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NOTATION LIST /2 

mR Mass of the rotor-gear unit
 

mz (generalized) mass of the airframe
 

kz , dz (generalized) spring and damping constants of the body
 

'PR(t) -Vertical excitation force (in the fixed body system)
 

z Absolute deflection of the center of mass of the
, zo 


body
 

Az Relative deflection between rotor gear unit and body
 

PA(t) Actuator force
 

z0Actuator deflection
 

oN

T0 Normalized deflection of Az 

27o Normalized deflection of z 

We=R +rt Helicopter mass 

PR . Normalized excitation force P1 

Rotation frequency
 

' - l Normalized perturbation amplification
 

M=- Mas's ratio
 

A'PS Normalized actuator amplification
 

PS Supply pressure of actuator 

¢n * t Rotor rotation angle, 

Normalized eigenfrequenoy of body structure
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Ap Normalized control pressure difference
 

u Normalized control Variable
 

Csv Amp-lifiat in._fac.tnor.
 

x State vector of systems
 

A Dynamics matrix of system
 

b Actuator vector of system /3
 

bS Actiuator vector of siystem perturbation,
 

C Measurement matrix of system
 

y Measurement vector of system
 

z" Approximate body acceleration
 

T Time constant when measuring-body acceleration
 

(generalized) spring and damping constant of the
 

intermediate support
 

FT Isolation force
 

KI, K*, K*, K4, K* - Control matrices 

State vector of contioller
 

Y Extended output vector of systems
 

z State vector of perturbation model
 

F Dynamics matrix
 

Gu, Gy Input matrices of observer
 

H Output matrix
 

X Estimated values of the state system 

-S Estimated values of perturbation state 

K1, K Matrices of Hiccati feedback
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Transformation matrix for extending tbe output vector
 

y
 

AID Pressure difference ,of actuator
 

J. Parts of the_ qualiy criterion
 

a i Weighting coefficients of quality criterion
 

Q2,R Weighting matrices
 

N Dynamics matrix of the Notch isolat6r.
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CONCEPTS FOR THE DESIGN OF A iCOMPLETELY ACTIVE HELICOPTER
 

ISOLATION SYSTEM USING OUTPUT VECTOR FEEDBACK*
 

_, 	 G. Schulz
 

1. 	 INTRODUCTION
 

Within the framework of the' ASIS ZKP program, the
 

DFVLR, I 1552 'in collaboration with the Firm MBB-UD, performed
 

theoretical investigations for the design of an active oscillation
 

isolation system (ASIS) for the BC 105 helicopter. Also con­

trollers were designed for insulating the isolations for o
 

of low order. Using controllable hydraulic servoelements,
 

these controllers have the purpose of isolating the rotor-gear
 

unit from the airframe of the helicopter, and the following
 

tasks are satisfied by them overi the entire operational range:
 

i) 	 Suppression or strong reduction of perturbing 

airframe vibrations which are harmonics of the blade 

number ­

ii) 	 Limitation of the static or quasi-static relative
 

motions between the rotor-gear unit and the airframe
 

using an automatic trim device.
 

* DFVLR (German Research and Te'st Facility for Aviation and 
-Spacef.f-ight Internal .Report_552=76/l2_._ 
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__Sin.c._exa.ctly known discretp frequencies occur _inhelqopter
 

,vibrations, it is not necessary to provide wideband isolation
 

of the airframe. For successful oscillation isolation, it is only
 

necessary to suppress or attenuate the low blade-harmonic (that
 

is 4 2 to maximum 12 ) perturbation frequencies. 

Previous investigations of the Firm MBB [1] assumed that the
 

differential equations (state variables) together with all the
 

derivatives used in the computer,model of the airframe/rotor-gear
 

unit are measured, and are used as input variables for the con­

troller. With this assumption, tbe resulting controllers are
 

extremely simple and easy to calculate, because they do not have
 

any eigen dynamics. However, in'the case of the helicopter not
 

all state variables are available and therefore in this report
 

we make the realistic assumption for the controller design that
 

only a few output quantities are! available as measured variables.;
 

The controller must then be designed using a method of output
 

vector feedback and then has eig'en dynamics.
 

