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c.'

	 Using multimodal analysis, a variational finite element method is

presented for analyzing sound attenuation in a three-dimensional finite

duct with a peripherally variable liner in the absence of flow. A rect-

angular element, with cubic shape functions, is employed. Excellent

comparison between exact results and the finite element method is obtained

in cases where an analytical solution exists. This study indicates that,

once a small portion of a peripheral liner is removed, the attenuation

rate near the frequency where maximum attenuation occurs drops significantly.

Also, it was observed that the positioning of the liner segments affects

the attenuation characteristics of the liner and that effects of the duct

termination are important in the low frequency ranges. In general, the

results indicate that the main effect of peripheral variation of the liner

is a broadening of the attenuation characteristics in the mid-frequency

range. Finally, it is concluded that, due to matrix size limitations of

the presently available computer program, the eigenvalue equations should
l

be solved out of core in order to handle realistic sources.
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SYMBOLS

Ao ,A l ,A21A3 coefficients in polynomial 	 representation to 0

(egns.	 21	 and 22)

An, B modal	 amplitudes	 (see eq.	 3)

A	 (z)An = K (A eiKmz - G e
-iKinz

)(A*e
-iKnz + p*eiKnz)

m	 m	 m	 n	 n

c ambient speed of sound

c 
=	 [(KW KRe-1 )/(Kn/ K%'l

 )le 2iK nd

d, 9„ h length, width and height of the duct of figure 1,
respectively

R.	 h
Dn = o

	 a
OFndxdy

[DJ,	 [S],	 [t1] square matrices	 (equation	 (13))

h	 k

E
z

= f	 f	 I dydx
zo	 o

f 1 w, , f2 w cubic shape functions	 (equation 10)

Fn (x,y) acoustic mode in duct cross section (eq.	 4)

i 0 3 i kRl
Fmn (x,y) _ [cos ynx - — sin ynx] [cos a

rty
 - a sin amyl

yn	 m

G(x,y) acoustic pressure distribution at enEr,.,ice plane

(equation 2c)

GPQ
nodal	 values of G(x,y) and its first and mixed

partial derivatives



SYMBOLS

0 A 19A2 , A 3	 coefficients in polynomial representation to 3
(egns. 21 and 22)

A n , 
B 
	 modal amplitudes (see eq. 3)

iK2	
e- 

i:< 	 * -i'Cz	 * iKz
P, ►nn(2)	

Kn ► (1`,n ► e	 ►n	 - 3 me	 ►►► )(o n e	 n	 ^ B n e	 n )

c	 ambient speed of sound

C	 = (( Kn/Kte-1)/(Kn/KB, 
+1	

2iKnd

)1en

d,	 h	 length, width and height of the duct of figure 1,

respectively

c	 h
p n	 = j	 GFndxdy

(D1 , [S1 , 1t11	 square r ►atrices (equation ( 13) )

h A

E	 = f f	 I dydxz	 o o	 z

f l (-.), f 2 (},)	 cubic shape functions (equation 10)

F n (x,y)	 acoustic riode in duct cross section (en. 4)

	

i k ' - , 	i k(;
Fmn(x,y)	 _ [cos y x - _— 3 sin -Y x1[cos oL	 _ a ^ sin rimy]

	

Y n 	 m

G(x,y)	 acoustic pressure distribution at entr:. ► ce plane
(equation 2c)

GP4	 nodal values of G(x,y) and its first and mixed

partial derivatives
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I,	 J,	 M,	 M,	 m integers
P, Q

{ II = f.r [04- d 2 FZ 1 dA - iKf RF2dc
A	 c

TI finite element approximation to II

t

I z Axial	 acoustic intensity	 (eqn.	5),

i = J—= T—

k = m/c 4
ko k value at which a Cremer liner is tuned

Kn axial	 propagation constant

X, y,	 z distances along the X, Y, and Z axes respectively

X I , yJ respective values of x and y at node (I, J)

t time

am , yn characteristic numbers	 (eqn.	 18(b))

d first variation

I =	 (x - xI)/Ax

nJ
=(y - yJ)/4y

pe ambient density of air
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FN	 unknown nodal values of F and its higher derivatives 	 V

