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1. INTRODUCTION

This Teport is the second Semi-Annual Status Report on
the research prg&éct ""Models and Techniques for Evaluating the
Effectiveness of Aircraft Computing Systems" being conducted for
the NASA Langley Research Center under NASA Grant NSG 1306. The
report concerns work accomplished during‘the period from 1 Novem-
ber 1976 to 30 April 1977, hereafter referred to as the
"reporting period.™ .

The purpose of this research project is to develop models,
measures and techniques for evaluating the effectiveness of
aircraft computing systems. - By "effectiveness' in this context
we mean the extent to which the user, i.e., a commercial air
" carrier, may expect to benefit from the computational tasks
accomplighed by a computing system in the environment ofé@g
advanced commercial aircraft. Thus the concept of effectiveness
involves aspects of system performance, reliability and worth
(value, benefit) which must be appropriately integrated in the
process of evaluating system effectiveﬁéss. More specifically,
the primary objectives of this project are:

1} The developﬁent of system models that can provide

a basis for the formulation and evaluation of aircraft
computer system effectiveness,

2) The formﬁlation of quantitdtive measures of system

_ effectiveness, and

3) The development of analytic and simulation techniques

for evaluating the effectiveness of a proposed or

existing aircraft computer.



Work proposed for the first year of this project was to be
concerned piimarily with objectives 1) and 2). During the
previous reporting period (1 May 1976 to 31 October 1976), the
main thrust of our work was in line with the firstjobjective
(see the first Semi-Annual Status Report [1]). Dﬁ£ing the
current reporting period, our effort has been aimed at both
model development (objective 1)) and the formulation of effective-
ness measures (objective 2)). More specifically, our work has
concerned:

i) Mgge detailed development of the model hierarchy at

‘ m?ision, functibnalltask,_and coﬁbufééional task levels,
with emphasis placed on the modeling of an air transport
mission.

ii) Investigation of an appropriate class of stochastic
models that can serve as bottom level models inlthe
hierarchical modeling scheme. The scope of a model at
this level is some specified aircraft computer (the
system to be evaluated) and the level 0% abstraction
is the '"operational state' of the computer's hardware
and software.

iii) Definition and formulation of a unified measure of
effectiveness called "performability" and, in particular,
the "capabiliéy" aspect 5} performability which expresses
top model behavior (levels of performance) as a function

of base model behavior.



We believe that the following report attests to a substantial
amount of progress in each of these arcas. Morcecover,.we feel that
the progress tonggie is compatible with what we had anticipated
when writing thé:proposal for the second year of the project [2].

Section 2 of the report describes the manpower effort proposed
for the past year, the personnel involved in conducting the
investigation, and their levels of effort during the reporting
period. Section 3, the body of the report, describes the technical

status of the research performed during the reporting period.


http:Moreover,.we

2. PERSONNEL
At the initiation of the project, it was estimated that
the following effort would be required during the first year.

Principal Invesfigator

100%, twc months, summer
25%, nine months, academic year

Graduate Student Research Assistants

The equivalent of:

3 at 100%, three months, summer
3 at 25%, eight months, academic year

During the reporting period from 1 November 1976 to 30 April
1977, research personnel and their levels of effort have been:

Principal Investigator

John F. Meyer
25%, November 1976-March 1977
50%, April 1977

Graduate Student Research Assistants

Robert A. Ballance
25%, January 1977 - April 1977

David G. Furchtgott- -
25%, November 1976 - April 1977

Liang T. Wu
25%, November 1976 - April 1977



5. TECHNICAL STATUS

As stated in the introduction, our research during the reporting
period has progressed in three principal areas.

The first area has been a more detailed develé%hént of the
higher level models in the hierarchy, i.e., the models at the missiomn,
functional task, and computational ta;k levels. 1In particular, our
efforts here have focused on i) establishing a general methodolegy
for formulating higher level models and ii) applying this methodology

to the formulation of a prototype model hierarchy for a specific

type of misgﬁon, i.e., an air transport mission.

The second area has been the investigation of an appropriate
class of stochastic models that can serve as bottom level models imn
a model hierarchy. A model En this class is a model of some
specified aircraft computer and the level of abstraction is the
"operational state" of the computer's hardware and software. The
goal here is mot to develop a bottom 1eve1 model for a specific
aircraft computer architecture (e.g., SIFT [3] o£:OSIRIS [41) but,
instead, to determine a type of stochastic model which is i} capahle
of representing a-variety of fault-tolerant computer architectures
and ii) compatible with a hierarchical modeling scheme.

The third area of effort has been the definition and
formulation of a unified measure og_effectiveness called "perform-
ability' which cdmprises three pri&éipal measures: ‘availability,"
"dependability" and "capability.'" The first two measures quantify
the behavior of'the bottom model of the hierarchy and are the usual
objects of study in classical structure-based reliability analysis.
ﬁZcordlngly, the bulk of our effort here has concerned the third

measure, "capability,” which expresses top modgl behavior (levels of
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total system performance) as a function of the '"basic variables”
of the bottom and intermediate level models. In particular, we
have.establisheQ§@iclass of capability measures-reférred to as
“"capability functioﬂs” and have developed a general concept of
"functional dependence™ (cailed "R-dependence') which is - applicable
to capability functiomns.

The status of our research in each of these areas is described

in the subsections that follow.



3.1 Higher. Level Models

3.1.1 A Model Hierarchy

During the reporting period, we have continued the development
of the system models described in the firgt:Semi;AE;ﬁal Status Report
[1]. As discussed in [1], we seek a model of th; total system
with a behavior relating directly to the user's requirements
and a structure accurately describing the probabilistic nature
of the system's components. This view requires a high, user-

- oriented level with scope comprising the total system (i.e., the &
air carrie%% as well as a low, structure-oriented bottom level
comprising the object system (i.e., the computing system and closely
related peripheral equipment). Also, in order to relate -the....
performance of the computer hardware (bottom level) to the
accomplishment of user-oriented missions (top level), we have
concluded that at least two intermediate levels are necessary.
These are the aircraft functional task level (thg‘higher of the
two intermediate levels) and the comput@tional €§Sk level (the
lower of the two levels).

Because the bottom level concerns the object system,
we have found that information from non-object systems (e.g.,
environment, supporting and related systems)-is more easily
introduced at these’higher‘levels%? Using what we call "basic
variaﬁles," we incorporate each ;%n-object system into the
hierarchy pased on the level at which that information is used

tsee Figure 1). For example, '"weather" does not depend on any

daircraft function and yet it can affect the mission outcome;

P
B
2

’ihus, weather may be introduced at the aircraft functional Ievel.
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for aircraft computing systems
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The bottom model, along with the higher level basic variables,
are- referred to collectively as the "base model' of the total
system. . Formally, the connection between the behavior of
the base model and that of the top (mission 1eve1f§§bdel is
expressed by a "capaﬁility function," the discussion of which
is deferred to Section 3.3.2.2. In general, the interaction
between various levels of a model hierarchy can be viewed
either as a part of the hierarchy, per se, or as something

which is determined later, in the process of using the model

N‘fm.

to analyzeééome aspect of system behavior, e.g., its perform--

ability. BEither view is legitimate, but the latter appears to
be more convenient for the purpose of classifying and discussing
these-interactions.

3.1.2 Model Descriptions

3.1.2.1 Top Level Models

Extending the effort described in the first_Semi~Annua1
Report [1], we have established the followingaﬁéthodology
for formulating the top level model. We begin with an informal
general description (or concept) of system missions. -
These are simple English statements telling us what system
activities the user deems desirable and pertinent to each
mission. Thus, for a transportggission, this statement may.
be "Transport passengers betweeﬁ%two points quickly, safely, conve-
niently and with minimum fuel consumption." Note that one
can always vary or expand upon this statement to address
other missions; to illustrate, we could talk about long,
intermediate. or short range missions. Other mission types

have also been examined, especially a maintE€pance mission
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and a "standby" mission (in which a spare plane is stored
to use as.a backup in case a plane in service breaks down).
Next, from the mission statement we derive a 1ist of
the relevant mission factors. This is called théé“mission
requirement set." For the air transport mission above, we
have:
1) Passengers are to be transported with time constraints
2) A given safety rate is to be attained

3) Inconveniences (diversions, arrival delays, etc.)
are to be minimized

4) é?uel consumption is to minimized,

The next step is a temporal décomposition of missiomns.
Typicailly, there exist intervals ("'phases'") during which a-
system is concentrating most of its facilities upon one
activity (or set of activities) and allocating
fewer resources to other activities [5]-[7]. Furthermore,
during these intervals, system requirements are generally
constant, although they may change radically béiween phases.
For instance, the computational demand on a computer during
a crulse portion of a flight may be much less than the
demand during an autoland portion. An air transport mission,
for example, can be naturally decomposed into

i) Takeoff,
ii} Climb,
iii) Cruise,
iv} Descent,
v} Approach and Landing.
Once we have described a mission and its desired goals,

iy

we then classify each mission outcome by de¥eérmining various
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mission ""qualities'™ or "levels of accomplishment.! This is
an indication of the general outcome of each mission based

on how well the.demands of the mission requirement set are

Rs

.;/‘-

fulfilled. For instance, with the air transport mission,
several levels of accomplishment could be informally stafed as
follows: w

i) Flight with no diversion and low fuel consumption

ii) Flight with no diversion and medium to h1gh
fuel consumption

iji) Flight with diversion
iv) Flight involving a fatal accident.
To obtain a more formal characterization of these levels

of accomplishment, with each mission we associate a "mission
variable set" which is a set of variables such that if the value
of each variable is known, then so is the level of accéﬁ%lishment.
It is also de;irable (but not necessary) that each variable
depend on the nature of the object system in the sense that
the value agsumed by a-given variable will differ for at least
two different object systems. To illustrate this concept,
consider the air transport mission whose requirement set is

given above. Then a sufficient mission variable set might

be the following:

a) Seating capacity {integer, in passengers]
b) Flight distance ‘[real,qgﬁ kilometers]
¢} Aircraft speed [real, in kilometers/hour]

d) TFuel consumption [trinary valued, with

low consumption rate
medium consumption rate
high consumption rate]

1
2

nwu
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. ) Fuel capacity [integer, in kilograms]
f) Safety [binary valued, with
.0"= no fatalities
1 = fatalities]
g) Arrival delay finteger, in minutesk%
h) Diversion fbinary valued, with

0 = no diversion
1 = diversion],

Note that the mission reqUirement set connotes certain
necessary values for certain items, while the mission variable
set places no such bound on any variable. This is because the
mission rgﬂ@irement set describes what the user wants the system

AR .
to do while the mission variable set describes what the system
actually does.

