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1. 0 SUMMARY 

In this program, the cost/benefits of eight advanced materials technologies were evaluated 
for two aircraft missions. The overall study was based on a time frame of commerical 
engine use of the advanced material technologies by 1985. The material technologies 
evaluated were eutectic turbine blades, titanium aluminide components, ceramic vanes, 
shrouds and combustor liners, tungsten composite FeCrAly blades, 7' oxide dispersion 
strengthened (ODS) alloy blades, and no-coat ODS alloy combustor liners. They were 
evaluated in two commercial transport conventional take-off and landing missions, one 
Transcontinental and one Intercontinental. Methodologies for selecting technical goals, 
costs and chances of success were developed and these data were utilized in the engine de
sign analysis and cost benefit studies. 

For the specific commercial engine/aircraft mission evaluated in this study, the results 
indicated substantial economic benefit for ceramic turbine shrouds and vanes, even though 
ceramic turbine vanes, in particular, have a higher risk and greater uncertainties of 
introduction. Titanium aluminide LPT blades and static components showed relatively 
good payoff and ceramic combustor liners showed marginal benefit. All HPT blade ma
terials (DS eutectics, W-FeCrAlY composite and y' ODS alloy) provided a substantial im
provement in engine performance, but relatively small economic benefit due to the pro
jected high costs of these components. Major cost reductions in the manufacturing process
for these materials are necessary to take full advantage of the improved engine performance 
provided by these advanced technologies. Based on General Electric's assessment of blade 
manufacturing costs, only the DS eutectic blade technology is likely to provide an overall 
economic benefit to future engine systems of the type evaluated. A no-coat ODS alloy com
bustor liner showed no overall economic benefit when applied to the advanced engines of 
this study. 

Overall ranking of the advanced materials technologies considering economic benefit, 

development costs and probability of success were: 

1. Ceramic shrouds 

2. Ceramic vanes 

3. Titanium aluminide components 

4. D.S. eulectic stage 1 HPT blades 

5. Ceramic combustor liners 

6. D.S. eutectic stage 2 HPT blades 

7. W-FeCrAlY composite blades 

8. y' ODS alloy blades 

9. No coat ODS alloy combustor liners 

ORIGINAL PAGE IS 
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A "Corporate Ranking" of the advanced materials technologies, assessed independent of 
the criteria used in the study, grouped the materials technologies as follows in order of 
decreasing benefit: 

* 	 DS eutectic HPT blades and ceramic shrouds 

* 	 Titanium aluminides, ceramic combustor liners, no coat ODS alloy combustor 
liners, and ceramic vanes 

* 	 W-FeCrAIY and y' ODS HPT blades 
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2.0 INTRODUCTION 

Advanced materials technologies have historically made substantial contributions to the 
evolution of aircraft gas turbine engines and must continue to meet the demands for engines 
with improved performance and cost effectiveness. NASA and industry have recognized 
the need to investigate and evaluate advanced component and materials technologies for the 
improved commercial transport engines of the 1980's. Concern for the efficient use of 
petroleum resources has resulted in an amphasis on applications that will make the engines 
more energy efficient while at the same time satisfying the environmental considerations of 
being clean and quiet. Finally, and most important in this study, the economic impact on 
the airlines resulting from these increased energy and environmental constraints has been 
recognized and taken into account. 

To help fulfill these needs iii the area of materials technology, NASA and industry have a 
cooperative effort -- the MATE (Materials for Advanced Turbine Engine) Program -- to 
accelerate the introduction of new materials technologies into advanced aircraft turbine 
engines. Part of this overall program has involved a periodic assessment of the costs and 
potential benefits of selected materials technology advances when applied in turbofan 
powered commercial transports. The results of these studies provide input which helps 
in the selection of technologies to be developed in the MATE effort. The study program 
summarized in this report has established costs and benefits for several advanced materials 
technologies as applied to specific components of a turbofan engine for a CTOL commercial 
aircraft sized for Transcontinentdl and Intercontinental missions. 

Materials technologies selected-for this study included high temperature turbine blades, 
vanes and shrouds, cdmbustor liners and low pressure turbine blades and structural com
ponents. The methodology used to assess benefits, costs and risks of the advanced ma
terials technologies as applied to future CTOL propulsion systems is described in the re

'port. The overall study was based on a time frame of commercial engine use of the advanced 
materials technologies by 1985. 

Results generated under this program are expected to aid the selection and subsequent 
development of those materials technologies which offer the greatest potential for use in 
future aircraft turbine engines. It should be recognized, however, that the ranking of the 
materials technologies as defined by this study does not represent the sole basis for . 
engineering development and engine application. Other significant factors, which require 
engineering judgment and may play a major role in ultimate program selection and technology 
development, are not necessarily included in this cost/benefit study. 

2.1 STUDY APPROACH 

The approach used in the materials technology cost/benefit study is shown schematically in 
Figure 1 and a brief description of the overall process follows. The methodology and 
rationale used in the selection of the materials technologies, costs and probability of 
success is described in some detail in Section 2.2 of this report. 

0Qt3NISL 
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Figure 1.. Schematic Representation of Cost/Benefit Study Approach
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First, material property goals were established for each of the selected technologies. 
Technology development costs* and the risk (chance of success) were estimated for each 
material technology. The overall effects of the advanced technology in terms of changes' in 
engine performance, weight, initial costs and maintenance costs were determined and in
corporated in the benefit analysis. In the benefit analysis, the effect of he advanced ma
terial technology on the engine-airplane system was assessed using previously developed 
economic trade factors pertinent to the aircraft-economic system. The results of the 
benefit analysis are expressed in terms of change (t) in the Return on Investment (ROI), 
and Direct Operating Costs (DOC) and Fuel Consumption (Wf) due to substitution of the new 
materials where: 

Direct Operating Cost (DOC) includes crew pay, fuel, oil, hull insurance, maintenance 
labor (including burden) and materials as well as the amortized costs of the aircraft and 
engines. The 1967 ATA formulae1 is used except that depreciation is taken over a 15 year 
period rather than 12, and 20% engine spares are assumed rather than the 40% used in the 
ATA formula. Also, engine maintenance and materials costs were taken at rates obtained 
from General Electric experience, which differs from those used in the ATA formula. 

Return on Investment (ROI) is the annual return on the initial investment, considering direct 
operating costs, indirect operating costs, revenue, taxes and profits. A positive (+)-value 
in AROI and a negative (-) value in ADOC are favorable results in any given technology. 
Additionally, the effect of materials substitutions on the weight of fuel used (AWf) for which 
negative values are desired, were evaluated. 

The AROT factor was incorporated in the Relative Value which is a NASA cost/benefit merit 
factor described by the following equation: 

"Relative Value" Benefit (AROI)** 
= Development Cost X Probability of Success 

Relative value as used herein represents one way of assessing a material technology benefit 
and ranking the potential benefits of several material technologies on the same relative 
basis. It should not be construed to represent the sole, or necessarily the prime basis for 
selecting material technologies for engineering development and engine applications. Other 
significant factors, such as engineering judgment for a particular engine application and an 
assessmeiit of the overall merits of a particular material technology for a range of engine 
applications could play a major role in the final ranking and selection of the technologies. 

In the determination of relative value used throughout the cost/benefit study, it was assumed 
that all property goals established for a given material would be met. To determine the 
impact of possible deviations from full property goals, "sensitivity" analyses were conducted 
to show the effect on the economic benefit of the technologies. The results of these sensi
tivity analyses for the several materials technologies are described in detail in Section 6 of 
this report. 
*Development costs, finished parts, costs, and economic benefits are expressed in 197? 

dollars. 

**The AROI is quoted in this report as "points" rather than %, such that (1) point RO is 
the difference between 15 and 16%b ROI, for example. 



2.2 	METHODOLOGY FOR SELECTION OF GOALS, COSTS, AVAILABILITY, AND
 
PROBABILITY OF SUCCESS.
 

Advanced materials technologies selected for this study are shown in Table I. These were 
selected for the specific applications shown in consultation with the NASA Program Manager. 
The materials technologies were chosen because of their anticipated potential benefits in 
the engine/aircraft application with particular emphasis on their potential effects in reduc
ing engine fuel consumption. The methodology used to determine technical material goals, 
finished part cost goals, projected year of availability and probability of success for each 
of these is outlined in the following sections, and illustrated by a typical example in Table
II. 

TABLE I
 

ADVANCED MATERIALS TECHNOLOGIES SELECTED
 
FOR COST/BENEFIT STUDY
 

" 	 Titanium Aluminide LPT Blades and Structural Components 

* 	 No Coat ODS Alloy Sheet Shingled Combustor 

* 	 Ceramic -Turbine Shrouds 

* 	 Ceramic Turbine Vanes 

* 	 Ceramic Shingled Combustor 

* 	 Advanced High Pressure Turbine Blades 

-	 Gamma Prime ODS Alloy 

- W-FeCrAlY Composite
 

- Directionally Solidified Eutectic Alloy
 

2.2.1 Material Property Goals 

The 	technical material goals were divided into "critical" goals and "others". 

The critical goals were those that must be met (or very closely approached) to make the 
materials technology (alloy/process) worthwhile. If any of the critical goals were not met, 
the alloy/process development would not be pursued further. The "others" goals are-ones 
that are also important, but failure to meet one of these would not necessarily result in 
elimination of the alloy/process from consideration. For example, the maximum density 
goals for the eutectic turbine blade alloy used herein could probably be exceeded by a few 
percent if the rupture strength goal were achieved. 
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TABLE II
 

EXAMPLE OF MATERIAL TECHNOLOGY GOALS FOR TURBINE
 
BLADE ALLOY DESIGNATED Ni69XB IN 1966
 

TECHNICAL GOALS
 

PROBABILITY 

CRITICAL OF SUCCESS 

* Rupture Strength: > IN 100 	 75 

* Hot Corrosion Resistance: U700 	 60 

* 871C (1600F) Tensile R of A: 15% 	 60 

OTHERS
 

* 	 Density: 5 8.17 g/cm3 (.295 lb/in3 ) 

* 	 Stability: No deleterious phases affecting long time 75 
rupture life 

" 	 Oxidation Resistance: L IN 100 

FINISHED PART COST GOAL 

Cast U700 

PROJECTED DEVELOPMENT COSTS 

Total $ 715,000
 
1967 & Beyond $ 700, 000
 

PROJECTED YEAR OF AVAILABILITY 1969 

PROBABILITY OF SUCCESS 

% 	 Material 60 
Design 90 
Manufacturing 80 

OVERALL PROBABILITY
 
OF SUCCESS 
 607 

7 ORIGINAL PAGE IS 

OF poo QUJAITY 



The technical goals for each alloy/process were determined by General Electric materials 
experts and where possible compared to currently used materials. Mechanical, physical 
and environmental properties were considered in determining the goals, as well as com
ponent life. After extensive discussions, a probability of success was determined for each 
critical goal and for the "others" as a group. The lowest probability of success number 
then became the "material" input to determine the overall probability of success -- dis
cussed in Section 2.2.5. 