R, an, Ge	 specific admittances

R pQ^

	

	 nodal values of R and its higher derivatives along
the periphery of the duct

I

Ax, Ay	 respective height and length of a finite element
(see Figure 2)

m	 angular frequency

^n	 = kkn

Xmn	 = r 2	 —
Y n	 any

k h
Vmn	 = fe fe Fns Fn dxdy

R h

%n	 = f f Fns F n dxdy
0 0

n Gn

T^

Ada	 attenuation rate in decibels

(F}

	

	 vector containing the unknown nodal values of F(x,y)
and its higher derivatives

{G}

	

	 vector containing the known values of G(x,y) at
the nodes of the entrance plane

?xO 1
O 1̂0

Y
peg

r	 pF 

j	 ,
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differential vector operator in two dimensions

=v•5

first derivative in normal direction



I

INTRODUCTION

Lining the interior surfaces of aircraft engine ducts with acoustic

treatment is a well established method for reducing internally generated

aircraft engine noise. Large commerical aircraft such as the L-1011, DC-10

and Boeing 747 have successfully passed FAA certifications due, in part, to

this concept and are positive evidence that acoustic liners can reduce air-

craft noise effectively. However, increasingly stringent noise reduction

goals require that these acoustic suppression techniques be continually

refined and updated. Aircraft companies are now more than ever before in

need of new ideas and methods to enhance the present state of liner

technology.

initially, liner research was centered around uniform liners (ref. 1).

Later, Zorumski and Lansing (ref. 2) realized that liners could be made more

effective by taking advantage of impedance changes in axial segments. In

light of this development, Zorumski (ref. 3) developed a theory to compute

the attenuation in axially segmented circular and annular ducts. Several

other investigators (ref. 4, 5, 6, 7 and 8) have since investigated axially

segmented duct liners and their practical application.

The present analysis was motivated, primarily, by the success of axially

segmented liners and the desire for further effective methods for minimizing

internally generated aircraft noise. In this work, a new type of liner

variation, the peripherally variable liner, is investigated. In this type

of liner, the impedance of the liner is allowed to vary around the duct

perimeter, but remains constant in the axial direction. The impedance

boundary conditions for a peripherally variable liner become boundary

-6-
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conditions with variable coefficients and an exact analytical solution for

the acoustic field cannot be determined.

In this work, a finite element method is employed to extract the acoustic

field and calculate sound attenuation in a three-dimensional rectangular duct

with a peripherally variable liner. First, the governing Helmholtz equation
	 i

and impedance boundary condition for zero mean flow are transformed into a

single function, II, which has the governing Helmholtz equation and impedance

boundary conditions as its stationary conditions. Next, the f,-,e, element

method is applied to approximate the functional II. Cubic functions which

insure continuity of acoustic pressure and particle velocity throughout the

duct are employed as shape functions. The requirement that the functional

II be stationary results in a set of matrix equations which are solved to

obtain the acoustic modes. Source and termination effects due to finite

duct length are also included.

ANALYSIS

In this section, the mathematical expressions necessary for evaluation

of the attenuation of peripherally variable liners will be developed.

Statement of the Problem

The duct to be analyzed and the Cartesian coordinate system to be used

are shown in figure 1. The length, height, and width of the duct are d, h,

and R respectively. The duct walls are acoustically lined with a specific

acoustic admittance, H(x,y), which is independent of the axial coordinate

z, but is a function of position along the duct perimeter so that:

—7—
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Rp=0
an

(2b)

a(x,o) 01 (x

a(X,lb) 02(x)

a(O'A 03(Y)
(1)

a( h ,Y) 1'(Y)

A constant exit admittance, O e , is specified at the exit plane (z = d), and

an acoustic pressure distribution, G(x,y), is input at the entrance plane,

(z = 0).

In separable geometries with constant values of 0 on the duct perimeter

the solution to the acoustic field is given in terms of known trigometric

functions. However, when 0 is a function of position along the duct

perimeter, the solution for the acoustic Field must be determined numerically.

This paper is primarily concerned with analyzing the variable case. Since

existing mathematical models cannot handle this situation, this represents

a major contribution of this paper.

