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DYNAMICS OF DISCONNECTABLE MICRODRIVES OF MINE HOISTING UNITS

D. P. Pampura and A. K. MasliV

Set forth in the present study are the results of the /1002*

study of the dynamics of a two-speed microdrive with an

electromagnetic friction clutch. An electrodynamic model

was developed in the State Institute for the Design and

Planning of Electric Mine Equipment for this purpose. The

method selected for studying the dynamics is advisable pri-

marily because it makes it possible to study the dynamics

of the full-scale unit on a laboratory model with great

reliability, and to correctly select the design and parameters

of the microdrive, even in the development stage.

Given in figure 1 is the block diagram of a mine hoist-

ing unit with a disconnectable microdrive and an electro-

dynamic model of it. We will designate the total moment of

inertia of all of the elements of the hoist system connected

with the driven portion of the clutch and relative to the

shaft of this clutch by I, and that of all of the elements

connected with the driving portion of the clutch by I2.

The parameters of the electrodynamic model of the dis-

connectable microdrive are established based on the criteria

of similitude, according to the basic factors which affect

the dynamics of the drive [l]. The scale factor of the model

is equal to ̂ -.

The.moment of force on the driven shaft of the model is

provided using an adjustable mechanical brake b under con-

ditions of inspection of the shaft and cables, and by means of

*Numbers in the margin indicate pagination in the foreign text.



electrodynamic braking of the main

engine !_ under conditions of the

hauling up of containers. Different

ratios of the moments of inertia

Ii:I2 are reached using a device 6

with calibrated plates, the moments

of inertia of which are selected

with the condition that the ratios

lit I s corresponding to the actual

units are obtained (0.6-1.1).

The most important element of

the model being studied is the

electromagnetic friction clutch,

built into a reduction gear attach-

ment j>. One can, with an acceptable

error value, write the expression

for the torque of this clutch as

M, (I),
,. !

where ^ is the mechanical constant

of the clutch, determined by the

ratio of the average torque of the

clutch to the time of its engage-

ment .

A 003

Fig. 1. Block diagram of
hoisting unit with dis-
connectable two-speed
microdrive: a) full-scale
unit: 1—effective load;
2—skips; 3—cables; 4—
blocks; 5i7t9—hoisting
machine, reduction gear,
and engine; 6,8—main and
flexible couplings; 10,11
—microdrive reduction
gear and engine; b) model:
1,2—main and auxiliary
engines;. 3—tachogenerator;
4—mechanical brake; 5— T-. +. * j.̂  •, j.
reduction gear attachment Engagement of the electro-
with electromagnetic fric- magnetic friction clutch is accom-

n̂?rS!thr~ o?r *"•»»' in two stages,
inertia. 1. The time period from the

beginning of engagement of the clutch

control winding to the occurrence of

M-ro^Mi' Here, MX is the moment of force of the driven part.

During this period, the driven part is immobile, and all of the



supplied energy is expended for overcoming the forces of

sliding friction. In turn, this stage can be divided into

two periods: a) the period from the moment of engagement of

the clutch winding to the moment when the gap between plates

will be equal to zero; during this period, the time of "jump-

over" of the anchor is determined by the forces of the mag-

netic field; b) the period up to the occurrence of M.fnfc=M1 .

2. The time period from the beginning of rotation of .

the driven part to the occurrence of full engagement of both

parts of the model. The duration of this period is determined

by means of the combined solution of the equations of motion

of the driven and driving parts.

Insofar as a rigid connection of the indicated parts of

the model is formed with the moment and slip of the auxiliary

engine, which generally do not correspond to the moment of

force of the driven part, . acceleration or slowing of the
•

entire system to a speed corresponding to the moment of force

is the final stage of the transient process.

Thus, the total time of the transient process of

engagement of the microdrive is

where t0 , tlt ^s are the time of the "jump-over" of the

anchor of the clutch, and the first and second stages of en-

gagement of the clutch, respectively, in seconds; t3 is the

time of acceleration or slowing of the system, in seconds.

The dynamics of a disconnectable microdrive have their

own specific features under the conditions of inspection of the

shaft and hauling up of containers. Therefore, it is advisable

to examine these conditions separately.



Conditions of inspection of the shaft and cables. In

the period preceding engagement of the microdrive, the driven

part is immobile and the driving part rotates with an angular

velocity ajs. The equation of motion of the driving part has

the form

*;,- M — Mts

where M is the present moment of the auxiliary engine, in nm;

M2y is the moment of force of the losses of the driving force

of the model, in nm.

All of the parameters included in (3) and subsequent

equations are relative to the shaft of the clutch.

