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PRELIMINARY STUDY OF THE USE OF THE

STAR-100 COMPUTER FOR TRANSONIC

FLOW CALCULATIONS

v	 James D. Keller and Antony Jameson*
Langley Research Center

SUMMARY

A new explicit method for solving the transonic sma:,1-

disturbance potential equation Is presented. This algorithm,

which is suitable for the new vector-processor computers such as

the CDC STAR-100, is compared to successive line over-relaxation

(SLOR) on a simple test problem. The convergence rate of the

explicit scheme is slower than that of SLOR. However, the

efficiency of the explicit scheme on the STAR-100 computer is

sufficient to overcome the slower convergence rate and allow an

overall speedup compared to SLOR on the CYBER 175 computer.

INTRODUCTION

The state-of-the-art of transonic flow calculations has

advanced to the point where two-dimensional flows, including the
L

effects of viscosity, can be computed in a relatively short time

Y	 on modern serial-type cumputers. For example, many people are

using a program developed at the Courant Institute of New York

Courant Institute of Mathematical Sciences, New York University
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University for the analysis of transonic flow past airfoils

(ref. 1). This program gives accurate solutions to the full-

potential equation, including the effects of boundary-layer

displacement, in about 2 or 3 minutes on a CDC CYBER 175 nomput,er.

Three-dimensional, transonic, finite-difference calculations,

however, are expensive on this type of computer. The three-

dimensional program described in reference 1 takes about half an

hour for an inviscid calculation on a fairly crude grid.

It is hoped that the use of the STAR-100 computer will allow

accurate, three-dimensional, transonic flow calculations to be

done economically. One way to achieve this goal is through the

development of algorithms which can make full use of the unique

architecture of the STAR-100. The STAR computer has a "pipeline"

type of processor which is very efficient in doing arithmetic

operations on long vectors (ref. 2). Unfortunately, the best

available method for solving the transonic potential equation is

successive line over-relaxation (SLOR), which is not amenable to

vector arithmetic. The reason for this is 'the semi-implicit

nature of the iterative method; that is, the calculations at a

particular grid point .require results from the current iteration

at neighboring grid points and thus cannot be done in long vector

operations.

This paper describes a new explicit algorithm which can be

vectorized for use on the STAR-100, The new algorithm is applied

to a. simple test case and compared to SLOR on the CYBER 175
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computer. A simple STAR program, including vector instructions,

is given in the appendix.

TEST PROBLEM

The test problem chosen for this preliminary study is to

solve the transonic, nonlinear, small-disturbance potential equa-

tion for a nonlifting parabolic-are airfoil in a finite box with

uniform grid, as shown in the sketch below.

y
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Although this is a very simple physical situation, it still has

some of the most difficult features of transonic flow fields as far

as programing for the STAR is concerned. The governing partial

differential equation is

	

^1 - M^ - (Y+I) M^ 	
$x^^xx	 ^yy - 0

The boundary conditions to be applied, are

14
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^ = 0 on the outer boundary

and

¢ y = +4Tx on y = *0, -.5 ' x -` .5

where T is the thickness of the parabolic-arc airfoil (which ha,t, 	 t

a unit chord). For T = 0.1 and M. = 0.9 the flow if,, super-

critical. In regions where the coefficient 
of^xx 

is positive,

the flow is subsonic , and the equation is elliptic type. In regions

where the coefficient of 
`bxx 

is negative, the flow is supersonic

and the equation is hyperbolic type. The general procedure for

solving this equation is to replace the partial differential equa-

tion with a finite difference equation at each grid point. These

finite difference equations are then solved iteratively.

This test problem represents a simple physical situation which

is of little practical. interest. A more useful program should

allow for lifting flows and should extend the outer boundary

farther away from the airfoil. This could be done either by using

a stretched grid or by some type of grid nesting using additional

coarse grids around the small region considered here. The test

case does, however, include the major difficulties to be overcome

in using the STAR-100 computer for transonic flows. For example,

it has supercritical flow which requires a change from one type: of

difference equation at subsonic (elliptic) points to another type 	 r

of difference equation at supersonic (hyperbolic.) points. It also

requires the use of an explicit: iterative scheme to solve the

4
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difference equations if the arithmetic operations are to be done

uoing long vector instructions.

