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A FINITE ELEMENT SIMULATION OF SOUND ATTENUATION IN A
FINITE DUCT WITH A PERIPHERALLY VARIABLE LINER
by

Willie R. Watson

NASA-Langley Research Center
Hampton, VA

Using multimodal analysis, a variational finite element method is
presented for analyzing sound attenuation in a three-dimensional finite
duct with a peripherally variable Tiner in the absence of flow. A rect-
angular element, with cubic shape functions, is employed. Excellent
comparison between exact results and the finite element method is obtained
in cases where an apalytical solution exists. This study indicates that,

once a small portion of a peripheral liner is removed, the attenuation

rate near the frequency where maximum attenuation occurs drops significantiy.

Also, it was observed that the positioning of the Tiner segments affects
the attenuation characteristics of the Tiner and that effects of the duct
termination are important in the lTow frequency ranges. In general, the
results indicate that the main effect of peripheral variation of the liner
is a broadening of the attenuation characteristics in the mid-frequency
range. Finally, it is concluded that, due to matrix size limitations of
the presently available computer progrém, the eigenvalue equations should

be solved out of core in order to handle realistic sources.
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duct with a peripherally variable liner in the absence of flow. A rect-
angular element, with cubic shape functions, is emnloyed. Excellent
comparison between exact results and the finite element method is obtained
in cases where an analytical solution exists. This study indicates that,
once a small portion of a peripheral liner is removed, the attenuation
rate near the frequency where maximum attenuation occurs drops significantly.
Also, it was observed that the positioning of the liner segments affects
the attenuation characteristics of the liner and that effects of the duct
termination are important in the low frequency ranges. In general, the
results indicate that the main effect of peripheral variation of the liner
is a broadening of the attenuation characteristics in the mid-frequency
range. Finally, it is concluded that, due to matrix size limitations of
the presently available computer program, the eigenvalue equations should

be solved out of core in order to handle realistic sources.
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I, d, M, N, m integers
P, Q
I =4t [VF - VF~ A2F2] dA - iKf gF2dc
1T finite element approximation to II
I Axial acoustic intensity (eqn. 5)
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Kq k value at which a Cremer Tiner is tunad
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INTRODUCTION

Linihg the interior surfaces of aircraft engine ducts with acoustic
treatment is a well established method for reducing internally generated
aircraft engine noise. Large commerical aircraft such as the L-1011, DC-10
and Boeing 747 have successfully passed FAA certifications due, in part, to
this concept and are positive evidence that acoustic liners can reduce air-
craft noise effectively. However, increasingly stringent noise reduction
goals require that these acoustic suppression techniques be continually
refined and updated. Aircraft companies are now more than ever before in
need of new ideas and methods to enhance the present state of liner
technology.

Initially, liner research was centered around uniform liners (ref. 1).
Later, Zorumski and Lansing {ref. 2) realized that liners could be made more
effective by taking advantage of impedance changes in axial segments. In
light of this development, Zorumski (ref. 3} developed a theory to compute
the attenuation in axially segmented circular and annular ducts. Several
other investigators (ref. 4, 5, 6, 7 and 8) have since investigated axially
segmented duct liners and their practical application.

The present analysis was motivated, primarily, by the success of axially
segmented 1iners and the desire for further effective methods for minimizing
internally generated aircraft noise. In this work, a new type of liner
variation, the peripherally variable liner, is investigated. 1In this type
of }iner, the impedance of the Tiner is allowed to vary around the duct
perimeter, but remains constant in the axial direction. The impedance
boundary conditions for a peripherally variable liner become boundary
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conditions with variable coefficients and an exact analytical solution for
- the acoustic field cannot be determined.

In this work, a finite element method is employed to extract the acoustic
field and calculate sound attenuation in a three-dimensional rectangular duct
with a peripherally variable liner. First, the governing Helmholtz equation
and impedance boundary condition for zero mean flow are transformed into a
single function, II, which has the governing Helwholtz equation and impedance
boundary conditions as its stationary conditions. Next, the fi=. .2 element
method is applied to approximate the functional II. Cubic functions which
insure continuity of acoustic pressure and particle velocity throughout the
duct are employed as shape functions. The requirement that the functional
II be stationary results in a set of matrix equations which are solved to
obtain the acoustic modes. Source and termination effects due to finite

duct Tength are also included.