We will assume that the mechanical characteristic of

the auxiliary engine is linear, i.e.
*.".' •'•'.,

'•';•.£;• M*
*•"' "•.'.'-

where M^ is the rated moment of this engine, in nm; s^ and

s are its rated and current slip.

Switching from the angular velocity cjs to the slip s, /100̂ -

we obtain the differential equation of slip of the driving

part of the model after simple transformations

where T2 is the electromechanical constant of the driving part

of the model;

is a coefficient.

Taking into account the fact that expression (1) takes



place with t<T, we find the general solution of equation (5)

as
.....,, . r, . ' ' . ; • ; • ̂ /K:̂ '̂ '̂-'

Substituting the values of the parameters of the model

r2=0.57; *2=0,098; A,

into (6) and proceeding from the initial conditions: t=0, M

Mas , we find the partial solution of (5) in the first stage

for the ratio J1:J2=1.1.

'::',; s=0,97<r''75'+ 1,7*̂ 0,9636. •̂ Q̂v'HwW'-'Rf
•'• '" " '''*''

With ±>T, the torque of the clutch M^^ is a constant,

and the general solution of equation (5) has the form

Substituting the values of the parameters into (8) and

taking into account that, with t=T, the slip s is determined

from (?)» we find the value of the constant of integration

and the partial solution of (5) in the second stage

US-0;i286̂ I'M̂ ^̂
• . . ' •' ' - I - " - ••.•.!'. •. ..V."'> .-..•. • i f •̂ M'JtK̂ l'Wt

The slip curve of the driving part of the model s(t), in

accordance with (7) and (9). is given in figure 2.

The equation of motion of the driven part of the model

has the form:

where Mls is the moment of force of the losses of the driven

part of the model, in run; ^jr is the angular velocity of ro-

tation of the driven part, in rad/sec.

5



Switching in a similar manner

from the angular velocity fjj. to the
slip slf after simple transfor-
mations, we obtain the differential
equation of the slip of the driven

part of the model

Fig. 2. Graphs of the
slip of the driving s(t)
and driven s^t) parts
of the model under con-
ditions of inspection of
the shaft and cables with
JlSJ2=l.l (1) and 0.6 (2)
and Mi=0 (a) and 0.5 M-
(D).

whereAi is a coefficient.

The general solution of equation
(11) has the form: in the first

stage with t<T

and in the second stage with t>T A 005

The partial solutions of equation (13) are found by
similar means. The calculation graphs of the slip of the
driven part of the model Si(t) are given in figure 2. The
points of intersection of the curves s(t) and Si(t) correspond
to the moments of full engagement of both parts of the model.
In this case, the graphic solution of the system of equations
ma}ces it possible to simply and graphically determine the
slip s2 and the time t2 which correspond to full engagement
of the clutch plates. It should be noted that the analytic
solution of this very system of equations is very complex, in

spite of their comparative simplicity.

In the period t3, the system accelerates up to an es-

tablished slip s5 . The nature of the system's motion during



this period is determined by the form of the mechanical

characteristic of the auxiliary engine, and the duration —

according to the commonly-known expressions.

Given in figure 3 are the graphs of the relative moment

Mof the auxiliary engine (t) and the slips of the driving

s(t) and driven Sj.(t) parts of the model in the transient

process, established by calculation and test means.

Comparison of the results of

the theoretical and experimental

study of the dynamics of the model

shows the sufficient similarity of

the calculation (solid) and test

(dotted) curves of the transient

process. The discrepancies in the

calculation and test values do not

exceed 8-15$, with the model para-

moment "ofSfaSxiliL-y meters Boated above, for the
engine and slip of the relative moment of the auxiliary
parts of the model under . , ., .. ̂ ^ „ ., ,. ,,
conditions of inspection englne, and 5-l# for the time of
of the shaft and cables, the transient process,
with J1:J2=1.1; M!=O (a)
and 0.5 M^ (b) .

Conditions of hauling up of

containers. In the period preceding

engagement of the model, the driving part rotates with an angu-

lar velocity £J 2, and the driven part is slowed from a velocity

u i>4/2 to a velocity <̂ /vj. With reduction of the velocity of

the driven part to a velocity ̂ , the velocity relay functions

and the clutch winding is engaged, which is the beginning of

the transient process. With engagement of the clutch plates,

the driven part is slowed sharply and the driving portion can

be accelerated.



The equation of motion of the driving part of the model

has the form

By solving equation (3) in a similar manner, we obtain

the differential equation of slip of the driving part of the

model
<'#•:<&••• j • •,, . - •• ...-•'•/•.'

