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STABILITY ANALYSIS FOR LAMINAR FLOW CONTROL - PART I

David J. Benney and Steven A. Orszag
Cambridge Hydrodynamics, Inc.
Cambridge, Massachusetts 02139

1. INTRODUCTION

The theory of stability of quasi-parallel flows has
been subject to extensive study during recent years. The
problem is nonlinear and analytical progress is difficult
without the introduction of some form of approximation.
For this reason, much attention has been given to the linearized
problem so that the study of Orr-Sommerfeld-like eauations
has been the dominant theme. In particular, accurate methods
for the calculation of eigenvalues and eigenfunctions has been
and remains an important task. One of the two main goals
of the present work is to assess and recommend efficient
and accurate numerical methods for the calculation of
eigenvalues and, when necessary, eigenfunctions. A full

discussion of these matters is given in Sects. 5-8.

Beyond the linear regime, various nonlinear theories
have been proposed and each of these have advantages and
defects depending on the particular physical problem under
study. Here we are concerned with boundary layer stability
predictions and for this purpose the technique which will
be adopted in Sects. 2-4 is the standard one in which
the nonlinear evolution of the basic amplitude is studied
by simple perturbation techniques. The idea of this method
originated in the work of Stuart1 and Watsonz. When
the non-parallel aspects of the flow are incorporated into
this system of equations, the result is a nonlinear space-

time evolution equation for the am.pl:'u:ude.:‘,-8



In Sects. 2-4, we formulate a theory for the nonlinear,
nonparallel stability of a very general_class of boundary
layer flows. The effects of nonlinearity, compressibility,
and the quasi-parallel nature of the flow are all included.
The theory given here is an important first step in trying to
obtain a realistic approach to the prediction of transition
in three-~dimensional boundary-layer flows like those

encountered on laminar-flow-control aircraft.



2, STABILITY OF QUASI-PARALLEL INCOMPRESSIBLE FLOW

It is instructive to work out- the stability theory
for incompressible flows before proceeding in Sects. 3-4
to the more complicated case of compressible flows. Here
we formulate the nonlinear, nonparallel stability theory
of two-dimensional disturbances in incompressible boundary
layer flows. The basic ideas used here carry over directly
to the problem of three-dimensional disturbances in a

compressible flow.

It is convenient to use a streamfunction ¢ , so that
the equation for ¢ is

2 2 2 _ 4
(V) o+ 9 V%0, = v VY = Ty (2.1)

It G(y,x) is the basic flow with X as the slow variable
(to indicate non-parallel effects), and ¥ (y,9,X,T) is the
perturbation streamfunction (with T as the slow time variable

and © as the phase of the perturbation), then

- . 2 -
(exwy + OT)(IPer + Ox weee) exwyyy ¢e
- vy + 202 + oty o
Yyyy x 'yyb66 x 706060
2
+ u[29Tex¢96x + lpny + ex weBT * (OTexx + 2OxexT)w99

- 2
+ P Ay + 30, Vg, + 30,0, Vegl + U ¥

Y Tyyx X XX YYx'y
- 2
= Py + 0L Yogg) = V(40U o, + 20, b g)]
2 2 _

(2.2)



Here we have assumed that the phase 6 is of the form

2] = G(X,T)/ll r

X= uX, p =6/, where &6 is the boundary layer thickness and
L is a measure of the distance over which non-parallel flow
effects are important, and ¢ is a parameter specifying the
amplitude of the nonlinearity. In formulating (2.2), we have

also used the relations

3 - .2 2 2 = 40 2
3 - " Y% %9 3 T Mt O e

In order to solve (2.2), ¢ 1is expanded as

" ap (Dl o 2%, (1% -i6
+ eaaty(0) 4 a2y(2) 210 | %2, (2)* -216,
+ g2 (A ¢(3) 3ie | A% w(3)* -3i8 | .2, w(ll) i0
¢(11) 9
+ uila, w(l)ele + Ax w{l) e 10 . Aw(l) is
N (2.3

where A(X,T) satisfies the slow space-time scale equation

= 2,*
AT = ale + azA + AA°A (2.4)

If nonlinear and nonparallel effects appear at the same order,
we must take u = 52 . Making this assumption, the rest of
the calculations proceed by equating terms order by order

in (2.2).



The first few boundary-value problems obtained from

(2.2) are:

(o T (1) _ g2 M)y _io 5 4@
10,0, + 0 (b2l -0l v'Ty ~ie T v

X YYY
_ 1y _ 5.2 ,(1) 4 (1), _ ..
v(wyyyy ZOx wyy + Gx P ) 0 (2.5)
— vy (9) s, (12* () _ o2 (1), .o (1) (1) _ o2 (1)
“wyyyy + Gx[lwy (wyy. O, v ) by (wyy 0, v 7 7)
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o3 (1) _ 2 gy _ 307 o)
1Oy + o) Oyyy = 03 v - 108w
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_ () , o5 (D) 502 (1), _ o (1) _
ZGTGXW. + ¢y{wyy 3Gx ] } V41@xwyy 0 (2.9)

(1) _ o2 (1), _ in = (1)
- ex ‘pz ). 1exwyyw2

i(exwy + GT)(wZYY

- veugs) =202 wil) w0l wit) + eyl - ef v

- 26Tex‘b:il)(eTexx + zexeTT)w(l)
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<

Eg. (2.5) is the homogeneous problem
Lyp = o (2.11)

where .L is the Orr-Sommerfeld fourth-order differential
operator. The usual form of the Orr-Sommerfeld equation

follows by making the identifications

L}
The boundary conditions on w(l) are that w(l) = w(l) =0

at y = 0, . When (2.11) is solved subject to these



boundary conditions, there results an eigenvalue condition

of the form

f(ex,OT,X) = 0

that must be satisfied for a nontrivial solution to (2.11)
to exist. At each position X', we can calculate ex given

eT or vice versa from (2.12). If ex is assumed given and
real, then (2.12) yields a temporal stability analysis; if OT
is assumed given and real, then a spatial stability analysis
results. In either case, it is assumed that conditions are
close to neutral so that any weak aﬁplification or damping
can be incorporated later into the evolution equations.

Egs. (2.6-7) are inhomogeneous problems that can be

solved at each location X. The more interesting problem

arises with Egqs. (2.8-10) since they are each of the form

v = kF+ac

Here KX(X) is either A, ®ys, Or o, in (2.4), and F and
G are known functions. 1In order to determine K, we invoke

the Fredholm alternative so that

xk = - iexdy
JEFX dy

where A is the solution of the homogeneous adjoint problem

mz = 0

That is, 7 is the adjoint of 1: and the boundary conditions
for X are adjoint to those for ¢ .

By this technique, all the functions appearing in (2.4)
are found and hence the evolution of the amplitude A can be

determined.

(2.12)

(2.13)

(2.14)

(2.15)



3. THREE~-DIMENSIONAL NONLINEAR NONPARALLEL STABILITY THEORY

OF COMPRESSIBLE BOUNDARY LAYER FLOWS

The equations governing the motion of a compressible

fluid are as follows:

ap ]
3t ¥ xg (pu;) (3.1)
Du. 27T, .
—1 = 1]
P Bt px; + 9%, (3.2)
DE _ - P 35v T 98 9T
Poe = ¢ T 3% div v+ g/ (kz) (3.3)
3 J
P = F(p,T) (3.4)

These equations are those of continuity, momentum, energy,

and state, respectively. The notation is standard, viz.

P, P, T, V= (uq,u,,u3), X = (%9/%,5,%3), ¢, E, k, X = (X1,%,,X3),
Tij' and ¢ denote pressure, density, velocity, spatial
coordinates, time, internal energy, coefficient of thermal

conductivity, external force, stress tensor, and dissipation.

In addition, we use the following subsidiary relationships:

auk 8ui du.
Tij = - (p + -3-\) ?}q)alj + \)(W.— +. —lax) (3.5)
3j i
E = ch (3.6)
- 1 - 2,52
P = 7\;eijeij 3vA (3.7)



where

ou, du.
e,., = —l+a—l (3.8)
ij xj Xy
-»>

A = div v (3.9)

Here v and c, are the coefficient of viscosity and the
specific heat at constant volume. It is further assumed
that the three transfer coefficients k, v, and c, may be

assumed functions of temperature T alone.

Armed with these basic equations, the aim is to develop
a theéory for the nonlinear stability of a basic three-dimensional
boundary-layer flow. The boundary will be taken to be at
y = 0 so that the basic flow will have slow variations in
the x = x, and z = X3 directions, together with possible
slow temporal variations. This feature is most easily
accounted for by the introduction of slow variables X, 2, and
T' (do not confuse with T) where

(X,2,7') = u(x,z,t) , << 1

The small parameter p 1is the usual one on which boundary layer
theory is based.

The unperturbed boundary layer solution will be denoted
by overbars. This zeroth order solution is taken as given.
In addition, the first—-order corrections to the basic state
do influence the evolution of disturbances.

The basic state is then given by the velocity components



; = (G(y’xIZIT')I UG(Y'XIZIT')r G(YIXIZIT')) (3.10)

and density, temperature, and pressure fields

S(YIXIZIT')I E(YIX'ZIT')I §(YIXIZIT') (3.11)

For the stability analysis, each function f is replaced
by f + £ and perturbation equations are then derived. Third-
order terms in amplitude must be retained in the present theory.
To be specific, we perform some preliminary calculations.

For example, since

E = cV(T)T, (3.12)
then

E = cV(T)T, (3.13)
and therefore

E = cV(T + T™){T + T) - cv(T)T . (3.14)

Taylor .expansion of this latter result gives

E = E;T + E2T2 + E3T3 + eee (3.15)
where
E, = EV + E;i
E, = cy + cyT/2 (3.16)
E, = ‘é;;/z +6","E/6.
Here primes denote derivatives of cv(T) = Ev'

In the equation of state for the basic flow

p = F(p,T) , (3.17)



so that the perturbation pressure is given by
p = F(p+p, T+T) - F(p,T).
Taylor expanding, it follows that

_ 1o 2 2
p = Flop + FOlT + 2[onp + FllpT + F02T ]

1 3 2 2 3
+ E[FBOp + F21p T + Flsz + F03T ]

where F_ = 3™ g (5, T) sop TV

In a similar way, the stress tensor is expanded as

u au au 2 3u
= - 20 ki kK ipo_ kK, o5e T” "k
Tij - Gij[P + 3 { (u axk + Wt axk) + (u'T axk w3 xk)
2 3u - 3 B0
- T k , g™ T k
+ (u"- 5 + ) 11
2 axk 6 Bxk
_ du;  du, _ du;  du,
— __l LI g ___J_
+ L lulges + 5 + Tu g + )}
3 i j i
du, du. - au. ou
' i i u" 52 i
AW TG gD o TGt ) )
i | i
2 du, Ju - au. 3u
" 2.. i " 3 3
+ " 5 (ij + Bxi) o Tl Bxi) Py

and the dissipation function ¢ is expanded as

(3.18)

(3.19)

(3.20)

11
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§ o= (iEgeag - @iV D (@iv M1 + iz &G - $@iv 971

*._{‘7['12" eis' - 2@iv w2 v TiE ey, - 3div ) (@iv v ]
4 B2 32 - 2iv 9213
7 3% "3 A2

S 2 -
v tirrig o2y - Jaiv P+ B 18 e, - 4 div T aiv y]

-2

im T3 z
aB

+ RO 282 - 2a@iv 921y

Other functions which occur in the fundamental equations
can be expanded in this way and need not be recorded explicitly
at this stage. Of more importance to our subsequent analysis
is the fact that perturbation quantities, say g, will have
both fast and slow space-time scale variations (see Sec. 2).