In this report we design the controller with output vector
 

feedback according to two different methods. The designs are com­
pared with respect to satisfyingthe design criteria, suscepti­

bility to perturbations and the possibility of building them.
 

We also discuss its use for higher order systems and when
 

,helicopter airframe mode shapes are considered.
 

-6 



/5 
.2.....HELIQQOPTER COMPUTER MODELS FOR VERTICAL OSCILLATION ISOLATION 

2.1. 	 Computer models for velocity feedback of the cell
 

(Model 1)
 

In [1], the differential equations for the completely active;
 

oscillation insulation system with pressure servocontrol are
 

given. When these differential equations are established, the
 

simple helicoptier computer model of Figure 1 isjassumed. Here
 

the rotor-gear unit and the airframe are idealized by means of
 

two discrete point masses which are connected together through 

the active servoelement , which is a force generator. There is 

an additional soft support of the airframe through a special 

spring-damper element, which simulates the elastic airframe behavior 

for each mode shape. The vertical excitation which is transferred 

from the rotor to the airframe is introduced as an external per­

turbation force PR.
 

The two mass system of Figure 1 leads to the following
 

differential equation system
 

- 2 . 0.2 .t -i_.p A.-	 (+) 
2 z 2Z 2 2 (T-14)? 

2
V - . --	 (2 

z- z 'z z z 

where 	 A 

p-CS *v 	 (3) 

The defrivatives A are derivatives with respect to the 

angle ; 

The deflection of the rotor-gear unit Az and the velocity
 

-b-f-t h irframb--clnt'itn-z~arer-s 	 uredwhtcihthenare" 

ORIGItAL pGE IS 
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- -

-avai1-able-as--input variables for the controller. -'The" -ontrol
 

variable u is the output quantity of the controller.
 

The state-r.e.pr.es.entat.iorn.o. Model .Itbenef.one has the 

following appearance
 

_X,'A X +b q* -b .V (14) 

x, (5)
 

with the matrices and vectors
 

0 1 0- 0 0 

0 0 1 0 0 

i;2 •SV 
o . 02 "- -14) 

.2 2C7• ) 

0 _- 0 127. o] *,C 

T Q0 0 
V 

1 . 0 0 1 

and Y=2 R--/
 

The numerical values for the matrices A, b, bS are
 
I­

. 
0 
--

-. 
b- (7S 0 0 0 0
0 1.57 0 0.0681 a.,15S 65 

0 11.57 0 -0.068 1.24] b 

1diagram of the. system with the controler" is­

shown in Figure 2. 

TIeJ&bId~ k




2.2.-	 Computer model for the acceleration feedback of the
 

airframe (Model II)
 

For the computer-Model II with acceleration feedback, 

again the helibb-ter eci f6i nba~oft7FFigure 1 s used. This 

means that the same differential equations (1) and (2) result for" 

the systm as for Model I. In contrast to Model I, we now assume 

that the airframe acceleration is measured z"z and fed back. Be­

cause of the measurement technique (exact acceleration measuring 

devices), this acceleration feedback is preferred over velocity
 

feedback. In order to avoid that then a system results which
 

could jump (same degree of the numerator and denominator poly­

nomial), a delay unit (time constant T is introduced for
 

measuring the acceleration. Thi-s delay is represented by the
 

following additional differential equation
 

- z --z - 2(1 " ++ ± - Z- -(8) 

If in Equation (8) we now replace L-r by Equation (2),
 

then we find the following state model
 

x-' A x 	+ b u b v (4) 

- - _2T 

y =CX 	 - (5) . 

with the matriaes and vectors 	 +
 

o 1 - 0 a 	 0 

0 0 1 0 0 " 	 0 

S 0 0 	 cSV 

-2 (II ,-

AGB 11ORIGINAL 
OF poOR QIYALV 
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" O 0 0 1 1000' 0Ci- C 1 

