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NUMERICAI, METHODS FOR INVISCID/VISCOUS FLUID FLOWS

T.M, El-Mistikawy and M.J. Werle

ABSTRACT

A study of numerical schemes for solving viscous fluid
flow problems with sizable regions of predominantly inviscid
flow is presented. Difficulties associated with the familiar
centfal difference approcach for such problems are analyzed
and alternative finite difference approaches employing wind-
ward concepts are presented. In addition, difference relations
based on exponential operators are developed. All such
schemes are demonstrated and evalﬁated through application to
the case of Falkner Skan flow with blowing - a problem in
which a sizable region of predominantly inviscid flow
developes near the injection surface that traditionally causes
numerical difficulty. From these studieg it is concluded
that the exponentiai—boxﬂscheme (EBS) developed here provides

a definite advantage over the other schemes studiad.
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I. INTRODUCTION

The subject of this study are those numerical methods used
for solving viscous fluid flow problems with particular interest
centered on problems where there exists distinct inviscid and
viscous regions within the calculation domain. For example,
as depicted in Figure l,'within the supersonic flow field owver
& reentry body where surface ablation occurs, an inviscid region
is: formed near the body surface under a "blown off" boundary
layer, which itself is driven by another inviscid region close
to the'bow shock wave. To date, finite difference schemes for
numerical sclution of the governing partial differential egqua-
tions have encountered difficulty with this change in flow
character apparently due to the diffusion character of their
difference operators. This difficulty becomes espécially
troublesome when implicit finite difference schemes are employed.
Although such schemes suffer no integration step size limitation

for'stability gsake, they .are found (see Roache, Ref. 1} to be

'\!l’-1

rESEfiéted‘byf“ghpuracy" requirements to virtually the same
step size ranges as explicit finite difference schemes. Thus
a need exists to remove this limitation.

Numerical schemes based on central difference ‘concepts
are found to produce large truncation errors of an oscillatory
type that do not belong to the physical problem, but rather to
the difference equations themselves (see Hirsh and Rudy, Ref. 2
and Roache, Ref. 1) . For want of a better term, Roache (Ref. 1)

called these oscillations "wiggles" and he gave an explanation



for their occurrence based on asymptotic ccncepts and he
described a mechanism in which these oscillations occur in a
simple convection-diffusion problem. The basic difficulty
appears to be centered in the difference representation of the
convective process and no coﬁpletely satisfactory remedégis
proposed. One solution to this difficulty is based on. the use
of an active stepsize control procedure as discussed by Roache
and used by Liu and Chiu (Ref. 3). Alternatively, artificial
viscosity like terms can be injected in the difference
egquation to eliminate these oscillations [e.g. Briley and
MacDonald, Ref. 4] or one can employ upwind differencing for
representing the convection terms in the governing eguations
[for examples see thé methods used by Garrett, Smith and
Perkins (Ref. 5) or by Raithby (Ref. 6)]1. 1In addition, it
has recéntly been found that numerical schemes based on series
expansions of the coefficients appearing i; the governing
differential equations result in exponential operators that .
are inherently devoid of this oscillatory difficulty. Such
schemes were recently proposad by Spalding*(Ref. 7} and were
useé by Roscoe (Refs. 10 and 11) and Chien (Ref. 12) for solving
the two and three dimensional Navier~Stokes equations for a

simple geometry.

* A more general approach leading to the use of exponentiil
operators was presented by Pruess (Ref. 8) and later by
Rose (Ref. 9).



In the present work, a detailed study of the problem of
numerical oscillations and the.different methods'used to over-
come this difficulty is carried out. Finite difference schemes
based on the addition of artificial viscosity and the use of
second order accurate windward differences are presented. In
addition, schemes based on the method of expéndgd coefficients
{(exponential schemes) are studied and a new box version of
same is presented. Application of five difference methods to
the solution of the Falkner Skan equations with surface
injection show a clear indication of-the superiority of one
such method (here termed the exponential box scheme) for such

problems.



II. CGOVERNING EQUATIONS

1. Ceneral Concepts

In the numerical solution of the Viscous/inviscid £luid flow
problems by implicit techniques, the governiné equations} which
in general are partial differential eqguations, are first reduced
to two point boundary value problems in a direction perpendicular
to the principal flow direction. This_is, for example, how
the non self similar two dimensional boundary layer equations
are solved. Also, an ADI solution of Navier-Stokes equations
adopts the same treatment. Attention then need initiallv only
be focused on the development of numerical techniques for

ordinary differential eguations with split boundary conditions.

2. The Falkner-Skan Equations

A model for the ordinary differential eguations resulting
from this treatment of the viscid/inviscid f£luid flow problems
are the mass injection version of Falkner-Skan equations for

the self similar boundary layer given here as

4 =
Vn F 0 {la)

2 .
an VFn BE = B (1b)

where F is the longitudinal velocity, V is the normal velocity
and B is the pressure gradient coefficient. The boundary

conditions for present interest are given as

F(O) = 0 and V{0) = Vw {(2a)

with F(n)y ~» 1 as n > o : (2b)



The first term in the momentum eguation (1b) represents the
diffusion effect while the second term represents normal con-
vection effects. The other two terms represent the longitudinal
convection and pressure gradient effects. However in this one
dimensional formulation of the problém they appear as source
terms.

In regions where the flow is basically inviscid (such as near
a wall with large blowing) the diffusion effects are expected to
disappear and a model cf the resulting ordinary differential
equation representing the momentum balance will be

- VF_ - gF? = - 8 (3)

A numerical scheme that is used for solving £fluid flow
problems where there are transitions from inviscid to viscous
regions should be able to accommodate this change in the

character-of the governing eguations.

3. A Model Diffusion-Convection Problem

A general differential equation that involves both the
diffusion and convection effects can be put in the form

— = 4
an (a+b)F.n + abF c (4a)

In light of the preceding section, eguation (4a) can be locked

at as a momentum conservation equation where the first term repre-~
sents diffusion effects while the second, normal convection
effects. For initial interest, only normal convection effects

will be considered by taking b = ¢ = 0 and a = C, a constant. Thus

F - CF =0 {4b)



4. Numerical Concepts

There are two methods that can. be -used te. represent the dif-
ferential equations by difference equations. In the first, the finite
differencé method,(Ref-l?); difference operators are obtained
by a Taylor's series expansion approach and these are used to
replace the differential operators that appear in the governing
equations. This method is straightforward and provides a formal
ordexr of accuracy for each such scheme in the limit of small
step size. In the second, the expanded coefficient method,

?he differential equations are formally integrated over a small
interval in which its coefficients are approximated by Taylor's
series representations resulting in a new system of difference

equations generally involving exponential operators.

III. FINITE DIFFERENCE OPERATORS FOR CONVECTION/DIFFUSION FLOWS

1. The Central Difference Scheme

Consider a portion of the flow field depicted in Figure 2
with Jj-1, j, and j+1 points of a grid of uniform spacing An,
and let "m" be the midpoint between the j~1 and jth point and
"n" ‘the midpoint between the j.and $+I'th point.

To obtain the central difference representation of eguation
(4b) one can use the Taylor's series expansion to evaluate the

derivatives Fn and an at the jth point in the central difference

form
F. F.
J4+1 -1 _ 1 2 4
Fnj T z An Fn”“j + O(An ) (5)
PAGE 18
GINAL



iy - 2Fj_+F. 1 2

it i-1 Ane T + o(an) 6
) 75 An . n (6)
nj Anz nnnnj

1]
ta)
o7
L)
o }
I

so that upon evaluating equation (4b) at the jth point and
neglecting terms O(Anz), one obtains the central difference

equation

(1-Lanc) F

1 _
= 2F, + (L+ 540 C) Fy_; =0

j+1 2 J

The exact solution of a differerce equation of the form

mle+l + szj + {33Fj_l = 0y (8)
can be written as
- 3 1.
Fy = Ry A7 + Ry A5 + Py ()
where hl and Az are scolutions of the- characteristic esquetion
ahl Fagh b ag = 0 (10)
Ry and R, are arbitrary constants determined by the boundary
conditions and Pj is a particular solution of equation (8}.
For equation (7)
1
ap = 1 - 5 An C . (11la)
¢, = - 2 - {11b)
1 .
a3 = 1 + 5 &n C (1lc)
oy = 0 (114)

ORIGINAL PAGE IS
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so that

-Al = 1 (12a)
1 + %-An‘c

12 = T {12b)
l-jAnC

and Pj = 0 (12c)

Thus the exact solution of the central di:fference equation (7)

can be written as

where A, is given by equation (12b).
The exact values of Al and Az can be obtained by comparing

equation (9) with the exact solution of the differential equation

(4b) evaluated at the grid points, namely,

. jAnC
Fj = Rl + R2 e (14)

so that the exact values of the characteristic roots are given as

Ay = 1 (lsa)

X, = eAnC _ (15b)

Note that in eguation (12b) Ay will be negative when

An |c] > 2 (16}

whereas its exact counterpart, Xz is always positive. In such
a case, Ag will change its sign according to whether j is even or
odd and hence the solution (13) will show an oscillatory behavior

compared to the monotonic behavior of the exact solution (14).



This oscillatory behavior has been observed in the central-
difference solution of the Falkner-Skan equations near the outer
edge of the boundary layer and in many other problems when a
condition similar to condition (16) and obtained in.the same
way is locally satisfied.

Thus it is seen that these oscillations belong to the
difference eguations and are a part of their exact solution.
This eliminates the round off errors due to the lack of
diagonal dominance from béing a cause of these oscillations.
Roache (Ref. %} attributes these OSéillations (wiggles} to a singular
behavior of the difference equation (7) when the cell Reynolds ‘
number An|C| becomes large (an|C| >2) compared to the
singular behavior of the differential equation (4b) in the limit
when the effective Reynolds number |[C| becomes infinitely large.

To give a physical interpretation to this "unstable®
behavior of the difference operator, it is convenient to employ
a control volume (or conservation) representation of these
equations. The central difference equations (7) can be obtained
through a control wvolume approach by first integrating eguation
(4b) over the control volume [m,n] to get

(an - an) - C(Fn - Fm) = 0 (17).

and then using the central difference representations

F. - F.
- -1 2
F, d 322 5 o (18a)
i1}
. - P,
o= 3t 73 4 o(an?) (18b)
nn An



P = —3_ 371 4 5(an?) (18¢)

m 2
F. + P,
Fo= _liz——lJr 0(an?) (18d)

Note that in this representation of the convection terms there
is an explicit downstream contribution to the momentum, carried
by the flow as it moves with the velocity C. This downstresam
contribution is a characteristic of a central difference repre-
sentation of the convection effects that is expected to cause
large errors and instabilities of the scheme.

In fact, the oscillatory behavior described in the previous
section is how these instabilities manifest themselves. Wote
that according to condition (16), the oscillatory behavioxr
is encountered when the step size An is large in which case the
downstream contribution to the convection effects comes from far
points, or when the normal velocity C is large in which case
the downstream contribution itself becomes large.

