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ABSTRACT
 

Part I of this report describes the theory and application
 

of a method which utilizes the free response of a structure to
 

determine its vibration parameters. The time domain free
 

response is digitized and used in a digital computer program to
 

determine the number of modes excited, the natural frequencies,
 

the damping factors, and the modal vectors. The underlying
 

theory is developed, including the basis of the computational
 

procedures required, as well as the requirements regarding the
 

sampling rate in the digitizing procedure. Consideration is
 

given to the practical application of the theory. The technique
 

is applied to a complex "generalized payload" model previously
 

tested using sine sweep method and analyzed by NASTRAN. Ten
 

modes of the payload model are identified.
 

In case free decay response is not readily available, an
 

algorithm is developed in part II to obtain the free responses.
 

of a structure from its random responses, due to some unknown or
 

known random input or inputs, using the random decrement technique
 

without changing time correlation between signals. The algorithm
 

is tested using ramdom responses from a "generalized payload"
 

model and from the "space shuttle" model. The resulting free
 

responses are then used to identify the modal characteristics of
 

the two systems.
 

Key Words:
 

Vibration Testing
 

Random Decrement Technique
 

Modal Testing
 

Identification
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MODAL IDENTIFICATION OF STRUCTURES FROM-THE
 

RESPONSES AND- RANDOM DECREMENT SIGNATURES 

By 

Sam R. Ibrahim' 

PART I 

TIME DOMAIN MODAL IDENTIFICATION TECHNIQUE
 

Introduction, 

The experimental determination of the natural frequencies
 
and modes of structures is usually pursued through the application
 
of frequency response or other frequency domain methods. 
Many
 
test procedures have been proposed (refs. 1 to 10), 
differing in
 
the manner in which the structure is excited, the quantities which
 
are measured, and the manner in which the experimental data ate
 
analyzed. Analysis of frequency domain methods have shown that
 
there are limits on the degree of damping and the closeness of
 
natural frequencies beyond which frequency response methods can
not yield accurate information about the vibration parameters
 
(refs. 11 to 14). 
 These limitations are essentially due to modal
 
interference which can obscure the separate observation of indi
vidual modes and natural frequencies. Most-modal vibration test
 
methods are, then, based on assumptions of negligible mode
 
coupling, although some methods have been introduced to deal with
 
modal interference 
(refs. 15 to 17). Special methods, though, have
 
the main disadvantage that it must somehow be determined in advance
 
that special attention is, in fact, required.
 

These particular problems encountered using frequency response
 
methods have led to the consideration of time domain based methods
 

f Assistant Professor, Department of Mechanical Engineering and

Mechanics, Old Dominion University, Norfolk, Virginia 23508
 



in vibration testing. The direct use of time response infor
mation, without transformation to the frequency domain, should
 
not necessarily require assumptions about the interference of
 
modes due to heavy damping or closely spaced natural frequencies,
 
and would thus eliminate the necessity for special procedures in
 

these cases.
 

The theory and application of such a time domain method
 
were presented in references 18 and 19. The method involves the
 
use of transient response data in determining the differential
 
equations of a lumped parameter model of the system under test,
 
followed by analysis of the mathematical model to determine the
 
vibration parameters. An alternative time domain technique is
 
described in this paper. This method differs from the one noted
 
previously in that here a mathematical model or differential
 
equation of the structure is not developed; rather, the struc
ture's free response is used directly in a computational proce
dure which yields the vibration parameters. In both methods,
 

either the acceleration, velocity or displacement response may
 
be used, but in the earlier method it was required that the
 
recorded response be numerically integrated twice in the compu
tational procedure, while in the present case no such integration
 

is necessary.
 

Theory
 

The test procedure described utilizes the free response of
 
the structure under test. As for the previously referenced time
 
domain method (refs. 18, 19), the free response is generated
 
after the sudden termination of excitation of the structure by
 
a forcing function containing contributions in the frequency range
 
of interest. It is necessary that a mode contribute to the
 
response in order that it can be detected. Narrow band random
 
excitation and rapid frequency sweeps have been used with success
 
in laboratory experiments. In this way, a considerable amount of
 
energy may be built up in the structure during excitation, to be
 
dissipated during the free response. This contrasts with transient
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procedures which depend upon, and can be seriously limited by, the
 

amount of energy which can be imparted to the structure by a pulse
 

or a step.
 

Dependent upon the form of excitation, the response may, in
 

theory, contain an infinite number of modes, although it is not phys

ically possible in practice. For the theoretical development
 

described here, it is assumed that a finite, but for the present
 

known,' number of modes is excited. While this assumption is
 

necessary and fundamental to the technique described, it also
 

allows the testing of a complex structure to be done in a series
 

of tests, each of which covers a frequency spectrum only as wide
 

as desired. This makes the procedure analogous to a series of tests
 

on simple systems rather than a single test of a large system,
 

keeping both instrumentation and computational complexities to a
 

lower level.
 

It is convenient to imagine the response that is thus
 

monitored as being equivalent to that ot a hypothetical n-degree
 

of freedom lumped parameter system with all modes excited and in
 

which the masses undergo the same motions as the measuring
 

stations on the structure under test. The natural frequencies
 

of the hypothetical lumped system are the same as those of the
 

structure, and the mode shapes of the lumped system are equiva

lent to the modal displacements of the structure measured at the
 

measuring stations. The identification of the vibration para

meters of the structure is now pursued through the determination
 

of the vibration parameters of the lumped system.
 

-The lumped system is assumed to be described by the follow

ing equation during its free response:
 

MR + + Kx = 0 (!) 

