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Slotted Test Section Dynamics of the NTF.

1. Introduction.

In the previous reports®, concerning the modelling of the
NTP dynamics, a model of the wind tunnel systea proper toget-
her with a simplified control system has been presented. As
a continuation of this effort a dynamic model of the test
section and plenum has been developed. In arriving at an
acceptable representation the following objectives were set;

a. The model should serve as a means for the determining
the dynamic pe-formance of the NTF and the subsegueht design
of optimal control configurations.

b. The model should be of the ome dimensional flow type
so as to facillitate computer simulation.

c. The model should allow for the similation of the effects
of test section blockage, boundary layer losses, slot flow
requirec for supersonic fiow generation, reentry flap pos-
ition, and auxilliary plenum suction.

d. The model should be capable of validation by compar-
ison to previous tests made on the eight foot tunnel at
Langley.

e. The model should be capable of being updated as oper-
ating data from the NTF becomes available.

f. The model shculd lead heuristically to simpler models
so that the principlzs of operation of this part of the
tunnel are more clearly understood.

1.2 The model presented in this report meets most of the
objectives. The shortcomings of the current representation

are:

*References 4-8



a. There is no representation of reentry flap position.

b. The boundary layer coefficients Cxm are not known to
a sufficient degree of precision.

c. The test section divergence is not represented.

d. There is no simplified representation available so as
to better understand the test sec.;ion dynamics.

e. The actual value of Ar is not known. Ar is an equiva-
lent area and may not be equal to the geometric area. Ar
may even vary with mach number.

f. The assumption of a constantf3V2 loss coefficient for

the diffuser may not be a good onmne.

2. Basic Configuration.

The basic configuration of the slotted test section
and plenum is illustrated in figure 1. The following equa-

tions are used.

2.1 The flow entering the test section is given by:

[ l44.Atest.Pstag.Mach l.4eg
if Mach €1
( 1+ .2+Mach®) 2 ReTstag
Qthrt = <

l.4-g

{ 144« Atest-Pstag — if Mach>1
ReTstag

where:
2

Atest is the test section area, Atest= 66.77 ft



R is the universal gas comstant, R= 55.1 ft/°R
g is the gravity constant, g= 32.2 ft/sec2
Pstag is the stagnation pressure (lb/in2)
Tstag is the stagnation temperature (°R)

Mach is the test section mach number

2.2 The mach number is given by:

, Pstag
5 [}————- -5
Pstes

Pstest is the static test section pressure (lb/inz)

Mach =

where:

2.3 The flow (lbs/sec) entering the plenum from the test

section via the slots is given by:

Qslot = Qthrt-Cxm + (Qthrt-Qtest) + Qdm

where:
b = Qthrt.Cxm is the component due to boundary layer.

Cxm is a function of mach number (see section 3.)

Qt = (Qthrt-Qtest) is the component due to supersonic
flow generation.

Qdm = Qthrt-Qdmx is the component due to model blockage.

Q@dmx is an input variable.

2.4 The flow exiiiang the test section is given by:

Qexit = Qthrt - Qslot



2.5 Qtest is the test section flow and is given by:

144 «Ateste Pstag sMach l.4.g

Qtest =

(1 + .2-Mach®) > R.Tstag

2.6 The flow leaving the plenum and flowing into the 4diff-

user via the reentry flaps is given by:

Qflap = Qr - Qexit

where:

Qr is the total flow into the diffuser.

2.7 The total weight of gas in the plenum is given by:

Wpl = j(Qslot - Qflap) dt

2.8 The static pressure in the plenum is given by:

Wwple RTpl

[}

Ppl
144.Vpl

where:

Tpl is the plenum static temperature. It is assumed
that the total and static temperature in the plenum
are equal to each other as well as t0 the test
section total temperature.

Vpl  is the plenum volume, Vpl = 36,000 £t~



2.9 The test section static pressure is assumed equal to

the plenum static pressure.

Pstest = Ppl

2.10 The static temperature in the teat section is given

by:

Ttest
Tstest o

(1 +.2 Mach®)

2.11 The velocity in the test section is given by:

Utest = Mach 1/&.4-3-R.Tstest

2.12 The ejector action of the diffuser is represented by:

144 Ar. Pstest + Qexit-Utest/g = 144+Ar.Pr (1 +l.4-Mr2)

where:

The balance is taken across an equivalent area Ar. The
exact value of this area is not known. A nominal value of
Ar= 1.16 Atest = 77.45 ft2 was chosen. The value of Ar was
varied during the simulation so as to obtain a measure of
the sensitivity of the system to the value of Ar. Tnis is
the familiar momentum equation applied across a line. The
equation balances the sum of the potential and kinetic
forces on either side of a line.On the }efL face of Ar
the potential force is 144 «Ar-.Pstest, The kinetic force.
is given by Qexit +Utest/g, since we may assume that the

kinetic energy associated with the flow Qflap is negligible.



The energy on the right face of Ar is obtained by using
the identity.

144 sAr «Pr.g 1.4 Mre = Qr-Ur
2.13 The remainder of the tunnel, up to the fan, is repre-
sented by a sequence of momentum, energy, and continuity

equations. ine first equation encountered is:

ég = [144'A9~g (Pr - P1o —Xq9Q9U9) + Qrir - QIOUIJ /XL9
where:

The equation is written across a section of the diffuser
of length XL9, XL9 =30ft, and an equivalent area of Ag,
A9 =9Oft2. The state of the gas entering the section is
(Pr,Qr,Ur). The state of the gas leaving is (Plo,QloUlo).
Qr and Q9 are assumed equal. This assumption is valid since
it is equivalent to saying that the flow entering a volume
of short length is equal to the average flow in that volume.

Xqq is the PV2 loss coefficient in this section.

6

Xqq = +1111 107 sec?/(in°rt)

2.14 The equations of 2.1 to 2.13 are solved simulitaneously
in an iterative manner., Care must be taken in the calculations
so as to remain on the proper branch of the solutionm. This
will assure that choking and the shock equation are properly
represented. The procedure used is outlined in Appendix A.

In general the procedure proceeds as follows:



Let

Fm = 144 *Pstest -Ar + Qexit.Utest/g
and

d = Qr2R Ttr /(1.4'Fma-g)

wheee Ttr is the total temperature on the right face of Ar.
If there is no loss of heat in the plenum Ttr= Ttess:.

Mr is given by the quadradic expression.
(5-49 a)eMr + (25- 70d)*Mr° - 25 4 = O.

The remaining variables are given by:

Pr = Fm/(144« Ar(l +1.4Mr°))
Tr = Ttr/(1 +.2Mr°)
Ur = 49.84Mr\/Tr

If Mr»1, choking occurs and we set Mr equal to 1.

Qr is then given by:

qr = Fu 4/5-1.4 g/(24+R-Ttr)

. [ ]
Qg is set equal to Qr, and Qg is constrained so that Q9$ o.

2. The distribution of losses around the tunnel.

In order to properly model the tunnel, the losses around
the tunnel must be properly represented. From the report by
D.M. Rao (11), it may be inferred that when operating at
14,7 psia, 500°R the tunmnel drops will be distfibuted as
follows:

station 1 to 4 13,91%
station 4 to 6 3,21%



station 6 to 8 11.37%
station 8 to 10 60.86%
station 10 to 12 5.46%
station 12 to 14 5.19%

From the report by B.Gloss (2) the fan ratio as a function

of mach number is given as:

Mach No, Fan Ratio
o2 1.0120
) 1.0180
A4 1.0245
5 1.03230
.6 1.0430
o7 1.0550
.8 1.0700
09 1.0880

1.0 1.1120
1.1 1.1420
1.2 1.1850

3.1 Using the above data the losses around the tunnel may

be established if we further assume:

a. The losses arePV2 losses, with constant loss
coefficients.,

b. That the slot flow due to boundary layer at
Mach 1 is 3% of the flow at the throat.

¢c. That the slot flow is a function of mach number.

3.2 The coefficients Xqy, i=3,5,7,9,11,13 are defined by:

DP; = Xq4-Q;+TUj

where:
DPi is the pressure ‘1loss in the ith section.

Xqi is the loss coefficient in the ith section.



Qi is the flow in the ith section.
Ui is the velocity in the ith section.

The coefficients mei are defined by:

Qb= Cxm, - Qthrt
where:
The subscript i denotes the mach number at which the
computation is made,
Qb is the slot flow due to boundary layer.

mei is the slot flow coefficient.

3.3 The coefficients Xq and Cxm are determined as follows:

a. Establish the tunnel simulation at 14.7 psi, 500°R,

Mach 1.0. Fix Cxm at .03 and vary all of the Xqi in an

iterative fashion until the fan ratio is 1.112 and the
losses are distributed as indicated in 3%.0.

b. Establish the mach number at .1 to 1.2 in steps of

.1 and for each mach number vary mei until the proper

fan ratio is obtained,

If this is done the following values are obtained.

Xqz = .8055 1077
Xqg = 3491 1077
Xq, = .1934 10~
Xqq = 1111 107°
Xq;; = 1791 1077
Xqyz = .2013 1077



Mach No. Cxm

ol 4501
o2 1612
o3 »0807
o4 « 0445
5 .0%00
6 .0232
o7 .0206
.8 00216
9 .0243
1.0 +0300
1.1 +0299
1.2 .0216

3.4 The data given in 3.3 is suspect due to the large values
of Cxm at the low mach numbers. This is more than likely due
to the Waccuracies of the assumed fan ratios. In order to
correct for this error we introduce the energy ratio.

qthrt Utest®

2(550)g HP

where HP is the horsepower needed to drive the tunnel,

The determination of the coefficients Cxm is redetermined
Below mach numbers of .6 the fan ratios as given in 3,0 are
ignored. Instead the values of Cxm are chosen so that the
value of CE is held constant and equal to that at Mach =.6.
This results in coefficients which appear to be more realis-
tic. It is these values that are to be used to represeunt the
test section. The results of this calculation is tabulated

on the folowing page.

10



Mach No. Cxm CE Cr Crl
ol .0137 4,70 1.0012 1.0080
02 J0l44 4,70 1.0048 1.0120
o> .0155 4,70 1.0107 1.0180
o4 .0169 4,70 1.0189 1.0245
5 .0210 4,70 1.0299 1,0330
o0 .023%2 4,70 1.0430 1,043%0
o7 0206 4,7% 1.0550 1.0550
o8 .0216 4,96 1.0700 1.0700
.9 .0243% 4.89 1.0880 1.0880
1.0 .0300 4,65 1.1120 1.1120
1.1 .0299 4,3%9 1.1420 1.1420
1,2 .0215 4,01 1.1850 1.1850

Where Cr is the resulting fan ratio and Crl is the fan ratio

given in 3.0.

4,0 The time response of the test section.

4,1 It was suspected from the system equations that the
dynamics of the test section can be represented by a simple
first order system. To verify this, the time response of
mach number due to a 2 degree step change in guide vane angle

was determined by the NTF dynamic model. The quantity
1n Mach - Mf
L Mi -Mf

where Mach,Mf, and Mi are the current, firal, and initial
values of mach number, was plotted as a function of time
on figure 5. The quantification of the points is due to
the fact that Mach, Mf, and Mi were only observed to 3
significant digits.

Since a straight line fits through these points it is
verified that the system is of the first order.

11l



The x intercept of .35 corresponds to a dead time of .35

seconds., This agrees with the acoustic propagation time of

343 Pt/(863 ft/sec) = .397 sec

It may be shown that the slope of the line is the reciprocal
of the time constant. This yields a time constant of
1/.411= 2.43 sec., If the time constant is determined in the
usual fashion, by defining the time constant as the time
required to reach .632 of the final change, a value of 2.8
seconds is obtained. Note that 2.43 + .35= 2,78.

From this we conclude that one can model the test section

response by:

~1d.S
AM = k.e AG

(Te:S + 1)

where:
G is the change in guide vane angle.
M is the corresponding change in Mach number.
Tc¢ 1is the time constant
Td 1is the dead time.
k is the gain,

is the Laplace transform operator.

]

In designing the mach number control system, the above
parameters prove useful, In the next section we examine how
these parameters vary with the operating point, It is seen
that they are a function of pressure, mach number, and Ar.

In addition a nonlinear affect is observed in that the time

12



constant is derendent on the step size. Further for small
value. of Ar choking occurs at supersonic operation. This
choking occurs at che boundary of Ar and causes velocity

limitting which in turn slows down the response.

4.2 The variation of gain and time constant.

On figures 2a and 2b the gain and time constant of the
test section is plotted as a function of stagnation pressure
and mach number. This data was obtained by runs made on the
NTF simulation. With the pressure and $¥emperature control
active a 2 degree step change in guide vane angle was made.
The time constant was determined as the time required for
the mech number to make .632 of the total change. Since
we lave already shown that the system is indee=d a first
order, this calculation is valid. However the time constants
shown are the true time constant plus the system dead time.
Since the distance between the test section and the fan is
approximately 343 ft, the dead time varies between .307 and
.487 seconds for the temperature range of 500 to 200 *E.

To obtain this data runs were made at pressures of 30,60,90,
and 12C psi; temperatures of 200,30C,400, and 500 °R; and
nach numbers of .2,.%,.4,.5,.6,.7,.8,.9,1.0, and 1.1.

There was no change in either gain or time constant with
temperature, Since it is known that the dead time does

vary with tem; erature, it must be true that the actual time
constant also varies with temperature in such a manner as to
maintain the apparent time constant (gs plotted in fig 2a)
fixed. The gain plotted on fig. 2b was obtained by taking

the ratio of mach number change and guide angle change and

13



multiplying by 100.

4,% The time constant variation due to Ar.

It was observed that the value of Ar had a strong effect
on the time constant. The curves of figure 4 show the vari-
ation ¢f time constant with Ar. It is noted that for low
values of mach number that the value of Ar has little if
any e§fect on the time constant. The time constant for tran-
sonic operation is strongly dependent on Ar. These curves
clearly show the need for obtaining bler information as

to the value of Ar.

4.4 Tre time constant due to blockage.

On figure 3, the time constant due to a 2% blockaze is
plotted. Comparing this with fiure 2a, it is seen that cthe
the time constant for blockage and guide vane deflection is
almost the same. That this is so is glearly seen by examin-
ing figures 5 and 6. From these we conclude tuat the response
due to blockage differs from that due to guide vane deflect-
ion only in chat blockage does not have aay dead time asso-
ciated with it. Note that figure 5 has an x intercept of
.35 seconds, while the line of figure 6 goes through the

origin.

4.5 Comparison with the eight foot tests.

In order to assist in the validation of the NTF simula-
tion transient tests were made on the eight foot tunnel at
Langley.These tests were made in order to determine the
response of the plehum-test section to test section block-

age. The findings of these tests are documented in ref (10).



The table below which appears on page 11 of the above report

summarizes the pertinent results.

’
ton’ Mach Ho. SEL (#44) Av§§?§31$§‘e gﬁﬁft?iis to (13)
19 1.05 7.7 9.2 13.5

20 1.20 3.7 5.2 3.5

21 .95 7.1 6.7 4.5

22 .80 5.3 5.5 4.6

In order to compare the present NTF simulation with
these tests, the NTF simulation was altered so that it would
exhibit the properties of the eight foot tunnel. This was
accomplisted by changing volumes and lengths in the tunnel
proper. This change is described in ref (8). The plenum
volume was incressed from 36,000 to 72,000 £t .The value

of Ar was left at 77.45ft2

s and a linear fan representa-
tion was utilized. The inbleed and outbleed valves were
locked and a 2% step change in blockage was made in the
test section..PFour runs were made : run 2219, Tstag=500,
Pstag=14,71, Mach= 1.05; run 2220, TIstag=500, Pstag=14.71,
Mach=1.2; run 2221, Tstag=500, Pstag=14.71, Mach= .95;

and run 2222, Tstag=500, Pstag= 14.71, Mach= .8. These
correspond to runs 19,20,21, and 22 respectively. A
typical response is shown on figure 8.

An analysis of the output of figure 8, is made by the

use of figure 7. From this figure we conclude:

15



a. The response of mach number is of the first order. For
run 2219, with an Ar of 77.45ft2, the time constant is
3.95 sec, there is no system dead time.
b. The response of the test section pressure is of the first
order. For run 2219, with an Ar of 77.45, the time coanstant
is 3.98, there is no system dead time.
c. The response of stagnation pressure, is of the third
order. For run 2219, with an Ar of 77.45ft°, there is a
time constant of 3.69 seconds, with anx additional underdamped
second order of approximately 3 hertz. There is a system
dead time of .35 seconds.

Tge table below compares the eight foot tests with

the simulation results.

simulation
Run 8 ft tests Ar=70 Ar=72 Ar= 74 Ar=77.45
19 7.7,9.2,13.5 c 6.3 5.3 4.0
20 3.7,5.2,%.5 Cc c 19. 2.9
21 7.1,6.7,4.5 6.2 5.0 5.6 3.9
22 56345.5,4.6 4,9, 4.6 4.4 4,7

The listed values are- measured time constants in sec-
onds. A C indicates that the simulation failed to rur due to
choking at Ar.

Examining the above, it may be concluded that the sim-
ulation concurs with the test. In order to obtain better
correlation or detect differences between the simulation
and the tests, it will be necessary to obtain m¢r~e consis-

tent test data and establish more precise values of Ar.

l6



5.0 Mach Number Control

From the low band-pass of the mach number response, it
is apparent that the guide vane actuator wi’l be the limitt-
ing factor on the response of the mach number control system.

The process time constant is of the order of 3 seconds,
while the actuator is a second order system of 6 radians
with a damping factor of .8. Together these two yield a
phase angle lag of 130o at 3 radians, which limits the resp-
onse to 3 radians per second. This is in a2greement with the
analysis presented in (6).

The settling time, to within 1%, for a second order
system with a natural frequency of 3 radians per second
and a damping factor of .8, is obtained by solving.

o—+8(3)t

l- 082

= 001

This yields a settling time of 2 seconds.

This is not consistent with the system performance as
exhibited by the NTF simulation. A typical simulation output
is contained on ¥igures 9a,9b, and 9c. This run corresponds
to a step change in mach number set point of .1, with the
tunnel operating at 100 psi, 300®R and mach=.8. In this
run a settling time of 20 seconds was required. This is
far different from that expected for a properly tuned
system., The discrepancy is due to croos coupling, the
presence of reset in the control, improper tuning and
perhaps some nomnlinear affect unaccounted for. This dis-
crepancy is to be investigated in a later study, meanwhile
the target values of 2 to 3 seconds for settling times of

the mach number comtrol system is to be maintained

17



6.0 Conclusions and Recommendations.

From the results presented in this report, it may be
inferred that the proposed test section math model is realiss-
tic. It is therefore reasonable £o proceed with the dynamic
investigation of the NTF utilizing the model established in
this report.

The following action items have arisen as a result of
this study:

1., Obtain better data as to the distribution of losses
in the tunnel.

2. Establish more precise values of fan ratios as a
function of mach number.,

3. Obtain better data so as to establish the boundary
layer losses.

4, Obtain data as to the variable losses in the high
speed diffuser.

55, Determine more precise values for the parameter Ar.
Establish any variation in Ar with mach number.

6. Design an experiment on an operating tunnel to
facillitate further validation of the simulation.

7 Proceed with the design of a suboptimal mach number
control system.
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Figure 1 Schematic of Test Section and Plenum Configuration.
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Appendix A. The solution of the diffuser-ejector eguation

1. The momentum balance across the area Ar is given by:

. 2
144 Ar Pstest + Qexit Utest/g = 144 Ar Fr (1+1.4 Mr7)

2. The momentum eguation between Pr and PlO is given by:

G =[}24-A9-g (Pr -F)4 -Xqg* Qg Ug) +Qr.Ur 'Qld'Ulé] /XLy

-

3s To solve these, in torms of Fstest, Mach, and PlO’ we

write:
Ur Qr
A\’lr= et St =
41.4-Rog.Tr Ar.Pr Jl.ihR-g.’I‘r
2 ,
Qre(5 +7 Mr%) TtreR
2
Fm .5(5 +MI‘ ) 1.408
wnere:
Pmel44 .pstest <Ar + Qexit.Utest/g
Letting
Qr‘e- R Ttr
d =
1.4 'Fm2' g

the above equation may be writtep as:

5.Mr2 (5 + Mr2)

(5 + 7.Mr°)°
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or

(5 -49 d) Mr* + (25 <70 d) Mr® - 254 =0

4, The above gzuaidratic may be shown to satisfy:

case 1. d & 5/49

There is one real solution for Mrg. Further Mrg's 1.

case 2. 5/49 €d € 5/24
There are two real solutions for Mrg. Moreover if x is a
solution for Mrz, then y is the dual solution. With x and y

satisfying:

>S+y 5+ x
and y =

7y -1 7x - 1

-we

further if x %1, then y €1, and visa versa,

case 3, d 25/24

mw

For 4

5/24, the solution is Mrc=1. For 4 $5/24 there
ic no real solution. This is interperted as choking and the

computation is sc arranged to constrained &§5/24.

5. The zabove system is solved by letting:

25 - 70 d 25 d
c:- -

2 (5 =49 4) (5 =49 4)

Then, if d44&5/49, case one holds and

2
Mr~ = b + - ¢

31



For 5/49 & d € 5/24, case two holds and

For d%5/24, the solution is degenerate. In this case we set

Mr equal to 1. The value of Gr is obtained from:

501.408

24 R “I'tr

6.0 The ejector equation is seen to be consistent with
the normal shock ecuation, if Qr= Qexit. For this case we

get due to the symmetry between Mach and Mr.

5 Mr° (5 + Mro) 5 Mach® (5 + Mach®)

2

(5 +7 Mr9)2

L2

(5 +7 Mach)
If Mach €1, then d€5/24 and either case one or case
two holds. For case one Mr =Mach, since there is only one
solution. For case two, again Mr= Mach, since the other

sorubtion
5 + Mach®

Mr = ——
7 Mach™-1

is not physically realizable ( Mr can not be greater than one).

If Mach 21, then 5/49¢&d £5/24, and case two holds.

There are now two possible solutions

Mr = Mach, and Mr = "{5 +Mach2)/( 7 Machg-l)

which is the well known shock eguation.
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