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1. INTRODUCTION
 

This report is the second Semi-Annual Status Report on
 

the research pr3ect "Models and Techniques for Evaluating the
 

Effectiveness of Aircraft Computing'Systems" being conducted for
 

the NASA Langley Research Center under NASA Grant NS 1306. The
 

report concerns work accomplished during the period from 1 Novem­

ber 1976 to 30 April 1977, hereafter referred to as the
 

"reporting period."
 

The purpose of this research project is to develop models,
 

measures and techniques for evaluating the effectiveness of
 

aircraft computing systems. -By "effectiveness" in this context
 

we mean the extent to which the user, i.e., a commercial air
 

carrier, may expect to benefit from the computational tasks
 

accomplished by a computing system in the environment of-,:n
 

advanced commercial aircraft. Thus the concept of effectiveness
 

involves aspects of system performance, reliability and worth
 

(value, benefit) which must be appropriately integrated in the
 

process of evaluating-system effectiveness. More specifically,
 

the primary objectives of this project are:
 

1) The development of system models that can provide 

a basis for the formulation and evaluation of aircraft 

computer system effectiveness, 

2) The formulation of quantitative measures of system 

effectiveness, and 

3) The development of analytic and simulation techniques 

for evaluating the effectiveness of a proposed or 

existing aircraft computer. 
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Work proposed for the first year of this project was to be
 

concerned primarily with objectives 1) and 2). During the
 

previous reporting period (1 May 1976 to 31 October 1976), the
 

main thrust of our work was in line with the firstfobjective
 

(see the first Semi-Annual Status Report [I). During the
 

current reporting period, our effort has been aimed at both
 

model development (objective 1)) and the formulation of effective­

ness measures (objective 2)). More specifically, our work has
 

concerned:
 

i) More detailed development of the model hierarchy at
 

mission, functional task, and coiputational task levels,
 

with emphasis placed on the modeling of an air transport
 

mission.
 

ii) Investigation of ai appropriate class of stochastic
 

models that can serve as bottom level models in the
 

hierarchical modeling scheme. The scope of a model at
 

this level is some specified aircraft eomputer (the
 

system to be evaluated) and the level of abstraction
 

is the "operational state" of the computer's hardware
 

and software.
 

iii) Definition and formulation of a unified measure of
 

effectiveness called "performability" and, in particular,
 

the "capability" aspect f performability which expresses
 

top model behavior (levels of performance) as a function
 

of base model behavior.
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We believe that the following report attests to a substantial
 

amount of progress in each of these areas. Moreover,.we feel that
 

the progress todate is compatible with what we had anticipated
 

when writing the proposal for the second year of the project [2].
 

Section 2 of the report describes the manpower effort proposed
 

for the past year, the personnel involved in conducting the
 

investigation, and their levels of effort during the reporting
 

period. Section 3, the body of the report, describes the technical
 

status of the research performed during the reporting period.
 

http:Moreover,.we
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2. PERSONNEL
 

At the initiation of the project, it was estimated that
 

the following effort would be required during the first year.
 

Principal Investigator
 

100%, two months, summer
 

25%, nine months, academic year
 

Graduate Student Research Assistants
 

The equivalent of:
 

3 at 100%, three months, summer
 
3 at 25%, eight months, academic year
 

During the reporting period from 1 November 1976 to 30 April
 

1977, research personnel and their levels of effort have been:
 

Principal Investigator
 

John F. Meyer
 
25%, November 1976-March 1977
 
50%, April 1977
 

Graduate Student Research Assistants
 

Robert A. Ballance
 
25%, January 1977 - April 1977
 

David G. Furchtgott-
 -

25%, November 1976 - April 1977
 

Liang T. Wu
 
25%, November 1976 - April 1977
 



3. 	TECHNICAL STATUS
 

As stited in the introduction, our research during the reporting
 

period has progressed in three principal areas.
 

The first area has been a more detailed devel6ment of the
 

higher level models in the hierarchy, i.e., the models at the mission,
 

functional task, and computational task levels. In particular, our
 

efforts here have focused on i) establishing a general methodology
 

for formulating higher level models and ii) applying this methodology
 

to the formulation of a prototype model hierarchy for a specific
 

type of mis44ion, i.e., an air transport mission.
 

The second area has been the investigation of an appropriate
 

class of stochastic models that can serve as bottom level models in
 

a model hierarchy. A model in this class is a model of some
 

specified aircraft computer and the level of abstraction is the
 

"operational state" of the cbmputer's hardware and software. 
 The
 

goal here is not to develop a bottom level model for a specific
 

aircraft computer architecture (e.g., SIFT [3] or-OSIRIS [4]) but,
 

instead, to determine a type of stochastic model which is i) capabie
 

of representing a--variety of fault-tolerant computer architectures
 

and 	ii) compatible Mith a hierarchical modeling scheme.
 

The 	third area of effort has been the definition and
 

formulation of a unified measure of effectiveness called "perform­

ability" which comprises three principal measures: "availability,"
 

"dependability" and "capability." The first two measures quantify
 

the behavior of'the bottom model of the hierarchy and are the usual
 

objects of study in classical structure-based reliability analysis.
 

A:ccordingly, the bulk of our effort here has concerned the third
 

measure, "capability," which expresses top moclj behavior (levels of
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total system performance) as a function of the "basic variables"
 

of the bottom and intermediate level models. In particular, we
 

have established aY class of capability measures referred to as
 

"capability functions" and have developed a general concept of
 

"functional dependence" (called "R-dependence") which'is-applicable
 

to capability functions.
 

The status of our research in each of these areas is described
 

in the subsections that follow.
 



3.1 Higher.Level Models
 

3.1.1 A Model Hierarchy
 

During the reporting period, we have continued the development
 

of the system models described in the first:emi--Aninual Status Report
 

[1]. As discussed in [1], we seek a model of the total system
 

with a behavior relating directly to the user's requirements
 

and a structure accurately describing the probabilistic nature
 

of the system's components. This view requires a high, user­

oriented level with scope comprising the total system (i.e., the -­

air carrieY) as well as a low,structure-oriented bottom level ­

comprising the object system (i.e.', the computing system and closely 

re-lated peripheral equipment).. Also, in order to relate.-the... 

performance of the computer hardware (bottom level) tothe 

accomplishment of user-oriented missions (top level), we have 

concluded that at least two intermediate levels are necessary. 

These are the aircraft functional task level (the higher of the 

two intermediate levels) and the computational task level (the 

lower of the two levels). 

Because the bottom level'concerns the object-system,
 

we have found that information from non-object systems (e.g.,
 

environment, supporting and related systems) is more easily
 

introduced at these higher-levels- Using what we call "basic
 

variables," we incorporate each non-object system into the
 

hierarchy based on the level at which that information is used
 

(see Figure 1). For example,- "weather" does not depend on any
 

.aircraft 	function and yet it can affect the mission outcome;
 

thus., weather may be introduced at the aircraft functional level.
 



Level of 

Scope Top Abstraction 

Air Carrier Composite Basic Missions 

Aircraft 

t 

Intermediate 1 

Composite 

I 

Basic Functional Tasks 

Copue 
I EE 

A; 

Intermediate 2 l 
Composite Basi 

. 
Computational Tasks 

Bottom 

Basic variables! at some level are newly 

introduced at that level. 

Composite vrariables; at some level are 

supported by variables at the 

next -lower level. 

Figure 1
 

General description of a model hierarchy
 

for aircraft computing systems
 

?oOIQ1'IsV 
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The bottom model, along with the higher level basic variables,
 

are-referred to collectively as the "base model" of the total
 

system.. Formally, the connection between the behavior of
 

the base model and that of the top (mission level)fiodel is
 

expressed by a "capability function," the discussion of which
 

is 	deferred to Section 3.3.2.2. In general, the interaction
 

between various levels of a model hierarchy can be viewed
 

either as a part of the hierarchy, per se, or as something
 

which is determined later, in the-process of using the model
 

to analyze' ome aspect of system behavior, e.g,, its perform-­

ability. Either view is legitimate, but the latter appears to
 

be more convenient for the purpose of classifying and discussing
 

these-interactions.
 

3.1.2 Model Descriptions
 

3.1.2.1 	Top Level Models
 

Extending the effort described in the first Semi-Annual
 

Report [1], we have established the following methodology
 

for formulating the top level model. We begin with an informal
 

general description (or concept) of system missions.
 

These are simple English statements telling us what system
 

activities the user deems desirable and pertinent to each
 

mission. Thus, for a transport -ission, this statement may,
 

be "Transport passengers between-two points qfickly, safely, conve­

niently and with minimum fuel consumption." Note that one
 

can always vary or expand upon this statement to address
 

other missions; to illustrate, we could talk about long,
 

intermediate or short range missions. Other mission types
 

have also been examined, especially a maintbh ance mission
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and a "standby" mission (in which a spare plane is stored
 

to use as a backup in case a plane in service breaks down).
 

Next, from the mission statement we derive a list of
 

the relevant mission factors. This is called the<'mission
 

requirement set." For the air transport mission above, we
 

have: 

1) Passengers are to be transported with time constraints 

2) A given safety rate is to be attained 

3) Inconveniences (diversions, arrival delays, etc.) 
are to be minimized
 

4) &Tuel consumption is to minimized.
 

The next step is a temporal decomposition of missions.
 

Typically, there exist intervals ("phases") during which a­

system is concentrating most of its facilifies upon one
 

activity (or set of activities) and allocating
 

fewer resources to other activities [s]-[7]. Furthermore,
 

during these intervals, system requirements are generally
 

constant, although they may change radically between phases.
 

For instance, the computational demand on a computer during
 

a cruise portion of a flight may be much less than the
 

demand during an autoland portion. An air transport mission,
 

for example, can be naturally decomposed into
 

i) Takeoff,
 

ii) Climb,
 

iii) Cruise,
 

iv) Descent,
 

v) Approach and Landing.
 

Once we have described a mission and its desired goals,
 

we then classify each mission outcome by d6rmining various
 



mission "qualities" or "levels of accomplishment." This is
 

an indication of the general outcome of each mission based
 

on how well theydemands of the mission requirement set are
 

fulfilled.. For instance, with the air transport mission,
 

several levels of accomplishment could be informally stated as
 

follows:
 

i) Flight with no diversion and low fuel consumption
 

ii) Flight with no diversion and medium to high
 
fuel consumption
 

iii) Flight with diversion
 

iv) Flight involving a fatal accident.
 