Acoustic Equations and Boundary Conditions

Steady state acoustic waves propagating in finite ducts, such as shown

in figure 1, ara governed by the three-dimensional Helmholtz equation

V 2 + k2p = 0	 (2a)
	

S

where k = w/c is the wave number, p is the acoustic pressure, w is the

angular frequency and c is the speed of sound. The acoustic boundary

condition along the duct perimeter is given in the form
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where a/an denotes the derivative in the direction of the outward normal

from the duct wall.' At the entrance plane, the boundary condition is

assumed known as

p(x,Y,O) = G(x,Y)	 (2c)

where G(x,y) is a given input pressure. The boundary condition for the

exit plane is expressed in the form:

ap ( x ,Y, d )/a z = Wep (x,Y,d)	 (2d)

The solution to equation(2)can be expressed in the form:

p (x,Y,z) = E LAneiknz + Bne-iknz) F n (x,Y)	 (3a)
n=1

in which

K2 = k 2 - an	 (3b)

An = Si
n 
/(cn + 1)	 (3c)

Bn = 0n cn/(cn + 1)	 (3d)

O
n
 = Dn /`Ynn	(3e)

R, h

Dn = f f G(x,y) Fn (x,y) dxdy	 (3f)

k

`pmn	 f f Fm (x, y ) Fn (x,Y) dxdy , (V)mn = 0	
m 

1 
n) (3g)

c  = [(Kn/kBe-1)/(Kn/k%+1)1 e2iknd
	

(3h)
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In equation (3), the characteristic function, F n , and eigenvalue, a n , satisfy

the equation

V2Fn + a2F n = 0	 (4a)

with the condition

,Irn - ikaF = 0	
(4b)

an	 n

along the duct perimeter. Note that as indicated in equation (3g), the

eigenfunctions satisfying equation (4) are orthogonal. This orthogonality

relation has been used in equation (3).

In this paper, equation (4) wiri be solved by the finite element method.

The extracted values of Fn and An can then be substituted into equation (3)

to determine the acoustic field. The numerical solution will be used to

develop and discuss some of the attenuation characteristics of these peri-

pherally variable liners. Equation (3) is also used to evaluate the effect

of a finite termination impedance on the attenuation characteristics in a

finite duct.

Attenuation

Be Fore proceeding with the solution to equation (4), it is useful to

develop an expression for the attenuation produced by the liner in terms of

the parameters which have been introduced. The axial acoustic intensity at

any axial position in the duct is

I =	
1	

Re -ip* BE

z	 2p
0
ck	 azl

(5)



where po is the ambient density of the medium, Re[ ) denotes the real part

of the complex expression enclosed within the brackets and the superscript

asterisk indicates the complex conjugate, Furthermore, the total acoustic

power is the integral of the acoustic intensity across the cross section

h Q,
Ez = f f Izdxdy

0 0

and the decrease in decibels of the acoustic power from z = 0 to z = z 0 can

be written as

AdD = 10 lo910(Eo/Ez0)	 (6)

Generally, the specific acoustic admittance, 0, is chosen so as to maximize

this attenuation. In terms of the parameters of equation (3), equation (6)

becomes

R[ ZX	 YAmn (0)1

AdB = 10 log 10 _ e m=1 n=1 
ntn 	 y—	

(7a)
Re [ z T ^mn Amn(zo)1

m=1 n=1

in which	
2 h

MnY 	= f o Fin Fn(7b)

and
ik z	 -ik z	 * -ik z	 * ik z	 (7c)

Amn ( z ) = km(Ame n' - ' me	 m )(A ne	 n + Rne n

Equation (7) will allow calculation of the attenuation produced by the lining

in the finite duct.

Variational Formulation

Forsythe and Wasow (ref. 9) show that equation (4) is satisfied if and

only if the variational condition

-11—
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1

i
6II = 0	 (8a)

i
where

II = f f [VF • 0-a
2
F21 dA - ik f OF2dc	 (8b)	 I,

A	 c

is satisfied. In equation (0), the subscript n on F and a has been 	 ^1

dropped for convenience and V is the differential vector operator in the	 j

duct cross section. This paper will approach the solution in the duct cross

section by using a finite element approximation to the functional II. This 	
J

approximate functional, Y, is developed in the next section.

Finite Element Formulation

Finite elem^-" liscretization. - In the finite element process, the

rectangular dare whose cross-section is the region (0 < x < h, 0 < y < ?),

is divided into (M - 1) (fl - 1) elements as shown in Figure 2. Although

many kinds of elements could be used in this setting, attention is restricted

to rectangular elements. The width and height of each element are Ay and

Ax respectively. Points at the corner of each element, called nodes, are

designated as (I, J) where I = 1, 2, ?,, . . . M and J = 1, 2, 3, , . . N.