The technical goals, are illustrated in Table I, which shows the 1966 goals for Ni69XB* in 
the current program's cost benefit study format. As shown, the most difficult technical 
goals for Ni69XB turbine airfoils were hot corrosion resistance and 871C (1600F)tensile 
ductility and these might have been given a 60% probability of success. Both of these 
"critical" goals were met in the Rene' 80 alloy that was developed to meet these goals. 

2.2.2 Finished Part Cost Goal 

The finished part cost goals were determined by General Electric materials and manufactur
ing specialists and took into consideration the projected cost of the material and/or piocess 
involved to produce the finished part -- including all finishing processes such as- machining, 
coating, etc. The part cost goals were based on the costs estimated for the 250th engine 
set time period and are therefore production (not development) costs for the generic part. 
In all cases the cost goals were related to costs of materials used in current General 
Electric engines. 

As the study progressed, however, specific design configarations were developed for each 
component and, as a result, the input to the manufacturing cost analysis-became more 
precise. With this maturing material/design and manufacturing knowledge, projected esti
mates of specific part costs.were refined. It was more appropriate, therefore, to use 
these specific part costs in this study rather than the generic part cost goal listed in Section 
3 of this report. Both "goal" and "specific" part costs are listed for the several materials 
technologies in Tables IV-XI (Section 3). 

It should also be emphasized that, in cases where the projected part cost radically affected 
the overall cost benefit analysis for a given component, the sensitivity analysis (Section 6) 
was used to demonstrate this effect. Hence; although the specific and goal part costs 'were 
not necessarily the same for any given component,. the sensitivity analysis allowed an 
assessment as to what was actually required to provide an economically viable technology 

--for-them-ission -evaliefad -

*Since 1966, GE adVanced alloy goals have had designations which described their probable 
base (Ni = nickel), year of availability (69 = 1969), and application (B = blade). 
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2.2.3 Projected Development Costs 

This included the costs projected for: 

1) Laboratory development (developing the material/process, scaling up to produc
tion size heats, etc., and developing the required design data). 

2) Manufacturing process development (demonstration of adaptability of standard 
joining and fabrication and coating technology - process development of new and 
novel processes if necessary to accommodate unique characteristic of a material). 

3) Transition to Manufacturing (establish new processes or process modifications in 
the manufacturing area to achieve engineering requirements). 

4) Trial hardware (work with outside vendors to prbduce trial hardware for property 
evaluation and component tests). 

5) Engine test (proof of concept, evaluation in test engine). 

These costs did not include production hardware or facilities (occasionally costs for tooling 
were included). 

The costs are those projected for the total development and are separated into (1) total 
costs for the entire program; and (2) the costs for 1977 and beyond. (The latter figure was 
used in the relative value calculations in the Benefit Analysis -- Section 5.0.) 

2.2.4 Projected Year of Availability 

This is the year in which small quantities of parts made from the material/process are 
projected to be ready for reliable procurement to a specification, at reasonable cost, and 
with sufficient design data curves available to assure reliable property predictions. 

2.2.5 Overall Probability of Success 

This was the most difficult of the goals to develop due to the high degree of subjectivity' 
involved. For this determination many discussions were held with the materials, design 
and manufacturing experts and each expert estimated the probability of success in meeting 
the goals. (The materials chance of success has previously been discussed -- Section 
2.2.1. ) The design expert considered what breakthrough (if any) had to occur in his field 
to make viable the material/process to be developed. For example, the no coat ODS alloy 
should be comparatively easy to incorporate into an existing shingled combustor design and 
was therefore given a 90% chance of success, while ceramic vanes would be a difficult and 
complex design problem and therefore assigned only a 40% chance of success. 

The manufacturing expert considered the problems involved in meeting (or closely approach
ing) the finished part cost goal before the manufacturing probability of success was deter
mined. 



The lowest probability of success number of the three (material, design, or manufacturing) 
then became the "overall probability of success" for each of the materials/processes to be 
studied. For example, the "lowest" and therefore "overall" probability of success for DS 
eutectic turbine blades was determined to be 60% -- which was the manufacturing probability 
of success, compared to 70% for material (alloy) and 80%for design. This was due to the 
difficulty of meeting the part cost goal in manufacturing, which was believed more difficult 
than developing an alloy to meet the technical goals, or incorporating the material into a 
viable design. 

The overall probability along with the development costs (1977 and beyond) for the six 
materials/processes to be studied are listed in Table III. Those numbers will be used with 
the Return on Investment (AROI) value (as determined later in the Benefits Analysis section), 
to determine the "Relative Value" of the materials/processes being studied. 
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TABLE II 

DEVELOPMENTAL COSTS AND PROBABILITIES OF SUCCESS 
FOR TECHNOLOGIES STUDIED 

Estimated Probabilities 
Material Technology Development Costs ($) Of Success 

Titanium Aluminide LPT Blades 3,000,000 40% 

No Coat ODS Alloy Shingled Combustor 1,500, boo 50% 

Ceramic Turbine Shrouds 3,500,000 60o 

Ceramic Turbine Vanes 6,000,000 40% 
Ceramic -Shingled Combustor 3,000,000 50% 

Gamma Prime ODS Turbine Blades 4,000,000 20% 

W-Reinforced FeCrAlY Turbine Blades 8,000,000 .20%0 
D.S. Eutectic Turbine Blade 8,000, 000 60% 

OR1GING BAGS IS 
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3.0 STATUS AND GOALS FOR THE MATERIALS/PROCESSES EVALUATED 

The eight materials technologies/component combinations evaluated in the cost/benefit
 
study are at various stages of development in the industry as a whole and as General
 
Electric programs. In this section, the status of the technologies will be discussed
 
briefly and related to the goals established for each.
 

Goals were based upon historical development experience and projections of current state
of-the-art for each materials technology. The goals listed are those upon which the study
 
was performed and represent the most optimistic projections. "Sensitivity", or less
 
optimistic, goals were also considered to show the impact on the economic benefit of
 
deviations from full property goals and these are discussed for each technology in Section
 
6 of this report.
 

3.1 TITANIUM ALUMINIDE LPT BLADES 

Titanium aluminides, based on the intermetallic compounds Ti3AI or TiAI, offer the potential 
for high strength to weight ratio materials suitable for low pressure turbine blades and 
certain hot section structural components now fabricated in Inconel 718 or similar Ni-base 

*alloys. LPT blades were evaluated as the original application for titanium aluminides in 
this study but, as will be discussed, stator parts were also considered. The major problem 
to be overcome with this class of materials is the inherent poor ductility at low to inter
mediate temperatures, and the industry as a whole is addressing this shortcoming. General 
Electric is evaluating several experimental compositions as well as performing forging and 
rolling studies on selected compositions. 

The goals for titanium aluminide LPT blades are presented in Table IV and it is clear that 
the low temperature ductility is the limiting item in achieving these goals. Programs to 
achieve these goals are, however, receiving appropriate emphasis in the aircraft engine 
industry and a material with these or similar properties should be attainable. 

3.2 NO COAT ODS SHEET SHINGLED COMBUSTOR 

An oxide dispersion strengthened (ODS) sheet alloy was evaluated in the study for its 
potential payoff as a combustor shingle material. This material would have excellent 
oxidation and corrosion resistance together with good rupture strength and thermal fatigue 
resistance. Property goals used in this study are presented in Table V. 

It is believed that the rupture strength, formability and environmental resistance require
ments of these goals could be achieved utilizing the recently developed ODS FeCrAl alloy, 
MA956. General Electric is evaluating this material for possible use in advanced engines 
although there are no programs in place to evaluate this type of material specifically in a 
shingled combustor design. General Electric does, ho vever, have a significant commhit
ment to ODS alloys in general and the development and evaluation of an ODS sheet alloy by 
the materials vendors is being encouraged with ultimate use seen possible in several com
ponents, including combustors. 

ORIGINAL PAGE 18 
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TABLE IV
 

TITANIUM ALUMINIDE LPT BLADES
 

TECHNICAL GOALS
 

TO 
PROBABILITY 

CRITICAL OF SUCCESS 

* 	 Creep and Tensile Strength Superior to U700 on a 75 
Strength/Density Basis 

* 	 Impact Resistance to FOD Comparable to Current 40 
Turbine Blade and Vane Alloys 

* 	 Tensile Ductility 39o Elong., 5%Red. Area Over " 40 
Temperature Range R.T. to 1600F 

* 	 Density <4.0 g/cc (.145 lb/in3) 90 

OTHERS
 

* 	 Low and High Cycle Fatigue Strength Superior on a Strength/
 
Density Basis to U700 or Comparable Blade Alloys
 

" 	 Stability - No significant Loss of Fatigue, Ductility or 50 
Impact Resistance Due to Phase Changes 

* 	 Corrosion/Oxidation Resistance Equivalent to Commonly
 
Used Coated or Uncoated LPT Blade Alloys
 

FINISHED PART COST GOAL 

5 Cast U700 or X40 

PROJECTED DEVELOPMENTS COSTS 

Total $3,000, 000 
1077 & Beyond $3,000,000 

PROJECTED YEAR OF AVAILABILITY 

PROBABILITY OF SUCCESS 

Material 
Design 

SPECIFIC PART COST USED 

1.1 IX Conventionally Cast Ni-Base LPT 
Blades, or 
0.8 X Inconel Sheet 

1982 

40 
80 

Manufacturing 70 

OVERALL PROBABILITY 40% 
OF SUCCESS 

14 

70 



TABLE V 

NO COAT ODS SHEET SHINGLED COMBUSTOR 

TECHNICAL GOALS 

PROBABILITY 
CRITICAL OF SUCCESS 

* 	 Oxidation Resistance z HS188 90 

* 	 Hot Corrosion Resistance : Coated MarM509 90 

• 	 Rupture Strength z 62 MPa/10370C/100 hr 90 
(9 ksi/19000F/100 hr.) (Long. & Transv.) 

• 	 Thermal Fatigue Resistance z HS188 50 

* 	 Formability z HS188 Sheet 80 

OTHERS
 

* 	 Erosion Resistance > HS188 
50 

* 	 Rupture Ductility = HS188 

FINISHED PART COST GOAL SPECIFIC PART COST USED 

IX Cast MarM509 Shingled Combustor 2.05 X HS188 Sheet Liner 

1.2 X HS188 Sheet Shingled Combustor 

PROJECTED DEVELOPMENT COSTS 

Total $1,500,000
 
1977 & Beyond $1,500,000
 

PROJECTED YEAR OF AVAILAB3ILITY 1980 

PROBABILITY OF SUCCESS 

Material 50 
Design 90 
Manufacturing 75 

OVERALL PROBABILITY 507 
OF SUCCESS 

ORIGINAL PAGF,1 
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3.3 CERAMIC TURBINE SHROUDS 

The use of ceramics for turbine shrouds would allow higher temperatures, longer life and 
reduced cost compared to currently used turbine shroud materials such as transpiration 
cooled wire mesh (Poroloy). Developments over the past several years at the General 
Electric Corporate Research and Development Center have resulted in a promising ceramic 
turbine shroud material which should provide the necessary impact resistance and rub 
tolerance. 