ANALYSIS
In this section, the mathematical expressions necessary for evaluation

of the attenuation of peripherally variable liners will be developed.

Statement of the Problem
The duct to be analyzed and the Cartasian coordinate system to be used
are shown in figure 1. The lengtl, height, and width of the duct are d, h,
and 2 respectively. The duct walls are acoustically Tined with a specific
acoustic admittance, R(x,y), which is independent of the axial coordinate

z, but is a function of position along the duct perimeter so that:

I . - 20 - A . it



[8(x,0)| 81 (x]]

8{x,2)]  [Balx) '
80| [Baly) (1)
8(h,y}] 84 (y) ]

A constant exit admittance, By, is specified at the exit plane (z = d), and
an acoustic pressure distribution, G{x,y}, is input at the entrance plane,
(z = 0).

n

In separable geometries with constant values of B on the duct perimeter
the solution to the acoustic field is given in terms of known trigometric
functions, Yowever, when R 1is a function of position along the duct
perimeter, the solution for the acoustic Field must be determined numarically.
This paper is primarily concerned with analyzing the variable case. Since
existing mathematical models cannot handle this situation, this represents

a major contribution of this paper,

Acoustic Equations and Boundary Conditions
Steady state acoustic waves propagating in finite ducts, such as shown
in figure 1, ara governed by the three-dimensional Helmholtz equation

Vzp + kzp = 0 (2a)

where Kk = w/c is the wave number, p 1is the acoustic pressure, w 1is the
angular frequency and ¢ is the speed of sound. The acoustic boundary

condition along the duct perimeter is given in the form

9B . jkgp = 0 (2b)
an
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where 3/0n denotes the derivative in the direction of the outward normal
from the duct wall.” At the entrance plane, the'boundary condition is
assumed Kknown as

p(x,y,0) = G(x,y) (2c)
where G{x,y) is a given input pressure. The bbundary condition for the

exit plane is expressed in the form:

ap(x,y,d}/az = kB p(x,y,d) (24)
The solution to equation(2)can be expressed in the form:
_ s ik z -ik 24 -
p{x,ys2) -n§1[Ane n® +Be "] Fn(x,y) (3a)
in which
2 2 .2
K= K" -y {3b)
A, = Rn/(cn + 1) (3c)
B, = .¢,/(c, +1) (3d)
2, = Dn/wnn (3e}
%N
D, = [ [ Gx,y) F (x,y} dxdy (3f)
n- ol n
'3

lpmn= I f Fn.I(X,}') Fn(x,y) dxdy ’ (l]lmn =0 ,m ‘;"[ n) (39)

¢ = [{K/kBa-1)/(K /kBr1)] ZTEnS (3h)




n® and efgenvalue, An, satisfy

In equation (3), the characteristic function, F

the equation

2. . .2 | '
VEF, AnFn =0 (4a)
with the condition |~
:
. |
M:n _ i (4b) J{
57 TkBFn = 0 i

along the duct perimeter. Note that as indicated in equation (3g), the

|
eigenfunctions satisfying equation (4) are orthogonal. This orthogonality 1

relation has been used in equation (3). 1
In this paper, equation (4) wiii be solved by the finite element method, 1

The extracted values of Fn and An can then be substituted into equation (3) - i
to determine the acoustic field. The numerical solution will be used to .
develop and discuss some of the attenuation characteristics of these peri- | J
pherally variable liners, Equation (3) is also used to evaluate the effect |
of a finite termination impedance on the attenuation characteristics in a j

finite duct.

Attenuation

Before proceeding with the solution to equation (4), it is useful to
cevelop an expression for the attenuation produced by the liner in terms of
the parameters which have been introduced. The axial acoustic intensity at

any axial position in the duct is

1, = —— Re [Fip* a2 (5) :
Zpock 9z
AGE 15 ‘
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where Po is the ambient density of the medium, Re[ ] denotes the real part
of the complex expression enclosed within the brackets and the superscript
asterisk indicates the complex conjugate. Furthermore, the total acoustic K
power is the integral of the acoustic intensity across the cross section ’
h %
E, = £ fo I dxdy

and the decrease in decibels of the acoustic power froii z = 0 to z = 2 can

he written as o

AdB = 10 10910(50/520) (6)

Generally, the specific acoustic admittance, 8, is chosen so as to maximize

this attenuation. In terms of the parameters of equation (3), eguation (6)

RGLE o ¥ AL (0)]
AdB

becomes : i
|
|
J

€ =1 n=
10 logyq Lok Wk

Re[ 3]:!31 tf:-l i.P"m Amn(zo)]

(7a)

in which ; % ? |
= - %k :

mn 5 0 Fmrn dxdy (7b)

and ik z' -ikmz

p - f
Amn (z) = k (A e - Bme

* -ik*nz * 1k;z {7c)
YA e + Bpe

Equation (7) will allow calculation of the attenuation produced by the lining
in the finite duct.