--ﬁivéﬁ a set of mission variables, to formulate levels of
(mission) accomplishment,'ﬁé define an "outcome' of a mission to
be a particular sequence of values of mission variables, one
value for each variable in the mission variable set. More pre-
th

cisely, if there are 2 mission variables, let zf%denote the 1

variable and let R; denote the range of z; (i.e., the wvariable Z

assumes values in set Ri)' Then a mission outcome is an element

of the set Rlszx"'xRE and a level of (mission) accomplishment

is a nonempty set of mission outcomes. The interpretation of a
level of accomplishment is that all outcomes in the level are

\.d:‘_,‘
relatively indistinguishable from“the user's point of view.

Generally, for a given mission, there will be several levels of

accomplishment (referred to as the range of accomplishment) such

that every possible mission outcome is contained in one and only

-

Tone level.
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To illustrate this notion, if mission variables a) - h),
described above, are denoted Zys ZgseetsZgs réspectively, then
accomplishment level ii) (Flight with no diversion and medium

to high fuel consumption) is formally rep;esented by the set:

A, = {(21’22”"’28)~€'31XRZX'”'XR8[ZA e {1,2} and Zg = 0}.

In addition, one can incorporate the notion of phase into
the process of delineating levels of accomplishment by allowing
the requirements to change with time. For instance, in level i)
above, we might require "fuel consump%ioﬁ"'=.Olduriég‘ﬁhgméyﬁise
phase, and then allow "fuel consumﬁtibn”'= 0 orji.&tiing all other
phases. Figure 2 illustrates this point.

3.1.2.2 Intermediate Level Models

The intermediate level models represent successive layers of
coarseness in bridging the bottom, object system (computer)%@odel
and fhe top, mission level model. For an aircraft computing system,
we believe that at Teast two such intermediate levels are needed
to facilitate the determination of the relation between -
the bottom and top levels (i.e., the determination of the capability
function; see Section 3.3.2.2).

First, below the air carrier level, we have the "aircraft
functional task" level, characterizing the aircraft and especially
those aircraft systems affected by the computer-(e.g., autoland
sysféms, stability-augmentation.systeﬁ§‘and navigation syste@s;

see Ratner, et al. [9] for one such list of requirements). As.with‘
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missions, we can define task requirement sets to describe the
demands of a given task and task variable sets to describe
system performance relative to those demands. Thus, for example,
'stability augmentation requirements may be stated éﬁmply as the
(singleton) set:
a) Alrcraft stability is to be kept within a specified
tolerance level (where the level may vary according
to phase).

Control theory abounds with variables which could be used to

describe system performance relative to this requirement (see

x_é-:i

[10] for dgtails. \ One example of a stability variable set
might be:
a) Steady state error (pitch, roll, yaw) [real, in degrees]
b) Maximum overshoot (pitch, roll, yaw) [real, iﬁ"aegr;;s]
¢) Rise time (roll, pgtch, yaw) [real, in seconds]
d) Settling time (roll, pitch, yaw) [real, in seconds].
Alternatively, a simpler example which might well suffice is the
singleton variable set: \

a) Stability [trinary valued, with

0 = high degree of stability
1 = medium degree of stability
2 = no stability].

The development of variable sets for other functional tasks (e.g.,
autoland, cruise navigdtion, etc.)fis carried out im a similar

fashion.

Next, between the aircraft functional tasks level and the
bottom level, we have introduced a "computational task" level,

Ldescribing the basic operations the computer is required to
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perform in order to accomplish the aircraft functional tasks.
These computational tasks include such activities as those

suggested by Ragner, et al. [9].

R -
E= Y

a) Vertical guidance
b) Horizontal guidance
¢c) Engine control.

Here, too, we can define task requirement sets and task variable

sets. Thus, for task a) above, we may define the following task

requirement set:

a) Computations involving vertical guidance are to be
accomplished within given time and accuracy constraints

from which we derive the following task variable set:

.

a) Program access {[binary valued, with
access to vertical guidance program
no access]

o

1

et
b) Instruction rate [integer, in average number of Imstruc-
tions devoted to vertical guidance
computations per second]

¢) - Computation size [integer, in average number-of instruc-
tions used in the performance of a
single pass of the vertical guidance
program}.

We have also been studying the problem of incorporating
non-computer related information into the model hierarchy in a
systematic way. One solution which shows promise is to distinguish
two types of model variables at each level of the model hierarchy.

More precisely, a model variable at level i is a

i) basic variable if its values cannot be expressed in

terms of model variables at level i+1 (the next lower
level),

ii) composite variable if it is not basic, i.e.

, its wvalues

can De determined by knowing the values of the level i+1
variables, '
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Thus, the set of basic variables at level i represents the increase
in scope of the level i‘model relative to that of the level i+1
model. (At the lowest 1evei,‘all variables are basic.) Composite
variables, on the other hand, }ie within the scopgégf the next _
lower model and are determinable as a function of iower level
moedel behavior (see Figure 1).

To illustrate this distinction, consider the "diversion"
variable (as discussed above) introduced at the top level mission
model (i=0). At the next lower level this could be expressed
in terms ogitwo variables, i) weather and ii) autoland. Thus
”divgrsiqﬁg—is a composife-variéble at level 0. If "autoland"
is further divided into the computational tasks required for
autoland, then "autoland" is composite at level L. Without
furth;r decomposition, &weafher” is a ba;ic variable at level 1

(see Figure 3).

3.1.3 ,Hierarchical Modeling of an Air Transport Mission

During the present reporting period, we haﬁé investigated
several protétype air transport models. In the sections that
follow, we present a simplified model intended to demonstrate some
of the major points discussed in the preceeding sections. We will
develop the model in a top down manner, applying the general

method described above. Furthermore, many of the examples in the

T aE

prior discussion will ge incorporgied below, though usually in a
simpiified form.

It should be noted that; within the hierarchy, there are
several other facets of modeling which we have been investigating
'%ut which are not reflected in this example. These_ére discussed

in Sections 3.2 and 3.3 and include the bottom model (hardware and
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h) Diversion

1
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software functions), "interphase transition functions" (functions

yielding the system configuration after a change in phase) and

dependencies (both temporal and structural).

3.1.3.1 Top Level Model Development .

s

-

The mission developed here is a basic air transport
missicn which can be informally described as follows:
Mission Statement: '"Transport passengers between two

points safely, conveniently and
with minimal fuel consumption.”

Mission Requirement Set:

i):- A given safety rate is to be attained.

ii)" Inconveniences (diversions) are to be minimized.

iii) Fuel consumption is to be minimized.

Levels of Accomplishﬁent

1) Filight with no fatalities, no diversion and low
fuel consumption )

2} Flight with no fatalities, no diversion and high
fuel consumption

3) Flight with no fatalities, diversion and low fuel
consumption e

4) Flight with no fatalities, diversion and high
fuel consumption

5}Y Flight with fatalities.

Given the mission requirement set we designate the following

mission variable set:

B Safety [binéry valued,%ﬁith
0 = no fatalities
1 = fatalities]

Z,: Diversion [binary valued, with
no diversion
diversion]

Z

1

Fuel Consumption [binary valued, with
0 = low fuel consumptilon
1 = high fuel consumption]

w
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and, accordingly (see the general discussion in the previous
subsection), the five levels of accomplishment are formally
represented by the sets:

{(0,0,0)}

A =

A, = {(0,0,1)}

A, = {(0,1,0)}

A, = {(0,1,1)}

Ag = {(1,0,0),(1,0,1),(1,1,0),(1,1,1)}.

3.1.3.2 Intermediate Level Development

At the aircraft task level, there are a number of functional
tasks which are needed to support the accomplishﬁent of the
mission. To simplify the exposition, however, let us suppose
that there -are only two types of tasks that need to be accomplished:

a) Active Control (stability augmentation/fuel reguiation)
b} Autoland.

Let us suppose further that the air transport mission has
three phases:  takeoff, cruise and landing, that active control
is required in varying degrqes thyoughout the flight and that
autoland is required if Category III weather conditions exist at
the time landing is to be initiated. If autoland is required
but is not available at the time landing 1s to be initiated (due
either - to a faulty computer or to a computer which is not
designed to support the autoland task)., the flight.is diverted
to another airport.

Given these requirements, we formalize the Intermediate 1
model as follows. The takeoff, cruise and landing phases are
denoted as phase 1, phase 2 and phase 3, respectively, and for

the active control task we designate three task variables:
I
Y110 Y120 Y13 \


http:flight.is

where

ylj

2-1
= [
-

e {0,1,2} , j =1,2,3.

The 1nterpretat10n of Ylj is the level of accomplishment of the

active control-task during the j th phase where:

= 1
Y15 = 4

-

For the autoland

and Yoz where:

0
Yo2 T
1
and
f 0
Vo3 =

L1

(0 if there is stability augmentation and
fuel regulation during the jth phase
if there is stability augmentation but
no fuel regulatlon during % th phase

2 if there is no active control during Jth
phase,

task we designate two task variables Y29

if the autoland capability is available
at the end of the cruise phase

otherwise

if the autoland function is accompllshed
durlng the landing phase By

otherwise.

Finally, we designate a single basic variable (weather)

at the Intermediate 1
preted as follows:
0

Y32
1

level which is denoted Yz and is inter-

if the designated landing site does
not have Cat III weather at the end of
the cruise phase

otherwise.