So 0o 1 

and v 	= R" 

The numerical values for the matrices A, b, b are

S
 

O" 1 0 0 0 0 

0 0 1 -0 0 0 

rAp 0 115 0 0.068 b 8.15 (10) 

0 -11.57 0 0.068 0 -1.24 

" 
- 57 0 - 0.068103 -10 	 8.15 10 

bT to a- 6.53 0 0] 

2.3. 	 Computer model for feedback of the actuator
 

pressure difference (Model III)
 

In order to determine the computer Model III for feeding
 

back the actuator pressure difference, an intermediate support

-	 '­

between the rotor gear mass and -the mass of the helicopter air­

frame is assumed (see Figure 3)., Based on the experience with
 

Model I [1], we here only assume a feedback of the relative
 

deflection Ai of the rotor gear unit and the pressure difference 

,7, in the pressure servo. In this way the deflections of u 

are attenuated as fast as possible, because the helicopter 

- artfrane- is-hhly excited to perfbrm -vibrations througbth&..
 

coupling of the servo ( PAV because there is no soft
 
mint.ermeiat.e. .s p o rt..... .. .. . . ......... .
 

'i0
 



Figure 3 shows tbe free system without ground support (.kz, dz).
 

In [21 a differential equation system is given for it which
 

contains only the relative deflection Az and the pressure
 

difference Ap of the pressure servo with the derivatives as state
 

variables. The acceleration z" of the airframe is determined
0
 
from a linear combination of the state variables through the
 

force FTz which acts on the airframe or the rotor-gear unit:
 

M- 0z.. 606-- - (11)2 

fT eGes 
 0 

F2 -0.34485 ti - 4.2709 A + 0.02299 A ' . . .. J(isolation condition) (12)
 

The state vector contains the following 'elements / 8 

IT- 7 6-p A,' 3 . (13)
 

The numerical values of the matrices of the state model
 

according to Equations (4) and (5)
 

X' A x + b U+b 3s V (14) 

X =Cx Y ((5) 

are
 

A-[00 0 o 
S0 5 3 204 1257 -28.B3j 05.33 (14) 

!!S 0 0 6.52455 0 3 

where v = PR and
 

ORIGINAL PAGE 19 
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3. 	 DMETHODS OF DESIGN OF CONTROLLERS FOR OUTPUT VECT-OR 9 

FEEDBACK 

In Sections .3. and 3.2 we give two methods of controller
 

design which allow the system to be controlled without knowledge
 

of the total state vector x. These concepts are tailored to the
 

boundary conditions found in practice, where there is only a
 

limited number of elements of the state vector available, which can
 

be measured, and only these are available as input signals for the
 

controller. Using this method, the number of measurement units
 

can be considerably reduced or, if the mode eigen oscillations
 

of the airframe are taken into account, it becomes possible to
 

control the helicopter without measuring all components of the
 

eigen oscillation mode.
 

3.1. 	 Design of a dynamic compensator with additional
 

notch-isolator (Controller I)
 

Starting with the investigations of [3], a numerical method
 

of controller design with output vector feedback is developed in
 

[41] and [5]. A separate consideration of the design criteria
 

mentioned in the introduction is then possible:
 

i) 	 Suppression or strong attenuation of perturbing air­

frame vibrations which are harmonic with the blade
 

number
 

II) 	 Limitation of the static or quasi-static relative motions
 

between the rotor-gear unit and the airframe with an
 

automatic trim device
 

Both criteria were separately weighted during t-e design and
 

this led to a single controller.,
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hh
 

is minimized which consists of a weighted sum of three individual
 

criteria
 

Durngie.. optimization, tie generalized qualtdt7fiitrYiAf 

I 1 '2 '3 - -3 (15) 

where , -


For m = 1 the deviations are weighted when there. is a disturbancei 

(Figure 4a). For m-= 2 the deviations when there is a nominal
 

value jump u..is weighted (Figure 4b). For m = 3 the transient
 

behavior of the system after an initial deflection yo (Figure 4c):
 

is weighted.
 