Variational Formulation

Forsythe and Wasow (ref. 9) show that equation (4) is satisfied if and

only if the variational condition

=11~



sIT =0 (8a)

where B}
ey [VF+ VF-MeF2) dn - 1k | BF2dc (8b)
C

is satisfied, In equation (8), the subscript n on F and X has been
dropped for convenience and V {is the differential vector operator in the
duct cross section. This paper will approach the solution in the duct cross
section by using a finite element approximation to the functional II. This

approximate functional, TI, is developed in the next section.

Finite Element Formulation

Finite elemert discretization. - In the finite element process, the

rectangular dii whose cross-section is the region {0 < x < h, 0 <y <1},

is divided into (M - 1) (N - 1) elements as shown in Figure 2. Although

many kinds of elements could be used in this setting, attention is restricted
to rectangular elements. The width and height of each element are Ay and

Ax respectively., Points at the corner of each element, called nodes, are
designated as (I, J) where 1 =1, 2,3, .. . Mandd=1,2,3,. ..M

It is at these nodes that the values of the unknown function, F, and its

higher derivatives will be determined.

Shape functions. - The finite element technique expands the solution
within each element in terms of shape functions. The shape functions at

each node are defined in terms of local coordinates

~12-
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6y T~ 0¢ gyl =1 (92)
ny = 220 02 Iyl <1 (9b)
by

The shape functions utilized in this analysis, f](c) and fz(a). are even and

odd functions, respectively, which are non-zero enly in the interval (-1, 1)

and which have unit magnitude and slope respectively, at £ = 0 as i1lustrated
in figure (3). Furthermore, both fy and f2 have zero magnitude and slope ¢t

c:

+ 1. The functicns are

1 - 302 + 2)r)

0
3.2kl n wg

f:z(C) =§C

0

[n] <1
2] > 1 (10e)
5] <1
ol (10b)

These functions give the influence of unit magnitude and slope at the node

in a one dimensional probien.

be formed by superimppsing functions of this type.

in which

and

Thus, the total approximating function may

The approximating function for F to be used here is

P
F o C(Flg) (11a)
2 2 M N
PQy - PQ
C(T:3) =% & & & T3 f{z,) f.(n,) (11b)
L7 =1 =1 T=1 01 19 P70 QM
N 12, - 5 B

21 . 22
IJ
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This expansion insures that the functions F and 3& will be continuous
everywhere within the duct and also along its bounggries.

The admittance along the duct perimeter will be similarly expressed in
the form

e ngaP
85 c(8)d) o (1)

Tﬁe'va1ues of the nodal coefficients in equation (12) are set to zero if

node (I, J) does not 1ie along the duct wall where B is prescribed. Note
that the values oflthe nodal coefficients in the expansion for 8 {equation
(12)) are known whereas those in. the fuhction F, equation (11a), will be

determined such that the functional, TI, is stationary.

Finite element matrix equations. - The approximating function to F
(eq. (11a)} and polynomial representation for B (eq. (12)) lead to an
approximate functional TT which is a quadratic form in the unknown nodal
coefficfents F?S

T = (37 [is1 - ik 01 2% 1] ¢) (13)

where the superscr.pt T indicates the vector transpose. It is convenient
to be consistent with the nomenclature used in structural analysis and
refer to [S], [D] and [M] as the adoustic stianess, damping, and mass
matrices respectively. ([S] and tM] are square symmetric matrices whose
coefficients are real. [Q] is a complex square symmetric matrix containing
the céefficients in equation (12}, whereas {F}. is an unknown vector

contaiﬁing the coefficients in the expénsion given by equation (11a). [S],

~1h-




[M] and [D] are each of order 4MNX4MN, although many of the entries are

zero. The unknown coefficients in (F}, (4MNX1), are ordered so that

iF} = {F{],F$%, Fl2 g22 .1

21 »
170 F17 Fyas Froe o o Pyl )

Requiring that the first variation of the functional vanish leads to

a set of matrix equations of the form

[[S] - k[DI] (F)= A%[M] {F)

(15)

Equation (15) may be solved to obtain the eigenvalue A and eigenvector

{F}.

