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PERFORMANCE ANALYSIS OF GRAZING
INCIDENCE IMAGING SYSTEMS

I. INTRODUCTION

The purpose of this study is to systematically investigate general grazing
incidence optical systems. Previous analytical work regarding grazing inci-
dence has been restricted to two-mirror telescopes with a few selected aberra-
tions [1-4], A complete set of primary aberrations is developed here, and
application to the design and optimization of grazing incidence systems is
discussed [5,6], Initial assumptions and approximations are explained, and
the consequent limitations of the theory are presented. Since the wavelengths
of X-rays are so short that diffraction effects are negligible, the geometric
performance analysis of X-ray imaging systems is sufficiently representative
and accurate.

An exact solution relating image coordinates to object coordinates
following reflection from a single general surface of revolution is first developed
[7]. These exact relations are then specialized for the case of grazing incidence
which can be simply stated by requiring the angle between an incoming ray and a
mirrored surface of revolution to be 1° or less. A first-order treatment shows
that a single surface grazing incidence system results in a gross violation of
the Abbe sine condition and that an even number of mirrors is required to achieve
good imaging.

Finally, a third-order theory is developed that yields expressions for the
primary aberrations: coma, spherical aberration, astigmatism, field curvature,
and distortion. A simple relation for field curvature showing it to be the pre-
dominant aberration responsible for off-axis image degradation is the single
most significant result of this study. It is also shown, to the accuracy of this
theory, that a general two-element system displaying no spherical aberration is
also free of coma. This is in good agreement with the fact that grazing incidence
telescopes, when free of spherical aberration, are known to be very nearly
aplanatic. A comparison of the findings with ray-trace results of a typical
grazing incidence x-ray telescope design is included.



II. EXACT SOLUTION

The relation between a point on the incident ray, a point on the reflected
ray, and the point of interception on the surface can be derived from the law of
reflection:

72

with

a , 13 , and y are the direction cosines of the incident ray; a , /3 , and y are
J. 1 1 £ Li &

the direction cosines of the reflected ray; and a. , 8 , and y are the directionn n n
cosines of the surface normal at the point of interception.

We divide equation (1) by y and get

(ajy ) (70/7-,) = 2a e/y& & Lt j. n JL

(79/7J = 27ne/7
ii J- II J.

Inserting the last of equation (2) into the first two then yields

• 2.



and ' (3)

Assuming a surface equation of the form z = f (x,y) with the partial derivatives

,z = -— and z = — ,x 8x y 9y

we have for the direction cosines of the surface normal:

y = -l/( 1 + z 2 + z 2) /2

'n v x y '

a. = -z y , (4)
n x 'n . , v '

= -z -y
n y rn

One can further express the ray directions by the coordinates of the initial point
(£.., T]., . s), the coordinates of the final point (4 , t] , s'), and the surface11 ^ 2 t
coordinates at the point of interception (x, y, z) :

~ z)

(5)



(5)
(Concluded)

= ( r j - y ) / ( s ' - z )

Inserting equations (4) and (5) into equation (3) and solving for £ and TJ ,
respectively, finally gives

| = [ ( W + s ) ( x - z s') + (§' -s)x-s ' | ]/W (6)
^ X J-

t

T)2 = [ ( W + s ) ( y - z s') + (§' - s ) y - s ' T j ] / W (7)

with

W = 2 [ z x - + 7 ^ - 7 + s ] - s

and

s = s - z , s ' = s ' - z

III. FIRST-ORDER APPROXIMATION

While the portion around the vertex of a conicoid where the surface nor-
mal is nearly parallel to the axis of symmetry (y2 « 1) is conventionally used

for imaging, we consider a portion of the same general type of surface at a
distance from its vertex where the surface normal is almost orthogonal to the
axis of symmetry, y2 « 1 (Fig. 1). This condition is true, for instance, for

both elements in a Wolter-type X-ray telescope. The first-order approximation
to be presented here shows some interesting results, differing significantly
from those we get applying first-order or Gaussian optics to the near-normal
incidence.