The general solution of this equation has the form: in

the first stage of engagement of the clutch, with t<T

and in the second stage, with t>T /1006

The constants of integration in these equations are

determined from those very same initial conditions as in

equations (6) and (8). By substituting the values of the

parameters into (16) and (1?) and determining the integration

constants, we find the partial solutions of equation (15) as:

for the first stage of engagement of the clutch

and for the second stage

The slip curves of the driving part of the model s(t),

in accordance with (18) and (19), are given in figure ^.

The equation of motion of the driven portion of the model

has the form

8



After simple transformations, we obtain the slip equation

of the driven part of the model

Its general solution has the form: in the first stage of

engagement of the clutch

< ___ • f* Jt __|§ fc 41 I, b ( AM _L 44 ^/ "'• • • * . < • / , ' : ''.',I » w *^" 7i I M iT **l\"* 1 i^ '"is/»i . " T '. • • . , " . '

and in the second stage

: . • ! "•: • • ' • • '• *^ /-• -;'
• • ' , ' ; > * **l

? , . ;—. . V: (23)

The partial solutions of equation (21) are found "by

similar means. The calculation graphs of the slip of the

driven part of the model are given in figure ^. Examined

here are two cases of engagement of the clutch winding: with

s3.=-0.25 (I) and -0.1 (II). The intersection of the graphs

O.20

ff./6

0.13

008

004

0

\

0.1

Fig. 4̂-. Graphs of slip of the
driving s(t) and driven Si(t)
parts of the model under con-
ditions of the hauling up of
containers with J1:J2=1.1 (1)
and 0.6 (2); 1̂ =0.5 M̂  (a) and

s«=-0.25 (I) and -0.1
(II).

Fig. 5' Graphs of the moment
of the auxiliary engine and
the slip of the parts of the
model under conditions of the
hauling up of containers,
with Jj-t J2=l .1; Sj=-0.25; M!
=0.5 M^ (a) and M^ (b) .



of s(t) and Si(t) give a graphic solution of the system of

equations (15) and (21).

In the period t3, both parts of the model are tightly /IQO?

engaged, and the system is slowed down to an established slip

ss , corresponding to the moment of force of the driven part.

The regularity of motion of the system is determined, in this

case, by means of the mechanical characteristics of the engine,

and the duration of the period—according to the well-known

expressions.

Given in figure 5 are the graphs of the relative moment

of the auxiliary engine -«—(t) and the slips of the driving

s(t) and driven Si(t) parts of the model during the transient

process, established by calculation (solid) and test (dotted)

means. Comparison of these graphs shows the sufficiently

close similarity of the calculation and test data. The dis-

crepancy in the values of these data from the model parameters

examined above does not exceed 11-20$.

If one takes into account that the moment of force does

not exceed 0.7 M^ during the hauling up of containers [33, then

the error of 20% is quite acceptable during engineering calcu-

lations.

The graphs given in figures 3 and 5 characterize the

dynamics of a model of a microdrive with an electromagnetic

friction clutch as quite favorable. Because of the smooth

increase in the torque of this clutch, there occurs a mono-

tonous nature of the load on the auxiliary engine and the

change in the rates of rotation of the driving and driven

parts of the model during the transient process. The load

moment of the auxiliary engine of the model, with the para-

10



meters of the latter being studied, does not exceed 1.2 M^

under conditions of inspection of the shaft and cables, and

does not exceed the static under conditions of the hauling

up of containers. Consequently, the utilization of an

electromagnetic friction clutch as the control element of a

disconnectable microdrive makes it possible to substantially

modify the dynamics of the latter and simplify the operating

conditions of the auxiliary engine.

Conclusions

1 . The favorable dynamics of the studied model of a

disconnectable microdrive with an electromagnetic control

friction clutch indicates the advisability of the develop-

ment and use of a two-speed microdrive for hoisting machines

with the indicated clutch.

2. In connection with the practical absence of over-

loading of the microdrive in the transient process, the

parameters of the latter can be established on the basis

of static calculations.

3« The procedure given in the study for calculating

the transient process of an electric drive with an electro-

magnetic friction clutch is characterized by simplicity

and a permissible error magnitude, in connection with which

it can be utilized in engineering practice.

Appendix

The general solution of equation (5) is obtained in

the following manner:

' V- -O|f ' O .' I ;
../»::r-e J/» lJftaU/is-t-M)*J7;; rfr+CJ« •;..:;;.:

':','"'-','•'• ' ' • ' ; • ' f ' ' - ' • JLP '•••'•. • • ' • : - ; . - !
4fc.i Ce~1>\+kte~T'} Mtse

T'dt + *,*„«" r'J te^dtr* N
';^:^'\'ff'' 'V. _J1'.' • ' •"• • .'•'•• •• •*'^'&'-'^-. ,v

iS^^VC'̂
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