Finite ETement Representation of Acoustig Power

In general, the solution to equation (15) will yield many eigenvalues,

A and a different eigenfunction F for each eigenvalue. It is, therefore,

convenient to refer to {F"} as the eigenvector corresponding to the eigen-

value An. Now consider the integral Yo given by equation (3g). It may be

expressed in matrix form as:

: T
M n
TR G TR G!

Tikewise T

v = F

Further, in order to evaluate the constant D, (o,

condition G{(x,y) v the form:

6(x,y) = (a5

Dn is then expressed in the matrix form as:

.
D, = {6} [MI{F }
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in which

21 12 22 11 2

&' = (6 .6 86 6 G
{ i 111 n’ 11; Gll, 612: lzo.GMN} (17C)

Equations (16) and (17) allow the determination of the constants An and Bn

in the solution for the acoustic pressure (eq. (3a)) and the evaluation of
the attenuation given by equation (7a). These expressions can then be

utilized to evaluate the attenuation of peripherally variable liners.

RESULTS AND DISCUSSION

In this section, the finite element method developed in this paper is
first compared to exact analytical solutions for uniform liners. The techni-
que is then exercised to oﬁtain the attenuation characteristics of infinitely
long peripherally variable Tiners. Finally equation(3)is used to evaluate
the effects of finite duct termination on the attenuation characteristics
of a peripherally variable liner.

Fer all of these studies, certain parameters were fixed. Finite element
recdlts were restricted to four rows and four columns of elements (M = N = 5,
see fig. 2) with &, h, and d all equal. Modes were ordered according to
the imaginary part of the complex propagation constant. Kn' The mode for
which the imaginary part of Kn is smallest is referred to as mode one,whereas
the mode with the second smallest value is referred to as mede two, etc. Also,
the bottom and two side walls of the duct are kept rigid (B, = B3= B2 = 0} and

the eigenfunctions from the numerical and exact analysis are both normalized

to unity at the origin.
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A

Uniform Liners
Confidence in the finite element solution may be obtained by showing it
compares favorably with exact analytical solutions for uniform liners.

Exact analysis. - When B 1is constant along each of the four duct

walls (fig. 1) the solution to equation 4 is:

_ _ ikga _ iKBye.
an(x,y) = [Cos ¥ pX Y, Sin mnx][Cos oy -?%751n amy] {(18a)

where the purameters % satisfy the trancendental egquation

[aﬁ + kzelazj Sin o8+ ik(B;+ B2} anCosanz =0 (18b)

and the parameters YWn satisfy the same trancendental equation withcmn,BI,Bz,

and & replaced by Yn,ﬁa, By, and h , respectively. The eigenvalues X
are related to o and Y, by the equation

mn

A2 =al s v (18¢c)
Watson and Lansing (ref. 10) solved the trancendental equation which has the
general form of equation (18b) using a Newton-Raphson iterative scheme. This
program was used in the present work to extract i and S for the results
jnvolving uniform Tiners. These values were also used as a basis for checking

the accuracy of the eigenvalues extracted by the finite element method.

Comparison of the numerical and exact analysis. - The first example

considered invoived ca]cu]ating eigenvaiues for a hard wall duct (B = 0). The
lowest ten eigenvalues from equation 8 are Tisted under the heading "Exact
Eigenvalues" in Table 1. Nimerical results are also shown in the table. Good

agreement batween the finite element and exact eigenvalues is observed. The

hard-wall modal integrals ¢ (eq. 16a) computed by the finite element method

are also compared to exact ana1yt1ca1 resuits in table 2. Good agreement is
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again observed,

As a second example, consider a soft wall duct in which g, = 2.0 - 1.651
and the wave number jis unity (k = 1). Eigenvalues extracted by the finite
element method are compared to those extraxted by a Newton-Raphson iterative

scheme in table 3. Good agreement is again obtained. The modal integrals wnn

for the soft wall duct are also compared to exact analytical values in table 4.
Note that good comparison between the exact and analytical values is again
obtained.