Condition (16) for the oscillatory behavior ‘suggests the

control of the step size so that

an lc] < 2 (19)

for no oscillations.

For the Falkner Skan equations where the normal velocity V
varies from point to point a condition equivalent to condition
(19) should be locally satisfied. Thus, in this case the control

of the step size can take one of the following forms:

10



1. . using, with a uniform grid, a step size that uniformly
satisfies the condition for no oscillations.  Thus even in regions
where larger step sizes can be used, the step size shoﬁld be less
than or equal to that corresponding to the severest case. This
means a larger number of mesh points and consequently' greater
computational time and storage reguirements. i

2. using a variable step size thatAlocally satisfies the
condition for no oscillations as used by Liud and Chim (Ref. 3) for
massive blowing problems. Actually use of Xeller's box scheme
{s2e Bléttner, Ref. 14), which is a version of the éenﬁral
difference approach is directly adaptive to this method. How-
ever such an approach is unsuitable to nonlinear equations since
in an iterative procedure the solution changes from one iteration
to another. ‘

Two other approaches can be used. The first is'the_use of
non—-centered differencing for the convection terms which will

be discussed in a later section. The second is the addition of

explicit artificial viscosity terms to the governing equations.

2, Artificial Viscosity - Corrected Central Difference Scheme

In the second method terms of the form ann are added to

the differential equation, e.g. eguation (4b) becomes
+v) F__ - CF_ = 0 . 20
(1+v) an n (20)

with the central difference representation given by

F - 2F. + F
J

An2

Fipr ~ Fy
24n

(1+y) —FL =k ¢ =0 (21)

18]
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whose characteristic roots are

Al = 1 - (22a)
l+v+!2'-AnC

Ay % i1 '
1L+ v ~ 5 An C {22b)

i

5o, the condition for no oscillations will be
tn fcl < 2(14v) (23)

The artificial viscosity v is usually constructed to be of higher
order so that the accuracy of the method remains second order.

A more consistant method to introduce this artificial vis~
cosity, can be based on a second order correction to the central
difference representation of the derivatives. In equations (5)
and (6) one can relate F and F to through

nnn. nnnangy nn
differentiation of equation (4b) to get upon substitution in

equation (4b) evaluated at the jth point

F.., = 2F, + F, F, , ~ F.
(1 + Lo an2 o2y 31 j i=1 _ o4+l -l

=0 (24)
12 a2 280

Herice, comparing with equation (21) the correction introduced

is equivalent to an artificlal viscosity

i

V=13

An® C

which is second order in An and hence does not harm the order
of accuracy of the scheme.

The difference equation (24) can be put in the form

] 1 2 .2 1 2 2
- = Anm = . - =
1 o1 2 2 _
+ [1 +F-2"' 1-171 C + -"—-12 An C ]Fj_l = 0 {(25)

BRI

12



which has the characteristic roots

ll = 1 (26a)

(26b)

a2 =

Thus As is always positive and the sclution is non oscillatory.

From equations (24) and (26b), it is seen that the smallest

amount of artificial wviscosity proportional to An2C2 that can be

2.2

added to prevent the oscillations is An—C which can be

i6
looked at as that part of the truncation error that is responsible
for creating the oscillations. ©This suggests that the L.H.S.

of egquation (24) can be used to represent the differential
exXpression anj - CFnj whenever it appears in a differential
equation instead of introducing a complete correction to the

difference eguation which requirss differentiation.

3. Upwind Schemes

The analysis_of the previous sections has shown how a
central difference representation of the convection terms can
produce the préblem of the oscillatory behavior of the numerical.
solution, and has related that to the explicit downstream
contribution to the convection effects.

The idea behind upwinding is to correctly represent the
convection terms so that the information carried by the flow as

it moves is the upstream information only.

OF POOR QUALITY -



A first order accurate upwind representation of equation
(4b) can be cobtained if in equation (17) the diffusion terms are
represented by equations (l8a, b} and the convection terms are

represented by

F = F. + O(An) (27a)

m -1

and F = F. + O(An) (27b)
n J

when C > 0, i.e. the flow is upward, and by

F = F, + O{an) (28a)
m J .

and Fn = Fj+l

+ 0(an) (28b)
when C < 0, i.e. the flow is downward. The resulting difference

equation can be put in the form

[1- % An(c-lcl)]Fj+l —[2+An]Cl]Fj +[1+ % An(C+ |cIL1Ej_l =0

(29)
which can be also obtained through the Taylor's series expansion
approach if equation (4b) is evaluated at the jth point and a
central difference representation of an' and the following

upwind difference representationsof Fn are used

]
F. - F.
F = 437 4 o(an) if ¢ >0 (30a)
. An
3
F. F
g L J 4 oan) i ¢ <0 (30b) -
nj An

14



The characteristic roots of eguation (29) are

o= 1 (31a)
14+ L
3 —2—'An(C+|C|)
and Ay = 1 (31b)
1-3 an{c-lcl)

In both cases C > 0 and C < 0, X, is positive and the solution
is nonoscillatory which supports: the upwinding idea.

Applied to the Falkner Skan momentum eguation, where the
normal wvelocity V changes from point to point and may even change
its direction, the first order accurate upwind scheme described
above will have to follow the direction of V and to switch
when its direction is changed so that the information carried by
the flow is always the upstream information.

Another approach to obtain a first order accurate upwind
representation of equation (4b) is to evaluate this. eguation at
point "m" when C > 0 and to use the following second order

accurate representation of Fn and first order accurate repre-

m
santation of F
nn
m
P, - T,
F = ‘A—Aa—l‘l + 0(An?) (32a)
‘m
F. . - 2F, + F,
Fooo= i+l ] 3= . o(an) (32b)
m An

When C < 0 equation (4b) is evaluated at point "n" and the

following representation of ¥ and F are used
N, nn,
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ST S S g
F o, = “li%ﬁfrrl + 0tan?) ‘ . = (33a)

F = 23 — 7=+ ofan) " {33p)

‘In the case of equatlon (4b)thas approach Wlll lead to the same
'dlfference equatlon j29) as the prev10us aporoach.: However ~this
~w1ll not be true lf C is varlable or in the case of a nOnllnear
equatlon 11ke the Falkner Skan momentum.equatlon. In fact
:there are two maln dlfferences between the prev1ous two approachee
The flrst dlfference 1s in. the order of accuracy in which the _‘
fdiffusion ah&‘convectron terms are'represented. ‘For the_flrst‘
approach,‘the diffusion terms are‘second order accurate while
the conrectioh terme-are first order accurate. For the'second
;approach the diffusion ‘terms are flrst order accurate whlle
:the convectlon terms are second order accurate. rphuS'J.n a region‘
-of anlSCld flow where the dlffu510n term dlsappears from the :
momentam-equatlon tbe second approach w1ll lead to a- second
;order accurate scheme wthe'Lhe first approach will lead to a
'f;ret order accurate scheme. The second difference is in the
-control voiume for which'the difference equation is the momenrum
halance equacion; For the frrst approach the control valume is
the interfal between the .two midpoints "m" and "h". For the
second approach 1t . is che interval between j-1 and j if C > 0
and the interval between i and j+1 if C ; 0.

A séecial treatment a£ rhe switch region should take place
to preyent gxcessive errors due to the nonconservative nature

f .
HT ey
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of these two upwind ;chemes. This ?s especially required for the
second approach where the momentum conservation for a control
volume near the switch point is not considered.

Corrections to the first order upwind schemes described
above to be second order accurate can be introduced by considering
the next term in the Taylor's series expansion representétion for
the first order accuraté derivative involved. These corrections
can be introduced either in an explicit sense using values from
the previous iteration or in an implicit gense:ﬂ -

In the discussion that followé, only the case when C > 0
will be considexed. Similar treatment can be applied to the case
when C < 0. Consider first the windward approach that corrects
the first order representation of the windward convection
operators given by equations (30a) and (30b). For this approach

note that the first derivative Fn can be expressed as
3]

-

2
F = F + An F + 0(a 34
o . nE (an®) (34)

3 m m
In equation {(30a), only the first term was considered and was
‘reprasented with second order accuracy. To get a second order

representation of Fn ;, the second term should also be considered.
J
However, since in that term an is multiplied by 4n one can,
m
with first oxrder error, evaluate an at any close point and

still have second order accurate representation of an

One choice is to evaluate an at the (j-1)th point. This leads to

F. - F, F, - 2F. , + F.
F = j—'——j‘:—];'*‘—]:ﬁn J j-1 j=2
[P An 2 2

3 Am

+ O(An2) (35)

’
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where central differences have been used to represent an(j—l)
and the "barred" values refer to the previous iteration or
station values {see Atias, Wolfshtein and Israeli, Ref. 15).

This method is consistant with the upwind idea in that
upstream information is used to evaluate the correction, however,
a special treatment near the end points will be needed.

A second method is to evaluate an at the jth point which
leads to -

) + 0(an%) (36)
i An :

Eq. (36) was obtained by Khosla and Rubin (Ref. 16) by rearranging the
central difference representation of Fn. [equation (5)]. A
scheme based on this method will have the same magnitude and type
of error as the central difference scheme within the conve;ged
solution since they are basically identical in representing the
derivatives F_ and an_. Thus this method will give an oscillatory
solution if the central difference solution is oscillatory.
However this scheme has the advantage over the central difference
scheme that it is always diagonally dominant (see Appendix A).

A third method is to use the governing sguation to represent

an in terms of the other terms appearing in the differential
m

equation. From equation (4b) cne can write

v = CF
LI ﬂm

Substituting into equation (34) one gets

F = (1 + %-An cYF  + 0(an?)
3 "

18



In difference form

1 Fy 7 By 2
P = (@ +374n0) —l—Eﬁ—l—w + 0(An%) (37)

which leads to the difference equation

F - 2F, + F.
J o

J+1
An C Anz

F. = P.
l - _d __d-i _ ’
c TN =0 (38)

N[

1+

This is termed the grid point upwind scheme.

Note that, with this correction, the so-called implicit artificial
viscosity associated with the first order upwind scheme has been
removed by reducing the effective viscosity in the difference
equation. This suggests that the L.H.S. of eguation (38) can be

used to represent the differential expression an. - CFn- when
C > 0 whenever it appears in a differential equatgon. T%is
can be shown to be second order accurate.

Considering the two cases C > 0 and C < 0 a combined

difference eguation for equation (4b) can be put in the Fform:
1 1 2 2 1 2.2
(1 -3 An(c-lc[)+ 5 An“(c-|ch 1F .1 ~[2+an|C] + 5 An"C ]Fj

+ {1 + %‘. an(C+|C|)+ —%— An2(0+|c[)2]Fj“l = 0 (39)

whose characteristic roots are

Ay o= 1 (40a)
1+ 52L- an{c+lc|)+ % Anz(C-:-]CI)Z
12 = 1 1 2 ) (40b)
1 - 5 an(c-jc)+ 5 an”(Cc-|c|)
.Az in equation (40b) is always positive. Moreover if C > 0
19 ORIGINAL PAGE I3
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then Az > 1, While if C < U then Az < 1 which is in accordance

-

with the behavior of lz in equation (15b).

