the faet that the nonlifting flow is
symmetric (i.c., ¢i,j~1 = ¢i,j+1 at y = 0). Each iteration is
generated one column at a time going from left to righ., by
solving a tridiagonal system of equations at each column. This
nonconservative scheme is similar to that originally proposed by
Murman and Cole (ref. 3). See references 4 and 5 for a discussion

of related conservative schemes.
EXPLICIT SOLUTION METHOD

Tne explicit solution method uses values of the potential
function from the two previous iterations in order to update the
potential function for the present iteration (thus termed a three-

level scheme). The method is implemented as follows;

1

Compute U 1 - Mi - (y+1) ME )]

X

using

n n
o = Pi+1,4 7 Pi-1,3
% c2bx oo

LR
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If U > 0 (subsonic points), central differences are used at

iteration, or "time," level n:

n+l n n-1 n n-1\ _
Pi,5 7 Bug t bt B0 P (“’i,s il "’u) " Dify

where

sz

_ 1 no, .m0 Ax® [ 0n _ gul n
Ry = U<¢:L+1,j - 29y 47 ¢’i—1,j) * ay2 <d’i,j+l 20y 5 * d’i,j-l)

and

2
P.p
D. = )

" el (2))

If U < 0 (supersonic points), the upwind ¢xx difference

is formed at "time" level n - 1, while ¢yy is centrally~

differenced and averaged in time level n, to give:

n+l n ﬁ—l n n~1 n n-1
i,y m By eyt 2°(¢i,3 SRR T O I ¢i—l,j)

= DR, (1)

where



R A S (L A n-1 n-1
Ry = U ("‘i,a 241,53 * “’i-z,a)
Ax

. (753?)2 [(1-0)(111}:’34.1 - 2‘*’2,;] * ‘I’Iil,.j—-l)

n n n
* U(‘M-l,jﬂ T Ayt “’i~1,3-1)]

=]
t

(1-g) U + of

¢n—1 _ lbn-l
T=1-M2 - (y+1) Mf;( e AT
= Ay
o P, min (l, lul Ax )
and

p 2(Ar)\?

3 \Ax
D2 =

(=4

max [1, |U-|(E§ﬂ

A von Neumann stability analysis of this last scheme with

the U replaced by U shows why the ¢

xx derivative is evaluated

¥



at the n~1 iteration and why the derivative is a weipghted

byy

average between ¢yy at the 1 column and at the i-1

byy
column. To do the von Neumann analysis, let ¢ at the kih

iteration be

¢(k) . gkeimxeiny

Also let mAx = £ and nAy = n. Putting these definitions into

equation (1) gives

2

g” - 22+ 1+ 20 (g -1 - ge"ig + e"ig)

= D, {U (1 - 26”16 4 ¢21&,

2 ,
+ g (%%) [(lmc)(eln - 2+ e'in)

+ qa (e_igein - Zebige_in)]} (2)

Note that

Also define

H

- 2..;_(6_:( 2n
P 1 2o PUI -) sin 5



so equation (2) becomos

gz—?.pg[l- o (1-6‘“‘5)] +[1-a (1-e15)]2==o

or

g=(ptivl- oz)ll -0 (1 - e"“;)l

Thus, in order to have |gl £ 1, it is necessary and sufficient to

IA

have both ]pl £1 and o

that o 2y|u] %;‘%.

This convenient factoring of the expression for the amplifica-

1. The inequality ]pl £ 1 dimplies

tion factor was made possible by choosing this particular repre-

sentation for the and ¢yy derivatives. In practice the

xx
coefficient of ¢,  1is T rather than U; this averaging makes
the scheme approach second-order accuracy as o approaches one.

It should be noted that this explicit scheme is not only a
different iterative algorithm from the semi-implicit scheme, but
it also has n different steady-state solution, This difference
occurs because 0f the weighted averaging done on both the ¢

vy

term and on the coeificient of the term for supersonic

¢xx
points.

CONVERGENCE AND TIMING COMPARISONS

Short computer programs have been written to solve the sample

problem using the two methods described. The semi~implicit SLOR
10 | |



method was coded in standard FORTRAN IV and run on n CDC CYBER 175
computer (which is about 2 % times as fast as o CDC 6600 for
this type of problem). The explicit method was coded in STAR
FORTRAN (ref. 6) and run on a CDC STAR~100 computer. "The STAR
code includes the use of vector Instructions in the itevration
loop. It also includes the use of bit ¢ontrol vectors to distin-
gnish between subsonic and supersonic points., The bit control
vectors provide the capability of performing the complicated
supersonic calculations only at supersonic points, which are
collected into & vector through the "compress" and "expand" type
of instructions available on the STAR. The STAR code for this
problem is listed in the appendix.