These two examples of uniform Tiners {llustrate the ability of the finite
element approximations presented in this paper to give accurate and reliable
results, Although the values are not presented, the modal integrals whn(m #n)
were also computed for both the hard and soft wall ducts. Both the real and
inkiginary parts of these integrals were of the order 10'4 or less for each of
the ten modes considered, indicating that the modes are orthogonal in accordance
with equation (3g). It should also be noted that the effects of increasing
wave number, k, have not been throughly investjgated. However, it has been
observed that at least for the first two modes, the error in both the eigen-
values and modal integrals, wmn(m # n), are consistent with those in the tables

for 0< k< 10.

Peripherally Varijable Liners
Having established confidence in the finite element sofution, this
technique is now exercised to obtain the attenuation characteristics of
infinitely long peripherally variable Tiners. The effects of finite duct

termination will also be discussed.
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Infinitely long peripherally segmented 1iners. - Extending the approach

of Cremer (ref.11), the attenuation characteristics of infinitely Tong
peripheral liners are determined by investigating the attenuation rate of the
least attenuated duct mode. The least attenuated mode in the context here
shall mean the mode with the smallest attenuation rate. Cremer (ref.11) has
determined thai, for a two-dimensional infinitely long duct with a hard
surface on the lower wall, the attenuation rate of the least attenuated duct

mode can be maximized by choosing the admittance of the upper wall to be:
B.{kh) = (2.06 - 1.651)/kh (19)

A liner with a wall admittance of Bc(kh) is referred to as a Cremer liner and
is said to be tuned at k0 if the admittance of the upper wall is given by
Bc(koh). This relation has been utilized to determine admittance values for
the peripherally segmented liners.

In the exanples to follow, the bottom and two side walls of the duct in
figure 1 have been kept rigid (B, = B3 = B2 =0). Thus the admittznce
(see fig., 1) of the upper wall is allowed to vary in a stepwise or continuous
fashion. This is at variance with the mathematical models which have been
constructed to date which a-e restricted to axial segmentation of the duct
Tiner (segmentation along the Z-axis).

In order to simplify discussions of peripherally segmented Tiners, a
segmented liner will be Peférred t0 as a k1—k2-k3-k4 liner. This notation

implies that:
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B, (ksh ) 0<y<i
Byly) = Be(kah ) .}I;..iy.i.l.
2
Belksh ) 12YSs (20)
Be(kgh ) ;_iy s i

where q:(kh) is the Cremer admittance given by equation 19, Also, to
avoid referring to a Cremer segment tuned at infinity, the notation
k1 -0 - kg - k4 will denote that the portion of By corresponding
to the tuning frequency k2 is a hard wall.

Numerical studies were conducted to evaluate the effects of
shortening the width of an initially full width Cremer 1iner. Figure 4
illustrates this effect. Note that once a small portion of the Tiner is
taken away, the attenuation rate near the tuning freguency decreases
substantially. On firsf thought, one might expect that by taking away
one quarter of the Tiner, the attenuation rate near the tuning frequency
would be reduced by about one quarter. However, in fact the attenuation

rate is reduced by about one half.

a2




In figure 5, it can be seen that the attenuation rate of a peripherally
segmented liner may also be changed simply by changing the pesitions of
the liner segments. Note, that although the attenuation rate near the
tuning frequency of the Tiner remains the same, the attenuation curve in
the mid-frequency range is much broader for a 0-2-0-2 or 0-2-2-0 Tiner than
for a 2-2-0-0 Tiner.

In figure 6, the attenuation characteristics of peripherally segmented
Tiners having Cremer segments tuned at several frequencies are shown. The
first segment of all liners is a Cremer 1iner tuned at h = 2. It can be
seen that the shape of the attenuation curve can be altered, although not
substantially, by the variation of the tuning frequencies. Essentially,

the curve is dominated by the lowest tuning frequency utilized.

Infinitely long continuous peripheral liners., - The finite element

analysis presented in this paper can also be employed to investigate a periphe-

ral Tiner with continuous varjation.
Figure 7 shows the attenuation curves of four peripheral Tiners with
continuous linear variation of the admittance. The admittance By of each

Tiner is given by:

By = KO + ﬁ] y (21a)
where

A, = B.(2.0h) (21b)
A = Bc(kmax h) (21¢)

5 15
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The value of kmaxh is different for each Tiner, Note that for each liner
the maximum attenuation rate occurs at h = 2. However, the value of this )

maximum attenuation decreases with increasing k ___h. There is also some

max
broadening of the attenuation curve at the midfrequencies.