To obtain a more formal characterization of these levels
 

of accomplishment, with each mission we associate a "mission
 

variable set" which is a set of variables such that if the value
 

of each variable is known, then so is the level of accomplishment.
 

It is also desirable (but not necessary) that each variable
 

depend on the nature of the object system in the sense that
 

the value assumed by a-given variable will differ for at least
 

two different object systems. To illustrate this concept,
 

consider the air transport mission whose requirement set is
 

given above. Then a sufficient mission variable set might
 

be the following:
 

a) Seating capacity [integer, in passengers] 

b) Flight distance -[real, in kilometers] 

c) Aircraft speed [real, in kilometers/hour] 

d) Fuel consumption [trinary valued, with 
0 
1 

= low consumption rate 
= medium consumption rate 

2 = high consumption rate] 
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e) Fuel capacity [integer, in kilograms]
 

f) Safety [binary valued, with
 
0= no fatalities
 
1 = -fatalities]
 

g) Arrival delay [integer, in minutes]#_
 

h) Diversion [binary valued, with
 
0 = no diversion
 
1 = diversion].
 

Note that the mission requirement set connotes certain
 

necessary values for certain items, while the mission variable
 

set places no such bound on any variable. This is because the
 

mission req4uirement set describes what the user wants'the system
 

to do while the mission variable set describes what the system
 

actually does.
 

Given a set of mission variables, to formulate levels of
 

(mission) accomplishment, we define an "outcome" of a mission to
 

be a particular sequence of values of mission variables, one
 

value for each variable in the mission variable set. More pre­

cisely, if there are 9 mission variables, let z-Ldenote the ith
 
1___ 

variable and let Ri denote the range of zi (i.e., the variable z,
 

assumes values in set Ri). Then a mission outcome is an element
 

of the set R1xR2x...xR and a level of (mission) accomplishment
 

is a nonempty set of mission outcomes. The interpretation of a
 

level of accomplishment is that all outcomes in the level are
 

relatively indistinguishable from4the user's point of view.
 

Generally, for a given mission, there will be several levels of
 

accomplishment (referred to as the range of accomplishment) such
 

that every possible mission outcome is contained in one and only
 

,one level.
 



To illustrate this notion, if mission variables a)' - h),
 

described above, are denoted z1 , z2,'. ,z8, respectively, then
 

accomplishment level ii) (Flight with no diversion and medium
 

to high fuel consumption) is formally represented by the set:
 

A2 7{(ZlZ z8 = .1}.2,..,z 8) s-RlXR2X... xR8 lz , E {1,2} and, 

In addition, one can incorporate the notion of phase into
 

the process of delineating levels of accomplishment by allowing
 

the requirements to change with time. For instance, in level i)
 

above, we might require "fuel consumptioi" = 0.-during the cruise 

phase, and then allow "fuel consumption"' = 0 or'l during all other 

phases. Figure.2, illustrates this point. 

3.1-.2.2 Intermediate Level Models
 

The intermediate level models represent successive layers of
 

coarseness in bridging the bottom,object system (computer)jpodel
 

and the top, mission level model. For an aircraft computing system,
 

we believe that at least two such intermediate levels are needed
 

to facilitate the determination of the relation between
 

the bottom and top levels (i.e., the determination of the capability
 

function; see Section 3.3.2.2).
 

First, below the air carrier level, we have the "aircraft
 

functional task" level, charadterizing the aircraft and especially
 

those aircraft systems affected by the c6mputer-(e.g., autoland
 

systems, stability augmentation.systeif and navigation systems.;
 

see Ratner, et al. [9] for one such list of requirements). As with
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of vlevelaccoialhe ± a
 

Phase 1 Phase 2
 

Figure 2
 

Levels of accomplishment delineated by some
 
.variable i and phase
 



missions, we can define task requirement sets to describe the
 

demands of a given task and task variable sets to describe
 

system performance relative to those demands. Thus, for example,
 

stability augmentation requirements may be stated-KTimply as the
 

(singleton) set:
 

a) Aircraft stability is to be kept within a specified
 
tolerance level (where the level may vary according
 
to phase).
 

Control theory abounds with variables which could be used to
 

describe system performance relative to this requirement (see
 

[10] for d6tails. \ One example of a stability variable set 

might be: 

a) Steady state error (pitch, roll, yaw) [real, in degrees]
 

b) Maximum overshoot (pitch, roll, yaw) [real, in degrees] 

c) Rise time (roll, pitch, yaw) [real, in seconds]
 

d) Settling time (roll, pitch, yaw) [real, in seconds].
 

Alternatively, a simpler example which might well suffice is the
 

singleton variable set: \
 

a) Stability [trinary valued, with
 

0 = high degree of stability
 
1 = medium degree of stability
 

2 = no stability]. 

The development of variable sets for other functional tasks (e.g., 

autoland, cruise navigaition, etc.),7is carried out in a similar 

fashion. 

Next, between the aircraft functional tasks level and the
 

bottom level, we have introduced a "computational task" level,
 

describing the basic operations the computer is required to
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perform in order to accomplish the aircraft functional tasks.
 

These computational tasks include such activities as those
 

suggested by Razzaer, et al. [9].
 

a) Vertical guidance
 

b) Horizontal guidance
 

c) Engine control.
 

Here, too, we can define task requirement sets and task variable
 

sets. Thus, for task a) above, we may define the following task
 

requirement set:
 

a) Computations involving vertical guidance are to be 
accomplished within given time and accuracy constraints 

from which we derive the following task variable set: 

a) Program access [binary valued, with 
0 = access to vertical guidance program 
I = no access] 

b) Instruction rate [integer, in average number of Istruc­
tions devoted to vertical guidance 
computations per second] 

c) - Computation size [integer, in average number-of instruc­
tions used in the performance of a 
single pass of the vertical guidance 
program]. 

We have also-been studying the problem of incorporating 

non-computer related information into the model hierarchy in a 

systematic way. One solution which shows promise is to distinguish
 

two types of model variables at each level of the model hierarchy.
 

More precisely, a model variable at level i is a
 

i) 	basic variable if its values cannot be expressed in
 

terms of model variables at level i+l (the next lower
 

level),
 

ii) 	 composite variable if it is not basic, i.e., its values
 
can be determined by knowing the values of the level i+l
 

variables.
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Thus, the set of basic variables at level i represents the increase
 

in scope of the level i model relative to that of the level i+1
 

model. (At the lowest level,'all variables are basic.) Composite
 

variables, on the other hand, lie within the scopeQQf the next
 

lower model and are determinable as a function of lower level
 

model behavior (see Figure 1).
 

To illustrate this distinction, consider the "diversion"
 

variable (as discussed above) introduced at the top level mission
 

model (i=O). At the next lower level this could be expressed
 

in terms of two variables, i) weather and ii) autoland. Thus
 

"diversion" is a composite variable at level 0. If "autoland"
 

is further'diyided into the computational tasks required for
 

autoland, then "autoland" is composite at level I. Without
 

further decomposition, "weafher" is a basic variable at level 1
 

(see 	Figure 3).
 

3.1.3 	*Hierarchical Modeling of an Air Transport Mission
 

During the present repo-rting period, we. have investigated
 

several prototype air transport models. In the sections that
 

follow, we present a simplified model intended to demonstrate some
 

of the major points discussed in the-preceeding sections. We will
 

develop the model in a top down manner, applying the general
 

method described above. Furthermore, many of the examples in the
 

prior discussion will be incorporated below, though usually in a
 

simplified form.
 

It should be noted that, within the hierarchy, there are
 

several other facets of modeling which we have been investigating
 

tut which are not reflected in this example. These are discussed
 

in Sections 3..2 and 3.3 and include the bottom model (hardware and
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Top
 

Composite =Basic 

d) Fuel Consumption 

f) Safety 

h)-Diversion 1a) Seating Capacity
tb) Flight Distance 
1c) Aircraft Speed 

g) Arrival Delay e) Fu- Capacity 

Intermediate 1
 

Composite Basic 

a) Stab.-ility c) Weather 

b) Aut, land 

Intermediate 2
 

Basic
 

a) Program access
 

b) Instruction rate
 

c) Computation size
 

Figure 3
 

Sample variables of'a':model hierarbhy
 

for aircraft computing systems
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software functions), "interphase transition functions" (functions
 

yielding the system configuration after a change in phase) and
 

dependencies (both temporal and structural).
 

3.1.3.1 Top Level Model Development
 

The mission developed here is a basic air transport
 

mission which can be informally described as follows:
 

Mission Statement: 	 "Transport passengers between two
 
points safely, conveniently and
 
with minimal fuel consumption."
 

Mission Requirement 	Set:
 

i: 	A given safety rate is to be attained.
 

ii Inconveniences (diversions) are to be minimized.
 

iii) Fuel consumption is to be minimized.
 

Levels of Accomplishment
 

1) 	Flight with no fatalities, no diversion and low
 
fuel consumption
 

2) 	 Flight with no fatalities, no diversion and high
 
fuel consumption
 

3) Flight with no fatalities, diversion And low fuel
 
consumption
 

4) Flight with no fatalities, diversion and high
 

fuel consumption
 

5) 	Flight with fatalities.
 

Given the mission requirement set we designate the following
 

mission variable set:
 

zl: Safety [binary valued,.ZWith
 
0 = no fatalities
 
1 = fatalities]
 

z2: Diversion [binary valued, with
 
0 = no diversion
 

1 = diversion]
 

z3 Fuel Consumption [binary valued, with
 
0 = low fuel consumption
 
1 = high fuel consumption]
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and, accordingly (see the general discussion in the previous
 

subsection), the five levels of accomplishment are formally
 

represented by the sets:
 

A2 {(0,0,0)}
 

A3 {(0,1,0)} 

A4 = {(0,l,l)} 

3.1.3.2 Intermediate Level Development
 

At the aircraft task level, there are a number of functional
 

tasks which are needed to support the accomplishment of the
 

mission. To simplify the exposition, however, let us suppose
 

that there-are only two types of tasks that need to be accomplished:
 

a) Active Control (stability augmentation/-fuel regulation) 

b) Autoland. 

Let us suppose further that the air transport mission has 

three phases: takeoff, cruise and landing, that active control
 

is required in varying degrees throughout the flight and that
 

autoland is required if Category III weather conditions exist at
 

the time landing is to be initiated. If autoland is required
 

but is not available at the time landing is to be initiated (due
 

either to a faulty computer or to a computer which is not
 

designed to support the autoland task)., the flight.is diverted
 

to another airport.
 