In order to incorporate this feature, it is again desirable

to introduce a phase function

9(X,2,T')

8 = m

so the perturbed guantity g is expressed in the form

g(YIB.XrZ'T')

(3.21)

(3.22)

(3.23)



It follows that derivatives of g depend on both the slow

and fast variables. For example,

g _

% Ox9¢ * HIx
331 = 02 + n(2e0 + 0 ) + u?
o X Jg98 T H19xTex T “xx9p K gxx

Other derivatives can be calculated in a similar manner.

Each perturbation function is expanded and the nonlinear

parameter € is introduced to order products of perturbations.

The two small parameters p and € are used to order the

non-parallel and nonlinear effects, respectively. 1In order

for these effects to be in balance, the choice u = 52 turns

out to be the appropriate one.

The equations are now rewritten in this notation and
only the terms consistent to the order of the calculation
are retained.

For the continuity equation, we obtain

(3.24)

(3.25)

13
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Sppg + Gx(uoe + pug) + Pyv + vy, + 6, (wpy + owy)

+ ulog + (P8 + puly + (p9)y + (pW + pw) ]

+ €[0 (pu)g + (pv)y + Gz(pw)el + eul(pu), + (pw) 1 =0

For the x momentum equation,

= = = - 3u
= 3 - 3 =2 = 3 - 3u - 3u
+u[p(aT+u-a;+vay+waz)u+p-§-§u+pﬁ—w

+ (uT + uu, + vuy + wuz)p]

- 3ua - -
+ e[p(exuue + vvy + Ozwue) + GTpue + 5; pv + Oxupue + Ozwpue]

2
+ € [p(exu + ezw)ue + pvuy]

2 -
[-6,Pg — WPy = 3 VO, (B, ugg + O, Wgg + Vye)

2-
- 3 vul(®uy, + 0 wo,

+ vyx) + exxue + exzwe]

- 2505 5202
3V uTx(Gxue + @zwb + Vy) + vzex Ugg

- -,=
+ uv(z)(exuex.+ exxue) + u2v Txexue

(3.26)



2 - 2 - - - -
+u[—-§- v(uex-i-wez)(-) gv'Te(ux-i-vy-i-wz)ex
+ 2\:exuex + 2v exuxTe]
2

__2_ oy} v}
+ el 3V ex(T(exue + ezw9 + vy))e + 2v E)x ('I‘ue)e]

2 1 -, 2 —unl rml
+ e[ ~3 \_)'_Gx{T (8, ug * 8,Wy + vy)}e + v G)x(T ug) gl

ol i}
+ u[vvxy + v Tyvx]

+ £f{v'r(u +6V)+{’—-—"-1—JT2}
Y x 0 2 Y y
2.0 2 vm - 3
+ € [T T (uy + Oxve) + < uyT ]y

V0,0 wggt 0, ugg)
+ulv (0 wy, + Oug, * 0,y wg t0,, ug) * V Tylo wgtozugl
—_— . . . —" — —
+ v (wxe+ uze) 0, *' vV 0, Ts(uz+wx)]
—" .e .
+eg, [v T(O  wyt 9 ,ug) 1y

2 _ TZ
+ €70 " - (G)'xvie +e, ue)]e

15



The y momentum perturbation equation is

p[BT + (exu + ezw)]ve

- - 3 , - 9 - 3 - v
+ u[p(vT + (u §§-+ v ¥Ta + w 3;)V_+ p 3; v]

+ e[p((Gxu + ezw)vB + vvy) + GTpve]
+ ezlp((ue + wl v, + v )]
X z° 0 Y

2_
= -Pp - 3 v(exuey + ezwey + Vyy)

_ 2 5D oy o
3 v Ty(exue + ezwe + vy) + 2vvyy + 2v Tyvy]

+

2 - 2 =, = - - ==
pl —-j-v(ux + wz) -3 v'(ux + Vy + wz)T + 2v'vy'1‘]y

+ e[-—% V'T(O u, + 0wy + vy) + 2'\3'Tvy]y

2
+ ezwe

_-2 __1_ “nme on
+ €7 3V T (Gxue + vy) + v

vyly

+ ez[v(wye + ezvee) + v'wyTe]

- -
+ u["(Wyz + ezvez + ozzve) + v Tz(wy + ezve)

16



5 V" g r2
+ eez[v T(wy + sze) + > wyT ]B

- 2 -
Yt Iy - 3

2
+ e Oz[
+ 'E)x[v(uya + E)xvea) + v'uyTe]

uly (uyx + exvex

+

-, =
+ Gxxve) + v Tx(uy + exve)

o P e Py e I
+ v uyTx + v uyx'r + v TxuyT + exvvex]
+ €0_[VT(u_ + 0.v,.) + il u T2]
x b4 x 0 2 y 0
+ze[x")"ﬁ( o v.) + 20 5 23 (3.28)
& Y% 2 Yy x 0 & Yy' e . )



The 2z momentum egquation is analogous to the
corresponding x equation and takes the form

p[eT + (exu + ezw)]we + p.wy v

3 = 9 = 9
3T+u-a—}—{-+V§-§'

+
E|

= 3 -9
w EE)W + p

w +

[-¥)
ol

2

|
MES

+ p(wT + uw, + va + wwz)]

- aw - -
+ e[p(exuwe + va + Ozwwe) + epre + 3y pv + exupwe + @zwpwe]

2
+ € [p(exu + ezw)wb + pva]
= vex(ezue

o * %Yo’

- -, =
+ u[\’(ezuex + 9xwex + ezxue + exxwe) + v Tx(ezue + exwe)

+ \)(uze + er)@x + \)‘OxTe (uz +'wx)]

+ eex[v"r(ezue + exwe)]e

Y.
2 T
+ € ex[ 5 (ezue + Oxwe)]e

v + + V'T + + V'w, T
+ v(wyy ezvey) v Ty(wy ezve) Y Yoy v



+

+

+.

+

+

-l
-— "
+ € Gz[ 3 V'T (Oxu

M (""yz

el[V'T(

e

82 [—2-

[-pg0,

ul-p, -

eez[—

2

+ Vv '_Tyvz)

v ~ 2
wy + ezve) + 5" wyT ]y

2 DL LI 3
T (wY + sze) + wyT ]y

23 =2
3 veztexuee + ezwee + vye) + 2vez.wee]

> - | .
3 v(exuez + 0, Wy, + vyz + Oxzue + ezzwe)

2 5% 3 5
3 v Tz(exu6 + 0,wy + vy) + 2v0 wg, + (vvz)y

2\)ezzwe + 2v'Tzezwe

2 -
3 9,V (ugy

- -, =
ezszez + 2v wzezTe]

2 = -
3 v'T(Oxue + ezwe + vy) + 2\)'0sz9]e

1 L 2
0 + Ozwe + vy) + v OZT w6]6 .

{3.29)

19



The energy equation is
pcv[QTTe + uexTe + wezTe + Tyv]

+ u[EEv{'rT + ﬁ'rx + GTY + v"v'rz + u'I'x + w&'!z}]
+ e[SEv{eque + va + esze}
+ (Evp + BE",T) (0,Ty + Gex-re + G@zTe + 'i-yv)]
+ €2 [(E o + pET) (00T, + VI, + ,wT;)
an

- - £ 2 - - -
+ (cva + p -5 T )(GTTe + eque + Osze + Tyv)]

. =po= ~ -y ,=2 , =2
= v[2uy(uy + exve) + 2wy(wy + ezve)] + v'(uy + wy)T
+ u[v-[2uyvx + 2wyvz + 2(uz + wx)(G)zue + @xwe)

+ (o u + 25 v + 2wow
3 X x @ YY z 2z 0

+ vyezwe)}]

- (uxvy +\vyexue) - (wzvy

- 2 2 2
+ e[v{(uy + Oxve) + (wy + ezve) + (Ozue + Oxwe) 1

2 2 .2
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+
(WP
<
o)
(O]
LN
=]
D

- - = ¥ 2,=2 =2
+ \;'T{Zuy(uy + vae) + 2wy(wy + sze)} + &5 T (uy + wy)]

20



+

2—1
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4 -, 2 2 2 2 2
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2 2

+ elk'0y (TTg) o + k'O (TTg) g + (R'TT,) ]
s 2t B (02 4 02y aPry ¢ BT g
el % z 8’9 6 'yy' °

Finally, the equation of state is

_ 1 2 1 2
= Fjo * FOlT + e_[7 FooP™ + FllpT + 5 F02T ]
2.1 3 1 2 1 2 1 3
+ [g F30° + 5 FyPT + 5 Flsz + & FgaT 1.

The perturbation equations (3.26-31) are to be solved
subject to appropriate boundary conditions. At y = » , it
is clear that all perturbations should decay to O so we

require

(pyu,v,w,p,T) =+ 0 (y + «)
At the rigid boundary y =0, u=v=w-= 0. and the
temperature condition will be of the form

aT + 8 %% = 0

The case B = 0 corresponds to an isothermal wall and the

case a = 0 corresponds to an adiabatic wall,

(3.30)

(3.31)



4. FINAL EQUATIONS FOR THREE-DIMENSIONAL NONLINEAR NON'PARALLEL
STABILITY THEORY OF COMPRESSIBLE BOUNDARY LAYER FLOWS

First consider the linear problem so that e=u=20.
We ask for solutions in which each amplitude function is

written in the form
hee,y,x,2, ) = ah't)(y,x,z,71)e® (4.1)

where the envelope amplitude is to be determined as a function

of the slow variables, i.e.,

A = A(X,z,T') (4.2)
The respective equations are:
i(og, + EOX + v_;@z)p(l) + oy Eu(l) + ie, Ew(l)
+ v, = o (4.3)
iE(G)T. + exﬁ' + OZW)u(l) + E-_Eyv(l) + iexp(l)
_ % VOX(OXU(I) + ezw(1) _ iv)(71))_+ 2 ;Oi ot
+ ?OZ(OZu(l) + exw(l))— {7(9;1) + iexv(l)}y
- (7'.EYT‘1’)Y = 0. (4.4)
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Blop, + oy + 0@y M+ plH) - e @) 4 se,001))

- YRETY a o ypll) _ .o (1) _ . (1)
i(e,v uy +0,V'w )T uez(wy + ie, v )