In figure 8, the variation of the real part of the admittance of three
different types of liners are compared. The segmented liner is a 2-4-6-8
liner, while the Tiner with the Tiner variation has the form of equation 21

with kmaxh =8, The admittance for the cubic liner was expressed in the form:

Baly) = g+ Ay + Ay + Ay’ (22)
where the coefficients in equation 22 were chosen to that, aty = 0, y = 1/3,
Y =2/3, and¥ =1, the values of B, were BC(Z-O h), ﬁc(4,0 h}, 8,(6.0 h),
and 60(8.0 h) respectively. The variation of the imaginary part of the
admittance of these three liners will be similar to that shown in figure 8.
Figure 9 shaws the attenuation rates for each of the three liners, The
attenuation rates for the cubic and four-segment liner are not significantly
different although the attenuation curve for the cubic liner is slightly
broader than that for the segmented liner. The 1iner with linear variation

has a greater attenuation rate than the other two liners in the Tow to

midfrequency range.

Effects of a Termination Impedance on Liner Attenuation
When the duct is of finite length, non-negligible acoustic energy may
be carried to the termination by other modes than the least attenuated mode.
As a result, the attenuation produced by the liner must be computed from
equation 7a, which includes the effect of the termination as well as the

interaction between, the different modes. At the present time, the computer

A ls B



program utilized in this study is unable to compute this equation exactly
due to storage limitations. The eigenfunctions , Fn , and modal integrals
Yon and mmn must all be retained. In addition, since the subroutine that
solves the eigenvalue equations (eq. 15) destroys the mass matrix, the
coefficients in this matrix must be stored in another matrix, thus requiring
further core.

However, if it is assumed that the source is such that all modes have
equal input energy and are in phase and that coupling between the modes can
be neglected (ﬁmn Y0, m# n), then the attenuation in the finite duct is

proportional to the sum of the attenuations of each of the individual modes.

" Equation 7a reduces in the case of a single mode to:

~2Im(K Y . z2iRe(K ) , * 2iRe(K ) * 2Im(K )
AdB = 10 Log;, Rel® M e N ot - opope T

*
Rel1 - e, + coc, ]

Equation 23 is the expression for the attenuation of a single mode in a
finite duct. For infinitely long ducts, €y = 0. However, the parameter c
is not necessarily zero for each mode in the finite duct and thus will

n

affect the value of the attenuation for the mode. Note that cn(eq. 3h)

contains the effect of the termination admittance as well as the duct length, d.

In the remainder of this section, the effects of a p ¢ termination
impedance (Be = 1) upon the attenuation of a single mode in a finite duct
will be investigated. ﬂote that since the length of the duct is unity,
the expression on the right-hand side of equation 23 may also be referred
to as the attenuation "rate". When ¢, # 0, the mode for which the right-

e I S
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hand side of equation 23 1s smallest will be referred to as the least
energy mode., However, when Cy ® 0, the mode for which the right-hand

side of equation 23 is smallest will be referred to as the Jeast attenuated
mode,

The attenuation rates for a 2-4-6-8 liner and a 2-2-8-8 1liner are
given in figures 10 and 11, respectively. In each figure, the attenuatien
curves for the Teast energy mode, the least attenuvated and the least
attenuated mode with reflections (cn # 0) are plotted. The asterisk on

the attenuation curve for the least energy mode denotes that, at that parti-

cular value of kh, the Teast energy mode is the same as the least attenuated

mode. Note that figures 10 and 11 display the same characteristics. The
attenuation rate for the least energy mode is lesy ihan that of the Teast
attenuated mode with reflections at the lower frequencies. However, each
of the three attenuation curves are identical at the higher frequencies.
In fact, the least attenuated mode and the least energy mode are the same
mode at the higher frequencies.

The results shown on figures 10 and 11 indicate that the termination of
the duct must be taken inte account in liner optimization studies at the
Tower frequencies. At the higher frequencies, the attenuation rates are
identical indicating that the effects of the termination can be neglected
at these frequencies. One should understand however, that these conclusions
are based on the assumption that the total attenuation rate in the finite

duct is proportional to the attenuation rate of the individual riodes.
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CONCLUDING REMARKS
Based on the results of this work, the following ronclusions are drawn:

1. The attenuation rate for a peripherally segmented 1iner drops
significantly if a small portion of the liner is removed.