Impact and rub tests, including cold rotor rub tests, have given very promising results 
and General Electric is actively pursuing further development and evaluation programs 
aimed at the introduction of ceramic shrouds into General Electric engines. The goals for 
ceramic shrouds as used in the present study are presented in Table VI. 

3.4 CERAMIC TURBINE VANES 

As with ceramic shrouds, the use of ceramic turbine vanes would allow higher tempera
tures, longer life and reduced cost compared to currently used vane materials. 

Turbine vanes in current jet engines are either cast cobalt base alloys such as X-40 or 
Mar-M509, which are comparatively inexpensive but have low incipient melting points 
[1288C (2350F)] or are wrought oxide dispersion strengthened (ODS) nickel base alloys 
(DSNiCr, MA 754), which are expensive but have the necessary high melting points 
[1371C (2500F)] needed in advanced engines. The possible use of ceramics would. combine 
the lower costs of the cast alloys with the high (probably much higher) melting points of the 
ODS alloys. The goals for the ceramic vanes are shown-in Table VII. Current work at the 
General Electric Corporate Research and Development Center (CR & DC) his been very 
promising, with silicon carbide emerging as a prime candidate. The eventual use of 
ceramic vanes in jet engines will require close coordination between material development, 
design and manufacturing to assure success. The low overall 40% probability of success 
shown in Table VII, resulting from anticipated design problems and the 50% probability 
for materials and manufacturing, attest to the difficulty anticipated in achieving these goals 
for ceramic vanes. 

3.5 CERAMIC SHINGLED COMBUSTOR 

The goals for the ceramic shingled combustor as used in the present study are listed in 
Table VIII. A number of materials, design and manufacturing problems must be overcome 
before this technology could be realized in practice but the advances being made in ceramics 
provide some degree of optimism. 

3.6 GAMMA PR!hIE ODS TURBINE BLADES 

As indicated with reference to other technologies, oxide dispersion strengthened (ODS) 
alloys are being developed and evaluated for several applications in General Electric engines. 
As a class, these alloys have very high melting points and excellent resistance to creep and 
offer good potential for nozzle vanes and possibly several other high temperature applica
tions. A "gamma prime" (y') ODS alloy has been developed by the International Nickel 
Company which is reported to have excellent high temperature capabilities due to a com
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TABLE VI
 

CERAMIC TURBINE SHROUDS
 

TECHNICAL GOALS
 

PROBABILITY 
CRITICAL . OF SUCCESS 

* 	 Thermal Shock Resistance with Surface Simulating Engine 70 
Gas Erosion: 1593C to 538C to 1593C (2900°F to 1000'F to 
2900 0F). z 1500 Cycles (No Macro Cracking) 

* 	 No Scabbing on Blade Rub 60 

* 	 Ballistic Impact Resistance: Absorb 4.1J (3 ft.-b) 70 
at Surface Exposed to Gas Path Without: 

1. 	 Loss of Pieces Larger Than .32 cm (.125 in.) 

2. 	 Cracking Through the Entire Section on 
Subsequent Application of 100 Thermal Cycles 

OTHERS 

* Maximum Surface Temperature: 15930C (2900'F)
 

" Maximum Bulk Temperature: 14820C (2700°F)
 

* 	 Dimensional Stability: 0.2%/ Change After 75 
Above Thermal Shock Test 

" 	 Gas Erosion (In a High Velocity, Cycled Burner Rig):
 
Will Not Exceed .38 mm (.015 in.) of Surface Recission
 
in 3000 Cycles
 

FINISHED 	PART COST GOAL SPECIFIC PART COST USED 

50% of Poroloy 0.87 X Poroloy 

PROJECTED DEVELOPMENT COSTS 

Total $3,500,000 
1977 & Beyond 	 $3,300,000
 

PROJECTED YEAR OF AVAILABILITY 1981 

PROBABILITY OF SUCCESS 

% 	 Material 60 
Design 75 
Manufacturing 80 

OVERALL PROBABILITY 60% 
OF SUCCESS 
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TABLE VII 

CERAMIC TURBINE VANES 

TECHNICAL GOALS 

PROBABILITY 
CRITICAL OF SUCCESS 

* 	 Maximum Surface Temperature: 1593°C (2900'F) 75 

* 	 Thermal Shock Resistance: z 1500 Cycles, 1593°C to 5380C 40 
to 1593'C (2900'F to 10000F to 2900°F) with .020" diameter 
cooling holes drilled into a leading edge configuration 

* 	 Ballistic Impact Resistance: 40 

a. 	 Absorb 4. IJ (3 ft. -lb. ) of'Ballistic Energy Without 
Loss of Pieces Larger than .32 cm (.125 in) 

b. 	 Absorb 4. IJ (3 ft. -ib) of Ballistic Energy Without 
Cracking Through the Entire Section on Subsequent 
Application of 100 Thermal Cycles 

* 	 Modulus of Rupture: a 276 MPa (40 ksi) at 1482C (2700'F) 70 
with a Weibull Modulus 10 

OTHERS
 

* 	 Dimensional Stability: 0.2% Change After Above
 
Thermal Shock Test
 

* 	 A Compliant Ceramic Air Seal Material Layer Capability: 50 
: 7 MPa (100 psi) pressure drop at 13710C (25000F) 

* 	 Gas Erosion Resistance: 15 mils Surface Recession at
 
2400'F Mach 1.0 in 500 hours
 

FINISHED PART. COST GOAL SPECIFIC PART COST USED 

50% of ODS Vane Assemblies 0.67 X ODS Alloy Vane (Stg 1) 
1.64 	X R125 Alloy Vane (Stg 2) 

PROJECTED DEVELOPMENT COSTS 

Total $6,000,000
 
1977 & Beyond $6,000,000
 

PROJECTED YEAR OF 	AVAILABILITY 1984 

PROBABILITY OF SUCCESS 

0 	 Material 40 
Design 40 
Manufacturing 50 

jOVERALL PROBABILITY 40%! 
OF SUCCESS 
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TABLE VII 

SHINGLED COMBUSTOR - CERAMIC 

TECHNICAL GOALS 

PROBABILITY 
CRITICAL OF SUCCESS 

* 	 Thermal Shock Resistance: 1482°C (27000 F) to 649C 70 
(1200°F) to 1482°C (2700F) t 5000 1 Hour Cycles 

2* 	 Creep Rate at 14820 C (2700'F): r 10- 4 /Hr. at 35N/m (5 ksi) 90 

* 	 Environmental Resistance up to 1315'C (2400°F): .37 mm 50 
(.0151 in) Depth of Penetration in 1000 Hrs. with Fuel 
Initially Condensed on the Surface 

OTHERS
 

* 	 Maximum Surface Temperature: 1482°C (2700'F) 

* 	 Dimensional Stability: 0.2% Change After Above 60 
Thermal Shock Test 

* 	 Fretting Resistance in Metal Holder to Accommodate~ 
7 MPa (1000 psi) Stress Vibrations for 105 Cycles: Less
 

than .25 mm (.010 in) Depth of Wear at 6490 C (12000F)
 

FINISHED PART *COST GOAL " -SPECIFIC PART COST GOAL 

: Conventionally Cast MarM509 Shingles 1.15 X HS188 .Sheet Liner 

PROJECTED DEVELOPMENT COSTS 

Total $3,000,000 
1977 & Beyond $3,000,000 

PROJECTED YEAR OF AVAILABILITY 1981 

PROBABILITY OF SUCCESS 

T Material 50 
Design 50 
Manufacturing 50 

OVERALL PROBABILITY 50% 
OF SUCCESS . 7 
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bination of v' and oxide dispersion strengthening. Preliminary data suggest, however, that 
intermediate temperature (- 1400F) strength and 1300-1800F ductility are inadequate for 
turbine blade applications. In addition, manufacturing operations and related finished part 
cost goals are a major concern with this type of material for blading. The goals for the 
-/' ODS turbine blades are given in Table IX. 

3.7 W-REINFORCED FeCrAlY BLADES 

The goals for a tungsten-reinforced FeCrAlY high pressure turbine blade used in the present 
study are given in Table X. There are many technical problems expected to be encountered 
in manufacture of turbine blades with this composite which account for the very low overall 
probability of success projected. This, together with the limited payoff relative to other 
advanced blade alloys, has not appeared to warrant the large investment necessary to 
develop and scale up the material system. 

In this study, a coatability requirement was included in the "less critical" goals for this 
material since it was felt that possible exposure of the tungsten fibers to a high tempera
ture air environment would be detrimental to the overall performance. However, it has 
been suggested that an environmental resistant coating may not be required. For this 
reason, the cost of a coating was not considered with respect to DOC, ROI and Relative 
Value for the W-FeCrALY material. An estimate of the effect of the added cost of'a coating 
system for this material, were it proven to be necessary, can be obtained from the sen
sitivity analysis discussed in Section 6 of this report. 

3.8 DIRECTIONALLY SOLIDIFIED EUTECTIC TURBINE BLADES 

Development of directionally solidified (DS) eutectic turbine blades is an active program at 
General Electric. The alloy has been designated Ni82XB and is aimed at advanced turbine 
blades with 165F greater rupture and creep strength compared to Rene' 125. General 
Electric is developing DS eutectic alloys on an Air Force Program. The technology goals 
for Ni82XB used in this study are listed in Table XI. 