SEMI-IMPLICIT SOLUTION METHOD

The most common method used to solve the finite difference

equations is successive line over -relaxation ( SLOH). This itera-

tive scheme is implemented as follows:

Compute U R 1 - M2 - (Y+1) M2 0

using

n	 n
a, in+l..7 - ^ in_ l l 1

^x	 2Ax

If U > 0 (subsonic points), central differences are used

together with over -relaxation ( w > 1) to give:

n	 2 n+l	 ] 1
 el	

n+1

U
^i+]" 	w ^i,3 - 2 1- w J	 ,J

	 (P 
n+1

	

..	 /

n+l	 - 2 n+1 + n+l
+ X 1+1	 ^i,J	 ^'i,.i-1 

= 0Ay 

where the superscript indicates the iteration number.

If U < 0 (supersonic points), an upwind difference is used

for	 xx to give:

ORI4^R Q^ALI^
OF

i ^
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11+1	 n+ln+l	 n+l	 n+1	 n+l
U ^i.) - 20i-1L,j + `P i-2,i + ^iIj+1 - 2^i j a o i,i-1 = 0

A x 
2	 A y 2

At the airfoil boundary the 
^yy 

term is replaced by

I

2p i j + oij -1	 2^YIy=O
Oyy -	 Ay 	 -	 Ay

nonlifting flow is

0). Each iteration is

left to righL, by

at each column. This

originally proposed by

4 and 5 for a discussion

which takes into account the fact that th

symmetric (i,e., ^i,j-1 - ^i,3+1 at y =

generated one column at a time going from

solving a tridiagona]. system of equations

nonconservative scheme is similar to that

Murman and Cole (ref. 3). See references

of related conservative schemes.

EXPLICIT SOLUTION METHOD

The explicit solution method uses values of the potential

function from the two previous iterations in order to update the

potential function for the present iteration (thus termed a three-

level scheme). The method is implemented as follows;

Compute U = 1 - M2 - (y+l) M 2
 x

using

__ ,	 - ii-1,,j

a'x	 2A
i+1,.7

x

6
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I	 1

where

If U > 0 (subsonic Points), central differences are used at

iteration, or "time," level n:

^n+l - 2fin	 +  n-1	 (2 - P I )
 Can	

- ^n-l^ D R
+ 	 \ i, j 	i,j	 1 1

where

2

Rl = U D̂1+l,j - 2^i,j ^ i-1, j ) + Ay2 ^ i , j+l - 2 ^i, j + 01,j-1)

and

2

D =	 P1P2

1	 2 [U + rr\73')2

If U < 0 (supersonic points), the upwind ^xx difference

i.s formed at "time" level n - 1, while 0 y is centraliy-

differenced and averaged in time level n, to give:

n+1 - 2 n	 + n-1 + 2a1 n	 n-1	 n	 + n-1 1
^i, j 	^ i , j 	Oi,j - O i, j - 

O
i-1,j	 ^i-1,j /I

,	 -i

Olwl̂ AL CL13 3,51
& Poolt
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^	 l

r( n 1	 n-1	 n-1R2 = U 
1^1,j - 21pt -11i + ^i-2 1 )

\AY/

2l 
[(1 a)	 j^'1 - 2, i, j * ^IA-1)

J
1

* a \ i-1,J+1	 2 i-1,j + ^i-1,J - 1 /
ll

 ]

U = (1-0) U + vU

n-1	 n-1 1
U r 1- K- (Y+1) Nl^ (

^i	 - 41_2 
7 J

l	 2 Ax

a = P2 min (1,	 'Ui Ax f

and

2P	 22 (Ax}
D2 y2

max Ll, lul Ax)

r	 A von Neumann stability analysis of this lass: scheme with	 1
I	 I

the U replaced by U shows why the xx derivative is evaluated

't	
8
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at the n-1 iteration and why the Q yy derivative is a weighted

average between ^yy at the i column and Q yy at the i-1

column. To do the von Neumann an^O,ysis, ].et 	 at the lcth

iteration be

^(k) = 9Iteimxeiny

Also let mAx = g and nAy = n. Putting these definitions into

equation (1) gives

92 -2g+1+2a (g-1-go-i^+e-'C)

= D2 { U (1 - 2e-" + e-gig )

l r 	 12

+ g qx ) 
[(1 a)(eln - 2 + e

-
 
in)

+ a (e-:C e in - 2e-lge- 
in) ^	

(2)

Note that

D	 22U = - c

Also define

p

	

1 - 2a2 IUI (	 sin2 2

9
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so equation (2) becomes

2g2 -2pg [I-a (I-e-i^),+[I-a (1-e iF )j =0

or	 a

g= (P 1 _l 	 (1_e-iF,)I

Thus, in order to have !gl 5 1, it is necessary and sufficient to

have both !p! < 1 and a -< 1. The inequality !pl 5 ], implies

that a 5	 Ax.