Figure 1. Forward reflection.

For the following application it is convenient to write the equation of a
conicoid so that the origin coincides with the center of the portion under
consideration:

- 2kz - (1+ 6)z2
(8)

where

Ap2 = p2 - p0
2 , p2 = x2 + y2 , p0

2 = x2 + y2 for z = 0 ,

and

k2 = r 2 - ( l + 6 ) p 0
2 ,

where r is the radius of curvature at the vertex and 5 is the deformation
constant. At the vertex of the conicoid p0 equals 0, and k reduces to the
radius of curvature.

Developing the surface equation with respect to z gives

z = 6p2/2k+ [(1+ 6)/8k3] (Ap2)2 + . . . ,

and the partial derivatives



z = x/k+ [(1+ 6)/2k3] Ap 2 x+ . . . ,x

zy = y/k+ [(1+ 6)/2k3]

For our purpose it is sufficient to replace the surface equation and its deriva-
tives by the first-order terms, i.e.,

z = 0 , z = x/k , z = y/k ,

and consequently,

* = l / ( l + z x
2

+ Z y
2 )

A. Single Surface Element
Inserting the previous terms into equation (6), we obtain

$2 = (4 1 [2x 2 ( s ' -k ) -s '(k2 + p0
2)] + T ? 1 [2xy(s ' -k ) ]

-x[2k(ss ' -P o
2 ) - ( s + s ' ) (k2-p0

2)]}/W , (9)

with

W = s(k 2 -p 0
2 ) +2k(p0

2-x |1 - y r j j )

If we now require stigmatic imaging on axis, i.e.,

42 = ^2 = ° for ll = T?l = ° »

we find that



2k(ss' - Po
2) - (s + s') (k2 - p9

2) = 0 , (10)

which corresponds to the lens equation and assumes the conventional form for
P0 = 0. Equation (9) due to equation (10) reduces to

|2 = (^ [2x2(s' -k) -s'(k2 + p0
2)] +r ? 1[2xy(s ' -k)]}/W . (11)

Assuming that y2 « 1 and due to the requirement for grazing incidence, we
may write

V <?<? n <?•? I <3 I I «5 f IK «. PQ « I fa I , I o I ,

which allows us to neglect k throughout equation (11). Retaining only first-
order terms, equation (11) finally becomes

|2 - -(l/Po2) (s'/s) [(2x2-p0
2) I, +2xyr?1] . (12)

and analogously

T)2 = -U/Po2) (s'/s) [(2y2 -p 2 ) ni + 2xy^ ] . (13)

That the last two equations are indeed of the first order becomes immediately
apparent after replacing x and y by the polar coordinates:

x = P0 cos<£ and y = p0 sin<£

Setting further T]I = 0, which may be done without losing generality, we get for

equations (12) and (13):

£2 = -(s'/s)^ (2 cos20 - 1) = -(s'/s)^ cos2<£ = Tcos20 , (14)



rj2 = - 2 sirup cos<£ = - (s'/s)^ sin20 = T sin2<£ . (15)

Equations (14) and (15) describe a circle in the image plane centered on-axis
with the radius T and an amplitude of 20 which is twice the amplitude at the
surface (Fig. 2).

OBJECT
PLANE

SURFACE
ATZ = 0

IMAGE
PLANE

Figure 2. Coma circle produced by single element working
in grazing incidence.

B. Combination of Two Elements

Let us now combine two elements, both working in grazing incidence as
schematically shown in Figure 3. The subscripts 1 on x, y, p, s and s' refer
to the first surface element and the subscripts 2 to the second. For simplicity,
we again set n = 0 . We then get, for the coordinates in the image plane of

the first element,

2x

(16)

(17)



Figure 3. General two-element grazing incidence system.

and in the image plane of the second element,

T]2 (18)

g '

TJs = '—IT [<2y22 - P02) TJ2 + 2X2
(19)

P02

Since the object and image coordinates are assumed to be small quantities,
we have the following simple first-order relations between the ray coordinates
on the first and the second surface:

x2 = xi 83/s} , y2 = yi s2/s{ , p02 = P0i fy/sl

inserted into equation (18) gives

P014

(20)



and using

- xi

yields

_

~ .- • . . •• (21)
1 S2

In the case of a telescope, setting

and

y0 being the field angle, one obtains

' Is = si m2 To. ': (22)

where

Sl = f

is the system focal length.