The finished part cost goal for Ni82XB is 2.5X the finished part cost for a conventionally 
cast Rene' 80 HPT blade with current General Electric CF6 cooling technology. This pro
jected cost is high primarily due to the very slow directional casting solidification rates 
found necessary for the NiTaC-13 eutectic alloy developed early in the program. General 
Electric has now introduced a rapid, automated DS casting process (RAM-DS) which is 
expected to considerably reduce the cost of NI82XB. Improved cost factors have been 
incorporated in the Cost Benefit Study, as will be discussed in the following Sections of 
this report. 
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TABLE IX
 

GAMMA PRIME ODS TURBINE BLADES
 

TECHNICAL GOALS
 

PROBABILITY 

CRITICAL OF SUCCESS 

* 	 Longitudinal Rupture/Creep 920C (165F) > Rene' 125 40 

* 	 Longitudinal Tensile Ductility at 704 - 982 0C (1300 - 1800 0F) 20 

> 10% 

* 	 Longitudinal Thermal Fatigue Resistance = Rene' 125 70 

* 	 Transverse Properties = Rene' 125 20 

OTHERS
 

* 	 Ballistic Impact 649 - 9820C (1200 - 1800 7F) > Rene' 125 

* 	 Bare Oxidation Resistance = Rene' 125 

Bare Hot Corrosion Resistance = Rene' 125 50 

* Density < 8.7 g/cc (.315 lb/in3 )
 

" Nil Strength 13160 ,(24000F)
 

FINISHED PART COST GOAL SPECIFIC PART COST USED 

:2.5 X Rene' 80 2.23 X R125 (Stg. 1) 
(Conventionally Cast CF6 Type HPT Blade) 2.78 X R125 (Stg. 2) 

PROJECTED DEVELOPMENT COSTS 

Total $4,000,000 
1977 & Beyond $4, 000,000 

PROJECTED YEAR OF AVAILABILITY 1982 

PROBABILITY OF SUCCESS 

% 	 Material 20 
Design 80 
Manufacturing 50 

OVERALL PROBABILITY 20% 
OF SUCCESS 
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TABLE X 

W-REINFORCED FeCrAlY 

TECHNICAL GOALS 

PROBABILITY 

CRITICAL OF SUCCESS 

* 	 Stress Rupture 920C (165F) > Rene' 125 20 

* 	 Strain Cycle LCF at 871'C (1600F) at .5%: > 10 X Rene' 80 70 
in Coated Condition 

* 	 Process: Meet Finished Part Cost Goal 2.5 X Rene' 80 in 20 
a Blade Form that Can be Competitive with Complex Air-
Cooled Castings 

OTHERS 

* 	 Tensile Ductility at 704-982C (1300-18000F): 10o%RA 

* 	 Thermal-Cycling Stability: After 5,000 Cycles from 9820C 
(18000F) to R.T. Must Retain 90% of 9820C (18000F)
 
Rupture Strength
 

* 	 Hot Corrosion Res.: 2 Rene' 100: Oxidation Res: t Rene' 80 

* 	 High Temperature Stability: No Unpredictable Losses in
 
Long Time Rupture Life
 

* 	 Must be Joinable for Maximum Temperature Up to 70 
12880C (2350°F) 

* 	 Nil Strength Temperature: 1316'C (2400F) 

* 	 Physical Properties (to 1066CC (19500F): ± 5% of Rene' 80
 

"
 * 	 Density: 8.58 g/cm3 (.315 lb/in3 ) 

" 	 Youngs Modulus (Parallel to Growth Direction): 2 90 X 103
 
MN/m 2 (13 X 106 psi) 110 X 103 MN/m 2 (16 X 106 psi) at
 
8700C (16000F)
 

• 	 649-982°C (1200-1800 0F) Impact (After Stressed Exposure):
 

- Ballistic: : 2.7J (2 ft-lb) No Cracks, .44 cm (175 in')
 
Steel Ball, .23 cm (. 090 in) Thick Spec.)
 

- Charpy V-Notch: z 13.6J (10 ft lb)
 

* 	 Coatable for 12, 000 Hours Life to 9270C (17000F) 5000 Hours'
 
to 10370C (1900F) 1000 Hours to 11490C (21000F) + Recoatable
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TABLE X (Cont.)
 

TECHNICAL GOALS
 

FINISHED PART COST GOAL SPECIFIC PART, COST USED 

2.5 X Rene' 80 2.2 X R125 (Stg. 1) 
(Conventionally Cast CF6 Type HPT Blade) 2.67 X R125 (Stg. 2) 

PROJECTED DEVELOPMENT COSTS 

Total $8,000,000 
1977 & Beyond $6,500,000 

PROJECTED YEAR OF AVAILABILITY 1981 

PROBABILITY OF SUCCESS 

Material 20 
Design 50 
Manufacturing 40 

OVERALL PROBABILITY 20% 
OF SUCCESS 
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TABLE XI
 

D.S. EUTECTIC TURBINE BLADES
 

TECHNICAL GOALS*
 

PROBABILITY 
CRITICAL OF SUCCESS 

* 	 Rupture and Creep Strength: 920C (165°F) 75 
> Rene' 125 in Coated Condition 

* 	 Strain Cycle LCF at 8710C (16000F) at .5% 90 
t 10 X Rene' 125 in Coated Condition 

* 	 Coatable for 12, 000 Hrs. Life to 927°C (1700F) 70 
5", 000 Hrs. to 10380C (1900F), 1,000 Hrs. to 
I149°C (21000F) + Recoatabiity 

* 	 Process: Meet Finished Part Cost Goal (See Manufacturing
 
Probability of Success - 60%)
 

OTHERS
 

* 	 Tensile Ductility at 704-9820C (1300-18000F): a 10% RA 

A 	 Thermal Cybling Stability: After 5,000 Cycles from 9820C
 
(18000F) to R.T. Must Retain 90% of 982°C (1800°F)

Rupture Strength
 

* 	 Hot Corrosion Res: > Rene' 125 Oxidation Res: a Rene' 80 

* 	 High Temperature Stability: No Unpredictable Losses in
 
Long Time Rupture Life
 

* 	 Must be Joinable for Max. Temperature Up to 12880C (23501F) 70 

* 	 Nil Strength Temperature: 12160C (24000F) 

* 	 Physical Properties (to 1066C- (19500F)): ±5% of Rene' 80 

* 	 Density: - 8.72 g/cm3 (.315/lb/in3 ) 

* 	 Youngs Modulus (Parallel to Growth Direction): 2 90 X 103 
2MN/m (13 X 106 psi) : 110 X 103 MN/m 2 (16 X 106 psi)
 

at 870'C (16000F)
 

* 	 649-982-C (1200-18000F) Impact (After Stressed Exposure):
 
- Ballistic: 2.7J (2 ft-lb) No Cracks, .44 cm (175"D).
 

Steel Ball, .23 cm (.090") Thick Spec.)
 

- Charpy V-Notch: a 13.6J (10 ft-lb).
 
*Mechanical. Properties - Longitudinal Direction 
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TABLE XI (Cont.) 

TECHNICAL GOALS 

FINISHED PART COST GOAL SPECIFIC PART COST USED, 

2.5 X Rene' 80 1.74 X R125 (Stg. 1) 
(Conventionally Cast CF6 Type HPT Blade) 1.8 X R125 (Stg. 2) 

PROJECTED DEVELOPMENT COSTS 

Total $8,000,000 
1977 & Beyond $6,500, 000 

PROJECTED YEAR OF AVAILABILITY 1982 

PROBABILITY OF SUCCESS 

0/ Material 70 
Design 80 
Manufacturing 60 

OVERALL PROBABILITY 607o 
OF SUCCESS 
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4.0 	 ADVANCED ENGINE DESIGN 

Prior to performing the cost benefit and sensitivity analyses, the various aspects of the 
design of the advanced engine and the materials technology selection had to be defined-and 
integrated. This Section describes those factors and discusses the design evaluation pro
cedure utilized in this program. 

4.1 	 ENGINE DEFINITION 

Two engine designs were selected for this study consistent with the technology expected to 
be available for a 1985 certification period. Both designs were configured for CTOL com
mercial airline aircraft, with one sized for a Transcontinental mission and the other for 
an Intercontinental mission. The general engine configuration is described in Table XII. 

The fan design and engine cycle are similar to those employed for the baseline engine in 
the NASA USTEDLEC studies 2 and the core engine employs a compressor design very 
similar to that evolved under the NASA AMAC study3 . A representative cross-section 
of the engine is shown in Figure 2. 

4.2 	MATERIALS SELECTION 

The five general technology areas listed in Table XIII were selected for study in this pro
gram. These were selected based on prior work on advanced systems and preliminary 
materials goals. As the study proceeded, however, it was necessary to make some re
visions and additions to the originally selected technologies and to the baseline technologies 
used for comparison. -These changes; shown in Table XIV, were made to permit more 
realistic design configurations as-new data became available throughout the period of the 
study. The reason for each addition is briefly described below: 

* Rene' 125 was added as a baseline technology material becuase it was believed 
that the strength characteristics of MA754 may have been marginal for the Stage 2 
HPT vane. 

" 	 An 8% higher density W-reinforced FeCrAlY composite blade was evaluated be
cause the increased temperature capability resulting from the higher tungsten 
fraction made the blade more attractive from a cost-effectiveness standpoint. 
The relatively low tip speed of the high pressure turbine made it possible to carry 
the increased weight of these blades. 

* 	 Titanium aluminide static structural components were added when it became 
evident that large weight savings, together with moderate cost savings, might be 
possible with this material. Further, it was felt that applications for this type 
of material might be more readily developed for static, rather than high speed 
rotating components. 
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TABLE XII 

'Engine Description 

* Single Stage Fan with Booster 

* Fan Pressure Ratio (Max. Cruise) 1.7 

* Overall Pressure Ratio 45.1 

* Turbine Rotor Inlet Temperature (Take-Off) 2600 9F 

* Highly Loaded Low Pressure Turbine 

* Mixed Flow Exhaust 

* Installation Configured for Low Noise 
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Figure 2. Baseline Engine Layout
 



TABLE XIII 

MATERIALS TECHNOLOGY SELECTIONS 

Baseline 

Technology Selections Technology 

* 	 Ceramic Turbine Shrouds Poroloy 

* 	 Ceramic Turbine Vanes MA754 

" 	 Combustor Liner HS188 

- No Coat ODS 

-	 Ceramic 

* 	 Advanced Turbine Blading Rene' 125 

- W-Wire Reinforced FeCrAIY 

-	 Eutectics 

S 	 y' ODS 

* Ti-Aluminides (LPT Blades) 	 Inconels 
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TABLE XIV 

REVISIONS TO MATERIALS TECHNOLOGY SELECTIONS 
Baseliie 

Technology Selections Technology 

* Ceramic Turbine Vanes MA754 
Rene' 125* 

* Advanced Turbine Blading 

- W-Wire Reinforced FeCrAIY Rene' 125 

A) 'ene' 125 Equivalent Density 

*B) +8% Increased Density 

* Ti-Aluminides (LPT Blades) 'Inconels 
(Static Parts)* 

*Revisions 
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4.3 DESIGN EVALUATION PROCEDURE 

The design evaluation procedure was formulated to ascertain the effects of substituting the 
advanced materials for the current technology materials in the respective engine parts.. 
These effects fall into the following categories: 

* Cycle and performance effects (SFC, efficiencies, etc.) 

" Design and weight 

* Initial parts cost differences 

* Maintenance cost differences (labor and replacement part cost) 

Procedures used for each of the above design evaluation categories are outlined in the 
following sections. They follow quite closely those procedures used in the USTEDLEC 
study referenced earlier 2 and the same aircraft missions were used as a basis for evalua
tion. A typical design evaluation procedure is summarized in Table XV. 

4.3.1 Cycle and Performance Effects 

Most of the overall operating characteristics of the baseline engine were maintained as 
the advanced technology parts were substituted. These constant parameters included the 
following major characteristics: 

* Thrust 

* Turbine Inlet Temperature 

* Overall Pressure Ratio 

* Fan Pressure Ratio 

To maintain a balanced cycle as the engine component efficiencies or cooling flows varied 
with substitution of the advanced part changes in core size and bypass ratio were required. 
In addition to the primary cycle/efficiency changes, small weight and cost differences for 
the engine resulted from changes in core size when the engine was used to maintain the 
thrust needed for the mission tequirements. These secondary changes'were added to the 
primary weight and cost changes resulting from the direct parts replacement. 