- Z(Wél))-y + %[ﬁ(ioxﬁ(l) + vj(rl) + iezw(l))]

iE(E)T. + exﬁ' + ezﬁ)w(l) + Eﬁyv(l) + iezp(l)

2 = (1) (1) . (1)
3 ez(exu + ezw - 1vy )

- {=/.,1) . (1) = (1) =iz 1)
Ey(wy + J.GZV )]y + 2 'yezw - (y'w.T )y

Y

- [ﬂwl‘rl) + iez"(l))]y + Yogt0,ult) 4 o wil))

B8, [1(0g, + Toy + W0 T 4 T,v V]

-~ (‘E’r}fl))y + E(e}zc + e;)T(l) = 0

0

(4.5)

(4.6)

(4.7)



~r._ o < 0. (4.8)

The above set of equations (4.3-8) constitutes the standard
eigenvalue problem for determination of the linear stability

of a given boundary layer configuration. Rather than eliminate
variables it is convenient to consider this system of equations

to be written in matrix form

2
4 4a (1) _
(a; 22 + B gyt S8 = 0 (4.9)
Y
where E(l) = (p(l)' u(l), v(l), w(l), T(l),_p(l))) and the 6 x 6
matrices Ay El' 91 are readily written down from the pre-

vious equation.
The solution of the linear eigenvalue problem gives a
¢

relationship between -0 and OZ at each position

Tll XI

and time X,2,T' . Of course the quantities -0 (€] and

T X
OZ are the local frequency and X and 2Z wave numbers. At
this stage we make no distinction between temporal and spatial
amplification. In actual computation where the initial insta-
bility is being followed and we are close to neutral conditions
the variable 86 is treated to be approximately real. Note
that at this stage of the calculation the wave packet amplitude
A(X,2,T') 1is arbitrary.

In order to proceed into the nonlinear problem it is

necessary to return to (4.1) and replace this equation for any

perturbation function by an expansion of the form
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h = an{Del® 4 axp(1)¥e-10

e(a2h (D) o210 | ax2,(2)* =288 | ppup(0)
(1) (1) (1), _i®
[(Axh + Azhz + Ah le

+ (A;’(h(l) A;hél)* + A*hgl)*)e'_le:]

e2‘}&2},‘,‘}1(11)616 + asalp (A1) * 10

(3) 316 3, (3)* —31%]

+Ah + A*"h

2 3
O(ep,u .e3) .

This expansion for any function h can be replaced by

the identical expansion for the vector

H
~

(1)

where H
n

= (pyu,v,w,T,p)

is defined in (4.9).

The expansion and truncation procedure is straight-

forward and based on the fact that uy and ez are of the

same order.

The process necessitates that a corresponding

expansion be invoked for A(X,2,T') of the form

WAL

where a1.

X, 2, and T*

u(alA + azA + a A) + ezkAzA* .

Qy s Qg and A are scalar functions of

. These functions in this evolution equation

(4.10)

(4.11)

(4.12)



are determined by orthogonality conditions associated with

the other boundary value problems. In particular those for

(1) (1) (1) (11)
By B2y Ry and R

functions and in addition the non-resonant boundary value
(2) (0)

are .connected to these

problems for H and H are needed.

First we write down the inhomogeneous problem for E(z),

namely
2 _
a d (2) (2) _
%z;;:“’éz@*%z)f‘é + K = 0

Here the solution used is that

(2) p(2), uf?), (2) (2) (2) p(Z))

E ( v r W r T ’

while the matrices A,, B,, and C are identical to those
a2’ K2 ~2

for Ql’ El' and g except that the variable © is every-

1

where replaced by 20 . The vector 5(2) is readily found
and if
2
KD o @, W, k@, kD, kD, k),
we find that
(2) _ . (D) (L), .o (1) (1) (1)_ (1)
kl = 21®Xp u + 21®Zp w + (p v )y ’

(4.13)

(4.14)

(4.15)

(4.16)
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2 3 :
x§2 - [E(iexu‘“ + vl f%ezwu')u(-l")

(1) 1 on @ = 2o (1), = (1)
+.p. ._(1(0,1, + uex +.wOZ)u + uyv - ):]

+ 710, 2itM o0 4 wfD) 4 0wt

y
- 2yr02 2337 (M (1)
Cmer® @)y e vy 4 o g
y X 7y y
., (1), (1) (&) .
- 2iY'0,T "'i(0,u + 0w ) . (4.17)
kP - 3[‘19}{“(1)\7(1) v 0Dy 4 M), iGT-p(l)"m]
oo @D 4 gp.0t)) 4 Loy o
- 1®X Y (uy 1G)x ) ‘+ 5Y uy

2 _em(1), . (1) (1) . (1), _ =1} (1)
+ {-jy T (1exu + vy + ie,w ) 2y'T vy }y
e & S IO ¢ B NN ¢ D R RN G DI .

i0,{¥ (wy i0,viT) 4 ZY"w, (4.18)



(2)
k4 :

(2)
kg

. . 2
- Eﬁ(iexu(l)w(l) A R

(L) . N ¢ S B ¢ §
+ p. 1(GT + uex + w@z)w + wyv ]

- ZiG)x'y"T(l)i(GZu(l) +.oxw(1’)_

Cpmm (1) 2 (1) cn o (1) 1 =p= (1)
- {yT (wy _+1ezv )+2ywyfr }y

- 210,(- 270 (1o ut) + i_e_zw‘l) + vil))

+ 2yre,r Wiy, (4.19)

= [T)E.v.(iexu(l)T(l) + V(l).T-l(fl) + i@zw(l)T.(l,))
= (1) - (1), .. — — (1) = (1)
-{- (cyp + p ch )(1(6,1, + uex + wOZ)T ; + Tyv ):I

(1))2

= (1) . (1) . (1),2
- Y-{(-uy + i0,v + (w_y + i0,v )
- (o utD 4 o w2
2 2 2
4 2 (1) (1) 2 (1)
1:3(— Oxu +vy »—ezw

—=em{l) (= (1) X (1) - (1) R (1)
- 2y'T {uy(uy + 10Xv_ Y o+ wy(wY + J.G)Zv }

2
1 - ()€ =2 =2
5 T (uy + wy)

+ Tiou® 4+ so,wt) 4 v;”)_(r' 1) 4

(1)
02T )

11P
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+ FOlT(l)(iexu(l) + vél) + iezw(l))
2
= a2 2, (1) _ (1) (1)
- K 1(9x + OZ)T k' (T Ty )y R (4.20)
20 _ _1, 2% _ g ('(1)T(1)') _lp o2 (4.21)

With these specifications and the appropriate boundary
conditions the inhomogeneous problem defined by (4.13) can be
solved.

In the same way

2
d d (0) (0)
Ro gz " Rogy * KB 7 * K =0 (4.22)

is the appropritate equation governing the induced second order

mean motion.. Here the matrices Q(O), (0), and g(O)

R

are those for Q(l), g(l), and g(l) except that © is

put equal to .zero. If the vector §(°) is written in the form

0 = a0, k0, k{0, k{0, K0, %D, (4.23)
then the individual components are given by
k{O) = (p(l)v(l)* + p(l)*v(l))y P (4'24)



(0)
ko

(0)
ks

. -(0)
Ky

W L B0 L o ) a5 ()]
Y Y z

+ (0y + w0, + wo,) (ip Pu (D)™ o 5,1, (1),

T, My W,

- B.{T(l)(u)(’l)* - sew ¥y 4 T(l)*‘“;(rl) + so.v(1))

+ 7o EYT(“T(”*h] (4.25)

pEax(u(l).*iv(l) - ia (D (D)%

F o, ey _ Dy 2‘,(1)",;1)*1
+ GT(D(ly*iv(l) - ip My (1)
- =27 e (i D Vl(rl)* - 10w (1)
rrM* o) 4 Vfrl) + do,wthy)
w2y (@D M* L g * )y (4.26)
Y Y b4

N T Al R T I O

i

+ (05 + H@x + W@Z) (p(l) ERFTRLE Y RN ip(l)*w(l))

+ @, (MM 4

o A A TR St

. (wn(rl) + i@zv(l))}

+ Y"w, T

(L) (L)% (4.27
v T .‘ly 4.27)

’
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(1) *, (1) u(l)T-(l)*) (L) (1)* , ,(1)*(1)

+
vy Y

ké") = Ea'anxi('u
+ ezi(w(l)*'r(l) - w(l)T(I)*)]

+ T, (0, + Toy + wo,) (1) (p M) (1417,

+ E-""-I-‘ (T(l)v(l)’lr + T(l):*v(l))

Yy
=0 (1) _(1)* (1y*_ (1)
+ chy(p v + p v )
=l5, (1) (1) * (1) _ ;. (1)* (1)*, (1)
- yEZuy uY + Zex(uy iv + uy iv )

(1) (L)% L (1) (1)*

2 2
+ (Gx + GZ) 2v v v

M* | L1 *5, 1)

+ 2@,.,(w_(,l) (-i)v + )
02 + o2y L (g2 4 452) 5,1, M)

- 20,0, [iu(l) - awD* iu(l)*iw(l)]

T AP C DU DL (PRI ¢ D I ¢ DL AU ¢ DL E S N

37y vy 37X Yy Yy

- %ez (iw(l)vl(,l)* - iw(l)*v)(’l))]

== = (H* _ ., ,D)* = (n* _ . (1=
- 2YT [uy(uy 1E)Xv ) + wy(wy 1G)Zv )

(L)y*[ = (1) . (1) = (1) . (1)
- 2yT l:uy(uy + 1exv ) + wy(wy + J.G)Zv ):l

(4.28)

14



p(i)p(l)* - F (p(l)T(l)* + p(l)*T(l))

¥0 - _ ¥

6 20 11

- FozT‘l’T‘l)* ) (4.29)

This problem as defined by (4.22) and . the appropriate boundary
conditions can also be solved at each (X,Z,T') 1location.

At this junction g(l), E(z), and E(O) and the local
dispersion relation are all known. In the problem for Q(ll) .

which determines A , all of these functions are required.