The computatioﬁs ware done on three different grids. Each
calculation was terminated when the value of the largest residual
in the flow field was less than % (sz + Ay%). Each calculation

was run with experimentally-determined optimum values of the

parameters for that algorithm so that convergence was attained in

a minimum number of cycles. The results in the table below show

that the new three-level explicit scheme has a slower convergence

ALY
i s

SLOR ON CYBER 175 EXPLICIT METHOD ON STAR-100
g;ig Cycles to Time to Average Cycles to Time to Average
converge converge | sec/cy. canverge converge | sec/ey.
40X40 42 1,242 .0296 131 .879 . 0067
80X80 a8 12,118 .1237 300 6.385 | .0213
160X160 244 ! 116.095 .4758 ' 655 59.834 .0913
11



rate than SLOR, However, the efficiency of this new scheme on the
STAR computer is enough to make up for the slower convergonee rate
and still nllow an ovoerall roduction in computing time., Noi
surprisingly, the specedup is greater for the cases with finer

grids than for the 40X40 case,
CONCLUDING REMARKS

This preliminary study has shown that a new expliclt method
for solving the transoniec small-disturbunce potential cquation on
the STAR-~100 computer can almost halve the computer time required
for this type of computation when compared to successive line over-
relaxation or the CDC CYBER 175 computer. These results are
limited te « relgtively simple problem with a uniform cartesian
grid, Although the speedup is not as greal as desired, it is
enough to Justify further study of this method. The effects of
1ift and of grid stretching on the convergence rates of the
schemes should be investigated. Also, the new explicit scheme
should be applied to the full potential equation.

There are several possibllities for obtaining further reduc~
tions in computer time. One is through the development of more
efficient algorithms. Improvements might be made in the conver-
gence rate of explicit algorithms, or other vectorizable algo-
rithms might be developed. Another possibility is through
programing techniques to get successive line over-relaxation to

run as efficiently as possible on the STAR~100 computer. Although

12



the method is semi-implicit, there are portions of it which can
be wriitten in vector instructions of short length.

The program listing in the appendix should serve as an
introduction to some of {he programing techniques available on

the STAR-100 which are useful for transonic flow calculations.

13



APPENDIX
PROGRAM LISTING

PROGRAM WY CLILPUT, OUTPUT TAPES=SINPUT, TAPESa0UITRUT)
COMMON PO, 81), FPLUYL), THAX , JMAX  JW, CNVR, MIT, I4AXM] ,JIAXMY
* ;D*;OYgﬂxaﬂ,Pl,PE,XMINF,RSH,DYaP
CALL RICLUGKS(CPU,kALL)
KRITE(L,R902)CPU, wALL
XMINFe,9
P{=1,83
PRe,99
HSH=1,4
ITHAXRAY
JHaxaeil
MIT=i000
CF=1,
Pacl, /3,
PH=d,/5%,
IMAXY{=TIMAXKmy
JMAXMizIMAKRY
DX=Pw/IMAXMH]E
DY=PH/JMAXMY
JREJNAXMY /241
DX2REY /0% ka2
NY2Ra) ,/DY%%2
COVRECFa Sk (DXra24DYHn2)
po 40 Iml,IMAX
FP(I1)=0,

10 CONTINUE
XLEx=w,5
XTE=z,5
EPS=1,0E=06
IH=THAXHML /24
ILERIFIX({XLE=EPS)/DX)¢+IH
ITERIFIXC(KTE+EPS)/DX)+]IH
DO §4 ImILE,ITE
X=(IwIH)ADX
FP{I)m axX

{1 CONTYINUE
NTaIMAYRJMAX
POL,1INT)=0,
CALL PICTURE
CALL PRESS
STOP

9902 FORMAT(IX,410,1%,4A10)

END '