This convenient factoring of the expression for the amplifica-

tion factor was made possible by choosing this particular ropre-

sentation for the ¢ xx and ¢yy derivatives. In practice the

coefficient of ¢ xx is U rather than U; thi r  averaging make3

the scheme approach second-order accuracy as a approaches one.

It should be noted that this explicit scheme is not only a

different iterative algorithm from the semi -implicit scheme, but

it also has a different steady-state solution. This difference

occurs because of the weighted averaging done on both the ^ yy
term and on the coefficient of the xx term for supersonic

points.

CONVERGENCE AND TIMING COMPARISONS

Short computer programs have been written to solve the sample

problem using the two methods described. The semi-implicit SLOR

10
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method was coded in standard FORTRAN IV and run on a CDC CYIIFR 3.75

computer (which is about 2 2 times as fast as a CDC 6600 for

this type of problem). The explicit method was coded in STAR

FORTRAN (ref. 6) and run on a CDC STAR-100 computer. The STAR

code includes the use of vector instructions in the iteration

loop. It also includes the usa of bit control vectors to distin-

guish between subsonic and supersonic points. The bit control.

vectors provide the capability of performing the complicated

supersonic calculations only at supersonic points, which are

collected into El vector through the "compress" and "expand" type

of instructions available on the STAR. The STAR code for this

problem is listed in the appendix.

The computations were done on three different grids. Each

calculation was terminated when the value of the largest residual.

in the flow field was less than Z (Ax2 + Ay2 ). Each calculation

was run with experimentally-determined optimum values of the

parameters for that algorithm so that convergence was attained in

a minimum number of cycles. The results in the table below show

that the new three-level explicit scheme has a slower convergence

SLOR ON CYSCR 175 EXPLICIT METTIOD ON STAR-1.00

Grid
size

Cycles to Time to Average Cycles to Time to Average
converge converge sec/cy. converge converge sec/cy.

40X40 42 1.242 .0296 131 .879 j	 .0067

8OX80 98 12.11.8 .1237 300 6.385 [	 .0213

160X160 244 116.095 .4758 655 59.834
I

.0913

OF ^ Q^GY 
11



rate than SLOR. However, the efficiency of this now scheme on the

STAR computer is enough to malco up for the slower convergence rata

and still allow an overall reduction in computing time. Not

surprisingly, the speedup is greater for the cases with finer

grids than for the 40X40 case.

CONCLUDING REMARKS

This preliminary study has shown that a now explicit: method

for solving the transonic small--disturbunce potential equation on

the STAR-100 computer can almost halve the computer time required

for this type of computation when compared to successive line over-

relaxation on the CDC CYB R 175 computer. These results are

limited tc a eela.tively simple problem with a uniform Cartesian

axial. Although the speedup is not as great as desired, it is

enough to ,justify further study of this method. The effects of

lift and of grid stretching on the convergence rates of the.

schemes should be investigated. Also, the new explicit scheme

.fjhould be applied to the full potential equation.

There are several possibilities for obtaining further reduc-

tions in computer time. One is through the development of more

efficient algorithms. Improvements might be made in the conver-

gence rate of explicit algorithms, or other vectorizable algo-

rithms might be developed. Another possibility is through

programing techniques to get successive line over-relaxation to

run as efficiently as possible on the STAR-100 computer. Although

I

12
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the method is semi-implicit, there are portions of it which can

be written in vector instructions of short length.

The program listing in the appendix should serve as an

introduction to some of the programing techniques available on

the STAR-100 which are useful for transonic flow calculations.