This problem is

2

a (11) (11)
Rz a8 * X

+ AL - o, (4.30)
L4 Vg

where
(11) _ (11) (11) (11) (11) (11) (11)
K = (kK ¢k, r ks » ky 3 ‘ ke ) B .(4.31)
(11) _ (11) (11) (11) (11) (11) (11)
k_ = (Ll R 22 R 23 R 24 ’ 25 R 26 ) . (4.32)

The functions k;ll) and 2;11) are readily calculated:

k1D - iexl:p(z)u(l)* 4 pMI* 2y | (0, (1) p(1>u(0)]

. ioz[p(z)w(l)* f oA L (O (2) p(2)w<0):'

. I:p(z)v(l)* s pMI*(D (0 (1) p(l)vw):ly )

(4.33)
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(
k;

11)

= B{Gx(u

(0) 3, (1) | (L)% (2) | 4 (L)% (2)

(2), (x| _(1)* (2)

+
v Ry Y

s (O, (D (0
Y Y

+ Oz(w(o)iu(l) - w2 )> 2iw(l)*u(2))}

+

F{GT(Q(O)iu(l) + 2ip(1)*u(2) - ip(2)u(l)*)

. ﬁy(p(O)V(l) £ MO L @y | (L (2),
£ (0T + 0,7 (1p Dud) 4 25, M * (2 _ 5 (2, ()%,
2
+ ex(iu(l) p(l)*)

(DD (* 5 (D (D* (D), (D* (D) (1)

+ 0, (-ip w )

(1), (1) y* p(l)v(l)*u(l) + p(l)*v(l)u(l)

+
P Y ' y

%iy.ex{ex(.r(l)*ﬁu(z) + 05,1 _ iT(Z)u(l)*)

+

+ 0, (7 234 (2 4 p(0) 5,1 | 50 (2) ()%

. T‘l’*v;z’ N T‘O)v§1’ N T(l)v;o) N T(z)vgl)*}
- 2y'16}2{(T(1) 2iu? 4 (03, (1) _ (25, (1) %,
1 (1?2 (1) (L)% (1) *
+ -57"19 {T (-iou - ig w + v )

X Tk Z y

(1) _(1)* . (1) . (1) (1)
+- 27 (i0yu + i0,w + vy )}



- Fri0(2iT

- [?'(T(z)(u;l)* -'iexv(l)*) + T(o)(u;l) + ieyv

N e

+ llu
Y iy

2 .
(L) (1 * (1) _ (D)5, (%)

(l))

r e T(Z)T(l)*i]
y

(1)
—u T

+ 33

oj -

) .
N* _ (1) * (1) . (1)* (1) .
(uy 1exv y + T T (uy + 1exv

2
wg o) T(l)f]
y

Y

(11}

(4.34)
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(0),,(1) | (L)%, (2) _ , () (L)%

k;]‘l) = Bl lu 2iv
+ o, 0w Dav ) 4 M ¥53,(2) L 5, (D (D%
SV L0, @ ),

(0) (1)

+ G.I.‘{--ip(z)v(l)’.r + ip v + 2ip(1)*v(2)}

(L M | (W* 1)) (1) (1), (1) (L)%,

...ip

+

ex{i(p

{i(p(l)w'(l)*

e o (D% (1)) (1)

o 1,y

{p(l)v(l)v(l)* + p(l)v(l)*v(l) + p(l)*v(l)v(l)}

+
. Y Y Y

+ %—B'{T(z) (—iexu(l) - iezw(l) + v)(,l))
+ (0 (iexu(l) + i@zw(l) + vl(’l))

(Ly* .. (2) . (2) (2)
+ T (210xu + zlezw + Vy )}:IY

+

—vm(2) _(1)%* (0)_ (1) (L)*_ (2)
2[} (T Vy + T Vy + T Vy )]y

+

1 o (1) (L)%, . (1) cn (1) (1)
—3-[7 {aT T (1®xu + 1ezw + vy )

(L)% g0 S10* L (L)%,

(1)2(-iOXu 0, v

+ T

2
- '-Y_II{T(]-) V(l)* + ZT(I)T(l)*V(l)]:l
Yy y v



e [ (* o SA o
z[% (wg io,v7) 4 y}T(O)(w§1) + i@zv(l))

=y 1)y *
+ yrpd) (w;z) + 210,v(?))

— 2
. e (1
io, E?—{T( ) (wl(,l)* - i@zv(l)*)

(1) (1) *, (1) .
+ 2T T (wy + 1ezv(l))}

PTG 2 ZT(l)*:I

(4.35)
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k (11)

EE)x(u(l)*ZiW(Z) - 1@ 0 (1),

(2) _(L)* (0) (1) (1) * (2)
+ v vy, + v vy + v vy

+ 0, (1w Dy (D" iw(O)w(l){]

¥ og(2ip M (2) 4 5 O (@) (%)

+ w(

y v

(2 (% L (0 (1) | (W) (0) (1) (2),

+ (0T + eZW)(ip(O)w(l) + 2ip (D%, (2) _ j,(2) (1))

b o tmipMa@yM* L M M@ @x W,

2

+ {p(l)v(l)w§l)* . p(1)v(1)*w1(,1) . éily*v(i)“;l)}

- iex?'{ez(iT(o)u(l) - (2, (D* ZiT(l)*u(Z))

+ ex(iT(O)w(l) - iT(Z)w(lj* + 2iT(1)*w(2))}

2
- 10,770, (~it D " (D* 4 53p Mg (1, (1),
2

2

b oy (mir D WF L i (MW ),

- E?'{T(Z)(w;l)* - iezv(l)*) + T(O)(wél) + iezv(l))

(1)*

+ T (w;z) - 2iezv(2))}

+ 7w (1) o T(z)T(l)*]]
o Y



2
- f@f{w(l’ ("'151)* - io,v (VY 4 2-1-‘.1"1-‘1’*(»:1(,1’ + io,villyy

2
.?u — (1) (1)*]
+ Twy{T T } v

2

2 (1) *
3

+ ie, ?'{ex(-iw(”u + ir(@y@) 4 55 (1)*,(2),

(2) (1)* (0) (1) | Hin (L)%, (2),

+ ez (-iT + iT

(2)_(1)* (0)_ (1) (L)*_(2)
+ (T vy + T vy + T Vg )}

- 2770, (-ir (P D* 4 (O, (1) ZiT(l)*w(z)):I

(12 (u+*

+ iezl:%?'{ex(—i-r u + 2ir (Vg 1)*, (1),

2

+ oy (~ir D) Ty (D* (1), (1)*, (1),

+ 2iT

2
+ (oD v;l)* + 2T(1)T(1)*v;1))}]

2
- ig2yn [—i'r‘l’ wll* o 2iT(1)T(l)*w(l):] ) (4.36)
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K 2 55 fo t-1a @ * 4 1y 0050 4 o3, (12

ra(2) (1) * (1) *.,(2) +(0) (1) (1),,(0)
+ v Ty + v Ty + v Ty + v Ty i]

2) (013 (1) _ ; (2)5(1)%,

+ G (0, + w0, + wo_) (2ip M *p(2) 4 ;,
v T X Z

+ Ev-i'_y(p(l)*v(z)'+ p (Mg (MO, @) (L)%,

s =y — - (0),,(1) (2),,(1)*
+ ip cV (eT + .uex + sz) (2T T + 27T T )

+BE\'7;I'-Y(T(1)*V(2) + o0 (1) (10 | (2) (1) %

58,0, (p M Wp ) 4 (W WA ) | (1), ()53

58,0, (M Wp 1) 4 () M* () | (W) (g%

+ C

- (1)_(1),,(1)* (1) _(1)* (1) (L)*_(1),.,(1).
V(p v TY + p v Ty + p v Ty )

2 2
+iafpxmuu”T”’) + 15820, (2¢ D (1))

y

2
- — — . (1) (1) *
+ cv(GT + exu + Ozw)l‘l‘ o]

. E§E§(p‘1)T‘l’v(l’* s pMp(D* () | (L% (1),



—_—— 2 *
%—p \';(GT + exu + ezw) iT(l) T(l)

- 2
+ 1paE, @D DY 4 (M,

- ;[zu(o)u(l) + 2u(2) (D)%
Y ¥ Yy Y

. ) (1) _  (1)_(0) (L)*_(2) _ (2) _(1)*
+ Zlex(uy v uy v + 2uy v uy v )

+

ZWY(O)W,!(.]') +. ZWéz)wél) *

. (0)_(1) (1)_(0) (1)*_(2) _ _(2)_(1)*
21ez(wy v +wy v + 2wy v wy v )

&+

+ 4(0; + Og)v(z)v(l)* + 4e:u(2)u(l)*

+ 46}2{w(2)w(1)* - 49xez(u(l)*w(2) + u(z)w(l)*)]
-47 Eef{“m“m* + 202wy * 2(VS((z)v}(!l)* + V;O)v)(!l))
- iex(v§o)u(l) - vl(lz)u(]'”r + ZV;l)*u(z))
_ iez(v;O)w(l) _ V;Z)w(l)* + ZV;I)*W(Z))

+ 20,0, ({2 D* u(l)*w(z){]

v(l)*) + T + iexv(l))

— [m(2), (L)% (0) , (1)
- 2y uyEI‘ (qy 1ex (uy

U S CY 2i6xv(2){]
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- 2T (2) . (L)* _ . (1) * (0) ... (L) ; (1)

2y wy[l‘ (wy . 1ezv ) + T (wy + 1G)Zv )
+ T(r)*(wéz) + 2iezv(2){]

- ?ll (E;.'_ G;)(T(O)T(l) + T(Z)T(l)*) .

- y'[%(l){Z(uél) + ot @{V? - 10w

+ 2(w§1* + iezv(l))(w;l)* - iezv(l)*)
+ 2(exu(l) + ezw(l))(exu(l)* + ezw‘l’*)}
PG DL P C S R DN N ¢ DR ¢ DI
uy i0y wy 10, )

2
(1) (1), “
- (6,u + 0w ) }‘I
2
- %Y'E‘)}z{{T(l)Zu(l)u(l)* - D F MYy

2
(1) ,, (M (D)% o (L* (1%

+ {T
{ Y

: 2
S 1L P C MCO L L C )

(1) * (1)* (1) (1) _ (1) (1)* (1)
v T u vy T u vY )

iex(T(l)u(l)v

(1), * (1 (1) (1) p (L) (1) (1),
Y Y Y

ieZ1T‘1)w

+

exez(T(l)*u(l)w(l) _ T(l)u(l)w(l)* _ T(l)u(l)*w(l)):]



2
7.EyE,,(1) (u§1)* - se MYy 2T(1)T(1)*(u}<,1) + iexv(l)):, -

2 -
— l (1) (L* _ . (L) *, (1) (1)y* (1) . (1) l
Y wY T (wy 1ezv ) + 2T T (wy + 1ezv )

2
Sy =2 -2, (1) (1) *
5 (uy + wy)T T

ir-.-ll[p(z) (-10,0 D% _ 5 (1% v}‘(l)*)

+ o0 (1) (1, L),

(iexu + 10zw v

(Ly* . (2) . (2) (2)
+ p (zlexu + ZJ.OZW + Vy )j

(2) . (1) * . (1) * (1) *
{TF02 + FOI}E[‘ (-iogu - io,w + Vg )

(o) ,. (1) . (1) (1)
+ T (19xu + J.ezw + VY )

+ T(l)*(Ziexu(z) + 2iezw(2) + vl(IZ)):'

2 2
(1) 1 (1)
+ 2—F03T }

=1 (1)
T{ZFy0p t Fip T

(x|

PPN DT
{ ioyu io,w v

'T‘{lep(l)p(l)* + Flz(p(l)T(l)* + p(l)*T(l)) + F03T(1)T(1)*}

. (1) : (1) (1)
{1exu + ie,w + Vg }
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For the nonparallel contributions we must examine the

series of problems -

2
d d (1) (1) (1) _
(3, d—-——yz *Rig t El);éj + Ky + “jk' = 0,
j=1,2,3, (4.41)
where
(1) _ (1) (1) (L) (1) (1) (L
Kj (kjl - ka ’ kj3 ’ kj4 ’ kjs ’ kj6 ) (4.42)
{1, _ (1 (1) (1) (1) (1) (1)
L = (2I . 22 R 23 ’ !1,4 R 15 R 2’6 ) (4.43)