To summarize, the Intermediate 1 level variables can be

described as a single

y

11
(51)

b’

matrix valued variable:
e T el T

Y12 . Vi3

Composite variables

Y23

Y22
v @

Basic variable

h_,_JL_m\,ﬂ——J
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where Y11 Y120 Y130 Y220 Y23 and Yz, are defined above.
. The circled entries are variables whose values are irrelevant
to this analysis and are assigned a comstant value = ¢. The
probabili;tic natﬁre of composite variables yljZQKZj is
determined by that of lower level variables; théﬁgrobabilistic
nature of the basic variable Yz is &etgrmined by the non-
computer part of the base model (see Section 3:2.2). In
keeping with the general definition of our model hierarchy,the
matrix value of ‘Y shoﬁld suffice to determine the values_of
the composite wvariables at the top level. Furthermore, since
there ar%gno fasic variables ~at the top level, we can resolve
the Z matrix and hence obtain the level of accomplishment. -
The.process.of determining the level of accémplishmeﬂt'
which results from a givenm value of Yis part of the more
general problem of formulating the capability function (see
Section 3.3.2). To illustrate this connection, however, let
us suppose that the aircraft is such that an %gtivggEbntrol
level of 0 or 1 is required throughout the flight (see variables
Y150
augmentation, the plane crashes). Suppose further that if the

i=1,2,3) for aircraft survival (i.e., without stability

degree of active control drops from 0 to 1 or 2 any time before
the landing phase, then fuel consumption is increased to the
point where it is classified asfghigh.” Finally, let us suppose
that when Cat IIT weather exists_at the intended landing site,
if autoland capability is available (at the end of the cruise
- phase) the autoland systeﬁ is used to attempt an automatic land-
ing; if not available, the aircraft is diverted to an alterﬁate
landing site. If autoland is attempted but not aécomplished,

the aircraft crashes.
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Under the above set of conditions, Table 1 gives the
corresponding mission variable valués and, subsequently, the
level of (mission) accomplisﬁment for several representative values
of the Intermediate 1 model variables (i.e., thesyariable ‘
Y). An exhaustive analysis of all 216 possible values of ¥
shows that 10 values yield an accomplishment level equal to .
Al’ 30 values yield AZ’ 4 yield A

12 yield A, and 160 yield

3? 4
AS. It should be noted, however, that these numbers have no
direct bearing on the system's performability since the
probabilégtic nature of the matrix-valued random variable ¥
has yet to be accounted for. Indeed, many of the values of ¥

are "logically inconsistent" and hence have a zero probability

of occurrence. For example,-the value

2 2 2
Y= & 0 0
S

says that the aircraft crashes during takeoff, due to loss of

active control, and yet autoland is accompliéﬁed during landing.

The next intermediate model in the hierarchy (Intermediate
2) is intended to represent the behavior of the computer per
se, in terms of the computational tasks it performs through-
out the utilization interval. The purpose of this model
is to provide a description of;computér behavior that is
generally-applicable to the clggs of fault-tolerant ocpmputers
envisioned for use in the next generation of commercial aircraft.
The Intermediate 2 model thus serves as common interface between

specified, architecture dependent bottom models and the Intermediate

1 model.
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During the reporting period, some effort was devoted to
examining alternative types of representation which might be

appropriate at the Intermediate 2 level, in preparation for a

i

E

more detailedzaevelopment which is just now underway.

We can, however, illustrate the role of such a model via a
simplified example which describes how computational tasks
are accomplished during the utilization inte%val. More precisely,
suppose that the utilization interval is divided into five

computational periods as follows:

; t e - .
1 ) 2 3. . 4
S 4 . T J\_——-V_—J

takeoff cruise landing

adl

Suppose further that the duration of a computational task is

taken to be the duration of the pericd during which the task

TR

is executed, and that there are four types of computati%% tasks:
1) Stability computations
2) Fuel regulation computations
3) Autoland ;ompﬁtatiéns

4) Internal computations (I/0 management, on-line
fault-detection, etc.).

If we let (i,j) denote the task which is of type 1 and
is to be accomplished during the jth period, then Intermediate

2 model can be taken to be a matrix-valued variable
11 *12 X1z *1r X1
¥21 X2 *zz Xaa %5

41 *42  *az  Xa4  %gs

L D —
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where

Xj5 € {0,1} for i e {1,2,4} and 1 < j < §
or for i = 3 and § e {4,5}

{i.e., for the non-circled entries)
and
X.. = ¢ for i = 3 and 1 < j < 3
(i.e., for the circled entries).

The interpretation in the first case is that

<. = [0 if task (i,j) is accomplished
1J 1 otherwise.

(E.g., Xy3 = 0 means that fuel regulation computations were
accomplf%hed during period 3.) In the second case, ¢ is
assigned to those variables whose values are irrelevant to the
analysis.

"~ The variable X can now be employed to determine the
model Intermediate 1 composite variables, To describe this

process, define the composite variable submatrix Ye of a

variable matrix Y to be the matrix composed of theose rows of

¥which correspond to composite variables. For instance, given

the Intermediate 1 level‘y discussed above:

4 Y Y 7
11 i2 13 } composite variables
y=| Y21 Y2z Y23

~ - .
Y31 Y37 Y33 1) basic variables

the y& would he

Y1 Y12 Yas
C
4 Yo1. Y22 Y23

We can now make certain assumptions regarding the relations

between computational tasks and aircraft functional tasks. First,
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we assume that all aircraft tasks require the successful accomplish-
ment of general internal computations as well as the computations
speciflc to that aircraft task. Thus autoland, for instance,

necessitates both autoland computations and internal computations.

Second, if the computational tasks réquire&1t0 perform an
aircraft functionél task are achieved, we assume that the functional
task is accomplished. The need for this second assumption is
due to the simplicity of this specific example. In general,
the accomplishment of aircraft functional tasks can also
depend ogsrelated aircraft systems as represented by
additioﬁf& Intgrmediaté 2 modél_variablés. -

Finally, we make some assumptions with regard to how.the
‘tﬁfgé periods of the Intermediate Z cruise phase relg?é tp‘%he-gingle
period of the Intermediate 1 cruise phase. If the stability,
fuel regulation, or internal computations fail at any point
during the cruiseibhase (e.g:; if (xzz, Xyz5 xz4) = (0,0,1)),
then those computations are unable to supporti§heir respective
functional task§ represented by the Intermediate 1 composite
variables. For instance, (xlz,'x13, X14) = (0,1,0) represents a
stability computation that results in loss of stability augmenta-
tion during the cruise phase. Autoland computations, on the
other hand, need to be available only at the end of the cruise
phase. Therefore, we assume-tﬂgi the autoland computations are
good if Xzg = 0 and failed if Xzq = 1. Thus, (x32, X2z, x34)

(¢, ¢, 0) yields an autoland comﬁutation condition of 0 for the
crulse phase. Note that the three periods of the Intermedigte

2 cruise phase allow a closer examination of the computer's-

activities than would have been possible with only the one Inter-



-28-

medate 1 period. Indeed, this ability to alter the time scale
from level to level is an important feature of the hierarchy since
it permits a refinement of time as well as structural detail |
when descendf%;“the hierarchy.

With these assumptions, the values of the Intermedidte 1
model composite wvariables ‘yélare determinable from the computa-

tional outcomes X. As an example of applying these results,

consider the following matrix:

_ -
0,0 0 060
|
010 1 141
X = : ‘
T ¢, ¢ ¢ 00
i |
0+ 0 0 01 0

This says that the stability and internal computations'%%re
successful during the entire mission, the autoland computations
were successful during the last two periods of the flight, while
the fuel regulation computations failed duriﬁg the last three
periods of the flight. The above value of X yields the

following value for the composite variables at .the next higher

level:
0 1 1
Yo o ¢ 0.0
Here, Y12 = Y13°= 1 since the f;eihgpgulation computat%oﬂs failed
during the an and Srd phasés. All other computations were

successful; hence Y11 = Y22 ° = 0.

Y23
Table 2 shows some other possible values of X along with the

corresponding values of ‘yc: These outcomes follow naturally

from the definitions of X, yc and the'as_sumpifions regarding

the relationship of computational tasks to functional tasks.
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5 B 5 5 B B
n 7] 1] N &)] wn
® - 0] lar} 49 4] lo]
= e} [&] = [y} (&3}
[ 2 e ™y — -
X, 1 ox X Xo, 1 Stability Vi Y y Active
11, 712 7135 714718 computations Y.= T 1z 713 control
Xlzi I Fuel regulation Yo1 Yaz Yoz | Autoland
I : computations
Xy | ' Autoland
13 | .
i | computations
Xqal X Internal
__14 i : 45_ computations
00 0 0 0] 0 e
- 0 0 0 e 0. o
¢ ¢ ¢ 0 0
0o o 0 o0 0]
¢ ¢ ¢ 1 0
o o 0o o 0]
o o o o 1] i1 0 s
1 0 0 0 0 ¢ 1 0
¢ ¢ -¢ 1 0
o o o 0o 0]
o 0 0 0 0] T o1 1
1 1 1 0 1 i o 1
¢ ¢ ¢ 0. 1
o 0o 0 0 o]
o o 1 1 1 0 2 2
o 1 1 1 1 ¢ 11
¢ ¢ ¢- 1 1 )
o o 1 1 1|
Table 2
Values of Intermediate 1 composite variables as detemmined by | 23



b

- 30_

.2 Computer Models

The objective of this effort is to delineate an
appropriate.ﬁﬂéss of stochastic models that can serve as bottom
level models in the hierarchy. The scope of a model in.this
class 1s some specified aircraft computer and the level of
abstraction is the "operational state" of the computer's
hardware and software. Accordingly, this class of models must
be generél enough to cover a variety of computer architectures
of the type being considered for use in advanced commercial
aircraft. At the same time, this class must be specific
enough to permit the study of how a bottom level model relates
to higher level models in the hierarchy.