It is at these nodes that the values of the unknown function, F, and its

higher derivatives will be determined.

Shape functions. - The finite element technique expands the solution

within each element in term's of shape functions. The shape functions at

each node are defined in terms of local coordinates

i

r
f

LI



r I =	 AxI	 0 e ^r^	 l	 (ga)

+	
nJ- y-YJ 	0< I,IJ ^ <l	 (gb)

Ay

The shape functions utilized in this analysis, f 1 W and f2 (r), are even and

odd functions, respectively, which are non-zero only in the interval (-1, 1)

and which have unit magnitude and slope respectively, at r = 0 as illustrated

in figure (3). Furthermore, both f l and f2 have zero magnitude and slope <t

r = ± 1. The functions are

rl - 3r,2 + 21r,jr,2	 Id < 1
f (r) 11	 0	 IrI	 1

	

(10a)

- Sr 3 - 21r1 r, +r	 Ir,j < 1
f2(r) 	 (lOb)

0	 Irl > 1

These functions give the influence of unit magnitude and slope at the node

in a one dimensional problem. Thus, the total approximating function may

be formed by superimposing functions of this type.

The approximatinj function for F to be used here is

F	 C(FIi)	 (lla)

in which

C(T) = E	 E	 E	 E	 T	 fIJ	 (r ) fq (nJ )
p=1 Q=1 I=1 J=	

IJ 
p I
1 

and

(11b)

11	 12
T IJ	 T IJ	 - 

IT(x,, YJ)

21	 22	 eT (x I, yJ)

T IJ	 TIJ	

,Ax 

I	 ax

-13-
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This expansion insures that the functions F and IF will be continuous

everywhere within the duct and also along its boundaries.

The admittance along the duct perimeter will be similarly expressed in

the form

p	 C(R14)	 (12)

The values of the nodal coefficients in equation (12) are set to zero if

node (I, J) does not lie along the duct wall where S is prescribed. Note

that the values of the nodal coefficients in the expansion for s (equation

(12)) are known whereas those in the function F, equation (lla), will be

determined such that the functional, II, is stationary.

Finite element matrix equations. - The approximating function to F

(eq. (11a)) and polynomial representation for S (eq. (12)) lead to an

approximate functional II which is a quadratic form in the unknown nodal

coefficients FIq

II = {F}T [[S] - ik [D] -X 2 [M]IM
	

(13)

where the superscr.Nt "f indicates the vector transpose. It is convenient

to be consistent with the nomenclature used in structural analysis and

refer to [S], [D] and [M] as the acoustic stiffness, damping, and mass

matrices respectively. [S] and [M] are square symmetric matrices whose

coefficients are real. [D] is a complex square symmetric matrix containing

0
the coefficients in equation (12), whereas {F} is an unknown vector

icontaining the coefficients in the expansion given by equation (lla). [S],

_III_
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[Ml and [D] are each of order 4MNX4MN, although many of the entries are

zero. The unknown coefficients in (F), (4MNX1), are ordered so that

{F}T = {F^^,F^1, F^1, F^^, F,2, F12 .	 FMN}	 (14)

Requiring that the first variation of the

'

 functional vanish leads to

a set of matrix equations of the fora,

	

[[S] - ik[D]] (F)= X
2 
[M] {F}	 (15)

Equation (15) may be solved to obtain the eigenvalue X and eigenvector

(F).

Finite Element Representation of Acoustic, Power

In general, the solution to equation (15) will yield many eigenvalues,

X and a different eigenfunction F for each eigenvalue. It is, therefore,

convenient to refer to {Fn} as the eigenvector corresponding to the eigen-

value 1n . Now consider the integral 
%n 

given by equation (3g). It may be

expressed in matrix form as:

T

%n = {F
m
}tM]{F n }	 (16a)

1ikewije	 T

%n = {Fm}[M]{Fn}*	 (16b)

Further, in order to evaluate the constant 
0  

(Pq. (3f)), expand the boundary

condition G(x,y) in the form:

G(x,y)	 C(Gp4) 	(17a)

D 
	 is then expressed in the matrix form as:

Dn = {G}T fM]{F n }	 (17b)

,

I'
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in which

T	 1 12 12 22 I1 21 22

	

{G} - 
(G 11 , G 11 , G 11 , G 11 ' G12, 

G 12 ..GMN )	 (17c)

Equations (16) and (17) allow the determination of the constants A n and do

in the solution for the acoustic pressure (eq. (3a)) and the evaluation of

the attenuation given by equation (7a). 	 These expressions can then be

utilized to evaluate the attenuation of peripherally variable liners.