Given these requirements, we formalize the Intermediate 1
 

model as follows. The takeoff, cruise and landing phases are
 

denoted as phase 1, phase 2 and phase 3, respectively, and for
 

the active control task we designate three task variables:
 

ylI' Y12, Y13
 

http:flight.is


where
 

=2!-


Ylj e {0,1,2} , j = 1,2,3. 

The interpretation of ylj is the level of accomplishment of the
 
. .th 

active contrbt-task during the j phase where: 

.0if there is stability augmentation and 
fuel regulation during the jth phase 

= 1 if there is stability augmentation but
>lj no fuel regulation during jth phase
 

2 if there is no active control during jth
 

phase.
 

For the autoland task we designate two task variables y22
 

and Y23 where:
 

(O if the autoland capability is available
 
Y22 at the end of the cruise phase
 

otherwise
 

and
 

f 0 if the autoland function is accomplished
 
=
Y23 	 Iduring the landing phase "K
 

2 otherwise.
 

Finally, we designate a single basic variable (weather)
 

at the Intermediate I level which is denoted Y32 and is inter­

preted as follows:
 

0 if the designated landing site does 
= not have Cat III weather at the end of 

Y32 the cruise phase 

1 otherwise. 

To summarize, the Intermediate 1 level variables can be 

described as a single matrix valued variable: 

Yll Y12 . Y13 

Composite variables 

B a 
=y Y2 2  	 y23  

I Basic variable 
3 
y(1 

Y32
3 
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where yll, Y1 2 ' Y1 3 ' Y22, Y23 and Y32 are defined above.
 

The circled entries are variables whose values are irrelevant
 

to this analysis and are assigned a constant value ¢. The
 

probabilistic nature of composite variables Y1j,- 2 j is
 

determined by that of lower level variables; the probabilistic
 

nature of the basic variable Y32 is determined by the non­

computer part of the base model (see Section 3z2.2). In
 

keeping with the general definition of our model hierarchy,the
 

matrix value of Y should suffice to determine the values of
 

the composite variables at the top level. Furthermore, since
 

there ar'6no basic variables -at the top level, We can resolve'
 

the Z matrix and hence obtain the level of accomplishment.
 

T-he.process.of determining the level of accomplishment
 

which results from a given value of Yis part of the"more
 

general problem of formulating the capability .function (see
 

Section 3.3.2). To illustrate this connection, however, let
 

us suppose that the aircraft is such that an active control
 

level of 0 or 1 is required throughout the flight (see variables
 

ylj, i=1,2,3) for aircraft survival (i.e., without stability
 

augmentation, the plane crashes). Suppose further that if the
 

degree of active control drops from 0 to 1 or 2 any time before
 

the landing phase, then fuel consumption is increased to the
 

point where it is classified as 4'high." Finally, let us suppose
 

that when Cat III weather exists at the intended landing site,
 

if autoland capability is available (at the end of the cruise
 

phase) the autoland- system is used to attempt an automatic land­

ing; if not available, the aircraft is diverted to an alternate
 

landing site. If autoland is attempted but not accomplished,
 

the aircraft crashes.
 

http:T-he.process.of
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Intermediate 1 Mission
 

U) M 0 

Active I -­

yll Y1 2 Y1 3 Control [2 Safety Level of 

Y Y21  Y22 Y2 3 Autoland Z= 2Diversion Accomplishment 

Y33

31  Y3 2  

Y33 

Y 3 3j qeather , 

Fuel 

j\sumption 

Con-

A 1
 
1 


0 ¢0 (Total success) 

0 A2 

[ 0A 

W3 
A4 

1 

00 

0 NI A 

(Total failure)
 

Table 1
 

Values of mission variables and level of accomplishment
 
as determined by sample values of Intermediate 1 variables
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Under the above set of conditions, Table 1 gives the
 

corresponding mission variable values and, subsequently, the
 

level of (mission) accomplishment for several representative values
 

of the Intermediate 1 model variables (i.e., thes ariable
 

Y). An exhaustive analysis of all 216 possible values of Y
 

shows that 10 values yield an accomplishment level equal to
 

A1 , 30 values yield A2, 4 yield A3, 12 yield A4 and 160 yield
 

A5. It should be noted, however, that these numbers have no
 

direct bearing on the system's performability since the
 

probabilstic nature of the matrix-valued random variable Y
 

has yet to be accounted for. Indeed, many of the values of y 
are "logically inconsistent" and hence have a zero probability
 

of occurrence. For example,.the value
 

1 

says that the aircraft crashes during takeoff, due to loss of
 

active control, and yet autoland is accomplised during landing.
 

The next intermediate model in the hierarchy (Intermediate
 

2) is intended to represent the behavior of the computer per
 

se, in terms of the computational tasks it performs through­

out the utilization interval. The purpose of this model
 

is to provide a description oficomputer behavior that is
 

generally applicable to the class of fault-tolerant pmputers
 

envisioned for use in the next generation of commercial aircraft.
 

The Intermediate 2 model thus serves as common interface between
 

specified, architecture dependent bottom models and the Intermediate
 

1 model.
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During the reporting period, some effort was devoted to
 

examining alternative types of representation which might be
 

appropriate atthe Intermediate 2 level, in preparation for a
 

more detailed development which is just now underway.
 

We can, however, illustrate the role of such a model via a
 

simplified example which describes how computational tasks
 

are accomplished during the utilization interval. More precisely.
 

suppose that the utilization interval is divided into five
 

computational periods as follows:
 

0 1 2 3 4 5 

takeoff cruise landing
 

Suppose further that the duration of a computational task is
 

taken to be the duration of the perida during which the task
 

is executed, and that there are four types of computati6o tasks:
 

1) Stability computations
 

2) Fuel regulation computations
 

3) Autoland computations
 

4) Internal computations (I/0 management, on-line
 
fault-detection, etc.).
 

If we let (i,j) denote, the task which is of type i and
 

is to be accomplished during the jth period, then Intermediate
 

2 model can be taken to be a matrix-valued variable
 

X 1 x12 x13 x; xls
 

x21 x22 x23 
 x24 x25
 
X4
 

x41 x42 x43 x44 x 45
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where 

xij E {0,1} for i e {1,2,4} and 1 < j < 5 

or for i = 3 and j e {4,5} 

(i.e., for the non-circled entries) 

and 

x-- * for i = 3 and 1 < j < 3 

(i.e., for the circled entries). 

The interpretation in the first case is that 

ro if task (i,j) is accomplished
= 

ti otherwise. 

(E.g., x23 = 0 means that fuel regulation computations were 

accomplithed during period 3.) In the second case, * is 

assigned to those variables whose values are irrelevant to the 

analysis. 

The variable X can now be employed to determine the 

model Intermediate 1 composite variables. To describe this 

process, define the composite variable submatrix Yc of a 

variable matrix y to be the matrix composed of those rows of 

Ywhich correspond to composite variables. For instance, given 

the Intermediate 1 level y discussed above: 

Yll Y12 Y13 
 composite variables
 
Y= Y21 Y27 Y23
 

Ly j31  Y3 2  y3 3 basic variables
 

the Yc would be
 

11 Y12 
 Y1 3
Yc y 21 Y22 Y23] 

We can now make certain assumptions regarding the relations
 

between computational tasks and aircraft functional tasks. First,
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we assume that all aircraft tasks require the successful accomplish­

ment of general internal computations as well as the computations
 

specific to that aircraft task. Thus autoland, for instance,
 

necessitates both autoland computations and intexinal computations.
 

Second, if the computational tasks required to perform an
 

aircraft functional task are achieved, we assume that the functional
 

task is accomplished. The need for this second assumption is
 

due to the simplicity of this specific example. In general,
 

the accomplishment of aircraft functional tasks can also
 

depend on.related aircraft systems as represented by
 

additional Intermediate 2 model variables.
 

Finally, we make some assumptions with regard to how.the
 

three periods of the Intermediate 2 cruise phase relate to the single 

period of the Intermediate I cruise phase. If the stability, 

fuel regulation, or internal computations fail at any point 

during the cruise phase (e.g., if (x22, x23, x24) = (0,0,1)), 

then those computations are unable to supportz[their respective
 

functional tasks represented by the Intermediate 1 composite
 

variables. For instance, (x12, 'x13, x1 4) = (0,1,0) represents a
 

stability computation that results in loss of stability augmenta­

tion during the cruise phase. Autoland computations, on the
 

other hand, need to be available only at the end of the cruise 

phase. Therefore, we assume th't the autoland computations are 

good if x34 := 0 and failed if x34 = 1. Thus, (x3 2, x33, x34) 

(4, ¢, 0) yields an autoland computation condition of 0 for the 

cruise phase. Note that the three periods of the Intermediate
 

2 cruise phase allow a closer examination of the computer's­

activities than would have been possible with only the one Inter­
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medate 1 period. Indeed, this ability to alter the time scale
 

from level to level is an important feature of the hierarchy since
 

it permits a refinement of time as well as structural detail
 

when descending the hierarchy.
 

With these assumptions, the values of the Intermediate 1
 

model composite variables Y. are determinable from the computa­

tional outcomes X. As an example of applying these results,
 

consider the following matrix:
 

0 0 0 01 0 

X= 
0 0 1 1 1 

"' € ¢ 0 0 

0 0 0 0 0 

This says that the stability and internal computations iere
 

successful during the entire mission, the autoland computations
 

were successful during the last two periods of the flight, while
 

the fuel regulation computations failed during the last three
 

periods of the flight. The above value of X yields the
 

following value for the composite variables at.the next higher
 

level:
 

=YC 0 

-
Here, y12 = Y13 = 1 since the fuel regulation computations failed 

during the 2nd and 3rd phases. All other computations were 

=
successful; hence yl Y22 = Y 2 3 = 0. 

Table 2 shows some other possible values of X along with the 

corresponding values of Yc These outcomes follow naturally 

from the definitions of X, Yc and theassumptions regarding 

the relationship of computational tasks to functional tasks. 