. Similarly, for 773 we get

t <3> CT

M_ Sl S2 2 , • 2'
^3 =- - i <, o 'I (2y< ~ PQI ) 2 x 1 y < + 2 x ^ y 4 (2x^ - pn< ) J . (23)

POI si S2

10



Again using

we have •. .

T,3 = 0 . (24)

The significance of equations (21) and (24) is that contrary to a single
element, any two-mirror system; as long as it fulfills the condition for grazing
incidence, shows no dependence on the surface coordinates and thus is able to
image off-axis points or field angles.

We may now further conclude that, since after two reflections the image
of a point is approximately a point again, a third mirror would produce the same
image as does a single element, i.e., systems working in grazing incidence are
useful imaging devices only when consisting of an even number of elements.

IV. THIRD-ORDER APPROXIMATION

While the result of an exact theory is coordinate independent, the
accuracy of an approximation usually is a function_of-the coordinates. The
center of highest accuracy in .aberration theories, for instance, generally
coincides with z = 0 , where the z-axis is the optical-axis. . In this case, the
analytical result depends very definitely on the location of the origin with
respect to the optical surface.

Figure 4 shows the same two-element grazing incidence system three
times with three differently placed systems of coordinates. Figure 4a shows a
single system of coordinates centered in the plane of intersection of the two
surfaces. We do not regard this as the optimum position because, in a real
system, the surface portions in the vicinity of the intersection do not exist.
The second example (Fig. 4b) has two systems of coordinates, one at the back
end of the first element and one at the front end of the second element. Since
an end section is the least representative portion of the entire surface, we do
not think that this choice is-a significant improvement over the first case. We
therefore selected the system depicted in Figure 4c, where the origins of two
systems of coordinates coincide with the center of each individual element.

11



Figure 4. Three possible coordinate system choices for analyzing
two-element grazing incidence optics: (a) a single system of

coordinates centered in the plane of intersection of the two
surfaces,, (b) two systems of .coordinates, one at the

back of the first element and one at the front of
the second element, and (c) two systems of
coordinates, one centered on each element.

We shall later show that the result justifies our choice. Only the con-
figuration in Figure 4c allows us to predict the correct amount of field curvature,
the predominant aberration of two-element grazing incidence systems; and,

12



since the field curvature depends linearly on the distance between the origins,
pushing the two origins toward the intersection plane leads to the illusion of a
disappearing field curvature caused by a mere transformation of coordinates.

With this preamble behind us we now proceed to develop a primary or
third-order aberration theory for grazing incidence.

A. Single Surface Element
The starting point for the development of the single surface aberrations

is again the exact relations between object and image coordinates as given by
equations (6) and (7), where £ , TJ , and s are the coordinates of a point on

the incident ray; £0, 17 0, and s' are the coordinates of a point on the reflected
Zi £t

ray; x, y, and z are the coordinates of the point of interception on the surface;
and z and z are the partial derivatives of the surface equation z = f ( x , y )

at the point of interception. The surface equation describing a general surface
of revolution is given by equation (8).

Before we apply any approximation necessary to expand equations (6) and
(7), and because of the obvious differences between grazing incidence and near-
normal incidence, let us consider the relative order of magnitude of the involved
quantities. The angle between .ray and surface tangent for grazing incidence is
of the order of 1° or less (<0.02 rad). We then obtain for the surface slopes:

x - [k- (1+ 6)z]/x
Z

y^ = [ k - ( l + 6)z]/y
« 1 (25)

and in particular for the slope at the center (z = 0)

k/p0 « 1 . (26)

Existing proven telescope designs where the length of the reflecting
element is approximately equal to its diameter allow us to make the further
assumption that z sa x « p.. (Fig. 1). It follows, then, that

* max max 0 v " '

1+ 6 « 1 . (27)

13



The main difference .between near-normal and grazing incidence is that .
while in the case of near-normal incidence: . .