13



APPENDIX

PROGRAM LISTING

PROG R A M 1JT(II4PUT,OLITPUTiTAPES=INPVT#TAPE6=011TPUT)
Co mmmJ P(Olf4l1),FP(41),II4AXfJMAXpJW#Cf1VRoHIT,I'1AX41iJl'AXMI
+ oDxrDYIDXZRoPi,P2,XMINFORSF'pDY2R
CALL ()3C40GKS(CP H il1 ALL)
MRITE(609(12)CPUrN;ALL
XMINF=,9
P1 =1,e3
P2=,99
NSH=1.4
IHAX=41
J1tAX=n 1
MIT-1000
CFr-1,

•

	

	 PN=^./3.
PH=4./3,
IMAX141=114AX-1
JMAXMj=JMAX-I
DX=Pw'/IMAXMI
OY=PH/JMAXHI
JkpJt+AXM1/2+1
092R=1,/DX**2
OY2R=1,/DY**2
COVR=CF *,S*(DX **2+DY**2)
DO 10 lxlpIMAX
FP(I)=0,

10 CONTINUE
XLE=-,5
XTEx,S
EPS=1,0E-06
IH=IMAXMI/2+1
ILE=IFIX((XLE°EPS)/DX)+IH
ITE=IFIX((XTE+EPS)/DX)+IH
00 11 I=ILE,ITE
X=(I-IH)*DX
FP(I)=,4*X

11 CONTINUE
NT=IPAY.*JMAX
P(1, l I^4T)=0,
CALL PICTURE
CALL PRESS
STOP

9902 FOR14AT(1X,410r)X,A10)
ENO

14	
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C

C

C

Y

i

C

C
C

I

SUBROUTINE PICTURE
THIS SUBROUTINE DOFS THE RELAXATION

CON 4 0N P(41r41)rFP(ut)rINAX,JPSAk,JW,CnVRr14IT,IItAXM1rJN-AXM1
* rDXrDYrDX2RrPlr1'2,X1iINFrRSH,DY2H

n1 1 +E N SION SO M E ARRAYS FOR TEMPORARY STORAGE

DI V E FI SION PP(41r111)rPM(t11r1M
M I ENS ION TI(41#01),T2( 4Ir41)rT3 (111,N1)
HIT 1!U(41r41),EP(41r lit )rIR(41r III) rMUD,E90,IRD,BID
OrSCRIPTOR T1D,T?DrT3DrPDrPP0#PMD
CESCRIPIOR 14UnrEPnrI1;DrBiD
O ESCkI P IOR T1 NO, T2An,T3NnrT4ND,15Nn,T0 , Dt IM P T8ND
CALL 03CL.00KS(CPUrIV'ALL)
t011F (6,9 r)04 )C.PU,HALL

ASSIGN THE DFSCRIPTONS 10 SPECIFIC ARRAYS
NP=IPAYAJr1AX-?*J"SAX-2
ASSIGN T1DrTi(2r2;hP)
ASSIGN T2Dp12f2r211P)
ASSIGN I10p13(2r?IrP)
ASSIGN PD,P(2,211.P)
ASSIGN PPD,FP(2,?tr1P)
ASSIGN P14DrP"(2,? ► ++P)
ASSIGN MUDrMU(2r21NP)
ASSIGN ERD,Ek(2r21NP)
ASSIGN IUP,I9(2r211:P)

SET UP A FIT ARRAY T HAT HAS ONES AT I N TERIOR POINTS

AND XF405 AT THE FDGE PUIPTS
IRD=HrOr
DO 1 I=2 W,AXMI
DO 1 J-2rJ1'AXM1

1 IH(IrJ)=Sr1r
EBDm,NOT,IPD
XK-i.-kMIrlF**Z
AC-(r^.SHi1.)* XMI)JF* +?_/(2.*bX)
D1=0,5*P1*P2*P2
AR2=(DX /D.Y)**2
AR2R=1, /AR2
1:2=P2 *P 2/AR
TWODY-2,*DY
s-P1 -1.

INITIALIZE THE TEMPORARY ARRAYS
TIDa0.
T2Da0,
T3D =n,
PPD=n.
P1;D-0,
kRITE(br9y01;!
POINTS=(I"AX- 2 	 (J^'AX - 2)
RMAX0=10r
RAVGO=10,
RASUHO-10,

15
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I	 "l

RASUPOR10,
N rr 1

50 CONTINUE
C	 COMPUTE U

TSDeXK-AC*(P(3r2lNP)-P(lr2lNP))
C	 SET THE MU(IrJ) BIT TO ONE AT SUPERSONIC POINTS

MUD=liD,LT.O,
C	 SET MU TO ZERO AT THE EDGE POINTS

MUD=MUD, AND, IRD

C	 COMPUTE A CENTRAL PHI-XX AT IrJ
PPDaP(1r2lNP)-PD-Pf+P(3,21NP)