This effort was initiated during the previous reporting
period and, during the current period, we have contin&%ﬂ our
examination of Markov models that have recently been employed
as computer models for the reliability analysis of fault-tolerantiis
computing systems (see [11]-[15], for example). We have found
that such models are compatible with the hierarchy in the sense
that the state behavior of a model can be used to determine
whether the system is able to accomplish a higher level task or
mission. ﬂowever, we have also found that in order to formulate
these higher tasks and missions in terms of the system's
operation and énvironment;-the model should incorporate a congépt
of gtate thaﬁ is capable of representing more than just fhe
operational status of various components. As a consequence,
the resulting Markov model may réquire an .enormous state space,
even for a moderafely complex computing system.

In order to keep the size of the state space manageable,
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we have examined possible ways of extending the concept of a
stationary Markov process, the results of which are summarized in

the subsections that follow.

3.2.1 _ A Non-Stationary Markov Process
! ¢

As an extension of the.traditional Markov models with

stationary transition probabilities, we have examined a class of
stochastic models which can be represented as finite-state non-
stationary Markov processes. Since the transition probabilities

of each model are presumably stationary during each phase, each

< (i

of these models can be regarded as a flnlte sequence of statlonary

Markov processes where each process in the sequence has a

fixed duration
- The reliability analy51s of phased missions has been studied

in the past, but most of the previous work (see [6] and [8], f;r
example) considers the case where interphase transitions are deter-
ministic. For systems with non-repairable and statistically
independent components, a general treatment of .£the problem of
interphase dependenciés was recently provided bwasary and Ziehms
(see [5] and [7]). In their approach, a mission is represented
by a set of fault trees, each of which denotes the computational
requirements of the system during a specific phase. Each mission
is then transformed into a single synthetic fault tree which-can
then be evaluated using the usudf%fault tree techniéues. Although
this approach may have some value from a conceptual point of view,
it is of little ﬁractical use when applied to systems having the

- complexity of an aircraft computer. This is due to the fact that

%ﬁ) it assumes that the operational state model is the same tﬁrough—

out the utilization interval (only the structure function can
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change from phase to phase), ii) the local state sets of the sub-:

systems are two-valued (i.e., operational.state are described at

the component lgygl), and iii) the approach relies on a principle

CERS T

of "compositioﬂw'rather than ""decomposition' which increases the
size of the equivalent model. As a .consequence of these facts, the
size of the resulting fault tree is unmanageable, éven for systems
of moderate complexity. \

An alternative to this "composition' approach is to
perform a phase-by-phase analysis which accounts for the probabil-
istic nature of interphase dependencies. An examination of .
this alternative was initiated during the reporting period;
the results obtained to date are discussed in the subsections that

foliow.

3.2.1.1 Model Bescription

We suppose first that the utilization interval
T = {t|t—0 < t‘i ti} is decomposed into k consecutive intervals
Tys Tys -.., Ty where T = {t|tm_1.i t <t } and ty < Ty <o..<ty.
The set of time points {t | m = 0,1,...,k} is fixed for a given
mission since the mission profile of the aircraft is assumed to
be known in advance. Hencefortﬁ, each time interval Ty will be
referred to as the mth phase of the mission.

Given a utilization inter&al T, we suppose further that
the probabilistic nature of- the coﬁ@ﬁting.system to be-evgluaté&
is déscribed by a finite-state stochastic process - _

Y = TYg(t) |t e T} |

where, for a given t, Ys(t)is a random variable (defined on an
underlying probability space (Q,F,P)} that takes on values in
the state space Q. (i.e.. YSCt):Q + Q). The pfocess is assumed to be

Markov process with transition probability
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PriYg(t+r) = j[Yg(t*)st'st] = PriYg(t+r) = j|Yg(t)].
§ -
The conditional probability above, may, in general depend
on both t and r (in addition to j and the value of Ys(t}). How-

ever, we suppose that the transition probabilitiég are stationary

1,

,t
m-1°"m
Pri¥g(erm)=j|Yg(t] = 1] = PY(4,])

within each phase, i.e., given phase T, =.[t

is independent of t for t__; <t < t., t < t+r < t_,T > 0,

1 202 by

i,j e Qand wm = 1,2,...,k.

Consider a simple example. A typical aircraft flight may

S

~x

consist‘gg three phases - take-off, cruise and landing. Assume
that the?flight control on-board computer comnsists of four
functionally independent ideﬁtical units. Different units may
" or may not compute the same function at the same_time_éepending
on the amount of computatgon needed and the safety requirements
of each phase. As:dn illustration, the system may assume a
TMR configuration with one standby unit for the take-off. During
the cruise phase, the system may require only‘%_duplex-simplex
configuration with two standby spare units. "To meet the high
computational requirements of landing, the system may require that
three units operate concurrently (to support different tasks) \
with only one spare unit. A conventional reliability analysis,

of each of these configurations typically employs the concept

i

iy

of a stationary Markov process %éee [161-1181).

In the following discussion, we allow each phase to choose
from a list of possible system configurations depending omn
the outcome of the previous phases. Let C" = {Cq»e++5C 3

be the set of possible configurations associated with the mth

phase Tm (m=1,2,...,k). Then given TS t< Tty the stéte

TR
=g
T
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Ys(t] of the system at time t may represent both the operational
status of various components and any condition that is important

to consider in, the performability analysis. For example, a specific

state of the model might represent that the system in configura-
tion Ci has j subsystems failed and the rest of the subsfgtems
are fuﬂctioning in a degraded mode. Conceptually, the Markov
process YS can be viewed as having a single large state space.
From a practical point of view, however, for each phase we

need only represent those system states that are possible (i.e.,
have non-zero probability) during that phase. Given such a
model whose probabilistic structure varies from phase to phase,
the question that remains is how the results of these per-phase
analyses can be combined so as to adequately support an analysis
of the system's performability at the mission level. This

question is addressed in the subsections that follow.

3.2.1.2 Dependencies Between Phases

To illustrate the mature of the problems encountered when
combining the results of a phase-by-phase analysis, it suf%ices
to consider a traditional two-valued mission model wherein a
mission either is accomplished ("success"). or 1is not ("failure").
In this case '"performability" (seé Section 3.3) reduces to the
usual notion of "reliability" (probability of success). However,
given that the COmpuéer is Iepreséntgd by -a time-varyiggnmodgl--
consisting of a sequence of stationary Markov processes (6ne'
process per phase with each phase having a fixed duration), the
reliability analysis is complicated by the fact that interphase

dependencies must be accounted for. Such dependencies are

due to the fact that certain parts of the hardware and software
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structure of the computer may be used during more than one phase
of the mission.

' To illusﬁiate the above remarks, consider the foilowing
hypothetical situation. A system with four identica% modules
Ml’ MZ’ M3 and M4 is designed for a two-phase mission. In
order for the system to perform the required tasks, at least

two modules must function through phase 1. After phase 1 has
been completed, the computational requirements change and

the system is reconfigured as a series connection of two duplex
stages {see Figure 4). Thus the second phase of the mission

is a success if at least one module in each duplex stage remains
functioning through phase 2. Suppose that each of Ml, Mz’ M3
and M4 fail bermaﬁéntly with a constant failure rate A. Suppose
further that the failure characteristics of the modulesﬁhre
statistically independent and no repair is possible throughout
the mission. Then the probabilistic nature of phase 1 and phase
2 can be represented, xespectively, by finite-state stationary
Markov processes with transition graphs as illustrated in

Figure 5 and Figure 6.

Note -that this phase-by-phase Markov representation enables
us to choose different sets of model variables for each phase.
Thus, in general, the construction of a particular phase can
be tailored to Eoth the structure of the computer and the
natu%e of the mission reqdirements during that phase, thereby
reducing the number of model variables at each level in the
hierarchy. Using the above example, let us now examine some

of the problems encountered when using such a model to analyze
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Fls .
e

phase 1 = [to,tl] phase 2 = {tl,tz]

Figure 4 -

A two-phased mission

ORIGINAL PAGE 13
OF POOR QUALITY
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NO FAILURE a;
1

ONE FAILURE a,
13

TWO FAILURES ds
22

THREE FAILURES cr
FOUR FAILURES

! ';’.“JI":"

Figure 5

Markov model for a two-out-of-four system
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NO FAILURE

4x

ONE FAILURE

e
i

TWO FAILURES
(one in each duplex stage)

TWO FAILURES
(both in the same duplex-stage),
THREE FAILURES or

FOUR FAILURES

Figure 6

Markov model for a double duplex system

s S
OF POOR QUALITY
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system performability or (since we have only two levels of
performance in this case) reliability.

If we suppose that all modules are functioning at the begin- _
ning of the mission (and hence the beginning ofighase 1), i.e.,
Pr[YS(tO) = ql] = 1, then the reliability of théﬂsystem during
phase 1 is given by

Rel (phaseil) = Pri¥q(ty) e R1|Ys(to) = qll

where R1 is the set of "success states" of the phase 1 model,

i.e., Ry = {ql,qz,q3}. Expanding this equation, we have .

=,

PT[YS(t1)=q1|YS(tO)=q1] * Pr[Ys(tl) = QZ[YS(t(;)'—'ql]

th

Rel (phasg 1)

it

+ .

Pr[Yg(ty)=a5]|¥g(t )=a;]

i e_4l(tlft0? +-4(1—e"l(tl_to))e—SA(tl-Foj
. 6(1_¢—a(tl-to))ze-zxttl-to)

) 68-21(t1—t0) _Se—zx(tl—toj , 38—4A€El:to).

If we now consider phase 2, its reliability can be similarly
expressed as

Rel(phase 2} = Pr[Y¥o(t,) € RZII]

where R2 = {rl,rz,rs} (the "success states' of the phase Z model)
and I is some assumed condition regarding the initial state of
phase 2. More generally, the ifiitial condition may be distributed

probabilistically over several mutually exclusive possibilities

Il’ Iz)...,Ié, in which case
Rel(phase 2) '=Z Pri{¥q(t,) & Ry[I;]-PrlI ].
i=1

The simplest choice of I is similar to the one made for phase 1,
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namely Ysﬁtlj = Ty, i.e., the initial state for phase 2 is the
most favorable operational state (no failures). If we pursue

this choice, we have:

Rel(phase 2) = PriY¥s(t,) e RzlYS(tl) = rl]
= PrYg(t,) = rllYS(tl) = 1]
+ Pr[Yg(t,) = r,|¥g(ty) = 1]
+ Pr¥q(t,) = rg|¥g(ty) = 1q1.