RESULTS AND DISCUSSION

In this section, the finite element method developed in this paper is 	 j
r

first compared to exact analytical solutions for uniform liners. The techni-

que is then exercised to obtain the attenuation characteristics of infinitely

long peripherally variable liners. Finally equation (3)is used to evaluate

the effects of finite duct termination on the attenuation characteristics

of a peripherally variable liner.

Fcr all of these studies, certain parameters were fixed. Finite element

rec,alts were restricted to four rows and four columns of elements (M = N = 5,

see fig. 2) with R, h, and d all equal. 	 Modes were ordered according to

the imaginary part of the complex propagation constant : Kn . The mode for

which the imaginary part of Kn is smallest is referred to as mode one,whereas

the mode with the second smallest value is referred to as mode two, etc. Also,

the bottom and two side walls of the duct are kept rigid (01	 Rs = $ 2 = 0) and

the eigenfunctions from the numerical and exact analysis are both normalized

to unity at the origin.

-16-
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Uniform Liners

Confidence in the finite element solution may be obtained by showing it

compares favorably with exact analytical solutions for uniform liners.

Exact analysis. -	 When 6 is constant along each of the four duct

walls (fig. 1) the solution to equation 4 is:

Fmn (x,y ) = [Cos Y nx - ^Ya3Sin y,nx]LCos amp - aR 'Sin amY]	 (18a)
n	 m

where the parameters a n satisfy the trancendental equation

C a n + k2 Risz] Sin a n  + ik(s l + pz) a
n 
Cosa nk = 0	 (18b)

and the parameters Y.m satisfy the same trancendental equation with a.n,6,,(3z)

and k replaced by Y n, 039 Rn, and h , respectively. The eigenvalues Xmn

are related to app and Yn by the equation

Xmn = a
iIn + Yn	 (18c)

Watson and Lansing (ref. 10) solved the trancendental equation which has the

general form of equation (18b) using a Newton-Raphson iterative scheme. This

program was used in the present work to extract 
y  

and am for the results

involving uniform liners. These values were also used as a basis for checking

the accuracy of the eigenvalues extracted by the finite element method.

Comparison of the numerical and exact analysis. - The first example

considered involved calculating eigenvalues for a hard wall duct (S = 0). The

lowest ten eigenvalues from equation 8 are listed under the heading "Exact

Eigenvalues" in Table 1. Numerical results are also shoran in the table. Good

agreement between the finite element and exact eigenvalues is observed. The

hard-wall modal integrals inn (eq. 16a) computed by the finite element method

are also compared to exact analytical results in table 2. Good agreement is

-1'l-
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again observed.

As a second example, consider a soft wall duct in which p,, = 2.0 - 1.65i

and the wave number is unity (k = 1). Eigenvalues extracted by the finite

element method are compared to those extraxted by a Newton-Raphson iterative

scheme in table 3. Good agreement is again obtained. The modal integrals 'nn

for the soft wall duct are also compared to exact analytical values in table 4.

Note that good comparison between the exact and analytical values is again

obtained.

These two examples of uniform liners illustrate the ability of the finite

element approximations presented in this paper to give accurate and reliable

results. Although the values are not presented, the modal integrals 
V'mn(m 

# n)

were also computed for both the hard and soft wall ducts. Both the real and

intrjinary parts of these integrals were of the order 10 -4 or less for each of

the ten modes considered, indicating that the modes are orthogonal in accordance

with equation (3g). It should also be noted that the effects of increasing

wave number, k, have not been throughly investigated. However, it has been

observed that at least for the first two modes, the error in both the eigen-

values and modal integrals, pmn (m # n), are consistent with those in the tables

for 0< k< 10.

Peripherally Variable Liners

Having established confidence in the finite element solution, this

technique is now exercised to obtain the attenuation characteristics of

infinitely long peripherally variable liners. The effects of finite duct

termination will also be discussed.