Substitution of advanced technology materials for the baseline materials had varying effects 
on the engine cycle and performance. For some substitutions, such as the substitution of 
titanium aluminides for nickel base alloy parts, there were no cycle or performance effects 
since only weight and cost were affected. On the other hand, substitution of ceramic for 
metal vanes had a considerable effect on cycle and performance. The large differences in 
cooling air needs resulted in significant differences in core engine weight, combustor exit 
temperature and bypass ratio. 
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TABLE XV 

TURBINE BLADE DESIGN EVALUATION PROCEDURE 

Base Engine 	 1985 Advanced Technology Engine with Best Current 
Blade Materials. 

Life Requirement 	 Consistent with Typical GE CF6 Commercial Mission 
and Use. All Blades Designed to Same Life. 

Blade Temperature Limits 	 Bulk Blade Metal Temperatures Set to Meet Above Life 
Requirements with Imposed Operating Stresses. 

Blade Relative Gas Temperatures 	 Average Pitohline Cycle Temperatures Adjusted for 
Margin (Tolerances, Transients, Deterioration) With 
Vector Velocity Effects Incorporated. Pitchline Tern
peratures Include Radial Profile Effects. 

Cooling Flows 	 Determined by Calculating Cooling Flow Needed for 
Assumed Cooling Technology Effectiveness to Attain 
Bulk Temperature Limits. 

Material Density Effects 	 Constint Stress Designs Used in Supporting Structures 
Along with Part Weights Calculated. 

Core Scaling Effect 	 Core Size Scaled with Required Cooling Flow to Keep 
Constant Thrust Engine with Given Fan Size. Weight 
and Cost Scaled Accordingly. 
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Changes in cooling flows were determined using the design technique of setting life require
ments, estimating the gas path environment taking into account engine temperature margins 
and radial profiles, and setting an allowable bulk metal temperature for the estimated stress 
levels. The amount of cooling air was then related to the cooling effectiveness required to 
achieve the allowable bulk metal temperature with a cost effective cooling scheme. 

The changes in cooling flow impacted the cycle in several ways. Component efficiency was 
affected by the quantity and placement of cooling flows within the turbine. The size of the 
core was also affected together with some variation in cycle station to station gas path tem
peratures. Bypass ratios were also affected by changes in the balanced cycle core size. 

4.3.2 Design and Weight 

Baseline engine weight and design were established using baseline material technology parts. 
Advanced technology parts were then designed and substituted directly and any weight differ
ences calculated. 

Generally, it was possible to make substitutions without the necessity for configuration 
changes in the substituted parts, but some advanced materials technologies required very 
different configurations. An example of this is shown in Figure 3. When substituting 
ceramic for metal in the HPT vanes and shrouds, a new concept in design configuration is 
required. 

Another example of a less complex configuration change was that required when comparing 
a shingle liner combustor with a more conventional sheet metal combustor. Figure 4 is a 
schematic drawing of how the shingles are arranged and utilized in a combustor. 

In one case, there was a small configuration change required due to the different manufac
turing requirements of the advanced materials being substituted. The two different HPT 
blade cooling schemes, one employed for a castable alloy, such as Rene' 125 or Ni82XB, 
and the other required for a material such as the Tungsten composite material and the /' 
ODS alloys, are shown in Figure 5. To avoid penetration of areas of dense tungsten wire 
concentrations, film cooling hole locations were limited to the leading edge and one down
stream location on the airfoil. Therefore, an improved internal cooling scheme, such as 
the impingement tube employed in this case, was necessary to keep overall cooling effec
tiveness high. Fabrication limitations for the wrought y' ODS alloy also necessitated a 
less complex internal cooling passage configuration and the utilization of an internal im
pingement cooling system. 

In each case, however, consistent design and life requirements were applied where possible 
so that the overall engine life and reliability would not be affected by the materials sub
stitutions. The iinor unavoidable variations in these requirements that did arise were due 
to configuration or basic material capability differences. 

As-each advanced mater-ial--technology-part-was-substituted for-the baseline jart. anj effects 
due to weight differences were calculated. These effects resulted from changes in the 
weight of the part itself or in associated hardwate. For example, when the denser Tungsten 
composite alloy blades were substituted, not only was the blade itself heavier, but the HPT 
disks necessarily became heavier. 
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Figure 3. Ceramic Vane and Shroud Design
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Figure 4. Shingled Combustor Design
 

36
 



RENE' 125 

Ni82XB
 

Cooling Schemes for 
High Pressure Turbine 

Blades
 

Figure 5. 


37 

VAGEoULG 

orO 



Most of the re-design with the new materials was, however, quite straight forward with 
new property goals (Tables IV-XI) applied and consistent design requirements applied to 
both the current and the advanced material part. 

4.3.3 Initial Parts Costs Differences 

For the baseline engine parts, estimates of the initial parts costs were made based upon 
input from Advanced Manufacturing personnel in conjunction with Manufacturing people 
now associated with similar production parts. The impact on price was scaled to the 
engine sizes required for the two missions evaluated in this study. 

Costs for the advanced technology parts were derived by the same advanced manufacturing 
personnel but with input from Materials Laboratory personnel familiar with the specific 
materials and technologies. By doing this, it was felt a more consistent costing mechanism 
resulted, especially since the manufacturing steps that were common to similar parts often 
resulted in the largest portion of a part cost. Naturally, the cost estimates for the ad
vanced material parts are less firm than the current material part costs. For this reason, 
sensitivity studies were conducted on many of these costs to evaluate the effect of deviations 
from the nominal cost estimates. These results are presented in Section 6 of this report. 
The advanced material goals given in Section 3 contain part cost goals and these were in
corporated into the cost estimates as appropriate, although in many cases estimated costs 
did differ from the goal. The sensitivity studies point out those material technologies 
where actual parts cost radically affects the overall benefit attributed to that material. 

4.3.4 Maintenance Cost Differences 

Maintenance costs were assumed to consist of two major items, namely parts costs and 
labor. Rather than try to develop a labor cost for each part based on engine teardown tinie, 
the labor costs portion was attributed to each part on the basis of a fixed ratio of the cost 
of the replacement part. For this study, the maintenance cost total was assumed to con
sist of a 70o%part cost and a 30% labor cost. Therefore, once a part cost was developed, 
the labor portion of the maintenance costs for that part was 3/7 of that figure. 

As previously noted, constant design lives and design criteria were applied wherever 
possible to all component substitutions. Therefore, for most parts, the only large'differ
ences in maintenance costs between current and advanced technology materials were due 
to replacement part cost differences. However, for some of the components, replacement 
factor* estimates between the baseline technology and the advanced technology were quite 
different and this significantly impacted maintenance costs. 

Mature General Electric CF6 fleet estimates were used as a guide for the initial estimates 
of the replacement factors, particularly for the baseline technology parts. Then, any 
inherent advantages or disadvantages of the advanced technology ..materials- were-included_. 
-in thee replacemeit fctor-estifiate. For example, the expected superior low cycle fatigue 
properties of the advanced HPT blade alloys resulted in a 20% reduction in the replacement 
factor estimates. Table XVI shows the estimated replacement factors used for this study. 

*The value of the replacement factor indicates how often that particular part would be 
replaced over an assumed engine life of 36, 000 hours on the average. 
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TABLE XVI
 

EXPECTED PART REPLACEMENT FACTORS FOR 36, 000 HOURS ENGINE LIFE
 

Part Baseline Technology 

HPT Shroud 9.1 (Poroloy) 

HPT Stage 1 Vane 5.0 (MA754) 

HPT Stage 2 Vane 6.1 (Rene' 125) 

Combustor Liner 2.8 (nS188) 

HPT Stage 1 Blade 2.3 (Rene' 125) 

HPT Stage 2 Blade 2.1 (Rene' 125) 

LPT Blades 0.3 (Ni-Base Alloy) 

Static Hot Parts 0.05 -0.4 (Ni-Base Alloy) 

Advanced Technology 

4.5 (Ceramic) 

4.0 (Ceramic) 

4.0 (Ceramic) 

0.8 (Ceramic) 

2.0 (No Coat ODS Alloy) 

1.9 (All Advanced Alloys) 

1.7 (All Advanced Alloys) 

0.3 (Titanium Aluminides), 

0.05 -4 0.4 (Titaniuin Aluminides) 
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Since the replacement factors are only estimates and subject to some error, particularly 
for the new technologies, sensitivity studies were conducted for those parts where the 
replacement factor appeared to be critical. The results of the sensitivity studies are pre
sented in Section 6. 

4.4 SUMMARY OF ENGINE DESIGN STUDIES 

Differences in weight, part cost, maintenance cost and performance effects resulting from 
substitution of advanced materials for,baseline materials were determined in the design 
evaluation. These data were required to perform the benefit analysis portion of this study 
to determine the effects on the total airframe/engine system. 

Results of the engine design evaluation are shown in Table XVII in which data for both the 
Transcontinental mission [- 89, OOON (20, 000 pounds thrust) engine] and the Intercontinental 
mission [-- 93,400N (21,000 pounds thrust) engine] are presented. Differences between the 
two occur as a result of the inherently more expensive engine required for the Intercontin
ental mission rather than as a result of differences in efficiencies. 

Generally, the higher temperature capabilities of the blade, vane and shroud materials 
were reflected in lower SFC and lower weight. However, for some of the materials, 
especially the HPT blade materials, these favorable effects were offset to some degree by 
the much higher initial costs and the higher maintenance costs (higher maintenance costs 
reflecting primarily the high cost of the replacement part). The combustor liner and 
titanium aluminide materials substitutions did not produce any SFC changes and the major
impact of these substitutions was to cause differences in weight, initial cost, maintenance 
cost and TOGW. 

The various design effects were combined and evaluated in the cost benefit portion of the 
study discussed in the following Section. 
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TABLE XVII 

DESIGN AND ECONOMIC EVALUATION RESULTS 

MISSION SIZE TRANSCONTINENTAL A's/INTERCONTINENTAL A'S 

- -Design Factors 

Adv. Base A SFC APrice AMaint. AWt. 
Component Tech. Tech. TO $1000 $/Hr. Lbs. 