Therefore the design criterion i) is considered using theV'
 

quality criterion J and the design criterion ii) is considered
 

with the quality criterion J2. The additional weighting of the
 

transient behavior (quality critlerion J3 ) is prevented by slow
 

transient processes.
 

A Notch isolator is installed in the controller for
 

detecting the perturbation. Figure 5 sbows.the structure of
 

controller I.- One can see three main components (meaning of the
 

dashed line -- see Section 4.4):
 

i) On thq-top the integration of output yrj.with subsequent
 

amplification kI , 


ii) In the center the proportional feedback of output y.
 

iii) Below the dynamic part bf the control with the dynamics
 

matrix Kf which also contains thle daynamic matrix N of the Notch
 

isolator.
 

ORIGINAL PAGE IS 

OF pOOR QUALI 
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.Tbe.matrtces K# are summarized as follows in.-t.hb, ma.tix K*
 

- ~ 	 ~.-.---~~-(16) 

The notch isolator is contained in K* as follows:
4 

K4R ° (17)) 

r4r
 

The optimization piogram now calculates the free parameters
 

of the K* matrix and the additional integral feedback parameter
 

k using minimization of the quality criterion J.
 

3.2. 	 Design of a state and perturbation observer with
 

subsequent Riccati-teedback (Controller II).
 

For this observer design [61 with subsequent Riccati feed­

back, the complete state of the system and the perturbation are
 

reconstructed from the available measurements (relative deflection
 

Az of the rotor-gear unit and the a frame velocity zD). In this,

zI
 

way no notch isolator is required in the controller. The informa­

tion on the perturbation is given by the observer (perturbation
 

observer) (Figure 6).
 

Using the Riccati design [7'] a constant feedback matrix 

Kc = [K1 , J2] is designed usingia minimization of a quadratic 

quality criterion according to Figure 4a) 

JT T Q+ U7Ru Idt 	 (15) 

where
 

14 

http:in.-t.hb


F~gure--T--shows the resulting controller. Firs-t-t-he=-sng-e­

and double integral of the first component ya of the output 

is formed and the vector y is extended to form the new vector y* 

(Figure 6c). 

The matrices F, Gu,.G y, H and T (where z = T-x) are calculated
 

in the observerdesign. The matrices Kc = [KI, K2] follow from
 

the Riccati design. The following conversion then gives
 

where T i (Figure 6b). / ii 

-Kr " " (18) 
GY G
u " R, I O 2 1 

and the intermediate numerical values are calculated.
 

In contrast to controller I, the design criterion (i) is
 

systematically covered (according to Figure 4a). By proper
 

selection of the weighting matrices 2R and RR, the design
 

criterion ii) (see introduction) is approximately satisfied.
 

ORIGINAL PAGE IL' 
oF POOR QUALITnY, 

15 ­



JL.-.COMPLETELY ACTIVE OSCILLATION ISOLATION OF THE,HELLCDETER . /12 

BO 105 - CALCULATED RESULTS AND SYSTEMS ANALYSIS IN THE TIME 

AND FREQUENCY RANGE 

In this section we will discuss the performance of the con­

troller discussed in Section 3 and its use for oscillation isola­

tion in the helicopter BO-105. The following design goals must 

be met - discussed in Sections 4.1 and 4.3. 

a) 	Oscillation isolation (Criterion i)) must be obtained
 

with the normalization of the variables
 

1. 	 < 1/3 

2.-	 T. bzw. 7 0 

3. 	 A:z < 0.2 

) 	In order to limit the quasistatic relative motions
 

Criterion ii)) (maneuver case) we must have
 

In Section 4.4 we apply the following design criteria with
 

different normalization of the variables
 

a) 	 .1. u c 0.6 

2. 	 A Z<0.2 

3. 	 ip<0.6 

) 	 1. ~< 0.2 

4.l. 	 Design of the dynamic compensators (Controller I) for
 

velocity feedback (Model I)
 

The optimization of the controller results in the following
 

controller matrix K* (see Section 3.1)
 

16
 



-21.87 -3.22 1 0 1 0 1 

401.49 25.21 0 -26.46 0 0 

. 256.88 12.88 I 1 -15.23 .0 0 (19) 

0 6.67 0 0 -16 
0 -0.2 0 0 1 0 

and the additional feedback
 

k1 - 3.33 

of the integral through Az. 