Consider now the second windward approach that evaluated
the governing equation at point "m" {(or "n") using a second
order accurate representation of the convection term and a
first order accurate representation of the diffusion term.

To correct this approach to second order note that the second

derivative an is given, to second crder accuracy by
mn )

1 2
F = F - = An F + 0(an") (41)
, 2 .
Tl'ﬂm TITIJ nnnj

where, again, a first order accurate representation of ann
3

will still lead to a second order accurate representation of

F -
Tll'tm

Taking

F = F + O{An)
3j m

and using the derivative of the differential equation evaluated

at point "m" to evaluate ann one gets, in the case of equation
m
(4b) ,

1 2
F = ————— e v + O(AT] )

With central difference representation of an this becomes
3

L 2

- + 0(an2) (42)
pii] 1 + = AnC An

nn
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and the difference equation {(termed the midpoint upwind scheme)

will be

F. - 2P, + F. F. - F.
1 j+1 3j =1 _ c -1 _ 0 (43)
An

1 + -231 AnC An2

which is the same as equation (38) and hence equations (39) and
(40) will apply. However, this is not true for more general
differential equations than (4b); i.e. the difference equations
will in general, be different.

Note that a family of three point finite difference eqguations
can be obtained by applying the same procedure described above
but for a general point rather than the midpoints (see Appendix B

for details).

4, Summaré and Comparison of Finite Difference Schemes

An assessment of the numerical schemes described above can
be made by comparing the characteristic root AZ for szach scheme
with the exact wvalue iz as given by egquation (15b).

In Figure (3}, A for the central difference (C), corrected
central difference (CC), and the second order upwind (UW) schemes
as given by equations (12b), (26b), and,(éob) respectively and
12 of the exact solution are presented.

It is clear that for small An|C| all schemes have reascnable
agreement with the exact solution. This agreement‘is best in
the case of the corrected central difference scheme which is
fourth order accurate for this special problem.

For An[CI > 2 the central difference scheme has negative

Ay which produces the oscillatory solution and it has a singularity
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at AnC = 2, 12 for the corrected central difference scheme
is always positive however when AnC = +/12 Ay reaches an
extremum after which it asymptotically approaches 1l to £=,
Thus this scheme is expected to produce large errors for
anjc| > vIZ .

The two branches of the upwind scheme (for positive and
negative C) each follows the behavior of the exact Az in its
regioﬁ of application. On the other hand, out of their

region of application [designated by the downwind scheme (DW)]

_they encounter large errors. and would not be reliable.

IVv. THE METHOD OF EXPANDED COEFFICIENTS FOR

CONVECTION/DIFFUSION FLOWS

1., The General Concept

Consider the general second order differential eguation

given by eguation (4a) as
F - (atb) F_ + abF = c (44)
nn 7

where a, b, and ¢ are in general functions of n and F. Instead
of using Taylor's series expansions to obtain finite difference
representations for F, Fn' and an, one can instead expand the
coefficients a, b, and ¢ about a point in the interval under
consideration. The firxst terms in these expansions are the
values of those coefficients at that point. The differential
equation that results if only these first terms are kept will

be an ordinary differential egquation with constant coefficient

22



that can be solved analyticglly. One can use this exact solution
to obtain finite difference eqguations as will be described in

the next sections.

2. The Three-Point Exponential Scheme

If a, b, and c are expanded about point j and the resulting
differential equation is assumed to apply in the interval
[i=1, j+17, an exact solution of the resulting constant coeffi-

cient diffexential equation will be given as
F = Aed +Be’d + —3— (45)

Using this solution to evaluate Fj~l' 1

three equations that involve the two arbitrary constants A

Fj' and FjL one obtains

and B which can be eliminated to give the following difference

equation:
a.An bjAn a.hdn bJAn
Fj+l - (e + e ) F] + e e Fj-l
c a.An b.An a.An b.An
= - {1-(e? +e ) + e e J } (46)
13
©
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A Taylor's series expansion of Fj+l and Fj—l about point j and
the expansions of the exponentiazls involved for small An shows
that this difference equation is a second order accurate
representation of equation {44), (see Appendix C).

For the special case when b =¢ =0 and a=C,
equatiocn (44) reduces to eguation (4b) and the difference equation
(46) reduces to

CAn

CAn _

which has the exact characteristic roots

CaA
and Az e n

il

Roscoe (Ref.l0) used eqguation (47) to derive a "unified difference

representation” in the form

CAn

Ca
& -(l+en)Fj+e F

[F
eCAn

(48)

. .
an ( ~1) J+1 -1

to represent the differential expression an—CFn with second
order accuracy (here termed the RUDR).

If the exponentials in expression (48) are expanded and first
order terms in An are neglected this expression reduces to the
first order upwind expression for positive C. The second order
upwind expression follows if instead second order terms in An
are neglected. To get the corresponding expressions for negative

R
t [

C one first multiplies both the numerator and the denominator

—-CAn

of (48) by e and then expands the exponentials.

24



The central difference expression follows if the exponentials
. . s o -An C /2
resulting after multiplying and dividing by e n / are
expanded to second order.

Instead of using (48) to represent an~C Fn one

can use equation (46) which gives a consistant representation of
the whole differential equation at the expense of the cghpiications
of evaluating the auxiliary roots a and b.

Consider now the limiting case when a - += with b and C/a

fixed. Equation (44) reduces to
-a Fn + abF = ¢ (49)

which corresponds to an inviscid flow of wvelocity a. In this

case, equation (46) becomes

b.An c. b.An :
-Fj +e ) Fj—l = Ef%f e 7 -1 . (50)
13

which also follows if the approach used to derive eguation (46) from
equation (44) is applied to equation (49) in the interval [j-1;3l
with the coefficients a, b, and ¢ evaluated at point j. This :
scheme is first ordexr accurate (see Appendix C). An equation
that involves Fj and Fj+l gsimilar to eguation (50) follows if
the limit as a + -« 1is considered instead. Thus if this
scheme is applied to a problem where there is a transition
from viscous region to an inviscid one its accuracy will change

from second corder to first.
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3. The Exponential Box Scheme -

To overcome this difficulty let the coefficients in egquation
(44) be evaluated at the midpoint "m" and the resulting differ-
ential equation be valid in the interval [j-1, j]. Then the

exact solution can be obtained in the form

a.m bon o]
P = A el +B el + —i (51)
1 1 a b
171
where the. subscript "1" refers to the interval [j-1,3].
With n=0 and n=an at the (j-~l)th and jth points respectively
one gets the following expressions for Fj-l' Fj and Fn-
J .
°1
F. . = A + B + (52)
J-1 1 1 albl
a; An b, An a!
- 1 1 1
F] = Al e + B1 e + albl (53)
alAn blAn
- 4
Fn- a; A e + blBle (54)

Three other eguations for.the interval [j,j+1] can be obtained

in the form

- 2

E’:j = A2 + 32 + a2b2 (55)
a,An b.An c
_ 2 2 2

F”j = aj3, + 1:>21-32 (57)

26



where now the subscript "2" refers to the interval [j, j+1] and
2y b2' and c, are the values of a, b, and ¢ at the midpoint "n".
The requirement that Fn- of equations (54} and (57) should be
the same together with ghe other four equations make it possible
to eliminate the four arbitrary constants Ay Bl, A, and B,

to get the difference equation

-a,An ~a,An b.An —-a.An b,yAn
(a,~b,)e 2 a.e 2 e 2 -b a.-b, e e 1
32702 e P2 1T -
—aZAn b2An j+1 ~a2An bzAn —alAn blAn j
l-e =) l-e e l~e a
blAn —azAn
. (al-bl)e N (az-bz)e ¢,
-a.An byAn T4-1 ~ —a,An b,An  a,b
1-e L oot 1ce 2 e 2 272
-a.An b,An -a, An b An
2 2 1 1
} {aze e -b2 02 . al ble e c1 )
-a~hn baAn a.b —a,An biAm a.b
]-e 2 e 2 272 1-e 1 e 1 1-1
4
blAn _
(a,~by)e ) cq
+ {58)
-a,An b An a b
1 1 1~
l-e )

If the limiting case of eguation (49) 1s considered, egquation

(58) reduces to

blAn C1 blAn
-F + e P.-o= (e -1) for a + += (59a)
3 j-1 0 31h
bzﬁn 02 bZAn
and =F, _1ie P, o= (e ~-1) for a -+ —w (59h)
j+l | azbz

which are second order accurate {(see Appendix C).
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Thus the scheme represented by equation (58) is éecond
order accurate in both the inviscid and viscous regions and it
switches smoothly from one region to the other following the
upwind rules as seen from equations (59a and b).

In addition to this advantage this scheme has, like the
previous one, the advantages that it is diagonally dominanit for
negative ab {(which corresponds to favorable pressure gradient)
and that the error terms are independent of the velocity (a+b)
compared to the other finite difference schemes described
previously. In fact the error is due to approximating the
coefficients a, b, and ¢ by constant values and hence it depends

on how those coefficients behave with n.

28



V. APPLICATION. 'FQO FALKNER SKAN FLOWS WITH INJECTION

1. General Statement

Numerical solutions to Falkner-Skan equations with injection
boundary conditions given in equations (1) and (2) were obtained
using the central difference, corrected central differeice,
midpoint upwind, Roscoe's UDR, tﬁe-three-poiﬁt.exponentia;} and

thé-exponential box- schemes.

The boundary condition (2b) was applied at a sufficiently
large but.finite distance g A grid of uniform mesh An and
N+l grid points (ne = N An) was used to divide the region between
the surface (n = 0) and the boundary layer edge (n = ne) into
N intervals.

Bguations {1) were solved in an uncoupled sense. The
momentum equation (lb) was linearized by evaluating the

coefficients of Fn and F using the previous iteration values

to give

an—VFn—BFFn=—,8 (60)

where the "barred" guantities are the previous iteration values.
BEach numerical scheme was used to reduce eguation (60)

to a difference equation of the general form

+ g, F, + ¢«

“13 F 2373 * %33F5-1 = %4 (1)

15 " i+1

for j = 2, 3, ..., N. The resulting N-1 equations together with

the two boundary conditions

Fl =0 and FN+l =1 {(62)
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form a tridiagonal set of N+l equations that were solved with

the standard Thomas algorithm.to give Fyr 3=1, ..., N+l.

Then the continuity equation (la) with the boundary condition

{2a) was solved for Vj’ j=1, ..., N+l. For the first five of the
schemes considered (i.e. central, corrected central, windward,
Roscoe's  UDR, TP exponential schemes} the continuity equation was
integrated by the trapezoidal rule which results in' the difference

equation

= ~ bn
Vi= Vi om gt (R fF ) (63)

For the exponéntial box scheme the expression for F in each
interval was introduced into the continuity equation which was
integrated analytically to obtain a difference equation for V.
This procedure was repeatedly applied to relax a guessed
solution to a converged one. The initial guessed solution

that was used in all cases was
Fl = 0 (64)

F; =1 =2, ..., N+l (65)

and the corresponding Vj's were obtained by integration of

equation (la) with the trapezoidal rule as expressed in

equatlon (63) The solutlon process was con51dered to be

converged when the maximum difference between any two corre-—

- L4 r L} » * —5 -k
sponding F's in two consecutive lterations was less than 10 .