Intermediate 2 Intermediate 1
 

CD (n (n InCD C 
- (D CD - D (D (DD 

X = 

* Ix x x11, 12 13 14xis 

12 

x 3 I 

14 I x45  
__ 

o~oo0 
. _.0 0 0 0 0 

0 0 0 0 00 

StbltStability'p tcomputations 

Fuel regulation 

Autoland 
comutations 

Internal 
computations 

YC F_ y1 2  "K1 Y22  

'0 

y 

Y2 3  

A2Activecontrol 
Autoland 

0 
t 

0 

0 

0 0 

1 

0 

0 

0 

0 
t 

0 

0 

o 

0 
1 

0 

0 

t 
0 

0 
0 

0 

1 

0a 
1 

1 0 0 0 0 0 2 

0 

0 

1 

'0 

IO 

1 

0 

0 

1 

0 

0 

0 

0 

0 

1 
1 

1 

0 0 0 0 0 -

0 1 1 1 1 1 

0 0 1 1 1 

Table 2 

Values of Intermediate 1 compsite variables as detenmined by -:) 
sample values of Intermediat.e 2 model variab-les 
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.2 Computer Models
 

The objective of this effort is to delineate an
 

appropriate.- ass of stochastic models that can serve as bottom
 

level models in the hierarchy. The scope of a model in-this
 

class is some specified aircraft computer and the level of
 

abstraction is the "operational state" of the computer's
 

hardware and software. Accordingly, this class of models must
 

be general enough to cover a variety of computer architectures
 

of the type being considered for use in advanced commercial
 

aircraft. At the same time, this class must be specific
 

enough to permit the study of how a bottom level model relates
 

to higher level models in the hierarchy.
 

This effort was initiated during the previous reporting
 

period and, during the current period, we have continugd our
 

examination of Markov models that have recently been employed
 

as computer models for the reliability analysis of fault-tolerant"V
 

computing systems (see [11]-[15], for example). We have found
 

that such models are compatible with the hierarchy in the sense
 

that the state behavior of a model can be used to determine
 

whether the system is able to accomplish a higher level task or
 

mission. However, we have also found that in order to formulate
 

these higher tasks and missions in terms of'the system's
 

operation and environment,-the model should incorporate a concept
 

of state that is capable of representing more than just the
 

operational status of various components. As a consequence,
 

the resulting Markov model may require an .enormous state space,
 

even for a moderately complex computing system.
 

In order to keep the size of the state space manageable,
 



we have examined possible ways of extending the concept of a
 

stationary Markov process, the results of which are summarized in
 

the subsections that follow.
 

3.2.1 A Non-Stationary Markov Process
 
C 

As an extension of the.traditional Markov models with
 

stationary transition probabilities, we have examined a class of
 

stochastic models which can be represented as finite-state non­

stationary Markov processes. Since the transition probabilities
 

of each model are presumably stationary during each phase, each
 

of these mhels can be regarded as a finite sequence of stationaryl
 

Markov processes, where each procass in the sequence has a
 

fixed duration.
 

The reliability analysis-of phased missions has been studied
 

in the past, but most of thb -previous work (see [6] and [8], for
 

example) considers the case where interphase transitions are deter­

ministic. For systems with non-repairable and statistically
 

independent components, a general treatment of -the problem of
 

interphase dependencies was recently provided by Esary and Ziehms
 

(see [5] and [7]). In their approach, a mission is represented
 

by a set of fault trees, each of which denotes the computational
 

requirements of the system during a specific phase. Each mission
 

is then transformed into a single synthetic fault tree which-can
 

then be evaluated using the usuaU3%fault tree techniques. Although
 

this approach may have some value from a conceptual point of view,
 

it is of little practical use when applied to systems having the
 

complexity of an aircraft computer. This is due to the fact that
 

1i) it assumes that the operational state model is the same through­

out the utilization interval (only the structure function can
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change from phase to phase), ii) the local state sets of the sub-,
 

systems are two-valued (i.e., operational, state are described at
 

the component iegvel), and iii) the approach relies on a principle
 

of "composition" rather than "decomposition" which increases the
 

size of the-equivalent model. As a ,consequence of these facts, the
 

size of the resulting fault tree is unmanageable, &ven for systems
 

of moderate complexity.
 

An alternative to this "composition" approach is to
 

perform a phase-by-phase analysis which accounts for the probabil­

istic nature of interphase dependencies. An examination of
 

this alternative was initiated during the reporting period;
 

the results obtained to date are discussed in the subsections that
 

follow.
 

3.2.1.1 Model Description
 

We suppose first that the utilization interval
 

T = {tjt0 < t < tk } is decomposed into k consecutiveintervals
 

Ti, T2, ...ITk where Tm = {ttmI < t < t }Ind to < t <..<tk
. -


The set of time points ftml m = 0,1,...,k} is fixed for a given
 

mission since the mission profile of the aircraft is assumed to
 

be known in advance. Henceforth, each time interval Tm will be
 

referred to as the mth phase of the mission.
 

Given a utilization interval T, we suppose further that
 

the probabilistic nature of-the coiifuting system to be-evaluated
 

is described by a finite-state stochastic process
 

Y = Ys(t)lt T}
 

where, for a given t, YS(t) is a random variable (defined on an
 

underlying probability space (2,F,P)) that takes on values in
 

the state space Q. (i.e. . Ys(t):2 Q). The process is assumed to' be a 

Markov process with transition probability 

-
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Pr[Ys(t+r) iIYs(t);t't] = Pr[Ys(t+-r) 1= jIY s t)]]

The conditional probability above, may, in general depend
 

on both t and r (in addition to j and the value of Ys(tf). How­

ever, we suppose that the transition probabilities are stationary
 

within each phase, i.e., given phase Tm [tm-1,tm],
 

-Pr[Ys(ttr)=j lY S (-tj = i]= Prci ,j.)
 

is independent of t for tin_ 1 < t < tin, tim 1 < t+r < tmr > 0, 

i,j e Q and i - 1,2,...,k. 

Consider a simple example. A typical aircraft flight may 

consist gf three phases - take-off, cruise and landing. Assume 

that the flight control on-board computer consists of four
 

functionally independent identical units. Different units may
 

or may not compute the same function at the same time depending
 

on the amount of computation needed and the safety requirements
 

of each phase. As-.An illustration, the system may assume a
 

TMR configuration with one standby unit for the take-off. During
 

the cruise phase, the system may require only2A duplex-simplex 

configuration with two standby spare units. "kTo meet the high 

computational requirements of landing, the system may require that 

three units operate concurrently (to support different tasks) \ 

with only one spare unit. A conventional reliability analysis'\ 

of each of these configurationsitypically employs the concept
 

of a-stationary Markov process t(see [16]-[18]f).
 

In the following discussion, we allow each phase to choose
 

from a list of possible system configurations depending on
 

=
the outcome of the previous phases. Let C M f{ml,..-,Cin 

be the set of possible configurations associated with the mth 

phase T (m = 1,2,...,k). Then given tm_< t-< t the state 
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Ys(t) of the system at time t may represent both the operational
 

status of various components and any condition that is important
 

to consider inthe performability analysis. For example, a specific
 

state of the model might represent that the system in configura­

tion Ci has j subsystems failed and the rest of the subsystems
 

are functioning in a degraded mode. Conceptually, the Markov
 

process YS can be viewed as having a single large state space.
 

From a practical point of view, however, for each phase we
 

need only represent those system states that are possible (i.e.,
 

have non-zero probability) during that phase. Given such a
 

model whose probabilistic structure varies from phase to phase,
 

the question that remains is how the results of these per-phase
 

analyses can be combined so as to adequately support an analysis
 

of the system's performability at the mission level. This
 

question is addressed in the subsections that follow.
 

3.2.1.2 Dependencies Between Phases
 

To illustrate the nature of the problems encountered when
 

combining the results of a phase-by-phase analysis, it suffices
 

to consider a traditional two-valued mission model wherein a
 

mission either is accomplished ("success") or is not ("failure").
 

In this case "performability" (see Section 3.3) reduces to the
 

usual notion of "reliability" (probability of success). However,
 

given that the computer is represented by-a time-varying model -­

consisting of a sequence of stationary Markov processes (one
 

process per phase with each phase having a fixed duration), the
 

reliability analysis is complicated by the fact that interphase
 

dependencies must be accounted for. Such dependencies are
 

due to the fact that certain parts of the hardware and software
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structure of the computer may be used during more than one phase
 

of the mission.
 

To illusitfate the above remarks, consider the following
 

hypothetical situation. A system with four identical modules
 

M1 , M2 , M3 and M4 is designed for a two-phase mission. In
 

order for the system to perform the required tasks, at least
 

two modules must function through phase 1. After phase 1 has
 

been completed, the computational requirements change and
 

the system is reconfigured as a series connection of two duplex
 

stages (see Figure 4). Thus the second phase of the mission
 

is a success if at least one module in each duplex stage remains
 

functioning through phase 2. Suppose that each of MI, M2, M3
 

and M4 fail permanently with a constant failure rate X. Suppose
 

further that the failure characteristics of the modulesare
 

statistically independent and no repair is possible throughout
 

the mission. Then the probabilistic nature of phase 1 and phase
 

2 can be represented, -respectively,by finite-state stationary
 

Markov processes with transition graphs as illustrated in
 

Figure 5 and Figure 6.
 

Note-that this phase-by-phase Markov representation enables
 

us to choose different sets of model variables for each phase.
 

Thus, in general, the construction of a particular phase can
 

be tailored to both the structure oF the computer and the
 

nature of the mission requirements during that phase, thereby
 

reducing the'number of model variables at each level in the
 

hierarchy. Using the above example, let us now examine some
 

of the problems encountered when using such a model to analyze
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A two-phased mission 
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NO FAILURE 

4X 

ONE FAILURE qZ 

.3X 

TWO FAILURES q3 

THREE FAILURES or q 
FOUR FAILURES 

Figure 5
 

Markov model for a two-out-of-four system
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(one in each duplex stage) 3
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(both in the same duplex-stage),
 
THREE FAILURES or
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Figure 6
 

a double duplex system
Markov model for 
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system performability or (since we have only two levels of
 

performance in this case) reliability.
 

If we suppose that all'modules are functioning at the begin­

ning of the mission (and hence the beginning of-phase 1), I.e.,
 

Pr[Ys(to ) = ql] = 1, then the reliability of the system during
 

phase 1 is given by
 

Rel(phase\l) = Pr[YS(tl) E RIIYs(to) = ql ] 

where R1 is the set of "success states" of the phase I model,
 

i.e., R1 fql,q 2,q3}. Expanding this equation, we have
 

Rel(pha'J 1) Pr[YS(tl)=qIYs(to)=ql] t Pr[YS(tl) = q2 Ys(tQ)=ql] 

+ Pr[YS(tl)=q 3 Ys(to)=ql]
 

-4X(t -t ) -X(t -t o) -3X(t -t ) 
= e o +-4(l-e 1 0 )e 

+ 6(l-e- (tl-to))2e-2X(tl-to
)
 

-2(tI-t6) -3X(t 1-to ) -4X(t 1-to). 