Computing each of these probabilities and combining the terms,

we obtai§§ i . ..
: —Zh(tz—tl) —3l(t2—t1) -4k(t2—t

)
-le +e 1 -

de

]

Rel {phase- 2)

Finally, given the per-phase reliabilities determ;ned‘gbove,

we might be tempted to express the total system (mission)

reliability as the producg of the phase reliabilities, that 1is:
Rel{mission) = Rel(phase 1)-Rel(phase 2).

Then,_assuming the durations of phase 1 and phase 2 are the same,

i.e., (tl—to) = (tz-tl) = T/2, the mission ref%ability is:

) -2AT -2.5AT -3AT -3.5AT -4AT
Rel(mission) = 24e -56e +50e’ -208e +3e

When the above expression is compared with an exact
expression of the mission reliability (derived in the following

subsection), i.e.,

t&l}h

-2AT -3XT -4AT
Rel(mission) = 4e -de +e

’
we see that the above derivation dis inaccurate and provides

an overly optimistic view of the system's reliability. A closer
examination of the derivation reveals that the cause of this
discrepancy is twofold: i) the assumption regarding the

“uleT
7

initial state of phase 2 is incorrect and i) the events
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"phase 1 success" and "phase 2 success' are statistically
dependent and hence the product of their probabilities is not
equal to the probability of the joint event "mission success."”

To correct for each of these errors, we must account for
certain.: ways in which successive phases depend on one another.
Our work in this regard is discussed in the subsection that
follows.

3.2.1.3 Interphase Transitions

In genefal, complexities in the performability analysis
of phased missions arise because the performance of a module
depends on its performance during previous phases. These
dependencies are of a special type, however, since temporal
dependencies within a phase satisfy the Markov conditiomn.
Hence, if tm is the time of transition between phase m:i?d
phase m+1, it suffices to determine how the initial state of
phase m+1l (at time tm) depends on the final state of phase m
(at time t ). In general, the nature of such dependencies will
be probabilistic (for reasons which will be explained in a
moment)} and can be represented as follows.

Let Qm denote the state set of the Markov model represen-

th

tation of the m™" phase (m=1,2,...,k)} and suppose each state

th state of Qm, where

set is ordered so we_ can speak of the i
if IQm[ =n, then I < i <n.. Witheach successive pair of

phases m and m+1 (1 < m<Xk) we associate an interphase transition

matrix H(m), defined to be an n, by n matrix

m+1

H(m) = [h..]

ij
where
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hi' = probability that the state of the phase m+l modél is
J j (at time t ) given that the state of the phase

m model is i (at time tm).
Note that H(m) is a stochastic matrix, i.e.,

n
m+1

:E:hij =1, i=1,2,....n.
j=1 ) .

Note also that H(m)} reduces éo the identity matrix (1'son the
diagonal; 0's elsewhere) in the case where the phase m and phase
m+1 models are identical and have the same interpretation.

The probabilistic nature of these interphase transitions
is due tg?the fact that,-in general, our knowledge of the. system
at the end of bhase m, as conveyéd by the state of the phase in
model, may lack the detail needed to uniquely determine the..
state of system as it is newly represented by the phase mt+1l model.
The information that is lacking may bé information about the
computer, per se, or may be information which lies outside the

scope of the computer model.

To 1llustrate this point, consider the ei%mple discussed
in the previous subsection. In this case we have two phases
with state sets
Q" = {aq,q5,95,9,}
and

Q% = 1 }

10720 T35

Ted

respectively. If, at time tys the system 1s in state qz with respect
* to the phase 1 model (i.e., two module failures)} then, depending

on which two modules failed, the state of the system wilth respect

to the phase 2 model is either Tg {one module failure in each

duplex stage) or T, (two module failures in the same duplex

stage). As module failures (in this examﬁ%%) are independent
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and equally likely, a straightforward calculation reveals that
h33 = 2/3 and h34 = 1/3. Transitions from states other than qz
happen to be deterministic, and thus we obtain the following

interphase transition matrix:

i. .0 0 0
_ 0- 1 0 o

H(1)= 0 0 2/3 1/3
o o o0 1

Using such interphase transition'matrices,iwe have started
to investigate the development of more precise formulations
of systeg;performability in terms of the per-phase nature
of the g%Etom model. In particqlar, for tﬁé—valued-miésion
models wherein "mission success" is defined to be 'success of
.every phase of the mission," we have succeeded in deriving an
exact expression of mission ;eliabilit}.

For each phase of the mission, let P{(m) denote the

initial-to-final state transition matrix of the mth

P(m) = [pj;(m)]

phase, i.e.,

where
Pij (m) = PT[YS(tm) = jlysttm_1)=i]-

For each phase except the final phase, let G(m) denote the

th phase (1 < m<k)}, i.e.,

G(m) = [g}j (m) 1]

-

1 if i=j and T e R

success state matrix of the m

where gi.(m) = {
J 0 otherwise.

For the final phase (m=k) we define a success state vector

£,(1)

F(k) =
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1 if 1 e R
where fi(k) = I k
L 0 otherwise.

Finally let 1(0) denote the initial state distribution for

phase 1, that is e

(o) = [Pl(o):---aﬂpnlto)}
where
Pi(o) = PT[YS(tO)=i] 3 1 <1i¢ .
Then it can be shown that mission reliability (probability of

mission success) can be formulated as follows:

= . k-1

el(mission) = I(0)| 1T P(1)G(LIH(1)] P(K)F(K),
i=1

5 ‘)H" X

)

e
|

=3

where the product operation 1s matrix multiplication.

- Note that in the spegial case of a one phase mission (k=1);
the expression reduces‘to

Rel(mission} = I(0)P{1)F(1).

Here, I(0)P(1) is a vector of final state probabilities.
" Multiplication by F(1) selects those states wgich are success
states and sums their probabilities, the result being "probability
of success' (relative to initial distribution I(0)).

To illustrate a less trivial application of the formula,
consider once again the two-phase example for which we derived
the interphase transition matriﬁ_H(l). In this case

Rel(mission) = I(O)P(Eﬁ@(l)ﬁ(l)P(Z)F(z)
where we will suppose that
I(0) = [L 0 0 0]
(i.e., we begin with no failures) and where P(1l) and P(2)

are obtained by the usual methods of stationary Markov model
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analysis (see [20], for example). The remaining matrices are

1 o o 0|
_ 0 1 0 0
G(1) = 0 0 1 0
0o o o0 0]
1 0 0 -0|
_ 0 1 0 0
H(1) = 0 0 2/3 1/3
0 o 0 1}
1
1
and F(2)-= 1
0i.
1f we let T1 = (t 1 -t ) and T -{t tl) be the durations

of phases 1 and 2, respectively, and we 1terat1ve1y compute the
matrix product, beginning from the left, then for the first
two terms we have:

A, = I(0)P(1) a1 2752343 a14]

1
where
-4AT
_ 1
211 = ¢ ’ -
- 3AT ~4A\T '
_ 1 1
ap, = de de s
~2AT -3AT -4\T
-ZAT -3AT ~4AT
a14 =1 - 6e 1 + Be 1. 3e 1

The interpretation of a;; is th§ probability that the final
state of phase 1 is a; (given the initial state distribution
T(0) = {10 0 01).

‘The next partial product is the result of multiplying Al
by the success state matrix G(1l) which yields: '

A, = AlG(l) =

2 fagy

Sat.
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where . dyg = 2975
422 T 2120
423 T 213>
ay4 = 0.

Thus vector Az is the same as Al for those states of the phase
1 model that guarantee phase 1 success. The remaining entries
(those corresponding to phase 1 failure states) are 0. More
precisely the interpretation of ass is the probability that the
final state of phase 1 is a4 and phase 1 is a success.
The%ihird partial product is a result. of multiplying Az

by the interphase transition matrix H(1l) which yields:

Ag = AJH(1) = lag) ag, azg agyl
whete .-
_AAT
_ 1
4z7 © ° >
_3AT CANT
_ 1, 1
8-32 - 4e 46 s ::!
- 2AT - 3AT -4AT.
- i _ 1 1
az; = 4de 8e -+ de s
a34 = Q,

The purpose of this operation is to describe the results of
the phase 1 analysis in terms of the phase 2 model, where the
interpretation of entry aqs is'%he probability that the
initial state of phase 2 is T, ;nd phase 1 is a success.

The fourth partial product is the result of multiplying
A3 by the transition matrix P(2) of phase 2, that is:

Ay = AgPL2)=[ayy ay, a5 a,,]


http:result.of
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where, if T = T1+T2 then
' 2y - o AT
8y, = fe T _ 48T
25 = 6" 2AT _ Se—SAT 4o WT
agg = 1 - 16~ 2AT . gom3AT | _-0AT

~ Thus the interpretation of 2,5 is the probability that T; 1is
the final state of phase 2 and phase 1 is a success.
The .product is completed by multiplying A4 by the success .

ey

state vector F(2) of the final phase, that is,

Rel(mission) A4F(2)

z
ieR2

45

o 4o IAT | g mBAT | -4T

Since the sum is taken over -all final states of phase 2 that
guarantee phase 2 success, the interpretationigf the sum is the
probability of phase 2 success and phase 1 sué;ess, i.e., the
probability of mission success (given the initial state distribu-
tion I(0) = [1 0 0 01).

The above example serves not only to illustrate an exact
computation of mission reliability but also to give an informal
justification of why this methdﬁjproduces the desired result.

As a check on the computation, we note that this simple example
could be viewed cquivalently as a double duplex system throughout
its utilization interval and, when so viewed, yields the result

obtained above. This is not to suggest that multiphase models

can generally be reduced to singleé phase models; indeed, we
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believe that the above example is quite unusual in this
regard.