* An additional condition on V is used. The maximum difference
between any two corresponding V's is normalized w.r.t. the old
value of V if it is greater than unity and w.r.t. unity otherwise,
and this normalized difference is required to be less than 10-°.
This condition assures that V has converged to the fifth decmmaW

place Lif it is less than 1 and to five significant.digifs obherW1se.
1Lt L
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2, Difference Eguations

{a) The Central Difference Scheme

Introducing the central difference expressions (5) and
(6) for Fn- and an_ into equation (60} evaluated at point j
] J
straightforwardly gives the central difference equation in

the form

2 2

- 1 -
1 - F.)P. +{(1 + 5 AnV.)F. = =4
( 8 j) 5 ( > An j) 5-1 n B

1 -
5 Aan)Fj+l - (2 +An

(66)

(b} The Corrected Central Difference Scheme

The differential expression an - Vj F in egquation {(60)
j

evaluated at point j is replaced by the difference expression
12 =2 - 2F, + Fu_g F., ., — F,

) . .
(1 + 35 An" V3) o2 \E 3An

to give the difference equation

1 - 2
(L - % An V., + %i A

=2 1 2 =2 2. =
V.1 F, -(2+ = A V. + A F.)F.
5 3 1) 541 ( z An 3 n" B J)

(¢) The Midpoint Upwind Scheme

In this scheme the difference equations are written at
N-1 midpoints only. The midpoint at which V first becomes
negative is not included. If at the midpoint "m" (Fig. 2}

Vm is positive, equation (60) will be evaluated at "m" to

give

P -V F - 8F F_ = -8 (68)
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F, and an_are represented by

F. + F._j 5
FI"L = —-l—z——-—-l—— + O(ATI ) (69&)
F. ~ F._j 5
and Fn = JTT_I_L—— + 0{15“ ) (691’))
m-

To find the representation of Fn one uses the relation
i

o FLk 0 (a02) (70a)
m 3 LALLLWY

L3 |
il
53|
I
bO)

with ann given by the derivative of equation (60} evaluated

m
at umn as

F = V_P + Vn Fn + 2B Fm Fn
m- m m

Using the continuity equation this becomes

Fopm = Vo B, = (L= 28)F F
in m m m nm

Evaluating Fm and Vm from the previous iteration values and

substiﬁuting into (70a) one gets

t_l

— l -— 2
+ = V_ )F = F + = - +
(1 > 4n ) an nnj 5 An{1-28)F Fn 0(an”) (70b)

With a central difference representation of an combhined with

]
equation {(69%a) for Fn + this becomes
m
F. - 2F, + F, FP.—-F.
(1 + % a0 V)F = It ! Lo dan@-2pF 232

2 nn 2 2 m A

m An

2

+ 0{An") (70c)
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Substituting (69a), (69b) and (70c) into (68) the following

difference equation is obtained

L= 1 2=2 1.2 - 2 S
Fj'l‘l f2 + An Vm + 35 An Vm 5 AnT {1 ZB)Fm 4+ An® {1+ 5 Aan) BFm]Fj
= 1 2 =2 1 2 = 2 1 = =
+ + = - = - - =
[1 Aanu+ > An Vm’ 5 AnT (1 ZB)Fm AnT (1+ > ime)B Fm)Fj—l
= a2 1 5
= =An“g (1 + = An vm) (71)

When ﬁm is negative, equation (60) is evaluated at "n", the same
procedure outlined above is applied and an equation similar to
(71) is obtained.

In equation (71), ﬁm is taken to be the average of fj and
ﬁj-l with second order error. A similar treatment of V, was
found to cause large errors so that a fourth order accurate
value of ﬁm was used. Using Taylor's series expansion, one
can write
¥ o= . d-1 - "l-—]S:Anzii + 0(an®

i
nnm

The differentiation of the continuity equation glves

5 = - F
nn. Nm
so that
V. + V., F., - F.
- _ -1 1 2 -1 4
V, = I+ gt 2=+ 0 (72)

where the difference representation in (69b) is applied to
F .
nm
B
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(d) Roscoe's UDR Scheme

The difference expression (48) with C replaced by ﬁj is

used to replace the differential expression anj - §anj in

egquation (60) evaluated at the jth point. The resulting dif-

ference equation will be

.An V. A

: - 7 )R, + e Y
o [Fj+l - {1+ e ) i e

<!

<|u§'

- g F. F.=~28 {73)

(e} Three Point Exponential ‘Scheme

The coefficients in equation (60) are evaluated at the

jth point so that

- - aF = - 4
an vj Fn st F g (74a)

which now corresponds to the general form given in eguation

(44) . The auxiliary roots, aj and bj’ are given by
- - 3 -
. o= V./2 + J(V./2 + BF. - (74
& J/ ( ]/ ) BE | (74Db)
- - 2 =
d b. =V,/2 - /{(V./2 + gF, 74
an 3 J/ (3/) 3] _ (74c)
with cj = - 8.

The resulting difference equation is then given by
equation (46).

Considerations must be taken to avoid dividing by zero in
the right hand side of equation (46) when one or both of aj and
?j are identically zero. To aveoid this difficulty, the R.H.S.

of equation (46) can be written as
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) a.fdn h.An
e d 1w

R.HOS. - a' Py - 'b. N Cj (75)
J 3
which has the obvious limit . for bj +:0
bﬁAn
,lim 1 - e~ -
Pjoo T, T 0 4m ‘ (78
]
so that
a.An
B 1= a J .
R.H.S. = - An =t ., (77)
aj 3 . ;

If both aj and bj are zeros then a limiting process on aj
similar to that in (76) puts (77) in the form

R.H.S. = An? oy (78)

It should be noted that this particular limit treatment

results in a difference equation which corresponds exactl? to

the limit form of the differential equation under consideration.

For example, if bj = 0, the difference. equation will be

a.An

_ _ r l — e. -j.
je1 = Ten S oy 79)

which will be obtained if the exponential approach is applied to

a.aAn a.An

. 3 ]
Fj+l {e +l)Fj + e F,

the differential equation

F -a. F = c. {80)
San T % T T

(f) Exponential Box Scheme

In the difference equaﬁion (58) the xroots a, and bl are the
auxiliary roots of the differentiai equation {60) given in eqgua—
tions (74bsc) with the j subscript being replaced by "m" of
Figure 2. Likewise the as and b2 are the roots corresponding

to the midpoint "n". For the present application, also
P P P
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Again, special treatment is necessary for cases when any
of these auxiliary roots vanish.- - For example, the coefficient

of ¢, in the right hand side .0f equation (58) can be put in the

2
form .
o a.,An byan -a3p4n
I -2 1l -8 l -e
[e + 1 (81)
a.An b,An b a
-2 2 2 2
l -e e -

and a limiting PEOCES&. similar to that in (76) can be applied
_a lA n blAn
if necessary with 1/1 - e e dropped from both sides
of equation (58) if all ai's and bi's are zeros (i=1,2).
As mentioned before, the integration of the continuity
equation (la) was performed in a way consistant with the
treatment of the momantum equation. The expression for F in

an interval [j-1, jl1 given by (51) is substituted into (la)

which is then integrated to give

A a,n B b.n c
Ve-te I ~hel - - n+tp (82)
1 L 171 ‘

where Al and Bl are obtained in terms of Fj«l and Fj from

aquations (52) and (53). Evaluating (82) at the j—lth énd

jth points where n=0 and An respectively and then subtracting,

a difference eguation for V is obtained in the form

. A a. An . B b, An C
V=Vt leel ) 4p(l-et ) -
J 1 1 1°1,

An

(83)

To evaluate the midpoint values of F and V which are necessary
for evaluating the auxiliary roots a, and bi, the expressions

in {51) and {82) are psed.
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To avoid the difficulties that arise due to this need of
evaluating ¥ and V at the midpoints ancther version of the
EB schéme is obtained and described in-Appendix D. Alsc, a
new inversion algorithm that can be used with that scheme

is presented in that Appendix.
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VI. NUMERICAL RESULTS AND DISCUSSION

1. General Statement

Three cases 6f the Falkner-Skan equations with different
values of the pressure gradient coefficiént 8 and the injection
velocity VW were solved over a range of mesh step sizes. A
step size study for the calculated velocity F at chosen points
was performed to answer two questions:

1. How long would each scheme considered stay second order
accurate as the step size An increases?, and -

2. How accurate is eachwscheme compared to the others in
the different problems considexed?

In addition, attention was focused on the numerical behavior
of the wvelocity profiles td determine if local oscillatory
behavior ("wiggles") was encountered.

In all cases, the calculated ¥ at the chosen points was
plotted wversus the sguare of the step size and the resﬁlting
curves extrapolated to zero step size to provide an "exact"
value as a basis of comparison. In general, these plots should
be straight lines for small-step sizes since the schemes considered
were all second orxder accurate 'in An. The answer to the first
question above can therefore be determined by observing how long
these plots remain straight as the step size was increased,
%hile the answer to the second question is obtained by comparing

the slopes of these terminal line segments.
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2. Cagse I - The Blasius Equations

As -a standard of comparison, attention is first directed
to the familiar flat plate case corresponding to zero pressure
gradient (8 = 0) and no injection (Vw = 0), The momentum

equation (1b) reduces to
F -VF_ =0 (84)

The F-velocity prefile is shown in Figure 4, wheres it is seen
that the thin boundary layer is confined to the region n < 6.
Figure 5 shows the two individual terms of eguation (84)
demonstrating the complete balance of these terms at all
peoints across the wviscous layer.

.The two points n = 1 and n = 2 were chosen to perform
the step size study. The first point is a typical point in
the boundary layer, while the second is the point where the
diffusion and convection effects have maximum values (see
Figure 5).

In Figures 6 and 7, four step sizes An = 0.2, 0.25, 0.3,
and 0.5, are used to plot F at 7 = 1 with straight segments
joining the points so that any change in the slope can be
observed. In Figure 6, a straight line is obtained by the
central difference scheme (C), while the upwind Scheme (UW) shows
deviation from the straight line as the step size increases. The
corrected central difference scheme (CC) which is seen to be more
accurate than the other two, shows a slight curvature. In Figure 7,

the three point exponential scheme (TPE} and the Roscoe'ls UDR scheme
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{RUDR) which are identical for this special prcblem give a

linear curve over the chosen range of Ar. This curve is very

close to that of the CC-scheme and in fact represents a straightened
version of the scheme.This observation (for the RUDR scheme only)

is found to be true in all the results obtained in this study.

The exponential box-scheme (EB} is also seen to follow a

straight line over this range of An and is,slightlyiless accurate
than the RUDR and TPE schemes.