e ORIGINAL PAGE I8
OF POOR QUALITY



SUKRDUTINE PICTURE
L THIS SUBROUTINE DOFS THE RELAXAYIONW
COMMON PlUY UY),FPLBLY, IMAX, JHAY,JW,COVR,MIT, TAXMY JMAXME
* DX, 0Y,DX2R,PY, 2, ANINE L REH, Y 2R
c NINENSION SOME ARRAYS FOR TEMPORARY STORARE
DIPEMSION PR(4Y, ul),Pr{4y,41)
DIMENSION TiCul,08),T2004,49),T30H1,49)
RIT MUy, a1),ER(NL,41),1RC4 ,0y),4UD,ERHE,TIRD,BLD
NDESCRIPTOR TiN,120,7T3n,PNn,PRD,PMD
DESCRIPIDR MUN,ERN,IAN,BID
NESCHIPYOR TIND,T2MN, TIND,TUND,,TSND,TEHN, TTND, TBND
CALL DXICLOCKS(CPU,wALL)
WRTITELL,9N0UYCRU, WALL
c ASSINN THE DESCRIPTORKS TU SPECIFIC ARRAYS
NPaIMAYRIMAN ek JUAXwp
ASSIGN Ti0D,TIC(2,21MP)
ASSIGN T2D,72(2,211P)
AREIGN T3IN,T3(2,211P)
ASSIGN PD,P(2,21%P)
ASSIGN PRD,FRL2,2ptHP)
ASSIGN PMD,PH(R2,2504P)
ASSIGHN RUD,MUCZ,2IKP)
ASSIGM ERD,ER(2,291NP)
ASBIGN IBD,I4(2,296P)
C SET UP A BIT ARRAY THAT PAS OMES AT INTERYOUR POINTS
C AND ZERDS AT THE FDGE POIMTS
IRDOaUTO’
DO | I=2,IMAXMY
DO 4 J=2,JVAXMY
1 JA(TI,J)=R"¢’
EBD2 ,MOY  IRD
XK={ ,mXMINFkx2
AC=(RSH+] IR XMINFae2/(2,2DX)
D1=0,S%xPiaP24P2 |
AR2=(DX/DY) % %2
ARPR=Y ,/ARR
R=P2kPR/ARY
TWODYS2, *Y
Sz=Pi{={,
c INITIALTZE THE TEMPORARY ARRAYS
1ibao,
T20=0,
TiD=n,
PPD=N,
PlD=0,
WRITE(&,9901 )
POINTSS(IMLXmA)# (JNAXnD)
Kraxosto,
RAVGO=10,
CRASUBD=10,

15



RASUPORLO,
-3}
50 CONTINUE

c COMPUTE U
TID=XKeACK(P (3, 2)NPY=P (L, 21NP))

c SET THE MU(1,J) BIT 7O ONE AT SUPERSUNIC PUINTS
MUD=1{D,LT,0,

C SET MU TD ZERO AT THE EUGE POUINTS
MUD=MUD, AND, IBD

C COMPHTE A CENTRAL PHI=XX AT I,J
PPBEP (1,2 NP YmPD=PT+P (3,2 1 NP)
¢ COMPUTE A CENTPAL PHRIeYY AT 1,J
TED=P (2,1 NP )Y=PD=PD+P (2, 53INP)

¢ COMPLUTE THE RESIDUAL,
PPOETIDXPPD+ARZATRD
c CHANGE THE RESIDUAL AT THE AIRFUIL SURFACE
PPyl IMAXW2YISPP (2, h IMAX=2)4THODYXFP (2 IMAXD)
Tib=0,
c PUT ZERNS IN THE RESINUAL ARKAY AT THE EDRE POINTS
PPDO=GOVCTRLITAN,EBDIPRD)
t PUT ZERDS IN THE RFSIDUAL ARRAY AT SUPERSNMIC POINTS
PPDEGBYCTRLETIN, MUDYIPPD)
TAND=VABS (PPDT3D)
PSUMSUBELBSSUM(TID)*DY2R
RMAXSUB=NBSHAX (TIDI*NX2R
c COMPUTE THE NEW PHI VALUES
PPDSDL/(TIDEAR2YIAPPD+PD™ (] soP L)% (PD=PMD)
o NUMBER OF SUPERSONIC POINTS
MSZRBSCNT (MUD)Y
RSUMEUP=D,
RMAXSUP=0,
IF(NS,ER,DIGD TO 300
SUPERSONIC CALCULATIONS
ASSIGN TEMPDRARY STORAGE FOR SUPERSNANIC FALCULATIONS
ASSIGN TIND,;,DYN_NS
ASSIGN T2ND, ,DYN,N§
ASSIGN T3ND,,DYN,NS
ASSIGN YUND, ,DYN,NS
ASSIGN TSND,;,DYN,NS
ASSIGN T&ND, ,DYN,NS
ASSIGN T7ND, (DYM, NS
ASSIGN TAND, .DYN NS
ASGSIGN B1D,,DYN NS
c MAKE A VECTOR QUT OF THE VALUES OF U AT SUPERSONIC POINTS .
TIND=RBVCHPRSE(TID , MUNITIND)
c COMPUYE SIGMA
YIMDEVARS(TINDITINDIRARER
TUNDEYSQRY(TINDTUND)
BID=TUND,GT, 1.
TSND=1,