Stg 1 HPT Ceramic Poroloy -. 18/-.18 -4.1/-5.1 -1.83/-2.19 -15/-16 
Shrouds
 

Stg. 2 HPT Ceramic Poroloy -. 19/-.19 -. 4/-.4 -1.83/-2.19 +9/+10 
Shrouds
 

Stg 1 HPT Ceramic MA754 -. 43/-.43 -13.5/-16.7 -3.48/-4.14 -6/-6 
Vanes 

Stg 2 HPT Ceramic R125 -1.04/-1.04 -9.1/-11.2 +.29/+.34 -91/-98 
Vanes 

Combustor Ceramic HS188 0/0 +I11.5/+14.2 -1.24/-1.47 +8/+8 

Liner
 

No Coat ODS HS188 0/0 +22.4/+27.7 +1.30/+1.55 +18/+19 

LPT Blades TI-Al' Inconel 0/0 +1.3/+i1.6 4.04/+.04 -32/-34 

Static Parts TI-Al Inconel' 0/0 -18.6/-23.1 -.18/-.20 -75/-79 

http:4.04/+.04
http:1.30/+1.55
http:1.24/-1.47
http:1.04/-1.04
http:3.48/-4.14
http:1.83/-2.19
http:1.83/-2.19


TABLE XVIi 

MISSION SIZE TRANSCONTINENTAL 

Component 

Stage 1 
HPT Blade 

Stage 2 
HPT Blade 

Adv. 
Tech. 

NI82XB 

7 i0DS 

WtComp. 
(.305) 

W 4 Comp. 

N!82XB 

v'IODS 

W-Comp. 
(.305) 

W- omp.
(.3p) 

Base 

Tech. 


R125 


R125 


R125 


R125 

R125 

R125 

R125 

R125 

(Cont.) 

A's/INTERCONTINENTAL A's 

Design Factors 
ASFC 

d/a 

-. 33/-.33 

-. 33/-.32 

-. 35/-.35 

-. 39/-.39 

-. 19/-.19 

-. 19/-.19 

-. 22/-.22 

-. 25/-.25 

APrice 
$1000 

+8.9/+11..1 

+21.2/+26.2 

+19.7/+24.4 

+18.8/+23.3 

+13.3/+16.4 

+33.2/+41.1 

+30.7/+38.1 

+30.3/+37.5 

AMaint. AWt. 
$/Hr. Lbs. 

+1.02/+1.21 -46/-48 

+1.98/+2.35 -46/-48 

+1.93/+2.30 -50/-53 

+1.93/+2.30 -50/-53 

+.82/+.97 -17/-18 

+2.21/+2.63 -17/-18 

+2.07/+2.47 -19/-20 

+2.07/+2.47 -13/-14 



5.0 BENEFITS ANALYSIS 

5.1 MISSION AND AIRCRAFT DEFINITION 

Two aircraft missions, Transcontinental and Intercontinental, were evaluated in the benefits 
analysis study. The aircraft, design range, payload and aerodynamic performance are 
briefly described in Table XVIII. The construction of the aircraft is consistent with the 
technology anticipated for a 1985 time period and significant portions of the airframe make 
use of advanced structural composites. Aircraft characteristics also include supercritical 
wing aerodynamics and high aspect ratios. 

The evaluation procedure was very similar to that employed in a previous cost benefit study 
performed by General Electric for NASA4. The Direct Operating Costs (DOC) calculations 
have been updated to reflect 1977 dollars, a 35 and 45 per gallon fuel charge (Trans
continental and Intercontinental rates respectively) and generally agree with the 1976 Boeing 
update of the ATA formulae. Indirect Operating Costs (IOC) were determined using the 
1970 Lockheed Georgia Report 5 . Return on Investment (ROI) was calculated using the DOC's 
and IOC's as determined above, a 48% tax rate, and discountihg the resulting cash flow. 

Design change effects on the aircraft system size and economics were determined using the 
trade factor derivatives shown in Table XIX. The derivatives are based on an average 
-mission range and a 55% load'factor as defined in the table. 

A general description of the cost benefit evaluation procedure is presented in Table XX.
 
The evaluation was carried out maintaining aircraft payload and range constant, while
 

*allowing the gross weight to vary in response to changes in the engine's characteristics as 
materials substitutions were introduced. 

-As each substitution was performed, the effect of that change was determined in terms of 
design effects which were then translated into aircraft system economic and size effects. 
The engine weight and cost were then adjusted based on the required thrust of the resized 
aircraft using the engine and installation price and weight scaling exponents shown in Table 
XX. Utilization of engine to aircraft system derivatives allowed both economic (ADOC, 
AROI, AROI, AWf) and size effects (TOGW) to be calculated as each advanced materials 
technology, substitution was made. It should be pointed out that the aircraft/engine system 
evaluated in the above procedure was an attempt to describe a representative airframe/ 
engine system that could be available in the 1985 time period. It was not intended to be an 
assessment of the airframe capability but was rather a vehicle required to determine the 
trade factor derivatives needed for the cost benefit study. 

5.2 ADVANCED MATERIALS BENEFITS 

All the design effects resulting from the advanced materials technologies were entered in a 
benefit analysis procedure 'that determined the change in benefit from the baseline material 
technology configuration. The benefits were expressed in terms of ADOQ, AROI, and AWf. 
The trade factor derivatives described above were employed to convert the design effects 
into the system economic effects. 
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TABLE XVIII 

AIRCRAFT DEFINITION SUMMARY 

Baseline Aircraft Description Transcon Trijet Intercon Quadjet 

* Technology Level Supercritical wing; structural composites 

* Design Range (n.mi) 3,000 5,500 

@ Cruise Altitude (ft) 35,000 35,000 

* Cruise Mach Number .80 .80 

* TOGW (lbs) 223,000 320,000 

" Number of PAX 200 200. 

* Design Payload (lbs) 41,000 43,000 

* SLS T/O Fn/Engine (ibs) 20, 000 21,000 

* Wing Aspect Ratio 12 12 

* Cruise L/D Avg. 17 18 
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TABLEXIX 

MISSION TRADE FACTORS 

Transcon Trijet 

Average Mission Range (n.mi.) 700 
Load Factor (%) 55 
Fuel Costs (V/gal) 35 

A's -- C/ % 

DOC. ROI TOGW Wf 

1% SFC .42 -. 12 .47 1.09 
100 lb Engine/Nacelle wt .17 -. 06 .32 .26 
$1/Flt. hr -Maint. Cost .17 -. 03 -- --
$1000 Engine/Nacelle Initial Price .006 -. 004 .. .. 
$1000 Engine Initial Price with .010 -. 004 --

Replacement Parts 

NOTE: Benefits Arise when 

DOC - TOGW -
ROI+ Wf -

Intercon Quadjet 

3000 
55 
45 

-- 17 

DOC ROI TOGW Wf
 

.71 -. 25 .87 1.44 

.22 -. 09 .39 .31 

.19 -. 04 -- _
.005 -. 003 .... 
.010 -. 004 .... 
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TABLE XX
 

EVALUATION PROCEDURE
 

* 	 Baseline Aircraft
 

- 3000 n.mi./200.PAX Trijet (Transcon)
 

- 5500 n.mi./200 PAX Quadjet (Intercon)
 

* Constant Payload and Range, Variable Gross Weight
 

" Mission Trade Factors Developed for Various Engine Changes
 

* 	 Baseline Engine 1. 71 P/P Fan, Mixed Flow with Advanced Technology 
Compatible with Late 1980's Service Entry 

* 	 Effect of Change in Installed Engine Characteristics Determined for Each 
Engine Variation Studied 

* Effects of Engine'Price Related to Production Costs - 1977 $ 

a Individual Parts Replacement Rates Considered in Engine Maintenance Costs 

" Engine Scaled to Thrust Required by Baseline Aircraft 

Engine Scaling Exponent Weight - 1.25 Price - .55 
Installation Scaling Exponent Weight - 1.1 Price - .80 
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Results of the materials substitutions on ADOC, AROI, and AWf for the Intercontinental 
mission are presented schematically in Figures 6-9. The quantitative values for each 
factor and both missions are listed in Table XXI. In comparing the results for the two 
missions, it must be remembered that the increased effect of fuel cost on the Intercon
tinental mission is reflected in fuel conserving materials substitutions showing more 
favorably in the analysis. 

Generally, the substitution of ceramic components had a very favorable economic impact 
except in the case of the ceramic combustor liner where the benefit was marginal. Similarly, 
the substitution of titamium aluminides for the baseline technology material showed an 
overall benefit; this was not a particularly large benefit for any one component evaluated 
but became significant when the benefits from several parts were accumulated. Surprisingly, 
the benefit of titanium aluminides was not as great for LPT blades as it was for the static 
components. This is a direct result of the higher host of the titanium aluminide LrT blade 
offsetting much of the weight advantage. The payoff might be larger with some other LPT 
configuration such as that employed in a high speed geared engine. 

Within the scope of this specific engine/aircraft mission, substitution of the high tempera
ture blade alloys for the baseline material was not generally economically attractive except 
for a small benefit resulting from utilization of the DS eutectic alloy. This situation re
sulted from the estimated high cost of the finished blades more than offsetting the economic 
gain resulting from reduced fuel consumption. For these alloys to be more generally 
attractive in a commercial environment, initial cost would have to be reduced from that 
now projected. On the other hand, in an aircraft system where fuel consumption and weight 
are much more important, such as a military fighter, these advanced HPT alloys will show 
a significant payoff even with the high initial cost. 

An overall ranking of each of the advanced materials in terms of the "relative value" (de
fined in Section 2) is given in Figure 10. The starred items were not ranked strictly in 
accordance with the definition because their AROI was negative. However, they were 
ranked in terms of AWf saved and increasing tiROI penalty. 

5.3 PRESENT WORTH EVALUATION 

As part of the cost benefit study, a present worth evaluation of each of the advanced 
technology material substitutions was conducted; The main assumptions made in this 
evaluation were: 

* Development costs spent during 1977 

* Advanced technology utilization in fleet begins in 1985 

* Fleet build-up, stabilization, and decline lasts 22 years 

* Constant utilization time per aircraft per year in the fleet 
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TABLE XXI 

ADVANCED MATERIALS ECONOMIC BENEFITS 

Mission Results 

Adv. Base Transcontinental A's Intercontinental A's 
Component Tech. Tech. AWf ADOC AROI AWf ADOC AROI 

Stg 1 HPT Ceramic Poroloy -. 23 -. 46 +.10 -. 31 -. 62 +.17 
Shrouds 

Stg 2 HPT Ceramic Poroloy -. 18 -. 39 +.07 -. 24 -. 54 +.13 
Shrouds 

Stg 1 HPT Ceramic MA754 -. 49 -. 88 +.21 -. 64 -1.19 +.33 
Vanes 

Stg 2 HPT Ceramic R125 -1.37 -. 68 +.22 -1.8 -1.02 +.39 
Vanes 

Combustor Ceramic HS188 +.02 -. 14 -. 01 +.03 -. 19 +.01 

Liner 

No Coat ODS HS188 +.05 +.38 -. 13 +.06 +.47 -. 16 

LPT Blades TI-AI Inconel -.08 -.04 +.O1 -.1 -.06 +.02 

Static Parts TI-Al Inconel -.19 -.26 +.12 -.25 -.33 +.15 



TABLE XXI (Cont.) 