The time variations of the state and controller variables
 

for the perturbation compensation are given in Figures 8 to 13.
 

Figure 8: Variation of perturbation.
 

Figures 9 - 12: Transient,behavior of airframe. The air­

frame settles down after about 1.5 rotor revolutions
 

(Figures 10 and 11).
 

The actuator variable u then goes to zero (Figure 13).
 

Figures 15 to 18 show the trim behavior of the system
 

after a 2.5 g maneuver given in Figure 14 (1 - 2.5 g in 0.5 see).
 

The maximum deflection of Az remains below 0.2. We have
 

I1CZ oX.2(Figure 16). 

The design criteria given above are therefore satisfied.
 

The error sensitivity if there is a mismatch of the notch
 

isol-ator is shown in the following. Figures 19 - 2,3-show the time
 

variation when the perturbation frequency is changed by - 3%.
 

Figures 24 - 28 show the time variations when the perturbation
 

ORGjtAL_PAGE W 
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freqencl is changed by + 3%. The helicopter airframe no longpr
 

settles down.
 

The Bode diagrams of the perturbation transfer functions 

of the control system are given in Figures 29 - 31. Clearly the 

effectiveness of the Notch isolator can be seen in Figure 31 

for w = 4. 

4.2: 	 Design of the dynamic compensater (Controller I)
 

for acceleration feedbakc (Model II)
 

Optimization of the controller gives the following controller
 

matrix K
 

K* 

- 8.06 

52.32 

50.66 

-0.34 

-2.04 

1.66 

00 

0 

I1 

1-­

-11.43 

- 8.90 

0 

0 

0 

0 

j (20) 

0 0.26 0 0 0 -16 

0 -0.20 0 0 1 0 

and the additional feedback 

k= - 1.39 

of the integral through Az. 

The time variations of the state and controller variables 

for the perturbation variable compensation are given in Figures 

32 to 38. 

Figure 32: Perturbation history. 

Figures 32 to 37: Transient behavior of the airframe. The 

airframe settles down after about 2 rotor revolutions. 

The controlled variable u goes to zero (Figure 38). 

18 
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- --F-i-gures. 40 to 45 show the trim behavior df t-be--s-s-tem-fer­

a 2.5 g maneuver of Figure 39. 

The maximum deflection in - remains below Q.2, and we 

lha~j-xJAiIXao.o0i (Figure 41). 

Therefore the design criteria'.given above are satisfied.
 

The Bode diagrams of the perturbation transfer functions of
 

the control system are given in Figure 46 - 48.
 

4.3. 	 Design of the observer with Riccati feedback (Con­

troller II) for velocity feedback (Model I)
 

Optimization of the controller gives the following con­

troller matrix K (see Section 31.2)

R 

- 79.41 -11.92 - 30.36 56.30 51.29 - 253.90 . 3.21 2 53.40] 

7.39 0.74 - 2.21 2.95 0. 47 21.82 0.34 2.68 (21)
 

KR = - 15.82 - 0.92 - 2.90 7.09 3.36 - "45:98 0.52 - 4.10
 

340.17 51.74 132.28 -238.74 -220.52 1081.16 -15.68 110.17
 

-27.14 -0.27 - 0 .91 25.08 20.31 - 99.57 -0.74 - 11. 97]
 

The time variations of the Istate and control variables for
 

the perturbation compensation are given in Figures 49 to 54.
 