e Ne]

| GE 15
JGINAL PA
% PoOR QUALTY
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TuMpzP2wNBVCTRL(TSHD,RIDYT4ND)
MAKE A VELCTOR QUT NAF THE VALUES OF THE CENMTRAL
PHI=YY AY SUPERSONIC POINTS
TanDeROVEMPRS(T2D,2UDTEND)
MAKE & VECTNR QUT OF THE VALUES OF THE CENTRAL
PHIsYY OME POINT UPSTREaM OF EACH SUPERSONIN POTIANT
TENDNENBVCHMRRS (12 (1, 23IN8P) , MURTSMD)
COMPUTE PHI=YY T0 USE AT SUPEFSONIC POINTS
TEHN=TZAN$TANND* (TEMO=TZND)
MAKE VECTORS QUT OF oLD VALUES OF PHI AT SUPERSONIEL POINTS
AND ONE ARD TWD PUINTS UPSTREAM OF EACH SUFPERSONIG POIMNT
TANDERAVCUPRS (PHN, HUDETEMND)
TIWD=RRVCHPRS(PH (Y, 24P ), MUDYTTND)
TRED=NAVCHPRE (PM (N, 2 NP Y MUDTEND)
COMPUTE UeTILDE
TR2HDSXReACH (TANDuTAND)
COMPUTE LiwhAR
TESDRTINDATURNR(TINDATRNN)
COMPUTE TRE RESIHLAL
THEADRTRNDH TR * (TANDTIRDwTTLOETAND)
EXPAND TRE RESIDUALS AT SUPERSOMIC POINTS RACK
TO A TEMPORARY FULL ARRAY
TADEQAYXPNIECTEND, MUNPTID)
CHANGE THE RESTDUALS AT THE ATRFQIL SURFACE
T3(2,JugIMAXa2)=TT(2, JHIMAX=2 Y+ THODYAFP (23 IMAN=2)
RECONPRESS THE RESIDUALS AT SUPERSONIC POIMNTS
TEMDERBVCHPRSLTIN,YUNPTEND)
COMPUTE D2
TIND2VARS(TSNDYTIND)
RSUMSUP=ENBSSUM(TINDYAKDX 2R
RMAXSUP=GLASMAX(TIND)ADERR
T1N9=1|
TINDRD2/UBYCTRL(TIND,BIDPTINDY
COMPUTE THE NEw VALWES NF PHI AY SUPERSONIC POINTS
TBMD2QBVCHPRE(PD,MUNITBND)
T2NDETAMD=TAND
YINC=OBVEMPRS(P({1,2)hP)Y ,MUDYTIND)
TIEDETIND=TTND
TONDETINNATESRD+TANDET2NDw [T UNDETUND IR (T2MD=TIND)
EXPAND THE MEW VALUES OF PHI AT SUPERSONIEC POINTS TO A FULL
ARRAY AND PUT THEM IN THE PHI=PLUS ARKAY
TAD=RAVXPNOL{TSND, MUDYTID)
PPD= NSVCTRL(1SD;HUDIPPDJ
FREE

300 CONTINUVE

MOVE THE PHI ARKAYS 70 NEW ITERATION LEVEL
PrD=PD
PD=PPD
REUMERSUMSUE+RSUMSUP
RMAX=AMAXI (RMAXSUB,RI"AXSUP)

17
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NTEMP=NS

IF (NSGEQ,0)NTEFPRY

FNSEFLDAT(NTEMP)

RABUP=RSUNSUP/FNS
IF{NS,EN,0IRASUP=YD,

RASUBS (RENM=RSUMBUP) /(POINTS=FNG}
RAVGERSUM/PUINTS

SHRIE=RMAY/RMAXD

SKA=ZRAVG/RAVLD

SRASUB=RASUR/PASIIRN
SHASLUP=ZRASUP/RASIPD

RUAKGERMAX

FAVEOSRAVE

RASUBO=zRASLA

RASUFD=RASUP

bRITE (6, 9002)N, RI"AX 8R4 RAVG, SRA,RASUIA, SRASUR,PASUP,BRASUP NS
LF{RUAX LE,COVR,OR N, GE,MIVIGO TO 500
JEINLJERGIIRMANT =R MAX
JEIMERIYRAVRI=RAVE

LS
GO TO %0
CONTIHUE

SRUZ(RVAX/RNARNTI Rk (1, /FLOATIND)
SR2Ie{FAVG/RAVGIYR¥ (1, /FLOAT{N))