Mission Results 

Adv. Base Transcontinental A's Intercontinental A's 
Component Tech. Tech. AWf ADOC AROI A ADOC AROI 

Stage 1 H PT DS Eutectic R125 -. 47 -. 03 +.01 -. 62 -. 12 +.06 
Blade 

y'ODS R125 -. 47 +.20 -. 06 -. 62 +.17 -. 04 

W-Conp. 
(.305) 

R125 -. 51 +.16 -. 05 -. 68 +.11 -. 02 

W-Comp. R125 -. 55 +.14 -. 05 -. 73 +.08 0 
(.33) 

Stage 2 HPT DS Eutectic R1125 -. 25 +.09 -. 04 -. 33 +.06 -. 02 
Blade 

Y' ODS R125 -. 25 +.44 -. 15 -. 33 +.49 -. 16 

W-Comp. R1125 -. 29 +.39 -. 13 -. 38 +.42 -. 14 
(.305) 

W-Comp. R125 -. 31 +.38 -. 13 -. 40 +.41 -. 13 
(.33) 
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The actual savings per year were calculated by multiplying the Direct Operating Cost per 
hour by the negative ADOC values generated in the benefit analyses. These savings per 
hour were then multiplied by the number of aircraft in the fleet for that year and the utiliza
tion rate for the type of aircraft being considered. The values used for the assumptions and 
a bar chart illustrating graphically the build-up and decline of the fleet size as a function of 
year are shown in Figure 11. 

Using the savings per year values calculated, the present worth (1977) of the savings was 
determined using the discounted present worth factor for the period of time from 1977 to 
the year in which the savings were accrued. The results of these calculations for each 
component studied are shown in Figure 12 for both the Transcontinental and Intercontinental 
missions. As a class, the ceramic components had the largest present worth benefits. 
The titanium aluminides had the next largest present worth with the Ni82XB stage 1 HPT 
blade material showing a marginal benefit. 

Tables = through XXIV summarize the results of the cost benefit study and compare the 
various figures of merit that have been used. In Table XXII, a comparison of "present 
worth" to development cost is presented for each class of materials determined to have 
positive "relative value". The ratios vary considerably, ranging from > 1:1 for the ad
vanced HPT blade. Although there are some reversals in ranking, it can be seen from 
Table XXIII that both the "relative value"-and "present worth" figures of merit are rela
tively consistent. Finally, Table XXIV shows the relative value, the AROI, the develop
ment cost and the probability of success for the five technologies with positive relative 
values to summarize the major findings of the cost benefit analysis. 
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TABLE XXII 

PRESENT WORTH EVALUATION RESULTS 

Present Worth X 10-6 - $ 

Technology Development Cost X 10-6 -$ Transcon. Intercon. 

Ceramic HPT Shrouds 3.3 15.0 34.2 

Ceramic HPT Vanes 6.0 27.6 66.6 

TI-AL Parts 3.0 4.9 11.3 

Ceramic Combustor Liner 3.0 2.5 5.7 

DS Eutectic Stg I HPT Blade 6.5 .6 3.6 
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TABLE fXCI 

COMPARISON OF RELATIVE VALUE AND PRESENT WORTH FOR MATERIALS 

TECHNOLOGIES (TRANSCONTINENTAL MISSION) 

PresentWorth"Relative Value" 

RankRankTechnology 

1 2
Ceramic HPT Shrouds 

2 1Ceramic HPT Vanes 

3 3TI-AL Static and Rotating Parts 

4-Ceramic Combustor Liner 

4 5DS Eutectic HPT Blades 
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TABLE XXIV 

ADVANCED TECHNOLOGY RESULTS SUMMARY TRANSCONTINENTAL
 
RESULTS/INTERCONTINENTAL RESULTS
 

Relative Value Development Probability 
Advanced Technologies x 10+8 AROI $ x 10-6 of Success % 

Ceramic HPT Shrouds 3.1/5.5 +.17/+.30 3.3 60 

Ceramic HPT Vanes 2.9/4.9 +.43/+.72 6.0 40 

Ti-Al Static Parts and LPT Blades 1.7/2.3 +.13/+.17 3.0 40 

DS Eutectic Stg 1 HPT Blades .1/.5 +.01/+.05 6.5 60 

Ceramic Combustor Liner -/.2 -/+.01 3.0 50 



6.0 SENSITIVTY ANALYSIS 

In the cost benefit studies, nominal values of the design parameters associated with each 
advanced material technology were utilized to develop the system economics figures of 
merit. Failure to attain the desired properties or cost goals, or any deviation from the 
nominal values used in the analysis, would clearly result in a change in the benefits accrued. 
It was determined in the study that certain parameters for each technology were more 
critical than others and that relatively minor changes in these parameters could have a 
profound effect on the eventual system benefit. Sensitivity analysis were performed by 
varying design values and deriving the change in benefits to determine quantitatively the 
impact of deviations in critical properties from nominal values. The Transcontinental 
mission was selected for these sensitivity studies to illustrate the effects, although similar 
changes would be anticipated for the Intercontinental mission. 

6.1 CERAMIC SHROUDS 

With the maximum cycle T 4 (26000F) selected for this engine, it is anticipated that a very
significant lowering of ceramic operating temperature capability (on the order of 350°F) 
would be necessary to affect the results previously obtained. Therefore, the most serious 
problem would probably be the inability to achieve the expected reliability assumed for the 
shrouds since the HIT shrouds have traditionally been a high replacement rate part. Fig
ure 13 illustrates the effect on ADOC and AROI if the reliability (or replacement factor) is 
not as was assumed in the benefits study. The replacement rate would have to reach a 
value about 50%. higher than the baseline Poroloy shroud before all benefit of the ceramic 
would be lost. Therefore, the ceramic shroud would appear to be relatively insensitive to 
property deficiencies which could cause this to become an uneconomical development. 

6.2 CERAMIC VANES 

The concern in the sensitivity study for the ceramic vanes was essentially the same as that 
for the shrouds except that, since the vane is exposed directly to the gas path, the reliability 
and its effect on anticipated benefit are even more critical. 

Both Stage I and Stage 2 HPT ceramic vanes replacement factors were varied to determine 
the effect on benefits. In Figure 14, the slope of &DOC as a function of parts index is such 
that it would require more than a doubling of the assumed replacement factor to lose all 
economic benefit. However, when the ceramic vane is compared to a Rene' 125 vane (for 
Stage 2), a relatively small upward change in replacement factor for the ceramic vane 
results in loss of benefit compared to the lower cost Rene' 125 (Figure 15). This indicates 
that the ultimate benefit to engine operation of a ceramic Stage 2 vane is very dependent on 
the material and design application being successfully applied in-this location to maximize 
reliability. 
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Figure 13. Sensitivity Analysis - Variation in Stg. 1 Shroud Replacement Factor (P.I.)
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CERAMIC HPT STG 2 VANE VS BASELINE R125 
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Figure 15. Sensitivity Analysis - Variation iinStg. 2 Vane Replacement Factor (P.1.) 



6.3 COMBUSTOR LINERS 

Figure 16 shows a small benefit for the ceramic liner application if the replacement factor 
assumed is actually achieved, as well as pointing out the extreme sensitivity to change in 
this factor. Therefore, as evaluated, without taking advantage of any second order benefits 
such as an improved combustor gas temperature profile, any benefit is very dependent on 
achieving very long life and maintenance free service. 

In Figure 17, a possible second order benefit of both the No-Coat ODS alloy and the ceramic 
liner is explored. This is based on the assumption that smaller amounts of cooling air 
needed for the advanced shingle designs will result in a better radial profile thereby re
ducing peak gas temperatures experienced by downstream turbine components. If this were 
true, the nominal benefits developed in the cost benefit study could be increased by the 
amount shown using 7% cooling (ceramic) and 13% cooling (ODS) versus the nominal 20% 
cooling (HS188). This would not change the overall rating of the ODS alloy liner, but would 
result in the ceramic liner showing an ROI advantage, even in the Transcontinental mission. 

6.4 HPT ADVANCED BLADE ALLOYS 

At the outset of this study, the cost goals and initial technical goals for each of the advanced 
ltPT blade alloys were identical which, if carried throughout the program, would have re
sulted in essentially identical relative values for each of the technologies. (Since the cost 
of development and the probability of success for each technology differ, the relative values 
would have differed but a thorough, assessment of each material would not have been made.) 
As the study proceeded, therefore, and as blade designs using each material were finalized, 
the cost goal. were refined to the best cost estimates (specific costs) based on General 
Electric knowledge and experience. Similarly, the technical goals were modified to reflect 
the optimum capabilities of the individual materials; for example, the higher temperature 
rupture capability of the W-FeCrAlY composite was used in the study. It was these techni
cal capabilities and specific costs that were ultimately used to determine the Relative Values, 
rather than the originally established goals. 

Although raw material costs for each of the advanced blade technologies were high, the 
labor costs (casting, machining, drilling, joining, finishing) accounted for the majority of 
the estimated overall finished blade cost. The alloying elements in the DS eutectic alloy 
made the raw material cost for this material considerably higher than that for either the 
W-FeCrA1Y or the 1' ODS materials. However, the subsequent amount of labor involved 
in fabricating the finished blade was estimated to be substantially higher for the wrought 
Y'ODS alloy and the W-FeCrAY composite than for the cast DS eutectic. The electro
discharge machining (EDM) of both the external shape and internal cooling passages in the 
wrought ODS alloy was assessed as a time consuming, and therefore expensive, process. 
This high labor cost resulted in the y' ODS material being the most expensive of the three 
advanced blade materials. Similarly, the lay up and finishing of the W-FeCrAlY composite 
structure was estimated as a time consuming and expensive process based on General 
Electric experience with similar processing. 
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Figure 16. Sensitivity Analysis - Variation in Combustor Replacement Factor (P.1.) 
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Figure 17. Sensitivity Analysis - Variation in Combustor Pattern Factor (PTF) 



Obviously each of the cost estimates necessarily reflected to some extent the General 
Electric manufacturing experience with the technologies, and this experience is significantly 
greater with casting than with either of the other technologies. However, the costs do re
flect the best comparative estimates by manufacturing specialists working with advanced 
manufacturing processes at General Electric. Furthermore, the sensitivity analysis per
formed for these three technologies (as with all other materials technologies in this study) 
allows an estimation of the effect of alternative cost figures as they became available or 
are better defined as a result of increased experience. 

The major obstacle, therefore, to obtaining maximum economic benefits from the class of 
materias studied for advanced HPT blade applications is the high initial part costs. There
fore, results of the sensitivity analysis in which the finished part price of the stage 1 and 2 
HPT blades in the Tungsten FeCrAlY composite material was varied are shown in Figures
18 and 19. A cost ratio based on the baseline material (R125) was used as a variable. 
Results for both the R125 equivalent density material (p = .305) and the heavier material 
(p = .33) are very close and indicate that, for the stage 1 blade, a DOC and ROI benefit 
would only occur when the finished part is less than about 1.8 times the cost of a comparable 
R125 blade. Similarly, the break-even point for the Stage 2 HPT blade in this material is 
approximately 1.5 times the cost of a R125 blade. The nominal cost estimates used in this 
program were higher than these break-even points and indicate that progress is needed in 
reducing costs before this material technology could be a practical alternative for a com
mercial engine application. 