« 1 , ; (28)

in the case of grazing incidence, we have

« 1 (29)

From the inequality of equation (27), we may furthermore conclude that for
grazing incidence

-1 (30)

i.e., the surface is always closely described by a paraboloid.

Solving the surface equation (8) for z and developing with respect to Ap-
gives

z « Ap2/2k + (1+ 6)(Ap2)V8k3 . (31)

The partial derivatives with respect to x and y are

z « x/k + (1+ 6) Ap*x/2k3

A.
(32)

and

z « y/k+ Ap2y/2k3 (33)

14



We restrict our analysis to the vicinity of z = 0 at each surface. To

this end, we neglect all terms containing (Ap ) with n > 1. Obeying this
basic rule, after inserting equations (31) through (33) into equations (6) and
(7) and applying also the imaging equation for grazing incidence [equation (10) ],
and using the relation

m = s'/s (34)

we find that

2s'
m+1 J

m2-l
2s'

/ w (35)

s ' fm+Df 1+5)

2-l
2s' / W (36)

and

1 m F
¥ ' "s 'L 1" 2s'2

m(m+l)
'2

(37)

In the above

(38)

and we have used the approximate value for k from equation (10),

15



k « -vp0
2 ( s+s ' ) /2ss T . , . . . . . (39)

whenever this could be done without losing accuracy. Substitution of equation
(37) into equations (35) and (36) yields

2m 4m2
 A 2 m(m-l) 2

pj XK + 7

+ », ... 1-P0
2 (m+l) L 2km

2m2 (m+l) 2
 n

and

2m 4m2
 2 m(m-l)

772 - p

p0
2 (m+l)

2m2(m+i) 2 m2 (m+l)
2 --1

Po
2s'2

//in,(40)

Setting £ = T) = 0 for 1 = ^ = 0 in either equation (40) or (41) yields the
^ 1 ^ 1 J . J .

condition that must be met to remove spherical aberration,

6 - - 1

16



Equations (40) and (41) contain the primary aberrations for a single-
element system. The second term in each of these equations produces the large
coma effect that characterizes such systems, as shown previously by Figure 2.

B. Combination of Two Elements
A two-element grazing incidence system is shown in Figure 3. To

differentiate between the two surfaces, we have introduced the subscripts 1 and
2. The first surface is further characterized by the parameters k and 6 ,

and the second surface by k and 6 . In this system, an object point ( £ , ? ] , )
2i Lt 11

at a distance s from the center of the first element is imaged into ( |O,TJO) a
1 u o

distance s ' from the center of the second element, separated from the first
^

by a distance d . This report specifically concerns the case of a telescope;
however, it should be noted that applications to systems other than telescopes
also obey the theory developed here.

Considering (|0,r?0) to be a source point for the second surface, the
^ &

image point is then located at (£ , 77 ). Following equations (40) and (41) but
O - O -

eliminating the last two terms in each since they are small compared to the first
two terms,

2m
1 _ [(y2

2-x22)

2m

P02 (m2" f-
1 - -

. 2k2m2
(43)

and

P02
1 -

2m.

m2+l Ap. [((x2
2-y2

2)

2m

P022 (m2'
1 - 2k2m2

(44)

17



write

tag
3, —*Seen that

S2 ~

and
(45)

02 = A01

etting . n

we find the

i
POZ

'02

2m, d

m 2 - j

^2-1

(46)

(47)

18
(48)



2x2y2

P022

2(m1m2-l)

Poi

2m 2m

m2-l

m.