-18-
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r Infinitel.y long peripherally segmented liners. - Extending the approach

of Cremer (ref.11), the attenuation characteristics of infinitely long

peripheral liners are determined by investigating the attenuation rate of the	 j

least attenuated duct mode. The least attenuated mode in the context here

shall mean the mode with the smallest attenuation rate. Cramer (ref.11) has 	 IJ^

determined that, for a two-dimensional infinitely long duct with a hard

surface on the lower wall, the attenuation rate of the least attenuated duct

mode can be maximized by choosing the admittance of the upper wall to be:

sc (kh) = (2.06 - 1.65i)/kh
	

(19)

A liner with a wall admittance of 	 0C (kh) is referred to as a Cremer liner and

is said to be tuned at k 0 if the admittance of the upper wall is given by

OC (k0h). This relation has been utilized to determine admittance values for

the peripherally segmented liners.

In the examples to follow, the bottom and two side walls of the duct in

figure 1 have been kept rigid (0, = 63 = 02 =0). Thus the admittance

(see fig. 1) of the upper wall is allowed to vary in a stepwise or continuous

fashion. This is at variance with the mathematical models which have been

constructed to date which a°e restricted to axial segmentation of the duct

liner (segmentation along the Z-axis).

In order to simplify discussions of peripherally segmented liners, a

segmented liner will be referred Co as a k l -k2-k3-k4 liner. This notation

implies that:.
is

I

ORIGINAL PAGE IS
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A c (k l h )	 0 < y < ,

	

S4 (Y) = Oc (k2h )	 i < y —` i

	

Rc (k3 h )	 i < y < a
4	 2

(20)
a

R(k	
z

	

c 4h )	 , < y < 1

if

where 0C (kh) is the Cremer admittance given by equation 19. Also, to

avoid referring to a Cremer segment tuned at infinity, the notation

k l - 0 - k3 - k4 will denote that the portion of 04 corresponding

to the tuning frequency k 2 is a hard wall.

Numerical studies were conducted to evaluate the effects of

shorteningthe width of an initially full width Cremer liner. Figure 4

illustrates this effect. Note that once a small portion of the liner is

taken away, the attenuation rate near the tuning frequency decreases

substantially. On first thought, one might expect that by taking away

one quarter of the liner, the attenuation rate near the tuning frequency

would be reduced by about one quarter. However, in fact the attenuation

rate is reduced by about one half.
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In figure 5, it can be seen that the attenuation rate of a peripherally

segmented liner may also be changed simply by changing the positions of

the liner segments. Note, that although the attenuation rate near the

tuning frequency of the liner remains the same, the attenuation curve in

the mid-frequency range is much broader for a 0-2-0-2 or 0-2-2-0 liner than

for a 2-2-0-0 liner.

In figure 6, the attenuation characteristics of peripherally segmented

liners having Cremer segments tuned at several frequencies are shown. The

first segment of all liners is a Cremer liner tuned at h = 2. It can be

seen that the shape of the attenuation curve can be altered, although not

substantially, by the variation of the tuning frequencies. Essentially,

the curve is dominated by the lowest tuning frequency utilized.

Infinitely long continuous peripheral liners. - The finite element

analysis presented in this paper can also be employed to investigate a periphe-

ral liner with continuous variation.

Figure 7 shows the attenuation curves of four peripheral liners with

continuous linear variation of the admittance. The admittance 04 of each

liner is given by:

where

f.

r	 j

l`

R4 = AO + A l y

Ao = Rc (2.0 h)

Al = k(kmax h)

_?1_

(21a)

(21b)

(21c)

li	 1
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The value of 
kmaxh 

is different for each liner. Note that for each liner

the maximum attenuation rate occurs at h = 2. However, the value of this

maximum attenuation decreases with increasing 
kmaxh. 

There is also some

broadening of the attenuation curve at the midfrequencies.

In figure 8, the variation of the real part of the admittance of three

different types of liners are compared. The segmented liner is a 2-4-6-8

liner, while the liner with the liner variation has the form of equation 21

with 
kmaxh 

= 8. The admittance for the cubic liner was expressed in the form:

04 (Y) = AO + A ly + A2y + A3y 
3
	

(22)

where the coefficients in equation 22 were chosen to that, at y = 0, y. = 1/3,

Y = 2/3, and Y = 1, the values of RC-«
were Sc (2.0 h), Sc (4,0 h), pc (6.0 h),

and 6c (8.0 h) respectively. The variation of the imaginary part of the

admittance of these three liners will be similar to that shown in figure 8.

