General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
PHYSICAL-CHEMICAL EXAMINATION OF THE \(\text{N}_2\text{O}_3-\text{SO}_3-\text{H}_2\text{O} \) SYSTEM

C. Linsström and G. Malyska

When (NO)HSO₄ is added to absolute H₂SO₄, specific conductivity rises sharply, possibly due to an increase in mutual interionic effects and viscosity as the (NO)HSO₄ concentration rises. The addition of SO₃ to the solution yields a precipitate; a combination of analysis, IR spectroscopy and x-ray diffraction techniques indicates that this precipitate is (NO)HS₂O₇.
Hantsch's determinations of the molar mass of (NO)HSO$_4$ in absolute sulfuric acid [1] yielded a mean value of 71.4 for four values varying from 70.8 to 72.5; whereas the calculated value was 127.076. Thus (NO)HSO$_4$ is highly dissociated in absolute H$_2$SO$_4$.

It was therefore of interest to investigate how the addition of (NO)HSO$_4$ to absolute H$_2$SO$_4$ affects the specific conductivity of anhydrous sulfuric acid. It develops that at first, specific conductivity rises sharply as the solution's (NO)HSO$_4$ content increases (Fig. 1). Each of the three isotherms demonstrates a maximum, the position of which is displaced as a function of temperature from $\kappa = 0.1100 \ \Omega^{-1} \text{cm}^{-1}$ at 25 °C and 21.8 Mol% (NO)HSO$_4$ to $\kappa = 0.340 \ \Omega^{-1} \text{cm}^{-1}$ at 75 °C and 25.5 Mol% (NO)HSO$_4$.

The initial rise in the isotherms corresponds to the conductivity isotherm curves obtained by Gillespie and Wasif [2] and Bass, Flowers et al. [3] for solutions of alkaline and alkaline earth hydrogen sulfates in absolute H$_2$SO$_4$. Gube [4], who examined the viscosity...
of solutions of (NO)HSO$_4$ in absolute H$_2$SO$_4$, found a sharp rise after 20 Mol% (NO)HSO$_4$ at 25 °C, the start of which shifted in the direction of higher concentrations of (NO)HSO$_4$ as the concentration rose. Thus, in addition to the increase in interionic mutual effects as the (NO)HSO$_4$ concentration increases, the sharp increase in viscosity may also be responsible for the decrease in specific conductivity.

The specific conductivity of solutions of (NO)HSO$_4$ in absolute H$_2$SO$_4$ is also decreased by the addition of SO$_3$. A subsequent paper will report on these results.

When SO$_3$ is introduced into a solution of (NO)HSO$_4$, a crystalline solid phase is precipitated. This precipitate was cleared of the mother liquor on clay over P$_4$O$_{10}$ in a desiccator, and then examined by element analysis, IR spectroscopy and x-rays.

The analysis yielded 0.0177 Mol sulfur and 0.0088 Mol nitrogen, or 0.0195 Mol sulfur and 0.0096 Mol nitrogen, respectively. This corresponds to a sulfur-nitrogen molar ratio of 2:1 or 2.05:1.

For IR spectroscopy, the substance was incorporated in Nujol and examined between Si plates in the wave number range 400-2500 cm$^{-1}$. Since Nujol demonstrates its own absorption in the range around 750 cm$^{-1}$, the substance was also incorporated in hexachlorobutadiene and examined in the same wave number range. The readings are given in Fig. 2. A comparison of our results
Fig. 3. X-ray interferences of: a. (NO)HSO₄ (after Stopperka); b. (NO)H₂S₂O₇.
Key: c. Intensity d. θ in degrees

with data from other authors [5-9] for analogous substances suggests the following correlations for the characterization of this substance:

740 cm⁻¹: νₗₗ S-O-S; 793 cm⁻¹: νₛₛ S-O-S; 960 cm⁻¹: νS-OH;
2304 cm⁻¹: νNO⁺. The exact position of the absorption bands was determined by comparison with calibration spectra obtained for NH₃ and CO.

X-ray diffraction readings for the same substance, given in Fig. 3 together with Stopperka's data for (NO)HSO₄ [10], show differences in comparison with Stopperka's values; these differences, in connection with the analytical and IR-spectroscopic examinations, indicate that the substance examined, which was obtained by introducing SO₃ into solutions of (NO)HSO₄ in anhydrous H₂SO₄, is the (NO)H₂S₂O₇ described by Wartel and Heubei [11].
Further investigations of the system are currently in progress.
REFERENCES