In FPigures 8 and,9,-one more step size An = 0.4 is used to
plot F at n o= 2, Again, in Figure 8 the CC-scheme shows getter
accuracy than both the €-scheme (which also loses linearity)
and the UW-scheme (which diéplays a subtle nonsystematic behavior
in that its slope increases and decreases from one segment €O
another). These Eehaviors of the C and UW-schemes are presumed -
£o be present for F(l) as shown in Figu;e_G, although they were
not observed- within the accuracy of the plots. As shown in
Figure 9, all the exponential schemes produce: straight line
variations over the entire range of An for this peint.

In Tables 1 and 2, the detailed velocity profiles are
presented for a step size of 0.5, where local oscillations éﬁe
observed in the central difference calculations near the outer
edge when |V| > 4, i.e. when An [V]| > 2 which is in accordance

with condition {16).



3. '‘Case II - Moderate Injection at an Axisymmetric Stagnation Point

Here an injection velocity of vV, = 4 is used with a pressure
gradient coefficient of 8 = 0.5, so that a region of primarily
inviscid flow near the surface is created. In this inviscid
raegicn (n < 5), the velocity profile is shown in Figure 10 to be
nearly linear. Babove this region (n > 5), the diffusion term
begins to play an equal role in the force balance represented
by the momentum equation. This classification is more clear
in Figure 1l which presents the individual contributions of the
diffusion, convection, and pressure gradient terms in the momentum
equation. In the step size study conducted here, 3 points in
the layer were considered, namely the points: n = 6 which lies
in the bottom of the viscous region, n = 8 near which the
convection effects are negligible and the normal velocity V changes
its sign, and n = 10 where all the terms effects are vanishingly
small but in perfect balance. Step sizes of 0.4, 0.5, 0.6667
and 1.0 are used to plot F at those three points.

In Figures 12 and 13, the basically inviscid values of F(6)
are presented. The three curves in Figure 12 are not straight,
with the CC-scheme being most nearly linear and, moreover, more
accurate than the C-scheme. The UW-scheme gives better accuracy
than the other two schemes, but is seen to be unreliable over
this region of An. In Pigure 13, both the RUDR and EB~schemes
have wvery slight curvatuxe witﬁ the RUDR scheme being the more
accurate of the two. The TPE-scheme is found to give large
errors and to lose its second order accuracy even with step size
of 0.4. Figures 14 and 15 show the velocity at a viscous point,

F(8) near the point where V changes its sign. Thus large
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eirors should be expected to be associated with the UW-scheme
due to its required direction éwitching. This is the result
cbserved in Figure 14 where again the CC-scheme is seen to -
be the more accurate of the finite difference schemes.
The exponential scheme results at the same viscous
point n = 8 are shown in Figure 15, in which it is seen that
the EB-scheme has become more accurate than the others -and that
the TPE-scheme encounters obvious curvature. Observations
similar to those of Figure 12 for F(6) are obtained from Figure
16 for F{10). On the other hand, Figure 17 for the exponential
schemer results f£or F(10)- resembles.those .of Pigure 15.for F (8).
The F~velocity profiles for this case are presented in
Tables 3 and 4 for step size of 1.0. For this moderate blowing
case, oscillations are observed in the central difference
calculations, not only near the outer edge as before, but also
in the basically inviscid region close to the surface where
again osciliatorytroats%to the difference equations exist.
Errors- are Qbserved in the calculations by thetotally exponential
schemes {TPE and EB=schemes) in the region close~to the- surface_
where?tﬁenveiocity profile is~linear.:.These’ errors are larger

in the*case of the: TPE. scheme..

To this point, the following conclusions can be made based
on the moderate blowing results presented here:

1. The CC-scheme is more accurate than the C-~scheme.

2. Apart from the nonsystematic behavior of the UW-scheme

dus to the errors introducad at the region in which V changes its
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sign, the UW-scheme gives reasonably accurate results.

3. The RUDR-scheme represents a straightening of the
CC;scheme.

4. The RUDR and EB schemes are the two schemes that have the
slightest deviation from the second order accuracy at lé;ge step
sizes. The ﬁB scheme shows better accuracy as the injeé%ion
velocity is increased, which should be expected since the transi-
tion from the inviscid region created by the injectian to the
viscous region is better honored in the EB-scheme.

5. The TPE-scheme is not comparaﬁle with 'tﬁe other
exponential schemes, neither in its accuracy nor in its behavior
with the step size. The errors observed in the velocify profile
in the inviscid region close to the surface are blamed for that
and are assumed to affect the solution everywhere else. One
other possible reason for this limited accuracy could be that
the integration of the continuity equation by the trapezoidal
rule is not consistant with the remainder of the method.

6. The central difference solution is oscillatory whenever
a condition-similar to condition (16) is satisfied. Oscillations
do not occur in any other scheme. However, obvious errors are
observed when exponentials are used to approximate inviscid

linear regions of the profiles.

4. Case III - Strong Blowing at an Axisyvmmetric Stagnation Point

To examine the wvalidity of the previous conclusions, a
high injection rate v, = 25 is applied with the pressure gradient
coeifficient B = 0.5. As shown in Figures 18 and 19, a large

region (0 < n < 47) of inviscid flow is formed in which the
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velocity profile is essentially linear followed by a very small

- viscous region (47 < n < 53) and then a region {n > 53) in

which the diffusion, convection, and pressure effects are
negligible. The points considered for detailed analysis of the
numerical results are n = 48, 50, and 52 for the same reasons
discussed in the previous case and the step sizes used are

0.5, 0.8, 1.0, and 2.0. In Figure 20 the CC~scheme in the
inviscid region shows a large turn and loss of its second order
accurate nature for An > 0.8. The UW-scheme shows a nonsystematic
behavior in that the slopes of its segments increase and decrease
alternatively and the segment of smaller step sizes does not
head towards the exact value of F(48). Large non second order
truncation errors are shown for the C-schenme.

In Figure 21, on;y the EB and the RUDR schems appear because
the TPE‘scheme.shdwa& verypoor accuracy at that point in the
profile. The EBR and RUDR schemes give the same solution for the
smaller step sizes and both deviate slightly from the second
order result for an > 1.

Figure 22 shows the finite difference results,at the switch
point (V = 0 at n = 50), where it is seen that the UW-scheme
gives again large truncation errors and nonsystematic behavior.
The C and CC-schemes are seen to lose their second order
accuracy for 4n > 1. In Figure 23, the EB-scheme , as expected,
shows better accuracy than the RUDR, while the TPE-scheme follows
its usual behavior observed before. These observations are
further demonstrated for the edge region (n = 52) in Figures 24

and 25 where F(52) is presented. Large truncation errors and



overshoot (F > 1) are encounte;ed with the C-schene, while the
CC-scheme shows a dramatic loss in second order accuracy for
large An. The UW-scheme is obviously nonsystematic; the TPE-
scheme does not behave in a second order fashion; the RUDR
scheme 1s fairly accurate and it represents a straightening of
the CC-scheme; and the EB-scheme is the most accurate and
consistantly maintains second order accuracy even for the large
step size of 2.0.

The velocity profiles presented in Tables 5 and 6 support
the previous observations that the C-scheme is oscillatory in
the inviscid region close to the surface and the region close to
the outer edge whenever a condition similar to condition (16}
is satisfied. Also, the errors observed in the linear region
close to the surface in the TPE and EB calculations are observed
again. These errors are due to approximating a straight line
by exponential segments and can be reduced by refining the
matching between these exponential segments and by consideriag
the next term in the asymptotic expansions assumed for the

coefficients a, b, and ¢ in the differential egquation (44).
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VII. CONCLUSION AND RECOMMENDATIONS

A study of numerical schémes for solving viscid)inviscid
fluid flow problems has been presented. Truncation errors
of the oscillatory type associated with the central difference
solutions of these problems for large step sizes have been
related to an explicit downstream coantribution to the con-
vection effects which viclates the physical process of con-—
vection.

It has been found that a natural correction to the central
difference scheme (which is equivalent to an addition of
artificial viscosity like term) has improved the accuracy of
the central difference scheme, increased its range of possible
applicability, and eliminated the numerical "wiggles". A
fourth order scheme obtained using this same line of thought
has been recently presented by Wornom (Ref. 17).

A second order accurate upwind scheme has been described
and found to suffer a severe conservation problem at the
switch point although it has shown reasonable accuracy away
from that point. It is recommended that this point should
be studied further to solve this switching problem.

The exponential scheme proposed by Spalding and used by
Roscoe has bheen interpreted in a way (see Pruess, Ref. 8} that
has allowed a development cof the exponential box “scheme. This
interpretation gives also a rational basis for introducing higher
order corrections. -

The numerical calculations carried out with the exponential

box scheme have been found to be very promising. Further study



is recommended both in the application of the scheme to a wider
range of problems and in considering the higher order corrections

that can be introduced to it.
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APPENDIX A

WIGGLES AND DIAGONAL DOMINANCE

The numerical oscillations or "wiggles" associated with

the central -difference calculations for large step sizes have

._,been attributed, incorrectly, to round off errors produced due

to the lack of diagonal dominance in the difference equation.
.“'In this appendix, it will be shown that the wiggles and the
lack of diagonal dominance are two different problems that
can occur independently. Cénsider the difference equation

(8) which will be rewritten here for convenience

P, +

441 oo Fj + Ca F. = ay (al)

%1 j-1

whers ay > 0.

The characteristic equation corresponding to eguation

{Al) is
o 12 + 6, A+ a, =0 (A2)
1 2 3 .
whose roots are
2
v oo + Yoy - dajo, (a3)
1 2a
1
and ; 5
-0, = Vo. — 40,0
_ 2 2 173
A2 - 2ul (24)

Consider now the following cases:
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Case T < 0

%3

In this case‘)\2 is alwéys negaﬁive while_Al is always

positive.

>4 > 0

Case IX Gy
————— oy

.2
Go 1%3 > 0 and -

Both ll and A2 are negative in this case.

Case IIX ' ag >dg ag > 0 and < 0

1 )

Both ll and A2 are positive.

Case IV <40y

2
%o 1%3

Complex roots Al and Az are obtained.

Thus oscillations are not expected in Case III, while they
are e%peéted iﬁ Cases I and-II. In Case IV, il and Az qén be
put in the form peiie and the éxact solution for the difference
equation will have the form

= 3 : i na .
Fj = 0” [R cosjg + R, sinjs] ‘ (A5)

Since the set of equations (Al) for J=1, ..., N+l has real
coefficients, R1 and R2 will be such that all the Fj's are

real and the solution profile will have harmonic behavior.

Diagonal Dominance

Consider the system of eguations (Al) for j=1, ..., N+1.

