General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
PHYSICAL-CHEMICAL EXAMINATION OF THE N₂O₃-SO₃-H₂O SYSTEM

C. Lins"rom and G. Malyska

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TM-75169</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Title and Subtitle

Physical-Chemical Examination of the N$_2$O$_3$-SO$_3$-H$_2$O System

5. Report Date

September 1977

6. Performing Organization Code

FA TM-75169

7. Author(s)

C. Linström and G. Malyska,
Institute for Inorganic Chemistry of the Carl Schorhemmer Chemical Technical University

9. Performing Organization Name and Address

Leo Kanner Associates
Redwood City, California 94063

10. Work Unit No.

11. Contract or Grant No.

NASA-2790

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration, Washington, D.C. 20546

13. Type of Report and Period Covered

Translation

15. Supplementary Notes

16. Abstract

When (NO)$_3$HSO$_4$ is added to absolute H$_2$SO$_4$, specific conductivity rises sharply, possibly due to an increase in mutual interionic effects and viscosity as the (NO)$_3$HSO$_4$ concentration rises. The addition of SO$_3$ to the solution yields a precipitate; a combination of analysis, IR spectroscopy and x-ray diffraction techniques indicates that this precipitate is (NO)$_3$HS$_2$O$_7$.

17. Key Words (Selected by Author(s))

18. Distribution Statement

Unclassified - Unlimited

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

22. Price

NASA-HQ
Hantsch's determinations of the molar mass of \((\text{NO})\text{HSO}_4\)\(^\text{345*}\) in absolute sulfuric acid [1] yielded a mean value of 71.4 for four values varying from 70.8 to 72.5; whereas the calculated value was 127.076. Thus \((\text{NO})\text{HSO}_4\) is highly dissociated in absolute \(\text{H}_2\text{SO}_4\).

It was therefore of interest to investigate how the addition of \((\text{NO})\text{HSO}_4\) to absolute \(\text{H}_2\text{SO}_4\) affects the specific conductivity of anhydrous sulfuric acid. It develops that at first, specific conductivity rises sharply as the solution's \((\text{NO})\text{HSO}_4\) content increases (Fig. 1). Each of the three isotherms demonstrates a maximum, the position of which is displaced as a function of temperature from \(\kappa = 0.1100 \ \Omega^{-1}\text{cm}^{-1}\) at 25 °C and 21.8 Mol% \((\text{NO})\text{HSO}_4\) to \(\kappa = 0.340 \ \Omega^{-1}\text{cm}^{-1}\) at 75 °C and 25.5 Mol% \((\text{NO})\text{HSO}_4\). The initial rise in the isotherms corresponds to the conductivity isotherm curves obtained by Gillespie and Wasif [2] and Bass, Flowers et al. [3] for solutions of alkaline and alkaline earth hydrogen sulfates in absolute \(\text{H}_2\text{SO}_4\). Gube [4], who examined the viscosity

* Numbers in the margin indicate pagination in the foreign text.
of solutions of (NO)HSO$_4$ in absolute H$_2$SO$_4$, found a sharp rise after 20 Mol% (NO)HSO$_4$ at 25 °C, the start of which shifted in the direction of higher concentrations of (NO)HSO$_4$ as the concentration rose. Thus, in addition to the increase in inter-ionic mutual effects as the (NO)HSO$_4$ concentration increases, the sharp increase in viscosity may also be responsible for the decrease in specific conductivity.

The specific conductivity of solutions of (NO)HSO$_4$ in absolute H$_2$SO$_4$ is also decreased by the addition of SO$_3$. A subsequent paper will report on these results.

When SO$_3$ is introduced into a solution of (NO)HSO$_4$, a crystalline solid phase is precipitated. This precipitate was cleared of the mother liquor on clay over P$_4$O$_{10}$ in a desiccator, and then examined by element analysis, IR spectroscopy and x-rays.

The analysis yielded 0.0177 Mol sulfur and 0.0088 Mol nitrogen, or 0.0195 Mol sulfur and 0.0096 Mol nitrogen, respectively. This corresponds to a sulfur-nitrogen molar ratio of 2:1 or 2.05:1.

For IR spectroscopy, the substance was incorporated in Nujol and examined between Si plates in the wave number range 400-2500 cm$^{-1}$. Since Nujol demonstrates its own absorption in the range around 750 cm$^{-1}$, the substance was also incorporated in hexachlorobutadiene and examined in the same wave number range. The readings are given in Fig. 2. A comparison of our results
Fig. 3. X-ray interferences of: a. (NO)HSO₄ (after Stopperka); b. (NO)HS₂O₇.
Key: c. Intensity d. θ in degrees

with data from other authors [5-9] for analogous substances suggests the following correlations for the characterization of this substance:

740 cm⁻¹: v_S-O-S; 793 cm⁻¹: v_asS-O-S; 960 cm⁻¹: v_S-OH; 2304 cm⁻¹: vNO⁺. The exact position of the absorption bands was determined by comparison with calibration spectra obtained for NH₃ and CO.

X-ray diffraction readings for the same substance, given in Fig. 3 together with Stopperka's data for (NO)HSO₄ [10], show differences in comparison with Stopperka's values; these differences, in connection with the analytical and IR-spectroscopic examinations, indicate that the substance examined, which was obtained by introducing SO₃ into solutions of (NO)HSO₄ in anhydrous H₂SO₄, is the (NO)HS₂O₇ described by Wartel and Heubei [11].
Further investigations of the system are currently in progress.
REFERENCES