These functions, twenty-four of them in all, are now listed.
k{]l.) = oVF 4+ @ (4.44)

MET o PN S (1),

+

WiN

Y (io4u + 10w

— 2=, = 1
- Zylexu(l) + -gy-lu(l)ex - 2y1@xu( )

(ir‘v‘l))y - Q‘iezw(l) , ' (4.45)
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ki3

(1)
Kia

(1)
Kis5

(1)
K6

(1)
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Su (1)

(1) (1)

w + pw ’
(1)

2= .
.+ §YOX1W

- i(eiu(l) + exw‘l)) ,

- Y@zlu

(1)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

{4-.52)

{4.53)



ké%) = pwv') 4 2('YW(1))Y - iye,v(V)

_ (1) . 1)y _ g (1) 4.5

1r(wy + i0,v ) Y wy'.r R ( 4)

kz(i') = Ev-;v-w(l) - -Y-iexu(l) + p(l)

+ ’5YE°xu(1) + v l@zw(l)]

. (1) (1)

- 2Yezlw - (yv )y

+ 2710,V - 2ye,iw M, (4.55)
k,(,é) = EEVGT‘” - 27wyv‘1) + EFOlw‘l)

—-EeziT(l) - ezfiT(l) ’ (4.56)
(1) _
kpg' = 0 . (4.57)
kD) = @ T e w g ppvtt 4 Bl

+ 1(G0y + wo) 0N + i5(eu D + o,wY))

+ (_B-V(l))y + p}({l)ﬁ + -p-u)({l)

+ pz(l)v_v + sz(l)' ’ (4.58)
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PV l‘,l) + Puu

(1) (1)

+ pu‘zw

5 o+ TE. 4+ TE o+ BEoD
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%y(iexxu‘l’ + iog,w(l))

(l))

(1) (1) .
+ Vy + lezw
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%?"e iT(l)(ﬁk + T, W)
1) oD (G

B
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Vo iu't 4+ s0 W)
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—or s (1) .
Y Tz(lezu + 1exw

i{(pu + pwoe, + (w + pwo,tulP

%?";0 (o uf) & o Wil iv;l)) +

—_=_2
2y Tex
+ 10xv
(1)

(1)
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+ %?(iexu(l) vt iezw(l))

- L 570.u!P - sew - (?v(l))y

ot - Liye Wi, | (4.59)
kY = Ty - veav® - T D 4 i)

- (Y'EY)XTU‘) + %—(?' (uy + ¥, + WZ)T(I))Y

- 2T 7'Tz("3(;1) + 10,y

- 'y‘ezziv(l) - (?-Gy)z'r(“

(1)

- iy Rl + a0

- i0, (78, + TR - se, 0w, + yu DT

- 1y To, wi) + s0,vP) - 2Bt

- 29 Tae ™ 4 v+ 0wty

+ D - el - Tl + ety - FE ol



+ 2+ mwet o+ Tgeit, - ave vt

- TP . o vithy - vt (4.60)
kD - 5va<1> O N A Al S T, + Wwy)

- ?'Tx(iezu(l) + i@xw(l)) - Y(Ozxiu(l) + i@xxw(l))

- 7'iexT(l) (u, + wy) + %V'EZ(iexu(l) + Vi(rl) + iezw(l))

+ 25 ao,u'™ v o0, w't)) - 2070, 1wV

+ 3v0,4r ™M) (@, + v, + W) - 7' w, itV

(1) (1)

+ {(pu + pu)(E)x + (pw + pw)OZ}w + (pwy + pwy)v

- %?'%@Z(Gxu(l) + Ozw(l) - iv;]'))

- {7"?‘(wi(,l) + iezv(l))}y + Y'To, (0 u

(1)

(1)
X X )

== (1) _ = .
+ puw, : ‘Y(l@zu + 10Xw



2.2 (1) M e yufD 4 o - gie D

+ %? :LG)xuél) + vi(é) + iOZWél) - vl
2 .- (1)
+ §-lyozwz - (4.61)
kég) = BE:'V{?I';,J‘) + "I"Xu(-l) + T, w(l)}
s (0 = (1) (1),
- Y|:21(uZ + wx) (Ozu + exw )
+ %{Ziﬁxexu(l) + z?r"yvl(,l) + ZiWZGZw(l)
- (u v io v u(l)) - (w vy ie, v w(l))}_l
X'y X'y z2'y 2y _
= (1) (1)
+ T (ux + v, + wz) (Fllp + FOZT )
= = = (1)
+ FOl (ux + vy + wZ)T
(1) . (1)
- ik'(Ty0, + T,0,)T - i{(k0,) ¢ + (kO,),}T
+ (EEV + 56""'1__')0Ti'1‘(1) + (EEVE + Eé‘ﬁ'u + EEVE)J.O p(l)
+ (PS.T. + pa'Tt + p&. T )viD
vy vy vy

(273, + 2" Tu )(u(l) + i@xv(l))

(Zwa + 2% Tw )(w(l)
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- ey = o o (l) - -"= -2 -2 (l)
27-(uyuy + wywy)T_ Y T(uy + wy)T

- Two = = = (1) _ =.5;72 =2, (1)
Y (uyuY + wywy)T Y T(uy + wy)T

+ (TPy, + T(Fy,p + Foz?))(iexu(l) + vél) + iezw(l))

=P 4 2, (1)
L
+ k T(Ox + GZ)T

== =n(1) _ ==
+ pcVuTx ZYUY

== = (1) _ ==
+ pcvw‘l‘z Zywyv

(1) _ _ = =, (1)
kyg = “(Fypp + F1yT)o

The double bar symbols in these

the first correction to the basic boundary layer flow.

(1) o
Ve - TF

(
Z

- (Fy,p + F, )T .

= m (1)
(k TTy )y

(1)

(1)
u X

01Y%x - 21kOXT

D | ogp D él) ]

0172 (4.62)

21kOZT

(1) (4.63)

k§§) equations correspond to

This com-

pletes the detailed listings of these functions.

It remains to show how A

calculated.

and a. are to be

; 3=1,2,3

For this purpose the return to the basic linear

eigenvalue problem associated with equations (4.3,4,5,6,7,8).

This can be written as

subject to the appropriate boundary conditions.
(p(l)' u(l), v(l), w(l),

vector

are 6 X 6 matrices.

(4.64)

Here Yy 1is the

T(l), p(l)) and D. j =



The adjoint problem is that associated with the equation

T _ T T _&,rT
jo (wiy - yMwdy = WDy gz + (W'D - g5z¥ Eo)’X:]o

It follows that the inhomogeneous problem

Lv = £
"N "N

will have a solution if and only if

On applying this condition to equations (4.30) and (4.41)

we obtain

1.1
- wTK(ll)dy
o "
A= -
T (11)
Jo €5 Par
-]
f TKJSl)dY
a; = - 0 , i =1,2,3
I TL(l)dy
c

(4.65)

{(4.66)

(4.67)

o~
(%Y
.
[+)]
<o
~

(4.69)

(4.70)
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With these functions determined at each location the
coefficients in equation governing the amplitude A
{equation 4.12) are known and the spatial and temporal growth

of A can be studied.



5. CHEBYSHEV-SPECTRAL METHODS FOR STABILITY CALCULATIONS

In Sects. 5~-8, we discuss the state-of-the-art of
numerical techniques for stability calculations. In this
Section, we provide an introduction to the use of Chebyshev

polynomials for the solution of stability problems.9

An important difference between finite~difference
app;oximations to the eigenfunctions and eigenvalues of
a stability problem and Chebyshev polynomial approximations
to the same problem is their order of accuracy. Finite-
difference approximations give only a finite order of accuracy
in the sense that errors behave asymptotically like hP for
some finite p .when the grid spacing h approaches zero. On
tle other hand, if the unperturbed velocity profile is smooth
(infinitely differentiable), the Chebyshev polynomial
approximations discussed here are of infinite order in the
sense that errors decrease more rapidly than any power of
1/N as N + .=

Another difference between finite-difference and
Chebyshev polynomial approximations to stability problems
concerns their resolution of possible regions of rapid
change ('boundary layers') in the eigenfunctions. When
the Reynolds -number R (based on boundafy layer thickness §
and freestream velocity U) is large, the eigenfunctions

1/2

exhibit boundary layers of thickness of order R near
y = 0 and internal layers of thickness cf order r1/3 near

the critical layer (where wave phase speed equals flow velocity).
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In order for finite-~difference approximations to be
accurate, it is necessary that the grid spacing be at most

R 12 jpear y = 0 and at most R /3 near the critical layer.
Thus, if uniform grid spacing is used the number of grid points
required is scaled by a factor R1/2 as the Reynolds number
increases. If non-uniform grid spacing is used, this difficulty
may be partially avoided. On the other hand, the number of
Chebyshev polynomials required, for accurate stability

1/4

calculations scales only as R as the Reynolds number R

10In laminar flow control applications,

approaches infinity.
this difference between finite-difference and Chebyshev
polynomial methods is important. If the range of Reynolds
numbers to be studied in a given LFC application is,say,

R = 1000 —10,000.and if, say, 20 polynomials or 100 grid

points are required to solve the problem at R =1000 (these.
resolutions are, in fact, typical), then less than 40 polynomials

will be required at R=10,000 while more than 300 grid points

will be required.

The rapid convergence properties of Chebyshev polynomials
are verified as follows. If the unperturbed flow is smooth,
then so are the eigenfunctions of the linearized Navier-Stokes
equations. Let Tn(x) denote the nth-degree Chebyshev polynomial
of the first kind, defined by

Tn(cos @) = cos nbé (5.1)
for all non-negative integers n. Some examples are To(x) =1,
Tl(x) = x, T2(x3 = 2x2-1. It is possible to expand the

eigenfunction ¥(y) in the interval -1 <y <1 (we discuss in



Sec. 6 techniques for handling the semi-infinite interval

0 < ¥y £ = encountered in boundary-layer stability problems) as

o«

Yy) = L a T (y) (5.2)
n=0 o0
where
2 1 2 -1/2
a, = R—f V(YIT () (1-y°) dy (5.3)
n ‘-1
with'co = 2, ¢, = 1 for n>0. The rapidity of convergence

of (5.2) for |yl|<1 is easily demonstrated by observing that

£(8) = WY(cos 6)
is an infinitely differentiable, even, periodic function
of 8 . Consequently, the theory of Fourier series ensures

that f£(0) possesses a Fourier cosine expansion

£(6) = _I, a_ cos ne (5.4)

with the property that the error after N terms decreases
more rapidly than any power of 1/N as N -+ «, The expansion

(5.4) is precisely (5.1l) for y = cos 6 .