The diagonal dominance condition for this system is

logl 2 faq] + lagl (26)

AGE IS
for all j. %%‘I%Ig(ﬁ;{j gUALITY



This condition is the sufficient condition for the matrix
of tﬁe coefficients to be nonsingular and hence invertible (Varga,
Ref.13).. —Aiso, it has been shown by Keller (Ref. 18)- that
. condition. (A6) is a sufficient condition for the Thomas
algorithm to bé nonsingular.
It is clear from the previous analysis that diagonal
-'doﬁinance has to do with the magnitude of the coefficients
Gyr Go and dys while the wiggles have to do with their signs.
E.g., if @y < 0 oscillations will take place according to
Case I above, although diagonal dominance can still be satisfied.
However, in the case when @y < 0 and ey > 0, it can be
shown that the diagonal dominance is a sufficient condition
for the roots ll and 12 to be real and, according to Case III,
positive.
Squaring (A6) and noting that ay and ay are positive,

one gets
2 2 2 ’
Gy > 0y + s + 2ula3

so that

2 2
Gy = 40&10.3 > (al - a3) > 0

which proves that A; and ), are real.
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APPENDIX B

A GENERAL THREE POINT FINITE DIFFERENCE EQUATION

The approach used to obtain the midpoint upwind scheme
in Chapter II can be used to produce a family of finite difference
schemes.if it is applied to a general point "s" a distance -
a An below point j where -1 < o < +1.

Consider equation (4b) and its derivative evaluated at

point s. They give

and F - CF = 0 (B2)

For 0 < a <1, a Taylor's series expansion of an gives

]
F =F .+ ahn F___ + 0(an%)
nnj TITIS nnns
Substituting for ann from (B2) one gets
S
2
1+ A B = F + 0 B3
( o An C) an an (An™) (B3)

s ]

Similarly, a Taylor's series expansiocn of Fn and the use
m
of (Bl) gives

(L ~(3 - «)anCIE_ = F_ + 0(an°) (B4)
Ty Tm
Using central differences to represent Fn and an , the
m J
following second order accurate finite difference approximation

of equation (4b) is obtained:
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Lh = FALTLQ)ANCIE ) TLATARANG T OAT & Sry
1 2.2
-+ fl + —2-'-(1. + 2&) AnC + elAn C ]Fj"'l =0 : (BS)

A similar expression can be obtained for the case where

-1l < a <0 with Fn used instead of Fn . Combining both cases,
n m
one gets:

1 1 2 2
[1 - 5(1-2e)4nC - (o - [a|)an“c 1P,
~ [2 4+ 2aAnC + |u|An2C2}Fj
# 01+ 214200 4nC + S(a + lal)Anzcz]Fg_l =0 (86)

for -1 <o < 1.

The corresponding second order error is given by

_ 1 1 2 2 1 1.1 2 2
e=-{35+ 5 o)A L +isr + 55 la])}“lan“c Fonn (B7)
where F and F are evaluated at some point and can be
nnn nnnn

related to each other through the differential equation (4b)

so that

i

= [~ 2 L

)+ 37+ 3 G- leh?1an? (28)

B[+

Note that when o = 0, equation (B5) reduces to the central
difference eguation (7), when a = %_the branch of the midpoint
upwind scheme corresponding to C > 0 is obtained and, when

¢ = - % the branch corresponding to C < 0 results in.
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APPENDIX C

ERROR AMALYSIS FOR EXPONENTIAL SCHEMES

1. Error Analysis of Equation {46)

~-a.An/2 =~b.An/2 ;
Multiplying equation (46) by e J e 7 results

o

in the following equation

-a.An/2 ~b.An/2
3 n/ 3 n/

a.An/2 <~b.An/2 ~a.An/2 b.An/2
. . 3 n/ 3 n/ a n/ 3 n/

Fj+l -fe =) + e e ]Fj

a.An/2 b.iAn/2 c,  —a,An/2 ~-b.an/2
+ e 3 e ] F. = —Jd 1e 3 e J
j-1 a.b.
J ]
a.Aan/2 -b.an/2 -a.An/2 b.An/2 a.An/2 b.An/2
_[ej e I + e I e J ]-F-ej e ] }(Cl)

Expanding the exponentials for small An one gets

~a.An/2 -b.An/2
3 3 .1 1,2 2 1 .3 3 4
e e = 1~ 3 An(aj+bj)+ T An (aj+bj) 75 An (aj+bj) +0(an7)
a.An/2 b.an/2
. . _ 1 1, 2 2,1 3 3 4
e e = 1+ 5 An{a.+b.)+ = A AbL) T S A a.+b.) T+0 (A
5 An( 3 3) g An (a3 j) 75 A ( 3 j) (An ™)
~a.An/2 b.An/2
. i N 1 _ 1.2 2 1 3 3 4
e e = 1- = An(a.-b.)}+ = A a,~b.) "= == A a.—b.) +0(A
a.An/2 ~b.An/2
J J _ 1 _ 1 2 IR 3 _ 3 4
e a = 1+ 3 An(aj bj)+ = An (aj bj) + g An (aj bj) +0 {An ")
{C2)
Substitution in the right hand side of equation (Cl) gives
2 4
R.H.S. = An cj + 0(An ") (C3)}
Expanding Fj+l and Fj—l about point j one gets
) 1 2 1 3 4
F. , = F, + + = F P F +
i+l j AnFnj il nng T g An nnn 0lan")
PAGE TS
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0(ant) (ca)

[
o
|
I
o+
B>
=
3}
+

nnns

Substitution in the left hand side of eguation (Cl)} gives

coeff. of Fj = 1 - % Anjaj+bj)+ % anz(aj+bj)2— %g An3(aj+bj)3+O(An4)
~ 2 ~ % An?‘(aj-bj)2 +0(An%)
+ 1 + % An(aj+bj)+ % Anz(aj+bj)2+ %g An3(aj+bj)3+0(an4)
= An2 ajbj +0(An4)
coeff. of F = an= 3 in’(asthy)+ & an®(ayrbi)? 40 (an®)

J

4
- An- % Anz(aj+bj)- z An3(aj+bj)2 +0 (An ")

8
5 4
= - An {a.+b. +0 .
7 3 J) (An7)
1 2 1 3 ) 4
fE. of F = = - = 4bhL) + -
coe o nns 5 4n 7 4n (a:J bj) 0(An ")
1 2 1 3
+ 3 AnT + 7 4n (aj+bj) + O(An4)
4
1 3 4
coeff, of F = = +
o anns = An 0{An ")

4

- % An3 + 0(An )

= Q0 (An4}
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SO TNAaT

2 4
L.H.8 = F -{a.+b .\ F + a.b.P.]+
AnT [ . (a3 3) ns ajbjF]3 0{an") (C3)

Eguating (C3) and (C5), one gets

nn . i

2
F -~ {a.+h . )F + a.b.P.,. = .+ 0(A
5 (a5+by) n 2575 3 (2n")

which shows that equation (46) is a second order accurate

representation of equation (44).

2., Erxrxor Analysis of Equation (50)

-b.An/2
Multiplying equation (50) by e J results in
-b.An/2 b.An/2 c. b.An/2 -b.An/2
—e F. + e P, = —d (e J -e 7 )
| j~1 a.b,
J ] (c7)

Expanding the exponentials in the right hand side, one gets

c.
R.H.S. = —a3— {[1+ = Anb. + = an2 b2 + 0(An3)]
ajbj 2 1 8 3
1 1 2,2 3

"l-—"' b- + = T ’
[ 5 An 3 g An b:J O(én 11}
c. 3

= an =L+ 0 (an”) (c8)
J

.Expanding the exponentials in the laft hand side and Fj—l about

point ] one gets

15
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1 1,22 3
LH.5. = -[1- =% .+ = b. + 0(a F.
L [1- 5 &n by + F An” b (n)]]
1 1 2, 2 3 1 2 3
+{1+ % = .+0 F.- + = +
[1+ 3 Anbj+ g 4n by (an7) 11 3 AnFnj = AN anj 0(an™) 1]
1 1 2 3
= F, - + = Anb.)F. + F +
Anb F -An(1+ 7 An 5) ny 2 An any 0(an™) (c9)
So that, upon equating (C8) and (C9) there follows:
5 1 2
- + b.F. = - = - b, F +
F“j b]Fj 2] 5 An(anj bJ "j) 0(An") (Cl0)

which shows that eguation (50) is a first order accurate repre-
sentation of equation (49). It is second order accurate only if

the coefficients a, b, and ¢ are constants.

3. Error Analysis of Eguation (58)

.An error analysis for equation (58) has been carried out by
expanding its coefficients and reducing it to the threé point
difference equation obtained by applying the Keller's box scheme
to the same differential eguation (44). The difference
'between the two schemes is found to be O(An2) which shows that
the EB scheme is second order accurate since the Keller's box

scheme is known to be second order accurate.

4., Error Analysis of Egquation (59a)

—blAn/Z
Moltiplying by e . one gets

—blAn/2 ,blAn/Z cy blAn/Z —blAn/2

-e Fj + e Fj-l = 75— le - e ]
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L Z

R.H.S. = -é-—g-- {[1+ % An bl + 3 An bi + O(Anfj)]

;
- [1-34nby + % An2 bi + 0(an3) ]
(o
= an <L + 0(and) (C12)
a
l .
_ 1 1 2.2 3 1 1 2 3
L.H.S. = —[1- 5 Anby+ 3 4n bl +0 (An7) ] [Fm+ 5 Anan-i- T An anm-!-O(An 1
) 1 1 2.2 3 _1 1,2 3
+[1+ 5 Anbl+ s An bl +0{An )][Fm 5 Ananf 5 An anm+0(An )1
3
= AnbqF - Anan + 0(an7) (C13)
Eguating (Cl2) and (C13), one gets
€1 2 '
- = 4
an + blFm a]_ + 0{Aan”) (C14}

which shows that equation (59a) is a second order accurate

representation of equation (49).

ORIGINAL PAGE I
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APPENDIX D

A SECOND GENERATION EXPONENTTIAL BOX SCHEME

Let the coefficients a, b, and ¢ in equation (44) be
approximated to first order by their wvalues at the grid point
-j and the solution (45) be wvalid in the interval between the
two midpoints m and n. For convenience, egquation (45) will

be rewritten in the form

ayn b2n .
F = A2 e + 32 e. + fzn {(D1)
where
o
2
£, = {D2)
2 a2b2

and the subscript "2" refers to point j.

Similar expressions will be valid at midpoint intervals
below and above the previous interval with the coefficients
a, b, and ¢ approximated by their values at points j~l.an&

j+l, respectively.

Eguation (D1) can bhe used to evaluate Fj’ Fm’ Fn, Fn
m
and F in the forms
n
n
' th = A, + B, + £, . (D3)
TIDY e e, -1
1£Eﬂf¥ﬁ*fﬁaﬁr@u + B2 t2 + f2 (D4)
_ -1
Fn = A2 r2 + B2 t2 + f2 (D5)
. -1
an = a2A2r2 + b2B2t2 {D6)
_ -1, '
F”h = a,A,r,n + b232t2 (D7)
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-aQAn/Z bzAn/Z

where r2 = e and t2 = e {D8)

Three expressions for Fj—l’ Fm, and an can also be obtained

using the expression for F in the lower interval. These
expressions will be similar to the R.H.S. of (D3), (D5), and (D7).

with the subscript "2" replaced by "1I" to refer to point j-1.