-6e -Se + 3e _ 

If we now consider phase 2, its reliability can be similarly
 

expressed as
 

Rel(phase 2) = Pr[Ys(t 2) e R21I]
 

where R2 = (r1,r2,r3 } (the "success states" of the phase 2 model) 

and I is some assumed condition regarding the initial state of 

phase 2. More generally, the i-itial condition may be distributed 

probabilistically over several mutually exclusive possibilities 

Ili I2 ...,,.' in which case
 

Rel(phase2) =Z Pr[Ys(t 2) s R21Ii].Pr[Ii]. 

ioI
 
The simplest choice of I is similar to the one made for phase 1,
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namely Ys.(tl) = rl, i.e., the initial state for phase 2 is the
 

most favorable operational state (no failures). If we pursue
 

this choice, we have:
 

Rel(phase 2) = Pr[Ys(t 2 ) e R21Ys(tl) = rl] 

= Pr[Ys(t 2) = rllYs(t I ) = rl] 

+ Pr[Ys(t2) = r2 1Ys(t I) = rI] 

+ Pr[Ys(t 2) = r3lYs(tl) = rl]. 

Computing each of these probabilities and combining the terms, 
we o b taifr$ 

we a _b2X(t 2 tl -3X(t2 tlJ -4X(t2-tl) 

Rel(phase-2) = 4e -3 +e 

Finally, given the per-phase reliabilities determined above,
 

we might be tempted to express the total system (mission)
 

reliability as the product of the phase reliabilities, that is:
 

Rel(mission) = Rel(phase l)-Rel(phase 2).
 

Then, assuming the durations of phase 1 and phase 2 are the same,
 

i.e., (tI-t0 ) = (t2 -tl) = T/2, the mission reliability is:
 

-2XT -2.SXT -3XT -3.5XT -4XT
 

Rel(mission) = 24Q -56e +5e -20e +3e
 

When the above expression is compared with an exact
 

expression of the mission reliability (derived in the following
 

subsection), i.e.,
 

-2XT -3kT -4T
 
Rel(mission) = 4e -4e +e
 

we see that the above derivation -is inaccurate and provides
 

an overly optimistic view of the system's reliability. A closer
 

examination of the derivation reveals that the cause of this
 

discrepancy is twofold: i) the assumption regarding the
 

initial state of phase 2 is incorrect and 1 the events
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"phase 1 success" and "phase 2 success" are statistically
 

dependent and hence the product of their probabilities is not
 

equal to the prbability of the joint event "mission success."
 

To correct for each of these errors, we must account for
 

certain. ways in which successive phases depend on one another.
 

Our work in this regard is discussed in the subsection that
 

follows.
 

3.2.1.3 	 Interphase Transitions
 

In general, complexities in the performability analysis
 

of phased missions arise because the performance of a module
 

depends on its performance during previous phases. These
 

dependencies are of a special type, however, since temporal
 

dependencies within a phase satisfy the Markov condition.
 

Hence, if tm is the time of transition between phase m-,_d
 

phase m+l, it suffices to determine how the initial state of
 

phase m+l (at time tm ) depends on the final state of phase m
 

(at time tm). In general, the nature of such dependencies will
 

be probabilistic (for reasons which will be explained in a
 

moment) and can be represented as follows.
 

Let Q denote the state set of the Markov model represen­

tation of the mth phase (m=l,2,...,k) and suppose each state 

set is ordered so we can speak of the-ith state of Qm, where 

if JQm = nm then 1 < i <-n-m. With-each successive pair of 

phases m and m+l (1 < m<k) we associate an interphase transition 

matrix H(m), defined to be an nm by nm+l matrix 

H(m) = [h ij] 

where 
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= probability that the state of the phase m+l model is
 
hi j (at time tim) given that the state of the phase
 

m model is i (at time tM).
 

Note that H(m) is a stochastic matrix, i.e.,
 

Zhij 1 , i = 1,2...n, 

j=1
 
Note also that H(m). reduces to the identity matrix (l's on the
 

diagonal; O's elsewhere) in the case where the phase m and phase
 

m+l models are identical and have the same interpretation.
 

The probabilistic nature of these interphase transitions
 

is due t6'the fact that,-ih general, our knowledge of the. ystem
 

at the end of phase m, as conveyed by the state of the phase in
 

model,; may lack the detail needed to uniquely determine the.
 

state of system as it is newly'represented by the phase m+l model.
 

The information that is lacking may be information about the
 

computer, per se, or may be information which lies outside the
 

scope of the computer model.
 

To illustrate this point, consider the exdmple discussed
 

in the previous subsection. In this case we have twophases
 

with.state sets
 

1
 
Q1 = {ql,q 2 ,q 3,q 41
 

and
 

Q2 = {r,,r2,r 3 r4l
 

respectively. If, at time t,, the system is in state q, with respect 

- to the phase 1 model (i.e., two module failures) then, depending 

on which two modules failed, the state of the system with respect
 

to the phase 2 model is either r3 (one module failure in each
 

duplex stage) or r4 (two module failures in the same duplex
 

stage). As module failures (in this examplS) are independent
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and equally likely, a straightforward calculation reveals that 

h33 = 2/3 and h 3 4 = 1/3. Transitions from states other than q3 

happen to be deterministic, and thus we obtain the following 

interphase transition matrix: -

1 0 0 0 
H(1)= 0 1 0 0
0 2/3 1/3
 

0 0 0 1
 

Using such interphase transition matrices, we have started
 

to investigate the development of more precise formulations
 

of system performability in terms of the per-phase nature
 

of the bbttom model. In particular, for two-valued mission 

models wherein "mission success" is defined to be "success of 

.every phase of the mission," we have succeeded in deriving an 

exact expression of mission reliability. 

For each phase of the mission, let P(m) denote the 

initial-to-final state transition matrix of the mth phase, i.e., 

P(m) = [Pij(m)] 

where 

pij (m) = Pr[Ys(tm) = jIYs(tml)=i]. 

For each phase except the final phase, let G(m) denote the
 

success state matrix of the mth phase (1 < m <:k), i.e.,
 

G(m) = [g.j(m)]
 

1 if i=j and i e Rm
where g.ij (in)=
 
0 otherwise.
 

For the final phase (m=k) we define a success state vector
 

fl(k)
 

F(k) =
 

fnk (k)
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[1 if i 	 "S Rk
-Rkwhere f-i (k)1if 

0 otherwise.
 

Finally let 1(0) denote the initial state distribution for 

phase 1, that is 

1(0) = [Pl(O),... Pnl(0)] 

where
 

pi(0) = Pr[Ys(to)=i], 1< i < nI . 

Then it can be shown that mission reliability (probability of
 

mission success) can be formulated as follows:
 

Rel(mission) =I 0(i)G(i)H(i P(k)F(k),
 

where the product operation is matrix multiplication.
 

--Note that in the special case of a one phase mission (k=l)j
 

the expression reduces to
 

Rel(mission) = I(0)P(l)F(1).
 

Here, I(0)P(l) is a vector of final state probabilities.
 

Multiplication by Fl) selects those states which are success
 

states and sums their probabilities, the result being "probability
 

of success" (relative to initial distribution 1(0-)).
 

To illustrate a less trivial application of the formula,
 

consider once again the two-phase example for which we derived
 

the interphase transition matriz H(1). In this case
 

Rel(mission) = I(0)PCI)G(l)H(l)P(2)F(2) 

where we will suppose that 

1(0) = [1 0 0 0]
 

(i.e., we begin with no failures) and where P(l) and P(2)
 

are obtained by the usual methods of stationary Markov model
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analysis (see [20], for example). The remaining matrices are
 

1 0 0 0 
G(*) 10 01 0 

0 0 0 0, 

0 0­

H(1) 0 

o 
1 0 
o 2/3 1 
0 0 , 

and F(2)-= LV 
If i let T1 = (t1 -t0 ) and T2 =(t2 -tl) be the durations 

6f phases 1 and 2, respectively, and we iteratively compute the 

matrix product, beginning from the left, then for the first 

two terms we have:
 

A1 = I(0)P(1)= [a11 a 1 2 -a1 3 a 1 4 ] 

where 

-4XT1 

-3XT1 -4XT 1
 

a1 2 
= 4e - 4e 

-2XT 1 -3XT 1 - 4XT 1 

a13 = 6e - 12e +.6e , 

-2XT1 -3XT 1 -4XT1 

a14 = 1 - 6e + 8e 1 -3e
 

The interpretation of al is the probability that the final
 

state of phase I is qi (given the initial state distribution
 

-(0) = [1 0 0 0]). 

The next partial product is the result of multiplying A1
 

by the success state matrix G(1) which yields:
 

A2 = AIG() = [a2 1 a2 2 a2 3 a24] 
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where a21 = all, 

=a2 2 a1 2,
 

a23 = a,3 , 

= 0.a2 4 


Thus vector A2 is the same as A1 for those states of the phase
 

1 model that guarantee phase 1 success. The remaining entries
 

(those corresponding to phase 1 failure states) are 0. More
 

precisely the interpretation of a2i is the probability that the
 

final state of phase I is qi and phase 1 is a success.
 

The third partial product is a result.of multiplying A2
 

by the interphase transition matrix H(l) which yi,elds:
 

A = A2H-() = [a31 a3 2 a3 3 a3 4] 

where
 
-4AT1
 

a31 =e 1
 

a31 -3XT-4XT 1
 

a3 2 =4e 4 ,
 

-2XT 1 -3XT 1 -4XT1
 

a33 =4e -e +4e
 

= 0.
 a3 4  


The purpose of this operation is to describe the results of
 

the phase 1 analysis in terms of the phase 2 model, where the
 

interpretation of entry a3i is 'he probability that the
 

initial state of phase 2 is ri and phase 1 is a success.
 

The fourth partial product is the result of multiplying
 

A3 by the transition matrix P(2) of phase 2, that is:
 

A4 = A3P(2)=[a 41 a42 a43 a44]
 

http:result.of
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where, if T = T1+T2 then
 

-4XT
 

a4 2 = 4e-3XT 4e­

-
= 4 e 
2 XT 8e-3XT + 4e-4XTa4 


-2M-3XT - 4XT 

a4 4 = 1 - 4e + 4e e 

Thus the interpretation of a4i is the probability that ri is 

the final state of phase 2 and phase 1 is a success. 