Poi S2
(49)

and

AP2
2 2m1(m2+l)d

Poi
2(m1+l)(m2-l)

m2(m2+l)d2

+ PoiV^-1)
(50)

Substituting equations (40) and (41), with the proper subscripts, and
equations (46) through (50) into equations (43),and (44), we obtain

2

.Poi
A1ni2+A2 -7

s2(m -1)

sl (m2 -

4m1dA2 2m m d

Poi2 s i
1 +

sj m2(m2-l) 2ds}'

P02s2
: !(m1+l)(m2-l)

(51)

19



and

Pol

s2(mi-l)

j dA2

_ 2 f
Pfll sl

1 +
dA

(52)

where

A = (53)

and

A, = (-54)

Again, we have used equation (39), the approximate form of the imaging
equation, in writing equations (51) and (52); however, equations (53) and (54)
are exact relations, providing for A = A = 0 the deformation constants 6 and1 £ 1
6 for a system that is rigorously free of spherical aberration.

^ ..

An analysis of equations (51) and (52) shows that an off-axis point
located at (£ , 0, s ) is imaged into a position (m m £ , 0, d + s' ). If we

1 1 1 ^ 1 Z

now, as is usually done, designate the linear term m in £ =4 as reference1 ^ 1 r
point for the image location, then the remaining terms, describing the departure
from that point, form the aberration terms. Using Schwarzschild's notation [8]
for aberration coefficients, we obtain

20



(2C+D)x1|1
2

(55)

and

A 773 = i?3 = BAPl2yi + Dyi & (56)

In general, the coefficients B, C, D, E, and F have finite values, and
each term then represents a particular type of departure from perfect imaging.
From equations (51) ,' (52), (55), and (56), we can write

B = -—r
Poi

i in. <j 9 .2 (57)

F =
4mldA2

(58)

C = -
m1

2m2d

Poi2s2

P01
2s2(m1+l)

L 2dsJ2 J
(59)

D = -
2m1

2m2d

Poi2 s2

dA2

s/ m 2 (m 2 -1)
(60)

E = -
2m1

3m2
2(m2+l)d2

DM
Z S2

z(m1+l)(m2-l)
(61)

A system free of spherical aberration (A = A = 0) is also, to the
X ^

accuracy of this theory, free of coma according to equation (58). This is in

21



agreement with grazing incidence x-ray telescope designs which are known to
be very nearly aplanatic [1]. We also find that |E| « |D| by inspection of
equations (60) and (61). Distortion is not significant in these systems. The
two remaining primary aberrations, astigmatism and field curvature, can be
separated in the conventional manner:

1/2R = D s ! / m 2 m (62)
S J. -L ^

1/2R = ( 2 C + D ) s ' / m 2 m , (63)
L J. J- ^ *

where R and R are the radii of curvature at the vertex of the saggital and
s t ' '

tangential focal surfaces, respectively. The field curvature is given by the
arithmetic mean:

1/R = 1/2R + 1/2R = .2(C+D)s'/m 2m , T (64)
s t x l ^ '

and astigmatism is found from the semi-difference: •_•

1/2R - 1/2R = 2 C s ' / m 2 m . (65)
t s 1 1 ^

Since | C | « | D |, field curvature is the predominant aberration and is
given by

(66)
R m^m2 p01 *BZ

for the aplanatic system.

Equation (66) shows that increasing the diameter bf the elements would
decrease the effect of field curvature; but, to maintain grazing incidence condi-
tions, the image distance would rapidly increase, causing instrument manu-
facturing difficulties. Decreasing d would decrease field .curvature; however,
the collecting area would be sacrificed. Some reduction in the effect of field
curvature can be achieved by introducing small amounts of spherical aberration
in the proper direction according to equations (57) and (60).

22



C. Telescope
Consider a telescope with zero spherical aberration such as used in

X-ray astronomy [9-14]. Figure 5 shows a typical instrument schematically.
Such a system will be designed in this section by specifying the radius of the
first mirrored element, the distance between the two elements, and the grazing
angle at the center of each element.

SECONDARY
FOCUS

„ XTPRIMARY^«. ̂  S

Figure 5. Schematic of X-ray telescope.