Several sensitivity parameters were investigated for the Ni82XB advanced technology 
material. The results are specifically for the eutectic alloy but are qualitatively applicable 
to all the'other advanced blade alloy materials. 

The effect of varying the turbine inlet temperature and the blade cooling effectiveness are 
shown in Figure 20. The nominal turbine inlet temperature used in the benefits study was 
26000F and this was allowed to vary up to 30000F in the sensitivity analysis. Although the 
temperature limit for the lower cost no insert design for the R125 baseline material is 
about 2850°F, this limit did not apply to the DS eutectic with the goal properties defined in 
Section 3. The sensitivity study indicates that for T4 temperatures up to at least 30000F, 
the lower cost cast cooling system is more cost effective than the more complex two insert 
system for the Ni82XB alloy. 

Figure 21 illustrates the effect of varying the replacement rate of the Stage 1 and 2 HPT 
Ni82XB blades. As can be seen by the close grouping of the R125 and Ni82XB replacement 
factors (p.I.), a very small upward change in this factor over the value assumed in the 
benefits study would eliminate the cost effectiveness. 

Since the application of DS eutectic to the stage 2 HPT blade did not show any benefits in 
terms of a positive relative value, the turbine inlet temperature was varied to 3000F to 
see if a payoff would occur at a higher T4 than the baseline 26000F. The sensitivity analysis
results shown in Figure 22 indicate that these higher T4 temperatures would'not produce 
any overall ADOC or AROI benefit for Ni82XB as a stage 2 HPT blade in the commercial 
mission used in this program. 
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Finally, for the cast DS eutectic alloy, the effect of variations in casting cost was evaluated 
in the sensitivity analysis (Figure 23). If the casting cost ratio (i.e. cost relative to that 
of R125) is 3 or less for the stage 1 HPT blade and 1.3 or less for the stage 2 blade, the 
advanced alloy is cost effective. Again, these ratios are applicable only to the cycle/mission 
conditions as defined in this study and will vary significantly with changes in application. 

In conclusion, the benefits realized through the use of the advanced technology HPT blade 
materials were very sensitive to changes in cost, replacement factors and cooling effec
tiveness and relatively insensitive to the range of T4's that could reasonably be expected in 
the 1985 period. This indicates that for future commercial applications of the type modeled 
in this study; a successful program will require achieving or surpassing all critical property 
and cost goals. For other applications where SFC, weight, fuel consumption (Wf) and take 
off gross weight (TOGW) are of greater importance, such as in a military fighters, bombers 
and helicopters, these advanced turbine alloys, particularly Ni82XB, would be'expected to 
produce significant benefits without any change in the property and cost goals used in this 
study. 

6.5 TITANIUM ALUMINIDE LPT BLADES AND STATIC PARTS 

One of the more uncertain aspects of the behavior of titanium aluminides is their reliability, 
which relates directly to the rate at which a given part must be replaced. The effect of 
varying the replacement factor (P.I.) of titanium aluminide LPT blades, nominally set at 
the replacement factor currently experienced in commercial service of existing blades, is 
shown in Figure 24. The steep slope of this figure indicates that a very small increase in 
replacement factor (on the order of 30% would eliminate the benefits for the titanium 
aluminides in this specific direct drive LPT application. Similarly, as shown in Figure 25, 
a relatively small increase in parts cost (- 20%) eliminates the benefits for titanium alu
minide LPT blades compared to the current nickel-base alloy blades. Clearly this is a 
small margin and points out the sensitivity of this technology to variations from nominal 
parameters and the need to achieve the goals established.. 

Finally, an evaluation of the effect of change in parts cost for a large static titanium 
aluminide component (an exhaust mixer) was performed. The sensitivity analysis results 
(Figure 26) indicate that an increase in cost (versus nominal) of about 50% would be re
quired before all economic benefits would be eliminated. The benefits for the static 
titanium aluminide components are, therefore, not very sensitive to a modest increase in 
cost. 
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7.0 RANKING OF ADVANCED MATERLS DEVELOPMENTS 

In this study, ROI was the primary criterion in judging the merit of advanced materials
 
technologies. This in turn was used to determine the "Relative Value" parameter defined
 
by NASA for jedging the value of applying development effort to the advanced materials.
 
Relative value is defined by the equation:
 

•AROI 
Relative Value = Development Cost X Probability of Success 

The resulting values of ROI and Relative Value are summarized in Table XXV. 

Based exclusively on these numbers, a Relative Value ranking was determined as a primary 
result of this study and has been presented graphically in Figure 10 of Section 5. This is 
strictly a numerically derived ranking based on the best available input and is pertinent 

- only to the particular mission(s) and engine/aircraft configurations defined in this program. 

A number of additional factors, however, might be considered in a more general ranking of 
advanced materials technologies and the emphasis would probably be significantly different 
to that determined in the present study. The ranking might be changed as a function of the 
type(s) of engine to be emphasized (military versus commercial, for example) and the size 
and mission requirements of the aircraft to which they are applied. In addition certain 
materials may have greater benefits in situations other than those considered in this study. 
For example, the advantage of an advanced turbine blade material will tend to be greater 
in the growth of an existing engine than it is in an all new engine where components can be
 
sized as required. This explains to a great degree the relatively low ranking of advanced
 
turbine blade materials in this particular study since an essentially all new engine was
 
used as the model.
 

Based on these factors and taking into account the large range of General Electric's Aircraft 
Engine Group product line comprising applications to several systems (fighter, bomber, 
helicopter, marine, industrial as well as commercial transport aircraft), as well as an 
engineering judgment.of the projected business needs for the 1985 time period, a "Corporate 
Ranking" of advanced materials technologies was derived for comparison with the Relative 
Value ranking defined by the study. This ranking is shown in Table XXVI, with the study 
ranking listed for direct comparison. 

The "Corporate Ranking" basically resulted in three groups of materials technologies in 
terms of the emphasis deemed appropriate. The first group, comprised ceramic shrouds 
and Ni82XB HPT blades. The second group of four technologies (titanium aluminides, no
coat ODS alloy and ceramic combustor liners, ceramic vanes) could not realistically be 
separated from each other in the ranking. Finally, the W-FeCrAlY composite blade and 
the 7' ODS alloy blade, are rated lowest in the Corporate Ranking. The Corporate Ranking 
reflects the consolidated viewpoint of General Electric design and materials engineers and, 
although not specifically arranged to do so, clearly reflects to some degree the intensity 
with which each of the technologies are being pursued in present development programs. 
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TABLE XXV
 

ADVANCED TECHNOLOGY RESULTS SUMMARY TRANSCONTINENTAL
 
RESULTS/INTERCONTINENTAL RESULTS
 

Relative Value 
x 10+8Advanced Technologies AROI 

Ceramic HPT Shrouds +.l17/+.30 3.1/5.5 

Ceramic HPT Vanes +.43/+.72 2.9/4.9 

Ti-Al Static Parts and LPT Blades +.13/+.-17 1.7/2.3 

DS Eutectic Stg 1 HPT Blades +. 01/+. 05 ./.15 

Ceramic Combustor Liner -/+.01 -/.2 
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TABLE XXVI 

CORPORATE VS. STUDY RANKING OF ADVANCED MATERIALS TECHNOLOGIES 

Cost/Benefit Study General Electric 
Relative Value Corporate Ranking 

Ceramic Shrouds Ceramic Shrouds 
Ceramic Vanes DS Eutectic HPT Blades 
Titanium Aluminides 
DS Eutectic Stg 1 Blade Titanium Aluminides 
Ceramic Combustor Liner Ceramic Combustor Liner 

No Coat ODS'Alloy Combustor Liner 
Ceramic Vanes 

DS Eutectic Stg 2 Blade 
W-FeCrAlY HPT Blade W-FeCrAlY HPT Blade 
y' ODS Alloy HPT Blade y' ODS Alloy HPT Blade 
No Coat ODS Alloy Combustor Liner 
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8.0 CONCLUSIONS 

Based on the cost/benefit study conducted, the advanced materials/technologies ranked as 
follows in order of decreasing benefits: 

* 	 Ceramic Shrouds 

* 	 Ceramic Vanes 

* 	 Titanium Aluminide Components 

* 	 DS Eutectic Stage I HPT Blade 

* 	 Ceramic Combustor Liner 

* 	 DS Eutectic Stage 2 HPT Blade 

* 	 W-FeCrAIY Composite Blades 

* y' ODS Alloy Blades
 

" No Coat ODS Alloy Combustor Liner
 

The "Corporate Ranking", made independent of the study, grouped the technologies as fol
lows in order of decreasing emphasis: 

* 	 DS Eutectic HPT Blades and Ceramic Shrouds 

* 	 Titanium Aluminides, Ceramic Vanes, No Coat ODS and Ceramic Combustor 
Liners 

* 	 W-FeCrAIY and v' ODS HPT Blades 

The good showing of ceramics, in spite of higher risks, was due primarily to final part 
costs which were lower than or equivalent to those of the currently used materials, along 
with their significant advantage in engine performance. The higher costs anticipated for 
the DS Eutectic Turbine Blades compared to current turbine blades resulted in a marginal 
economic benefit. Reducing the anticipated costs, greatly increased the benefits of eutectic 
turbine blades and in all cases engine performance was greatly improved by the use of 
eutectic turbine blades. Thus, future efforts should be directed towards reducing the pro
cessing costs for this class of materials to achieve the better engine performance without 
an undue economic penalty. This effort would be even more necessary for the W-FeCrAIY 
and y' ODS turbine blade .alloy materials because of their intrinsically higher cost. 

The weight reduction obtained through the use of titanium aluminides was attractive,
 
although the larger cost benefit for this class of materials was in large structural com
ponents rather than in the LPT blades.
 

Preceding page blank 
083 



ABBREVIATIONS USED IN TEXT
 

AMAC Advanced Multistage Axial Compressor 

USTEDLEC Unconventional Study of Turbofan Engines Designed for Low Energy 
Consumption 

ATA Air Transport Association 

MATE Materials for Advanced Turbine Engines 

ROI Return On Investment 

'DOC Direct Operating Cost 

TOGW Take Off Gross Weight 

Wf Weight of Fuel Burned 

A Change in a Value 

CTOL Conventional TakeOff and Landing 

HPT High Pressure Turbine 

LPT Low Pressure Turbine 

P.I. Parts Index (Replacement Factor) 

Fn Thrust in Pounds 

CR&DC Corporate Research and Development Center (General Electric) 

ODS Oxide Dispersion Strengthened 

DS Directionally Solidified 

SLTO Sea Level Take Off 

PAX Passengers 
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