The-product is completed by multiplying A4 by the success 

state v&ctor F(2) of the final phase, that'is, 

Rel(mission) = A4F(2) 

SZa
 

iR 2
 

-
= 4e- 2XT _ 4 e 3XT + e-4T 

Since the sum is taken over-all final states of phase 2 that
 

guarantee phase 2 success, the interpretation~of the sum is the
 

probability of phase 2 success and phase I success, i.e., the
 

probability of mission success (given the initial state distribu­

tion 1(0) = [1 0 0 0]). 

The above example serves not only to illustrate an exact
 

computation of mission reliability but also to give an informal
 

justification of why this metho' produces the desired result.
 

As a check on the computation, we note that this simple example
 

could be viewed equivalently as a double duplex system throughout
 

its utilization interval and, when so viewed, yields the result
 

obtained above. This is not to suggest that multiphase models
 

can generally be reduced to single phase models; indeed, we
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believe that the above example is quite unusual in this
 

regard.
 

Althoughthe above computational algorithm applies only
 

to a restricted set of mission level models, it establishes
 

in our opinion, the feasibility of using non-stationary Markov
 

models as base models for performability analysis. It should
 

also be noted that the above algorithm need not be restricted
 

to base models where the intraphase processes are Markovian,
 

as long as the overall sampled process (where a sample is made
 

at the end of each phase) is Markovian. Thus, semi-Markov
 

processes or approximate Markov processes (see [19]-[23])
 

can also be.used to model the intraphase behavior. Thus
 

we intend to pursue this approach for more general types of
 

mission models via an analysis of "R-dependencies" asso#-iated
 

with various levels of mission accomplishment. Our work in
 

the latter regard is discussed in the section that follows.
 

3.3 Formulation of System Effectiveness
 

The central idea that underlying this research project is
 

that the evaluation of system reliability and performance should
 

not be treated as separate issues but, instead, as a single issue
 

which can generally be referred to as "system effectiveness."
 

Informally, "system effectiveness" is thb extent to which the user
 

may expect to benefit from the missioifs accomplished by the system
 

in the use environment. Thus effectiveness measures for aircraft
 

computers must quantify the extent to which a commercial air
 

carrier may expect to benefit from missions accomplished by an
 

aircraft computer (in conjunction with cooperating related systems
 



-49­

and supporting systems). As discussed in the first Semi-Annual
 

Status Report (see [1], Section 3.3.4.2), the formulation of such
 

measures can be n.turally decomposed into two problems:
 

i) Formulating the probabilities of accomplishing
 

various types and qualities of missions, and
 

ii) Formulating the worth (benefit) associated with
 

accomplishing various types and qualities of missions.
 

As justified in the previous Status Report, we have chosen
 

to focus our attention on the first of these two problems, i.e., the
 

problem of formulating measures of system "performability." More
 

precisely, a performability measure can be regarded as a special type
 

of effectiveness measure wherein the worth of a performance is
 

equated with the performance itself (as described by the top model).
 

Recalling the WSEIAC definition of effectiveness (see [24J1j.,
 

System effectiveness is a measure of the extent to
 
wHE-TEa system may be expected to achieve a set of
 
specific mission requirements. It is a function-of
 
the system's availability, dependability, and
 
capability
 

it follows that performability can likewise be decomposed into
 

measures of availability, dependability, and capability. In terms
 

of our model hierarchy, the first two measures (availability and
 

dependability) quantify the behavior of the bottom model. The
 

third measure (capability) quantifies the behavior of the top
 

model as a function of values-assumerTy "basic" variables of the­

bottom and intermediate models-(see Section 3.1.2.2). Thus the
 

capability aspect of performability invokes the entire model
 

hierarchy and, indeed, is the reason for the hierarchy's existence.
 

During the reporting period, we have developed a precise
 

notion of capability and have started to investigate its properties
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in terms of a generalized notion of functional dependency. This
 

work is reported in the subsections that follow.
 

3.3.1 Structure Functions and Dependency.
 

3.3.1.1 	 Structure Functions
 

In structure-based analysis, the system to be evaluted
 

(call it S) is regarded as a network of subsystems (components).
 

For each subsystem Si there is associated a set Qi composed of
 

the operational states of Si. These operational states represent
 

the various fault conditions of Si. In thesimplest case,
 

Q. = {O,il where a "0" indicates that S. is fault-free, and a 

rTl?" inditates that Si is faulty. The success of the system S 

is then related to the operational states of the subsystems Si
 

by-a binary-valued function
 

:QlXQ.2X-.'..XQn
 

where 
0 if S is a "success" in operational 

(ql,q,-.. qn) = state (ql, q2,.. .'') 

1 otherwise. -: 

Such a function is called a structure function (see [i, [25]). 

(Technically, the above definition is the "dual" of the traditional 

definition of a structure function, since we interpret 0 

(rather than 1) as "success." We find the dual definition to 

be more convenient when it comes time to extend the concept to 

multiple levels of system performance.) 

The limitations of the structure function approach have been 

-discussedelsewhere (see [), [26]), but two points deserve 

reiteration. First, the fact that structure functions are binary­

valued disallows adequate handling of modes of degraded perform­
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ance. Second, structure-based analysis regards the network of sub­

systems as a combinational, or memoryless, network. This point of
 

view does not allow the treatment of interactions between components
 

over time. Given these limitations, a new approach is required.
 

3.3.1.2 Dependency
 

Before formally defining the concept of a capability
 

function, consider the notion of dependency. In general, there
 

are two modes in which one thing can depend on another [27]. In the
 

first'mode, knowing that A depends on B and knowing everything
 

of interest about B tells everything of interest about A.
 

This mode of dependence is exemplified by linear dependence.
 

In the second mode, knowledge of B coupled with the knowledge
 

that A depends on B tells us something (but not necessarily
 

everything) about A. The best example here is the idea..of
 

statistical dependence. This is the mode of dependence which
 

will generally occur in the study of complex systems.
 

It is important to note that knowledge of certain depen­

dencies between subsystems (of the system) of interest may help
 

in several ways. In classicai reliability analysis, for example,
 

knowledge that two subsystems fail independently allows them to be
 

decoupled and studied separately.- Probabilistically, if the
 

failures of S1 and S are independent, then
 

P(S1 fails.and S2 fails) = P(Slfails)- P(S2 fails). 

It is- not the case, however, that all forms of dependency-are
 

bad. For instance, knowledge of certain dependencies between
 

the operational states of a system over time may allow the
 

simplification of considering the states of the system only
 

at specific times. Given that the appropriate forms of depen­

dency exist, then, observation of the system can be limited
 

without a loss of relevant knowledge. One example of this is
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when assumptions are made concerning the coherence and pure­

death properties of a system. If a system has these properties,
 

then knowledgj that its final state is fault-free tells that
 

at all previous times the system was fault-free. Thus the
 

assumption of coherence and a pure-death model is actually an
 

assumption about the temporal dependencies inherent in a
 

particular system. Knowing which dependencies exist may
 

help to simplify analysis. In general, functional independence
 

and temporal dependence appear to be simplifying factors.
 

3.3.1.3 	Functional Dependence 

In [1], the CARSRA notion of functional dependence 

( -dependence) was formalized as follows. Given a system S 

with component subsystems SI,...,Sn, state set Q=QlxQ 2x...xQn 

(Qi is the state set of Si), and structure function 4, 4pt 

R =-{qlj(q) = C,q s Q}. 

Then R is the set of all success states of S relative to the 

structure function p. -For q E Q, let Ei(q)-denote the value 

of the ith coordinate of q, i.e. if q = (ql,...,qn) then 

Ei(q) 
= qi" We define 

D (i) = z(R ) =R 

D (i) is the projection of R on the ith coordinate. We also 

define, for 1 < j < n and q. e Ds(j) 

R (j,qj) = {q. :.R J~j -q) =qj} and33
 

"D (i,j,qj) = i(R (j'q )) 

Informally, R (j,qj) is the subset of R, comprised of all the
 

elements of R whose jth coordinate is equal to qj. This means
 

that D,(i,j,qj) is the result of first selecting all the elements
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of R whose jth coordinate is qj, and then taking the projection
 

of this set on the ith component.
 

For example, consider the three stage plus independent
 

voter TMR system with binary-valued state sets wjiich can be
 

represented as in Figure 7.
 

S
4
 

Figure 7
 

Then
 

(0,0, 0, o)A
 

R= J(l,.oo,

(0, 0,,0 

Clearly, D1(1) {0,l} and D4(4) = {0. In addition, 

examples of R (j,qj) are
 

f(o,o,o,oJ
 
R (2,0) = (i,0,0,0)j, R(2,1) = {(0,1,0,0)1 

so
 

D (1,2,0) =l(R (2,0)) {0,I, and 

D (1,2,1) = {0}. 

OOU 
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The formal definition of functional dependence is stated as:
 

Definition: If Si and S are subsystems of a system with 

structure function 4 then Si i-depends on Sj if, for some 

state qj E Ds(j), D(i,j,qj) D (i) . -

From this definition we See that in the above example SI
 

i-detends on S2 because
 

{0,4} = D (1l) # D(,2,1) = {0}.
 

Examination quickly shows also that S1 4-depends on S3 and that
 

S2 i-depends on S3Y On the other hand, since the state of S4 is
 

constanti,.S4 is S-independent of.Sl, S2 and S3. Calculation of
 

the possible sets shows this to be true. In fact, S4 is
 

"universally independent" in the sense that no other subsystem
 

depends on it [27],
 

Example
 

Consider now the triplex system (Figure 8) discussed in [1]
 

(see also [12], figure 8). As presented therein, the system is
 

regarded as being composed of four subsystemS S, $2' $3 and
 

S4 called "stages." Each stage is comprised of 3 "modules"
 

(see[f.]) and is represented by a finite-state Markov
 

process with a transition graph as illustrated in Figure 9.
 

-
Thus, the state set for stage Si is Qi = {1,2,3,4,51 (i = 1,2,3',4)
 

and the structure 	function, in this case, is the function
 

4):{1,2,3,4,S}t-* {(0,i}
 

where
 

Sif,when the system is in state q,
 
the voter can make use of the outputs of at least


(q) 	 2fault-free modules in each stage
 
otherwise.
 

.Here q = (2,1,1,1) has the interpretation that S1 (stage 1) has
 

one faulty modu-le, while S'2, S3 and S4 ar&%fault-free.
 