Figure 49: Variation of perturbation
 

Figures 50 - 53: Transient.behavior of airframe. The 

airframe settles down after about 1 1/I rotor revolutions. 

The controlled variable u goes to zero (Figure 54).
 

Figures 56 to 60 show the trim behavior of the system for a
 

2.-5-,'g, 	maneuver- 'o f -F: gure-5'5-. 

ORIGINAL PAGE ISOF POOR QUALITY, 19 



The maximum deflection Az just reaches the allowable limit
 

of 0.2. An additional reduction in the deflection AT leads to
 

a controller which-does not cqmpletelycgmpensate for the
 

vibrational disturbance. Residual vibrations then remain.
 

The air sensitivity for a perturbation frequency = us0+ 3" 

increased by 3% is shown in Figures 61 to 65. It is shown in 

Figures-66 to 7-0- for =06--k31wS, The releyant quantities,
. 

the airframe deflection z and tihe airframe velocity z1, have
 
z z
 

deflections which are about 10 times smaller than when controller
 

I is used (Figures 19 to 28). This perturbation observer is
 

less sensitive to mismatches than the Notch isolator.
 

The Bode diagrams of the perturbation transfer functions
 

(Figures 71 to 73) confirm this insensitivity regarding the mis­

match as Figure 73 shows. The gap at w = 4 is clearly wider than:
 

in -Figure 31 or Figure 48.
 

4.4. Design of the. dynamic compensator (Controller I) for /15
 

feedback of temperature difference of the actuator
 

(Model III).
 

The optimization of the controller results in the following
 
-


.

controller matrix K*
 

-5.04 -1.95 0 1 0- -1 

.33 1.9r 1 0 -383 0 0 (22 ) 
K* 28.54 .29. I 1 -7.36 0 0 (22 

t.02 -16-99 - 0 0 - 0 -16 

-0.20 - .72 0 0. 1 0 

aridthe ad~dtional feedback kI - - 0.41 

of the integral through Az.
 

20
 



-.Tn-- contrast to the basic Cntroller I (Figure--5--thbe--ntegrail 

" J &T j is also introduced into the dynamic part of the controller 

(see dashed line). For this purpose, the matrix K* is extended 
3
 

to
 

F2.33 15:.93 J 1.56 1 
(23)
28.54 -. 29 3.36 

K = 1.04 -16.99 O 

-0.20 - .72 0 

The time variations of the.;state and control variables for 

the perturbation variable compensation are given in Figures 74 

to 80. Since Controller I does not simulate the state, the 

Notch isolator is also-not excited according to the isolation 

condition (Equation 12). The airframe acceleration i, is pro­

portional to F> and does not go completely to zero. 
Tz
 

Figures 82 to 86 show theftrim behavior of the system aft-er-j
 

a 2.5 g maneuver according to Figure 81. The relative deflection
 

remains within the permissible limit IlZIvp o.031
 

The Bode diagrams of perturbation transfer functions are
 

given in Figures 87 to 89.
 

4.5. 	 Comparison of resultsi regarding satisfaction of the
 

design criteria,. the perturbation sensitivity of the
 

design, the computer icalculation requirement for the
 

design and'tbe feasLi~ldity
 

Investigations in this chapter have shown that themethod of
 

output vector feedback for controller design can be applied to the
 

problem of oscillation isolation of helicopters using a few
 

i siuedcquatrtfties. The system motions remain Wihh--t-h&
 

design limits. Two different methods of controller design were
 

,inves.tigate-,,-a-.namic c.Qmp-ens.a:tprJ Controller I) and an observer
 

21 



with Rictati feedback (Controller 11). 	 /16
 

The system-motions during the transient processes for
 

perturbation compensation ane clearly .smaller for Controller II
 

than for Controller I. For the Controller I in Figure 11, we have
 

RmIAx 0,02 and for Controller II in Figure 52 1I . 0,0041 

The duration of the transient process is about 1 - 1.5 rotor 

revolutions in both cases. On the other hand, the maximum de­

flection Az of the rotor-gear unit for Controllei' I is clearly 

smaller .__0 O , ,( Figure 16) than for Controller II 

4AZwxy.4, Figure 57). For Controller II, we reached the 

design limit at the relative deflection Az. For Controller I the 

amplitude of z can still be decreased to offset Az. One can 

also expect that the error sensitivity will decrease if there 

is a mismatch of the Notch isolator (Figures 19 to 28 compared 

with Figures 61 to 70, also the Bode diagrams, Figure 31, 

compared with Figure 73). 