Althougyggge above computational algorithm applies only
to a restricde set of mission level models, it establishes
in our opinion, the feasibility of using non-stationary Markov
models as base models for performability analysis. It should
also be noted that the above algorithm need not be restricted
to base models where the intraphase processes are Markovian,
as long as the overall sampled process (where a sample is made
at the end of each pﬂase) is Markovian. Thus, semi-Markov
processes or approximate Markov processes ({see [19]-[{23])
can also be. used to model the intraphase behaviof. Thus
we intend to pursue this approach for more general types of
mission models via an analysis of "R-dependencies™” assqgiated
with various levels of mission accomplishment. Our work in

the latter regard is discussed in the section that follows.

3.3 Formulation of System Effectiveness

The central idea that underlying this research project is
that the evaluation of system reliability and performance should
not be treated as separate issues but, instead, as a single issue
which can generally be referred to as '"system effectiveness."
Informally, "system effectiveness" is the extent to which the user
may expect to benefit from the missiGHs accomplished by the §yspéﬁ
in the ﬁse environment. Thus effectiveness measures for aircraft
computers must quantify the extent to which a commercial air
carrier may expect to benefit from missions accomplished by an

aircraft computer (in conjunction with cooperating related systems
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and supporting systems). As discussed in the fifst Semi-Annual
Status Report (see [1], Section 3.3.4.2), the formulation of such
measures can be paturally decomposed into two problems:
i) Formulating-the probabilities of accomplishing
various éypes and qualities of missions, and
ii) Formulating the worth (benefit) associated with

accomplishing various types and qualities of missions.

As justified in the previous Status Report, we have chosen

to focus our attention on the first of these two problems, i.e., the

t

problem of formulating measures of system "performability.-' More

precisely, a performability measure can be régarded as a special type
of effectiveness measure wherein the worth of a performance is

equated with the performance itself (as described by the top model).

£

Recalling the WSEIAC definition of effectiveness (see [24Ti,

System effectiveness is a measure of the extent to
which a system may be expected to achieve a set of
specific mission requirements. It is a function-of
the system's availability, dependability, and
capability - -

it follows thaet pérformability can likewise be decomposed into
measures of availability, dependabilitf, and capability. In terms
of our model hierarchy, the first two measures (availability and
dependability) quantify the behavior of the bottom model. The
third measure (capability)} quantifies the behavior of the top.
model as a function of values .assumed by "basic' variables of the”
bottom And intermediate modéls-(see Section 3.1.2.2). Thus.the
capability aspect of performability invokes the entire model
hierarchy and, indeed, is the reason for the hierarchy's existence.
Dur@ng the reporting period, we have developed a precise

notion of capability and have started to investigate its properties
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in terms of a generalized notion of functional dependency. This
work is reported in the subsections that follow.

3.3.1 Structure Functions .and Dependency .

3.3.1.1 Structure Functions

In structure-based analysis, the system to be evaluted
(call it S) is regarded as a network of subsystems (components).
For each subsysten Si there is associated a set Qi composed of

the operational states of 8;- These operational states represent

the various fault conditions of Si. In the simplest case,
Qi = {0,%} where a "0" indicates that Si is fault—f?ee{ apd a
"1 indi%%tes that S; 1is faulfy._ The sﬁccegs of the system S
is then relateé to the operational states of the subsystems §i

by--a binary-valued function
¢:Q1xQQXa..xQn+{0,l]

where
0 if § is a 'success" in operational
$(qq,9;5---9y) = {state (4> qz,---,c}n)
1 otherwise. e

Such a function is called a structure function (see [1], [25]1).
(Technically, the above definition is the "dual" of the traditional
definition of a structure function, since we interpret. 0

(rather than 1) as "success." We find the dual definition to

be more convenient when it comes time to extend the concept to

s

multiple levels of system perforﬂgnce.)

The limitations of the structure function approach have been
discussed elsewhere (see [1]}, [26]), but two points deserve
reiteration. First, the fact that structure fugctions are binary-

valued disallows adequate handling of modgs of degraded perform-
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ance. Second, structure-based analysis regards the network of sub-
systems as a combinational, or memoryless, network. This point of

view does not _allow the treatment of interactions between components

Ll
S
e,

over time. Given these limitations, a new approach is required.

3.3.1.2 Dependency

Before formally defining the concept of a capability
function, consider the notion of dependency. In general, there
are two modes in which one thing can depend on another [27]. In the
first 'mode, knowing that A depends on B and knoﬁing gverything
of interest about B tells everything of interest about A.
This mode of dependence is exemplified by linear dependence.
In the second mode, knowledge of B coupled with the knowledge
that A depends on B tells us something (but not necessarily

everything) about A. The best example here is the idea_of

o

il

statistical dependence. This is the mode of dependenceiﬁhich
will generally occur in the study of complex systems.

It is important to note that knowledge of certain depen-
dencies between subsysiems tof thé system) of interest may‘help
in several ways. In classical reliability analysis, for example,
knowledge that two subsystems fail independently allows them to be
decoupled and studied separately. Probabilistically, if the
failures of S1 and 52 are independent, then

P(S1 fails .and S, fails) = P(S;fails)- P(Szfails).

2
It is- not the case, however; that all forms of dependency-are
bad. PFor instance, knowledge of certain dependencies between
the operational states of a system over time may allow the
simplification of considering the states of the system only
at specific times. Given that the appropriate forms of depen-

dency exist, then, observation of the system can be limited

without a loss of relevant knowledge. One example of this is
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when assumptions are made concerning the coherence and pure-
death properties of a system. If a system has these properties,

then knowledgg;.that its final state is fault-free tells that

at all previoas times the system was fault-free. Thus the
assumption of coherence and a pure-death model is actually an
assumption about the temporal dependencies inherent in a
particular system. KXnowing which dependencies exist may

help to simplify analysis. In general, functional independence
and temporal dependence appear to be simplifying factors.

3.3.1.3 Functional Dependence

In [1], the CARSRA notion of functional dependence
{¢-dependence) was formalized as follows. Given a system S
with component subsystems Sl""’Sn’ state set Q=QIXQ2x...xQn
(Qi is the state sef of Si), and structure function ¢,;g?t

Ry = {ale(a) = 0,q e Q.

Then R¢ is the set of all success states of S relative to the
structure function ¢. For q £ Q, let Ei(q)'denote the value
of the ith coordinate of q, i.e. if q = @y»-+>q,) then
Ei(q] = q;. We define

Dy(1) = &;(Ry) = {g;5(a)|q e Ryl
D, (i) is the projection of Ry on the ith coordinate. We also
define, for 1 < j < n and qj € D¢(j] -

Ry(i,a5) = {a e Ry[g5€a) = ay} and

Dy (1575950 = T3 (Ry(3,a3))-
Informally, R¢(j,qj) is the subset of R¢ comprised of all the

elements of R¢ whose jth coordinate is equal to qj' This means

that D¢(i,j,qj) is the result of first selecting all the elements
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of R¢ whoge jth coordinate is qj, and then taking the projection
of this set on the ith component. l

For example, consider fhe three stage plus independent
voter TMR system with binary-valued state sets wiFich can be

represented as in Figure 7.

1
Sy
V
S2
S3
Figure 7
Then
(0,0,0,0)
R = 1,0,0,0)
¢ (0,1,0,0)
0,0,1,0)
" Clearly, D¢I1) = {0,1} and D¢(4) = {0}. In addition,

exanples of R¢(j;qu are

Wb

(0,0,0,0)
R¢(2,0) =1+(1,0,0,0) } % R¢(2,1) = {(0,1,0,0)}
' (0,0,1,0)

50

D¢(1,2,0) = gl(R¢(2,0)) = {0,1}, and
D¢(l,2,l) {01}.
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The formal definition of functional dependence is stated as:

Definition: If Si and Sj are subsystems of a system with

structure function ¢ then Si ¢-depends on Sj if, for some

state qj € D¢(j), D¢(i,j,qj) # D¢(i). ' e

e
B

From this definition we See that in the above example SI
p-depends on S2 because

0,1} = D, (1) # D,(1,2,1) = {0}.
Examinatioﬁ quickly shows also that S1 ¢-depends on Sz and that

S2 d-depends on SS' On the other hand, since the state of"S4 i

fiie

constan?ijs4 is ¢-independent of S;, S, and S;. Calculation of l
the possible sets showg this fo be true:. Iﬂ—fact, S4 is
"universally independent" in the sense that no other spbsystem
_déﬁ@né; on it [27].
~ Example

Consider now the triplex system (Figure 8} discussed in [1]
(see also [12], figure 8). As presented therein, the system is
regarded as being composed of four subsystems- S

SZ, S3 and

21 »

Sy called "stages." [Each stage is comprised of 3 '"modules"

(see [I2]) and is represented by a finite-state Markov

ﬁrocess with a transition graph as illustrated in Figure 9.

Thus, the state set for stage S; is Q; = {1,2,3,4,5} (i-=1,2,3,4)

and the structure functlon, in thls case, 1is the function
$:{1,2,3,4, s)E 0,1}

where

0 if, when the system is in state q,
the voter can make use of the outputs of at least
2" fault-free modules in each stage

1 otherwise.

¢(q) =

Here q = (2,1,1,1) has the interpretation that S1 (stage 1) has

one faulty module, while SZ’ 83, and S4 aregiault—free.
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NO FAILURE

ONE FAILURE

TWO FAILURES

STAGE FAILURE
'DETLECTED UNDETECTED

Figure 9
Stage Markov model
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Some examples of the evaluation of ¢ are

$(2,1,1,1)
$(3,1,1,1)
$(2,2,2,2)

Pl s

..ﬁgv_-,-'..

This means that in this case, the structure function ¢ is

0,
1, but
0 or 1 depending on which modules are faulty.

i u

actually a structure relation. Let

Ry = {alo(a) = 0 (and o{a) # 1, q ¢ QG *QsxQyt.
The set R¢ is compbsed of all the unambiguous success states
of the system S relative to the structure relation ¢. As

shown in [1],

e~

(1
Famn Ve W Vo Ve ¥
DO ke B b
N R
A
A" ] ] " ] L -
fod fod b i
St M W
RO RO -

“» L -
B b B =

1
1
1
2
1

o Vo ¥ e Y Lo
NN NN
! N

? »
3 3
> 2
H >
2 3

e ~ NN 9

>
]
>
>
»

L N Y ]

3

It was also shown in [1] that S1 ¢-depends on=S3, Sz ¢-depends

on 83, but S4 is ¢-independent of all three stages S15 8, and'SS.