S1
 

C2 o D2 v 


I I I
 

Fi eC3 D3 

B3_
 

Figure 8
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NO FAILURE Q 

ONE FAILURE 2 

TWO FAILURES 

SAGE FAILURE 4 

DETECTED UNDETECTED 

Figure 9' 

Stage Narkov model 
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Some examples of the evaluation of 4 are
 

4(2,1,1,1) = 0,
 
4(3,1,1,1) l,but
 
44(2,2,2,2) = 0 or 1 depending on which modules are faulty. 

This means that in this case, the structure function 4 is 

actually a structure relation. Let 

=RR4 fq4(q) 0(and 4(q) l b , q s QlXQ9 XQIJ. 

The set R is composed of all the unambiguous success states 

of the system S relative to the structure relation 4. As 

shown in [1], 

(111,1 1) , (1,1, 2) 
(2,1,1,1) 
,(2,11,2
 

R (1,2,1,1) , (1,2,1,2)
|(1,1,2,1) ,(1 1,2,2) i

, (2,2,1,2)1, 

It was also shown in [1] that S1 4-depends on S3, S2 4-depends 

on S3' but S4 is 4-independent of all three stages Sl, an2 S 

t(2,2,1,1) 

S an
 

Knowing that these dependencies are present, are thbere
 

simpler ways to view the system so as to mask off the dependencies?
 

Doing so would allow us to deal with these interactions on
 

a lower (and possible simpler) level. For instance, on a
 

lower level we might not need to obtain a whole set of conditional
 

probabilities, but could instead obtain only absolute probabilities.
 

It is possible that the absolute -probabilities would inherently
 

reflect the dependencies, without further system decomposition.
 

One example of such an alter-native representation is shown.
 

in Figure 10. Here, S is composed of stages S1 , S2 and S 3 while
 

S' corresponds to stage S . We can define a new state set Q
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for S{ which is the range of a 1-1 correspondence N, i.e., a function
 

M:QIXQ2xQ 3 +Q1
 

where, for example (ql,q 2-,q3) M(ql,q 2,q3 ),
 

(1,1,1) 1
 
(1,1,2) 2 
(1,2,1) 3. 
(1,2,2) 4
 
(2,1, 1) 5 
(2,1,2) 6
 
(2,2,1) 7
 
(2,2,2) 8
 
(3,1,1) 9
 

(5,5,5) 125
 

Note tha-.this mapping preserves all the information used in
 

our original analysis. We can now evaluate the new structure
 

relation
 

' :QjxQ 0,}. 

to get
 

(I,1) , (1,2) 
(2,1) (2,2) 

R , (3,1) (3,2) 
(5,1) , (5,2)

L(7,1) ,(7,2).) 

The relation 4' is defined by
 

4'(M(ql,q 2,q,3) q4) =(ql,q2,q3,q4)
 

where qi s Qi' i = 1,.2,3,4 and Q'= Q4 "
 

Calculation shows that
 

D,(1). = {1,2,5,%7}, 

D.(2)= {1,2}, 
Df,(1,2,l) = {1,2,3',S,7}, and 

D, 1(1,2,2) = {1,2,3,5,71. 

From this, Si is I-independent of S . 

A second way to analyze the system is shown in Figure 11.
 

Here, there are two stages as above, S7 and S", but We 
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have not preserved the states of the originally defined stages.
 

Instead, SI is composed of the three modules denoted Ml, M2, and
 

M3, and S" and " are regarded in the same fashion as in the
 
1 2 

original analsis. Hence the state sets Q" of S" and Q" 

of S" are 

Ql = Q1 = [1,2,3,4,5}. 

Since the system is still regarded as TMR, the set of success 

states R, are 

R, [(1,1) , (1,2) 

4"2,1) , (2,2)j. 

Again, S" is i-independent of S", because D,,( ) = D',(2 =1
 

D ,,(l,2,1) =Dt,(1,2,2) =11,21. Hence, this decomposition also
 

yields independent stages in which internal dependencies are
 

masked.
 

Study of 4-dependency during the past reporting period
 

has shown that 4-dependence has the following properties:
 

i) 0-dependence is symmetric
 
ii) In general, i-dependence is -not reflexive
 

iii) In general, Odependence is not transitive.
 

It is important to note that 4-dependence suffers from the
 

limitations imposed by structure-based analysis. As a result,
 

during the past reporting period, and in conjunction with the
 

development of a notion of a capability function, we have
 

generalized the above notion of 4)dependence into what we
 

call "R-dependence.'
 

3.3.1.4 R-Dependence
 

The concept of R-dependence is an extension and generaliza­

tion of the concepts involved in defining-and determining
 

4-dependence. The notion of R-dependence will first be described
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as a direct generalization of -dependence in terms of projections
 

on coordinatized sets, and will then be given in an alternative
 

mathematical formulation in terms of partitions of sets.
 

Let S be a system with subsystems S 1'...,S Here the
 

notion of subsystem is extended beyond the compoJients of the object
 

system alone. Thus any part of the total system whose behavior
 

influences the overall performance of the system may be considered
 

a subsystem. For instance, weather or maintenance may be regarded
 

as subsystems. Subsystems are represented by basic variables.
 

Suppose that we sample the states of the subsystems at times
 

ttt where t < t < ... < tk (due to this ordering21 1t 2k 
we shall henceforth speak of times 1,2,...,.k). Let Qi

t 
be the set 

of possible operational states of subsystem Si at timeXt. 

Definition: Given the above conditions, a state trajectory
 

for the system S is an nxk matrix
 

qll 
 q1 2 ... qlk 

qnl ...... qn 

t -twhere for 1 < i < n, 1 < t < k, qit s Qi. The (i,t) t h entry

I 

of u is interpreted as the state of subsystem Si at the
 

tth time sample. The ith row of a state trajectory matrix
 

corresponds to a state trajectory for subsystem S. The tth
 

column gives the state of the total system S (as represented
 

by an n-tuple) at time t.
 

Let U ] S[ , 1 < i < n, 1 < t < k}
 

be the set of all state trajectories for S, and let R C U.
 

The set R is the set relative to which dependency will be defined.
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R may be selected by any specified criterion.
 

In the context of this research, the set R will generally
 

be a "y-induced" subset of U, that is, a set of the form
 

{uly(u)=A i, u-ETU} where Ai is a particular level of accomplishment
 

(see Section 3.1.2.1), y is the capability function (Section
 

3.3.2.2), and U, Ai, and y-are all relative to the same model
 

hierarchy. The study of R-dependencies within such sets may
 

yield system decompositions which ease the calculation of the
 

probability of occurrence of the missions represented by
 

elements of the set, i.e., the missions yielding a particular
 

level of accomplishment. It is these calculations which
 

are the object of this study, and which underlie the concept
 

of "performability" or "expected performance." ThUs, knowledge
 

of existing dependencies within a system may aid us in .
 

calculating the performability of that system.
 

At this point, recall the development of functional ( )
 

dependence. If the system S is sampled only once, then U will
 

be a set of n x 1 matrices, or, in other words, n-tuples. The
 

set R would correspond to R where the selection criterion is
 

based on success states relative to the structure function *.
 

If R is a set of k x n matrices and u,[s R, define
 

Cit(u)\=,qit, i.e., it(u)'yieIds the (i,t)th element of (u). 

This is analogous to the projection operation on a vector. 
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Let it(R)" = { it(u)Iu e R). If one thinks of R as an array of
 

matrices, then visually the projection Eit(R) 'corresponds to
 

selecting the (i,t)th element all along the third coordinate
 

(see Figure 12).
 

Figure 12
 

Now defi:e D(i,t) = git(R) as was done in describing 4-dependence.
 

If q a D(j,v),.let
 

R(j,v,q) U Reqjv = q}. 

The pperator R(jv,q) selects from R all those matrices whose 

(j,v)th element is q. Finally, define: 

D(i,t ; Y,v,q) =it(R(Z,v,.q)) for
 

i,y E {l,...,n); t,v e [,...,k , q QV 

Denote the fact that Si is considered at time t-by Si(t). 

Definition: Let S be a system with subsystems Sl, .,Sn-sampled 

at times 1,...,k. If U is the set of all state trajectory
 

matrices of S and R c U, then we say Si(t) R-depends on
 
V
 

SLv) if, for some q c Qa,
 

D(i,t) / D(i,t;Z,v,q).
 

Consider the following example. Let
 

[1 1 12 C = [121]
 
1 1 1]
 

, and let
'D = [122[1 2121 2 11 

R = {A,B,C,DI. R might be the accomplishment set correspond-


ORIGINAL PAGE 18
 
OF POOR QUALITY
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ing to an accomplishment A of a 3 stage system sampled at 3
 

times. Three different relationships will be examined.
 

The list-is.meant to be illuminating, but not exhaustive.
 

i) 	Consider S1(3 ) and SI(l).
 

D(1,3) = {1,2} -but D(1,3;1,1,2) = {2} so
 

S1(3) R-depends on S(1). This dependency is
 

a temporal dependency between the states of a single
 

subsystem.
 

ii) Consider now SI(2) and $2(3).
 

D(1,2) = {l,21,
 
D(l, 2;2,3.,2J = {l},and
 
D(1,2;2,3,1) = {2}. 

Hence SI(2 )-R-depends on S2(3 ) . In fact, knowing 

thatS2(3) -is in state 2 tells that S1(2) is in 

state 1, and knowing S2(3 ) is in state 1 telk#: that 

S1 (2) is in state 2. Thus this dependence is also 

an example of the first mode of dependence discussed 

above. This is not true in (i) since D(1,3;1,1,1) 

= [1,21 - so it is not known, given Sl(l) is in 

state 1, which state SI3 is in. 

iii) 	 Consider S2(2) and S2(3 ) . 

D(2,3) = {1,21, 
D(2,3;2,2,1) = {1,21 and 
D(2,3;2,2,2) = {1,21, 

so $2(3) does not R-depend on S2(2). We say­

$2(3) is R-independent of S22).
 

The above definitions for R-dependency follow the exposition
 

given in the functional dependency case. However, R-dependency
 

can be characterized directly in terms of certain partitions
 

associated with time and state coordinates. Suppose we are given
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S, R and a delimitation of the subsystems and times of interest.
 

For instance, with S and R as above, we might wish to investigate
 

the relationship between $2(3) and SI(2). If u, v E R, let
 

it be the equivalence relation defined by
 

u =it v if it(u) = Eit(v). 