From equation (53) 6 = -1; that is, the first surface is a paraboloid of

revolution. At p = 0, equation (8) gives

z = = -P01
2/2ki (67)

Then we have for the first surface image distance

I = z0 + kj /2 , (68)

23



where k /2 is the distance between the vertex located at z = z and the focal

point of the paraboloid.

The image from the initial reflection can be regarded as the object for
the second reflection; therefore,

s2 = si _ d (69)

The radius at the center of the second element can be found from p 0 '= p s /s' .
\ ' ' \j£i \J -L ^ J.

Taking the grazing angle at the center of each element to be y, the angle between
the final ray and the optical axis is 4y. Therefore, the distance from the center
of the second element to the focal plane for the system is

S2 = P02 /tan 4T •

Since the incoming ray is parallel to the z-axis, we have

k i = -POI .tanr . . . . . .

and

k2 = ~ P 0 2 tan3y '

Starting with the following specified values

p01 = 10U.L.

d = 20 U.L. ,

where U.L. signifies units of length, we can generate a typical X-ray telescope
design. We find that

24



si = 286.3625328 U.L.

S2 = 266.3625328 U.L.

pfl2 - 9.30158461 U.L.

S2' = 133.0188572 U.L.

m2 = 0.499390270

t - -0.174550649 U.L.

k2 = -0.487475393 U.L.

To make the system aplanatic to the third order, we specify A = 0 in
^

equation (54). Calculating the deformation constant for the second surface, we
find that

62 = -1.002441152 .

For the case of a telescope, we set £ = y s ' / m , with y being the

off-axis angle. Then for the off-axis image position, £ = m m £ , we have
o -L ^ J.

I, = B; m2y0 , (73)

with |,,/yn= s' m being the system focal length f. For the telescope under
o v J 1 2

consideration,

f - 143 U.L. .

25



Writing equations (55) and (56) for an aplanatic telescope with negligible
distortion and astigmatism, one obtains

2m2 dsj2

A^3 « -y0
2*i 2S (74)

Pol 2

and

2m2 dsj2

(75)

From equation (66), the field curvature is

- = -0.8601R

which agrees rather well with the exact field curvature -0. 8654 determined by
ray-trace methods.

In Figure 6, the dots represent the points of intersection of 32 rays with
the Gaussian image plane. Incoming parallel rays at an off-axis angle, y_, with

respect to the z-axis strike the first surface in equally space points around the
ring at z = 0. The circular patterns predicted by equations (74) and (75) agree
quite well with the dot patterns as shown by Figure 6 for three different off-axis
angles.

A plot of maximum image spot diameter as a function of off-axis angle
(Fig. 7) shows close agreement between the exact spot size and that predicted
from primary aberrations. As the off-axis angle is increased, the theoretical
and actual spot diameters gradually move apart with an approximate departure
error of 10 percent for an off-axis angle of 15 min of arc.
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Figure 6. Spot sizes in the Gaussian image plane for three
different off-axis angles.
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Figure 7. Exact spot size of image and spot size predicted by
third-order theory versus off-axis angle.

V. CONCLUSIONS

It is believed that the choice of the coordinate system as discussed in
Section IV is well justified by the results obtained. The origin was selected to
coincide with the most representative portions of the reflecting surfaces, a thin
ring located in the neighborhood of z = 0 . The theory is thus most accurate for
reflections occurring near the center of each element, and the distance between
element centers has been shown to be an important parameter.

A complete set of primary aberrations has been derived for a single -
element and for a two-element grazing incidence system. Field curvature has
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been identified as the predominant primary aberration for the two-element
system. It has been shown quantitively, by the telescope design example in
Section IV, that the value of field curvature from this theory agrees to within
better than 1 percent with the exact field curvature determined by ray-trace
methods.

The primary aberrations have been discussed here; however, it was
found that higher-order aberrations exist and become important at points of
reflection outside the vicinity of the z = 0 plane.
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