C	 COMPUTE A CENTRAL PHI-YY AT IiJ
T2D=P(2r1lNP)-PD-PD+P(2r31NP)

C	 CO M PUTE THE RESIDUAL
PPD=110*PPD+AR2*T2D

C	 CHANGE THE RESIDUAL AT THE AIRFOIL SURFACE
PP( 2rJl^1IMAX-2)=PP(2rJl'•)I"AX-2)+TKDDY*FP(2)IMAX-2)
T3Do0,

C	 PUT ZEROS IN THE RESIDUAL ARRAY AT THE EDGE POINTS
PPD=Q8VCTRL(73DrENDIPPD)

C	 PUT ZEROS IN TIE RMSIDI.IAL ARRAY AT SUPERSONIC POINTS
PPD-(.8VCTRL(T30rMUDlPPD)
73D--VAbS(PPD!T3O)
PSUNSUBcGiBSSU14(T3D)*DX2R
RMAXSU8=08SMAX(T3O)*DX2R

C	 COMPUTE THE NE W PHI VALUES
PPD-01/(TID+AR2)*PPD+PD-(le-P1)*(PD-PMD)

C	 NUMBER OF SUPERSONIC POINTS
M,S=08SCNT(MUD)
RSUHSUPoO.
RMAXSUP=0.
IF(NS.E(;.0)GO TO 300

C	 SUPERSONIC CALCULATIONS
C	 ASSIGN TEMPORARY STORAGE FOR SUPERSONIC CALCULATIONS

ASSIGN TINDr,DYN.NS
ASSIGN T2NDr,DYN.N6
ASSIGN 73NDr,DYN,NS
ASSIGN T4NDr,DYN.NS
ASSIGN T5ND,.DYN,NS
ASSIGN T6NDr,DYN.NS
ASSIGN T7NDr,DYN,NS
ASSIGN T8N0r,DYN6NS
ASSIGN FIDr,DYN.Ns

C	 HAKE A VECTOR OUT OF THE VALUES OF U AT SUPERSONIC POINTS
T1ND=08VCMPRS(T1CrMUDlT1ND)

C	 COMPUYE SIGMA
T3NDGVABS(T1NDl73ND)*AR2R
T4ND=VS0kT(T3NDiTuND)
BBD=T4ND,GT,I,
TSND=1,
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ThND=P2*08VC7RL(TSf!D,h1D)T44D)
C	 MAKE A VECTOR OUT nF THE VALUES OF THE CEMTRAL
C	 PHI-YY AT SUPERSUN)C POIIITS

T2ND-D8VCMPRS(T2D#VtJDtT2ND)
C	 M AKE A VECTOR OUT OF THE VALUES OF THE CENTRAL
C	 PHI-YY ONE POINT UPSTREAM OF EACH SUPE R SONIr POINT

TSNn--I)BVCMtIRS(12(Ir2tNP)rMUD1TShID)
C	 CO M PUTE P1+I-YY TO IISE AT SUPEPSONIC POINTS

T51Jn-T2N0 +T4','n*(T5t•D-T2ND)
C	 MAKE VECTORS OUT OF OLD VALUES OF PHI AT SUPERSONIC POINTS
C	 AND ONE AND TWO POINTS UPSTREAM OF EACH SUPERSONIC POINT

TAND=DBVCIIPRS(PI'np}'UDIT6tiD)

T7 t`0- 01; VC t1 I'14S(P14 (I r21`tP)eMl)D117ND)
Then-QBVCI^PRS(PH(n,21o,P),MUDITBNO)

C	 COMPUTE U-71LOE
T2t•D -XK-AC *(TEND-ThNn)

C	 COMPUTE U-hAR
T2ND-71NP-T4v)*(Tl^.O-T214n)

C	 rtWPOTE THE kESIUUAL
T5t•.D-T5NO +72'.n *(76t4D-T7t^D,•T71,D+TEND)

C	 EXPAND T 14 E RESIDUALS AT SUPERSONIC POINTS RACK

C	 TO A TEMPORARY FULL ARRAY
T3D-QBVXPI411CT5t^n,MLInIT3D)

C	 CHANr,E. THE RESIDUALS AT THE AIRFOIL SURFACE'
T3(2^Jt•'II ni AX-2)=T3(2,J^+t It+A%-2)+TWDDY*FP(2tIMAX-2)

C	 RECOMPRESS THE RESIDUALS AT SUPERSONIC POINTS
T5^'OGQBVC t1 PR	 "S(T3D^Uni15ND)