Ti 4

TEs -

Knowing that these dépendenciés are present, are fﬁ%re
simpler ways to view the system so as to mask off the dependencies?
Doing so would allow us to deal with these igteractions on
a lower (and possible éimplér) level. For instance, on a _
lower level we might not need to obtain a whole set of conditional
probabilities, but could instead obtain only absolute probabilities.
It is possible that the absolute probabilities would inherently
reflect the dependencies, without further system decomposition.
One example of such an alternative representation is shqwﬁ"

in Figure 10. Here, Si is composed of stages Sl; S, and S ﬁhi]e

2 3
S5 corresponds to stage S,. We can define a new state set Qi
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Figure 10



for Si which is the range of a 1-1 corresvondencte M, i.e., a function
. M:QIXQZXQB - Qi
where, for example ° qu’qZ’QB) M(ql'qZ’qS) A

(1,1,1)
(1,1,2)
(1,2,1)
(1,2,2)
(2,1,1)
(2,1,2)
(2,2,1)
(2,2,2)
(3,1,1)

TR - s W S Y

(5,5,5) | 125 .

Note thaé%this mapping preserves all the information used in

our original analysis. We can now evaluate the new structure

relation
$1:QixQy + {0,1}.
to get

(1,1) , (1,2)
(z,1) , (2,2)
R H = (3,1) 2 (3’2)
¢ (5,1) , (5,2)
(7,1) , (7,2)

The relation ¢' is defined by
¢'(M(qlsq2:Q3):Q4) = ¢(ql’q2’q3’q4)
where q; € Q;» i =1,2,3,4 and Qé‘= Q4-

Calculation shows that

Dyi (1) = 11,2,3,57},

D¢,(2) {1,2}, °©

Dye (1,2,1) = {1,2,3,5,7}, and
Dy (1,2,2) = {1,2,3,5,7}.

T

2
A second way to analyée the system is shown in Figure 11.

From this, Si i§¢'—independent of S

Here, there are two stages as above, SY and SY, but we

1 2’
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have not preserved the states of the originally defined stages.
Instead, SE is composed of the three modules denoted M1, M2, and
M3, and S aqisgg are regarded in the same fashion as in the
original anai%égs. Hence the state sets QR of Sz and Q3
of S are

QY = Q3 = {1,2,3,4,5}.
Since the system is still regarded as TMR, the set of success

states R¢" are

N {(1,1) , (1,2)}
¢ A{2,1) , (2,2)(.
Agéin, SR is ¢-independent of S%, because D¢”(l) = D@J(Z) =
D¢”(1,2,1) =D¢“(1,2,2) ={1,2}. Hence, this decomposition also
;ields independent stages in which internal dependencies are
masked. _ )
Study of ¢-dependency during the past reporting pé%%od
has shown that ¢-dependence has the following properties:
i) ¢-dependence is symmetric
ii) 1In general, ¢-dependence is mot reflexive
iii) In general, ¢-dependence is not transitive.
It is important to note that ¢-dependence suffers from the
limitations impoSed by structure-based analysis. As a result,
during the past reporting period, and in cbnjunction with the
development of a notion of a capability function, we have
generalized the above notion of ¢fdepéndence'into what we

call "R-dependence."

3.3.1.4 R-Dependence

The concept of R-dependence is an extension and generaliza-
tion of the concepts involved in defining -and determining

¢-dependence. The notion of R-dependence will first be described
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as a direct generalization of ¢-dependence in terms of projections
on coordinatized sets, and will then be given in an alternative

mathematical formulation in terms of partitions of sets.

Let S be a system with subsystems Sl,...,Sn. Here the

notion of subsystem is extended beyond the compoments of the objec:
system alone. Thus any part of the total system whose behavior
influences the overall performance of the system may be considered
a subsystem. For instance, weather or maintenance may be regarded
as subsystéms. Subsystems are represented by basic variables.
Suppose that we sample the states of the subsystems at times
tl,tz,..égtk where ty < T, < .L.< (due to this ordering

we shall henceforth speak of times 1,2,...,k). Let QE be the set

of possible operational states of subsystem Si at time _t.

Definition: Given the above conditions, a state trajectory

for the system S is an nxk matrix
. . ﬁ
Q1 %2 - %k

App - - - - o+ 9%

-

o
where for 1 < i <n, 1 < t <k, di¢ € QE. The (i,t)th entry
l 1=z t:=

1

of u is interpreted as the state of subsysten §; at the
tth time sample. The ith row of a state trajectory matrix
corresponds to a state trajectoiy for subsystem Sj' The tth
column gives the state of the tﬁfal system S {(as represented
by an n-tuple) at time t.

Let U = {[qit][qit £ QE, 1<i<n,1c¢< t < k}
be the set of all state trajectories for S, and let R c U.

The set R is the set relative to which dependency will be defined.
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R may be selected by any specified criteriomn.
In the context of this research, the set R will generally

be a "Y-indquqf subset of U, that is, a set of the form
{uly(u)=Ai, u%éﬁ} where A. is a particular level of accomplishment
(see Section 3.1.2.1), y is the capability function (Section
3.3.2.2), and U, Ai, and y.are all relative to the same model
hierarchy. The study of R-dependencies within such sets may
yield system decompositions which ease the calculation of the
probability of occurrence of the missions repreéented by
elements of the set, i.e., the missions yielding a particular
level of accomplishment. It is these calculations which
are the object of this study, and which underlie éhe concept

of "performability" or "expected performance.'" Thus, knowledge

of existing dependencies within a system may aid us in .

]
4
;'.'1:‘.“. E(‘ .

calculating the performability of that system.

At this point, recall the development of functional (¢)
dependence. If the system S is sampled only once, then U will
be a set of n x 1 matrices,jor, in other words, n-tuples. " The
set R would correspond to R¢ where the selection criterion is
based on success states relative to the structure function ¢.

‘ If R is a set of k x n matrices and u'e R, define
git(u)\z'qit’ i.e., Eit(u)’yields the_(i,t)tﬁ element of (?).

.. ) ] ) .
This is analogous to the projection operation on a vector.



-54-

Let Eit(R) = {Eit(u)lu e R}. If one thinks of R as an array of
matrices, then visually the projection Eit(R]'corresponds to
selecting the (i,t)th element all along the third coordinate

(see Figure 12).

J/

Figure 12

Now defi%% D{(i,t) = Eit(R) as was done in describing ¢-dependence,
If q ¢ Dt},v),.let
- R(j,V,q) = {u:€ qujv = q}.
" The .operator R(j,v,q) selects from R all those matrices whose
(j,v)th element is q. Fiﬂally, define:-
D(i,t 5 %,v,q) = &;,(R(R,v,q)) for
i, e {1,...,0}; t&,v e {1,...,k}, g & Q-
Denote the fact that S; is considered at time‘% by Si(t).

Definition: Let S be a system with subsystems Sl,...,Sn-sampled

at times 1,...,k. If U is the set of all state trajectory

matrices of S and R ¢ U, then we say §i[t) R-depends omn

§£(v) if, for some q & Qg,

D(i,t) # D(i,t;%,v,q).

1

4

Consider the following exaMﬁle. Let

11 1] (12 2]
A=111 2 C=1121
111 112
2 2 2] 11 1]
B=|111 D=]12 27, and let
2 2 2 111
R = {A,B,C,D}. R might be the accomplishment set correspond-

T

Tas

ORIGINAL PAGE IS
OF POOR QUALITY
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ing to an accomplishment A of a 3 stage system sampled at 3
times. Three different relationships will be examined.
The list gffmeant to be illuminating, but not exhaustive.
i) Comsider 5, (3) and S (1).
D(1,3) = {1,2} -but D(l,S;l,l,é) = {2} so
81(3) R-depends on Sl(l). This dependency is
a temporal dependency between the states of a single
subsystem.
ii} Consider now 81(2) and 52(3).
D(1,2) = {1,2},

D(1,252,3,2)
1)

1}, and
D(1’2;293: 2},

o

Hence 81(2) R-depends on 82(3). In fact, knowing
that ., (3) -is in state 2 tells that S,(2) is in
state 1, and knéwiﬁg 82(3] is in state 1 tel%%\that
Sl[Z) is in state 2. Thus this dependence is also
an example of the first mode of dependence discussed
above. This is not true in (i) since D{1,3;1,1,1)
= {1,2} - so it is not known, given §;(1) is in
state 1, which state 81(3) is in.

iii) Consider 52(2) and 82(3).
D(2,3) = {1,2},

D(2,3:;2,2,1)
D(2,3;2,2,2)

{1,2} and
{1,2},

on

S0 82(3) does not R-depend on 52(2). We say.

S,(3) is R-independent of $,(2).
The above definitions for R-dependency follow the exposition
given in the functional dependency case. However, R-dependency
can be characterized directly in terms of certain partitions

associated with time and state coordinates. Suppose we are given
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S, R and a delimitation of the subsystems and times of interest.
For instance, with S and R as above, we might wish to inféstigate
the relationship between 82(3) and 81£2). If u, v € R, let
s be the equivalence relation defined by

u Eié v if £it(u) = Eit(v).
Hence, if git{R) has ¢ different elements, g will partition R
into ¢ different classes. Denote this partition by R/Eit‘

Clearly, there are n-k such partitions of R, one for each (i,t)

pair.

Recall that in the definition of R-dependency, projections

3

1’

i
[

were rep

v

étedly made on the (i;t)th element while holdihg.the
(j,v)th element fixed (at its various values) in order to

determine the relationship bereen Si(t) and Sj(v). _If_fesziict;ng
the éet over which a projéction on the (i,t)th coordinate

was taken restricted the possibie values of elements in that
projection, then dependency was said to be present. These
multiple projections are a way of partitiouingithefggf R in
various ways. Realizing this, we can charactefize R-dependence

as follows: Y

Theorem: If R/Eit and R/Ejv are partitions of R, then

§i(t) R-depends on Sj(v} if and -only i1f there exists
a block B ¢ R/Eit and a block B' ¢ R/Ejv such that
BN B = &.