The systematics of the design of Controller I allows one to
 

consider several criteria but the computation times arelarge
 

(about 30 to 50 minutes of CPU time). On the other band, the
 

Controller I only requires small computation times (about 1 - 3
 

minutes of CPU time) for a computer run.
 

In addition, the Controller I has a reduced number of
 

parameters (about 10-15) and is easier to build t-tan Controller II
 

(about 40 parameters). Controller II is more complex. The
 

simple integral over Az is not sufficient to satisfy the design
 

goals. The relative deflection Az must be integrated twice in
 

order to reach the design goal ,i-i)(A '<'o.2),
 

Sections 4,2 and 4.4 discuss the Controller I for two
 

additional helicopter models (IIand III), and its effectiveness
 

is demonstrated.
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We were able to show that tested and effective controller
 

concepts with output vector feedback are available which allow
 

a completely active oscillation isolation system for a helicopter.
 

These controllers do not require the complete state vector of the
 
system as input variabes_,to eliminate disturbance or for guaran­

teeing trimming during maneuvers. They only require the output
 

vector, which has a low order (a few measurement terms). This
 

means that these controllers can also be used when eigen oscilla­

tion modes of the airframe are considered, without measuring the
 

corresponding oscillation mode and their derivatives. We must
 
only guarantee that these oscillation modes can be observed with
 

a single measurement variable.
 

5. SUMMARY AND OUTLOOK 


In this report we discussed concepts for designing a com­

pletely active helicopter isolation system using output vector feed­

back. Three different dynamic models of the helicopter including
 

rotor-gear unit were introduced. Two high performance methods
 

for controller design using output vector feedback were applied
 

to the helicopter models mentioned above, a dynamic compensator
 

and an observer with Ric6ati feedback. The two design criteria
 

for perturbation compensation with vibration excitation which is
 

harmonic with the blade number as well as trim behavior for a
 

2,5 g maneuverwere maintained with the controller design. These
 

controllers do not require the knowledge of the entire state vec­

tor for satisfying the design goals. Therefore, their structure
 

is very well suited for controlling higher order models, i.e.,
 

helicopter models including modes of the airframe.
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,Figure 2. Block diagram of the overall systems controller. 
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Figure 3. Helicopter model 2 for a completely active
 

oscillation isolation system.
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Ferturbati n /21
 

Yi'i 

Iigure 4a. Perturbation weigbtIng
 

Figure 4b. Weighting of the control behavior.
 

- [Output or,state' 

Figure 4c. Weighting of the transient behavior.
 

The -square-ofthe shaded area is the contribution.to-.eacb­
quality criterion.
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Figure 5. Controller i.
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Figure 6a. Model of the helicopter with perturbation model.
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F.i gure 6b. Observer
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Elemdnt C0 

1~~1 /2~4 

Figure 6c. Structure of element C*.
 

Figure-.7. -Contnoller II.
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Figure 8.Perturbation sequence. 
Perturbation compensation ' .676s 15 R.dStep: 


0.1 

Figure 9. Variation of relative deflection 

0.1 

Figure 10. Variation of airframe velocity
 

r 31 

Oy1)0 



Figure 11. Variation of aihf r&me deflection. 


Figure 12. Velocity of relative deflection.
 