2. One can alter the attenuation characteristics of a peripherally
segmented liner by placing the liner segments in different
positions along the periphery.
3. Based upon the attenuation curves considered here, it appears
that the primary effect of peripheral variation is a broadening
of the attenuation characteristics for the liner.
4. Effects of the duct termination must be taken into account at
the Tower frequencies, when optimizing peripherally variable
liners.,
Conclusions 1, 2, and 3 were based upon infinite ducts, whereas conclusion 4
employed the assumption of equal partition of energy and neglecting coupling
for the modes., Although these restrictions are somewhat removed from reality,
they do provide a means for investigating the attenuation characteristics of

peripherally variable 1iners,

Future York

There is additional work to be done with regard to the computer program
developed in conjunction with the finite element theory. Ip order for the
computer program to model more realistic ducts, such as finite length ducts
with realistic sources, it is suggested that equation 15 be solved out of core.
Both matrices are block tridiagonal, symmetric, and in addition [M] and [S] are
real. Taking advantage of these special features should allow one to incor-
porate thousands of degrees of freedom in this present analysis. It is further
suggested that the computer program be combined with an optimization program so
as to determine if peripherally variable Tiners can achieve more attenuation

than the best uniform liners.
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TABLE 1

COMPARISON OF EXACT AND FINITE ELEMENT EI4EMVA_JES
FOR A HARD WALL 0OUCT (BI = 0)

MODE NO., n | EXACT EIGENVALUE [ ETGENVALUE COMPUTED |
5 FROM FINITE FLEMENT |
- ME THOD
] 0.000 0.000
2 3.142 3.142
3 3.142 i 3.142
4 4.443 4.443
5 6.283 i 6.284
6 6.283 : 6.284
7 7.025 g 7.025
8 7.025 : 7.027
9 : 8.886 8.887
10 | 9.425 9.434

TABLE 2

COMPARISON OF EXACT MODAL INTEGRALS WITH THOSE EXTRACTED
BY THE FINITE ELEMENT METHOD FOR A HARD WALL DUCT

MODE MO ., n l VALUE OF ¥  COMPUTED
EXACT ¥ 1 FROM FINITE ELEMENT
| METHOD
o % |
1 : 1.000 I 1.000
2 i 500 | .500
3 | 500 i 501
4 | .250 2 .250
5 .500 | 500
6 .500 | 495
7 .250 ; .246
8 250 247
9 250 245
10 .500 480
£ 18
(ﬁ“GﬂiAl.?@JiIrY
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TABLE 3

COMPARISON OF EIGENVALUES EXTRACTED BY THE FINITE ELEMENT
METHOD WITH THOSE OBTAINED BY THE NEWTON-RAPHSON
ITERATIVE SCHEME FOR k = 1, By1=B4%By = 0 and 8,= 2.0-1.651

MODE NO., n EIGENVALUE COMPUTED FROM EIGENVALUE COMPUTED
NEWTON-RAPHSON ITERATIVE FROM FINITE ELEMENT
SCHEME METHOD
1 1.835 - 1.2194 1.834 - 1,2181
2 2.342 - ,987¢ 2.342 - ,988i
3 3.487 - 6411 3.484 - 6391
4 3.840 - .6021 3.844 - 6021
5 6.012 - .336i 6.013 - 3374
6 6.440 - .347i 6.432 - .338i
7 6.542 - .348i 6.656 - .351i
8 6.782 - .298i 6.783 - .293i
9 8.693 - .233i 8.696 - .232i
10 9.250 - .217i 9.256 - .218i
TABLE 4

COMPARISON OF THE EXACT MODAL INTEGRALS WITH THOSE COMPUTED BY
THE FINITE ELEMENT METHOD FOR THE DUCT

CF TABLE 3
MODE NO. . n EXACT Y VALUE OF o COMPUTED
FROM FINITE ELEMENT
METHOD
1 -0.823 - 0.282i -0.081 + 0.282i
2 .164 - 1314 .163 - .131d
3 - .04 + 1414 - .038 + 1454
4 .082 - .066i .083 - 0661
5 .475 - .027i 472 - .026i
6 - .04+ 1404 - .025 + .161i
7 .062 - .0661 .088 - .069i
8 .238 - .014i 237 - 0V
9 .238 - .014i .232 - .012i
10 .490 - .0114 .472 - .010id
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