On the other hand the expression for ¥ in the upper interval

will give for F F_, and an expressions that are similar to

j+L’ "n
the R.H.S. of (D3), (D4), and (D6) if the subscript "2" is replaced

by "3" to refer to the point j+1.
The resulting set of 11 equations is sufficient to eliminate

Al, Bl' AZ’ B2’ A3, B3, #m' F anf and Fnﬁ‘and an ,eqguation

that involves Fj—l’ Fj, and Fj+l’ oﬁly is obtained

nl

This resulting eguation is the difference equation for

this scheme, It has the form

(gy-hy)egFyyy ~lophymg3hy)F, + (Byrgjle Py

(gy-hy)dy = {gihy-gshy )£, + (hy-g,)d,y (D3)
where

dl = (al—blrltl)t2f2 + [(al—bl)tl - (al—§lrltl)}t2f

1
d, = (a3rgt3—b3)r2f% + [{ag=bylry - (a3r3t3fb3)]r2f3
& = £1%y(ay7by)
e

3 = ryrglag-=by)

ORIGINAL PAGE 15
OF POOR QUALITY
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g, = [(a;=byryty) - a, {1 = r %)) ir,t,
g3 = [(a3r3t3—b3) + a2(1 - r3t3)}
h =_[(al—blrltl) - b2(l - rltl)]

[(a3r t ~b3) + b2(1 - r3t3)]r2t2 (D10)

37 3%3

The scheme given by equation (D9) has the advantage over
the scheme given by equation (58) that no values need be eval-
uated at the midpoints m and n.

Instead of using the Thomas algorithm to invert the set
of three point difference equations given in (D9) a simpler
inversion scheme can be designed to first evaluate the coef-
ficients Aj énd Bj (3 =1, «...; N+ 1) and then the values of
F aﬁd its derivatives can be é¢alculated directly from (D1l) in
the appropriate interwval. Such an algorithm eliminates the
tedious algebraic steps necessary to derive the tridiagonal
equation (D9)‘and is described here for future reference.

" The requirement that Fm and an be continupuslat point m,
the midpoint between the j-1 and jth points, provides two
equations that involve Aj—l’ B'—i’ A,, and Bj that can be soelved

] ]
- for Aj and Bj' Thus one can write

A, = a . A, . + By, By . + v D11
J %15 “5-1 Blj j-1 ,:z":(lj ‘( )
gj = ayy By_p + Byy Byg ¥ vy (D12)

where the a's, 8's, and y's are all known.

A7



Now assuming that Aj and Bj (j=1,...,N+1) can be written in

the form

B A, 4+ v,

37 P23 1 27 (D14)

and substituting Aj-l and Bj—i into (D11) and (D12) one gets

3 = leggmy goq¥8yg¥p go1)Bg o (eggvy yu3FBygvy goptvyy) (D15)

5= (azju2’j_l+82ju2’j_l)Al + (azjvl’j_l+82jv2'j_l+yzj) (D16}

Comparing (D15) and (D16) with (D13) and (D14) the following

recurrances relétions for Byr Vyr Moo and v, are obtained
M3 = @95 ¥3,5-1 T B3 ¥ 4-1

15 7 %15 V1,3-1 T P15 V2,51 F Ty

23 T %23 Mi,5-x T P2y Y2941
; (D17)
Vo = %25 Vi,4-1 T Bag V2, 5-1 7 Y24
At j = 1 the following felations are known
My g =1 (D18)
1,1 =0 . (D19)
. ORIGINAL PAGE 1S
F, = Ay + By + £ OF POOR QUALITY {D20)
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while at j = N+l the following relations are valid

Buel S Mima1 Bt Viomer (D21)
Byer & Mo,we1 B1 ot Vol (D22)
Fyel = Pyl T Bys Y Iy (D23)

In (D20) and (D23}, Fl and F are assumed to be known as

N+1
boundary conditions of the differential equation under consideration.
Other types of boundary conditions can be tréated using expression
(D1) for F to give two relations involving (Al, Bl) and (AN+1’ BN+l)
to replace ({D20) and (D23) réspectively.

The calculation procedure will be as follows:

1. Use (D20) to obtain My 1 and Va,1 by comparing it with
{(D14) for 3j=1.

2. Use the recurrance relations (D17) to calculate ”lj’

v and v2j for =2, ..., N+1 kndwing their values for

157 uzjr
j=1.

3. EKnowing the values of uy .17 V3 g7 Ho nypr @0d vy oy
solve eguations (D21), (D22) and (D23} to determine A, -

4. Calculate the Aj's and Bj's, j=2, ..., N+1 using (D13)
and (D14).

5. Calculate F and its derivatives using (D1l).



c

cc

uw

G.0000
0.5000
1,0000
1,5000
2,0000
2.5000
3,0000
3,5000
4,000
4.,5000
55,0000
5,5000
6,0000
66,5000
7200600
745000
88,0000
8,5000
F.0000
9.5000
10,0008

6,0000000000000
0,2357019175320
0,4645601396245
0,6681224180019
0,8250732563570
0,9248680267167
0,9749164338430
0,99368465744881¢
§,998997773203%
0,9999993038850
0,9999977293927
1.,0000000763307
6,9%99999934052
1,0000p0000884])
0,9999099998435
{,0000000000340
0,9999999959g9%¢5
1.,0000p00000025
0,999999999999%
1,0000000000004
1,0000000000000

9,0000000000000
G,23%020890357¢64
0,.85%93522776107
0,660%9401688855
0,8170778673049
0,9175782221355
0,9696712237985
0,9910125484759
0,9978690991754
0,999595819599¢
6,9999382939B66
0,999992314639538
0,9999992026792
0.,999%09%289259
0.99999999 43062
0,99%9999%95812
0,9999999999499
0,9993999%99978
0.9999999959998
1,0000000000000
1,0000000000000

0,0000000000000
0,P%51076811L025
0,4646173272125
0,66B2772996516
0,8232059968979
0.92057139n5362
0,97007068297523
0,9905255765472
0,9%74630685493
0.9994294753158
0.9998R00609093
0,29998¢5554494
0.9999970966843

0,99999946179303%

0.99099095%3871
0,.9999993953493
0,9999999995447
0,9992995999494532
0.999999999%q72
0.9999999999994
t.0000000000000
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ORIGINAL PAGE
OF POOR QUALITY

VELOCITY PROFILES FOR FINITE DIFFERENCE SCHEMES

-TABLE 1l: BLASIUS FLOW

BUDR & TPEZ

EB

0.0
05000
1.0060
1.5000
2,0000
2.5000
3,0000
3.5000
4,0000
4,5000
5,0000
S.5000
6,0000
£.5000
7,0000
7.5000
8.0000
8,5000
9.0000
9,5000
16,0000

g,0

0,2330545736248
0,4594477063782
0.,6810505304537
0,8171816648%439
0,9176822625149
0,969761788%022
0,9%1077595%5934
0,3977055192255
0,999511208%5620
0,9999431583436
0,9999934731040
0.99299%4125816
6,99999%995846259
0,999%999977220
0,9999999995%520
0,9999999%99967
0,9999999999999%
1,0000000000000
1,0000000800000
1,0000000000000

0,0 ;
0,235454027448%
0.4624499328736
0,6632486160505%
0,B8179955191227
0,9175423%45048
0,969377303745%
0,9%08197225%98%
0,9977999877228
0,3995811491 306
0,99993591n7351
0,9999925041002
0,999999299%0353
0,99999994R407Y
0,9999999970308
0,9999999998658
0,9999999999953
0,9999999999937
1,0000000000000
1,00000002006000
§,00000600000000

TABLE 2: BLASTIUS FLOW

VELOCITY PROFILES FOR THE EXPONENTIAL SCHEMES
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cC

cC

UwW

0.0000
1.0000
2.0000
3.0000
4,0000
5.0000
6,0000
7.0000
8,0000
9.0000
10,0000
11.0000
12,6000
13,0000
14,0000
15,0000
16,0000
17.0000
18,0000
19,0000
20,0000

0,0G00000000000
0,1250001385162
0,2499997050946
0.3750012121533
0,.4999949574309
0,6250309063076
0,7495845282511
0,8655708850268
0,9511730093339
0.9912926329848
0,999%p98573588
1,0000116855790
0,9299971727840
1,0000009469873
0,9999996238077
1,0000001848676
0.9999999164921
1.0000000599587
0,9999992799747
1.0000000297870
1,0000060000000

0,0000000000000
n,12499999753¢09
0,2499999645076
0,374999492975¢0
0,4999923489294
0,6248863622985
0,74663580257022
0,86404981950%8
0,95010465605221
0,9898745947980
0,9989944930587
0,999%u40469§035
0,999996%154787
0,9999996758327
0,99959995947463
0,9999999532714
06,99930999RA084
0,9999999996617
0,999999999910%
0,9999999999755
1.,6000000000000

0,n800000000000
0,124%99299n9974
0,.249999B742454
0,3749984090375
0,4999R11T04162
0,62481n88u47319
0,74845p1762581
0,R647799510118R7
0,95395344503003
0,9%678079475190
0,998H554309871
0,9999p59459089
0,9999045558R(9
0,99°9937674294
1,999%999923875
0,99999%9998n33
0,9999992909495Q
0,9999999999299
1,0000000000000
1.,0300000000000
1,0000000000000

TARLE 3
MODERATE INJECTION AT AN AXISYMMETRIC STAGNATION POINT
VELOCITY PROFILES FOR FINITE DIFFERENCE SCHEMES

n RUDR TPE EB
0.0 0.0 0,0 0,0 ,
1,0000 0,1249969999508 |0,1255323119837 [0,12513316472786
2,0000 0,2499999973900 | 0,2515652915513 | 0,2502705990423
3,0000 0.3749998831525 | 0,3780a71038645 [0,3754152395157
4,0000 0,4999960124792 | 0,50486126B0820 10,5005658740969
5,0000 0,6209072666931 |0, 6316647394431 {0,62562337094841
6,0000 0,7486703120367 |0, 7567270901970 |0, 7493524451070
7.0000 0,8640974059548 | 0,8715107771055 | 0,8641102886477
B,0000 0.9501418039624 | 0,9544158150455 (0,9492358621257
9,0000 0,98992148551605 | 0,9911497573511 ¢, 9892008319580

10,0000 0.9990531540856 | 0,9992034627362 |0, 9988872841214
11,0000 0,9999627371932 | 0,9999499736413 0,99995020645726
12,0000 0.9999994180416 | 0,9999995509957 [0,0999991012758
12,0000 0.0999999955059 | n.9999099974114 [0,0999992937433
14,0000 0,9999999999920 | 0,9999999999943 [06,9999999999a38
15,0000 1,0000000000000 |1 0000000000000 |1,0000000000000
16,0000 1,0900000000000 | 1,0000000000000 [1,0000000000000
17,0000 1,0000000000000 | 1,0000000000000 |1,0000000000000
18,0000 1,0000000000060 | 1,0D00H00000000 [1,0000000000000
19,0000 1.0000000000000 | 1,0000000000000|1,0000000600000
20,0000 1,0060000000000 | 1.0000000000000 1.p000000000000