M, C, and K are nxn matrices, while x, x, and R aren-dimen

sional vectors. The solution of this equation is assumed to be
 

x = peX(2) 
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whence
 

[?%M + XC + K]2= 0 
 (3)
 

Equation (3) defines 2n values for VI which are also the roots
 
of the characteristic equation of the system. 
For each root, there
 
is a corresponding vector, _,of relative displacements of the
 
coordinates of the system; X and the elements of p are real for
 
overdamped modes, but for underdamped modes they are complex, and
 
occur in conjugate pairs. Each conjugate pair combines to produce
 
a real mode shape corresponding to a single natural frequency and
 
damping factor. For a complex conjugate pair of modal vectors
 
having'the first element of each normalized to unity and having
 
the kth elements a ± id, the displacement of the kth coordinate
 
is 1da TT , and its motion lags that of the first coordinate by
 

- I
tan (d/c). For a complex conjugate pair of roots a±ib, the
 
damped natural frequency is Wnd = b, the undamped natural frequency
 
is Wn = AT + bW, and the damping ratio is
 

The problem of modal vibration testing-is to determine, from
 
the test data, the values of X and p which satisfy equation (3).
 
The test data required may be any one of the displacement, velocity
 
or acceleration responses assumed for the present to be measured
 
at the n stations. The response, be it displacement, velocity or
 
acceleration, consists of a sum of contributions made by all the
 
modes, and can be written as
 

2n
 

j e(4)
 
j=1
 



The response at time t.1 is
 

2n t. 
L(t i ) = x je j (5) 

j=l
 

and the response vectors measured at 2n different instances of
 

time can be written in matrix form as
 

[x1L2 ....L2n ] = 

Alt1 Alt2 Alt2n
 
eee 

A2tl A2t2n()
 

(6)[21 22- • 22n ] e . ....... e 

! I 

I I 

I I 

e2nt1 X2nt2n
 
e e 

or
 

X =PA (7)
 

Responses that occur at time At later with respect to those of
 

equation (7) are
 

[I Y2 ....Y2n ]
[y I2= 

A1 (t1+At) ...... A 1 (t2n+At)
 
e e
 

I I 

I 2 (8) 

i I 

A (t +At) 2 n (t2 n+At)e 2. e 
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where 

yi = x (ti + At), i = 1,2,...,2n 

Equation (8) can be rewritten as 

[yl Y2 .... Y2n] = [9i 52 .... !2n]A (9) 

or
 

Y = QA (10)
 

where
 

aAt 

gi= 2je , i = 1,2,...,2n (ii) 

In a similar manner, responses that occur at time At later with
 

respect to those of Y are
 

2n ] ][z1 Z2 .... = [rr1 2 .... .2n (12) 

or 

Z= RA (13)
 

where 

zi = x(ti + 2At), i = 1,2,...,2n (14) 

and 

XlA 2Ai = 1,2,... ,2n 
ri = gie = ie (15) 
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The responses given by equations (7), (10) and (13) can be
 
manipulated to solve for the eigenvalues and modal vectors. First,
 

equations (7) and (10) are grouped to be written as
 

A (16) 

or
 

- --A (17) 

and equations (10) and (13) are written as
 

or
 

It is shown in the appendix that the inverses of the matrices
 
P A 

-Pand 0 exist. Also, the inverses of _pand _T exist, because
 
their columns are proportional to the modal vectors, which must be
 

linearly independent. Hence, equations (17) and (19) can be mani
pulated to eliminate A, giving the result
 

A Aj 

0 (D (20) 

This equation relates each column, -1i, of T to the corresponding
 
1
column, of - through
 

_-D =6-i i = 1,2,...,2n (21)
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A
 

The column vectors P. and P. are also related through equations
-1 -.
 
(11) and (15) by
 

XX.At
 
T. - e Ti (22)
 

Equations (21) and (22) can be combined to give
 

= 
- _i e TP. 
 (23)
 

This equation is an eigenvalue problemwhich enables the measured
 
response to be used in the calculation of eigenvectors and eigen
values which are related to the vibration parameters of the struc
ture. 
The modal vectors are merely the first n elements of the
 

A
 

eigenvectors of Q-i, but the relationship between the eigenvalues
 
and X1, the characteristic roots of equation (1), requires further
 
analysis. This relationship'is discussed below with reference to


-l
 an eigenvalue 8 + iy, of 
A 

1-, which is related to a characteristic
 
root a + ib. It is to be noted that the eigenvalue 8 - iy and.the 
corresponding characteristic root a - ib would also exist, but for 
simplicity it will henceforth be assumed that b > 0 with the under
standing that'for every b > 0 the conjugate root a - ib also exists. 
The eigenvalue 8 + iy is related to a + ib through 

8 + iy = e(a+ib)At (24) 

Thus,
 

aAt
 
= e cos bat
 

and
 

aAt
 
y = e sin bAt
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from which
 

a = -L in (y2 + 02) (25) 
-2At
 

and
 

b=i tan 1 (Y) 
 (26)
At
 

Hence, real eigenvalues of 0-i correspond to critically or over
damped modes because they represent real characteristic roots.
 
Natural frequencies of underdamped modes are represented by complex
 
conjugate eigenvalues and must be determined using equations (25)
 

and (26).
 

Sampling Rate
 

Equation (26) does not allow the natural frequencies to be
 
determined uniquely, because it can be written as
 

1 ta- 1<tan-l1(')<7r 
b [tan ( + kuIf... o (27)At k= 01,2,...
 