The infinite-~order accuracy of Chebyshev polynomial
approximations to smooth functions holds no matter what
the boundary values of the functions or their derivatives,
in contrast to the situation when other classes of orthogonal
functions (like trigonometric or Bessel functions) are useo:l.g—11
In the following subsections, we discuss several programming

and technical aspects of the application of Chebyshev polynomials

to stability calculations.
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Chebyshev Matrix Method

The derivation of the equations satisfied by the
expansion coefficients a, in the Chebyshev expansion
N

Y(y) = nio anTn(y) (5.5)

can be difficult and time~consuming if. done by hand. Iﬁ
order to improve the flexibility of this method and the
ease in which it can be applied to new problems, we have
developed a nearly automatic matrix method for computer-
generation of the equations satisfied by the coefficients
a .

To illustrate the method, suppose we defined the

-
vector y by

20
!

-+ (5.6)
w =

an

When the expansion (5.5) is substituted into a differential
operator, equations for the coefficients a, are cbtained by
re-expanding the result in series of Chebyshev polynomials
and equating coefficients of each Chebyshev polynomial: if

Lv = 30,7,
then each bn is a function of the a, and we obtain N equations
approximating (i_w = 0 by setting bn =0 for n < N. In order
to find these equations we must derive an efficient and easy
method to determine the effect of the differential operator l:

on the vector $.



Consider the Chebyshev representation of the function

_ au(y)
V') Ty
Let the associated vector of Chebyshev coefficients of ' (y)
' (1)
be denoted by i)
1
o= |2
. ‘(1)
Since aN
| -
Ty =2n(T _, + T 3+ ...,
it follows that
a(l) = -2— z pa
n cn p=n+1l P
p+n odd
where ¢, = 2, ¢. = 1 for n >0. Therefore,

0 n
> >
y' = Dy
where the N+1 x N+1 matrix D has elements

Dij = 0 if i>3j or i+j is even

20-1) therwise

Ci-1
Similarly, if £(y) = yy(y), then the Chebyshev coeffi-
cients of £ are-given by
> ->
£ = Yy
where the N+1 x N+1 matrix Y has elements
Y5 = 1if i=2, j=1
1/2 if i=j+1 or i=j-1

0 otherwise.

The utility of setting up these matrices (and other
gimilar ones) is the ease with which they may be used to
set up the matrices expressing complicated differential

operators. For example, the matrix for the operator
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2Y3D. (In fact, the last

statement is not quite true because the matrix ¥?¥3p

ya2/ay? (y3a/ay) is just ¥D

does not correctly represent the action of the differential
operator on high-order Chebyshev polynomials. However, it
may be shown that this error is nearly negligible and we
will not discuss it further here.)

In actual practice, it is frequently not necessary to
store the matrices D, Y, etc., because their very simple form
makes it possible to generate their elements as they are
needed during the computation.

"Let us consider how the Chebyshev matrix method applies

to the solution of the Orr-Sommerfeld equation

@%/ay? - o) 2p(y) = ioR(Ely)-c) (@%/ay? - o?)v(y)
- £eRE"(y) ¥y,
where u(y) is the unperturbed profile. 1In terms of

Chebyshev matrices, these equations are
(2 - o1} = ior(U - cI) (D - o?D)¥ - ioRU"D  (5.7)

where U is the matrix that multiplies by u(y) and U" is

the matrix that multiplies by U".

Tau Method

The equations (5.7) for the Chebyshev coefficients
a, do not account for the boundary conditions imposed
on P(y). There are several ways to impose the boundary
conditions consistently on (5.7):; this can be done by

Galerkin, collocation, or tau approximation}1

It is
usually most convenient to apply tau approximation, as

we will now discuss.



The idea of the tau method is to drop enough of
the equations (5.7) that all the boundary conditions can
be applied. For the Orr-Sommerfeld equation, the boundary
conditions
viy) = 9'(y) =0
should be applied at the rigid boundaries y = %1, Thus,
we delete the last four rows of the matrix equation (5.7)

and replace them by the four boundary conditions

N N n
£ a = £ (-1H"a = 0
n=0 ©° n=0
(5.8)
N N
t nfa_ = : (1D™'a%a = o0
n=0 n=0
Egs. (5.8) follow because T_(+1) =(+1)7, T!(21) = n2 (£1)0*1

Thus, we retain N-3 equations of the form (5.7) and 4 equations
of the form (5.8) so that there are N+1 equations for the

N+1 unknowns ao,al,...,aN.

Fast -Fourier Transform

An additional advantage of Chebyshev polynomials over
many other orthogonal bases is the existence of the fast Fourier
transform to effect efficient conversion between the Chebyshev
coordinates a, and the physical space perturbation ¥(y). 1In

fact, since

N
Y(cos 0) = z a, cos ne ,
n=0

Chebyshev series can be summed by any technique that sums
Fourier cosine series, in particular, certain variants of

the fast Pourier transform(see the Appendix of Ref. 12).
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6. NUMERICAL METHODS FOR EIGENVALUE CALCULATIONS

We begin by making a number of general comments that
apply to most numerical schemes for stability calculations.
First, we remind the reader that the problem is difficult
because the Orr-Sommerfeld equation (or other linearized equation)
X moderately stiff at large Reynolds numbers, as reflected by
the boundary layers exhibited by eigenfunctions (see Sec. 5)
Second, calculations of moderately high accuracy are
frequently needed for such purposes as computation of the
group velocity (see Sec.7) and various optimization schemes
(see Sec.7). Third, we comment that there are two possible
kinds of stability calculations that can be made, spatial
stability and temporal stability (see Sects. 2-3). For
small growth rates, the results of temporal and spatial stability
analyses are closely relatedl.'3 However, because the differences
between these two types of analyses may be central to the
problem of LFC aircraft design, let us contrast them briefly
here.

In a temporal stability analysis, the wavenumbers of
the disturbance are assumed real while the frequency of the
disturbance may be complex (a positive imaginary part indicates
instability). On the other hand, in a spatial stability
analysis, the frequency .is taken real, while a positive
imaginary part in a wavenumber indicates instability.
Since many problems of aerodynamical interest are, on average,

stationary in a suitable coordinate frame, it seems that



spaﬁial stability analysis should be the more relevant one.
However, this is by no means clear experimentally. . It seems
that low frequency disturbances are. treated better by spatial
theory than by temporal, but high frequency disturbances |
seem to agree better with temporal theory.14

The confusion between spatial and temporal theory
is even more severe in the case of the propagation of
three-dimensional disturbances, which are of primary interest
in the boundary layers of LFC aircraft. Spatial stability
theory is ambiguous for three-dimensional disturbances.
In the case of two-dimensional disturbances, it is physically
plausible that the direction of maximum growth of the
disturbance is perpendicular to the constant-phase surfaces
of the disturbance and parallel to the freestream flow
direction. On the other hand, in three~dimensional layered
flows, there is no apparent réason why the direction of
maximum growth should be perpendicular to the direction
of the constant-phase surfaces. If these directions are
allowed to be arbitrary, one quickly gets involved in
ill-posed mathematical problems. Until this basic question
is resolved, it may be best to use temporal stability theory
and a group velocity transformation for three-dimensioral

stability analyses of LFC boundary layers.

Finally, we comment on the mathematical technique to
treat the semi-infinite domain 0 < y < =« of the boundary
layer. Grosch and Orszag15 have shown that the best way
to handle the y-direction is to transform it by means of

the algebraic transformation
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Yy =2 y+!L -1 (6.1)

into the finite interval -1 < ¥ < 1, and then apply standard
numerical techniques on the transformed finite interval.

This technique provides accurate results with about 50%

less resolution than required using simple truncation of the
domain 0 < y < L. Some results of a Chebyshev-spectral
calculation are given in Table 1. Here we compare the
accuracy of the most unstable mode of Blasius flow at a
Reynolds number of 580 and ‘a wavenumber of .179 using several
treatments of the boundary at y = @ . The methods are:

(i) truncation, which involves solving the problem on the

finite interval 0 <y < L for several values of L and with

both no-slip ¥ (L) P* (L) = 0 boundary cecnditions and
asymptotic boundary conditions ¢'(L) + oyp(L) = 0 applied;
(ii) an exponential map of the form Y =1 - 2 exp(-y/L);
and (iii)the algebraic transformation (6.1). For both
methods (ii) and (iii), several kinds of boundary
conditions are applied at Y = 1 (y = © ), including no-slip
conditions and no boundary conditions (!). We conclude from
Table 1 that no boundary conditions at all need be applied
at ¥ = 1,

With the mapping (6.1), L may be chosen to optimize
the accuracy of the calculations. After some experience,
it has been found that a good choice for L is L & 2y4+

where Yo is the value of y at which the streamwise component

of the velocity achieves 1/2 of its freestream value.
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Table 4., Eigenvalues of the Orr-Sommerfeld equation for Blasius flow, R

= 580, o = 0.179.

Boundary Conditions

N
(Number of

| Case Mapping i at 'z = ' L | Chebyshev Modes) ¢ f
| 1 | rruncation P(L) = 9' (L) = 0 10 44 v 0.37887 7 + 10.00025 0 |
| 2 " 20 | 44 | 0.36455 7 + 10.00777 3
3 " 20 46 | 0.36455 1 + 10.00778 1
| 4 " 30 44 | 0.36399 6 + 10.00788 8 |
|5 ¥' (L) + ay(L) = 0 20 44 | 0.36021 3 + i0.00667 1 |
| 6 " 30 44 0.36404 1 + i0.00811 3 |
7 Exponential | ¥(1) = 0(1) 1 42 0.34858 0 + 10.01312 9
" 1 46 0.34961 1 + 10.01285 6
P(l) = v'(1l) =0 1 46 0.38378 9 - i0.00276 6
{ 10 " 1 70 0.37853 1 + 10.00047 1
11 Algebraic Pp(1) = 0() 1 26 0.36414 7 + i0.00800 7
12 " 1 34 0.36412 1 + 1i0.00795 76
13 " 1 42 0.36412 288 + 10.00795 975
14 (1) = ¢'(1) =0 1 42 0.36412 325 + 10.00755 894
15 " 1 60 0.36412 285 + i0.00795 973
16 P(1) =0 1 42 0.36412 287 + i0.00795 976
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Global Methods for Temporal.Eigenvalue Calculations

When no guess is available for the eigenvalue of
interest, it is best to use a method that is globally
convergent and nearly guaranteed to converge to the
eigenvalue. Such a method may be based on the matrix QR

algorithm16

for calculation of the eigenvalues of a
general complex matrix,

When the Orr-Sommerfeld equation (or other similar
differential equation) is formulated as a matrix problem
(using eéither Chebyshev polynomials or finite-difference

methods), it takes the form

Ax = 2B (6.2)

where ‘A is the eigenvalue (deroted ¢ or w above in the
case of temporal stability calculations) and x is the
discrete representation of .the eigenfunction. The eigenvalue
is determined by the determinant condition

Det |A - AB| = 0. (6.3)

Eq. (6.3) is a generalized eigenvalue problem and the

matrix QR algorithﬁ does not apply directly unless either
A or B is invertible., (If, say, B-l exists then (6.3) is
equivalent to the standard eigenvalue problem

pet |[B7la - 1| =o0.)
However, it is frequently the case that A and B are singular
and a more general method must be developed.