TABLE 4
MODERATE INJECTION AT AN AXISYMMETRIC STAGNATION POINT
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n C ce UW

0.0000 0,0000000000000 | 0,0000000000000( 0,0000000000000

2.0000 0,0399966191128 | 0,6399999985266 | 0,0400000000000

4.0000 0,0800004671197 | 0,0799599966522 | 0,0B0000n000000

&,0000 0,1199940901971 | 0,1199999942626 | 0,12000000600000

8.0000 0.,1600010729529 1 0,1599999912057 | 9,1600000000000
10,0000 0.1999933981039 | 0,1999999872766 | (,2000000000000
12,0000 0.2800018778280 | 0,2399999821961 | 0,2400000000000
14,0000 0,27999248667363 | 0,2799999755781 | 0,2800000000000
l6.0000 0.320002979211% | 0,3199999668805 | 0,3200000000000
18,0000 0,3599911701180 | ©,.3593999553297 | 0, 3600000000000
20,0000 0.,4000045428948 | 0,3999999397991 | 0,4000000000000
22,0000 0.0599892873270 | 0,4399999184133 | 0,4400000000000
24,0000 0,4800068696053 | 0,4799998892170 | ¢,4800000000000
26,0000 0,5199864018206 | 0,519999A476014 | 0,5200000000000
28,0000 £.5600105515772 | 0,5599997872657 | ¢,5600000000000
30,0000 0,399948156505634 | 0,5999996972513 | 0,4000000000000
32.0000 0.6000168898633 | 0,6399995582156 | 0,6400000000000
34,0000 0,6799730012435 | 0,6799993340641 | 0,6809000000000
36,0000 0,7200292115698 {0,7199989526665 0,7200000040000
38,0000 0,7599546971%60 | 0,7599982568631 1 0,70004000006000
40,0000 0,8000582225960 |0,7999968034183 0,7999999999394
42,0000 0_8399048812150 |0,8399936833930 | 0,83999999943945
44,0000 0,8801548127682 | 0,3799B848601666 | 0,A799999526392
46,0600 0,9196792203024 |0,9199510719014 9,9199980557216
48,0000 0,9608975687037 | 0,9597100879897 | 0,9598707621555
50,0000 0,9935820005289 | 0,9931702198606 |0,9958921809931
52,0000 1,0008980904585 | 0,9997149261997 | 0,9998778987386
54,0000 0,9996811278535 |0 ,9999503497977 | 0,9999983374a38
56,0000 {,0001560202453 | 0,99998400050%6 | 0,9999999871412
58,0000 0.,999%066937334 |0,9999930172200 |0,.9999999999361
£0,0000 1.0000595721305 | 0,9999963613360 |0,9999099999998
62,0000 0,9999563522191 | 0,9999978724550 | 1,0000000000000
64,0000 1,0000305505275 [ 0,9999986521368 | 1,0000000000000
66,0000 0,9799744813318 }0,9999990946317 |1,0000000000000
68,0000 1.0060181516110 |0,9999993648562 |1,0000000000000
76,0000 0,9999829476229 ]0,9999995385277 [1,0000000000n000
72,0600 1,00001170064854 {0,9999996540146 {1,0000000000000
74,0000 $6,.9999875111227 |0,9999997383396 |{ 0008000000000
76,0000 1,0000078837714 [0,9999997978756 {1,0000000000000
78,0000 0.999990205706¢ [0,9999998421129 {1,0000000060000
80,0000 1,0000050078186 |0,9999998757482 |1 ,0000000000000
82,0000 0,9999918952477 10,9999999019127 [1,0000600000000
84,0600 1,0000036835370 |0,999999922605% | 1,0000000000000
86,0000 0°,9999929967801 |0,9999999392623 11,0000000000000
B6,0000 1,0000024141944 {0,9999999528787 (1,000000600000%
90,0000 0,9999937315261 {0,99999996416389 |1,0000000000000
92,0000 1.000V0018351876 |0, ,9999999736543 {1,0000000000000
4,6000 0,9999942256535 j0,9999999817216 |1,0000000000600
96,0000 1,0000006502884 |0_9999999886621 | 1,0000000000900
98,0000 0,0999945553756 |0,9999999940978 [1,0000000000000
100,0000 1,0000000000000 {1,0000000000090 ;1,0000000000000

TABLE §
STRONG BLOWING AT AN AXISYMMETRIC STAGNATION POINT
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n RUDR TPR ER
0.9 0,90 G.0 - 0.0
2.0000 0,0400000000000 | 0,0900307560792 |0, 0400006167749
4,0000 0,0800000000000 | 0,0800923608737 { g 0800012187300
66,0000 0.1200000000000 | 0,12018489905028 { g 3200017875510
A. 0000 0,1000000000000 | 0,1035089L27082 {0,1600023035530
10,0000 0,2000000000000 [ 0,20046448725605 |0 2000027470678
12,0000 0,2400000000000 | 0,749065217131A9 J o 2400030937425
14,0000 #,2900000000000 | 0,25%08725254684 |0 p80ug33t77037
16,0000 0,3200000000000 | 0,3211262212638 |0,3200033885324
18.0000 0,3600000000000 |0, 35614140500788 {0,3000032703770
20,0000 0,48000000000000 | 0,8017369331309 [0,20000292030%98
22,9000 0.0400000000600 |0,082095932(954 |0, 4409022882057
2¢.0000 8,4500000000000 | 0,4824922597755 {0,4800013039912
26,0000 0.5200000000000 | 0,522°9272861505 {0,5199993940945
28,0000 0.5600000000000 | 0,56340925578059 | 0,.55999/954%805
30,0000 0,6000000000000 §0,60399196755681 |,599995377714
32,0000 0.6800000000000 | 0,644UR042TNTS | 0,6399919711 066
34,0000 0,6800000000000 | 0,6850B648143865 J0 aT799R75794772
36,0000 0,7200000000000 | 0,72573875481931 {0,71998195860%05
38,0000 0.7600000000000 | 0,7668370380782 [0,7599750305494
40,0000 0.8600000000000 | 0,8071767653855 {g,799%668431905
42,0000 0,8400000000000 |0,8479419049149 [o,8399587283440
44,0000 0,R799999999999 | 0,8880797306307 |0,8799%54814d003
45,0000 0,9199999785976 | 0,92919245436%2 [0 9195R20069041
48,0000 0.959931753287% | 0.9683961219803 |0,9599u39%67085
50.0000 0,99325221 13204 [ 0,9960251114187 |(,9923219715474
-82,0000 0,9999367431587 [ 0,9999742948492 |¢,9998706822664
54,0000 0,9999999854915 | 0,99999999%59949 1g,9999999992784
56,0000 0,9999999909999 |1 9060000000000 {0,9999999999999
58,0000 1.0000000000000 |1,0000000000000 (1,0009000000000
60,0000 1,0000000000000 | 1,0000000000000 |1,0000000000000
62,0000 1,0000000000000 |1,0000000000000 {1,0000000000000
64,0000 1,0000000000000 {1,0000000000000 J1,00000000000C0
66,0000 1,0000000000000 [1,0000000000000 {1,0000000000000
68,0600 1,0000000000000 |1,0000000000000 [1_0000000000000
70,0000 1,0000000000000 |1,0000000000000 |t 5000000000000
72,0000 1,0000000000000 | 1,0000000000000 |1,00000006000000
74,0000 1,0000000000000 |1,0000090000000 |1 0000000000000
76,0000 1,0000000000000 {1,0000000000000 {t 0000000000000
78,0000 1,00000000a8000 {1,0000000000000 |1 6000000000000
80,0000 1,0000000000000 }1,0000000000000 [{ 0000000000000
82,0000 1,0000000000000 §1.0000000000000 {1 0000000060000
84,0000 1,0000000000000 |1.0000060000000 |1 0000000006000
86,0000 1,0000000000000 {1,0000000000000 J1, 4000000000000
Bd.0000 1,0000000600000 |1.0000000u00000 {1,0000000000000
90,0000 1,0000000000000 [1,0000000000000 {1,0000000000000
92,0000 1.0000000000000 | 1,0000000000000 {1 0000D0GOOGNNO
24,0000 1,00000009000000 |1.0000000000000 |1 000000000000
96,0000 1,0000000000000 {1,0000000000000 11 4000000000000
98,0000 1,0000000000000 |[1,0000006000000 }y 0000060000000
100,0000 1,0000000000000 |1,00000600000000 }{ 9000000000000
TABLE 6
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Shock Wave

FIGURE 1. VISCID/INVISCID FLUID FLOW
OVER A REENTRY BODY
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FIGURE 2: THREE-POINT UNIFCRM GRID
CONFIGURATION
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FIGURE 4: BLASIUS FLOW-VELOCITY PROFILE

77



FPIGURE 5: BLASIUS FLOW~MOMENTUM BALANCE
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PIGURE 6: BLASIUS FLOW-STEP SIZE STUDY FOR FINITE
DIFFERENCE SCHEMES,F AT n = 1.0
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FIGURE 7: BLASIUS FLOW-STEP SIZE STUDY FOR THE EXPONENTIAL
SCHEMES, F AT n = 1.0
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BLASTUS FLOW-STEP SIZE STUDY FOR FINITE
DIFFERENCE SCHEMES,F aT n = 2.0
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FIGURE 9: BLASIUS FLOW_STEP SIZE STUDY FOR THE EXPONENTTAL
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FIGURE 13: MODERATE “"INJECTION AT AN AXISYMMETRIC STAGNATION
POINT-STEP SIZE STUDY FOR THE EXPONENTIAL SCHEME,
F AT n=256.0 )
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FIGURE 14: MODERATE INJECTION AT AN AXISYMMETRIC STAGNATION POINT-STEP
. SIZE STUDY FOR FINITE DIFFERENCE SCHEMES, F AT n = 8.0
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FIGURE 15:

MODERATE INJECTION AT AN AXISYMMETRIC STAGNATION ?OINTuSTEP SIZE
STUDY FOR THE EXPONENTIAL SCHEMES, F AT n
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STEP SIZE STUDY FOR THE EXPONENTIAL SCHEMES,F AT n = 10.0
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FIGURE 18: 'STRONG BLOWING AT AN AXISYMMETRIC STAGNATION
POINT-VELOCITY PROFILE



FIGURE 19:
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FIGURE 20: STRONG BLOWING AT AN AXISYMMETRIC STAGNATION POINT-STLEP SIZE
STUDY FOR FINITE DIFFERENCE SCHEMES, F AT n = 48
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FIGURE 22: STRONG BLOWING AT AN AXISYMMETRIC STAGNATION POINT-STEP SIZE STUDY
FOR FINITE DIFFERENCE SCHEMES, F AT n = 50.
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FIGURE 24: STRONG BLOWING AT AN AXISYMMETRIC STAGNATION POINT-STEP SIZE STUDY
FOR FINITE DIFFERENCE SCHEMES,F AT n = 52
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FIGURE 25:

STRONG BLOWING AT AN AXISYMMETRIC STAGNATION POINT-STEP SIZE STUDY
FOR THE EXPONENTIAL SCHEMES,F AT n = 52