N a."nh;?a‘

In other words, if one partitions R on the two different
coordinates, then no dependencies are present if and only if

each block in the first partitiom has a non-trivial intersection

‘with each block in the second partition.
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As an example, return to R and the matrices A,B,C,D of

the R-dependence example above.

Consideé%i
R/z11 = {{A,C,D},{B}} and
R/=z; < s {{4,D},{B,C}}.

Then {A,D} 0 {B} = ¢, so Sl(l) R-depends on Sl(ST.
Similarly R/E23 = {{A,D},{B,C}} and
R/=;, = {{A,D},{B,C}}

but {A,D} N{B,C} = ¢ so $,(3) R-depends on §,(2).
Thirdly, we see -

R/= = {{A,D},{B,Cl}}

=23
R/=,, = {{A,B},{C,D}}

S50-
{A,D} n {A,B} = {A},
{A,D} n {C,D} = {D},
{B,C} n {A,B} = {B}, and
{B,c} n {c,p} = {C}.

As this exhausts all the possibilities, we see that 82(3)
is R-independent of Sé[Z). ’ _
3.2 Capability

3.3.2.1 Definition and Role

As discussed in Section 3.3, we are focusing our attention
on a '"performability" view of system_effectiveness where a measure
of performability can be decomposgéﬁinto measures of availability,
dependability, and capabilify. In terms of the modelihierafthy,
the availability and dependability measures quantify the
behavior of the bottomtlevel model. A capability measure quanti-
fies the behavior of the top model as a function of values
assumed by the "basic" variables of the bottom and intermediate

models. (Recall that a variable is ''basic" if it cannot be
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expressed as a function of lower level variables.) Thus the
capability aspect of performability combines all aspects of the

model hierarchy.

The capability measures we have studied during the reporting
period are essentially three-fold extensions of %ie structure
functions discussed in Section 3.3.1.1. We call these measures
”capabilitf'functions." In the notion of a capability function,
the concept of a structure function has been extended in the

following three ways:

i) The subsystems (components) of a system may be character-

.\_‘:—i -

;;zed by multiply valued state sets,
ii) The aécomplishment seteﬁﬁfnmy'contain more than two
elements, and
iii) The capability function is defined over a set of
state trajectories.
These extensions, together with a formal definition of a
capability function, are described in the follpwin@‘?ﬁbsectioul

3.3.2.2 The Capability Function

Viewing a "capability function" as a three-fold extension
of the notion of a structure function, the first extension
allows the state sets of the subsystems to have more than two
elements. This permits characterization of degraded performance
in the system's subsystems, i.eéj removes the requirement that
a subsystem be considered eithe£ "all on' or "all off.''" For
example, this allows us to more accurately describe the state
of a -component which is constructed on the triple modular redun-
dancy (TMR) principle. The second extension is to allow capability

functions to be multivalued. Thus the range of a capability
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function will generally be taken to be an "accomplishment set"
or a set of mission characterizing quantities which serve to

quantify some aspect of a system's effectiveness in carrying

S,
KESS
B T
BN

out a prescribed mission. This allows us to go beyond a simple
"success-failure" characterization of the system's perforﬁance
of its mission. The third extension is to take the argument of
a capability function to be a state trajectory rather than single
state vectors as is the case with structure functions. This
permits one to investigate the behavior of the s&stem over time.
A capability function for a system which is sampled only at one
time, for which each subsystem has only two states, and for
whic@ the accomplishment set has two elements, reduces directly
to a structure function.

Viewed in the context of the model hierarchy, a capability
function is a formal expression of how the state trajecsgries

of the base model ({bottom model plus higher level basic variables)

relate to mission outcomes {and thereby mission accomplishments)

at the mission level.
Suppose we have a system S which is decomposed into n

subsystems (basic variables) Sl""’Sn' Let the system be sampled

at times tl""’tk where ti < ti+1’

3.3.1.4 we define a state trajectory for the system S to be the

1 <1 <k-1. 1In Section

n X k matrix u where“uij corresponéi_to the state of subsystep_ﬂ
S; when sampled at time t3 ti <i<mn,1<j<Kk). Let <& be
an accomplishment set for the set of mission performed by the
system S.

Definition: Let U be the sét of all state trajectories for

some system S, Let 7 be an accomplishment set over S.
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Then a capability function is a functionm Y such that

y: U =07 .

The relationship between the model hierarchy and capability

functions will be demonstrated in the following_ggction. In
general, one will attempt to define a capabilitygfunction by
formulating the transformations between levels of the hierarchy,
and then composing the transfarmations in order to tie the
hierarchy together. One area of concentration during the next
reporting period is concerned with the study of these transforma-
tions, 1ntroduct10n of basic variables and the subsequent

Capablllty funcblons which are derlved

3.3.2.3 The Capability Function and the Model Hierarchy

As was noted in the prev1ous section, the model hlerarchy
prov1des a framework Whlﬂh supports the capablllty functlon Y.
By using the hierarchy of models to move from level to level

we can reduce the problem of formulating the capability function
to the problem of formulating the values of composite variables
at level i in terms of model variables (both bésic and composite)
at level i+1l. If one thinks of moving up through the hierarchy,
.the basic step is "jump to the next level and incorporate basic
variables." A precise description of this process is one of the
goals established for the next reporting period. The remainder
of this section is devoted to exXamples of this procedure.

'In Section 3.1.3 a hierarch} was elaborated down to the
Intermediate 2 level. This hierarchy forms the basis for the
following discussion. Since this hierarchy does not have a
" bottom model associated with it, we cannot show a capabilitf
function per se. However, the three levels which have been

_x"“

elaborated can be used to show the manner imswhich a trajectory
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might be mapped up‘through such a modeling scheme. Before
proceeding, the reader may wish to review the development in

Section 3.1.3. Figure 13 shows the various matrix variables

Lo
-HE

discussed, tégéther with an interpretation of their meaning.
Consider the Intermediate 2 trajectory

0

0 0
1 0 0
X = ¢ ¢
0 0

O OO
OO O

0
1
0
where the symbol '¢! denotes an element whose value is of no
concern. This trajectory describes a mission (at the Intermediate
2 level) din which the autoland computations are in a 'failed'
state before and during landing. However, no other compli-

cations are encountered. Thus in moving to Intermediate 1, the

active control and autoland will be represented by

1 _ 0 0 0
ver [L 10

indicating that active control is good but autoland has failed
sometime during cruise-and Ianding. We now incorporate the

weather variable, which is represented by (¢, o, ¢) to get

0 0 0
y! - ¢ 1 1|, acd{o0,1}.
¢ o ¢

This yields two gualitatively differerit matrices, depending on
the value of ¢. Recall that.c = 0O indicates good weather at -
the beginning of landing while o = 1 indicates weather which

calls for a Category III type landing.
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Top Level
zq _ Safety
Z-= Z, Diversion
Zq Fuel consumption
Intermediate 1
ex‘ v @ib
o s &0
IR SR N
Y11 Y1z Y13 | Active Control ™ ¢onmosite
5 variables
y _ = Y21 V22 Y23 Autoland-
__________ 1 | _
_;Y31 Y35 y33__ Weather § Basic wvariable
Intermediate 2
v
6'& o? &%
2 > >
O R A =
., % x X o b x| Active control
11,: 12 13 14 ; 15 computations
l -
X = %91 : Xo9 Xoz Xo4 : Xo5 Fuel computations
) 1 ! t d mputations
Xz1 1 Xz Xzz  Xz4 , Xzg Autoland comp
| ] .
computation
Xpq : xTz Xy3 Xp4 ; Xy5 Internal P s
Beginning b3
Middle -
End
Figure 13

Description of Matrix Variables from Section 3.1.3



-73-

First consider the matrix

Feel T

,
ty
-

In this case, the weather was good, there was no diversion, and
fuel consumption was low (this comes from active control = (0,0,0)),

SO

z =710 which 'results in an A, - \

level of accomplishment. Contrarily, the matrix

0 0 0
*yl' = ¢ 1 1
¢ 1 ¢

indicates a faulty autoland system plus bad weather 6 so a

diversion is required. In this case,

indicating the third lével of accomplishment A,. Note that the
mapping from Intermediate 1 to the mission level depends on the

value of the weather variable at the end of the cruise phase.

A second example begins with the matrix

0 0 0 0 0

x2 - 1 ':E 1 0 1
¢ ¢ ¢ 0 1

0 0 0 0 0

Both active control computations and internal computations remain
error-free throughout the mission, The fuel regulation computa-

tions were accomplished only in the final part of the cruise
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phase, and autoland computations fail during landing. Thus,
this matrix maps into the matrix
2 _. 1 1 1
St
on the Intermediate 1 level. The active controlf%rajectory
indicates fuel regulation difficulties, while the autoland tra-

jectory indicates a failure after the landing phase has begun.

As above, we incorporate the weather variable to get

2

y =

-+ A B
RO
R

For o = 0, the failure of the aﬁtoland s?stéﬁ does not affect
the mission quality. In terms of mission variables we see
théﬁ_zl = 0 (no fatalities), Z, =0 (no diversion is necessary)
and Zg = 1 (there is high fuel consumption due to

failure of fuel regulation). Hence

0
r A 0 S0 an
-1

accomplishment level of Az is achieved. For o = 1, we see a
condition where the autoland system fails while landing the
aircraft. By our assumptions a (fatal) crash ensues. Knowing

this,

which indicates the fifth level of accomplishment.

The above examples show the way in which a capability
function may pass from level to level. It is clear that a .
capability function is a function of both bottum model state

trajectories and the trajectories of other _basic variables
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(such as weather) which are inserted at higher lévels. One
thrust of our ongoing research is aimed at developing a more
éoncise_repreggﬁtation of capability functions, together with
the investiga£ion of the properties of and relationships between

R-dependence, capability, :and performability.
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