To solve the generalized eigenvalue problem with singular

A and B, we proceed as follows. There are two steps that are



executed recursively.
(i) We use fully pivoted row operations to reduce B to
upper triangular form, executing the same row operations on
the matrix A. The resulting generalized eigenvalue problem
Det |A' - AB'|= 0 has the same eigenvalues as (6.3) because
the same row operations were performed on A and B. If allithe
ditagonal elements of B' are nonzero then B' (and hence B) is
nonsingular and the problem can be immediately'reduced to the
standard eigenvalue problem (and then solved by the QR algorithm).
Thus, let us assume that all elements bij with K< i< N are
zero (if any elements of this matrix were not zero, full pivotihg
would ensure additional nonzero diagonal elements).
(ii) We perform fully pivoted column operations on the rows
j=K;e..,N of the matrix A'to tvansform A' into an upper
triangular matrix A", The same column operations are performed
on B" but it is still true that b;j = 0 for K < i < N and all j.
The generalized eigenvalue problem Det |A" - AB"| = 0 has the
same eigenvalues as (6.3) because it is obtained from it by
row and column operations simulatneously on both A and B.
However, rows K,..., N of A" - AB" are upper triangular,
so the generalized eigenvalue problem for A" and B" has a
solution only when the generalized eigenvalue problem

Det |Ap - ABR| =0
has a solution, where A% and BE are the K-1 x K-1 dimensional
matrices obtained from A" and B" by discarding rows and columns
K, K+1,..., N.
(iii) Go to step (i). Eventually B' must be noﬁ-singular or
there are no generalized eigenvalues or all A are generalized

eigenvalues.
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Some results of using the above algorithm on a CDC 7600
.computer are given in Table 2.+
" Table -2,

Timings of the Global Eigenvalue Program

26 x 26 43 x 43
matrix matrix
OR method 0.15 s 0.55 s

(Fortran,
all eigenvalues)

Generalized
eigenvalue problem 0.18s 0.66 s
(invertible A or B)
Generalized
eigenvalue problem
(singular A and.B)
Two recursions 0.27s l.1s

The advantage of this technique is that it is
very general and is globally convergent. The disadvantage
is that it is not too fast (though it is probably faster
when combined with Chebyshev polynomials than most commonly
used methods).

When finite-difference methods are used, it may be
better to obtain a globally convergent result by use of

the LR algorithm and band matrix factorizations. We have

not yet tried this technigue and cannot yet comment on it.

+A much simpler technique to solve the generalized

eigenvalue problem has been suggested by J. Shearer
(private communication, 1977). If §{f is not one of

the eigenvalues of (6.2) then A ~ uB is invertible.

If the eigenvalues of (A-uB)~1B are denoted by c, then
the eigenvalues of (6.2) are A = u + 1/c.



Spurious Unstable Modes

One of the drawbacks of the global method as formulated above
is that the generalized eigenvalue problem (6.3) may indicate
the existence of growing (unstable) modes that are not
physically relevant. These spurious unstable modes, which
may appear for either the Chebyshev-spectral or finite-
difference methods, do not correspond to solutions of the
differential equation--as the spatial resolution used to
discretize the eigenfunction changes (i.e. the number of
grid points or Chebyshev polynomials), true modes of the
differential equation converge while spurious modes do not.

A clumsy way to distinguish spurious modes from true
modes is to change the spatial resolution and retain only
those modes that do not change appreciably. This is neither
efficient nor elegant.

A better way is to eliminate the spurious urstable
modes entirely. Spurious stable modes are still possible,
but since these stable modes are normally very stable, they
are not of much interest and can be easily disregarded without
testing their true nature. We shall now describe a technique
for eliminating the spurious unstable modes.

The idea is simply that the spurious unstable modes
would, ‘if .we used the same numerical method used for
the stability problem on an initial-value problem instead,
cause the unconditional instability of the numerical solution
of the initial-value problem. On.the.other hand, if we were
careful enough to use a numerical method for the stability

problem that was also numerically stable for the initial-value
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problem, then no spurious unstable modes would exist.
There are several ways to eliminate the spurious

unstable modes in the Chebyshev spectral methods outlined

in Sec. 5. One way is to use a Galerkin procedure instead

of the tau procedure discussed in Sec. 5}1

Another way

is to factor the fourth-order Orr-Sommerfeld egquation into
two second~order equations and then apply the tau method
to each of the second-order equations. Thus, the usual

procedure is to apply four boundary conditions to the

fourth-order Orr-~Sommerfeld equation

2 - 2 2 _ 4
O + BV, - B VT, = vy

This procedure usually leads to spurious unstable modes.

However, rewriting the Orr-Sommerfeld equation as the

two second~order equations

and then applying the boundary conditions ¢ = 0 to

the first equation (because this first equation is equivalent
to the incompressibility constraint and the associated boundary
condition should be zero normal flow) and ' = 0 to the second
equation (because the second equation embodies the viscous,
frictional effects and the associated boundary condition is

no-slip) gives no spurious unstable modes.



Local Methods for Temporal Eigenvalue Calculations

There are many local methods (in which a reasonable
guess is available) for eigenvalue problems. 2Among the
well-known methods that have been implemented for difference
methods are the methods of orthogonalization17 and parallel

18 together with either a bisection search or a

shooting
Newton's method search. There are several effective

computer codes that'implement these procedures, including

the SUPORT code (written by Scott and Watts of Sandia Laboratory),
the TAPS code (written by Gentry and Wazzan of McDonnell Douglas
Corp.) and codes by Mack of Jet Propulsion Laboratory and

Keller and Cebeci. At the end of this section, we will

cite some experience we have had with the SUPORT code and

quote some private communications concerning the efficiency

of the other codes.

Another way to perform a local analysis is to use
a simple iterative method to find the eigenvalues of the
matrix equation (6.3) that approximates the Orr-Sommerfeld
equation. An effective and efficient procedure for doing
this is to use the inverse iteration procedurelG:
(A - AkI)xk+l = ox, (6.4)
(a - AkI)Tyk+1 = 'y, (6.5)

_.T
Ags1 = Yk+1Axk+1/y§+1xk+l (6.6)

The procedure (6.4~6) is very effective once a good guess
for an eigenvalue is available because the convergence is
cubic:

= _ a3

Here ¢ and c¢' are normalization constants so x, and y, are normalized.
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The method (6.4-6) is designed to work efficdiently even
with non-symmetric matrices A. Eg. (6.4) shoudl be solved
using a fully pivoted LU method, in which case the same LU
factorization applies to the solution of (6.5).

In practice, it is not necessary to update the eigenvalue
approximation lk after each iteration. In fact, we have
found it to be most efficient to iterate (6.4-5) approximately
5-10 times while keeping Ak fixed (and, therefore, using

the same LU factorization of A - kkI).

The generalization of (6.4-6) to the generalized

eigenvalue problem (6.3) is:

(A - ABYRy = CBxX; (6.7)
7 _ T .
(A - \B) ¥y, = C'Bly, (6.8)
_ T T
Medl T Yy PNYBER (6.9)

The algorithm (6.7-9) still has a rapid rate of convergence
because it is equivalent to Newton's method for the solution
of the generalized eigenvalue problem (6.3) (see below).
Some data on the speed of the algorithm (6.7-9) for Chebyshev
methods applied to the stability of interior flows is given

in Table 3.

Table 3. Timings of the Local Eigenvalue Program

26 x 26 43 x 43
matrix matrix
Fortran program 0.03 s 0.13 s

1l eigenvalue
good guess available
final accuracy 10~

Assembly LU programn 0.02 s 0.08 s
otherwise same



Spatial Stability Calculations

The Orr-Sommerfeld equation for spatial stability
calculations involves a nonlinear, quartic polynomial
eigenvalue problem of the form

+ 2%a. +ala

= 4 3
AMx = (A A, ¥ A A3 2

1t Ao)x =0 (6.10)

Global methods for the solution of nonlirear eigenvalue
problems like (6.10) may be inefficient. A simple global

method is to set

x1=x

X, = Axl (6.11)

X3 = Ax, (6.12)

X4 = AX; (6.13)
A3x4 + A2x3 + Alx2 + onl = 7AA4x4 (6.14)

and then formulate (6.11-14) as a generalized eigenvalue

problem of the form (6.3) involving 4N x 4N matrices:

o I 0 0 Xy I H 0 0 Xq
0 0 I 0 X, N 0 I 0 ] Xy
0 0 I X4 o 0] I ] X3
Ao Al A2 A3 x4 0 0 0 —A4 Xy

The obvious disadvantage of this method is that it requires

16 times as much memory as (6.3) requires and 64 times as much
computer times. It is not practical except for problems of
extreme urgency, in which case it has the virtue of easy

programming (so long as N is not too big).
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A local method may be based on Newton's method for

the solution of the nonlinear coupled system of equétions

A(d) x =0 (6.15)
amTy = o (6.16)
yTx =1 ' (6.17)

so that y is the adjoint eigenvector to x. Egs. (6.15-17)
represent 2N+l equations for the 2N+1 unknowns RyroeorXgrYyreeos
yN,A . Newton's method involves linearizing (6.15)-(6.17)

about an approximate solution x(o),y(o), A(O):

ax = a0 )@ 4 209y x-x(®) + a1 (3(9)x 0 1, (O

+ ... =0 (6.15")
yTx - Y(O)Tx(O) + y(O)T(x_x(O)) + (y-y(o))Tx(0)+ (6.177)
+eoo =

Thus, if we insist that the new approximation x(l), y(l), x(l)

be such that the linear approximations (6.15'-17') are satisfied

then we obtain the following iteration scheme:

A )x . = CcA'(A)x, (6.18)
T T
A = A -yl o A(x, . /yT . AT(A)x -
k+1 k k+1 k' Tx+1" Yx+1 k' "k (6.20)

The advantages of this method are that it is essentially
as fast as the local method for the linear generalized eigenvalue
problem (6.7~9) and that it has low memory requirements. The
disadvantage is that the initial guess sometimes has to be quite
good for it to work.

Our recommendation for the most efficient technique

for spatial stability analysis is as follows:



(1) If no good approximation to- the eigenvalue is available,
perform a temporal stability analysis using a globally
convergent algoiithm. Then calculate the group velocity
using the methods to be discussed in Sec. 7 and transform
this temporal mode into an approximate spatial mode using

Gaster's group velocity transformation;3.

(ii) If a good guess is available (say by method (i)) then
use the local algorithm (6.18-20) to improve the
eigenvalue approximation.'

