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PREFACE
 

This document reports processing and analysis efforts on one task
 

of a comprehensive and continuing program of research in multispectral
 

remote sensing of the environment. The research is being carried out
 

for NASA's Lyndon B. Johnson Space Center, Houston, Texas, by the
 

Environmental Research Institute of Michigan (ERIM). The basic objec­

tive of this program is to develop remote sensing as a practical tool
 

for obtaining extensive environmental information quickly and economi­

cally.
 

The specific focus of the work reported herein was on the test
 

and evaluation of the signature extension approach to large area crop
 

inventories. This final report is complemented by an interim technical
 

report ERIM 122700-29-T entitled, "Evaluation of Signature Extension
 

Algorithms", by Alex P. Pentland.
 

The research covered in this report was performed under Contract
 

NAS9-14988 during the period 15 May 1976 to 14 November 1977. Mr. I.
 

Dale Browne (SF3) served as the NASA Contract Technical Monitor, and
 

Mr. M. C. Trichel (SF3) was NASA Task Monitor. At ERIM, the work was
 

performed within the Infrared and Optics Division, headed by Richard
 

R. Legault, Vice-President of ERIM,. in the Information Systems and
 

Analysis Department, headed by Dr. Quentin A. Holmes. Mr. Richard F.
 

Nalepka, head of the Multispectral Analysis Section, served as Principal
 

Investigator, Mr. Richard Cicone and Mr. Alex Pentland shared responsi­

bilities as Task Leader.
 

The authors wish to acknowledge the assistance of other ERIM staff
 

members who have participated in the development of techniques in the
 

LACIE agricultural context examined herein. Mr. Richard Kauth and
 

Dr. Wyman Richardson contributed to the design of the multisegment
 

signature extension experiment reported herein. Mr. Robert Beswick
 

provided able support. Ms. Darlene Dickerson, Mrs. Elizabeth Hugg
 

and Ms. Martha Warren provided efficient and accurate typing support
 

throughout the contract period and for this report.
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1 

SUMMARY 

The overall objective of the research reported herein was to initi­

ate an evaluation of the signature extension approach to large area crop
 

inventories utilizing space image data. The Large Area Crop Inventory
 

Experiment (LACIE) is an attempt to establish the feasibility of inven­

torying the production of wheat on a world-wide basis by utilizing
 

Landsat data. A basic 5x6-mile sampling region or segment is employed
 

and wheat production statistics are aggregated over estimates made
 

within each segment. The current estimation technique employed is
 

called Procedure 1. This technique extracts training data from each
 

segment, applying the resultant measured statistics in classifying the
 

segment. This local training and classification procedure requires
 

that each segment be manipulated by an intervening Analyst Interpreter
 

(AI). Multisegment training and classification techniques attempt to
 

reduce the need for AI intervention. This is carried out by extracting
 

training statistics from a subset of segments and employing the statis­

tics or signatures to other segments, hence the term signature extension.
 

The activity was carried out in two phases. First, several algo­

rithms and procedures which were candidates for inclusion in a large
 

area crop inventory system were separately evaluated. Second, prepara­

tion was made to conduct an extensive signature extension systems evalu­

ation incorporating those candidate algorithms and procedures which
 

showed promise for crop inventories in a multisegment-environment, and
 

an analysis was carried out to investigate the Analyst Interpreter stage
 

in crop inventory.
 

The algorithms and procedures evaluated in the first phase of this
 

program are divided into four distinct types:
 

1. Haze correction algorithms
 

2. Training sample selection strategies
 

1
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3. 	Data stratification procedures
 

4. 	Permanently trained green development-trajectory
 
classifiers.
 

The algorithms tested which fall into category one, haze correc­

tion algorithms, are CROP-A [1] and XSTAR [2]. The XSTAR algorithm
 

has been extensively tested in both winter and spring wheat areas and
 

offers substantial benefit to large area crop inventory systems.
 

The training sample selection strategy available for testing was
 

a preliminary version of Procedure B [3]. First results show its
 

promise for future large area crop inventory systems.
 

In the third category, stratifications of the data, two were
 

available for "testing: a static stratification defined by UCB [4],
 

and one defined by JSC [5]. Employment of these stratifications
 

yielded an increase in classification accuracies. It appears that
 

these stratifications should be further tested using a multisegment
 

training strategy in order to clearly establish their contribution to
 

improved performance in this environment.
 

In the final category, green development-trajectory classifiers,
 

several algorithms were tested. Four unitemporal green development
 

classifiers, with and without haze correction, the Delta Classifier
 

[6], and a crop development classifier were tested. Results obtained
 

are promising, but additional testing is recommended using a more sub­

stantial data base covering several growing seasons.
 

The 	second phase of the program revolved about three basic concerns:
 

1. 	The definition and advanced design of an experiment to examine
 

the overall signature extension approach
 

2. 	Preparatory phases required to conduct such an experiment
 

3. 	Analysis of the nature of analyst interpreter errors and
 

the sensitivity of the signature extension approach to
 

analyst interpreter errors.
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The design of the multisegment signature extension experiment
 

required a definition of five basic components of an experiment
 

including: (1) the definition of the systems under test, (2) defini­

tion of performance measures, (3) definition of the measurement pro­

cedures, (4) specification of factors, parameters and levels desired,
 

and (5) specification of data sets. The systems to be evaluated incor­

porate the static stratifications defined by UCB and JSC, Procedure B
 

defined by ERIM, data preprocessing filters including haze correction
 

defined by ERIM, and Multisegment Procedure 1. The particular perfor­

mance measure of most interest will be the measure of variation in
 

wheat proportion estimate as a function of training gain. The results
 

of the multisegment signature extension approach are to be compared to
 

standard LACIE Phase III local classification results.
 

Preparatory phases carried out to expedite the execution of this
 

experiment have included both data base specification and software
 

development. A preclassification technique was developed to facilitate
 

the evaluation of classification performance where training parameters,
 

like the number of training segments, would be varied to establish the
 

variation in performance.
 

The specification of a data base for testing led to an analysis
 

of the nature of Analyst Interpreter (AI) errors detected in the
 

labeling of wheat and non-wheat for training purposes. The AI's basic
 

tool is a false color image product generated from Landsat digital data
 

using a Production Film Converter (PFC) that maps Landsat bands 4, 5
 

and 7 into blue, red and green colors. The product currently in use
 

is called Product 1. It was determined that classification performance
 

in a multisegment environment is sensitive to AI labeling errors. Analy­

sis of the image product indicated significant differences in the color
 

of wheat from one segment to another at the same stage in the crop
 

calendar. This is attributed to the technique employed in the genera­

tion of the image product as well as to the effect of other ancillary
 

parameters such as land use, haze and sun angle conditions.
 

3 1 
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2 

INTRODUCTION
 

The Large Area Crop Inventory Experiment (LACIE) is an attempt
 

to establish the feasibility of inventorying the production of wheat
 

on a world-wide basis through the use of Landsat space image data.
 

The experiment can be structured into four basic components: (1) an
 

overall geographical stratification of the regions of interest, (2) a
 

sampling strategy within strata utilizing five by six mile segments as
 

the basic sampling unit, (3) an estimation system for wheat production
 

within a strata, and'(4) an aggregation of results. The techniques
 

employed have shown success to date. However, the cost of the third
 

component, the within strata estimation system, is high, primarily
 

because each sample segment must be individually processed by an
 

Analyst Interpreter (AI). Multisegment signature extension, the
 

ability to infer the signature of a crop in many segments from a
 

selected subset of segments and features, would significantly lower
 

processing cost by reducing the amount of AI data interaction required.
 

In addition, the stratified selection of data samples for training
 

purposes may provide more robust signatures resulting in improved per­

formance.
 

Many different approaches have been proposed to solve part or all
 

of what is referred to as 'the signature extension problem' -- finding
 

a technique or, more likely, a collection of techniques (a procedure)
 

to succeed at the accurate inventory of crops over a large area through
 

signature extension. It is the objective of this report to (1) initi­

ate an evaluation of the overall signature extension-acreage estimation
 

approach, and (2) perform an evaluation of the components of that
 

approach.
 

The activity carried out to address these objectives was conducted
 

in two phases.
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The goal of the first phase was to provide some of the necessary
 

information concerning the effectiveness of candidate techniques and
 

procedures, and to identify technical needs in order to construct the
 

overall signature extension procedures for extensive evaluation. Four
 

signature extension techniques and related procedures were evaluated:'
 

(1) haze correction algorithms, (2) training sample selection strate­

gies, (3) data stratification procedures, and (4) green development­

trajectory classifiers.
 

The goals of the second phase of activity were twofold. First,
 

the evaluation of multisegment signature extension procedures was begun
 

through a specification of the experiment design and an initiation of
 

preparatory phases required to conduct such an experiment. Secondly,
 

an analysis of the cause and effect of Analyst Interpreter labeling
 

errors was initiated. One specific concern was the sensitivity of
 

signature extension classification results to Al labeling errors.
 

Section 3 of this report deals with Phase I of this project.
 

Section 3.1 reports tests of two haze correction algorithms tested:
 

CROP-A [1] and XSTAR [2]. Section 3.2 reports on tests of a prelimi­

nary version of a training sample selection strategy called Procedure
 

B [3]. Section 3.3 covers evaluations of two stratifications of data:
 

one by UCB [4] and one by JSC [5]. Section 3.4 reports on tests of
 

several green development and trajectory classifiers, including the
 

Delta Classifier [6] and a green development classifier. Section 3.5
 

is a discussion of the ramifications of the Phase I project results.
 

Section 4 of this report deals with Phase II of this project.
 

Section 4.2 introduces the multisegment experiment design. Section 4.3
 

describes the preparatory phases of this experiment. Section 4.4 des­

cribes the Analyst Interpreter labelling error analysis carried out.
 

Section 4.5 summarizes the observations, conclusions and recommenda­

tions derived during Phase 1I of this project,
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3
 

PHASE I: EVALUATION OF SIGNATURE EXTENSION TECHNIQUES
 

The overall goal of this task is to evaluate the multisegment
 

signature extension approach to large area crop inventories. Signa­

ture extension pertains to the ability to infer the signature of a
 

crop in a group of segments based on signatures from a selected subset
 

of segments. One motivation for this approach to crop inventory is
 

that it would lower processing cost by reducing the amount of Analyst
 

Interpreter/data interaction required. A second motivation was born
 

out of research on specific signature extension techniques. The signa­

ture of a particular crop, that is, its statistical characteristics as
 

a function of spectral, temporal and ancillary conditions, may be better
 

understood and more accurately estimated in a multisegment environment.
 

The goal of Phase I of this project is to study certain signature exten­

sion techniques that appear to have promise and to recommend whether
 

the development of an accurate large crop inventory system using sig­

nature extension techniques is a feasible goal.
 

3.1 APPROACH
 

Four types of signature extension techniques or related procedures
 

are examined:
 

1. Haze correction algorithms
 

2. Training sample selection strategies
 

3. Data stratification procedures
 

4. Green development-trajectory classifiers.
 

These techniques were evaluated using a compressed data base of
 

LACIE blind sites as is described in Appendix I. That data base is
 

known as the Fields Data Base and consists of the mean values for each
 

field designated by an Analyst Interpreter during the LACIE operation.
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3.2 HAZE CORRECTION ALGORITHMS 

Two examples of haze correction algorithms were tested by this
 

task. The first, CROP-A [1], is a cluster-matching algorithm. The
 

other algorithm tested, XSTAR [2], employs a simplification of the
 

ERIM radiative transfer model [7,8] to measure and correct for the
 

effects of haze.
 

3.2.1 EVALUATION OF CROP-A
 

The cluster-matching algorithm CROP-A was tested over ten sample
 

segments in Kansas using acquisitions from early and late May 1974
 

(see Appendix I.1 for a more complete description of the data set).
 

The form of the evaluation experiment was to perform unitemporal,­

matching-biophase signature extension between these sample segments,
 

first applying signatures from one segment directly to other segments
 

with no transformation of the mean or covariance of the signatures, and
 

then to repeat these extensions after transforming the mean and covar­

iance of the signatures using CROP-A transformation.
 

Classification results were obtained for each segment by classi­

fying mean vectors computed from several wheat and non-wheat fields in
 
K 

the segment, instead of classifying every pixel. This permitted a
 

great many classifications to be run relatively economically. That
 

field mean classification results are strongly indicative of pixel-by­

pixel classification results are shown in a study reported in Appen­

dix II.
 

The performance measure used in the comparison between untrans­

formed signature extension and CROP-A transformed signature extension
 

was the average accuracy of the field mean classification. This average
 

accuracy is the average of the percent of wheat field means correctly
 

classified and the percent of non-wheat field means correctly classified.
 

The CROP-A experiment was carried out on a test bench known as
 

PROCAMS, PROCAMS (PROtotype CAMS) is a system of programs developed
 

at ERIM and is described fully in Appendix III.
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The major results of the CROP-A evaluation experiment are seen in
 

Table 1. Briefly, the classification results using CROP-A transformed
 

signatures were not as good as the classification results using untrans­

formed signatures.
 

The primary difficulty with CROP-A seems to be that it makes the
 

assumption that the same materials are presented in both training and
 

recognition scenes in order to make training cluster-recognition cluster
 

pairings. This assumption is quite often not true, and can account for
 

very large errors,
 

TABLE 1. 	COMPARISON OF FIELD MEAN CLASSIFICATION RESULTS USING
 
LOCAL, UNTRANSFORMED AND CROP-A TRANSFORMED SIGNATURES
 

STANDARD 
DEVIATION 

AVERAGE OF AVERAGE 
CLASSIFICATION USING: NUMBER OF CASES ACCURACY (%) ACCURACY (%) 

Local Signatures 	 10 (Early May) 90'.7 8.2
 
10 (Late May) 87.5 10.4
 

CROP-A Transformed 12 (Early May) 78.3 15.0
 
Signatures 31 (Late May) 67.8 19.0
 

Untransformed 12 (Early May) 85.0 9.1
 
Signatures 31 (Late May) 72.9 15.5
 

3.2.2 EVALUATION OF XSTAR
 

XSTAR is a haze correction algorithm which employs a model of haze
 

effects derived from the ERIM radiative transfer model [7]. Briefly,
 

the XSTAR uses shifts of the data distribution in a linear combination
 

of Landsat channels known as the yellow direction in the Tasselled Cap
 

transformation [9] to measure the amount of haze present, and then cor­

rects for the effects of this haze using the haze model [8]. In all
 

tests of XSTAR, a simple cosine correction was also used to correct for
 

sun angle effects.
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The standard used to evaluate XSTAR was similar to that used for
 

CROP-A, namely, compare classification results for untransformed sig­

nature extension and for signature extension where all data sets have
 

first been corrected to a standard haze condition using XSTAR.
 

Two different experiments were conducted to evaluate XSTAR. The
 

first was conducted using 1975-76 multitemporal (first and second bio­

windows*) data over 23 sample segments in Kansas for a total of 506
 

extensions. The second experiment was conducted using 1975-76 multi­

temporal (first, second and third biowindows) data over 18 sample
 

segments in North Dakota (306 possible extensions), where the crop of
 

interest is spring wheat. Appendices 1.3 and 1.4 contain a full des­

cription of these data sets.
 

In the Kansas experiments the performance measures used were the
 

field mean classification accuracy and the proportion estimation accu­

racy. In the North Dakota experiment the true spring wheat proportions
 

were unavailable, and so only the field mean classification accuracy
 

was used. The LACIE fields data base as of day 315 provided the field
 

definitions and crop type labels.
 

While both the field mean classification and proportion estimation
 

results were fairly good when using XSTAR it was noted that the XSTAR
 

corrected results were no better than the untransformed results. This
 

was initially quite puzzling, because examination of cluster plots
 

both before and after XSTAR correction showed that XSTAR was doing an
 

adequate job of correction for haze and other effects.
 