C	 COMPUTE 02
TitjD=VASS(T511JD1TlND)
PSUHSUP«D8SSUM(T1ND)*DX2R
RMAXSUP-(g8SM4X(TiNq)*DX2R
TIPD -1,
T 1t4DrD2/U8VCTRL(13^'DIRIDITIND)

C	 COMPUTE THE NEW VALUES OF PHI AT SUPERSONIC POINTS
TBNO=QBVCHPRS(PDfmUDITBND)
T2N'O=T8M0-TEND
T3NC-QBVCHPRS(P(1o21NP),MUD/T3NO)
T3t•Dr.T3ND-T7ND
T5ND=TINO*'ISND+TBND+T2ND-(T4ND+T4ND)*(T2h,D-T3NO)

C	 EXPAND THE NEM VALUES OF PHI AT SUPERSONIC POINTS TO A FULL

C	 ARRAY AND PUT THEM IN THE PHI-PLUS ARRAY
T3n-Q8VXPNO(T5ND#PUDjT3D)
PPD=08VCTRL(13DrMUD ► PPD)
FREE

300 CONTINUE
C	 MOVE THE PHI ARRAYS TO NEw ITERATION LEVEL

P k D-PD
PDmPPD
RSUwt=RSUMSLiB+RSUt'SUP
Rh'AX-AVAX1 (RPAXSUBIRI'AXSUP)

1.7
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NTEPPMNS
IF(NS,ED,O)NTEPPUI
FNSMFLOAT(NTEHP)
RA SUP= RSUMSUP/FNS
IF(NS,ErJ,0)RASIiPmIO,
PAS UBM(RSNM-RSUHSLIP)/ (PO INTS-FNS)
RAVG=RSUM/PUINTS
SkL =R P AY./RHAMO
SPA -RAVG/RAV(;D
SR A SIIBzP A Sl1M / p A SIiMD
SPA SUPtPA SL I P/ RASItPO
RMAXO=RMAX
PAVGf.I RAVG
RAS LIP OnPhSUO
RASUF'D=RA$t)P

SPITE(6x9902)N,Rr'AXrSRmrPAVG,SRA,R4Stlq,SPASU(A,PASUP,SRASUPrNS
I F ( RMpx .LE.COV R ,t^R.FI ,GE."+I1 )GO TO 500
)F (N, ED. I )R'HAYI=F"•AX
IPv'.ER.1)PAVGI=PAVG
N!:N+I
GO TO 50

500 CONTINHE

SR'^n(R^A%/k"`AXI)**(1e/FLnAT(N))
Skir(rf4VG/RAVGI)**(1./FLOAT(N))
V;RITE(6,9903)SRM,SRA
CALL D3CLOCKS(CP0,^ALL)
DRITE(6r9905)CPU,1vALL
RETURN

9901 FOR P AT(3M0 144X4HRMAX6X3HSRM5X4HRAVG6X3HSRA4X5HRASIJB5X
* 6MSRASUh2X5HRASLIP5X5HSRSUP3X2HNSI

9902 FORMAT(IX,13rE11,5,F7,4rEli,S,F7.4rE11.5rF7,4,E11.5,F7.4rI4)
9903 FOR M AT('OOVERALL SPECTRAL RADILIS IS'F7,4,° BASED ON RMAX ANDF

* F7,4r r RASED ON RAVG.')
9904 FOR HA T( I OENTERING PICTURE AFTER O F10,5, 0 SECO140S CPU TI R E ANDr

* F10.5r' SECONDS ELAPSED TIME')
9905 FORHAT( f ITE R ATTONS TnOK O F10,5r° SECONDS CPIJ TI M E A"ID`1710,50

* r SECONDS ELAPSED TIME')
END
SUBROUTINE PRESS
COMMON P(41 sil l) ,FP(41),I4AXrJMAX,JkrCOVRomITrIMAXI'1rJ11AYM1
* ,DY,DYIDX2RrPirP2rXfilNFrRSHrDYRR
DI M E N SIO N CP(41)
J--JW
DO 1 Im2,IMAXMi
CP(I)F(P(I-18J)-P(I+I,J))/DX

1 CI)NTINUE
WRITE(6,9902)(I,CP(I),Is2rIMAXM))
RETURN

9902 FORMAT('1	 I	 CP'/(IArF10,6))
END

18
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