0.1 1
 

Figure 13. Control variable. i
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Figure 14. 2.5 g maneuver perturbation 

AT - , - .d /28Step : Maneuver case 


Figure 15. Control variable
 

Q
 

Figure 16. Variation of relative,deflection.
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Figure 17. Airframe velocity.-


Figure 18. Variation of airframe deflection.
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Figure 19. Relative deflection. / 30
 

1
 

Figure 20. Velocity of relative deflection.
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Figure 21. Airframe velocity3
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Figure 22. Airframe deflection
 

Figure 23. Control variable.
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Figure 24. Relative deflection velocity. / 32 

0.1 

Figure 25. Relative deflection.
 

J 

Figure 26. Airframe velocity;
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Figure 27. Airframe deflection.
 

0.1 

Figure 28. Control variable.
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Figure 29. Bode diagram of perturbation Figure 30. Bode diagram of perturbation
 
transfer function of relative deflection transfer function of relative acceleration.
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Figure 31. Bode diagram of perturbation transfer function
 
of airframe acceleration.
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/ 36
Figure 32. Perturbation. 


0.1 

Figure 33. Relative deflection.
 

.5
 

Delayed airframe acceleration.
Figure 34. 
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Figure 35. Airframe deflection. 


0.1 

........ I. J. . 

Figure 36. Velocity of relative deflection.
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Figure 37. Airframe velocity.i 
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Figure 38. Control variable.
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Figure 39. 2.5 g maneuver perturbation.
 

2 
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Figure 40. Control variable.
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Figure 41, Relative deflection.
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Figure 42. Delayed airframe acceleration.
 

0.2 

Figure 43. Airframe deflection.
 

10.1 
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Figure 44. Relative deflection velocity.
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0.1 
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pigure 45. Airframe velocity.
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Figure 46. Bode diagram of perturbation Figure 47. Bode diagram of perturbation
 
transfer function of relative motion. transfer function of relative acceleration.
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Figure 48. Bode diagram of' perturbation transfer funct'ion of
 
delayed air: rame acceleration.
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Figure 49. Perturbation. 
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Figure 50. Relative deflection
 

0.1 

Figure 51. Airframe velocity. ORIGINAL PAGE
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Figure 52. Air frame deflection.
 

1
 

Figure 53. Relative deflection velocity.
 

10.1
 

.!Figure 54. Control variable
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2.5 g maneuver peirturbation.
Figure 55. 


2 

Control variable.
Figure 56. 


:rt 

Relative deflection. oIG''I A 5AjF
'Figure 57, 
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Figure 8.Airframe velocity.
2i 

.2+ 

1' 

Figure 59. Airframe deflection.'
 
7T 

Figure 60. Relative deflection velocity.
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Relative deflection.
Figure 61. 


0.1 

Airframe velocity.
Figure 62. 
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Figure 63. Airframe deflection. 	 ORIG1IAL PAGE 
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Figure 64. Velocity of relative:deflection.
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Figure 65. Control variable.
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Figure 66. Relative deflection,. 
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zz 

Figure 67. Airframe velocity.
 

0.01 

Figure 68. Airframe deflection iSV 
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Figure 69. Velocity of relative' deflection.
 

Figure 70. Control variable.
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Figure 71. Bode diagram of the pertur- Figure 72. Bode diagram of the perturbation
bation transfer function of relative 
 transfer function of relative acceleration.
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Figure 73. Bode diagram of the perturbation transfer function
 
of airframe acceleration.
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Figure 74. Perturbation sequence. 

'0.01 

I. V-V 
Figure 75. Relative deflection.
 

10.01
 

Figure 76. Differential pressure of actuator.
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Figure 77. Relative deflection velocity.
 

0.1 

ipt 

Figure 78. Derivative of differential pressure.
 

0.1 

Figure 79. Isolator force.
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Figure 80. Control variable.
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Figure 81. 2.5 g maneuver perturbation. 


Figure 82. Control variable.
 

'0o1
 

Figure 83. Relative deflection.
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Figure 84. Differential pressure of actuator.
 

-l 
0.01 

Figure 85. Derivative of differential pressure.
 

1.0 

,Figure 86. Isolation force.
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