Currently, the term biowindows (or alternatively biophases)
 
refers to a division of the crop calendar into four parts. Each divi­
sion is related to important phases in the growth pattern of wheat.
 
Biowindow 1 refers to the pre-emergent to the emergent stage. For
 
winter wheat this would be the period from planting about September
 
(about Julian date 285) through winter dormancy. Biowindow 2 refers
 
to the wheat greening up period to the point of heading. Biowindow 3
 
is associated with post-heading'and the senescent stages. The final
 
biowindow refers to the harvesting stage in the growth cycle of wheat.
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The explanation for these results is found in the method of classi­

fication used: our method of classification was to use a sum-of-like­

lihoods classifier with no rejection threshold. It was this lack of a
 

rejection threshold which caused untransformed signature extension to
 

yield results comparable to the results obtained when using XSTAR.
 

According to the haze model used by XSTAR, the principal effect of
 

haze is to shift the data distribution along the brightness axis of
 

the Tasselled Cap transformed data space. It happens, however, that
 

the principal direction of discriminability between wheat and non-wheat
 

is orthogonal to this, parallel to the green direction of the trans­

formed space. Thus, the decision-boundary formed by the sum-of-likeli­

hoods classifier is essentially parallel to the brightness axis. As
 

the amount of haze in a scene varies the data distribution moves along
 

this plane but does not cross it; thus, without thresholding, the
 

decision boundary formed from a training site in a high haze condition
 

was still-reasonably effective in a test site with a low haze condi­

tion and vice versa.
 

The fact that not thresholding acts as a haze correction technique
 

is true only because the primary direction of discriminability between
 

wheat and non-wheat is orthogonal to the primary direction of haze shift.
 

With crops other than wheat, this haze compensation effect will not con­

tinue to hold true. Further, it can be seen that using a threshold
 

introduces a large bias, and significantly increases the RMS error in
 

proportion estimation.
 

In the multisegment training tests on 74 winter wheat data sets
 

over 39 Kansas segments (see Section 4) every proportion estimate using
 

a classification threshold was less accurate than the corresponding
 

estimate without a threshold. Examination of this result showed that
 

in every case as the classification threshold was made smaller, the
 

accuracy of the proportion estimates increased. A more thorough dis­

cussion of,these results may be found in the interim technical memo­

randum "Evaluation of Signature Extension Algorithms" [10].
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It is hypothesized that this increase in accuracy is due to pick­

ing up additional types of wheat which were not represented in the
 

training segment.
 

Because of the effects which occur when no classification thres­

hold is used, the North Dakota experiment was also run with and without
 

a classification threshold.
 

Table 2 shows the average classification accuracy for thresholded
 

and unthresholded classifications on XSTAR-corrected and uncorrected
 

data. The performance of unthresholded classification on XSTAR cor­

rected data is statistically no different than the unthresholded per­

formance on uncorrected data, but when a classification threshold is
 

used the performance on uncorrected data drops sufficiently to make
 

the performance on XSTAR corrected data significantly better than the
 

performance on uncorrected data. The conclusion that may be reached
 

from this is that the XSTAR correction is in fact aligning the data
 

distributions from different sample segments, but that the unthresholded
 

classification is unimproved because the classifier decision boundary
 

is parallel to the principal direction of haze shift, as explained above.
 

TABLE 2. PERFORMANCE OF CLASSIFICATION ON XSTAR CORRECTED
 

AND UNCORRECTED SPRING WHEAT DATA (Average of 318
 
Signature Extensions)
 

Average Field Mean Classification Accuracy
 

Thresholded Unthresholded 
Classification** Classification 

XSTAR Corrected 60.10% 60.35% 

Uncorrected 57.17% 61.65% 

0.001 Rejection Threshold
 

* 

The significance level of 0.01 is used throughout this report.
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An analysis of the factors which were important in determining
 

the difference between performance on XSTAR corrected and on uncor­

rected data indicated that the number of time periods involved in the
 

classification was the only significant factor, although the haze level
 

was also a significant factor at the 0.1 level. As more data acquisi­

tions are added to the classification the chance of an acquisition with
 

differing haze levels between the training and test sites increases,
 

and so the uncorrected accuracy remains the same or drops in spite of
 

the additional information in the classification, while the XSTAR cor­

rected accuracy increases.
 

The conclusion to be reached from these results is that XSTAR
 

performs a haze correction function which increases the accuracy of
 

field mean classification and proportion estimation as compared to
 

untransformed signature extension using a sum-of-likelihoods classifier
 

with a rejection threshold.
 

3.3 TRAINING SAMPLE SELECTION STRATEGIES
 

Another activity pursued under this contract by another task was
 

developing and demonstrating a training and classification technique
 

called Procedure B [3]. This technique incorporates a training sample
 

selection strategy together with an unconventional classification tech­

nique. In order to separate the effects of the training procedure from
 

the effects of the classification procedure, and in order to evaluate
 

the effect of this training sample selection strategy on a LACIE-like
 

system, early in the contract period the PROCAMS test bench was modi­

fied to incorporate the training sample selection strategy of a pre­

liminary version of Procedure B.
 

The following is a description of the resulting classification
 

procedure, referred to as Multisegment CAMS. First, apply the train­

ing sample selection strategy of Procedure B'to a large collection of
 

LACIE sample segments. This selection strategy selects a number of
 

sample segments as training segments. These XSTAR-corrected training
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sample segments are then clustered as if they were simply one large,
 

contiguous portion of the data. The set of clusters generated (signa­

tures) are then applied directly to all of the (XSTAR corrected) sample
 

segments within the original large data set, using the normal maximum
 

likelihood classifier.
 

In the original Procedure B demonstration, six LACIE sample seg­

ments were chosen to serve as training for all of the Kansas sample
 

segments. In all of the following experiments, these same six segments
 

were used for training both Procedure B and Multisegment CAMS classi­

fication. Local classification, used as a comparison, uses signatures
 

extracted on a segment by segment basis from the Fields Data Base (see
 

Appendix 1.4 for a complete description of the data base*). Multi­

segment CAMS and the local classification were run without a classifi­

cation threshold on the maximum likelihood classifier.
 

A comparison of proportion estimation accuracy for Procedure B,
 

Multisegment CAMS, and the 75-76 LACIE procedure of local training and
 

classification was carried out over 28 sample segments. None of the
 

differences in proportion estimation accuracy or bias were statistically
 

significant, due to the relatively large variance in the proportion
 

estimates.
 

A comparison using 74 Kansas data sets was carried out between
 

Multisegment CAMS and local training and classification. Again the
 

differences in proportion estimation accuracy (variance) were not sta­

tistically significant, but now with the larger sample size Multisegment
 

CAMS revealed a statistically significant bias.
 

These results did not include a bias correction procedure such as
 

is being incorporated into LACIE. When considering ,an environment
 

The Fields Data Base consists of a number of fields, extracted
 
from LACTE Blind Sites, that have been designated and labeled 3y an
 
Analyst Interpreter. This labeling was carried out late in the year
 
(Julian Date 315) which enabled the AI to use all available Landsat
 
imagery showing crop development throughout the year.
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where it is anticipated that a bias correction procedure such as Pro­

cedure i will be used, the training gain advantage enjoyed by a method
 

such as Multisegment CAMS is largely nullified by the need for an Al
 

to process every sample segment anyway, for bias correction purposes.
 

If, however, the bias of a procedure were a relatively consistent
 

function of the true proportion (or ancillary variables), then the
 

AT would need to process only enough sample segments to allow for the
 

estimation of the bias correction function.
 

Such is the case with Multisegment CAMS. Because the same set
 

of signatures is used for all sample segments, much of the bias is
 

predictable. This is not true for local training and classification
 

methods. In the 74 data sets over Kansas, bias which was a function
 

of the true proportion of wheat accounted for only 5% of the error in
 

the local training and classification procedure, as compared to 30%
 

of the error in the Multisegment CAMS procedure.
 

Thus a linear bias correction rule trained over only the six
 

original training segments and then applied to the proportion esti­

mates for all of the data sets considerably improves the accuracy of
 

Multisegment CAMS, while the accuracy of local training and classifi­

cation is affected relatively little.
 

The difference in proportion estimation accuracy (variance) between
 

Multisegment CAMS (as bias corrected) and local training and classifi­

cation (corrected or uncorrected) is statistically significant at the
 

5% level. Neither of the biases are statistically significant.
 

The above results indicate that a Procedure l/CAMS system, modi­

fied to incorporate the Multisegment CAMS training and bias corrected
 

procedures, might enjoy a large training gain advantage, together with
 

increased accuracy, as compared with the 75-76 LACIE procedures. It
 

is also possible that a Procedure 1/Multisegment CAMS system would be
 

more consistently accurate (in addition to being less expensive to run)
 

than a Procedure 1/local CAMS system if the Al's turn out to have a
 

large or randomly varying bias because of the consistent estimable bias
 

of Multisegment CAMS.
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3.4 	 DATA STRATIFICATION
 

Data stratification is the grouping of segments on the basis of
 

similarity in segment physical features which affect the performance
 

of signature extension. The primary difficulty in stratifying the
 

data 	is that it is not known which features of a segment (which we
 

will 	hereafter refer to as ancillary variables) affect the performance
 

of signature extension.
 

For this reason the emphasis of the task in this area was twofold.
 

First, examine existing stratifications of the data and determine their
 

relationship to signature extension performance. Second, use the actual
 

performance of signature extensions to determine what factors are most
 

important in determining signature extension performance.
 

3.4.1 EXAMINATiON OF AVAILABLE DATA STRATIFICATION
 

Two data stratifications were available for testing. The first of
 

these was developed by the University of California, Berkeley (UCB) [41,
 

and the second was developed by Johnson Space Center (JSC) personnel [5].
 

The UCB stratification was first examined in conjunction with the
 

CROP-A evaluation, using unitemporal Landsat data, collected in May 1974
 

over 	10 segments in Kansas. The UCB stratification was broken down into
 

three levels of coarseness: the original UCB stratification, a coarser
 

version of the original stratification, and an even coarser version which
 

ignored soil type differences.
 

The performance of within-strata signature extensions was then com­

pared to the performance of across-strata extensions, for each of the
 

three coarseness-levels of the UCB stratification, and for both CROP-A
 

transformed and untransformed signature extensions. The result was that
 

there was no statistically significant difference between within-strata
 

and across-strata signature extension performance, regardless of whether
 

CROP-A transformed or untransformed signatures were used. This seemed
 

to indicate that the stratification was too fine, and that a much coarser
 

stratification would probably suffice.
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The UCB and JSC stratifications were later examined much more
 

carefully during the evaluation of XSTAR on 1975-76 multitemporal
 

Landsat data collected over 23 sample segments in Kansas (see Appen­

dix 1.3 for a complete description of the data). The form of the
 

evaluation experiment was to first perform all signature extensions
 

possible among the 23 segments (a total of 506 extensions) first using
 

untransformed signature extension, and then using XSTAR-corrected sig­

nature extension. The field mean performance of each of these exten­

sions was then tabulated, and the field mean performance of the within­

strata extensions was compared to the field mean performance of the
 

across-strata extensions.
 

The original UCB stratification is composed of four parts: a
 

very fine soil stratification, a stratification based on land use and
 

irrigation in the segments, a stratification into three groups based
 

on a ten-year average of degree days for the segments, and a strati­

fication into four groups based on a ten-year average of the amount of
 

precipitation in a segment. These four parts of the stratification are
 

then combined (via a Cartesian cross-product of the three) to produce
 

what is referred to as the UCB data stratification. The soil strati­

fication resulted in a partitioning of our 23 data segments into 23
 

partitions. As a result signature extension analysis could not be
 

carried out. Our analysis was therefore restricted to three parts.
 

Each of the three component parts of this stratification were
 

then examined in combination and separately as well.
 

The difference between the within-strata accuracy and the across­

strata accuracy in classification of field means was not found to be
 

statistically significant when the land use/irrigation portion of the'
 

UCB stratification was used to stratify the data.
 

Stratifying using either the degree day portion or the precipi­

tation portion of the UCB strata produced a difference between within­

strata accuracy and the across-strata accuracy which was significant
 

at the 0.05 level. Within-strata accuracy was 72.8% for degree days
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strata and 82.4% for precipitation. Across-strata accuracy was 67.3%
 

and 66.2% respectively.
 

The greatest difference between within-strata and across-strata
 

accuracy was found when the degree day and the precipitation portions
 

of the UCB stratification were both used to stratify the data into a
 

total of twelve groups. Within-strata accuracy was 86.5% and across­

strata 66.6%. This difference was significant at the 0.001 level.
 

An observation made from this analysis is that since precipita­

tion and degree days are related to crop development, the primary
 

effect of the successful portions of the UCB data stratification is
 

to insure a similar degree of crop development in both the training'
 

and test segments.
 

The analysis of the JSC data stratification was somewhat different.
 

Because none of the components of the stratification were available to
 

us, no analysis of the components could be conducted. JSC strata de­

fines "groups" and "subgroups". Three levels of generalization of the
 

JSC stratification were analyzed at a "group" level. First, the per­

formance of the "suggested" training segment-test segment extensions
 

were analyzed. Second, the performance of extensions from any 6egment
 

designated as a training segment to any segment designated as a test
 

segment (both within the same strata) was examined. Third, the per­

formance of extensions between any segments within the same strata was
 

evaluated. In all three cases the accuracy of the extensions under
 

examination were compared to the average across-strata signature'exten­

sion accuracy. The "subgroups" defined in the JSC data stratification
 

were ignored in these evaluations, since none of these subgroups had
 

more than one of our testing segments in them.
 

Analysis of the first level of generalization, i.e., the "suggested"
 

extensions, could not be effectively carried out since it.was found that
 

there were only two examples of such extensions within our data set,
 

hence no significant results could be obtained.
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Fourteen out of the 506 possible extensions were between desig­

nated training and designated test segments in the same strata, the
 

second level of generalization. The field mean accuracy of these
 

fourteen was not much different than the average field mean accuracy,
 

and what difference there was was not statistically significant.
 

The third level of generalization of the JSC stratification
 

examined, where all extensions within the same strata were compared
 

to the 	across-strata extensions, had a different result. The average
 

of the field mean accuracies of the within-strata extensions was found
 

to be significantly higher than the average across-strata accuracy
 

(70.5% vs. 62.6%).
 

Whereas the JSC stratifications yielded less substantial improve­

ment in the field mean accuracy than the UCB stratification, the
 

important issue realized is that partitioning of segments does yield
 

improved performance in field mean accuracy and therefore potentially
 

useful in a multisegment environment wherein proportion estimates are
 

of interest. In addition, the UCB strata analysis indicated that
 

physical variables associated with crop calendar afforded the best
 

results. This underlines the importance of accurate crop calendar
 

information. It is our judgement that a similar analysis of JSC com­

ponent variables would yield the same observation.
 

3.4.2 	RELATIONSHIP OF ANCILLARY INFORMATION TO SIGNATURE
 
EXTENSION PERFORMANCE
 

For. each signature extension technique there is a unique best
 

stratification of the data which matches the assumptions on which the
 

development of the technique was based.
 

Thus, logically, one would need to choose a signature extension
 

algorithm and then choose a data stratification to match that particu­

lar algorithm. The simplest method to obtain the data stratification
 

for a particular algorithm is to use the actual performance of the algo­

rithm on various test-training pairs to determine what test segment­
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training segment differences affect classification performance. This
 

is what was done for both XSTAR corrected signature extension and for
 

untransformed signature extension.
 

The technique used to investigate the relationship between various
 

ancillary variables and the performance of signature extension between
 

those segments is a fairly straightforward one.
 

First, train separately on every site in the test set and then
 

extend each of these sets of training statistics to every other site
 

in the test set.
 

Secondly, pair the performance figures obtained from each of the 

signature extensions with a list of ancillary variables which describe 

the extension. -

Third, use this list of ancillary variables to describe or charac­

terize the successful extensions.
 

This characterization of the successful signature extensions can
 

then be used to derive the "best" stratification for the particular
 

signature extension algorithm used in the first step. This is done
 

by using the characterization of the successful extensions (possibly
 

a linear equation in the ancillary variables) to predict which exten­

sions are most likely to be successful. These pairs of extensions
 

with the best predicted performance are then said to be within the
 

same strata, and thus the stratification is complete,
 

This process was carried out first using 1975-76 Landsat data
 

over 23 segments in Kansas (see Appendix 1.3 for a complete descrip­

tion of this data set), and later using 1975-76 Landsat data over 18
 

segments in North Dakota (see Appendix 1.4 for a complete description
 

of this data set). The list of ancillary variables used in performing
 

this analysis is shown in Table 3.
 

Using the Kansas data set, the experiment was first carried out
 

using untransformed signature extension, as a control case. The char­

acterization of the successful signature extensions was accomplished,
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TABLE 3. LIST OF ANCILLARY VARIABLES
 

I. GENERAL: 

Degree Days (10 Year Average)
 

Land Use (% Agriculture)
 

Precipitation (10 Year Average)
 

Latitude
 

Longitude
 

Elevation
 

II. PASS SPECIFIC (Calculated for Each Pass):
 

Sun Angle
 

View Angle
 

Julian Date
 

Crop Calendar (Robertson Scale) [4]
 

Difference Between Sites in Mean of
 
Soils Area in Landsat Space
 

Difference Between Sites in Mean of
 

Green Development Area in Landsat Space
 

Haze Diagnostic Calculated by XSTAR from
 

Yellow Shift of Data
 

Difference Between Sites in Additive Factor
 
Calculated by XSTAR
 

Difference Between Sites in Multiplicative
 
Factor Calculated by XSTAR
 

Haze Value Calculated by XSTAR from
 
Yellow Shift of Data
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using a stepwise linear regression technique. The results of this
 

stepwise linear regression are given in Table 4 below.
 

TABLE 4. 	 RESULTS OF STEPWISE LINEAR REGRESSION OF UNTRANSFORMED
 
SIGNATURE EXTENSION RESULTS VS ANCILLARY INFORMATION
 

Cumulative Cumulative 
Important Factors Standard Error R2 

DIFFERENCE BETWEEN TRAINING AND 
TEST SITE OF: 

Mean of Soils Region in Landsat 
Space, Biowindow 1 14.50 0.124 

Longitude 14.27 0.153 

View Angle, Biowindow 1 14.14 0.170 

XSTAR Additive Factor,, 
Biowindow 2 14.05 0.183 

Crop Calendar, Biowindow 2 13.98 0.192 

Sun Angle, Biowindow 2 13.82 0.212 

The final regression equation incorporating all of these factors
 

was used to predict performance of untransformed signature extension
 

between various pairs of sites, The predicted performance can be used
 

to generate a stratification which meets training gain or performance
 

criteria specified by the user. When the desired training gain was 1.2,
 

four out of the 23 sites were classified by signature extension rather
 

than local training, a savings of 20% in training cost. Using this 1.2
 

training gain stratification the proportion estimation bias in this
 

23 segment-sample is not statistically significant.
 

This experiment was then repeated using XSTAR, in place of untrans­

formed signature extension. Table 5 shows the results of the stepwise
 

linear regression of XSTAR's results versus the ancillary information.
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TABLE 5. RESULTS OF STEPWISE LINEAR REGRESSION OF XSTAR CORRECTED
 
SIGNATURE EXTENSION RESULTS VS ANCILLARY INFORMATION
 

Important Factors 
Cumulative 

Standard Error 
Cumulative 

R2 

DIFFERENCE BETWEEN TRAINING AND 
TEST SITE OF: 

Mean of Green Development Region 
in Landsat Space, Biowindow 1 15.461 0.080 

Longitude 15.176 0.116 

Crop Calendar, Biowindow 2 15.031 0.134 

Latitude 14.937 0.146 

Sun Angle, Biowindow 2 14.853 0.158 

This regression was used to define stratification of the data as
 

was done with the regression equation obtained for the untransformed
 

signature extension case. Proportion estimation results for XSTAR
 

corrected signature extension using the 1.2 training gain stratifica­

tion again, does not have a statistically significant bias.
 

When the above experiments were repeated using 1975-76 Landsat
 

-data over 18 North Dakota segments, the resultant regression equations
 

accounted for so small a portion of the total variance in field mean
 

accuracy it was useless in determining a stratification of the data.
 

The conclusion to be drawn from this result is that all of the eighteen
 

North Dakota sites were within the same stratum, as far as could be
 

discerned using our list of ancillary data.
 

3.4.3 THE UTILITY OF STRATIFICATIONS OF THE DATA
 

Section 3.4.1 illustrated that static data stratifications based
 

on similarities between segments in average degree days and average
 

precipitation yield a considerable improvement in field mean classifi­

cation accuracy. Section 3.4.2 showed that other, often pass-specific
 

ancillary variables could be useful in a data stratification, and that
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such stratifications could be used to significantly lower the operating
 

cost of a large area crop inventory system.
 

It appears, therefore, that the stratification work done by UCB
 

and JSC should be extended to include dynamic or pass-specific ancil­

lary variables. These data stratifications should also be evaluated
 

in a multisegment training environment.
 

3.5 GREEN INDICATOR AND CROP DEVELOPMENT CLASSIFIERS
 

The general approach taken by signature extension classification
 

techniques has been to use some aspect of the wheat growth pattern as
 

viewed by Landsat as a criterion for classification. Classifiers
 

based on a green indicator calculate a "green number" from the Land­

sat data, and claim that during some period of time only wheat pixels
 

will display green numbers within a certain range. Crop development
 

classifiers are more sophisticated; they employ a model of what wheat
 

looks like to Landsat as-a function of time of year to classify wheat
 

from non-wheat.
 

3.5.1 TESTS OF SEVERAL CLASSIFIERS
 

The performance of several green indicator classifiers was investi­

gated using 1975-76 sample segment data over 23 Kansas blind sites
 

(see Appendix 1.3 for a more complete description of this data set).
 

The formulas for the green indicators tested are shown in Table 6.
 

For each of these green development indicators a decision thres­

hold was trained over all of the field means in all of the test sites,
 

and the field mean classification accuracy was noted. This procedure
 

was applied to the first biowindow and second biowindow passes sepa­

rately, and then repeated using XSTAR haze corrected data. Table 7
 

summarizes these results-for Bio indowe 1 and 2.
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TABLE 6. GREEN DEVELOPMENT INDICATORS AND THEIR FORMULAS
 

Name Formula*
 

G CH 1 - CH 4 + 96 

TVI /(CH 4 - CH 2)/(CH 4 + CH 2) + 0.5 

Ratio 7/5 CH 4/CH 2 

Tasselled Cap Green (CHI x -0.28972) + (CH2 x -0.56199) + 
(CH3 x 0.599153) + (CH4 x 0.49070) 

TABLE 7. PERFORMANCE OF GREEN DEVELOPMENT INDICATORS
 

Average Field Mean Accuracy (percent):
 

Untransformed Data XSTAR Corrected Data 

Indicator Bio 1 Bio 2 Bio 1 Bio 2 

G 

TVI 

Ratio 

Tasselled Cap Green 

70 

77 

76 

76 

82 

81 

81 

80 

72 

76 

75 

.72 

84 

81 

82 

80 

CH1 through CH4 correspond to Landsat Bands 4 through 7.
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These field mean classification accuracies imply that the green
 

development indicators hold considerable promise as proportion esti­

mators. Results of pixel-by-pixel proportion estimation over 23 seg­

ments using the G indicator in Biowindow 2, and the TVI indicator in
 

Biowindow 1 displayed a very large bias of about 10-16%. Further,
 

the variance of the error in roportion estimation for these indica­

tors was very large. This seemed to show that a more sophisticated
 

approach was required than the "if it's that green then, it must be
 

wheat" model employed by these green indicator classifiers.
 

The Delta Classifier does use a more sophisticated model of wheat
 

development. Accordingly, we used this technique to classify each of
 

the 23 test sites, comparing the field mean classification accuracy
 

of the Delta Classifier to ancillary information via a regression.
 

It was concluded that such a classifier must include ancillary varia­

bles in the decision rule, so that the stage of crop development can
 

be more accurately known.
 

3.5.2 CROP DEVELOPMENT INVESTIGATIONS
 

An investigation into the properties of wheat development and
 

discriminability was initiated with the purpose of determining what
 

information was necessary to construct an accurate crop development
 

classifier. The first step of this investigation was to determine
 

what information was needed to discriminate wheat from non-wheat.
 

Two questions were asked. First, what combinations of passes over a
 

site are needed during the growing season? And second, is Landsat data
 

two dimensional?, (i.e., do the first two channels of the Tasselled Cap
 

transform, brightness and greenstuff, contain by far the majority of
 

the information needed for spectral discrimination)?
 

To investigate each of these .questions, 322 signature extensions
 

were carried out using five acquisition dates from the 1973-74 data
 

over 12 Kansas sites.
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The data set contained passes from five dates; 20 October,
 

20 April, 9 May, 27 May and 12 June. All combinations were tested
 

for performance both locally and in signature extension. The best
 

single date was 20 April, with 9 May and 27 May trailing in accuracy
 

by 5 and 10% respectively. The combination of 20 October and 20 April
 

proved to be the best combination of passes with no other combination
 

approaching this accuracy.
 

Investigating the information distribution in the Tasselled Cap
 

transform it was confirmed that most of the information needed to dis­

tinguish wheat from non-wheat is contained within the first two com­

ponents of this transform, namely brightness and greenstuff. It was
 

showt that the classification accuracy using these two channels was
 

only about 3% less than the accuracy using all four Landsat channels.
 

The results of this investigation guided us in the next step of
 

the investigation, which was the development of a statistical model of
 

wheat development. The data base used for this modeling effort con­

sisted of field means and ancillary information about those fields,
 

drawn from 74 multitemporal data sets over 39 Kansas ITS and blind
 

sites. Appendix 1.4 gives a complete description of the sites and
 

the ancillary information used.
 

This empirical modeling has resulted in a pair of models which
 

predict the green and brightness development of a wheat pixel during
 

the second biowindow based on a statistical regression on the first
 

biowindow Landsat signal with ancillary data.
 

The green development model incorporates the following ancillary
 

information (listed.in order of importance):
 

- Number of days into the growing season when data was acquired 

- Amount of greenness displayed by green development arm of 

the Tasselled Cap
 

- Crop calendar
 

- 10-year average of degree days 
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The brightness model incorporates these ancillary variables
 

(again, in order of importance):
 

- Average brightness of scene
 

- Brightness displayed by green development arm of Tasselled Cap
 

- Greenness displayed by green development arm of Tasselled Cap
 

- Sun angle
 

These two models were combined in a Development Model Classifier,
 

in the same manner as the Delta Classifier incorporates a crop develop­

ment model. The decision boundary of this classifier was then trained
 

on the second biowindow of all 74 Kansas data sets, which resulted in
 

an average field mean classification .accuracy of 78.1%. When the
 

normal maximum likelihood classifier was trained on all 74 data sets
 

the resulting accuracy was 75.4%, showing that inclusion of the ancil­

lary information into the decision rule via the two models improved
 

field mean classification accuracy.
 

-In order to determine the stability of these models, the coeffi­

cients of the models were redetermined using 81 fields from 12 randomly
 

selected data sets. The coefficients of the models developed on only
 

12 data sets were quite similar to the coefficients of the model
 

developed using all 74 data sets.
 

As a further test of similarity, the new models were incorporated
 

into a Development Model Classifier and the coefficients,of the classi­

fier were then trained over these same 12 data sets; thus the classi­

fier was constructed using information from only 81 fields in 12 data
 

sets. This classifier was then used to classify all 74 data sets,
 

resulting in an average accuracy of 76.5%. Table 8 shows how the
 

accuracies of several other classifiers compare to this accuracy.
 

The results of this modeling appear encouraging enough to warrant
 

further testing and development in the future. Of particular interest
 

would be a model which was applicable throughout the crop year. Such
 

a model could provide an ideal AI key, as well as the basis for a
 

classifier.
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TABLE 8. COMPARISON OF SEVERAL CLASSIFIERS
 

Field Mean
 

Number of Classification
 
Landsat Accuracy
 

Acquisitions (Average Over
 
Classifier Used 74 Data Sets)
 

Development Model Classifier
 
(trained on 12 data sets) 2 (Biowindows 1,2) 76.5%
 

Maximum Likelihood
 
(trained on all
 
74 data sets) 1 (Biowindow 2) 75.4%
 

Delta Classifier 3 (Biowindows 1,2 70.1%
 
or 3,4)
 

Multisegment CAMS 4 	 74.0%
 

3.6 	 PHASE I: CONCLUSIONS AND RECOMMENDATIONS
 

The development of an accurate large area crop inventory system
 

using signature extension techniques is a feasible goal. As we under­

stand it now .such a system would employ haze and sun angle corrected
 

data in a multisegment training and classification scheme which would
 

be applied within some stratification of the data, Support for this
 

view of signature extension is contained in the following discussion
 

of conclusions about each of the four types of signature extension
 

algorithms tested.
 

Two examples of haze correction algorithms were tested: CROP-A [1]
 

and XSTAR [2].
 

CROP-A was tested in a unitemporal mode on data collected in
 

1973,74 over ten sample segments in Kansas. Because of the uniformly
 

low level of haze present in these segments, no conclusion could be
 

reached about CROPrA's ability to compensate for haze. It was noted,
 

however, that in some cases CROP-A made serious errors which actually
 

degraded classification performance. For this reason CROP-A was deemed
 

unsuitable for general application in large area crop inventories, and
 

was dropped from further consideration.
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The haze correction algorithm XSTAR was tested in a multitemporal
 

mode on 1975-76 LACIE sample segment data over 23 blind sites in Kansas
 

and 18 sample segments in North Dakota, providing a wide range of haze
 

levels and other conditions for evaluation of the algorithm. It was
 

found that this algorithm substantially improved signature extension
 

classification accuracy when a sum-of-likelihoods classifier was used
 

with an alien rejection threshold. Further, the accuracy of classi­

fication using the XSTAR haze correction was substantially the same
 

regardless of haze level or.differences between the test and training
 

sites.
 

An interesting and useful observation made during the tests was
 

that when no alien rejection threshold was used in the sum-of-likelihoods
 

classifier, untransformed signature extension achieved the same level of
 

classification accuracy as XSTAR haze corrected signature extension.
 

The explanation for this not totally expected result is that the wheat/
 

non-wheat decision boundary is typically nearly parallel to the princi­

pal direction of shifts in the data due to haze. Thus classification
 

accuracy is often little affected by haze level differences between test
 

and training sites given that no alien rejection threshold is used in
 

the classifier, that the only class of interest is wheat and that the
 

appropriate acquisitions are available.
 

The training sample- selection strategy available for testing at
 

this time was a preliminary version of Procedure B [3]. This training
 

sample selection strategy was used to select six sample segments as
 

training for all Kansas sample segments, a training gain of almost 12
 

to 1 (12 recognition sites for each training site). Multitemporal pro­

portion estimation results obtained by using the six selected sample
 

segments as training for classification of 74 multitemporal data sets
 

were extremely encouraging, and in fact were not statistically different
 

from multitemporal local training and classification proportion estima­

tion results (i.e., using all 74 data sets for training).
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One of the major findings of the above study was that nearly all
 

of the bias in the proportion estimates of the multisegment training
 

and classification procedure resulted from the particular configuration
 

of the signature set used for classification, rather than from peculi­

arities of the recognition sample segments. This meant that the pro­

portion estimation bias could be accurately corrected simply by esti­

mating the bias on the original six training segments. The bias cor­

rected proportion estimates of the multisegment training and classi­

fication procedure were extremely accurate and had a low variance when
 

compared to local training and classification. This finding may have
 

important ramifications for reducing the cost and increasing the accu7
 

racy of bias correction procedures.
 

The third category of techniques and procedures examined was
 

stratificatiof of the data. Two stratifications of the data were
 

available, one carried out by the University of California, Berkeley
 

[4] and another derived at JSC [5]. These stratifications were evalu­

ated by comparing the performance of within-strata and across-strata
 

signature extensions, both before and after XSTAR haze correction,
 

using multitemporal sample segment data. Both of these stratifica­

tions significantly and substantially improved signature extension
 

classification performance.
 

The primary beneficial effect of these stratifications seemed to
 

be that they matched together segments with the same stage of crop
 

development. It was shown that these stratifications could be improved
 

by incorporating certain dynamic or pass-specific ancillary information
 

about the segments into the stratification procedure. These data stra­

tifications require further evaluation in conjunction with a multi­

segment training and classification system.
 

The fourth category of signature extension techniques examined
 

was that of green indicator and crop development trajectory classifiers.
 

It was found that such classifiers can be made robust enough to be
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applicable to a broad range of sample gegments, and probably without
 

needing to be retrained each year. However these classifiers also
 

displayed an unacceptably high variance in proportion estimation
 

accuracy, due to the existence of a fairly large number of sample
 

segments with unusual development patterns.
 

It appears that in order to make such classifiers sufficiently
 

accurate for current day needs they will need to be modified to incorpo­

rate sufficient ancillary information (such as a crop calendar) into
 

the decision rule to account for sample segments with atypical develop­

ment patterns. The crop development modeling undertaken by this task
 

has been a first step towards solving this problem.
 

A recommendation of this task is that a further evaluation experi­

ment be carried out which closely examines the potential of the multi­

segment training and classification approach to signature extension.
 

Such an evaluation should also include an examination of the usefulness
 

of haze correction and data stratification techniques in a multisegment
 

environment.
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4 

PHASE II: EVALUATION OF MULTISEGMENT SIGNATURE EXTENSION
 
PROCEDURES
 

Phase I of this task addressed the evaluation of signature exten­

sion techniques. The goals of the second phase of activity were two­

fold. Of first concern is the evaluation of multisegment signature
 

extension procedures. That is, an analysis of the effectiveness of
 

systems that incorporate those techniques evaluated in Phase I. The
 

second concern of this phase of activity relates to an analysis of the
 

Analyst Interpreter's role in a multisegment signature extension
 

environment. Phase II has been carried out with the expectation of
 

continued test and evaluation of the signature extension approach
 

through the next contract year. Three specific activities were carried
 

out:
 

1. 	The definition and advanced design of an experiment to examine
 

the overall signature extension approach
 

2. 	Preparatory phases to conduct such an experiment
 

3. 	Analysis of the nature of analyst interpreter errors and the
 

sensitivity of the signature extension approach to analyst
 

interpreter errors.
 

4.1 BACKGROUND
 

The LACIE Phase III operation employs a classification and men­

suration strategy called Procedure 1 [11]. Procedure 1 provides an
 

environment wherein a large number of domestic or foreign 5x6 mile seg­

ments are classified using local training procedures. Crop proportion
 

estimates for wheat are computed and bias corrected. Training is accom­

plished by clustering all pixels within a segment. The clustering algo­

rithm is seeded by a subset of labeled dots derived from 209 points that
 

occur at the nodes of a lOxlO pixel grid superimposed on the LACIE segment
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The clusters are named wheat or non-wheat by their association to
 

another subset of the 209 points that have been labeled by an analyst
 

interpreter using false color photo image interpretation techniques.
 

These clusters are then used to classify every pixel in the segment
 

from which they were derived using a sum of likelihood quadratic
 

classifier. Proportion estimates are derived for wheat and non-wheat
 

and bias corrected by multiplying the estimates using a performance
 

matrix derived from a third subset of the 209 dots. The procedure
 

is labor intensive in that each segment must be processed by an inter­

vening analyst interpreter. Proportion estimates are, in addition,
 

sensitive to AI labeling errors.
 

The multisegment signature extension environment is one wherein
 

an attempt would be made in reducing the need for local training.
 

That is, to process certain segments automatically without an inter­

vening ,analyst interpreter. A certain subset of segments would be
 

designated training sites. Training data would be derived from these
 

segments and used in classification throughout. Hence, specific seg­

ments can be more intensely photointerpreted for training, hopefully
 

with a resultant reduction in labeling error.
 

The multisegment signature extension approach, however, poses
 

a twofold requirement: an appropriate training segment selection
 

approach, and a bias correction approach employing non-local perfor­

mance expectations. Any operational system addressing the multisegment
 

signature extension approach to large area crop inventories is operating
 

under the one basic constraint that the smallest sampling unit is a
 

5x6 mile LACIE segment.
 

Research in signature extension has been based on selecting a mini­

mal set of training segments within a given area stratification. This
 

requires that a given area to be mensurated must first be stratified
 

into partitions of relatively homogeneous class characteristics. A
 

multisegment signature extension test and evaluation experiment must
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examine proposed partitions for signature extension as well as classi­

fication and mensuration procedures within the context of these parti­

tions. Hence the overall objectives of this investigation will be to
 

evaluate current UCB [4] and JSC [5] signature extension stratifica­

tions to determine if these products:
 

1. 	 Increase the efficiency of the multisegment training selec­

tion technique termed Procedure B, and
 

2. 	Provide an efficient means for sampling to be used for
 

classification and mensuration employing a Procedure I
 

operation extended into a multisegment environment.
 

4.2 	ADVANCED MULTISEGMENT SIGNATURE EXTENSION EXPERIMENT DESIGN
 

4.2.1 APPROACH AND DESIGN SUf4ARY
 

The design of a multisegment signature extension experiment
 

requires a specification of five basic components of an experiment.
 

These components include:
 

1. 	 The systems under test
 

2. 	The performance measures
 

3. 	The measurement procedures
 

4. 	The parameters, factors, and levels desired
 

5. 	 The data sets.
 

Each of these components are described in the following sections pro­

vided to more specifically detail this experiment. Nn overview of the
 

experiment is provided in the following.
 

The overall signature extension approach to large area crop inven­

tories operates within the basic constraint that 5x6 mile Landsat data
 

segments are the basic sampling unit in estimating the proportion of
 

crops within a region of interest. The experiment to be conducted will
 

evaluate three procedures designed to function in a multisegment environ­

ment. Each of these three procedures will be evaluated in light of speci­

fied static stratifications of data.
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The three procedures to be evaluated shall be termed 'Multisegment
 

Procedure 1', 'Procedure B' and 'Modified Procedure B'. The third pro­

cedure is a hybrid of the first two incorporating the training strategy
 

of Procedure B and the estimation strategy of Procedure 1.
 

The static data stratification to be examined includes: 1) a
 

local strategy wherein each segment is its own stratum; this is equi­

valent to the current Procedure I strategy; 2) fixed boundary strategy
 

as defined by UCB and JSC; and 3) arbitrary strategy wherein all availa­

ble segments are in one stratum. Hence we will examine strategies that,
 

for m segments, define either m strata, or one stratum, or some number,
 

n, between these extremes. The first strategy can be thought of as a
 
'Baseline' strategy since it currently is LACIE operational.
 

Each specified multisegment crop inventory procedure will be
 

evaluated in light of each of the three categories of data stratifi­

cation. The fixed boundary stratification strategy will, in addition,
 

evaluate three approaches to training and classification for each pro­

cedure: 1) within strata training, within strata or local classifica­

tion, 2) within strata training, across strata or global classifica­

tion, and 3) within strata training, weighted global or across strata
 

classification. Figure I flowcharts the experiment as described to
 

this point.
 

In addition to the evaluation of the specific procedures in their
 

overall performance with respect to ground truth and the current LACIE
 

approach, the sensitivity of each procedure as a function of a number
 

of parameters will be examined to some extent. Of particular interest
 

is the behavior of these approaches in light of certain data prepro­

cessing algorithms, specifically haze and sun angle external effects
 

corrections and data compressions using the greenness and brightness
 

channels of the Tasselled Cap transformation and/or BLOB spatial/spectral
 

clustering. Another very important measure of each system is performance
 

as a function of training gain. Other procedure-specific parameters will
 

be analyzed as described in Section 4.2.5.
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Performance measures of interest include not only performance 

accuracy but also strata wide performance bas-6t on the distribution
 

of performances from individual segments. Data to be employed will
 

consist of LACIE blind sites in the Great Plains as described in
 

Section 4.2.6.
 

4.2.2 SYSTEMS UNDER TEST
 

A multisegment signature extension classification and mensuration
 

system employing space image data is comprised of four basic components:
 

1. Data preprocessing requirements
 

2. A training strategy
 

3. A proportion estimation strategy
 

4. Post classification bias correction strategy.
 

The training strategy involves both the training sample selection
 

strategy and signature determination. Keep in mind that the sampling
 

strategy requires the selection of training pixels or fields con­

strained to specific 5x6 mile segments within a given stratification
 

of data. Signature determination is the process of establishing infor­

mation representative of the classes of data or specific features of
 

interest within strata. Various classes of signature determination
 

strategies are available. One prominent strategy applies to statis­

tical modeling of classes. This strategy assumes that the data is
 

Gaussian or Normally distributed. Another strategy may employ analytic
 

and empirical signature modeling. We shall restrict our analysis to
 

statistical strategies.
 

The systems to be considered in this test and evaluation of multi­

segment signature extension procedures are illustrated in Table 9.
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TABLE 9. PRINCIPAL PROCEDURAL STRATEGIES FOR TEST AND EVALUATION
 

TRAINING
 

DATA SIGNATURE PROPORTION POST BIAS
 
PREPROCESSING SELECTION DETERMINATION ESTIMATION CORRECTION
 

SUN ANGLE CORRECTION UCB STRATA PROCEDURE B WITHIN STRATA PERFORMANCE
 

- Procedure B 
 MATRIX
 
- Random Selection 


HAZECORECTIN CUSTEINGCORRECTION
 
wRAZE CORRECTION - Procedure B CLUSTERING - Sum of Likelihoods (Procedure 1) 

- Procedure 1all pixels 
DATA COMPESSION JSC STRATA (209 dots) REGRESSION

•blobs
 
- Field Means VS. ESTIMATE - BLOB - Random Selection - Fiel MeansEIM 

- Tasselled Cap -- Bos209 dots (ERIN) 
- Procedure B - Blobs
 

ACROSS STRATA REGRESSION VS.
Fiels 
 ANCILLARY DATA
YSTRATA 
FieldsARBITRARY- Procedure B(AP 

- Random Selection
 
- Sum of Likelihoods
 

- Procedure Ball pixels0 

* blobs
 

* 209 dots
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Numerous components are specified. An operational procedure employs
 

a subset of these components and may traverse different paths. For
 

example, one approach may (1) employ haze corrected pixel data,
 

(2a) Procedure B training selection strategy within U1CB stratifica­

tion, (2b) determine signatures by clustering pixels, (3) employ sum
 

of likelihoods classification, and (4) bias 'correct as in Procedure 1.
 

It is not feasible to examine all possible paths through this array
 

of procedural components. In addition, many systems with potential in
 

a multisegment environment are not herein specified. For example, the
 

proportion estimation strategies specified may rely on multitemporal
 

acquisitions of data. Numerous multitemporal classifiers have been
 

proposed. Further testing of these, however, is required outside of
 

the multisegment framework. The systems proposed herein are -those
 

that have been in our opinion tested adequately to warrant further
 

examination in the multisegment environment.
 

The performance of these procedures must be evaluated not only
 

with respect to one another, but also with respect to a base line
 

system. That system will be the standard Procedure 1 employed in a
 

local or single-segment environment.
 

The principal procedural strategies indicated in Figure 1 operate
 

within a partitioning framework. These strategies primarily include
 

Procedure B and a version of Procedure 1 adapted to the multisegment
 

environment. A composite system wherein a Procedure B training segment
 

selection strategy is employed and a Procedure 1-like estimation strategy
 

is used in conjunction with the training strategy is another conceivable
 

processing strategy to be tested. The next two sections are presented
 

to provide information with regard to Procedure B and Procedure 1
 

training strategies in a multisegment/partitioning environment.
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4.2.2.1 Generalized Procedure 1 Training Strategy
 

We have noted that the multisegment signature extension approach
 

poses a training segment selection problem. Resultant classification
 

is sensitive to variational differences between training and test seg­

ments. Procedure 1 employs a single segment or local approach to train­

ing and classification to eliminate those differences. Extending Pro­

cedure 1 to a multisegment environment requires partitioning segments
 

into 'like' groupings. The designation of these static stratifications
 

using physical variables such as soil type and precipitation is an
 

attempt to associate segments in a manner that would minimize the
 

spectral differences between like classes in segments belonging to
 

the 	same strata. These strata can be used in two ways:
 

1. 	For Training Selection Purposes: To insure that all spec­

tral classes are represented in choosing segments from every
 

strata to be used across all segments in classification.
 

2. For Classification Purposes: Segments would be classified
 

using training data determined within their strata only.
 

In either case the Procedure 1 training strategy must be carried
 

out in a multisegment environment. The following is a generalization
 

of the signature extraction strategy to which Procedure 1 can be easily
 

adapted.
 

Consider n strata and m segments where n < m. Segment s.. is
 

the jth segment of the ith strata S.. Let the signature set for
1 

segment s.. be SIG(sij). Let the training data for stratum S. be T(Si).
 

Call the Procedure 1 clustering function 1, then
 

n 

SIG(sij) IT tkT(S ()
 
k=l
 

where w. is a weight for each stratum.
1
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if
 

k i k 1
 

(2)

k i k =0 

then the strata are being used for classification purposes, i.e., the
 

segment is classified using signatures computed within the stratum of
 

which it is a member.
 

If
 

W. = to. for all i,j (3) 

then the strata are being used for training purposes only, i.e., a
 

segment is classified using all signatures, but insuring that each
 

stratum is represented by training data.
 

The value of introducing this notation is twofold. First of all,
 

the same signature extraction strategy currently employed locally in
 

Procedure 1 can be employed in multisegment signature extraction.
 

Procedure 1 is simply the case where each segment is its own stratum
 

and wI is defined as in (2). Secondly in computing SIG(sij) (the sig­

nature set to be applied to ,segment sij) the training data from stratum
 

Si, (s. C S.) may be weighted more than training data from other, 


strata. This recognizes that important information for any one seg­

ment appears in every stratum, however, it is more likely that training
 

data within the same strata would be more significant.
 

4.2.2.2 Character of the Procedure B Training Selection Process
 

The training segment selection strategy that would be employed
 

in adapting Procedure I to a multisegment environment would likely be
 

carried out through random selection of a number of segments to satisfy
 

a training gain requirement. The accuracy and variance in the estimate
 

as a function of training gain is an important factor to be measured in
 

this experiment.
 

42
 



FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSTY OF MICHIGAN 

For a given training gain, one's confidence that a particular
 

random selection of training segments is adequate would be closely
 

related to the measured variance in the estimate given a different
 

collection of training segments satisfying the gain requirement.
 

Procedure B is an attempt to provide a systematic technique in train­

ing segment selection that would insure that the segments selected
 

for training are adequate at a level of confidence higher than random
 

selection. This approach is based on the same philosophy as static
 

stratifications of regions by use of physical variables. That phil­

osophy being that there are natural groupings of data, and sampling
 

should be carried out to insure representation of these natural group­

ings. Whereas static stratifications base groupings on physical vari­

ables, Procedure B groups data within strata dynamically as a function
 

of measured spectral variables. These groupings are dynamic in the
 

sense that as additional spectral information is added, for example
 

additional temporal acquisitions, then the spectral strata 'boundaries'
 

may shift. Sampling is carried out to insure representation within
 

each natural spectral grouping. The efficiency of this automatic seg­

ment selection approach in comparison to the random segment selection
 

approach is of interest.
 

4.2.3 PERFORMANCE MEASURES
 

Evaluation of the multisegment signature extension procedures
 

under test will be characterized by a set of performance measures.
 

These can describe performance within a segment, within a stratifi­

cation of data and across all strata. Performance measures can be
 

descriptive .or analytic.
 

4.2.3.1 Descriptive Performariie Measures
 

Descriptive performance measures characterize a procedure in
 

reference to the baseline system, in this case the LACIE Phase III
 

Procedure 1. The three performance measures to be considered include:
 

Nb 
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1. 	The differences in classification error
 

2. 	The differences in wheat proportion error
 

3. 	An estimate of the overall training gain
 

These performance measures provide a basis for comparison between 

Procedure 1 and signature extension procedures employing partitioning. 

4.2.3.2 Analytic Performance Measures
 

Analytic measures characterize the performance of a particular
 

signature extension approach in reference to the ground truth. A'pri­

mary objective of error analysis is to estimate and describe the dis­

tribution of errors over many data sets. An understanding of this dis­

tribution provides insight to the functioning of the system under test
 

and may provide post-classification corrective measures. Analytic
 

measures to be considered include:
 

1. 	Bias in Proportion Estimate: The displacement of the mean
 

of the predicted wheat proportion over a set of segments or
 

strata from the true proportion.
 

2. 	Correlation in Proportion Estimate: The degree of corre­

lation between predicted wheat proportion over a set of
 

segments or strata to the true proportion.
 

3. 	Mean Square Error in Proportion Estimate: The sum,of the
 

square of the distance of each estimate from the true pro­

portion; this is a measure of the accuracy of the estimate
 

without bias correction.
 

4. 	Variance in the Proportion Estimate: This measure is identi­

cal to the mean square error except employed after bias cor­

rection.
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5. 	R2: This measure is the square of the correlation coeffi­

cient; R2 can be thought of as the percent of variation
 

about a regression line that can be accounted for by the
 

dependent variable in the regression equation.
 

Figure 2 is a display of six hypothetical test results. Each
 

illustrates the effectiveness of various analytic performance measures
 

in describing the results. The ground truth proportion estimate is
 

plotted for a set of segments versus the predicted estimates. The 450
 

line indicates the correct estimate.
 

Figure 2(a) illustrates a test result that is unbiased, highly
 

correlated to the truth and with low variance in the estimate. Figure
 

2(b) diagrams a biased result that is correlated with a high R about
 

the dashed regression line. Figures 2(c) and 2(d) are both uncorre­

lated results, however Figure 2(c) is not biased and with greater
 

variance than Figure 2(d). Whereas the variance of Figure 2(d) is
 

lesser, the mean square error could be greater. Figure 2(e) illus­

trates a biased result that is highly correlated to the truth with a
 

very low variance. This result could be bias corrected by simply
 

shifting it toward the 45 line. Figure 2(b) could be similarly cor­

rected, but would result in a higher variance in error. However, a
 

multiplicative and additive correction would result in an equivalently
 

low variance estimate. Figure 2(f) is somewhat similar to Figure 2(c).
 

Both results are unbiased, and both have high variance in the estimates.
 

However, whereas the results shown in Figure 2(c) are not well corre­

lated to the truth, Figure 2(f) is negatively correlated. This infor­

mation may give added insight in the analysis of the systems under test.
 

4.2.4 MEASUREMENT PROCEDURES
 

Section 4:2.2 indicated that an evaluation will be carried out for
 

three procedures: multisegment Procedure 1, Procedure B, and a modi­

fied Procedure B. Each of these procedures will in turn be evaluated
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FIGURE 2. SIX HYPOTHETICAL MULTISEGMENT SIGNATURE EXTENSION
 

TEST RESULTS 
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in light of four physical stratifications of data: local, UCB, JSC, and
 

arbitrary partitions.
 

.Any evaluation of the inherent value of static stratification
 

in a multisegment environment will require that the measures of per­

formance discussed in Section 4.2.3 are statistically significant.
 

As a result a large number of classifications must be performed for
 

a large number of segments with procedural parameters
 

varied at each classification (see Section 4.2.5). This demands
 

judicious selection of the data base (see Section 4.2.6) and a classi­

fication strategy that minimizes cost.
 

The Procedure B classification strategy is described in Refer­

ence [12]. The sum of likelihoods classification strategy is summarized
 

in the following. Appendix IV contains a more detailed specification
 

of this strategy.
 

The parameters varying most rapidly in the proposed evaluation
 

are training parameters, for example, the number of training segments
 

employed. Ordinarily this would require the determination of a set
 

of signatures and computation of proportion estimates for each set of
 

training parameters. A procedure has been devised and termed 'pre­

classification' which delays the need for setting training segment
 

selection parameters until after signature determination and after
 

classifying the data set.
 

The preclassification-procedure to be employed in the test and
 

evaluation of signature extension procedures is as follows:
 

1. 	Select the set of segments potentially available for
 

training.
 

2. 	Determine signatures from each training segment inde­

pendently from others.
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2= 

3. 	Employ the following classification procedure::.
 

a. 	 Classify each segment using the signatures.fro each
 

other segment, determining a wheat and non-wheat like­

lihood -(i.e., for m training segments, each segment is
 

classified m times).
 

b. 	 Select the subset of segments to he used for training.
 

c. 	 Sum likelihoods from each training segment and deter­

mine wheat pr6portion estimate.
 

d. 	For testing purposes, repeat (b) and (c) for each
 

variation in the training segment selection process.
 

Proportion estimation can be carried out for a variety of training
 

segment sets, simply by summing likeiihoods corresponding to the appro­

priate training segments. Clustering and likelihood calculation, the
 

two 	most complex operations computationally, do not have to be recom­

puted for each different set of training data. Appendix IV describes
 

how 	this preclassification procedure is logically equivalent to a more
 

standard approach.
 

4.2.5 PARAMETERS, FACTORS AND LEVELS
 

A number of conditions in the evaluation of specific multisegment
 

signature extension procedures will be varied.- This is carried out in
 

order to examine the sensitivity of the procedures to various para­

meters. The underlying objective here is to understand not only that
 

a specific approach is or is not successful, but to understand why as
 

well.,
 

Parameters of particular interest in this evaluation are listed
 

and briefly described in the following.
 

1. 	Number of Training Segments: It is critical to evaluate the
 
I 

performance of an approach as a function of training gain,
 

that is, the ratio of the total ntimber of segments processed
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to the number of segments used for training. The training
 

gain is, a measure of the system's efficiency. Hence, the
 

number of segments used for training must be varied. Not
 

only will the number of training segments be varied, but the
 

specific ones employed for a specific training gain will be
 

as well. This is required in a Procedure 1 context in order
 

to measure the variance in the estimate as a function of the
 

random training segment selection strategy. Concerns associated
 

with experiment cost effectiveness resulting from this require­

ment have been addressed in Section 4.2.4 and in Appendix IV.
 

2. 	Preprocessing: Phase I of this project evaluated certain
 

data preprocessing strategies and concluded that they may be
 

of considerable value in a multisegment environment. The
 

benefits of haze and sun angle external effects corrections
 

and data compression in using the Tasselled Cap transformation
 

and blobbing need to be evaluated in a multisegment signature
 

extension environment.
 

3. 	Training Weights as a Function of Strata: Every segment to
 

be classified may be so classified using training data from
 

within the local strata in which it belongs as well as from
 

other strata. Appendix IV discusses a weighting that will
 

vary from segment to segment associating a level of confidence
 

in the training data drawn from different strata as applied
 

to a specific segment. Three sets of weights will be evalu­

ated. The first associates a full confidence in training
 

data from the local strata and a zero confidence level in all
 

other training data. In effect physical stratification of
 

the data is used not only for training but also for classifica­

tion. A second weighting may employ an equal level of confidence
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in training data independent of the strata from which it is
 

drawn. A third weighting may employ a higher level of con­

fidence in local stratum training data and a lesser level of
 

confidence in other data. The third approach suggests that
 

physical stratifications of the data are not truly static
 

boundaries, but rather confidence thresholds. Hence a con­

fidence weighting as a function of some distance measure may
 

be appropriate. The nature of that distance measure is still
 

to be investigated.­

4. 	The Number of BLOB-Clusters: This-parameter pertains to
 

Procedure B. A blob-cluster, or B-cluster, is the spectral
 

stratification of the data described in Section 4.2.2.2. It
 

is a matter of investigation to analyze the sensitivity of
 

Procedure B to the number of spectral strata employed.
 

5. 	The Random Draw of BLOBS for B-Cluster Labeling: The esti­

mation mechanism in Procedure B requires that each B-cluster
 

or spectral stratification be estimated by a technique wherein
 

a random draw of BLOBS within the B-cluster are labeled and
 

aggregated. This approach may be employed as well for the
 

AI labeling of fields for Multisegment Procedure 1 training
 

purposes as an alternative to dot labeling. The system's
 

sensitivity to the number of the blobs using this approach
 

is of concern.
 

4.2.6 DATA SETS
 

In an effort to attain statistically significant results, the
 

data base for this experiment will contain a large number of LACIE
 

blind site segments. However, in order to keep processing costs within
 

reason, four compressions of the data will be considered: (1) the aug­

mented AI Fields Data Base, (2) BLOB compression, (3> 209 dot samples,
 

and (4) ground truth Fields Data Base.
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Augmented Fields Data Base
 

The augmented fields data base is described in Appendix I. This
 

represents a set of segments for which an analyst interpreter desig­

nated and labeled specific fields for training. Section 4.3 describes
 

a process carried out to augment the data base with additional fields.
 

This data base is drawn from Kansas and North Dakota representing both
 

winter and spring wheat. Due to its availability, initial testing of
 

measurement procedures and signature extraction should be carried out
 

using this data base
 

BLOB Compression
 

BLOB.is a spectral-spatial clustering technique that groups data
 

into field-like shapes. -It is of interest to us to analyze this data
 

preprocessing technique to determine how accurately actual field shapes
 

are estimated and more importantly, to measure the accuracy of crop pro­

portion estimates based on BLOB classification. This technique is of
 

particular interest in that it forms the basic unit of data in Procedure B.
 

209 Dot Samples
 

Upon overlaying a lOxlO pixel grid to a LACIE segment, 209 pixels
 

are represented at the nodes of the grid. Currently in LACIE Phase III
 

operations these '209 dots' are used in various stages including label­

ing of samples, cluster seeding, cluster labeling and bias correction.
 

The 209 dots for our purposes represent a reasonable random sampling of
 

the segment to be used for proportion estimation of wheat and non-wheat.
 

Ground Truth Data Base
 

-A task is currently underway wherein a number of LACIE blind sites
 

in the Great Plains are being processed to incorporate ground truth,
 

stratification and ancillary information. These data are expected to
 

be available within a six month period. As they become available, it
 

is our intention to phase out the use of the augmented fields data
 

base and replace it with these data statistically summarized on a
 

field by field basis.
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4.3 	FIELDS DATA BASE PREPARATION AND AUGMENTATION 

One 6f the important efforts in preparation for test and evaluation 

of multisegment signature extension procedures is the development of
 

an adequate data base. The proper selection and labeling of training
 

fields within each test site is an essential part of the development
 

of this data base. The Fields Data Base, used for test and evaluation
 

of signature extension algorithms of Phase I of this project will be
 

used initially for the extraction of signatures and testing of multi­

segment signature extension procedures. To insure that the AI Fields
 

Data Base properly represents each segment, the following procedure
 

was carried out-using LACIE Blind Site 1975-76, Day 315-Fields Data
 

Base. This data included 38 Kansas and 18 North Dakota test-sites
 

(see 	Appendix 1.4 for a complete description of the data base).
 

1. Compare AI field designations with large scale annotated
 

ground truth high altitude photos and correct any AI
 

labeling errors.
 

2. Determine the degree to which AI field selection simulates
 

random field selection on a segment by segment basis.
 

3. Augment the fields data base to insure a simulated random
 

selection process.
 

4.3.1 LOCATING AI FIELD DESIGNATION ERRORS
 

The AI designations ("wheat" or "other") of defined fields were
 

checked against ground truth labels on aerial photographs of the scenes
 

involved. This was done for 32 1975-1976 LACIE blind sites in Kansas
 

aid 16 in North Dakota. For each segment three accuracy measures were
 

computed. They were defined as follows:
 

total no. of mis-labeled fields
 
1. TOTAL ERROR = total no. of defined fields 
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no. of fields labeled other when actually wheat
 no. of defined fields actually wheat
 

= no. of fields labeled wheat when actually other
3. 'FALSE WHEAT 
 no. of defined fields actually other
 

A summary of the accuracy figures appears in Table 10. Analyst-


Interpreter accuracy on the North Dakota segments was not as good as
 

on the Kansas segments. This may be attributable to the presence of
 

the confusion crop barley in North Dakota and to the practice of strip
 

cropping. Two of the segments in Kansas, No. 1164 (68.4% false wheat)
 

and No. 1860. (54.5% missed wheat) were found to have anomolously large
 

error figures. The number of field designations changed per segment
 

ranged from 0 to 12, averaging about 3.3 corrections per segment. An
 

average segment contains about 30 fields,
 

TABLE 10. SUMMARY OF AT ACCURACY MEASURES
 

North Dakota Kansas
 

Error Ave. Error Std. Dev. Ave. Error Std. Dev.
 

Total 17".2% 6.7% 11.4% 8.1%
 

Missed Wheat 26.7% 14.7% 20.0% 10.5%
 

False Wheat 6.1% 5,5% 3.3% 7.4%
 

MissedWet Ratio 4.4 6.4
 
False Wheat
 

One observes the AI makes far fewer mistakes of labeling other
 

crops as wheat than the reverse mistake of labeling wheat as other.
 

The ratio MISSED WHEAT/FALSE WHEAT is 4-4 in North Dakota and 6.4 in
 

Kansas. This indicates the presence of a source of variation in the
 

appearance of wheat which is misleading the AI. An unknown source of
 

variation is not likely to make a crop other than wheat look like wheat.
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The AI looks at the development of a crop at key points in time, the
 

"biophases" of wheat,'and the pattern of development is- entral in the
 

decision process. It is unlikely that small, random variations in the
 

appearance of fields would cause a non-wheat crop to be shifted into
 

this pattern. It is more likely to shift a wheat field beyond- the
 

thresholds of the wheat pattern as. the Al conceives it. A statistical
 

investigation exploring Al error for these segments is reported in a
 

following section of this report.
 

4.3.2 SIMULATING A RANDOM TRAINING SELECTION
 

As has been described earlier, the Fields Data Base was selected
 

to conduct the test and evaluation of signature extension algorithms
 

in order to provide a compression of the data. This would both be
 

representative of the individual segments and result in a cost effec­

tive analysis. Initially it was acceptable to assume that the Analyst
 

Interpreter could accurately represent the segments through field selec­

tion. That is, the AI designated fields were representative of the
 

segments it the sense that the variability in the data was accounted
 

for. It became a concern, however, that introducing human interaction
 

would bias representative selection. That is to say, the Analyst
 

Interpreter was not properly simulating a random training field selec­

tion process. A random field selection process-would insure, in a
 

statistical sense, that the variability in each scene was properly
 

sampled'. This concern led us to establish a procedure, termed CHECK,
 

whose function is to establish how closely AI field designations simu­

late random field selection. The following CHECK procedure was devised;
 

1. -Histogram the multitemporal segment of data:
 

Tasselled Cap brightness and green channels
 

three bins per channel selected to separate
 
observed modes
 

2. Histogram AI designated training pixels using the same bins.
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3. 	Establish a criterion based on Step 1 as to which bins
 

were significant.
 

4. 	Compare two histograms to determine whether all significant
 

bins were represented by AI training pixels.
 

5. 	Use a histogram map (similar to cluster map) to select
 

additional training to insure that each significant bin
 

is represented by training pixels.
 

Keep in mind that the purpose of carrying out this procedure was
 

to insure that the AI training field selection process was not biased
 

in simulating a random training field selection process. Random train­

ing selection statistically insures that important clusters of data
 

would be represented in proportion to their density. For example,
 

should ten percent of a scene fall into a particular spectral class,
 

random sampling of the scene would insure that, on the average, ten
 

percent of the samples would fall into that spectral class. The histo­

gram approach was used since important clusters of data would tend to
 

fall into the same bins. By histogramming the data into bins, the AI
 

field designation could be augmented by selecting samples from larger
 

bins that were missed by the AI.
 

Using data from two acquisition dates, four channels, there were
 

81 possible bins or classes in which a pixel could fall, To decide
 

which bins were most important to examine, the data was grouped accord­

ing to size. The first group consisted of all bins containing more
 

than 5% of the data, the second more than 1% of the data, the third
 

and fourth groups were cut off at the 0,5% and 0.1% levels. Figure 3
 

shows a plot of bin size vs, average percent of the test site included
 

in each group. Only 25% of the data fall in bins containing over 5% of
 

the pixels, but 83% of the pixels are contained in the 1% level group.
 

Figure 4 is a plot of bin size vs. the number of bins within a group.
 

The 	number of bins per group ranges from three to 67.
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The 1% level was found to be.the most optimum group to work with
 

when using two dates, containing 83% of the data in approximately 31
 

bins.
 

Several observations were made when comparing the training histo­

grams to the segment histograms on a bin by bin basis for 13 Kansas
 

segments.
 

In general if the bin contained n% of the segment data then it 

contained (n + 2.5)% of the AI designated training data. Cases where 

this was not true usually involved the larger bins containing greater 

than 7% of the data. In these cases if the bin contained n% of the 

segment then it might contain (n ± n/2)% of the training. Thus larger 

bins were generally represented by AI designations. However bins con­

taining less than 2.5% of the total data may be completely missed by 

AI training. This introduces a non-random character to the training
 

data. This type of missed training was found in 7 of the 13 test sites.
 

There was an average of 2.5 bins per segment not found in the AI desig­

nated training sets, with as many as 11 bins not represented by train­

ing in some segments,
 

Using the histogram maps (Figure 5 ) and ground truth photos new
 

fields were determined to complete the training set. On the example
 

histogram map one can see definite field structure. The blank areas
 

symbolize data in bins with less than 1% of the data. These areas are
 

usually field boundaries and represent a mixture of vegetation types.
 

The field-like structure of the histogram indicates that important bins
 

that were not sampled by the AI are actually fields, Hence a better
 

simulation of random training selection could be achieved by augmenting
 

the Fields Data Base with fields representing important bins that were
 

not represented by the AI fields. This was carried out for all of the
 

segments in the test data base. Overall there were 23 new polygons
 

added to the first 13 training segments examined, with as many as nine
 

added to a single site.
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4.3.3 FURTHER ANALYSIS USING CHECK
 

CHECK provides a framework within which any training selection
 

procedure may be examined to establish bias or non-random character­

istics. It can also be used to examine the characteristics of the
 

data as a function of the temporal dimensionality of the data. It is
 

well known statistically that an increase in the dimensionality of the
 

data provides not only the potential for more information, but also the
 

need for more, or at least more accurate, training-sample selection in
 

order to describe the information content of various classes of data.
 

CHECK was used to examine the effectiveness of two training pro­

cedures as a function of additional multitemporal data acquisitions.
 

The two procedures include the AI training field designation, and samp­

ling based on the selection of every tenth pixel in every tenth line
 

of data. (The second procedure is not exactly equivalent to the train­

ing procedure employed in the LACIE Phase II Procedure I system.) The
 

purpose of this exercise was to establish how a fixed sampling of data
 

behaves as new information is added.
 

The CHECK procedure was carried out for data sets containing two, 

then'three and four multitemporal data acquisitions. The data was 

histogrammed into three levels in the Tasselled Cap brightness and 

green channels for each set of acquisitions. For two biophases, there 

were a possible 81 bins of data (34 or three levels for each of four 

channels of data). Three biophases provided a potential for 36 or 

729 bins, and four biophases a potential for 6561 bins. Histograms 

were examined for bins containing 0,1, 0.5, 1.0 and 5.0 percent of 

the total number of pixels per segment. The 0.1% level was the only 

level wherein 80% or more of the data in each segment was represented 

for each set of acquisitions. 

A number of observations can be made in examining these histo­

grams. Comparing the 209 point histograms to the segment histograms
 

on a bin by bin basis for two biophases one finds a closer-to-randomly­
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selected training set than represented by the AI selected fields. If
 

a bin contained n% of the segment data then the bin contained about
 

n + 1.5% of the 209 point training set, regardless of bin size. This
 

is no surprise since the 209 points were selected by arbitrarily super­

imposing a grid on the data set.
 

Upon extending the CHECK procedure to three and four acquisition
 

dates, employing these fixed sampling criteria leads to interesting
 

results. Ffgure 6 illustrates three methods: wall-to-wall ground
 

truth represented by the total number of bins, AI labeling,.and use
 

of the 209 point grid. The 0.1% curves are presented since this covers
 

the majority of data points in all three acquisition cases. Notice
 

that as the number of time periods increases, increasing the dimen­

sionality of the data, the amount of training required also increases.
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FIGURE 6. NUMBER OF BINS CONTAINING 0.1% OR MORE OF DATA
 
COVERED BY TRAINING AS DETERMINED THROUGH CHECK
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The 209 point or AI labeling method does not adequately represent the
 

data in and of themselves. Additional information must be provided.
 

This is precisely what the LACIE Procedure I training selection
 

approach attempts to address by augmenting the training selection
 

based on 209 points with an associated clustering algorithm. The
 

alternative approach would be to sample employing wall-to wall ground
 

truth. Whereas wall-to-wall ground truth may not be a feasible approach,
 

we plan to investigate the use of 209 points in cluster labeling as in
 

Procedure 1 as well as a field seeking algorithm like BLOB in conjunc­

tion with the CHECK procedure as a technique to determine representa­

tive training fields.
 

4.4 ANALYST INTERPRETER LABELING ERROR ANALYSIS
 

Section 4.3 described activity that related to correcting Analyst
 

Interpreter labeling errors in a number of 1975-76 LACIE Blind Site
 

segments in Kansas and North Dakota that currently comprise the test.
 

data base described in Appendix I. This was accomplished by comparing
 

the crop labels of AI designated fields to ground truth annotated high
 

altitude photography. An analysis of the nature of these labeling
 

errors was of interest for several reasons.
 

The Analyst Interpreter functions in a multisegment/multitemporal
 

environment. The labeling of wheat and non-wheat is carried on a
 

segment at a time, utilizing several false color Landsat images repre­

senting various biophases in the wheat crop calendar. The AI currently
 

is provided with false color imagery generated by a Production Film
 

Converter employing a specific color coding technique [13]. These
 

images are termed Product l's. In addition to these images, other
 

aids are provided to assist the AI in understanding the local scene
 

characteristics that may affect the apparent colors of wheat and non­

wheat. However, multisegment signature extension is carried out by
 

the AT each and every time the AI labels wheat or non-wheat using the
 

non-segment specific, or global, information accumulated by experience.
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The error analysis carried out attempts to quantitatively address
 

questions pertaining to the influence of the technique employed in the
 

generation of Product l's upon the AI's ability to correctly label
 

wheat and upon subsequent classifications based on inaccurate signa­

tures derived from mislabelled samples. Two specific concerns war­

ranted our analysis of the Product 1. First of all, the product is
 

generated using segment specific, not global, parameters, and secondly,
 

external effects, like haze and sun angle, are not accounted for.
 

4.4.1 APPROACH
 

The analysis of the nature of Analyst Interpreter labeling errors
 

was carried out in six stages:
 

1. 	Comparison of AI designations with ground truth labels and
 

measurement of error rates. Section 4.3 described the AI error
 

found to be present in 46, 1975-76 LACIE blind sites and the
 

error statistics generated for each segment.
 

2. 	A brief consideration of the effect AI labeling errors have on
 

accuracy of proportion estimation. Described in Section 4.4.2
 

below.
 

3. 	A search for correlation between extent of labeling error and
 

various segment specific ancillary variables. Described in
 

-Section 4.4.3 below.
 

4. Development of a data base with field means of Landsat data
 

for three biophase acquisitions per segment and a technique
 

for display of the data in color space. Described in Section
 

4.4.4 below.
 

5. 	Diagnostic work relating color error with various acquisition
 

and segment specific variables. Intended approach shown in
 

Section 4.4.5.
 

6. 	Exploration of possible improvements in generation of false
 

color imagery. Plans are indicated in Section 4.4.6.
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Stages one through four have been completed at the time of this
 

writing. Work on stages five and six is in progress.
 

4.4.2 EFFECT OF LABELING ERRORS ON PROPORTION ESTIMATION
 

Our consideration of the influence on proportion estimation of
 

mislabeled training fields was not intended to be definitive. We
 

wished to obtain a general idea, based on the data already at our
 

disposal, of the variance in proportion estimation which might be
 

attributed to mislabeling. As one indicator we considered segments
 

with missed wheat error but no false wheat error. We plQtted missed
 

wheat error versus the fraction of wheat in scene that was detected,
 

i.e., the ratio of the proportion estimate in local classification
 

mode, to the ground-truth proportion of wheat in the scene. Figure 7
 

reveals a tendency for detected proportion of wheat to fall off quickly
 

with missed wheat error. It suggests that for error greater than 24%
 

about 60% wheat detection may be expected.' The missed wheat error
 

statistic is only a crude measure of the amount of misinformation
 

given to the classifier, which probably accounts for much of the
 

scatter in Figure 7. Even so the missed wheat variable accounts for
 

about 40% of variance in the detected proportion of wheat.
 

4.4.3 CORRELATION OF LABELING ERRORS WITH ANCILLARY VARIABLES
 

Analyst-Interpreter accuracy measures were regressed against the
 

following set of segment specific variables:
 

1. Ground truth percentage of wheat in the segment.
 

2. Long term average for growing season of Degree-Day sum.
 

3. Long term average for growing season of Precipitation
 

4. Elevation.
 

5. Latitude
 

6. Longitude
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In a somewhat unexpected result, we found AI accuracy not to be
 

correlated with percentage of wheat in a segment. Figure 8 demonstrate
 

the independence of missed wheat error from percentage of wheat in a
 

segment. A study conducted by Coberly, Tubbs and Odell [13], indicated
 

the Product I might be susceptible to color distortion in scenes with
 

very little wheat and scenes dominated by wheat. This concern stemmed
 

from the fact that bias and scale values used in generating the Pro­

duct 1 are computed on the basis of variability in the contents of a
 

scene. Logically, the amount of wheat in a scene is an important
 

factor in how homogeneous the scene will appear. In the study cited,
 

wheat and non-wheat signatures were used to generate artificial scene
 

statistics, assuming different proportions of wheat, and these statis­

tics were used to compute corresponding bias and scale values. These
 

values indicated color distortion in scenes with little wheat (a lot
 

of variability) and scenes largely composed of wheat (little varia­

bility). The fact that AI error rates are not a function of propor­

tion of wheat in a scene makes us suspect that the study cited was too
 

simplistic in its assumptions. Proportion of wheat in a scene may be
 

one factor in color error but in real life it is one among many. The
 

conclusion of the study, that Product I is susceptible to distortion,
 

is still valid. However, the range of factors involved and the sig­

nificance of color shifts produced, have yet to be explored.
 

The other variables tested also proved uncorrelated with the single
 

exception of latitude. Latitude was found correlated to AI total error
 

with r = -.60 at a significance level below 0.001. As Figure 9 shows
 

this is not a tight correlation but it appears to be real.
 

We 	interpret this to mean there exists a factor which
 

1. 	Characteristically varies with geographic latitude of
 

a segment and
 

2. 	Is capable of influencing AI accuracy in a fairly strong
 

manner.
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The adjusted crop calendar provided for the AI is a critical factor
 

The crop calendar also varies characteris­in the labeling process. 


tically with latitude because of climatic bhanges. Our first sus­

picion in this matter is, therefore, that unrecognized inaccuracies
 

in crop calendar adjustment prdcedure exist which are tied to latitude.
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4.4.4 DISPLAY OF DATA IN COLOR SPACE
 

Effort was directed toward obtaining a display of field mean data
 

in color space, i.e., a chromaticity diagram. The idea of this is to
 

have a graphical portrayal of the distribution of colors of fields as
 

they appear on the Product 1 false-color imagery. Distance in color
 

space is an indicator of distinguishability between colors to the
 

human eye. It was felt a display of the fields in color space would
 

be a direct, insightful tool for addressing the labeling problem.
 

Implementing the technique required three steps.
 

1i. 	A data base was established containing the following informa­

tion for each segment (see Appendix V).
 

a. 	The mean value in each of Landsat bands four through
 

seven for each defined field in the scene.
 

b. 	The ground truth designation of each field (wheat or
 

non-wheat).
 

c. 	The AI label for each defined field.
 

d. 	The bias and scale factors used to transform the
 

Landsat data before production of the Product 1
 

imagery.
 

2. 	For each acquisition in the data base an affine transformation
 

was applied to the field mean data of the Landsat channels,
 

exactly as if the data were being prepared for input to the
 

blue, green and red color guns of the PFC, viz:
 

B = 	 A1 XI + Bj 

G= A 2 X2 + B2 

R = 	 A4X4 + B4 

Here A, and B, "(i = 1,2,4) are the scale and bias factors for 

an acquisition as computed by current procedures [13]. After 

transformation any values of R, C, or B falling outside the 
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range 0-256 (the color intensity range of the PFC) are termi­

nated to the appropriate end point.
 

This data can be displayed on a two-dimensional chromaticity
 

diagram after a normalization of the variables:
 

r = 	R/T
 

g = 	G/T
 

T = 	R+G+B (see Figure 11)
 

It is not necessary to plot b (b = B/T) because of the restraint
 

r+g+b = 1. 

3. 	The (T, r, g) color space is not uniform because one cannot say
 

there is a unique relationship, valid everywhere on the (r,g)
 

graph, between distance and distinguishability of colors.
 

There are transformations with which one can approximate a
 

uniform color scale (UCS). The CIE 1960 UCS diagram is an
 

example. It is defined as a projective transform of the CIE
 

1931 (x,y)-chromaticity diagram (Figure 12). To map our (r,g,b)
 

space to the standard (x,y,z) chromaticity space the following
 

relations were employed [15]:
 

0.4 9 00 0r + 0.31000q + 0.20000b 

0.66697, + 1.13240g + 1.20063b' 

O.17 69 7r + 0. 8 12 40g + 0.01063b 
Y= 0.66697r + 1.1 32 40g + 1.20063b' 

O.O0000r + 0.01000, + 0.99000b 
+ 1. 1324 00.66697, y + 1.20063b 

This transformation must be considered approximate in -our case because
 

the colors of the PFC are not exactly the standard (R,G,B) primaries.
 

We proceeded on the belief this would allow an improvement in uniform­

ity 	of the diagram if not optimum uniformity. The CIE UCS mapping is
 

given by the following equations [14]:
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4x 
-2x 	+ 12y + 3 

6y

v -	-2x + 12y + 3 

Figure 10 displays the color ranges of the CIE X-Y chromaticity
 

diagram. Figure 11 shows ellipses which represent statistical varia­

tion of chromaticity matches. The length of the axes of the ellipses
 

represent the distance in color space required to make two colors just
 

distinguishable to the eye. Observe that this distance is much smaller
 

in the blue area of the (x,y) diagram than in the green. Obviously
 

this space is not uniform. After transformation to (U,V) space
 

(Figure 12) the ellipses are more or less comparable throughout the
 

diagram, indicating improved uniformity. Figures 13 and 14 show a
 

Biowindow 2 LACIE segment in (r,g) space and in (U,V) space.
 

4.4.5 FACTORS AFFECTING QUALITY OF THE PRODUCT 1
 

Our approach to investigating the labeling problem has two basic
 

hypotheses behind it:
 

1. 	The current method of generating Product l's introduces color
 

errors which adversely affect the Analyst-Interpreters' ability
 

to correctly label wheat and non-wheat in some instances.
 

2. 	An array of factors affect the quality of Product l's and
 

these factors must be recognized before the production of
 

any 	standard Landsat film product.
 

Statement I refers to color error. We understand this term along the
 

following lines. Three criteria of film quality are proposed by Toyo
 

Kaneko [16]. These include color level resolution, brightness, and
 

color distortion. The first two are closely related and important for
 

training field selection and delineation. The color distortion criterion
 

is important for training field labeling [17]. Color distortion is the
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most important criterion in dot labeling. We conceive of color dis­

tortion as a change in hue, saturation, and brightness, i.e., colors
 

of a given pixel, from time to time within a given segment. It should
 

be thought of as a change in color from segment to segment of pixels
 

with like reflectance. Color error is, therefore, defined for our pur­

poses as a distortion of color from one segment or time period to
 

another of two objects having the same reflectance. We are implying
 

that the goal of any false color image display is to map objects of
 

the same reflectance into the same color, regardless of place or time
 

of acquisition, and make important differences between objects appear
 

visible to the human eye.
 

To make our work more direct and quantitative we intend that color
 

error be given analytic measures. For example one might consider the
 

distance in (U,V) color space of the average color of wheat in a scene
 

from some defined reference point as a measure of color error. With a 

measure of color distortion in hand we will be in a position to address 

the question of what factors cause color shifting in Product 1 imagery ­

and determine their relative significance. Among the variables we will 

want to include in this analysis are the following: 

a. haze level 

b. sun angle 

c. soil color 

d. crop calendar 

e. proportion of wheat in the scene 

f. color composition of wheat and non-wheat 

g. amount of clouds, water in scene. 

Most of these variables are acquisition specific, i.e., are different
 

for each Landsat pass over a particular segment. It is understood that
 

the AI need not have been considering any particular acquisition in his
 

work. We are not looking for correlations between acquisition specific
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variables and A! error rates; we endeavor to understand the Product I
 

in ways which allow it to be generally improved. A reduction in label­

ing error may then be anticipated.
 

4.4.6 EXPLORATION OF POSSIBLE IMPROVE ENTS
 

The technique of display described in Section 4.4.4 gives us a
 

special vantage point from which to explore ramifications of suggested
 

improvements in production of false color imagery. Some suggestions
 

will arise out of the diagnostic work described in Section 4.4.5.
 

Other possibilities which will be evaluated include the following:
 

1. 	Correction of data for haze level and sun angle before pro­

duction of imagery.
 

2. 	Use of a different technique for computing bias and scale
 

factors:
 

a. 	I1ocutt method
 

b. 	Kaneko method
 

c. 	Krauss method
 

d. 	New methods as our understanding suggests them.
 

3. 	Application of the Tasselled Cap transformation to the data
 

prior to generation of imagery. The brightness, greenness
 

and yellow dimensions of the data to be used as inputs to
 

the green, red and blue guns of the PFC after scaling by one
 

or another technique.
 

4.4.7 DISCUSSION
 

As a background to the discussion we present some (U,V) chromaticity
 

diagrams of acquisitions available in our data set. In these figures
 

wheat fields are designated by circles and non-wheat fields by tri­

angles. A blackened-in circle or triangle indicates the AI mislabeled
 

the field. Figures 15(a) and (b) show acquisitions of two segments in
 

the second biophase. Figures 16(a) through (d) show biophases one and
 

two for two segments. Figure 17 shows a complete 3 biophase history
 

for one segment.
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Looking at what we have thus far we can point to some disturbing
 

things about Product 1 imagery. Figures 15(a), 15(b) and 16(b) show
 

color space distribution of fields in three segments. Note how different
 

the distribution of wheat color is between these segments, despite the
 

fact the acquisitions were within one day of each other and the crop
 

calendars are virtually identical. We have hypothesized this marked
 

alteration in the wheat color signature from segment to segment is the
 

result of using freely varying bias and scale values for scaling of
 

data and not taking account of haze and illumination (sun angle) effects.
 

The Analyst-Interpreter must interpret imagery using ancillary informa­

tion, crop calendar estimates, historical agricultural statistics, and
 

ground truth information. This is necessary to allow the AI to adjust
 

the recognition of wheat to each segment and each acquisition. Because
 

of the artificial variability of the Product 1 image, the presence of
 

wheat and its approximate stage of development can never be addressed
 

from the Product 1 image alone.
 

Consider the interpretation problem of Segment 1164. The color
 

distribution of fields in this segment are shown in Figures 16(a) and
 

16(b) for acquisitions in biophases I and 2. Of the acquisitions made
 

in 1975-76 on 1164, Julian date 124 stands out as the one to potentially
 

distinguish wheat and non-wheat. There were no other acquisitions in
 

the second or third biophases. This acquisition was at the same crop
 

calendar point as the acquisitions of Figure 15. If one adopts the
 

color signature of wheat displayed in Figure 15(a), (i.e., if one over­

lays the chromaticity diagram of 1164 on 1171) it appears 1164 contains
 

mainly wheat. If one adopts the color signature of 1166, Figure 15(b),
 

it appears 1164 contains little or no wheat.
 

The AI assigned the label of wheat to 70% of the fields in Segment
 

1164. In fact, there were no wheat fields among the fields defined on
 

1164.
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Segment 1164 is not a special case of color distortion. It does
 

not have extreme bias and scale values associated with it and could
 

not be flagged by looking at these values. In this case the AI failed
 

to find the proper boundary for interpreting the color of crops in this
 

scene. This is an example of complete miscuing on the crop color sig­

natures for a particular segment. This error is possible because of
 

the artificial variability of the Product 1 which makes it necessary 

to tailor recognition of wheat to each segment and each acquisition 

on that segment. This raises for us the concern that even when this 

tailoring is basically successful the fit may be too unnecessarily 

tight or too loose. This lies in the realm of the individual AI's 

interpretation. It is a difficult tailoring task to perform on scant
 

information about qualities of Product 1 imagery. We know the inter­

pretation of false-color imagery can produce completely accurate label­

ing of fields on some segments. It is our conjecture that a portion
 

of the 21% average missed wheat error and 11% average false wheat error
 

are due to difficulties in interpretation introduced by color signature
 

variability in Product 1 imagery.
 

A linear discriminant function was trained over all segments and
 

three time periods, to see how well a universa wheat signature could
 

be applied to individual segments. The result of applying the best
 

linear universal discriminant to individual segments was essentially
 

random classification. To illustrate the reason for this we have com­

puted linear discriminant boundaries between wheat and non-wheat on a
 

local, segment by segment basis, for 5 segments with virtually the same
 

crop calendar at acquisition. Figure 18 shows how much these boundaries
 

shift between segments.
 

The technique of labeling fields by interpretation of false color
 

imagery with shifting color signatures requires two things: 1) sub­

stantial local information, ancillary data and ground truth comparison,
 

and 2) self restraint on the part of the interpreter not to apply earlier
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training where it might not be valid. We believe this necessity for
 

restraint may contribute to inaccuracy anyway in the form of missed
 

wheat errors.
 

As an alternative to the above, we propose investigation be
 

directed toward establishing a way of producing imagery with stable
 

discrimination boundaries. We believe the techniques discussed in
 

this section provide the proper tools and we feel the explorations
 

envisaged ought to be carried out.
 

In the data set we are currently working with we have field means
 

data for 51 acquisitions. These acquisitions are spread among 32
 

1975-76 Kansas segments and three time periods. The segment numbers
 

along with date, crop calendar, and error statistics are listed in
 

Appendix V. We feel the extent of this data set is only marginal for
 

the analyses we would like to perform. We would hope to have a new,
 

larger set of acquisitions made available to us at a future point in
 

time. This would allow us to be more definitive about qualitative
 

conclusions and would make quantitative analysis feasible.
 

4.5 	 PHASE II: CONCLUSIONS AND RECOMMENDATIONS
 

Phase II of this.project has concentrated on a twofold purpose:
 

(1) the specification of an experiment design for the test and evalua­

tion of overall signature extension procedures for large area crop
 

inventory, and (2) an analysis of Analyst Interpreter wheat labeling
 

errors.
 

Phase I documented that the development of accurate large area
 

crop inventory systems using signature extension techniques is a
 

feasible goal. The evaluation of three such techniques has been speci­

fied in the experiment design. These include a multisegment adaptation
 

of Procedure 1, currently employed in LACIE as a local or single seg­

ment procedure, Procedure B, developed at ERIM, and a modified version
 

of Procedure B, incorporating the training selection strategy of Pro­

cedure B and the classification strategy of Procedure 1.
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In addition to the evaluation of these three overall procedures,
 

a number of procedural parameters will be varied to determine the
 

effect on classification results. These parameters include the number
 

of segments used in training, and the incorporation of various data
 

preprocessing techniques, specifically sun angle, haze effect correc­

tions, and data compression strategies.
 

A most important aspect in the analysis of these multisegment
 

signature extension techniques is their performance as a function of
 

the use of static stratifications of the data. Three sets of strati­

fications will be employed including: (1) physical stratifications
 

of the data based on ancillary variables as defined by UCB and JSC,
 

(2) an arbitrary stratification wherein all segments are grouped into
 

one stratum, and (3) a 'baseline' stratification wherein each segment
 

is its own stratum, equivalently local or single segment training and
 

classification.
 

Preparatory stages in the execution of the experiment to evaluate
 

these overall multisegment signature extension procedures included the
 

development of a data set for purposes of initial evaluation. This
 

data set was drawn from the Fields Data Base. One step in its pre­

paration includes the correction of Analyst-Interpreter labeling errors.
 

The ensuing analysis of these labeling errors revealed that classifica­

tibn performance in a multisegment environment was sensitive to AI
 

labeling errors.
 

In an attempt to understand the nature of these errors in order
 

to provide recommendations as to improved labeling techniques, it was
 

determined that the current procedure used in production of the Landsat
 

Product 1 false color imagery has certain undesirable characteristics.
 

Specifically, the color of wheat differed substantially from segment
 

to segment at the same stages in the crop calendar.
 

It is recommended that the data base used in the analysis of AI
 

errors be expanded to incorporate additional acquisitions for existing
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segments as well as additional segments in order to establish a data
 

base that can be analyzed adequately to establish statistical signifi­

cance. In addition, the technique employed in the analysis of the
 

Product 1 imagery is a most useful approach to the analysis of other
 

false color image products. That technique employs a mapping of field
 

means into color space coordinates transformed into a space wherein
 

Euclidean distance is more closely correlated to the human eye's ability
 

to discriminate colors. Hence analysis of an AI's ability to discrimi­

nate wheat from non-wheat can be carried out statistically. A compari­

son of various image production techniques in this fashion would be of
 

great value. It was also observed that the presence of haze or clouds
 

in a scene may adversely affect image products. Techniques to reduce
 

haze effects and screen clouds should be incorporated into the image
 

production process.
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APPENDIX I
 

DATA PREPARATION
 

The preparation of an adequate data base for the evaluation of
 

signature extension algorithms was one of the major activities of this
 

task. This activity had two separate phases. First, 1973-74 data was
 

prepared to allow us to begin our first testing immediately. Later
 

when 1975-76 LACIE sample segment data was received, together with the
 

fields data base, activities were begun. to prepare a large, comprehen­

sive data base which included ancillary information about the sample
 

segment and the specific passes in the data set.
 

Because the preparation of data was an ongoing activity, this
 

appendix has been organized to reflect the state of the data base used
 

for testing at the end of each of four periods covered by this
 

report. Thus experiments conducted during the third quarter will refer
 

to Section 1.3 of this appendix for a complete description of their data.
 

I.1 	 FIRST PERIOD
 

The Landsat data used during the first period consists of ten
 

1973-74 LACIE sample segments over Kansas, mainly in the Southwest Crop
 

Reporting District as shown in Figure I-1. Two of the sample segments
 

are Intensive Study Sites (ITS) with wall-to-wall ground truth as deter­

mined by ground teams, and the remaining 8 sample segments are Statis­

tical Reporting Service (SRS) sites with field labeling determined by
 

NASA/JSC analysts based upon examination of the imagery itself. Imagery
 

from several Landsat passes over each of these sites is available, and
 

these images have been registered to each other. Table I-I shows the'
 

sample segments, how the ground truth was obtained, and the dates of
 

imagery collection used in the tests reported here.
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TABLE I-1. FIRST PERIOD DATA BASE
 

Sample Ground Acquisition
 
Site Name Segment No. Truth Dates Used
 

Morton 1042 ITS 5/8, 5t26
 

Finney 1034 ITS 5/8, 5/26
 

Graham 1018 SRS 5/8, 5/26
 

Lane 1026 SRS 5/8, 5/26
 

Scott 1029 SRS 5/8, 5/26
 

Grant 1036 SRS 5/9, 5/27
 

Kearny 1040 SRS 5/9, 5/27
 

Haskell 1065 SRS 5/9, 5/27
 

N. Stevens 1045 SRS 5/9, 5/27
 

S. Stevens 1045 SRS 5/9, 5/27
 

1.2 SECOND PERIOD
 

During the second period, 1973-74 multitemporal LACIE sample
 

segments over 12 sites in Kansas were prepared. Figure 12 shows
 

their spatial distribution (two of the sites are in Stevens County).
 

Four of these sample segments -- over Ellis, Saline, Morton, and
 

Finney -- are Intensive Test Sites with wall-to-wall ground truth as
 

determined by ground teams, while the remaining eight sample segments
 

are SRS sites with field labeling determined by NASA/JSC analysts based
 

upon examination of the imagery itself. Data from several Landsat
 

passes over each of these sites is available, and has been registered
 

to each other. Table 1-2 shows the sample segments, and the dates of
 

imagery collection used in the tests reported here.
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TABLE 1-2. 1973-74 MULTITEMPORAL LACIE SAMPLE SEGMENTS
 

Sample
 
Site Name Segment No.
 

Morton 1042 10/23/73, 5/9/74, 5/27/74, 617/74
 

Finney 1034 10/23/73, 4/20/74, 5/8/74, 5/26/74
 

Saline 1114 10/20/73, 4/18/74
 

Ellis 1106 10/21/73, 5/26/74, 6/12/74
 

Graham 1018 10/4/73, 4/20/74, 5/26/74
 

Lane 1026 10/4/73, 4/20/74, 5/26/74
 

Scott 1029 10/4/73, 4/20/74, 5/26/74
 

Grant 1036 10/23/73, 5/9/74, 5/27/74
 

Kearny 1040 10/23/73, 5/9/74, 5/27/74
 

Haskell 1065 10/23/73, 5/9/74, 5/27/74
 

N. Stevens 1045 10/23/73, 5/27/74, 6/14/74
 

S. Stevens 1645 10123/73, 5/27/74, 6/14/74
 

.1.3 THIRD PERIOD
 

After receipt in December 1976 of a large data set consisting of
 

the 75-76 LACIE sample segments over the U.S., together with the Fields
 

Data Base as of Day 315, the following data base was prepared.
 

The Landsat data used consisted of 75-76 Landsat data over 21
 

Blind Sites and two Intensive Test Sites (ITS) in Kansas. These 23
 

sites represented all of the Blind Sites and ITS sites in Kansas with
 

cloud-free passes in early Biowindow one, and in Biowindow two. Only
 

these two passes were used in any of the experiments described in this
 

report, although a pass from each of the remaining biowindows was also
 

prepared. These four passes were merged to form multitemporal data
 

sets, and then screened to eliminate areas covered by cloud, cloud
 

shadow or water in any of the four biowindows.
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Signatures were computed for each of these 23 sites, and a data
 

tape consisting of field means was also produced. The Fields Data
 

Base as of Day 315 was used in these steps.
 

The final step in data preparation was to prepare a list of
 

ancillary information for each of the sites. The types of ancillary
 

information and the range of each ancillary variable appears below in
 

Table 1-3. Figure 1-3 shows the distribution of these sites in Kansas.
 