Thus for each damped natural frequency b, there is a relationship
 
between At and the value of k which should be used in equation (27);
 
At is the time delay used to generate the delayed response matrices
 

Yand Z from X, and thus t represents the sampling rate required
 
to obtain these delayed responses, although consecutively sampled
 
response vectors need not be used as the columns of X.
 

To avoid ambiguity in the use of equation (27), it is necessary
 
to specify that all the modes which contribute to the response
 
correspond to frequencies which can-be calculated from the equation
 
by using only a single value for k. It is required then that for
 
all values of b in the frequency range of interest,
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klr<b< (k+l) (28)
 
At - At 

for some value of k. Writing the minimum and maximum values of
 

damped natural frequencies as related to the minimum and maximum
 

values of the frequency range of interest as
 

b >2jrbmin>2ffmin
 

b <2nf
 
max max
 

and the sampling frequency f as
s
 

f = 1
 
s At'
 

equation (28) requires that
 

fsk<2f.i
 
f5 k 2f>mk 
 = 0,1,2,...
 
f s(k+l)>2f ma 

or
 

2f 2f
 
max <f < mi , = 0,,2,. (29)

k k ","
k+l s 


This equation can be used to relate the frequency range of interest
 

to the acceptable value or values of k for use in equation (27)
 

through
 

2f 2f
 
max< min
 

k+l k
 

or
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fmax <k+l k = 0,1,2, (30) 

min
 

The determination of frequencies in a range from fmin equal to
 

zero, to some upper limit fmax' requires, from equation (30),
 

that k = 0. In addition, equation (29) requires that
 

f >2f (31)
 

This requirement on f may present practical difficulties if fmax
 

is excessively high, but it is seen below that the requirement
 

for determining high frequencies can be made less demanding if
 

testing is done-for a frequency range having a lower limit greater
 

than zero and thus allowing values other than zero to be used for
 

k. Equation (30) defines the maximum width of the frequency range
 

which can be used with the various values of k or, conversely-,
 

it can be thought of as defining the possible values of k which
 

can be used for a desired frequency band. This information can
 

then be used in equation (29) to determine the allowable sampling
 

frequencies. The maximum width of the frequency range is fmax/fmin
 

equal to two, for which the lowest sampling frequency is fmax and
 

k equals unity. As the frequency range decreases, the sampling
 

rate may be chosen from an allowable range, and with frequency
 

ranges that are sufficiently narrow it becomes possible to choose
 

sampling frequencies from several allowable ranges, each range
 

corresponding to a different value of k. This is demonstrated in
 

an e Ample below.
 

It is supposed that all the natural frequencies up to 1000
 

Hz are to be determined for a structure. Two approaches can be
 

taken: either the entire range can be covered at once, or it
 

may be subdivided into several narrower ranges, each to be
 

covered separately.
 

A single test covering the range from 0 to 1000 Hz would require
 

from equation (31), that the sampling frequency be any value above
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2000 Hz, and k = 0 should be used in equation (27).
 

Division into narrower frequency ranges must keep in mind that,
 
for any range having a nonzero lower limit, the upper frequency limit
 
must be not more than twice the lower frequency limit. (If the
 
upper frequency limit is .more than twice the lower frequency limit,
 
k should be 0). 
 Suitable ranges for the case being considered would
 
be 0 to 400 Hz, 400 to 7b0 Hz, and 700 to 1000 Hz. Each frequency
 
range must be studied using response information which contains
 
(through filtering or other means) only frequency components in the
 
range of interest. The frequency range 0 to 400 Hz must be studied
 
using a sampling frequency of at least 800 Hz, with k = 0 in eqcation
 
(27). The 400 to 700 Hz range requires, from equation (30), that
 

700 < k+l 
400 k
 

hence k = 0, 1 are acceptable, with corresponding sampling rates
 
as determined from equation (29). These rates are f >1400 Hz for
 
k = 0, and 700 Hz < fs < 800 Hz for k = 1 in equation (29). For 
the 700 to 1000 Hz range, k = 0, 1, 2 are acceptable with sampling 
rates f > 2000 Hz for K = 0, 1000 Hz < f < 1400 Hz for k = 1 and


5 
 5

667 Hz < f s < 700 Hz-for k = 2. 

In comparison of sampling rates for the two approaches, the
 
first requires a rate of at least 2000 Hz, while the second requires
 

a rate of at least.800 Hz. The requirements for the second
 
approach can be reduced still further if narrower frequency ranges
 

are chosen.
 

Another solution to the problem of requiring high sampling
 
rates for a certain frequency range of interest is the use of a
 
tape recorder at a high recording speed, with the recorded response
 
then played back at a lower speed during the digitization process.
 
This can reduce the required sampling rate by a factor of the ratio
 
of the two recorder speeds that have been used. This ratio is to
 
be used later as a correction factor to obtain the actual struc
tural frequencies.
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Practical Application
 

An important assumption made in deriving the theory is that
 

the number of measuring stations on the structure equals the
 

number of degrees of freedom of the hypothetical lumped para

meter system with all modes excited. Thus in performing a test
 

it would be necessary to know in advance the number of equivalent
 

degrees of freedom to be excited, so that the correct number of
 

measuring stations could be employed. In practice, this informa

tion is not usually available, and even if it were it might not be
 

possible or desirable to use the same number of measuring stations
 

as there are equivalent'degrees of freedom. This section describes
 

a procedure whereby the theory developed thus far may be used in
 

conjunction with any convenient number of measuring stations. As
 

few as a single station may be used for determining any number of
 
frequencies in a single test, and modal displacements at any
 

number of points may be determined using as few as two stations
 

at a time in a series of tests using one station as a reference.
 

Three possibilities exist in the relationship between the
 

equivalent number of degrees of freedom excited and the number of
 

stations at which measurements are made. The number of stations
 

used may be greater than, equal to, or fewer than the number of
 

degrees of freedom. Each situation requires a different compu

tational approach, so the determination of which of the three
 

possibilities is actually present is the first goal in the analy

sis of experimental data. These same possibilities arise and are
 

dealt with in reference 19 and parallel procedures are used in
 

dealing with them here. Verification is dealt with fully in
 

reference 19, so emphasis here is placed only on describing the
 

procedures employed.
 

The first step in the analysis of experimental data is the
 
determination of the number of degrees of freedom of the
 

associated hypothetical lumped parameter system. This is done
 

by determining the number of independent modal vectors which
 

contribute to the response, on the basis that the rank of the
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matrix 6 is equal to the number of independent modal vectors,
 
2k, used to make up its columns. It is kept in mind that a
 
pair of complex conjugate modal vectors corresponds to a single
 
real underdamped mode, and thus for a structure in which all
 
modes are underdamped, the number of real modes is half the
 
number of modal vectors. Also, overdamping results in two real
 
modal vectors corresponding to a single degree of freedom. Hence,
 
the existance of 2k independent modal vectors corresponds to a
 
corresponding lumped parameter system having k degrees of
 

freedom.
 

First, the matrix D is formed using the responses obtained
 
from all the measuring stations which have been used. Then, in 
theory, it should only be necessary to successively calculate the 
determinants of submatrices of 0, using the first m elements of 
the responses of m stations at 2m instants of time, where m 
takes on values from unity up to a value at which the determinant 
becomes zero. This value of m equals k + 1 whence the response 
of only Itstations need to be used to identify the vibration 
parameters of the structure. In practice the computed determinant
 

is never zero due to measurement noise and computer round-off;
 
hence, instead of-using the value of the determinant itself, the
 
ratio of two successively calculated determinants should be used
 
(ref. 20). The responses of the excess measurement stations may
 
be used in a modification of the computational procedure as
 

described in (ref. 19).
 

If the determinant check described above does not reveal the
 
number of modes excited, then the number of modes is either equal
 
to or greater than the number of measuring stations. In either
 
case, it is required to increase the apparent number of stations
 
through the generation of response vectors of higher order, with
 
a corresponding increase in the number of time instances considered,
 
thus increasing the order of $ and allowing the determinant check
 
to be continued. The response vectors of higher order take the
 

form
 

14
 



(32)
 

where
 

x = x (t + AT) (33)-a

in which AT is any convenient value which must be different from
 

At. The procedure can be repeated to triple, quadruple, etc. the
 

order of the apparent response vector using other values for AT,
 

using the determinant check after each increase until the number
 

of modes is determined. The frequencies are then computed for the
 

appropriately enlarged 'Z,and the mode shapes are give by the
 

eigenvector elements which correspond to the original measuring
 

stations.
 

Another problem of practical importance which arises is in
 

the introduction of errors due to measurements and recording noise.
 

In the next section, two methods are suggested to reduce the
 

effect of measurement errors on the identified parameters. These
 

methods were used-in the second (payload model) experiment.
 

Measurements And Recording Noise
 

Two methods are used to minimize the effect of different
 

kinds of noise on the identified parameters. These two methods
 

are
 

1. Least Square Error Minimization: This can be accomplished
 

by using more data than needed and finding the parameters with
 
A 

least error that satisfy the data. In such a case ' and ' will 

be rectangular matrices and equation (23) will be:
 

ST T- eXiAti
 
[D ] [ T]-! i = (34) 
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2. The Use of Overspecified Math Model: In this case the
 
number of degrees of freedom of the mathematical model is larger
 

than the number of modes to be identified. This will give an
 
escape for some of the noise and thus improve the accuracy of the
 

identified modes.
 

Experimental Results
 

The payload model is shown in figure 1. Sixteen accelero
meters were fixed to the eight bulkheads, eight accelerometers on
 
each side (fig. 2). Two data groups were used. Data group one
 

had accelerometers 1 to 8. Data group two had accelerometers 9
 
to 16, and accelerometer 8 w&s a common accelerometer for the two
 
data groups. A random input was -applied at station 8. The input
 

was cut off, and free responses from data group one were recorded
 
on a tape recorder. The procedure was repeated for data group two.
 
A two-way switch was used to cut off the random input and at the
 

same time generate a D.C. signal, recorded on a separate channel
 
of the tape recorder, was used to determine the start of the free
 

response.
 

The free responses were filtered to eliminate frequency com

ponents higher than 350 Hz and then digitized at a sampling rate
 
of 2000 samples/second. only 500 points for each channel were
 

stored to be used as data for the identification program. This
 

corresponds to a record length of 0.25 second.
 

The noise/signal ratio for the resulting data was estimated
 

at about 22 percent. This estimate was based on comparing two
 
responses from station 8 that were recorded simultaneously on two
 
channels of the tape recorder. The root mean square of the two
 

records, rms and RMS, were calculated and the noise/signal ratio
 
was estimated using the following formula:
 

N/S = (RMS -rm 

RMS x rms
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Higher order response vectors were generated using equations
 

(32) and (33). Results of the determinant check are shown in
 

table i, from which it is indicated that the system had 10 modes
 

in its response. The determinant check indication is not as
 

strong as in the cantilever beam case because of the higher level
 

of noise in the payload model response.
 

Although it was known from the determinant check that the
 

system's responses contained about 10 modes, a mathematical model
 

with 20 degrees of freedom was used to identify the system. Also,
 

a math model of 40 D.O.F. was used. The structures mode can be
 

differentiated from noise modes by observing that the system's
 

modes occur consistently in different computer runs. Table 2
 

shows the frequencies of the 10 modes obtained by this technique
 

using a math model of 20 and 40 D.O.F. Also listed are frequencies
 

obtained by sine sweep test and NASTRAN. Figures 3a to 3f show
 

some of the identified mode shapes.
 

Conclusions
 

The theory and application of a time-domain modal vibration
 

testing technique are presented. The results of the two experi

ments reported in this work are very encouraging. The second
 

experiment (payload model) proved that the technique is insensi

tive to measurement noise. While the data used for this experi

ment had about 22 percent noise, the identified frequencies
 

compared extremely well with the analytical (NASTRAN) and the
 

other experimental (sine sweep) frequencies. Maximum error in
 

the identified frequencies was in the range of 2.5 percent.
 

Another important feature of this technique is the ability
 

to use an overspecified math mode to identify a number of modes
 

much less than the number of degrees of freedom of the math model.
 

This is very useful when the number of modes in the structure's
 

response is not exactly known because the determinant check, due
 

to high noise levels in the data, might be inconclusive.
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Simplicity and economy of the experimental procedure were
 
main factors in designing this technique. Any structure, however
 
complex, can be identified in stages using only two stations at
 
a time. Also, the data needed for the identification program was
 
minimized. 
The free response needed can be either displacement,
 
velocity acceleration or strain response. The length of record
 
needed to identify a certain structure was noted to be relatively
 
small. Only 0.25 second of data was used to identify the 10 modes
 

of the payload model.
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PART II
 

RANDOM DECREMENT TECHNIQUE FOR
 

MODAL IDENTIFICATION OF STRUCTURES
 

Introduction
 

In general, the experimental identification of structural
 

modes of vibration is carried out by measuring the input (or
 

inputs) to the structure under test and the resulting responses
 

due to this input. Some vibration testing techniques, in order
 

to simplify the identification procedure, use the free responses
 

of structures. In such cases, although the input excitation
 

need not be measured, some initial excitation is applied to the
 

structure, and free responses are measured immediately after the
 

initial exciting force is removed.
 

There are situations where controlled excitation or initial
 

excitation cannot be used. For example, if the structure to be
 

tested is in operation, applying any kind of external force may
 

cause undesirable interruption. Another example is the case of
 

in-flight response measurements where a complete knowledge of
 

the excitation is not usually available. In such cases, the use
 

of the "random decrement signature" technique (a special averaging
 

procedure which is used to determine the step and/or impulse
 

response from the random response) to obtain the free responses
 

is promising.
 

The random decrement signature technique (ref. 21) has been
 
successfully used for failure detection and damping measurement
 

of structures in single station, single mode response cases.
 

Application of the random decrement signature technique to a
 

multiple of signals changes the time correlation between the
 

individual signals. If the resulting responses are to be used
 

to identify several modes of a structure, the random decrement
 

signature technique must be modified to keep the time correlation
 

between signals unchanged.
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In this paper, an algorithm is developed to obtain the free
 

responses of a linear structure from its random responses, due to
 

some unknown or known random input or inputs, using the random
 

decrement technique without changing time correlation between
 

signals.
 

The algorithm is tested by applying it to random responses
 

obtained from two real structures. The first structure is a
 

generalized payload model previously tested using sine sweep
 

method and analyzed by NASA Structural Analysis (NASTRAN). The
 

second structure is the 1/8 scale space shuttle model with modal
 

parameters previously determined using sine sweep method and
 

Fast Fourier Transform (FFT). Only responses from four stations
 

on the Solid Rocket Boosters (SRB's) were considered in the case
 

of the space shuttle model. The filtered random responses from
 

these two structures were recorded and digitized. The free responses
 

were then obtained from the digitized random responses using
 

the modified random decrement technique. The resulting free
 

responses were used as data for a time domain identification
 

technique, described in Part I, to identify the modal parameters
 

of these structures.
 

The basic concept of the "random decrement signature"
 

(ref. 21) is based on the fact that a random response of a
 

structure due to a random input is composed of two parts:
 

(1) 	Deterministic part (impulse and/or step), and
 

(2) 	Random part (assumed to have a zero average).
 

By averaging enough samples of the same random response, the
 

random part of the response will average out leaving the deter

ministic part of the response. To avoid averaging out the
 

deterministic part of the signal, the samples can be taken starting
 

always with:
 

(a) 	a constant level: this will give the free decay step
 

response;
 

(b) 	positive slope and zero level: this will give the free
 

decay positive impulse response;
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(c) 	negative slope and zero level: this will give the free
 
decay negative impulse response.
 

In figure 4, if y(t) is therandom response, the free decay
 

response will be
 

N 
x(T= y (t + T) (35) 

n=l 

with 	the condition t = t 
n 

tn 	 t when y y x for case a,
 

tn = 	t when y = 0 and dy/dt > 0 for case b, 

or tn = t when y = 0 and dy/dt < 0 for case c. 

Random Decrement Signatures and Modal Identification of Structures
 

The response resulting from applying the random decrement
 
signature technique to a random response output of a structure under
 
test is the free decay response. This response can be used in
 
any identification technique (with force input equal to zero) to
 
identify the natural frequencies and damping factors of the struc
ture under test. This procedure has been widely used in flutter
 

testing (refs. 22,23). In flutter testing, determining natural
 

frequencies and damping factors is the primary goal, and one
 
response signal from the structure is sufficient to obtain such
 

information.
 