KRITE(L,9903)5RM,; SRA

CALL RICLOCKSCCPU,wALLY

VRITE(6,9905)CPU, WALL

RETURN :

FORMAT(BMO NAXUHRMAXGXTHSRMSXAHRAVGEXIHERAUXEHRASIIRSY

B EMIRASUNRXBHRASUPSXSHSREUPIX2HNS)

FORMAT (I, I3, E11 S, FT U E 1,5, FT. 0,E11,5,F7,4,B41,8,F7,4,14)
FORMAT(FOGOVERALL SPECTRAL RADIUS IS°F7,4,* BASED ON RMaX ANDF

* F7.U,* BABED ON RAVG, ™)

FORMAT (TOENTERING PICTURE AFTERPF10,5,° SECONDS CPU TIME AND?

* F10,5,? SECOMDS FLAPSED TIME®)

FORMAT(? ITERATIOMS TDOK*F10,5,° SECONDS CPU TIME ANDFFI0,.5,

* 7 BECONNS ELAPSED TIME’)

END
SUBROUTINE PRESS
COMMON P4, 1) ,FPLOY),I4AX, JHAY ,Jw, COVR,MIT, IMAXMY  JMHAXM]

* ,D¥,DY,DX2R,P{,P2,X"nINF,RSH,DY2R

DIMEMSION CP(41)

JaJw

DO 1 lu@,IMAXMY
CPLIIR(P(Int,J) P (141,J))/DX

CONTINUE
KRITE(S,9902)(C1,CP(1),I=2,IMAXMY)
RETURN

FORMAT(?y I CPY/(I8,F10,8))
END



REFERENCES

Bauer, Frances; Garabedian, Paul; Korn, Duavid; and Jameson,
Antony: Supercritical Wing Sections II. Leeture Notes in
Economicsg and Mathematical Systems, vol., 108, Springer~Verlag,
1975,

Control Data STAR-100 Computer Hardware Reference Manual.
CDC Publication No. 60256000, 1975.

Murman, Earll M.; and Cole, Julian D.: Calculation of Plane
Steady Transoniec Flows, AIAA J., vol. 9, no. 1, 1971,
pr. 114-121,

Murman, Earll M.: Analysis of Embedded Shock Waves Calculated
by Relaxation Methods. AIAA Computational Fluid Dynamics
Conference, Palm Springs, Calif., 1973.

Jameson, Antony: 'Transonic Potential Flow Calculations Using
Conservation Form. AIAA 2nd Computational Fluid Dynamics
Conference, Hartford, Conn., 1975,

STAR FORTRAN Language Version 2 Relerence Manual, CDC
Publication No. 60385200, 1977,

19



1. Repott No, 2. Government Accession No.

NASA TM 74086

3. Aecipiant’s Cotalog No

4. Title and Subtitle
Preliminary Study of the Use of the STAR-100 Computer

for Transanic Flow Calsulations

5. Report Date

November 1977

6. Perfarnung Qrganization Code

7. Autharis)
James D, Keller and Antony Jameson

R Performing Qrganization Aeport No,

0 Work Umit No.

9. Purforming Qrgamizatton Name and Address

NASA Langiey Research Center
Hampton, Virginia 23665

505-06-13-01

1. Cuntract or Grant No

'13‘ Type ol Report und Peniod Covered

Fom T g Sy e —

12 Spansoring Agency Mame and Address

National Aeronautics and Space Administration
Washington, DC 20546

NASA Technical Memorandum

e et - e |
14 Sponsaning Agency Code

15 Supplementary Notos

Antony Jameson - Courant Institute of Mathematical Sciences, New York University

16, Abstract

A new explicit method for solving the transonic small-disturbance potential equation
is presented. This algorithm, which is suitable for the new vector-processor
computers such as the CDC STAR-100, is compared to successive line over-relaxation
(SLOR) on a simple test problem. The convergence rate of the explicit scheme is
However, the efficiency of the explicit scheme on the
STAR-100 computer is sufficient to overcome the slower convergence rate and allow

an overall speedup compared to SLOR on the CYBER 175 computer.

slower than that of SLOR.

17. Key Words [(Suggested by Authorls))
Transonic Flow
Vector Computers
Computer Programing and Software

18. Dutribution Statement
Unclassified - Unlimited

Aerodynamics
19. Security Classif. (of this report) 20. Securtty Classi. {af this page) 21, No. of Pages 22, Prce’
Unclassified Undlassified 19 $3.50

* For sale by the Nationa!l Technical information Service, Springlield. Vegiia 22161



	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A02_.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf



