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S T A B I L I T Y  ANALYSIS FOR  LAMINAR FLOW CONTROL - PART I 
D a v i d  J. B e n n e y  and Steven A. O r s z a g  

C a m b r i d g e   H y d r o d y n a m i c s ,  Inc.  
C a m b r i d g e ,  Massachusetts 02139 

1. INTRODUCTION 

The t h e o r y   o f   s t a b i l i t y  of quasi-paral le l   f lows  has  

been subject to  ex tens ive   s tudy   dur ing   recent   years .  The 

problem is nonl inear  and ana ly t i ca l   p rog res s  is  d i f f i c u l t  

without   the  introduct ion  of  some form  of  approximation. 

For th i s   r ea son ,  much a t t en t ion   has  been  given t o  t h e   l i n e a r i z e d  

problem so t h a t   t h e   s t u d y  of  Orr-Somerfeld-like  eauations 

has  been  the  dominant theme. I n   p a r t i c u l a r ,   a c c u r a t e  methods 

€or t h e   c a l c u l a t i o n  of  eigenvalues and eigenfunctions  has  been 

and  remains  an  important  task. One o f   t he  t w o  main goa ls  

of the   p re sen t  work is  t o  assess and  recomnend e f f i c i e n t  

and  accurate  numerical   methods  for  the  calculation  of 

eigenvalues  and, when necessary,   e igenfunct ions.  A f u l l  

discussion  of   these matters i s  g iven   in  Sects. 5-8. 

Beyond the   l inear   reg ime,   var ious   nonl inear   theor ies  

have  been  proposed  and  each of these  have  advantages  and 

defects  depending on the  par t icular   physical   problem  under  

study. Here w e  are concerned  with  boundary  layer   s tabi l i ty  

p red ic t ions  and f o r   t h i s  purpose  the  technique  which w i l l  

be   adopted  in   Sects .  2-4 is  the   s t anda rd   one   i n  which 

the   nonl inear   evolu t ion  of the  basic   ampli tude is  s tud ied  

by simple  per turbat ion  techniques.  The i d e a   o f   t h i s  method 

o r i g i n a t e d   i n   t h e  work of Stuart '  and  Watson . When 

the non-paral le l   aspects  of the  f low are inco rpora t ed   i n to  

this system of e q u a t i o n s ,   t h e   r e s u l t  is  a nonlinear  space- 

time evo lu t ion   equa t ion   fo r  the amplitude. 
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In  Sects. 2-4, we  formulate a theory  for  the  nonlinear, 

nonparallel  stability  of a very  general  class  of  boundary 

layer  flows.  The  effects of nonlinearity,  compressibility, 

and  the  quasi-parallel  nature of  the  flow  are  all  included. 

The  theory  given  here  is  an  important  first  step in trying  to 

obtain a realistic  approach  to  the  prediction  of  transition 

in  three-dimensional  boundary-layer  flows  like those 

encountered  on  laminar-flow-control  aircraft. 

2 . 



2.' STABILITY OF OUASI-PARALLEL INCOMPRFSSIBLE  FLOW 

It is  instructive  to  work  out'the  stability  theory 

for  incompressible  flows  before.proceeding  in  Sects. 3-4 

to  the  more  complicated  case  of  compressible  flows.  Here 

we formulate  the  nonlinear,  nonparallel  stability  theory 

of two-dimensional  disturbances  in  incompressible  boundary 

layer  flows.  The  basic  ideas  used  here  carry  over  directly 

to the problem  of  three-dimensional  disturbances in a 

compressible  flow. 

It is convenient  to  use  a  streamfunction Q , so that 
the  equation  for $ is 

(V $1 t'+ $yv Q, - QXV $y = V V 4 Q  
2 2 2 

If G(y,X) is  the  basic  flow  with  X  as  the  slow  variable 

(to  indicate  non-parallel  effects),  and  $(y,B,X,T)  is  the 

perturbation  streamfunction  (with T as  the  slow  time  variable 

and e as the  phase of the  perturbation),  then 

+ 5 y N y y x  + 3ox + 30x0xxJ18e1 + 3 $ 
2 

YYX Y 

(2.1) 
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Here we have  assumed  that the phase 8 is of  the form 

8 = 0(X,T)/u , 
X = px,. p = 6/L 'where 6 is the boundary  layer  thickness  and 

L is  a  measure' of the  distance  over  which  non-parallel  flow 

effects  are important,  and E is a  parameter  specifying the 

amplitude of the nonlinearity. In formulating (2.2), we  have 

also  used  the  relations 

In order to solve ( 2 . 2 )  , JI is  expanded as 

1c) = A$(l)eie + A * $ (l)*e-i8 

+ + A 9 (2)e2i8 + A $ 

+ E  [ A $  

*2  (2) *,-2iB 1 

2 3 (3Ie3i8 + A *3 lcI (3)Xe-3i8 + A 2 A * (ll)ei8 

where A ( X , T )  satisfies  the slow space-time  scale  equation- 

AT = alAX + a2A + XA A 2 *  
( 2 . 4 )  

If  nonlinear and nonparallel  effects  appear at the  same  order, 

.we must  take p = E . Making  this  assumption, the rest of 

the calculations proceed by equating  terms  order by order 

in (2.2). 

2 
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0 

Eq. (2.5) is  the homogeneous  problem 

where k is  the  Orr-Sommerfeld  fourth-order  differential 

operator. The usual form of the  Orr-Sommerfeld  equation 

follows by making the identifications 

(2.10) 

(2.11) 

at y = 0 , -  . When (2.11) is  solved  subject to  these 
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boundary  conditions,  there  results  an  eigenvalue  condition 

of the form 

f (ex,oT,x) = 0 

that  must  be  satisfied  for  a  nontrivial  solution to (2.11) 

to exist. At  each  position X', we  can calculate ex given 

eT or vice  versa  from (2.12). If ex is  assumed  given  and 

real,  then (2.12) yields  a  temporal  stability  analysis; if OT 

is  assumed  given and real, then  a spatial  stability  analysis 

results. In either case,  it is  assumed  that  conditions  are 

close  to  neutral so that  any  weak  amplification or damping 

can  be  incorporated  later  into the evolution equations. 

Eqs. (2.6-7) are  inhomogeneous  problems  that  can  be 

solved at each  location X. The  more  interesting  problem 

arises  with Eqs. (2.8-10) since  they  are  each  of  the form 

k $ J  = K F + G  

Here K (X) is  either X, al, or  a2  in (2.41, and F and 

G are  known functions.  In order  to determine K, we  invoke 

the  Fredholm  alternative so that 

(2.12) 

(2.13) 

(2.14) 

where X is  the  solution  of  the  homogeneous  adjoint  problem 

mx = 0 (2.15) 

That is, 172. is  the ad joint  of a. and the  boundary  conditions 

for X are  adjoint to  those for JI . 
By this  technique,  all the functions  appearing  in (2.4) 

are  found and  hence the  evolution of the  amplitude A can  be 

determined. 

7 



3, 'I!HREE-DIMENSIONA.L NONLINEAR NONPARALLEZ STABILIm THEORY 

OF COMPRESSIBLE BOUNDARY LAYER E'LOWS 

The equations  governing  the  motion  of a compressible 

f l u i d  are as follows: 

These equat ions are those of con t inu i ty ,  momentum, energy, 

and s ta te ,  respec t ive ly .  The no ta t ion  is s tandard ,  v i z .  
-+ + 

PI P I  T I  v' = ( U ~ , U ~ , U ~ ) I  X = (X1,~2tX3),  t, E, k, X = (Xl,X2,X3), 

T i j  r and @ deno te   p re s su re ,   dens i ty ,   ve loc i ty ,   spa t i a l  

-f 

coordinates ,  t i m e ,  i n t e rna l   ene rgy ,   coe f f i c i en t  of thermal 

conduct iv i ty ,   ex te rna l   force ,  stress t enso r ,  and d i s s ipa t ion .  

In   add i t ion ,  w e  use the  fo l lowing   subs id ia ry   re la t ionships :  

Tij 

E =  cvT 

a =  e - - v A  - v  e 1 
2 i j  i j  3 

2 2  
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where 

A = div f 

H e r e  v and cv are the   coe f f5c ien t   o f   v i scos i ty  and t h e  

s p e c i f i c   h e a t  a t  cons tan t  volume. I t  is  f u r t h e r  assumed 

t h a t   t h e   t h r e e   t r a n s f e r   c o e f f i c i e n t s   k ,  V ,  and cv may be 

assumed func t ions  of temperature T alone. 

Armed wi th   these   bas ic   equa t ions ,   the  a i m  is t o  develop 

a theory fo r  t h e   n o n l i n e a r   s t a b i l i t y  of a basic  three-dimensional 

boundary-layer  flow.  The  boundary w i l l  be taken t o  be a t  

y = 0 so t h a t   t h e  basic flow w i l l  have   s low  va r i a t ions   i n  

t h e  x = x1 and z = x3 d i r ec t ions ,   t oge the r   w i th   poss ib l e  

s low  temporal   var ia t ions.   This   feature  i s  m o s t  e a s i l y  

accounted  for  by  the  introduction of slow  var iables  X ,  'Z, and 

T' (do not con€use  with T )  where 

( X , Z , T ' )  = V ( X , Z , ~ )  I V << 1 

The small  parameter p is the   u sua l  one on which  boundary l aye r  

theory is  based. 

The unperturbed  boundary  layer  solution w i l l  be  denoted 

by overbars .   This   zero th   o rder   so lu t ion  is taken as given. 

In   add i t ion ,   t he   f i r s t -o rde r   co r rec t ions  t o  t h e   b a s i c  s ta te  

do   in f luence   the   evolu t ion   of   d i s turbances .  

The basic state is then  given  by  the  veloci ty  components 

9 



i v = (u(y,X,Z,T'),  pG(y,X,Z,T'),  w(y,X,Z,T')) 

and densi ty ,   temperature ,   and  pressure  f ie lds  

(3.10) 

For   t he   s t ab i l i t y   ana lys i s ,   e ach   func t ion  f is replaced 

by + f and per turba t ion   equat ions  are then  derived.  Third- 

o rde r  terns i n  amplitude must be   re ta ined   in   the   p resent   theory .  

TO be   spec i f i c ,  w e  perform some pre l iminary   ca lcu la t ions .  

For  example, .since 

then 

and the re fo re  

E = cV(T)T ,  

E = c V ( T ) T ,  
- " 

E = cV(? + T) (? + T) - Cv . 
Taylor.expansion of t h i s  la t ter  r e s u l t   g i v e s  

E = EIT + E2T + E3T + ... 2 3 

where 

- cv 
- - + E;? 
- 

E2 = c& + 'c:T/2 

E3 = cG/2 +'c{"T/6. 
- 

Here primes  denote  derivatives  of cv(?) = cv. 
In the   equat ion  of  s t a t e  f o r  the basic   f low 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

10 
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so that the perturbation  pressure is given by 

p = F(F+p, F+T) - F(E,?). 
Taylor  expanding, it follows  that 

p = F p + FOIT + 2[Fzop + FllPT + F02T 1 1 2 2 
10 

+ “[F 1 p 3 + FZlp 2 T + F12pT2 + FO3T 3 1 6 30 

(3.18) 

(3.19) 

where Fm - - am+% (;,?I /ai;” Fn 
In a similar way, the  stress  tensor  is  expanded  as 

and  the  dissipation  function  is  expanded as 

11 



Other  functions  which  occur  in  the  fundamental  equations 

can  be  expanded in this  way  and  need  not be recorded  explicitly 

at this stage. Of more  importance to our  subsequent  analysis 

is  the fact that  perturbation  quantities, say g, will  have 

both fast  and slow  space-time  scale  variations  (see Sec'. 2). 

In  order  to incorporate  this  feature, it is  again  desirable 

to  introduce  a  phase  function 

so the perturbed  quantity  g  is  expressed in the form 

(3.21) 

(3.22) 

12 



It  follows  that  derivatives  of g depend on both  the  slow 

and  fast  variables.  For  example, 

ax 

Other  derivatives  can  be  calculated  in  a  similar  manner. 

Each  perturbation  function  is  expanded  and  the  nonlinear 

parameter E is  introduced  to  order  products  of  perturbations. 

The  two  small  parameters p and E are  used  to  order  the 

non-parallel  and  nonlinear  effects,  respectively.  In  order 

for  these  effects  to  be  in  balance,  the  choice p = c2  turns 

out  to  be  the  appropriate  one. 

The  equations  are  now  rewritten  in  this  notation  and 

only  the  terms  consistent  to  the  order  of  the  calculation 

are  retained. 

For  the  continuity  equation,  we  obtain 

(3 .24)  

(3 .25)  
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For the x momentum  equation, 
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The y momentum  perturbation  equation is 

- 
P [eT + (ex; + e,=) I V ,  

a - a  + w ~ ) v + p - v ]  - aS 
ax aY 

+ E [ p  ( ( Q ~ U  + ezw) v0 + wY) + eTpve l  



2 - T2 
- 

+ E o x [ v V 1  (U  + e v + uyl 1, . V"' - ,3 
Y (3.28) 

17 



The z momentum equation i s  analogous to t h e  

corresponding x equation and takes   the  form 

18 
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+ 5 3 'TI0: ui + v2 + Oz we - (QXue + €),we) v - QXezuewe}] 4 2 2  
Y Y 

G11T2 + -  2 {2sy(uy + Qxve) + 2w Y Y  (w + Ozve) I 

+ -  $Ip1 T3 -2  -2 
6 IUy + wyl 

- TFOl x y (ii + 3 + WZ)1 

21 



Finally, the  equation of state  is 

+ FOIT + E [ -  F p + FllPT + - F  T ] 1 2 1 2 
= F1O 2  20  2 02 

2 1  3 1  2 1 2 1  3 + [ z  F 3 0 ~  + z F ~ ~ P  T + 2 F ~ ~ P T  + - F T 3 . 6 03 

The  perturbation  equations (3.26-31) are  to be solved 

subject  to  appropriate  boundary  conditions.  At y = 03 , it 

is  clear  that  all  perturbations  should  decay to f so we 

require 

At the rigid  boundary  y = 0, u = v = w = 0 and the 

temperature  condition  will  be of the form 

(3.30) 

(3.31) 

The  case B = 0 corresponds  to  an  isothermal  wall and the 

case a = 0 corresponds  to  an  adiabatic wall. 

2 2  
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I . ' % I N U  EQUATIONS FOR THREE-DIMENSIONAL N O N L I N E A R   N O N ' p m L E r ,  

' S T A B I L I T Y  "ETEORY OF COMpFGSs'IBLZ BOTJNDAKY LAYER FLOWS 

First cons ide r   t he   l i nea r  problem so t h a t  E = l~ = 0 . 
We ask for so lu t ions  in which  each  amplitude  function is 

wr i t ten   in   the   form 

h(0,y,X,Z,T') = Ah(') (y,X',Z,T')e 
ie 

where the envelope  amplitude is to be determined as a funct ion 

of t h e  s l o w  va r i ab le s ,  i. e. , 

The respec t ive   equat ions   a re :  

(4 -1) 

(4 .4 )  

23 
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The above set of equat ions (4 .3 -8)  c o n s t i t u t e s   t h e   s t a n d a r d  

e igenvalue   p roblem  for   de te rmina t ion   of   the   l inear   s tab i l i ty  

of a given  boundary  layer  configuration.  Rather  than  eliminate 

v a r i a b l e s  it is convenient t o  cons ider   th i s   sys tem  of   equa t ions  

to  be w r i t t e n   i n   m a t r i x  form 

where H t l )  = (p."), u ' l ) ,   v" ) ,  ~ ( ' 1 ,  T ( l ) ,  . p(')) ) and  the 6 X 6 
.% 

matrices &i, l33, gl are r e a d i l y   w r i t t e n  down from the   p re-  

vious  equat ion.  

The so lu t ion  of the   l inear   ' e igenvalue  .problem g i v e s  a 

r e l a t i o n s h i p  between -OTl , Ox , and Oz a t  each   pos i t ion  

and t i m e  X , Z , T '  . Of c o u r s e   t h e   q u a n t i t i e s  - O T ,  , Ox and 

O z  are t h e  local frequency  and X and Z wave numbers. A t  

t h i s  stage w e  make  no d i s t i n c t i o n  between temporal and   spa t i a l  

amplif icat ion.   In   actual   computat ion where t h e   i n i t i a l   i n s t a -  

b i l i t y  is  being  followed  and w e  are c l o s e   t o   n e u t r a l   c o n d i t i o n s  

t h e   v a r i a b l e  8 is  t r e a t e d  t o  be  approximately real. Note 

t h a t  a t  t h i s   s t a g e   o f   t h e   c a l c u l a t i o n   t h e  wave packet  amplitude 

A ( X , Z , T ' )  is arbitrary. 

I n   o r d e r  t o  proceed  into  the  nonl inear   problem it is 

necessary t o  r e t u r n  t o  (4 .1 )  and   rep lace   th i s   equa t ion  for any 

pe r tu rba t ion   func t ion  by an  expansion of t h e  form 

25 



-t A z 2  h(') + Ahi1) )  eie 

+ c 2  L2A*h(l1)eie + A*A 2 h (11) fe-i8 

+ o(:Ep,p ,E ) . 2 3  

This  expansion  for  any  function h can  be  replaced by 

the   ident ica l   expans ion  for  t h e   v e c t o r  

where is  de f ined   i n  ( 4 . 9 )  . 
The expansion  and  truncation  procedure i s  s t r a i g h t -  

forward  and  based-on  the fact t h a t  p and E are of t h e  

same order .  The process   necess i ta tes  t ha t  a corresponding 

expansion be invoked f o r  A ( X , Z , T ' )  o f  t he  form 

2 

pAT, = p (alAX + a2AZ + a3A) + E XA A* , 2 2  

( 4  -10) 

( 4  -11) 

(4.12)  

where a1 I a2 , a3 , a n d .  X are scalar func t ions   o f  

X, Z, and T'  . These f u n c t i o n s   i n   t h i s   e v o l u t i o n   e q u a t i o n  

26 
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are determined by or thogonal i ty   condi t ions   assoc ia ted   wi th  

the  other  boundary  value  problems.  In  particular  those  for 

funct ions  and  in   addi t ion t h e  non-resonant  boundary  value 

problems for' .and ( O )  a r e  needed. 

F i r s t  w e  write down t h e  inhomogeneous  problem f o r  , ( 2 )  

namely 

(4.13) 

Here t h e  solut ion  used is t h a t  

wl i ' i l e  t h e  matrices 5 , 3 '  and E2 a r e   i d e n t i c a l  to those  

for el, B,,, and z1 except   tha t  the  va r i ab le  0 is every- 

where replaced by 2 0 . The vec tor  K ( 2 )  is r e a d i l y  found 

and i f  
% 

w e  f ind  that  

.27 
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(4.20) 

With  these  specifications  and the appropriate  boundary .. 

conditions  the  inhomogeneous  problem  defined by  (4.13) can be 

solved. 

In  the same way 

(4.22) 

is  the  appropritate  equation  governing the induced  second  order 

mean motion. Here  the  matrices & t o ) ,  ~ ( o ) ,  and G ( O ) '  

are those for e ( ' ) ,  e(1), and G except  that 8 is 

put equal  to-.zero, If the  vector 6 ( O )  is written in the form 

 en the  individual  components  are  given. by 

(4.24) 

30 
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This  problem as def ined .by ( 4 . 2 2 )  and . the   appropr i a t e  boundary 

condi t ions   can  also be  solved a t  each ( X , Z , T ’ )  l oca t ion .  

A t  t h i s   j u n c t i o n  I E ( 2 ) ,  and ( O )  and t h e  local 

d i s p e r s i o n   r e l a t i o n  are a l l  known. I n   t h e  problem f o r  E 
which  determines A , a l l  o f   t hese   func t ions  are required.  

This  problem is 

(11) 
I 

where 

The func t ions  k!”) and k!”) are r ead i ly   ca l cu la t ed :  
3 3 
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(4 .34)  
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(4 .37)  
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.For  the  nonparallel  contributions  we  must  examine  the 

series  of  problems 

i 
j = 1,2,3, ' (4.41) 

where 

These  functions, twenty-four of.them in  all, are  now listed. 

(1) = (1); + Fu(ll 

(1) = puv 

kll 

k12 

(4.44) 

-- (1) + p ('1 + 7 2- y (ioxu(l) + v(1) + i0,w (1) ) 
Y 

(4.45) 
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(4.58) 
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The double  bar  symbols i n   t h e s e  k(') equa t ions   co rzespnd  t o  

t h e   f i r s t   c o r r e c t i o n   t o   t h e   b a s i c  boundary  layer  flow.  This c o m -  

pletes t h e   d e t a i l e d   l i s t i n g s   o f   t h e s e   f u n c t i o n s .  

3J 

It remains to  show how X and a j = 1 , 2 , 3  are t o  be 
j 

ca lcu la t ed .   Fo r   t h i s   pu rpose   t he   r e tu rn  t o  t h e   b a s i c   l i n e a r  

eigenvalue  problem  associated  with  equations  (4.3,4,5,6,7,8).  

This   can  be  wri t ten as 

(4.63) 

( 4 . 6 4 )  

sub jec t  t o  the   appropr i a t e  boundary  conditions. Here x is t h e  

vec tor  ( p " ) ,  u ( l ) ,   v ( l ) ,  w"),  T ( l )  , p"))  and D .  j = 0,1,2 

are 6 x 6 matrices. 
5 3  
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The a d j o i n t  problem is  tha t   a s soc ia t ed   w i th   t he   equa t ion  

d2  rnz = - (DTw) - - (l&x) + g2x = 0 . d T  T 
dy2 -0- dY 

and the   ad jo in t   boundary   condi t ions   fo l low  the   ident i ty  

It f o l l o w s   t h a t   t h e  inhomogeneous  problem 

Lv = f 
% % 

w i l l  have a s o l u t i o n   i f  and  only i f  

OI 
T Io % - w fdy = 0 . 

On a p p l y i n g   t h i s   c o n d i t i o n  to  equat ions (4 .30  ) and ( 4 . 4 1  ) 

w e  o b t a i n  

(4 .65)  

(4 .66)  

(4 .67)  

( I  .69! 

( 4 . 6 9 )  

(4 .70)  
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With these  €unctions  determined at each   l oca t ion   t he  

c o e f f i c i e n t s  i n  equation  governing  the  amplitude A 

(equation 4.12) are known and t h e  s p a t i a l  and temporal growth 

of A can  be  s tudied.  
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5 .  CHEBYSHEV-SPECTRAL METHODS FOR STABILITY CALCULATIONS 
~~ . " ~" 

In   Sec ts .  5 - 8 ,  we discuss   the   s ta te -of - the-ar t  of 

n u m e r i c a l   t e c h n i q u e s   f o r   s t a b i l i t y   c a l c u l a t i o n s .   I n  this 

Sect ion,  w e  provide  an  introduct ion t o  the  use  of  Chebyshev 

polynomials f o r   t h e   s o l u t i o n   o f   s t a b i l i t y  problems. 9 

An important   di f ference  between  f ini te-difference 

approximations t o  the   e igenfunct ions  and eigenvalues  of 

a s t a b i l i t y  problem  and  Chebyshev  polynomial  approximations 

t o  t h e  same problem is  their order  of  accuracy.  Finite- 

difference  approximations  give  only a f in i t e   o rde r   o f   accu racy  

i n   t h e   s e n s e   t h a t  errors behave  asymptot ical ly   l ike hp f o r  

some f i n i t e  p.when the   g r id   spac ing  h approaches zero. On 

tke  other   hand,  i f  the  unperturbed  veloci ty   prof i le  is smooth 

( i n f i n i t e l y   d i f f e r e n t i a b l e ) ,   t h e  Chebyshev polynomial 

approximations  discussed  here are o f   i n f i n i t e   o r d e r   i n   t h e  

s e n s e   t h a t  errors decrease more rap id ly   than  any  power of 

1/N as N + .Q) . 
Another   difference  between  f ini te-difference and 

Chebyshev polynomial  approximations t o   s t a b i l i t y  problems 

conce rns   t he i r   r e so lu t ion  of possible   regions  of   rapid 

change  ( 'boundary  layers ')   in  the  eigenfunctions.  When 

the  Reynolds.number R (based on boundary  layer  thickness 8 

and f rees t ream  ve loc i ty  U) is  la rge ,   the   e igenfunct ions  

e x h i b i t  boundary layers   o f   th ickness  of order  R -1'2 near  

y = 0 and in t e rna l   l aye r s   o f   t h i ckness  cf order  R -lI3 near  

the c r i t i ca l  l a y e r  (where wave phase  speed  equals  f low  velocity).  
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In   o rder  for f ini te-difference  approximations t o  be 

accurate, it is necessary   tha t   the   g r id   spac ing   be  a t  most 

R-l12  near  y =' 0 and a t  most R -1'3 n e a r   t h e   c r i t i c a l   l a y e r .  

Thus, i f  uniform  grid  spacing is used  the number of g r id   po in t s  

required is scaled by a f a c t o r  R112 as  the Reynolds number 

increases .  If non-uniform gr id   spac ing  i s  u s e d ,   t h i s   d i f f i c u l t y  

may be par t ia l ly   avoided .  On the other   hand,  the  number of 

Chebyshev polynomia ls   requi red , for   accura te   s tab i l i ty  

ca lcu la t ions   sca les   on ly  as R1'4 as t h e  Reynolds number R 

approaches  inf ini ty .  "In laminar  f low  .control  applications,  

this d i f f e rence  between f in i t e -d i f f e rence  and  Chebyshev 

polynomial  methods is important. If the  range  of  Reynolds 

numbers to  be   s tud ied   i n  a given LFC app l i ca t ion   i s , s ay ,  

R = 1OOO"10,000~and i f ,  say,  20 polynomials or 1 0 0  g r i d  

po in t s   a r e   r equ i r ed   t o   so lve  the problem a t  R =lo00 (these- 

reso lu t ions  are, i n   f a c t ,   t y p i c a l ) ,   t h e n  less than 4 0  polynomials 

w i l l  be  required a t  R=lO,OOO whi le  more than 300 g r id   po in t s  

w i l l  be  required. 

The rapid  convergence  properties of  Chebyshev polynomials 

are v e r i f i e d  as follows.  If  t he  unperturbed  flow is smooth, 

then so are   the  e igenfunct ions of the  l inearized  Navier-Stokes 

equations. L e t  Tn(x)  denote  the.  gth-degree Chebyshev  polynomial 

o f   t he   f i r s t   k ind ,   de f ined  by 

T~ (cos e )  = COS ne (5.1) 

f o r  a l l  non-negative  integers n. Some examples are TO(x)  = 1, 

T1(x) = x,   T2(xj  = 2x2-1. It  is  p o s s i b l e   t o  expand the  

eigenfunction $ (y)  i n   t h e   i n t e r v a l  -1 5 y 1 ( w e  discuss  i n  
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Sec, 6 t echniques   for   handl ing   the   semi- inf in i te   in te rva l  

0 5 y 5 encountered  in  boundary-layer  stabil i ty  problems)  as 

P) 

where 

w i t h . c o  = 2,  cn = 1 f o r  n > O .  The rapidity  of  convergence 

Of ( 5 . 2 )  f o r  lyl I1 is easi ly   demonstrated by observing  that  

f ( e )  = +(COS e )  

is an in f in i t e ly   d i f f e ren t i ab le ,   even ,   pe r iod ic   func t ion  

of 0 . Consequently,  the  theory  of  Fourier series ensures 

t h a t  f ( 0 )  possesses a Fourier  cosine  expansion 

m 
f ( e )  = C a cos ne n=O n ( 5 . 4 )  

with   the   p roper ty   tha t   the  error a f t e r  N terms decreases 

more rap id ly   than  any  power of 1/N as N .-+ ~. The expansion 

( 5 . 4 )  is p rec i se ly  (5.1) f o r  y = cos 0 . 
The inf ini te-order   accuracy of Chebyshev polynomial 

approximations t o  smooth functions  holds no mat te r  what 

the boundary  values  of  the  functions or t h e i r   d e r i v a t i v e s ,  

i n   c o n t r a s t  t o  t h e   s i t u a t i o n  when other   c lasses   of   or thogonal  

func t ions   ( l ike   t r igonometr ic  or Bessel functions)  are  used. 9-11 

In the   fol lowing  subsect ions,  w e  d i scuss   severa l  programming 

and  technical   aspects   of   the   appl icat ion of Chebyshev polynomials 

t o  s t a b i l i t y   c a l c u l a t i o n s .  
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Chebyshev Matrix Me'thod~ 

The der iva t ion   of  the equat ions  sat isf ied by the 

expansion  coeff ic ients  an i n  t h e  Chebysh.ev expansion 

N 

c a n   b e   d i f f i c u l t  and  time-consuming i f ~ d o n e  by hand. I n  

order  t o  improve t h e   f l e x i b i l i t y  of t h i s  method  and the  

ease i n  which it can  be  applied to new problems, w e  have 

developed a near ly   automatic   matr ix  method f o r  computer- 

generation  of t h e  equations sat isf ied by t h e   c o e f f i c i e n t s  

an 
To i l l u s t r a t e   t h e  method, suppose w e  def ined the  

vec tor  J ,  by 
+ 

+ 
J , =  

(5.5) 

When the  expansion ( 5 . 5 )  is s u b s t i t u t e d   i n t o  a d i f f e r e n t i a l  

ope ra to r ,   equa t ions   fo r   t he   coe f f i c i en t s  an are obtained by 

re -expanding   the   resu l t   in  series of Chebyshev  polynomials 

and equa t ing   coe f f i c i en t s  of each Chebyshev  polynomial: i f  

then  each bn is  a func t ion  of t h e  an and w e  ob ta in  N equat ions 

approximating d. . J ,  = 0 by s e t t i n g  bn = 0 for  n 5 N. I n  order 

t o  f ind   t hese   equa t ions  w e  mus t   de r ive   an   e f f i c i en t  and  easy 

method to determine the  effect of t h e   d i f f e r e n t i a l   o p e r a t o r  

on t h e  vector J,. + 
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Consider  the Chebyshev representat ion  of   the  funct ion 

L e t  the assoc ia ted  vector of Chebyshev coe f f i c i en t s  of $ ' ( y )  

T; =. 2 n ( ~ , , ~  + T ~ - ~  ,+ - =  I 

it fol lows   tha t  

p+n  odd 
where co = 2 ,  cn = 1 f o r  n > O .  Therefore, 

+ 
$ '  = DG 

where the  N + 1  x N + l  matrix D has e l e m e n t s  

D i j  = 0 i f  i z j  or i + j  is even 

2(j-1) otherwise 
ci-l 

Simi la r ly ,  if f ( y )  = y$(y) ,   then   the  Chebyshev coe f f i -  

c i e n t s  of f a r e -g iven  by 
+ 
f = Y; 

where  the N + 1  x N + l  matrix Y has e lements  

Yi = 1 if i = 2 ,  j= l  

1/2 i f  i=j+l  or i=j-1 

0 otherwise. 

The u t i l i t y   o f   s e t t i n g  up these  matr ices   (and  other  

s imi la r   ones)  is  the   ease   wi th  which  they may be used t o  

set  up the  matr ices   expressing  complicated  different ia l  

operators .  For example,   the  matrix  for  the  operator 
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yd /dy (y  d/dy) is j u s t  YD2Y3D. ( In  fact, t he  l a s t  

statenient is not qui te   t rue   because   the   mat r ix  YD Y D 

does no t   co r rec t ly   r ep resen t  the action  of the  d i f f e r e n t i a l  

opera tor  on  high-order Chebyshev polynomials. However, it 

may be shown t h a t   t h i s   e r r o r  i s  nea r ly   neg l ig ib l e  and w e  

w i l l  no t   d i scuss  it fur ther   here . )  

2 2 3  

2 3  

I n   a c t u a l   p r a c t i c e ,  it is  f requent ly   no t   necessary   to  

store the  matr ices  D ,  Y, etc., because their  very  simple  form 

makes it poss ib le   to   genera te   the i r   e lements  as they are 

needed  during t h e  computation. 

L e t  us  consider how t h e  Chebyshev matrix method app l i e s  

t o  the   so lu t ion  of t h e  Orr-Sommerfeld equation. 

where u (y )  is the   unperturbed  prof i le .   In  terms of 

Chebyshev matrices,   these  equations  are 

(D2 - a21)2$ = iaR(U - cI) (D2 - a21)$  - iaRU"@ 
-+ + 

(5.7) 

where U is  the   mat r ix   tha t   mul t ip l ies  by u (y )  and U" is 

the   mat r ix   tha t   mul t ip l ies  by U". 

Tau  Method 

The equat ions  (5 .7)   for   the Chebyshev c o e f f i c i e n t s  

an do  not  account  for the boundary  conditions  imposed 

on JI (y) . There are seve ra l  ways t o  impose t h e  boundary 

condi t ions   cons is ten t ly  on (5.7);   this  can  be done by 

Galerkin,   col locat ion,   or   tau approximation:' I t  is 

usual ly  most convenient  to  apply  tau  approximation,  as 

we w i l l  now discuss .  
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The idea   o f   the   t au  method is t o  drop enough of 

the   equat ions  (5.7) that a l l  t h e  boundary  conditions  can 

be applied.  For t h e  Orr-Sommerfeld equation,  the  boundary 

condi t ions 

$ ( y )  = JI' ( y )  = 0 

should  be  applied a t  the   r ig id   boundar ies  y = +1. Thus, 

w e  d e l e t e   t h e   l a s t   f o u r  rows of   the   mat r ix   equat ion  (5.7) 

and rep lace  them by  the  four  boundary  conditions 

N N 
C an = E (-1) an = 0 

n=O n= 0 
n 

C n 2 an = N ( - l ) n + l   n a n  = 0 
n= 0 n= 0 

Fast .Fourier  Transform 

An additional  advantage  of Chebyshev polynomials over 

many other   or thogonal   bases  is t h e   e x i s t e n c e   o f   t h e   f a s t   F o u r i e r  

t ransform t o  e f f e c t   e f f i c i e n t   c o n v e r s i o n  between t h e  Chebyshev 

coordinates  an and the   phys ica l   space   per turba t ion  $ ( y ) .  I n  

f a c t ,   s i n c e  
N 

n= 0 
$(cos 0 )  = C a cos ne , n 

Chebyshev series can  be summed by any  technique  that  sums 

Four ie r   cos ine  series, i n   p a r t i c u l a r ,   c e r t a i n   v a r i a n t s   o f  

the fast  Four ie r   t ransform(see   the  Appendix o f  Ref. 12). 
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6. NUMERICAL METHODS FOR EIGENVALUE CALCULATIONS 

W e  begin  by making a number of gene ra l  comments t h a t  

apply t o  most numerical  schemes f o r   s t a b i l i t y   c a l c u l a t i o n s .  

F i r s t ,  w e  remind the   r eade r   t ha t   t he   p rob lem is d i f f i c u l t  

because  the Orr-Sommerfeld equat ion (or o the r   l i nea r i zed   equa t ion )  

k moderately s t i f f  a t  l a rge  Reynolds  numbers, a s   r e f l e c t e d  by 

the  boundary l aye r s   exh ib i t ed  by e igenfunct ions  (see Sec. 5) 

Second, ca l cu la t ions  of moderately  high  accuracy are 

frequently  needed  for  such  purposes as computation of t h e  

group  veloci ty  (see Sec.7)  and  various  optimization  schemes 

(see Sec.7). Third,  w e  comment t h a t   t h e r e   a r e  t w o  poss ib l e  

kinds of s t a b i l i t y   c a l c u l a t i o n s   t h a t   c a n  be made, s p a t i a l  

s t a b i l i t y  and   tempora l   s tab i l i ty  (see Sects. 2-3). For 

small growth rates, t h e   r e s u l t s  of t empora l   and   spa t i a l   s t ab i l i t y  

analyses  are c l o s e l y   r e l a t e d t 3  However, because  the  differences 

between these  two types of analyses  may be   cen t r a l  t o  t h e  

problem of LFC a i r c r a f t   d e s i g n ,  l e t  u s   c o n t r a s t  them b r i e f l y  

here. 

I n  a t empora l   s t ab i l i t y   ana lys i s ,   t he  wavenumbers of 

the  dis turbance are assumed real while   the  f requency of t h e  

dis turbance may be complex (a pos i t ive   imaginary   par t   ind ica tes  

i n s t a b i l i t y ) .  On the   o the r   hand ,   i n  a s p a t i a l   s t a b i l i t y  

ana lys i s ,   t he   f r equency . i s   t aken  real, while a p o s i t i v e  

imaginary   par t   in  a wavenumber i n d i c a t e s   i n s t a b i l i t y .  

Since many problems  of  aerodynamical  interest are, on average, 

s t a t i o n a r y   i n  a sui table   coordinate   . f rame,  it seems t h a t  
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spat ia l  s t a b i l i t y   a n a l y s i s   s h o u l d   b e   t h e  more relevant one. 

However, t h i s  is by no means clear experimental ly . .  It s e e m s  

that low f r e q u e n c y   d i s t u r b a n c e s   a r e . t r e a t e d   b e t t e r   b y   s p a t i a l  

theory  than by temporal,   but  high  frequency  disturbances 

seem t o  agree better wi th  temporal theory.  1 4  

The confusion  between spatial  and  temporal  theory 

is even more severe i n   t h e  case of the  propagation  of 

three-dimensional  disturbances,  which are of   p r imary   in te res t  

i n  the boundary layers   o f  LFC a i r c r a f t .   S p a t i a l   s t a b i l i t y  

theory i s  ambiguous for  three-dimensional  disturbances.  

In t h e  case of  two-dimensional  disturbances, it is  phys ica l ly  

p l aus ib l e   t ha t   t he   d i r ec t ion .   o f  maximum growth of t h e  

d is turbance  is perpendicular  t o  the  constant-phase  surfaces 

of the   d i s turbance  and p a r a l l e l  t o  the   f rees t ream  f low 

d i r ec t ion .  On the  other   hand,   in   three-dimensional   layered 

f lows,   there  is no  apparent  reason why t h e   d i r e c t i o n  of 

maximum growth  should  be  perpendicular   to   the  direct ion 

of   the   cons tan t -phase   sur faces .   I f   these   d i rec t ions  are 

allowed t o  be a rb i t ra ry ,   one   qu ick ly   ge ts   involved   in  

i l l -posed  mathematical   problems.   Unti l   th is   basic   quest ion 

i s  resolved,  it may b e   b e s t  t o  use   t empora l   s tab i l i ty   theory  

and a group  veloci ty   t ransformation  for   three-dimensional  

s t a b i l i t y   a n a l y s e s   o f  LFC boundary  layers. 

F ina l ly ,  w e  comment on  the  mathematical  technique t o  

t rea t  the semi - in f in i t e  domain 0 5 . y  < of t h e  boundary 

1.ayer.  Grosch  and  Orszag15  have shown t h a t   t h e   b e s t  way 

to  handle   the  y-direct ion is t o  t ransform it bl7 means of 

the   a lgebra ic   t ransformat ion  
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into the f i n i t e   i n t e r v a l  -1 5 .Y < 1, and  then  apply  standard 

numerical   techniques  on  the  t ransformed  f ini te   interval .  

This   technique  provides   accurate   resul ts   wi th  about  50% 

less reso lu t ion   than   requi red   us ing   s imple   t runca t ion  of t h e  

domain 0 1. y 5 L. Some r e s u l t s  of a Chebyshev-spectral 

calcialation are g iven   i n  T a b l e  1. Here w e  compare t h e  

accuracy of the most uns tab le  mode of B las ius  flow a t  a 

Reynolds number of 580 a n d . a  wavenumber of .179 us ing   s eve ra l  

t rea tments   o f   the   boundary   a t  y = OD . The methods are: 

(i) t runca t ion ,  which  involves  solving 'de problem on t h e  

f i n i t e   i n t e r v a l  0 5 y 5 L for  s e v e r a l  values of L and wi th  

both no-sl ip  J, (L) = @' (L) = 0 boundary  ccnditions and 

asymptotic  boundary  conditions @' (L) + a$ (L)  = 0 appl ied;  

(ii) an exponent ia l  map of the  form Y = 1 - 2 exp(-y/L) ; 

and (iii) the   a lgebra ic   t ransformat ion  (6 .1 ) .  For both 

methods (ii) and (iii), seve ra l   k inds   o f  boundary 

condi t ions  are appl ied  a t  Y = 1 (y = OD ) ,  inc luding   no-s l ip  

conditions  and - no  boundary  conditions (I). We conclude from 

T a b l e  1 t h a t  no boundary  conditions a t  a l l  need  be  applied 

a t  Y = 1. 

With t h e  mapping (6.11, L may be chosen t o  optimize 

the accuracy of t h e  ca l cu la t ions .  A f t e r  some experience,  

it has  been  found  that a good choice f o r  L is  L 2 2y0, 

where  yo is  the  value  of y a t  which the  streamwise component 

of t h e  ve loc i ty   ach ieves  1 / 2  of i ts  freestream value.  
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Table 4. Eigenvalues of the Orr-Sommerfeld  equation for Blasius flow, R = 580, a = 0.179. 

! 
Case i Mapping 

1. ~ 

,3 
2 

Truncation 

5 

4 

6 

7 Exponential 
8 
9 

10 

11 I Algebraic 
12 
13 
14 
15 
16 

N 
Boundary  Conditions , (Number of 

at 12 = 0 3 1  1- L I Chebyshev  Modes) 

10 
20 
20 
30 

20 
30 

1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

I 
I 

44 
44 
46 
44 
44 
44 

42 
46 
46 
70 

26 
34 
42 
42 
60 
42 

" 

C 

I 
0.37887 7 + i0.00025 0 ? 

0.36455  7 + i0.00777  3 /I 

0.36455 1 + i0.00778  1 ~i 
0.36399  6 + i0.00788  8 
0.36021  3 + io. 00667  1 
0.36404 1 + iO.00611  3 

! 

0.34858 0 + i0.01312 9 
0.34961  1 + i0.01285  6 
0.38378  9 - io.  00276  6 
0.37853 1 + io. 00047 1 

0.36414  7 + i0.00800 7 
0.36412  1 + i0.00795 76 

0.36412'  288 + io. 00795  975 
0.36412  325 + iO.CO795 894 
0.36412  285 + i0.00795 973 
0.36412  287 + i0.00795 976 



Global Methods’ for’  Temporal.  Eigenvalue  Cal’cula.tions 

When no  guess is ava i l ab le  for the  e igenvalue of 

i n t e r e s t ,  it is  b e s t   t o   u s e  a method t h a t  is  g loba l ly  

convergent  and  nearly  guaranteed t o  converge t o  the  

eigenvalue. Such a method may be  based on the  matr ix  QR 

a l g o r i t d 6   f o r   c a l c u l a t i o n  of the eigenvalues  of a 

general  complex matrix. 

When the  Orr-SoFerfeld  equat ion (or other s i m i l a r  

d i f f e ren t i a l   equa t ion )  i s  formulated as a matrix  problem 

( u s i n g   e i t h e r  Chebyshev polynomia ls   o r   f in i te -d i f fe rence  

methods), it takes   the  form 

* =I . ‘ A B  (6.2) 

where - 5  is the  eigenvalue  (deroted c o r  w above i n  t h e  

case   o f   t empora l   s tab i l i ty   ca lcu la t ions)  and x is  the  

d iscre te   representa t ion   of . . the   e igenfunct ion .  The eigenvalue 

is determined by t h e  determinant  condition 

D e t  IA - AB1 = 0. 46.3) 

Eq. (6.3) is a generalized  eigenvalue  problem and t h e  

matrix QR algori thm  does  not   apply  direct ly   unless  either 

A o r  B is i n v e r t i b l e .   ( I f ,   s a y ,  B- l  ex i s t s   t hen  (6.3) is  

equ iva len t   t o  the standard  eigenvalue  problem 

D e t  IBLIA - 11 = 0 . )  

Rowever, it is  f requent ly   the  case t h a t  A and B are s ingu la r  

and a more general  method must be developed. 

To solve  the  generalized  eigenvalue  problem w i t h  s ingu la r  

A and B, w e  Proceed  as  follows- There a r e  two s t e p s   t h a t   a r e  
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executed recursively. 

(i) We use  fully pivoted  row operat.ions to reduce B to 

upper  triangular form, executing  the  same  row  operations on 

the  matrix A. The resulting  generalized  eigenvalue  problem 

Det I A '  - AB' I = 0 has  the  same  eigenvalues  as (6.3) because 

the  same row operations  were  performed  on A and B. If..afl3'lhe 

diagonal  elements  of B' are  nonzero  then B' (and hence B) is 

nonsingular and the  problem  can be immediately  reduced to the 

standard  eigenvalue  problem  (and  then  solved by the QR algorithm). 

Thus,  let  us assume  that  all  elements bij  with  K f. i f N are 

zero (if  any elements of this  matrix  were  not  zero,  full  pivoting 

would  ensure  additional  nonzero  diagonal elements). 

(ii)  We  perform  fully  pivoted  column  operations  on  the  rows 

j=K,...,N of  the  matrix A'to transform A' into  an  upper 

triangular  matrix A". The  same  column  operations  are  performed 

on B" but it  is  still  true  that bij = 0 for K  i 5 1J and all j. 

The  generalized  eigenvalue  problem  Det [A" - XB"I = 0 has  the 

same  eigenvalues as (6.3) because  it is obtained  from it by 

row and column  operations  simulatneously  on  both A and B. 

However,  rows K,. . . , N of A" - AB" are upper  triangular, 
so the generalized  eigenvalue  problem  for A" and B" has  a 

solution only when  the  generalized  eigenvalue  problem 

Det 1% - XBkI .= 0 

has  a  solution,  where and Bi are  the K-1 x K-1 dimensional 

matrices  obtained  from A"  and B" by discarding  rows and columns 

K, K+1,..., N. 

(iii) Go to step (i). Eventually B' must  be  non-singular  or 

there are no generalized  eigenvalues  or  all X are  generalized 

eigenvalues. 
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Some r e s u l t s  of using  the  above  algorithm  on a CDC 7 6 0 0  

.computer are given i n  Table 2. t 

Table '2 .  

Timings. o,f the.  'Global  Eigenvalue Pr'ogr5m 

26 x 26 
matrix 

QR method  0.15 s 
(Fortran,  
a l l  eigenvalues) . 

Generalfzed 
eigenvalue  problem 0.18s 
( i n v e r t i b l e  A o r  B) 

Generalized 
eigenvalue  problem 
(s ingular  A and.B) 
Two recursions 0 . 2 7 s  

43 x 4 3  
matrix 

0.55 s 

0 . 6 6  s 

1.1s 

The advantage  of t h i s  technique is t h a t  it is 

very  general  and is globally  convergent.  The disadvantage 

is t h a t  it i s  not   too   fas t   ( though it is  probably  fas ter  

when combined with Chebyshev polynomials  than  most commonly 

used  methods). 

When f in i t e -d i f f e rence  methods a r e  used, it nay  be 

b e t t e r   t o   o b t a i n  a g loba l ly   convergent   resu l t  by use of 

t he  LR algorithm and  band mat r ix   fac tor iza t ions .  We have 

not: y e t  t r i e d  this technique and cannot   yet  comment  on it. 

'A much  simpler  technique  to  solve  the  generalized 
eigenvalue  problem  has  been  suggested by J. Shearer 
(private  communication, 1977). If j .~  is not one of 
the  eigenvalues of (6.2) then A - pB is  invertible. 
If the  eigenvalues of (A-pBl-IB are  denoted by c, then 
the  eigenvalues of (6.2) are A = p + l/c. 
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Spurious  Unstable Modes 

One of   the  drawbacks  of   the  global  method as  formulated  above 

is t ha t   t he   gene ra l i zed   e igenva lue  problem ( 6 . 3 )  may i n d i c a t e  

the   ex i s t ence  of growing  (unstable) modes t h a t   a r e   n o t  

physically  relevant,   These  spurious  unstable modes,  which 

may appear   for   e i ther   the   Chebyshev-spec t ra l   o r   f in i te -  

d i f f e rence  methods,  do  not  correspond t o  so lu t ions   o f   the  

d i f fe ren t ia l   equa t ion- -as   the   spa t ia l   reso lu t ion   used  t o  

discretTze  the  e igenfunct ion  changes (i.e. t h e  number of 

g r i d   p o i n t s  or  Chebyshev polynomia ls ) ,   t rue  modes of   the 

d i f fe ren t ia l   equa t ion   converge   whi le   spur ious  modes do not.  

A clumsy way t o  d i s t ingu i sh   spu r ious  modes from t r u e  

modes is t o  change the  spat ia l  r e so lu t ion  and r e t a in   on ly  

those modes t h a t  do  not  change  appreciably.  This is n e i t h e r  

e f f i c i e n t   n o r   e l e g a n t .  

A be t t e r .way  i s  t o  eliminate  the  spurious  urxstable 

modes en t i re ly .   Spur ious  stable.modes are still poss ib l e ,  

b u t   s i n c e   t h e s e  stable modes are normally  very stable, they 

are not   of  much i n t e r e s t  and  can be eas i ly   d i s regarded   wi thout  

t e s t i n g   t h e i r   t r u e   n a t u r e .  W e  s h a l l  now descr ibe  a technique 

for   e l imina t ing   the   spur ious   uns tab le  modes. 

The i d e a  is s imply   t ha t   t he   spu r ious   uns t ab le  modes 

would, . i f  . w e  used  the same numerical method used  for .  

t h e   s t a b i l i t y  problem on an  ini t ia l -value  problem  instead,  

cause   the   uncondi t iona l   ins tab i l i ty   o f   the   numer ica l   so lu t ion  

o f   t h e   i n i t i a l - v a l u e  problem. On- the -o the r   hand ,   i f  w e  w e r e  

c a r e f u l  enough t o  use a numerical method f o r   t h e   s t a b i l i t y  

problem t h a t  was also numerically stable f o r   t h e   i n i t i a l - v a l u e  



problem,  then.  no  spurious  unstable modes would e x i s t .  

There are seve ra l  ways t o  el iminate   the  spurious 

unstable  modes i n  the Chebyshev s p e c t r a l  methods out l ined  

in Sec. 5. One  way is t o  u s e  a Galerkin  procedure  instead 

of t he  tau  procedure  discussed  in Sec. 5? Another way 

is t o   f a c t o r  the fourth-order Orr-Sommerfeld equat ion   in to  

two second-order  equations  and  then  apply  the  tau method 

to each of t h e  second-order  equations. Thus, the usual 

procedure is t o  apply  four  boundary  conditions  to  the 

fourth-order Orr-Sommerfeld equation 

2 cv Jilt + qyv JI, - $,V e ,  = "V4$ 
2 2- 

This  pracedure  usually  leads t o  spurious  unstable  modes,. 

Howeveri rewr i t ing   the  Orr-Sommerfeld equat ion  as  the 

two zecond-order  equations 

and  then  applying t h e  boundary  conditions JI = 0 t o  

t h e   f i r s t   e q u a t i o n   ( b e c a u s e   t h i s  first equation i s  equivalent  

t u  the incompress ib i l i t y   cons t r a in t  and the  associated  boundary 

condition,  should  be  zero  normal  flow)  and $' = 0 t o   t h e  second 

equation  (because the  second  equation  embodies  the  viscous, 

f r i c t i o n a l   e f f e c t s  and the  associated  boundary  condition is  

no-slip)  gives  no  spurious  unstable modes. 
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Local_.Weth~o'ds. ' for  Temporal' Eigenvalue  .Calculations 

There  are  many l o c a l  methods ( i n  which a reasonable 

guess i s  available)  for  eigenvalue  problems. Among t h e  

well-known  methods t h a t  have  been  implemented f o r   d i f f e r e n c e  

methods a r e   t h e  methods  of o r t h o g o n a l i ~ a t i o n ' ~  and p a r a l l e l  

shooting18  together  with either a b i s e c t i o n   s e a r c h   o r  a 

Newton's  method search.  There are s e v e r a l   e f f e c t i v e  

computer  codes t h a t  implement these  procedures ,   including 

the  SUPORT code  (writ ten by S c o t t  and  Watts  of  Sandia  Laboratory), 

t h e  TAPS code(wr i t ten  by Gentry  and Wazzan of McDonnell  Douglas 

Corp.)  and codes by Mack of Jet  Propulsion  Laboratory  and 

Keller and Cebeci. A t  t h e  end  of t h i s  s ec t ion ,  w e  w i l l  

c i te some experience w e  have  had  with  the SUPORT code and 

quote some p r i v a t e  communications  concerning t h e  e f f i c i e n c y  

of  the  other  codes.  

Another way t o  perform a l o c a l   a n a l y s i s  i s  t o  use 

a s i m p l e   i t e r a t i v e  method to   f i nd   t he   e igenva lues  of t h e  

matrix  equation  (6.3)  that   approximates t h e  Orr-Sommerfeld 

equation. An e f f e c t i v e  and ef f ic ien t   p rocedure   for   do ing  

t h i s  is t o  use t h e  inverse   i t e ra t ion   p rocedure16:  

- T 
'k+l - Yk+lAxk+l/y~+lxk+l (6.6) 

The procedure (6.4-6) is ve ry   e f f ec t ive  once a good guess 

f o r  an  eigenvalue is  avai lable   because t h e  convergence is 

cubic: 

- x = o m ,  - 1)' ) . 3 
'k+l 

Here c and c' are   normalizat ion  constants  so xk and  yk are  normalized. 

L. 
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The m e t h o d  (6.4-6) is designed to work e f f i c i e n t l y  even 

wi th  non-symmetric matrices A. Eq. (6 .4 )  shoudl be solved 

using a f u l l y   p i v o t e d  LU method, i n  which- case t h e  same LU 

f a c t o r i z a t i o n   a p p l i e s  t o  t h e   s o l u t i o n  of ( 6 . 5 ) .  

I n  practice, it i s  not necessary t o  update   the  e igenvalue 

approximation Ak a f t e r   e a c h   i t e r a t i o n .  I n  fact ,  w e  have 

found it t o  be most e f f i c i e n t  t o  i terate  (6.4-5) approximately 

5-10 times while  keeping Xk f ixed   (and ,   therefore ,   us ing  

the same LU f a c t o r i z a t i o n   o f  A - A k I ) .  

The gene ra l i za t ion  of (6.4-6) t o  the genera l ized  

eigenvalue  problem (6.3) is: 

The algori thm (6.7-9) still has  a r a p i d  ra te  of convergence 

because it is e q u i v a l e n t   t o  Newton's method f o r  the s o l u t i o n  

of the  generalized  eigenvalue  problem  (6.3) (see below). 

Some d a t a  on t h e  speed of the algori thm (6.7-9) for Chebyshev 

methods appl ied  t o  the s t a b i l i t y  of i n t e r i o r  flows is  given 

in T a b l e  3. 

T a b l e  3. Timings of the  Local  Eigenvalue  Program 

26 x 26 
matr ix  

For t ran  program 0.03 s 
1 eigenvalue 
good guess   ava i lab le  
f ina l   accuracy  10-8 

43 x 43 
matr ix  

0.13 s 

Assembly LU program 
otherwise same 

0.02 s 
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Spati’a’l  StabiXity  Calculations 

The Orr-Sommerfeld e q u a t i o n   f o r   s p a t i a l   s t a b i l i t y  

calculat ions  involves  a nonl inear ,   quar t ic   polynomial  

eigenvalue  problem  of  the  form 

A(X)x E ( X  A4 + A3 + X A2 + X A1 + AO)x = 0 (6.10) 4 3 2 1 

Global  methods for   the  solut ion  of   nonl lzear   e igenvalue 

problems l i k e  (6 . 1 0 )  may be   i ne f f i c i en t .  A simple  global’  

method i s  t o  se t  

x1 = x 

x2 = AXl (6.11) 

x3 = Ax2 (6 .12)  

x4 = Ax3 (6.13) 

A3x4 + A2x3 + A1x2 + AOXl = -AA4X4 (6 .14)  

and then  formulate (6.11-14)  a s  a general ized  e igenvalue 

problem  of  the form (6.3)  involving 4 N  x 4 N  matr ices:  

0 1 0 0  

(: : : :)(t) = .(: :)(!:) 
‘ I C 0 0  

A. A2 A3 x 4 0 -A4 x4 

The obvious  disadvantage of t h i s  method is  that it requi res  

16 times a s  much  memory as (6.3)  requires and 64 times as  much 

computer times. It i s  not   pract ical   except   for   problems  of  

extreme  urgency, i n  which case it has   the   v i r tue   o f   easy  

programming (so long as N is  not  too b i g ) .  
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A local  method  may  be  based  on Newton's method  for 

the  solution of the  nonlinear  coupled  system  of  equations 

(6.15) 
(6.16) 

(6.17) 

so that  y  is the adjoint  eigenvector to x. Eqs. (6.15-17) 

represent  2N+1  equations  for  the  2N+1  unknowns xl, ...,%,yl,..., 

yN,X . Newton's method involves  linearizing (6.15)-(6.17) 

about  an  approximate  solution x(') ,y(O), X (0 1 : 

A(X)x = A ( ~ ( o ) ) ~ ( o )  + A(X(O)) (x-x")) + A' (,(o))x(o) ( X - x ' O ) )  
+ 0 . .  = 0 (6.15') 

T (0)Tx(O) + y(0)T (X-X(O) 1 + (y-y (0) )Tx(0)+ (6.17') Y x = Y  +... = 1 
Thus, if  we  insist that the  new  approximation x(1) , y , X 
be such that  the  linear  approximations (6.15'-17') are  satisfied 

then  we  obtain  the  following  iteration scheme: 

(1) 

(6.19) 

(6.20) 

The advantages  of  this  method  are  that  it  is  essentially 

as fast as the  local  method  for the linear  generalized  eigenvalue 

problem (6.7-9) and that  it  has  low menary requirements. The 

disadvantage is that  the  initial  guess  sometimes  has to be  quite 

good for  it to work. 

Our  recommendation  for  the most effkcient  technique 

for  spatial  stability  analysis is as follows: 
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(i) I f  no good approximation  to . the  e igenvalue is ava i lab le ,  
perform a tempora l   s tab i l i ty   ana lys i s   us ing  a g loba l ly  
convergent  algorithm. Then ca l cu la t e   t he   g roup   ve loc i ty  
using  the  methods t o  be  discussed  in  Sec. 7 and transform 
this   temporal  mode i n t o  an  approximate s p a t i a l  mode using 
Gaster 's   group  velocity  transformation . 13 

(ii) I f  a good guess is  ava i lab le   ( say  by method ( i l l  then 
use the  local algorithm (6.18-20)' t o  improve t h e  
eigenvalue  approximation. 

Comparison  of  Numerical  Methods fo r   P l ane   Po i seu i l l e  Flow 
~- ~. 

I n   t h i s   s u b s e c t i o n ,  w e  p resent  some numerical resul ts  

concern ing   the   s tab i l i ty  of plane  Poiseuille  f low.  In  Table 

4 ,  w e  l ist the  Chebyshev  approximation t o   t h e  most uns tab le  

mode of   plane  Poiseui l le   f low a t  R = 1 0 , 0 0 0  with wavenumber 

q = 1 a s  a funct ion  of   the number of re ta ined  Chebyshev 

polynomials  (here w e  have  assumed t h a t   t h e  mode baing  sought 

is symmetric i n  y so w e  a c t u a l l y   r e t a i n  Chebyshev polynomials 

up t o  degree 2 M ) .  It is  apparent   tha t   accura te  results 

are achieved  rapidly as the  number of retained  polynomials 

increases .   Similar  resul ts  have  been  obtained a t  Reynolds 

numbers  of l o 6  and higher;  a t  R = l o 6 ,  50 Chebyshev polynomials 

yield.an  e igenvalue  accurate   to   about  1 p a r t   i n  l o 4 '  ( t h i s  

ca lcu la t ion   us ing  a global  code  requires .less than  1.5 s of 

CDC 7600 t i m e ) .  

In  Table 5, w e  list some r e s u l t s  and  computer times 

obtained  using  the SUPORT code  mentioned  above  together 

with a  Newton's  method i te ra t ion   p rocedure   for   the   e igenvalue .  

Although w e  do   no t   have   the   da ta ,   s imi la r   resu l t s  and  computer 

timings  have  been  reported by other   groups  using  f ini te-  
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T a b l e  :4 . Chebyshev approximation to t h e  most unstable 

mode of plane Poiseuille  flow for CL = 1, R = 10000. 
- 

M + 1  x 

17 - 2 3 7 1 3 7 5 1  + i . 0 0 5 6 3 6 5 4  

20   , 23752676  i i;00373:27 

2 3   . 2 3 7 5 2 6 7 0  + i . 0 0 3 7 3 3 8 2  

26   ,23752648 + i . 0 0 3 7 3 9 6 7  

29   -23752649 + i . 0 0 3 7 3 9 6 7  

38   -23752649 + i . 3 0 3 7 3 9 4 7  

50   -23752649 + i . 0 0 3 7 3 3 6 7  
=I 



difference  codes.  Mack r e p o r t s   t h a t  it requires  about 3 s 

of UNIVAC 1108 t i m e  t o  converge t o  an  accurate  eigenvalue 

given a reasonably good guess; Keller and  Cebeci  achieve 

accurate results a t  Reynolds  numbers  of order  l o 4  i n  about 

0.9 s of CDC 6600 t i m e .  Since 1 s of CDC 7600 t i m e  equals  

about 5 s of CDC 6600 t i m e  and  about 1 2  s of 1108 t i m e ,  w e  

see t h a t   t h e   l o c a l   f i n i t e - d i f f e r e n c e  methods are  comparable 

i n  speed to the   global  Chebyshev  methods. However, it does 

seem t h a t   t h e   l o c a l  Chebyshev  methods discussed above a r e  

f a s t e r  by about  an  order  of  magnitude.  But it should  be 

pointed  out  that   these  comparisons  are  perhaps  being done 

unfair ly:  M. Sco t t  who wrote SUPORT informs us t h a t  SUPORT 

can  be  speeded up by  about a f a c t o r  2 by simply  changing 

+Ac t ine-stepping  algorithm;  the Chebyshev  codes ca-q also 

be  speeded  up  considerably in   the  areas   of   matr ix   set-up 

and fu l l   ma t r ix   p ivo t ing .  

Tab le  5 .  Some Resul ts   of   the  SUPORT Code 

Reynolds Error #of g r id   po in t s   #o f   i t e r a t ions  CDC7600 
number time/eigen- 

value 
10 140 4 1.4 s 

10 1400 6 23 s 



7. NUMERICAL METHODS: E I - G - F C T O R S , '  GROUP VELOCITY, . W D  
OPTIMIZATION METHODS 

. " _  - 

E5genvectors 

There are seve ra l   e f f i c i en t   numer i ca l  methods t o  

compute eigenvectors.   In  any of the   s t anda rd   f i n i t e -d i f f e rence  

methods, the  e igenvec to r   $ (y )  i s  computed as p a r t  of the  

ca l cu la t ion  of the eigenvalue X . .A l so ,   i n   t he   l oca l   ma t r ix  

i t e r a t i v e  methods  advocated i n  Sec.6, the   e igenvec tor  is  

found as p a r t  of the i t e r a t ion   de t e rmin ing  t h e  eigenvalue 1 . 
A sepa ra t e   ca l cu la t ion  of the   e igenvec tor  i s  requi red  

only for t he  case i n  which global matrix  eigenvalue methods 

are used t o  determine X . I n   t h i s  case, one o r  t w o  app l i ca t ions  

of t h e   i n v e r s e   i t e r a t i o n  

(A - XB)X (k+l) = cBx (k) (7.1) 

where x(') is arb i t ra ry   usua l ly   de te rmine   the   e igenvec tor  

t o  within  roundoff error. The value of X used   in  (7.1)  

may be   t he   ca l cu la t ed   e igenva lue   t o  machine  precision-- 

this normally  does  not  cause  any problems w i t h  s i n g u l a r  

matrices. For a 43  x 4 3  mat r ix ,   t he   ca l cu la t ion  of t h e  

eigenvector  by t h i s   i n v e r s e   i t e r a t i o n  scheme requires   about  

75 ms using an assembly  language f u l l y   p i v o t e d  LU a lgori thm 

on a CDC 7600. 

The computation of the   e igenvec tor   o f  the a d j o i n t  

Orr-Sommerfeld equat ion may be  done s imi l a r ly   (no t ing  t h a t  

the  spectrum  of the a d j o i n t  i s  t h e  same as the  spectrum of 

t h e  Orr-Sommerfeld equat ion up t o  complex conjugat ion) .  
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In   p rac t i ce ,   ca l cu la t ion  of the  adjoint   egenfunct ion  using 

the  Chebyshev-spectral method requires  about 150 ms us ing   t he  

assembly LU program  because the matr ix  of the   ad jo in t   ope ra to r  

must be set  up. 

Group Velocity 

The group  velocity is of  importance i n   r e l a t i n g   t h e  

r e s u l t s  of s p a t i a l  and tempora l   s tab i l i ty   theory  and i n  

several   optimization  problems (see below). I n  a layered 

flaw  with  three-dimensional  disturbances  having  wavevector 

( a , B 1 and frequency w ( a , B 1 , the   group  veloci ty  v i s  
-t 

9 

One  way t o  compute the  group  velrrcity is simply t o  compute 

the  frequency w for   several   nearby  values   of  a., B and then 

use f ini te-dif   ference  approximations  to  $ This  procedure 

is ne i the r   e f f i c i en t   no r   e l egan t .  
9' 

A much b e t t e r  way t o  compute the  group  veloci ty  w i l l  

now be  described. It  i s  usua l ly   f a s t e r   t han   t he   c rude   f i n i t e -  

d i f f e rence  method described above (except   poss ib ly   for   the  

f a s t e s t   l o c a l   i t e r a t i v e   e i g e n v a l u e   s o l v e r s ) .  We s t a r t  by 

wr i t i ng   t he  Orr-Sommerfeld equat ion  for   three  dimensional  

d i s turbances   in   the  form 

1 (D2 - a - B 1 - i R [ ( a i i  + B w  - .a) ( D  - cf -. B ) 
2 2 2  2  2  2 

{4a(D2 - a - B ) + i R ( ; i  - 2) ( D ~  - a - B ) 
2  2  2 2 
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Therefore, i f  x is the ad jo in t   e igen func t ion  t o  $ , w e  

obtain 

There is  a similar expression fo r  aw/aB . 
The computation of the  group  veloci ty   using (7.5) 

r equ i r e s  little additional  computational work t o  t h e  

c a l c u l a t i o n  of the   ad jo in t   e igenfunct ion .  

Optimization Methods 

There are severa l   k inds  of information  concerning 

t h e   s t a b i l i t y  of a given  f low  that   nay be o f   i n t e r e s t .  .Sone 

examples are : 

(i) A p l o t  of a v s  B a t  f ixed  R and  frequency 'Re  w . 
(ii) Determination of t h a t  a and '8 that maximize 

I m  w a t  given R and R e  w . 
(iii) For given Im w a . - p l o t  of a vs 8 a t  f ixed  R 

or a2+ B vs  R a t  f ixed  dis turbance  propagat ion 
angle  or a n e u t r a l   s t a b i l i t y   c u r v e   ( a ' v s  R f o r  
a two-dimensional  disturbance  with I m  w = 0). 

(iv)  Determination of t h e  cr i t ical  Reynolds  number, 
i.e. t h e  smallest value of R a t  which there i s  a mode 
with I m  w' = - O .  

(v)  Computation  of  nonlinear and non-para l le l  f l o w  terms. 

To i l l u s t r a t e  how these problems  can be s o l v e d   e f f i c i e n t l y  

on a coxpter, l e t  us consider  the s o l u t i o n  of the  problem (i). 
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An ef f ic ien t   p rocedure   for   ob ta in ing   the   curve  (i) 

of those a and 8 having R e  w = f a t  a fixed  Reynolds 

number R is  t o   u s e  Newton's method as follows: 

(a) S ta r t ing   w i th  an  approximation ao, 8, t o  a po in t  

on  the  curve R e  w = f ,  w e  compute the  group  veloci ty  

a t  a,, 8, and obta in   the  new approximation 
v u  f "Re wo 

i R e 3  l 2  9 
(a,, 8,) = ( a o ,  8,) - R e  "v 

by shooting  along  the  normal  to %he curve R e  . w  = f. 

(b) Repeat s t e p  (a) unt i l   the   approximat ion  lies 

wi th in  a given  error   tolerance  of   the  desired  curve 

R e  w = f .  

(c) Obtain an approximation t o  a new poin t  on t h e  

curve R e  w = f by shooting  along the t a n g e n t   t o  

t he  curve frurn tilet previousiy  found  point;   the  tangent 

t o  the  curve i s  i n   t h e   d i r e c t i o n  Re(=. -E) . 
Repeat  steps  (a) and (b) . 

a w  a~ 

The solution  of  problem (ii) is obtained  s imilar ly .  

Here.it is possible   to   choose a new poin t  on the  curve 

R e  w = f with a more favorable I m  w by use  of e i t h e r  Newton's 

method  (which requires   second  der ivat ives  of w ) or ,   s ay ,  

cubic   in te rpola t ion .  One word of caut ion on th i s   p rocedure  

fo r   t he   so lu t ion   o f  problem (ii)is tha t   ve ry  small e r r o r s   i n  

the   va lue  of Re  w may confuse   the   search   for   the  maximum of 

I m  . The reason is  s imply   t ha t   i n   t yp ica l   s t ab i l i t y   p rob lems ,  

R e  w >> I m  w . The moral is: the  determinat ion  of   opt imal  

p r o p e r t i e s   o f   t h e   s t a b i l i t y   c h a r a c t e r i s t i c s  of f lows  requires  

extremely  high  accuracy  calculations. 
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8 .  SUMMARY OF RESULTS 

A summary of our  conclusions  for a moderately  fas t  

s t a b i l i t y  code  running on a CDC7600 computer is given 

i n  T a b l e  6 for  incompressible  flow  and  Table 7 f o r  

compressible  flow. 

T a b l e  6 .  Typical  computer  timings  for  incompressible 
Blasius  flow a t  Reynolds number of order  l o 3  wi th  
numerical   errors  of order  (Chebyshev  polynomial 
methods w i t h  N = 34 polynomials) 

Operation 

Temporal  eigenvalue 
Matrix  set-up 
Global search 
Local  search 

Eigenvector 
Global  search 
Local  search 

Adjoint  eigenvector 
Group ve loc i ty  

Non l inea r   s t ab i l i t y  terms 
Nonparallel  flow terms 

Spat ia l   e igenvalue 
Global  search 
Local   search   ( f i r s t   guess  

Local  search (guess known) 
by temporal  code) 

Compute'r Time 

0.09 s 

0 . 6 0  s 
0.04 s 

0.03 s 
" 

0.09 s 
0.10 s 

0.12 s 
0.04 s 

4 0  s 

0.4 s 
0.04 s 
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T a b l e  7. Typical  computer  timings  for compressible flow 
s t a b i l i t y   c a l c u l a t i o n s  a t  Reynolds  numbers of   o rder  
10  with errors o f   o rde r  (Chebyshev  polynomial 3 

methods wi th  N = 

Operation 

Temporal eigenvalue 
Global  search 
Local search 

Direct 
I n d i r e c t  

Eigenvector  and 
ad j o i n t  

Nonlinear  and 
non-paral le l  
terms by transform 
method 

34 polynomials) 

Timing f o r  
Two-Dimensional 
Modes 

30 s 

2 s  
0.25 s 

0.3 s 

0.4  s 

Expected  Timing 
f o r  Three- 
Dimensional Modes 

6 0  s 

8 s  
0.3 s 

0.35 s 

0.5 s 

Fina l  Remarks 

(A) Roundoff Er ror :  The e f f e c t s  of roundoff error 

becbme inore acute  as the   ma t r ix   s i ze   i nc reases .   Th i s  

e f f e c t  is shown i n  T a b l e  8. We conclude  that   h igh machine 

accuracy i s  necessary t o  even  a t tempt   calculat ions a t  l a rge  

Reynolds numbers. 

(B)  Accuracy  of P r o f i l e s :  We have  computed e r r o r s  

i n  the imaginary  part   of  eigenvalues  of as l a r g e  as 10% 

w i t h   e r r o r s   i n   t h e  imposed p r o f i l e s  as s m a l l  a s  -01%.  

However, these  dangerous  per turbat ions are of a ve ry   spec ia l  

kind  wherein  they are concent ra ted   near   the  cr i t ical  l a y e r  

of t h e  mode. (Obviously, i f  w e  per turb  Z(y)  by a n   a r b i t r a r i l y  

small amount, w e  may per turb   u"(y)by  an a r b i t r a r i l y   l a r g e  

. 

8 3  
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,Table 8 . Ef,fect of rouzZoff  error on tf..c rrost unstable 

modo of plane P o i s e u i l l e  f l o w  for a = 1, R = 10000.  

M + l  X (roundoff = 10") X(roundoff = 

2 0   . 2 3 7 5 2 6 a s   + ' i . 0 0 3 7 3 4 5 1   - 2 3 7 5 2 6 7 6  + i . 0 0 3 7 3 4 2 7  

23   . 23754139  + i . 0 0 3 8 3 4 8 9  .23752670 + i . 0 0 ? 7 3 9 & 2  

26'  -23749300  + i . 0 0 3 6 8 8 9 7  -23752646 + i .GO373965 

3a  .23714159 + i . 0 0 3 5 2 9 3 3  ,23752643 + i . 0 0 3 7 3 9 6 5  

4 4  , 23348160  + i . 0 0 5 3 4 3 1 1  .237s264a + i . 0 0 3 7 3 9 6 5  

50 -23813295  - i . 0 0 2 9 6 2 6 3  -23752655 + i.00373979 
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amount a t  t h e  same t i m e .  However, the  dangerous  perturbations 

c i t e d  above arc   per turba t ions   in   u" ,   bu t   very   no isy   per turba t ions  

i n  u" near   the  c r i t i ca l  layer . )  

I n   o r d e r   t o   a v o i d   t h e s e   d i f f i c u l t i e s ,  it is necessary 

t h a t   t h e  mean v e l o c i t y   p r o f i l e s   u s e d   i n   t h e   s t a b i l i t y  

calculat ions  be  very smooth  and t h a t   t h e  second  derivatives 

of   these   p rof i les   a l so   be   very  smooth. 

(C) 'Accuracy of  Eigenvalues:   Because  the  real   parts 

of   e igenvalues   a re   typ ica l ly  much larger   than  the  imaginary 

par t s   o f   the   e igenvalues ,  it is necessary  to   maintain  very 

h i g h   a c c u r a c y   i n   s t a b i l i t y   c a l c u l a t i o n s   i n   o r d e r   t o   g e t  

any meaningfu l   resu l t   concern ing   ins tab i l i ty .  

(D) Nonlinear  and  Non-Parallel F l o w  Terms:  The 

inc lus ion  of these t e r m s  r equ i r e s  little addi t iona l  work 

t o  tha t   a l r eady  expended i n  computing  the  eigenvalues of 

t h e  flow. Therefore, it seems t o  make good s e n s e   t o  compute 

these- te ims .  

(E) Typical Computer Times: It is  r e a l i s t i c   t o  

expect a well-conceived  stabil i ty  code  for  incompressible 

flows t o   r e q u i r e  less than 1 /2  s per   s ta t ion   o f  CDC 7 6 0 0  

t i m e :  .for  three-dimensional modes of  compressible  flows, 

about 5 s p e r   s t a t i o n  i s  r e a l i s t i c .  These  estimates are 

f o r   t o t a l  computer t i m e  pe r   s t a t ion   ac ross  a t y p i c a l  LFC 

wing provided  either  that   an  approximate  eigenvalue is 

ava i l ab le   a t   t he   l ead ing   edge   o r  a previous  s ta t ion  has  

been  calculated  nearby so t h a t  local methods may be  used. 
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