For complete modal identification of a structure, mode shapes,
 
frequencies and damping factors of a structure under test are to
 
be determined. This can be done by using a random input and the
 
random responses of the structure at the stations of interest due
 
to that input in some identification technique. If complete
 
knowledge of the random input to the structure is not available,
 

the use of random decrement signature technique seems to be the
 

answer.
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Applying the random decrement signature technique to each
 

individual signal of the multiple of signals simultaneously
 

recorded will change the time correlation between these individual
 

signals. Using the resulting signatures to-identify-the
 

structure will give the correct frequencies and damping factors,
 

but will give erroneous mode shapes because of the change in the
 

time correlation between the individual signals.
 

Multiple-Signal Random Decrement Technique
 

In this section, an algorithm will be developed to obtain the
 

free decay responses of a multiple of random response signals
 

simultaneously recorded from a structure using the random decre

ment technique without changing the time correlation between
 

signals.
 

To derive and prove this algorithm, a two-station response
 

will be used and then the algorithm can be generalized to any
 

number of stations.
 

In figure 5, if Yl' (ty and Y2 (t) are the random
 

responses of a structure at stations one and two due to some
 

known or unknown random input, a free decay response of these
 

two stations can be written as:
 

N 

( t i +1 )2 i(l -C (6 

with condition:
 

t. = t when yl (t) = ys (37) 

The condition imposed by equation (37) implies that the free
 

decay response of station one will have initial conditions of
 

x1(0) = Ys and (dxl/dT)= = 0. This means that the free decay
0 


response of station one resulting from the random decrement
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averaging process cannot diminish by the possibility of being
 

averaged out.
 

Unlike station one, the random response of station two has
 
no condition on the start of the samples. Averaging of station
 
two samples exactly follows that of station one.
 

The question now is whether it is possible for the deter
ministic response of station two to be averaged out since no
 
condition was applied to the start of its samples. The answer
 
to this question is readily available by examining equations
 

(36) and (37). Since the free decay of station one exists, and
 
since the two stations' random responses were recorded simultane
ously on the same structure and these two stations are dynamically
 
coupled, it is. impossible to have response from one station and no
 
response from the other.
 

To state the algorithm for a multiple of signals: if y(t)
 
is the random response vector of n stations on a structure due__
 
to some known or unknown random input or inputs with zero mean;
 
the free decay response vector for these n stations can be
 

written as:
 

N 
x() = Y (t i + z) (38) 

i=l 

with one of the following conditions
 

t = ti when y(t) = ys = (constant level) 

or y (t) = 0 and y.(t)>0 

or yk(t) = 0 and yt(t)<0
 

where t is any arbitrary leading station of the n stations
 

and N is the number of averages.
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Multiple-Signal Randomdec Computation
 

Assume Yi,j (i = 1,2,..n and j = 1,2,.. .m) is the random
 
response recorded simultaneously from n stations on a structure
 
and m is the number of data points for every station. Any of
 
these stations can be assigned as the leading station. This is
 
completely arbitrary as long as all the stations are recorded
 
simultaneously. The randomdec response xi,k according to equation
 

(38) will be:
 

N
 

Xik = N Yi,(r+k)
 

r=l
 

where r = 1,2.. N designates zero crossings with positive slopes 
of the leading station response and k = 1,...M; N will be the 
total number of averages, and M will be the number of randomdec 
data points for each station. 

Experimental Results
 

Payload Model.- Figure 1 shows the payload model structure.
 
The model was previously analyzed by "NASTRAN" and tested using the
 

sine sweep test.
 

The model was tested using the time domain technique both with
 
and without the random decrement analysis. Sixteen accelerometers
 
were fixed to the eight bulkheads, and their responses were recorded
 
on magnetic tape in two data groups. 
 The first data group contained
 
accelerometers 1 through 8 on one side of the model, and the second
 
data group contained accelerometers 9 through 16 on the other side,
 
as well as accelerometer 8 to relate the 2 data groups.
 

A random input-was applied at station 8. The experiment was
 
designed so that a.double switch can cut off the random input and
 
at the same time generates a step signal to be recorded on a
 
separate channel; indicating the start of the free decay. The
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random part and the free decay part of the responses of data
 
group 1 were recorded. The same procedure was repeated for data
 

group 2.
 

The free decay part of the response was used as data for the
 
time domain technique. Technique and results are reported in
 
Part I of this report.
 

To test the algorithm developed in this paper, the random
 
responses (filtered above 500 Hz) of the 17 stations were digitized
 
and analyzed by a computer program to obtain free decay responses
 
using the multiple signal random decrement technique described by
 
equation (38).
 

It is to be noted here that since the responses from the 17
 
stations were not recorded simultaneously, a leading station
 
must be used for each data group. In this experiment, station 1 was
 
used as a leading station for stations 1 through 8, and station
 
9 was the leading station for stations 9 through 16 and station
 
8. 'Figures 6a and 6b show the random response of stations 2
 
and 10, while figures 6c and 6d show their calculated free decay.
 

To illustrate the importance of using a leading station from
 
the same run, the free decay response of station 10 (group 2)
 
calculated with station 1 (from group 1) as 
leading station is
 
shown in figure 6e. Comparing figures 6d and 6e, it is clear
 
that the level of the free decay response in figure 6e is much
 
lower than that of figure 6d.
 

The number of samples averaged to obtain the free decay
 
response from the random response was 753. All samples were
 
chosen such that the response of the leading station starts with
 
zero level and positive slope.
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Table 3 shows the natural frequencies and damping factors
 
obtained from the time domain technique using recorded free decay
 
responses and using calculated randomdec responses. Also shown
 
are frequencies from NASTRAN analysis (ref. 24)..
 

Table 4 shows a comparison of the identified modal shapes of
 
the 74.15-Hz mode (first bending), one obtained from recorded
 
free decay data and the other from calculated randomdec data.
 
Comparison is excellent considering that the recorded free decay
 
data had 22 percent noise in it.and that the random responses
 
had about 10 percent saturated point. Another factor that con
tributed to the discrepancy between the two modes in comparison
 
took place during the analog to digital conversion of the random
 
responses of the two data groups. 
 Signals simultaneously
 
recorded should be simultaneously digitized. In this experiment,
 
responses were digitized in four groups (1,3,5,7), (2,4,6,8),
 

(9,11,13,15,17), and (10,12,14,16). 
 If this regrouping must be
 
used, one station must be common between each two subgroups. In
 
this experiment the regrouping should have been (1,3,5,7),
 
(1,2,4,6,8), (9,11,13,15,17), and (9,10,12,14,16).
 

The 1/8 scale Space Shuttle Model. - The 1/8 scale "space
 
Shuttle" model is shown in figure 7. 
Modal survey testing of the
 
model by FFT (ref. 25) has been carried out at NASA's Langley
 
Research Center as part of the Space Shuttle Program.
 

To test the algorithm developed in this paper, the random
 
responses of 4 stations on the 2 "Solid Rocket Boosters,"
 
figure 7, in the Y-direction already recorded on analog tape
 
were digitized at a rate of 500 samples/second. These four random
 
responses were then used to calculate the randomdec free decay
 
responses using the multiple signal random decrement technique
 
(eq. 38). The resulting free responses were then used as 
data
 
for the time domain identificatidn technique to identify the
 
vibration modal characteristics of these four stations.
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Figures 8a and 8b show the random responses of stations 1 and
 
4. The free decay responses resulting from sample averages are
 
shown in figures 8c and 8d. All samples of station 1, as a leading
 
station, were chosen to start with zero levels and positive slopes.
 

Frequencies identified by the random decrement/time domain
 
technique are listed in table 5 together with the FFT frequencies.
 
It is to be noted that all the four stations considered in this
 
experiment were on the two SRB's and in the Y-direction.
 

Comparison of modal shapes of the 76.3 Hz, FFT, and the 7623
 
Hz, "time domain," modes (assuming that they are the same mode)
 
is shown in table 6. 
It is to be noted that time domain technique
 
identified modes with frequencies very close to the 76.23-Hz mode
 
(76.81 and 76.85), 
while the FFT did not show these modes. If the
 
difference in the two modal vectors in comparison is not because
 
of different gains or different data processing, the FFT modal
 
vector might have contained contributions from the two very close
 

modes.
 

Conclusions
 

The multiple signal random decrement technique described in
 
this paper makes it possible to calculate the free decay response
 
of a multiple of random response- signals simultaneously recorded
 
from a structure under test. The resulting free decay response
 
can be used to identify the vibration modal characteristics of
 
structures without altering phase relations between individual
 

stations.
 

This approach is extremely useful when complete knowledge of
 
the random input to the structure under test is not available. It
 
is also useful for identification techniques that use free decay
 
data.
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APPENDIX
 

According to equations (17) and (19), the matrices 0 andb
 
are the results of multiplying the two matrices I and A, and T
 

and A. For 0 and 0 to have inverses, 1, T and A should be
 
nonsingular. The columns of T and T are the modal vectors, which
 
are known to be linearly independent, hence neither T or T can
 

be singular. Thus, for D and 0 to be nonsingular the requirement
 

is that A be nonsingular.
 

A is a 2n X 2n matrix having elements of the form
 

.t. 
ij = e (A-l) 

If t1 is arbitrarily chosen to be zero and the time between
 

samples is always the same, then
 

t. = (j-l) dt (A-2) 

X1 t 21 62 (2n-l)A!&tA = lie e- ..
 

l 2e 22t (2n-l)A2dt
 
eX e2 ... e 
 (AU-3)
 

(2n-1)2n t
S2nt 2X2n t
len e 2n ... e (n1A&
 

Substituting L.&t
 
1e
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l eI 2 2n-I 

1 2 . !2 (A-4) 

2 2n-1l'2n '2n''.. 2n 

A is written as the Vandermonde matrix (21), for which the
 
determinant is
 

l<i<j<2n
 

(A-5)

A p t a.t=1 (e -e ) 

1<i<j<2n
 

Equation (A-5) shows that A is singular only if there are
 
equal A's, which is' unlikely. 
Thus in the usual case the inverse
 
of A exists, and _ and _Dare nonsingular.
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Table 1. Determinant check.
 

No. of
Stations
 
S ns 
 IDetIN 

(N) 	 __ __ __ _ N _ 

1 	 0.50 x 10P 


2 	 0.14 x 100 


3 	 0.46 x 10 - 2 

- 44 	 0.43 x 1o
 

6
5 	 0.45 x 10 

8
6 	 0.40 x 10

7 	 0.31 x 10-12 

8 	 0.35 x 10- 1 6  


2 0  
9 	 0.52 x 10

10 	 0.44 x 10- 25 


11 	 0.25 x 10- 34 

43  
12 	 0.25 x 10

- 53  
13 	 0.10 x 10


14 	 0.30 x Ia-63 
73  
15 	 0.39 x 10

- 8 3  16 	 0.30 x 10
 
9 3  
17 	 0.13 x 10

1 06  
18 	 0.97 x 10

11 6  
19 	 0.21 x 10

20 	 0.13 x 10- 127
 

IDetiN/IDetIN l
 
'rN/ IN___ 


0.35 x 101
 

0.32 x 102
 

0.10 x 103
 

0.10 x 103
 

0.11 x 103
 

0.13 x 105
 

0.88 x 104
 
0.66 x 104
 

0.12 x 106
 

0.20 x 1010
 

0.10 x 1010
 

0.24 x 1011
 

0.34 x 1010
 

0.77 x 1010
 

0.13 x 1011
 

0.24 x 1011
 

0.13 x 1011
 

0.46 x 10I1
 

0.16 x 1012
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Table 2. Frequencies for the payload model. 

Time Domain 
Mode 
No. Motion 20 D.O.F. 40 D.Q.F. 

Frequency 
Sweep NASTRAN 

1 1st Bending 74.20 74.15 74.6 73.4 

2 1st Torsion 78.75 78.75 79.7 80.1 

3 1st Bending 119.88 119.83 120.7 117.3 
(Yaw) 

4 2nd Torsion 156.63 156.63 158.5 158.9 

5 2nd Bending 161.95 161.93 163.1 159.9 

6 3rd Torsion 216.51 216.44 219.2 218.6 

7 3rd Bending 245.00 245.18 246.7 244.6 

8 2nd Bending 259.55 261.04 263.7 253.1 
(Yaw) 

9 4th Torsion 280.95 280.94 283.7 283.0 

10 5th Torsion 325.31 325.31 328.0 -
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Table 3. Identified frequencies and damping factors
 
for the payload model. 

Time Domain With Recorded Domain-With Calculated 
Free Decay Responses Randomdec Responses NASTRAN' 

Mode Frequency Damping Frequency Damping Frequency 
No. (Hz) Factor (Hz) Factor (Hz) 

1 74.15 0.0019 74.15 0.0029 73.4 

2 78.75 0.0017 78.75 0.0010 80.1 

3 119.83 0.0013 120.27 0.0010 117.3 

4 156.63 0.0007 156.61 0.0013 158.9 

5 161.93 0.0007 161.77 0.0007 159.9 

6 216.44 0.0013 216.47 0.0010 218.6 

7 245.18 0.0034 245.00 0.0036 244.6

8 261.04 0.0007 260.70 0.0004 253.1 

9 280.94 0.0018 280.75 0.0017 283.0 

10 325.31 0.0005 325.30 0.0002 --
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Table 4. An identified modal vector for the payload
 
model (frequency = 74.15 Hz).
 

With Recorded 
 With Calculated
 
Free Decay Responses Randomdec Responses
 

Phase 
 Phase
 
Station Amplitude (degrees) Amplitude (degrees)
 

1 83.37 -6.3 86.79 -2.6
 

2 18.02 -13.2 20.10 -2.2
 

3 39.86 179.2 
 41.43 177.8
 

4 72.58 178.7 75.7 179.1
 

5 71.58 174.4 74.46 177.6
 

6 30.77 176.0 
 35.13 180.5
 

7 31.43 1.2 31.63 -2.4
 

8 100.00 0.0 100.00 
 0.0
 

9 99.34 -1.4 96.02 -14.0
 

10 34.69 7.1 28.26 -1.7
 

11 28.82 164.3 35.05 160.0
 

12 68.58 176.4 71.62 175.6
 

13 71.63 175.8 71.15 164.1
 

14 39.92 182.12 38.54 178.2
 

15 15.43 -27.00 23.44 -21.9
 

16 73.00 -9.8 84.35 -5.1
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--- 

--- 

--- 

--- 

Table 5. Shuttle model identified frequencies.
 

Randomdec/Time

FFT Domain 
 Remarks
 

13.8 


16.5 16.57 
17.6 18.17 

20.5 20.71 
21.6 

24.3 


25.50 
26.0 26.29 

26.69 
28.2 


30.0 

32.2 32.10
 

34.5 

36.36 
28.0 38.25
 

43.2 43.01
 

45.00 

47.5 
48.5 


51.0 50.2 
57.5 58.05
 

58.5 59.2 
60.07 

--- 61.68 

69.0 68.65 
--- 71.55 

76.3 76.23
 

76.81 

76.85
 

Gear-Train Rotation
 

ORB. Roll Mode
 

ET 1st Torsion
 

ORB. Longitudihal
 

ET Z-Direction Bending
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Table 6. An identified shuttle model mode. 

FFT Time Domain 

Sta. 
Relative 

Amplitude 
Phase 

(degrees) 
Relative 

Amplitude 
Phase 

(degrees) 

1 100.00 0.0 100.00 0.0 

2 55 00 0.4 61.65 0.98 

3 86.46 19.1 98.77 22.3 

4 54.07 18.7 33.96 15.4 
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Figure 1. Payload model.
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Figure 3a. Mode No. 1, Figure 3b. Mode No. 2,
first bending. first torsion.
 

-/if- -/ 

Figure 3c. Mode No. 4,
 

second torsion.
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Figure 3d. 	Mode No. 5, Figure 3e. Mode No. 6,
 
second bending. third torsion.
 

Figure 3f. Mode No. 10,
 
fifth torsion.
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Figure 4. One-station random and randomdec responses.
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Figure 5. Two-station random -responses.
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Figure 6. 	Random and randomdec free decay response of selected stations
 

on the payload model.
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Figure 7. 1/8-scale space shuttle 
model.
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Figure 8. Random and randomdec free decay response of selected stations
 
on the shuttle model.
 