Comparison of Numerical Methods for Plane Poiseuiile Flow

In this subsection, we present some numerical results
concerning the stability of plane Poiseuille flow. In Table
4, we list the Chebyshev approximation to the most unstable
mode of plane Poiseuille flow at R = 10,000 with wavenumber
@ =1 as a function of the number of retained Chebyshev
polynomials (here we have assumed that the mode keing sought
is symmetric in y so we actually retain Chebyshev polynomials
up to degree 2M). It is apparent that accurate results
are achieved rapidly as the number of retained polynomials
increases. Similar results have been obtained at Reynolds

numbers of 106 and higher; at R = lO6

;, 50 Chebyshev polynomials
yield.an eigenvalue accurate to about 1 part in 104'(this
calculation using a global code requires less than 1.5 s of
CDC 7600 time).

In Table 5, we list some results and computer times
obtained using the SUPORT code mentioned above together
with a Newton's method iteration procedure for the eigenvalue.

Although we do not have the data, similar results and computer

timings have been reported by other groups using finite-
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Table 4 . Chebyshev approximation to the most unstable

mode of plane Poiseuille flow for @ = 1, R = 10000.

M+1 A
17 «23713751 + 2.00563644
20 «23752676 + ©.00373427
23 .23752670 + 1.00373982
26 «23752648 + 7.00373967
29 «23752649 + £.00373967
38 .23752649% + ©,00372987

50 «23752549 + ©.003739487




difference codes. Mack reports that it requires about 3 s
of UNIVAC 1108 time to converge to an accurate eigenvalue
given a reasonably good guess; Keller and Cebeci achieve
accurate results at Reynolds numbers of order lO4 in about
0.9 s of CDC 6600 time., Since 1 s of CDC 7600 time egquals
about 5 s of CDC 6600 time and about 12 s of 1108 time, we
see that the local finite-difference methods are comparable
in speed to the global Chebyshev methods. However, it does
seem that the local Chebyéhev methods discussed above are
faster by about an order of magnitude. But it should be
pointed out that these comparisons are perhaps being done
unfairly: M. Scott who wrote SUPORT informs us that SUPORT
can be speeded up by about a factor 2 by simply changing
the time-stepping algorithm; the Chebyshev codes can also
be speeded up considerably in the areas of matrix set-up

and full matrix pivoting.

Table 5. Some Results of the SUPORT Code

Reynolds Error #of grid points #of iterations CDC7600
number time/eigen-
value
104 1074 140 4 1.4
.4 s
10° 1074 1400 6 23 s
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OPTIMIZATION METHODS

7. NUMERICAL METHODS: EIGENVECTORS, GROUP VELOCITY, AND

Eigenvectors

There are several efficient numerical methods to
compute eigenvectors. In any of the standard finite-difference
methods, the eigenvector ¢ (y) is computed as part of the
calculation of the eigenvalue X ..Also, in the local matrix
iterative methods advocated in Sec.6, the éigenvector is
found as part of the iteration determining the eigenvalue A .

A separate calculation of the eigenvector is required
only for the case in which global matrix eigenvalue methods
are used to determine ) . In this case, one or two applications
of the inverse iteration

x(k+l) (k)

(A - AB) = eBx (7.1)

(0)

where x is arbitrary usually determine the eigenvector
to within roundoff error. The value of A used in (7.1)

may be the calculated eigenvalue to machine precision--
this normally does not cause any problems with singular
matrices. For a 43 x 43 matrix, the calculation of the
eigenvector by this inverse iteration scheme requires about

75 ms using an assembly language fully pivoted LU algorithm

on a CDC 7600.

The computation of the eigenvector of the adjoint
Orr-Sommerfeld equation may be done similarly (noting that
the spectrum of the adjoint is the same as the spectrum of

the Orr-Sommerfeld equation up to complex conjugation).



In practice, calculation of the adjoint egenfunction using
the Chebyshev-~spectral method requires about 150 ms using the
assembly LU program because the matrix of the adjoint operator

must be set up.

Group Velocity

The group velocity is of importance in relating the
results of spatial and temporal stability theory and in
several optimization problems (see below). In a layered
flow with three-dimensional disturbances having wavevector

(a, B) and frequency w(a , B8 ), the group velocity $g is

3 - (Bu B
vg = (aa' aB) £7.2)

One way to compute the group velocity is simplv to compute
the frequency w for several nearby values of a. , 8 and then
use finite-difference approximations to $g' This procedure
is neither efficient nor elegant.

A much better way to compute the group velocity will
now be described. It is usually faster than the crude finite-
difference method described above (except possibly for the
fastest local iterative eigenvalue solvers). We start by
writing the Orr-Sommerfeld equation for three dimensional

disturbances in the form

Lo = 10 -a®-8%52% - ir[(af + 8w - ) (D° - & - 8%
- (cu" + gw") 1ly(y) = O (7.3)
Taking the derivative of (7.3) with respect to a, we obtain
5&(%%) = {40(D?® - Q2 - 82) + iR(u - %go(oz - o2 - 32)
- " - 2a(an + BW - w)hy (y) (7.4)
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Therefore, if ¥ - is the adjoint eigenfunctidn to ¢y , we

obtain

i = 2 2 2, =, = =
dw _ _ 4ic | Sx{u(D” - o - B7) - u" - 2a(au + Bw - w)}y dy
30 R. ' 2 2 e T

Ix(0? - «2 - g%y ay

(7.5)

There is a similar expression for 3Jdw/98 .
The computation of the group velocity using (7.5)
requires little additional computational work to the

calculation of the adjoint eigenfunction.

Optimization Methods

There are several kinds of information concerning
the stability of a given flow that may be of interest. -Some
examples are:

(i) A plot of o vs B at fixed R and frequency Re u.

(ii) Determination of that @& and B that maximize
Imw at given R and Re w .

(iii) For given Im w a"plot of o vs 8 at fixed R
or a2+ 82 vs R at fixed disturbance propagation
angle or a neutral stability curve (a vs R for

a two-dimensional disturbance with Im w = 0).

(iv) Determination of the critical Reynolds number,
i.e. the smallest value of R at which there is a mode
with Imw =.0.

(v) Computation of nonlinear and non-parallel flow terms.

To illustrate how these problems can be solved efficiently

on a corputer, let us consider the solution of the problem (i).



An efficient procedure for obtaining the curve (i)
of those a and B having Re w = f at a fixed Reynolds
number R is to use Newton's method as follows:
(a) Starting with an approximation %o BO to a point
on the curve Re w = f, we compute the group velocity

at a,, BO and obtain the new approximation
f - Reuw
0 Re¥ (7.6)
: - 1 2 g
IRe Vgl
by shooting along the normal to(%he curve Re.w = £,

(al,el) = (ao.Bo)

(b) Repeat step (a) until the approximation lies
within a given error tolerance of the desired curve

Re w = £.

(c) Obtain an approximation to a new point on the
curve Re w = f by shooting along the tangent to

the curve from the previously found point; the tangent
to the curve is in the direction Re(%%, -g%- .

Repeat steps (a) and (b).

The solution of problem (ii) is obtained similarly.
Here.it is possible to choose a new point on the curve
Re w = f with a more favorable Im w by use of either Newton's
method (which requires second derivatives of w ) or, say,
cubic interpolation. One word of caution on this procedure
for the solution of problem (ii)is that very small errors in
the value of Re w may confuse the search for the maximum of
Imw . The reason is simply that in typical stability problems,
Re w >> Im w . The moral is: the determination of optimal
properties of the stability characteristics of flows requires

extremely high accuracy calculations.
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8. SUMMARY OF RESULTS

A summary of our conclusions for a moderately fast
stability code running on a CDC7600 computer is given
in Table 6 for incompressible flow and Table 7 for

compressible flow.

Table 6. Typical computer timings for incompressible
Blasius flow at Reynolds number of order 103 with
numerical errors of order 10—6 (Chebyshev polynomial

methods with N = 34 polynomials)

Operation Computer Time

Temporal eigenvalue

Matrix set-up 0.09

Global search 0.60

Local search 0.04
Eigenvector

Global search 0.03 s

Local search -
Adjoint eigenvector 0.09 s
Group velocity 0.10 s
Nonlinear stability terms 0.12 s
Nonparallel flow terms 0.04 s

Spatial eigenvalue

Global search : 40 s
Local search (first guess

by temporal code) 0.4 s
Local search (quess known) 0.04 s



Table 7. Typical computer timings for compressible flow
stability calculations at Reynolds numbers of order
103
methods with N = 34 ?olynomials)

~with errors of order 10_6(Chebyshev polynomial

Operation Timing for Expected Timing
Two-Dimensional for Three-
Modes Dimensional Modes

Temporal eigenvalue

Global search 30 s 60 s
Local search
Direct 2 s 8 s
Indirect 0.25 s 0.3 s
Eigenvector and
adjoint 0.3 s 0.35 s
Nonlinear and
non-parallel
terms by transform
method 0.4 s 0.5 s

Final Remarks

(A) Roundoff Error: The effects of roundoff error

become more acute as the matrix size increases. This
effect is shown in Table 8. We conclude that high machine
accuracy is necessary to even attempt calculations at large
Reynolds numbers.

(B) Accuracy of Profiles: We have computed errors

in the imaginary part of eigenvalues of as large as 10%

with errors in the imposed profiles as small as .01%.
However, these dangerous perturbations are of a very special
kind wherein they are concentrated near the critical layer

of the mode. (Obviously, if we perturb u(y) by an arbitrarily

small amount, we may perturb u"(y)by an arbitrarily large
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Table 8 . Effect of roundoff error on the most unstable

l, R = 10000.

mode of plane Poiseuille flow for o

M+ 1 A (roundoff = 1078) A{roundoff = 10712)
20 .23752685 + £.00373451 .23752676 + £.00373427
23 .23754139 + £.00383489 .23752670 + £.003739€2
26 .23749300 + £.00368897 .23752646 + £.00373955
38 «23714159 2.00352920 «23752648 2.00373266
a4 .23348160 + £.00534311 .23752648 + 1.00373965
50 .23813295 - ©.00296263 .23752655 + 1.00373575




amount at the same time. However, the dangerous perturbations
cited above are perturbations in u", but very noisy perturbations
in u" near the critical layer.)

In order to avoid these difficulties, it is necessary
that the mean velocity profiles used in the stability
calculations be very smooth and that the second derivatives

of these profiles also be very smooth.

(C) Accuracy of Figenvalues: Because the real parts

of eigenvalues are typically much larger than the imaginary
parts of the eigenvalues, it is necessary to maintain very
high accuracy in stability calculations in order to get

any meaningful result concerning instability.

(D) Nonlinear and Non-Parallel Flow Terms: The

inclusion of these terms requires little additional work

to that already expended in computing the eigenvalues of

the flow. Therefore, it seems to make good sense to compute
these terms.

(E) Typical Computer Times: It is realistic to

expect a well-conceived stability code for incompressible
flows to require less than 1/2 s per station of CDC 7600
time; .for three-dimensional modes of compressible flows,
about 5 s per station is realistic. These estimates are
for total computer time per station across a typical LFC
wing provided either that an approximate eigenvalue is
available at the leading edge or a previous station has

been calculated nearby so that local methods may be used.
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