Hence, if itCR) has c different elements, =it will partition R
 

into c different classes. Denote this partition by R/it.
 

Clearly, there are n-k such partitions of R, one for each (i,t)
 

pair.
 

Recall that in the definition of R-dependency, projections
 

were rep-htedly made on the Ci,t)th element while holding the
 

(j,v)th element fixed Cat its various values) in order to
 

determine the relationship between Si(t) and S.Cv). If restricting
 

the set over which a projection on the (i,t)th coordinate
 

was taken restricted the possible values of elements in that
 

projection, then dependency was said to be present. These
 

multiple projections are a way of partitioning°.the.set R in
 

various ways. Realizing this, we can characterize R-dependence
 

as follows:
 

Theorem: If R/it and R/=iv are partitions of R, then
 

Si(t) R-depends on Sj(v) if and-only if there exists
 

a block B 6 R/=it and a block B' e R/Ejv such that 

B fB' = . 

In other words, if one partitions R on the two different
 

coordinates, then no dependencies are present if and only if
 

each block in the first partition has a non-trivial intersection
 

with each block in the second partition.
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As an example, return to R and the matrices A,B,CD of
 

the R-dependence example above.
 

Cons idez
 

R/- = {fA,C,D},{BI} and
 

R/=1 3 = {{A,D},{B,C}}.
 

Then {A,D} n{BI , so S1 (l) Rdepends on Sl(3)'.
 

Similarly R/=2 3 {{A,DI,{B,C}1 and
 

R/=12 = {{A,D},B,,C}}
 

but {A,D} n{B,C} = so S,(3) R-depends on SI(2).
 

Thirdly, we see
 

R/=-23 = {{A,D},{B,C}}
 

R/-2 = {{A,BI,{C,DI}
 

so­

{A,D} n {A,B} = {A},
 
{A,D} A {C,DI {D},
 

=
{B,C} n {A,B} B , and
 
{B,C} n {C,D} = {C}.
 

As this exhausts all the possibilities, we see that $2(3)
 

is R-independent of $2(2).
 

3.3.2 Capability
 

3.3.2.1 Definition and Role
 

As discussed in Section 3.3, we are focusing our attention
 

on a "performability" view of system effectiveness where a measure
 

of performability can be decomposed into measures of availability,
 

In terms of the model hierarchy,
dependability, and capability. 


the availability and dependability measures quantify the
 

A capability measure quanti­behavior of the bottom level model. 


fies the behavior of the top model as a function of values
 

assumed by the "basic" variables of the bottom and intermediate
 

models. (Recall that a variable is "basic" if it cannot be
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expressed as a function of lower level variables.) Thus the
 

capability aspect of performability combines all aspects of the
 

model hierarchy.
 

The capability measures we have studied during the reporting
 

period are essentially three-fold extensions of the structure
 

functions discussed in Section 3.3.1.1. We call these measures
 

"capability functions." In the notion of a capability function,
 

the concept of a structure function has been extended in the
 

following three ways:
 

i) The subsystems (components) of a system may be charact(r­

azed by multiply valued state sets;
 

ii) The accomplishment set,.. may contain more than two
 

-- -elements, and 

iii) The capability function is defined over a set of
 

state trajectories.
 

These extensions, together with a formal definition of a
 

capability function, are described in the following subsection.
 

3.3.2.2 The Capability Function
 

Viewing a "capability function" as a three-fold extension
 

of the notion of a structure function, the first extension
 

allows the state sets of the subsystems to have more than two
 

elements. This permits characterization of degraded performance
 

in the system's subsystems, i.et, removes the requirenent that
 

a subsystem be considered either "all on" or "all off." For
 

example, this allows us to more accurately describe the state
 

of a-component which is constructed on the triple modular redun­

dancy (TMR) principle. The second extension is to allow capability
 

functions to be multivalued. Thus the range of a capability
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function will generally be taken to be an "accomplishment set"
 

or a set of mission characterizing quantities which serve to
 

quantify some aspect of a system's effectiveness in carrying
 

out a prescribred mission. This allows us to go beyond a simple
 

"success-failure" characterization of the system's performance
 

of its mission. The third extension is to take the argument of
 

a capability function to be a state trajectory rather than single
 

state vectors as is the case with structure functions. This
 

permits one to investigate the behavior of the system over time.
 

A capability function for a system which is sampled only at one
 

time, for which each subsystem has only two states, and for
 

which the accomplishment set has two elements, reduces directly
 

to a structure function.
 

Viewed in the context of the model hierarchy, a capability
 

function is a formal expression of how the state trajectories
 

of the base model (bottom model 'plus higher level basic variables)
 

relate to mission outcomes (and thereby mission accomplishments)
 

at the mission level.
 

Suppose we have a system S which is decomposed into n 

subsystems (basic variables) SI,...S n . Let the system be sampled 

at times tI,. .. ,tk where ti < ti+ I , 1 < i < k-l. In Section 

3.3.1.4 we define a state trajectory for the system S to be the
 

n x k matrix u where u corresponds to the state of subsystem
 

Si when sampled at time tj (I < i < n, 1 < j < k). Let SY be 

an accomplishment set for the set of mission performed by the
 

system S.
 

Definition: Let U be the set of all state trajectories for
 

some system S. Let . be an accomplishment set over S.
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Then a capability function is a functiof y such that
 

y: U IV.
 

The relationship between the model hierarchy and capability
 

functions will be demonstrated in the following .ection. In
 

general, one will attempt to define a capability function by
 

formulating the transformations between levels of the hierarchy,
 

and then composing the transformations in order to tie the
 

hierarchy together. One area of concentration during the next
 

reporting period is concerned with the study of these transforma­

tions, introduction of basic variables and the subsequent
 

capability functions which are derived.
 

3.3.2.3 The Capability Function and the Model Hierarchy
 

As was noted in the previous section, the model hierarchy
 

provides a framework whidh supports the capability function y.
 

By using the hierarchy of models to move from level to level
 

we can reduce the problem of formulating the capability function
 

to the problem of formulating the values of composite variables
 

at level i in terms of model variables (both basic and composite)
 

at level i+l. If one thinks of moving up through the hierarchy,
 

.the basic step is "jump to the next level and incorporate basic
 

variables." A precise description of this process is one of the
 

goals established for the next reporting period. The remainder
 

of this section is devoted to examples of this procedure.
 

'In Section 3.1.3 a hierarchy was elaborated down to the
 

Intermediate 2 level. This hierarchy forms the basis for the
 

following discussion. Since this hierarchy does not have a
 

bottom model associated with it, we cannot show a capability
 

function per se. However, the three levels which have been
 

elaborated can be used to show the manner ifi-which a trajectory
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might be mapped up through such a modeling scheme. Before
 

proceeding, the reader may wish to review the development in
 

Section 3.1.3. Figure 13 shows the various matrix variables
 

discussed, t6g6ther with an interpretation of their meaning.
 

Consider the Intermediate 2 trajectory
 

Fo 0.00
 
0
0 00
1 


000
 

where the symbol tt denotes an element whose value is of no
 

concern. This trajectory describes a mission (at the Intermediate
 

2 level) in which the autoland computations are in a 'failed'
 

state before and during landing. However, no other compli­

cations are encountered. Thus in moving to Intermediate 1, the
 

active control and autoland will be represented by
 

c= L12]
 

indicating that active control is good but autoland has failed
 

sometime during cruise-and landing. We now incorporate the
 

weather variable, which is represented by (¢, a, p) to get
1001,
T')

yl = 11 j~ a s {0,1}.
 

This yields two qualitatively different matrices, depending on
 

the value of a. Recall that. = Ohdicates good weather at
 

the beginning of landing while a = 1 indicates weathei which
 

calls for a Category III type landing.
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Top Level.
 

z Safety
 

Z= z2 Diversion
 

z3 Fuel consumption
K 


Intermediate 1
 

yll Y12  Y13  Active Control Composite
 

r: Y21 Y22 -Y23 Autoland-	 variables
J 

Y31 y32  Y3 3  Weather 	 Basic variable
 

Intermediate 2
 

--	 -- -- Active control

computations
 

x25 Fuel computations
X= 	x21 x 22 x23 x24 


x31 x32 x33 x34  x35  Autoland computations
 

x x x43  x4 4 x4 5  Internal computations
41 .42 43 4 4
 

Beginning
 

Middle
 

End
 

Figure 13
 

Description of Matrix Variables from Section 3.1.3
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First consider the matrix
 

YF
 
In this case, the weather was good, there was no diversion, and 

fuel consumption was low (this comes from active control = (0,0,0)), 

so 

L
1 = whichresults in an A1 \ 

level of accomplishment. Contrarily, the matrix
 

Y11
y1' 0 J1 
indicates a faulty autoland system plus bad weather, so a
 

diversion is required. In this case,
 

0
 

indicating the third level 6f accomplishment A3 Note that the
 

mapping from Intermediate 1 to the mission level depends on the
 

value of the weather variable at the end of the cruise phase.
 

A second example begins with the matrix
 

X2 L -1410 1 
-- F-t 0 1
 

Both active control computations and internal computations remain
 

error-free throughout the mission. The fuel regulation computa­

tions were accomplished only in the final part of the cruise
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phase, and autoland computations fail during landing. Thus,
 

this matrix maps into the matrix
 

Yc= D 0 f
 
on the Intermediate i level. The active control irajectory
 

indicates fuel regulation difficulties, while the autoland tra­

jectory indicates a failure after the landing phase has begun.
 

As above, we incorporate the weather variable to get
 

For a = 0:, the failure of the autoland system does not affect 

the mission quality, In terms of mission variables we see 

thatz 1 0 (no fatalities), z2 = 0 (no diversion is necessary) 

and z = 1 (there is high fuel consumption due to 

failure of fuel regula.tion)., Hence
 

z=L 0 so an 

accomplishment level of A2 is achieved. For a = 1, we see a
 

condition where the autoland system fails while landing the
 

aircraft. By our assumptions a (fatal) crash ensues. Knowing
 

this,.z'
 

= 12 


which indicates the fifth level of accomplishment.
 

The above examples show the way in which a capability
 

function may pass from level to level. It is clear that a
 

capability function is a function'of both bottom model state
 

trajectories and the trajectories of otherhasic variables
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(such as weather) which are inserted at higher levels. One
 

thrust of our ongoing research is aimed at developing a more
 

concise.repreehtation of capability functions, together with
 

the investigation of the properties of and relationships between
 

R-dependence, capability, :and performability.
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