Figure 9 shows the attenuation rates for each of the three liners. The

attenuation rates for the cubic and four-segment liner are not significantly

different although the attenuation curve for the cubic liner is slightly

broader than that for the segmented liner. The liner with linear variation

has a greater attenuation rate than the other two liners in the low to

midfrequency range.

Effects of a Termination Impedance on Liner Attenuation

When the duct is of finite length, non-negligible acoustic energy may

be carried to the termination by other modes than the least attenuated mode.

As a result, the attenuation produced by the liner must be computed from

equation 7a, which includes the effect of the termination as well as the

interaction between, the different modes. At the present time, the computer



program utilized in this study is unable to compute this equation exactly

due to storage limitations. The eigenfunctions , Fn , and modal integrals

Tnn and Tmn must all be retained. In addition, since the subroutine that

solves the eigenvalue equations (eq. 15) destroys the mass matrix, the

coefficients in this matrix must be stored in another matrix, thus requiring

further core.

However, if it is assumed that the source is such that all modes have

equal input energy and are in phase and that coupling between the modes can

be neglected (Tmn	 0, m ^ n), then the attenuation in the finite duct is

proportional to the sum of the attenuations of each of the individual modes.

Equation 7a reduces in the case of a single mode to:

AdD = 10 Log10

Re[e-2Im(Kn)_ n6 2iRe(Kn) + cn e2 iRe(Kn ) - cncne2Im(Kn)] (23)

Re[1 - 
cn + encn

Equation 23 is the expression for the attenuation of a single mode in a

finite duct. For infinitely long ducts, c n = 0. However, the parameter cn

is not necessarily zero for each mode in the finite duct and thus will

affect the value of the attenuation for the mode. Note that c n (eq. 3h)

contains the effect of the termination admittance as well as the duct length, d.

In the remainder of this section, the effects of a p oc termination

impedance (A e = 1) upon the attenuation of a single mode in a finite duct

will be investigated. Note that since the length of the duct is unity,

the expression on the right-hand side of equation 23 may also be referred

to as the attenuation "rate". When cn ¢ 0, the mode for which the right-

_p 3_
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hand side of equation 23 is smallest will be referred to as the least

energy mode.	 However, when	 cn = 0, the mode for which the right-hand

side of equation 23 is smallest will be referred to as the least attenuated

mode.

The attenuation rates for a 2-4-6-8 liner and a	 2-2-8-8	 liner are

given in figures 10 and 11, respectively.	 In each figure, the attenuation

curves for the least energy mode, the least attenuated and the least f

attenuated mode with reflectlons (c n ¢	 0) are plotted.	 The asterisk on

the attenuation curve for the least energy mode denotes that, at that parti-

cular value of	 kh, the least energy mode is the same as the least attenuated

mode.	 Note that figures 10 and 11 display the same characteristics. 	 The

attenuation rate for the least energy mode is lesu than that of the least

attenuated mode with reflections at the lower frequencies. 	 However, each

of the three attenuation curves are identical at the higher frequencies.

In fact, the least attenuated mode and the least energy mode are the same

mode at the higher frequencies. {

The results shown on figures 10 and 11 	 indicate that the termination of

the duct must be taken into account in liner optimization studies at the

lower frequencies.	 At the higher frequencies, the attenuation rates are

identical	 indicating that the effects of the termination can be neglected

at these frequencies. 	 One should understand however, that these conclusions j

are based on the assumption that the total attenuation rate in the finite

duct is proportional	 to the attenuation rate of the individual `odes.

-Ph-
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CONCLUDING REMARKS

Based on the results of this work, the following conclusions are drawn:

1. The attenuation rate for a peripherally segmented liner drops
significantly if a small portion of the liner is removed.

2. One can alter the attenuation characteristics of a peripherally
segmented liner by placing the liner segments in different
positions along the periphery.

3. Based upon the attenuation curves considered here, it appears
that the primary effect of peripheral variation is a broadening
of the attenuation characteristics for the liner.

4. Effects of the duct termination must be taken into account at
the lower frequencies, when optimizing peripherally variable 	 1
liners.	 j

Conclusions 1, 2, and 3 were based upon infinite ducts, whereas conclusion 4

employed the assumption of equal partition of energy and neglecting coupling

for the modes. Although these restrictions are somewhat removed from reality,

they do provide a means for investigating the attenuation characteristics of
;

peripherally variable liners.

Future Work

There is additional work to be done with regard to the computer program 	 I

developed in conjunction with the finite element theory. Ir order for the

computer program to model more realistic ducts, such as finite length ducts

with realistic sources, it is suggested that equation 15 be solved out of core.

Both matrices are block tridiagonal, symmetric, and in addition [M] and [S] are

real. Taking advantage of these special features should allow one to incor-

porate thousands of degrees of freedom in this present analysis. It is further

suggested that the computer program be combined with an optimization program so

as to determine if peripherally variable liners can achieve more attenuation

than the best uniform liners.
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COMPARISON OF EXACT AND FINITE ELEMENT EIGENVA_JES
FOR A HARD WALL DUCT (R I = 0)

EXTCT EIGENV-A-L -U-E--	 EIGENV L-RE COMWUTEf1

FROM FINITE ELEMENT

METHOD

TABLE 2

COMPARISON OF EXACT MODAL INTEGRALS WITH THOSE EXTRACTED

BY THE FINITE ELEMENT METHOD FOR A HARD WALL DUCT

MODE NO., n	 VALUE OF	 4'	 COMPUTED

EXACT	 T
nn

nn
FROM FINITE ELEMENT

!	 METHOD

1 1.000 1.000

2 .500 i	 .500

3 .500 .501

4 .250 .250

5 .500 .500

6 .500 .495

7 .250 .246

8 .250 .247

9 .250 .245

1 0 .500 .480
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MODE NO.. n	 EXACT `Enn

1 -0.823 - 0.282i

2 .164	 - .131i

3 -	 .041	 + .141i

4 .082	 - .066i

5 .475	 - .027i

6 -	 .041	 + .141i

7 OE2 - .066i

8 .238 - .014i

9 .238 - .014i

10 .490	 - 011i

VALUE OF Y'
nn
 COMPUTED

FROM FINITE ELEMENT

METHOD

-0.081 0.282i

.163 -	 .131i

-	 .038 .145i

.083 -	 .066i

.472 -	 .026i

-	 .025 +	 .161i

.038 -	 .069i

.237 -	 .0113i

	.232	 -	 .012i

	

.472	 -	 .010i

TABLE 3

COMPARISON OF EIGENVALUES EXTRACTED BY THE FINITE ELEMENT
METHOD WITH THOSE OBTAINED BY THE NEWTON-RAPHSON

ITERATIVE SCHEME FOR k = 1. 
B 1 =83"2 = 0 and B4= 

2.0-1.65i

MODE NO., n	 EIGENVALUE COMPUTED FROM 	 EIGENVALUE COMPUTED
NEWTON-RAPHSON ITERATIVE	 FROM FINITE ELEMENT

SCHEME	 METHOD

1 1.835	 - 1.219i 1.834	 - 1.218i

2 2.342	 - .987? 2.342	 - .988i

3 3.487	 - .641i 3.484	 - .639i

4 3.840 - .602i 3.844	 - .602i

5 6.012	 - .336i 6.013 -	 .337i

6 6.40 - .347i 6.432 -	 .338i

7 6.542	 - .348i 6.656 -	 .351i

8 6.782	 - .298i 6.783 -	 .2931

9 8.693 - .233i 8.696 -	 .232i

10 9.250 - .217i 9.256 -	 .218i

TABLE 4

COMPARISON OF THE EXACT MODAL INTEGRALS WITH THOSE COMPUTED BY
THE FINITE ELEMENT METHOD FOR THE DUCT

OF TABLE 3
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ŵ ^ 1

of w wCD
l.L J J

II	 II	 II

I	 ^

I	 i

LL
O w

Z < ca

w ^ ^
Q
w Q
Ckf

0

0

w
F—d
0
Q
O

U-N O

• W
Ln
Of
w

cn

cr-

G.

0

w
t^

n

•v

U
r--
cn

u

cn

I

c^
f:

is

'L
I=
CJ

c^
c^



1 1 	 !	 -

i
C
u

v
C
m

L..
cvw
C

c

On
N

O
v-

CCT

O

cl.t

ro

CO

c
CD

Q-
CJL
CJ`

1..1.

w
Z_

J
ofWz zw

Z w U_

J C/) co

0

Y
00 >-

UZ
0'

L1.

^ L1J
N_

^aC

N

n

z 
ĉo
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