1.4 FOURTH PERIOD
 

The fourth period data base consisted primarily of 74 data sets
 

over 38 sample segments in Kansas (35 blind sites and 3 intensive test
 

sites) and 18 data sets over 18 sample segments in North Dakota. Each
 

of the data sets consists of four acquisitions of 75-76 LACIE sample
 

segment data, one from each crop development biowindow whenever possible.
 

Only the first two biowindows of the Kansas data and the first three
 

biowindows of the North Dakota data were ever used. Along with the
 

Landsat data is ancillary data pertaining to the sample segment, and
 

to the various Landsat acquisitions used in the data set.
 

The fields data base as of Day 315 was used to provide the field
 

designations which were used in lieu of ground truth in our evaluations.
 

Tables 1-4 and I-5 show the ranges of important ancillary variables for
 

the winter wheat and spring wheat data, respectively. The ancillary
 

variable called "crop calendar" is the Robertson crop calendar, and the
 

variable "gamma" is the haze factor calculated by XSTAR [2]. The haze
 

levels represented in these data sets span a fairly broad range.
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TABLE 1-3. ANCILLARY VARIABLES AND THEIR RANGE 

Ancillary Variable Range
 

GENERAL:
 

Degree Days (10 Year Average) 2060 - 2470 

Land Use (% Agriculture) 10% - 100% 

Precipitation (10 Year Average) 7.2" - 12.9" 

37.10 - 39.20
Latitude 

Longitude 94_9 - 101.50 

Elevation 900' - 3350' 

PASS SPECIFIC (Calculated for Each Pass): 

Sun Angle 56 0 67o; 350 - 460 

View Angle -5.5 - 4.5; -6.0 - 4.00 

Julian Date 294 - 349; 87 - 127 

Crop Calendar (Robertson Scale) 0 - 0; 2.76 - 3.66 

CALCULATED FROM DATA:
 

Difference Between Sites in Mean of
 
Soils Area in Landsat Space 0 - 37.73; 0 - 48.65
 

Difference Between Sites in Mean of
 
Green Development Area in Landsat Space, 0 - 35.77; 0 - 60.72
 

Raze Diagnostic Calculated by XSTAR 
from Yellow Shift of Data -1.36 - 0.86; -4.26 - 0.73 

Difference Between Sites in Additive
 
Factor Calculated by XSTAR 0 - 19.06; 0 - 17.04
 

Difference Between Sites in Multipli­

cative Factor Calculated by XSTAR 0 - 0.14; 0 - 0.42
 

Haze Value Calculated by XSTAR from 
Yellow Shift of Data -0.06 - 0.03; -0.22 - 0.03 
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TABLE 1-4. RANGE OF ANCILLARY DATA 

Winter Wheat (Kansas) Data
 

DEGREE DAYS 1910 - 2525 ELEVATION 900' - 3350'
 

PRECIPITATION (INCHES) 1 - 15 LATITUDE 37,0 - 39,70
 

% AGRICULTURE 5 - 100 LONGITUDE 94.80 - 101,50
 

BIOWINDOW 1 

JULIAN DATE 291-90 CROP CALENDAR 0 - 3,3 SUN ANGLE 460 - 680 GAMMA -.08 - .23 

BIOWINDoW 2 

JULIAN DATE 90-138 CROP CALENDAR 3.0 - 3,6 SUN ANGLE 350 - 460 GAMMA -,5 - .19 

BIOWINDOW 3 

JULIAN DATE 135-163 CROP CALENDAR 3.3 - 4,8 SUN ANGLE 310 - 360 GAMMA -.22 - .19 

BIOWINDOW 4 

JULIAN DATE 163-200 CROP CALENDAR 4.5 - 6.0 SUN ANGLE 310 - 340 GAMMA -.25 - .17 



TABLE 1-5. RANGE OF ANCILLARY DATA 

Spring Wheat (North Dakota) Data 

DEGREE DAYS 

PRECIPITATION (INCHES) 

% AGRICULTURE 

2360 - 2520 

7.8 - 9.2 

5 - 100 

ELEVATION 

LATITUDE 

LONGITUDE 

950' - 2600' 

46.20 - 48,80 

96,70 - 103,80 

TJ PERiD 1GA 

JULIAN DATE 127-131 SUN ANGLE 330 - 390 GAMMA -. 11 .12 

JULIAN DATE 144-150 SUN ANGLE 330 -390 GAMMA -.5 -

JULIAN DATE 164-186 SUN ANGLE 330 - 390 GAMMA -.41 - ,14 

IM DATE4S3 

JULIAN DATE 198-204 SUN ANGLE 3370 - 390 GAMMA -. 1-.18 0 
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APPENDIX II 

CLASSIFICATION ACCURACY USING COMPRESSED DATA
 

COMPRESS is an optional data compression procedure within PROCAMS.
 

The object of data compression is to greatly reduce the processing time
 

required to run portions of PROCAMS and therefore reduce the cost of
 

processing the data. COMPRESS computes a mean value for the pixels
 

contained within each training field.
 

This data compression normally is performed after the preprocess­

ing and training stages of PROCAMS and before classification.
 

However, before we begin to conduct extensive experiments on com­

pressed data, we would like to know whether or not it is valid to draw
 

inferences about results for normal uncompressed data from results
 

obtained using compressed data.
 

To answer this question we examined two different types of classi­

fication: local classification and signature extension results using
 

untransformed signatures from another site. Both compressed and uncom­

pressed data were used for each type of classification. Nine LACIE
 

sample segments from 1973-74 Landsat data over Kansas were used for
 

this test. Most of the sample segments are from the Southwest Crop
 

Reporting District of Kansas, all are from western Kansas.
 

Table II-1 shows local classification accuracy for Morton and
 

Finney Counties, early in May and late in May. A comparison of average
 

classification accuracy on compressed and uncompressed data is given.
 

The difference between average classification accuracy using compressed
 

and uncompressed data is 1.2%. The standard deviation of the difference
 

in classification accuracy using fhe compressed and uncompressed data
 

is 2.78%.
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TABLE II-I. 	LOCAL CLASSIFICATION ACCURACY (Compressed
 
vs Uncompressed Data)
 

Classification Accuracy
 

Site Compressed Uncompressed 

Morton Early May -96 91 

Finney Early May 97 98 

Morton Late May 92 90 

Finney Late May 97 98 

Average: 95.5 94.3 

Table 11-2 shows signature extension results using untransformed
 

signatures from" remote sites. The classification accuracy is given
 

for compressed and uncompressed data for each of twenty cases. Six
 

of the signature extensions are from the early May data and fourteen
 

from the late May data. The average of the difference in the classi­

fication accuracy between'compressed and uncompressed data is 7.9%.
 

The standard 	deviation of the difference between classification accu­

racies is 6.89%. The correlation coefficient between the compressed
 

and uncompressed data is 0.856. This correlation is significant at
 

the 0.0005 level.
 

These results would tend to support the belief that inferences
 

can be drawn about the overall performance of various algorithms on
 

normal uncompressed data from the results of tests of these algorithms
 

on compressed data.
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TABLE 11-2. 	 UNTRANSFORMED SIGNATURE EXTENSION RESULTS COMPARING 

COMPRESSED AND UNCOMPRESSED DATA 

Accuracy
 

(M)
 

Not
 
Site From Site To Time Period Compressed 'Compressed
 

Morton Finney Early May 91 	 93
 

Morton Grant Early May 60 	 85
 

Morton Haskell Early May 78 	 88
 

Finney Morton Early May 76 	 80
 

Finney Grant Early May 71 	 90
 

Finney Haskell Early May 100 	 99
 

Morton Finney Late May 54 50
 

Morton Graham Late May 61 72
 

Morton Grant Late May 69 75
 

Morton Haskell Late May 77 86
 

Morton N. Stevens Late May 82 87
 

Morton S. Stevens Late May 57 66
 

Finney Morton Late May 53 55
 

Finney Graham Late May 64 75
 

Finney Lane Late May 85 84
 

Finney Scott Late May 87 97
 

Finney Grant Late May 54 75
 

Finney Haskell Late May 64 79
 

Finney N. Stevens Late May 55 61
 

Finney S. Stevens Late May 50 49
 

Average: 	 69.4 77.3
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APPENDIX III 

DESCRIPTION OF THE PROCAMS TEST BENCH
 

A signature extension algorithm cannot stand alone; it requires 

data quality control programs, signature extraction techniques, a. 

classifier and other related procedures and processes to form a com­

plete classification system. For the testing of signature extension 

algorithms, the classification system PROCAMS was used as the test 

bench into which vartous,techniques were incorporatedfor evaluation. 

PROCANS, whose development was begun by ERIM during the FY76 contract 

period, was designed to be a state-of-the-art test bench for-a wide 

range of data processing algorithms, including signature extension 

algorithms. 

The PROCAMS system consists of several modules which can be
 

grouped into five general subsystems: preprocessing, data compression, 

training, signature transformation, and classification. A brief des­

cription of the five subsystems of PROCAMS follows, together with a 

flow chart (Figure Il-1). 

The preprocessing portion of PROCAMS consists of set-up programs,
 

data quality algorithms, and, optionally, a haze correction technique.
 

Originally there were two routines which performed the function of pre­

paring the data for PROCAMS. These are PRECAMS, a subroutine to set
 

up the header record with information needed for subsequent processing,
 

and SUBTIME, a subroutine which selects the spatial and temporal sub­

set of the data which is to be processed and modifies -the header infor­

mation accordingly-. Data quality algorithms include subroutine BADLINE,
 

which detects and flags bad data lines using a data channel which is
 

appended for just this purpose, and subroutine CLOUD which identifies
 

and similarly records pixels which cotrespond to clouds, cloud shadow,
 

and water. These four programs were later replaced by one program
 

called SCREEN [18]. The final (aid optional) stage of the prepro­

cessing is haze correction.
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Data compression is an optional step in PROCAMS which is used to
 

lower processing costs when several passes through the data are antici­

pated. Two types of data compression were used in PROCAMS.
 

The first data compression technique computes the average
 

signal values over each field to produce a mean value or "average pixel".
 

This subroutine, called COMPRESS, yields data compression ratios of up
 

to 100 to 1. This technique is applicable only when fields have been
 

defined.
 

When proportion estimation results are desired, the data may be
 

sampled randomly to achieve an effective data compression.
 

The third step of PROCAMS (training) is implemented in ERIM's
 

clustering algorithm CLUSTR.
 

The fourth subsystem in PROCAMS (signature transformation) is
 

signature extension, a role which is filled by the cluster matching
 

routine CROP-A developed by ERIM.
 

The final portion of PROCAMS consists cf the classification and
 

tabulation programs. PROCAMS uses a sum-of-likelihoods decision rule
 

for its classifier, similar to the one used in the LACIE classification
 

and mensuration subsystem. Properly trained, this classifier has been
 

shown to perform nearly as well as any classifier'yet designed.
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APPENDIX IV
 

TWO APPROACHES TO MULTISEGMENT PROCEDURE 1 

This appendix addresses the classification technique to be used
 
in evaluating static stratification in a multisegment environment. We
 
have termed this approach 'preclassification'.
 

Overall Objective
 

Develop an experiment design-which will efficiently and effec­

tively evaluate static stratification of space image data in a multi­
segment signature extension environment for the purpose of large area
 

crop inventory.
 

Environment and Training Selection
 

The current LACIE Procedure 1 provides an environment wherein a
 
large number of segments are classified using local training procedures
 
and crop proportion estimates computed by pixel count.
 

The 	multisegment signature extension environment is one wherein
 

an attempt would be made in reducing the need for local training. A
 
certain subset of segments would be designated training sites. Clusters
 
would be computed from-these segments, labeled according to their associ­
ation to training dots, and used in classification throughout. Hence,
 

specific segments can be more intensely photointerpreted for training,
 

hopefully with a resultant reduction of labeling error.
 

The multisegment signature extension approach, however, poses a
 
training segment selection problem. The resultant classification is
 
sensitive to variational differences between training and test segments.
 
The 	designation of static stratifications of segments using variables
 
such as soil type and precipitation is an attempt to associate segments
 
in a manner that would minimize the spectral differences between like
 

classes in segments belonging to the same strata. These stratifica­
tions-can then be used in one of two ways:
 

1. 	For training selection purposes: To insure that all spec­
tral classes are represented in choosing training segments
 
from every strata to be used across all segments in classi­
fication.
 

2. 	For classification purposes: Segments would be classified
 
using signature clusters determined within their stratum
 
only.
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These two applications of static stratification in multisegment
 
signature extension can be generalized.
 

Consider n strata and.m segments where n < M.
 

Segment s.. is the jth segment of the ith stratumS..

13 1
 

The signature set for segment s.. is SIG(si).
 

The training data for stratum S. is T(Si).
i 


Call the clustering function iT, then
 

n
 
SIG(s TT w T (S


k=l
 

where o. is a weight for each stratum. 

If for k i Wk= 1 

k i Wk=0. 

then Case 2 above is implied, i.e., the segment is classified using
 
signatures computed only within its own stratum.
 

If
 

.= W. for all i,j

1 3
 

then Case I is implied, i.e., a segment is classified using all signa­
tures, but insuring that each stratum is represented.
 

The value of introducing this notation lies in that the weights
 

Ok can vary anywhere between the two cases. For example, it may be
 
useful to use stratification for training and in computing SIG(sij)
 ,
 
weighting the training data from stratumi (T(Si) more than for other
 
strata. This recognizes that important information for any one segment
 
appears in every stratum, however, it is more likely that training within
 
the same stratum would be more significant.
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Terminology
 

For purposes of further discussion, reference will be made to
 
three partitions of data: (1) within segment, all pixels from a 5x6
 
mile LACIE segment; (2) within stratum, all segments within a defined
 
stratification of segments; (3) within universe, all segments.
 

Problem
 

Any evaluation of the inherent value of static stratification in
 
-a multisegment environment will require measures of performance that
 
are statistically significant. These measures may include: (1) within
 
segment classification accuracy, (2) within stratum classification accu­
racy, and (3) within universe classification accuracy. Each of these
 
measures may be determined as a function of training gain. As a result,
 
a large number of classifications must be performed for a large number
 
of segments, varying the training data at each classification. The
 
cost of such an experiment could be prohibitive. What legitimate
 
training and classification algorithm should be employed to maximize
 
testing efficiency? In other words, what logical extension of Pro­
cedure 1 into a multisegment environment will be required to evaluate
 
static stratification?
 

Two Approaches to Multisegment Procedure 1
 

The following pages document two approaches to extending Pro­
cedure 1 into a multisegment environment. The second approach is
 
called preclassification and is described to be logically equivalent
 
to the first approach. The first approach is a straightforward exten­
sion of Procedure 1. Before getting into the details of each, consider
 
the following graphics in order to group the salient aspects of each
 
approach.
 

The first approach combines the training data first, extracts
 
signatures from the combined training data set, then estimates propor­
tions for wheat and non-wheat. Preclassification differs in that infor­
mation from the training segments is not combined until after likeli­
hoods are calculated. The particular advantage of this approach for
 
test and evaluation purposes lies in the fact that training segment
 
selection does not have to bd carried out first. The details of these
 
two approaches are described in the following sections.
 

105
 



Training Extract Establish Estiate 
Data Set Data Signatures Likelihoods Proportion" 

100 

FIGU IV-l. ILLUST 

CombinenOt 

TIONS)OFPTWOAC IPOCE NXEDN 

Wha 

e 

Wheat 

en 

0 

0 

FIGURE 

(b) PRECLASSIFIOATION r. Partition Boundaryp 

Key- Segment 

jJ Training Segment 

IV-1. ILLUSTRATIONS OF TWO APPROACHES IN EXTENDING 
PROCEDURE 1 TO A HEJLTISEGb2NT ENVIRONMENT 

0 

22 

0 



APPROACH 1
 

Consider the following approach:
 

1. Select training segments from each strata
 

2. Merge training segment data together
 

3. Cluster the training pixels into subclasses
 

4. Calculate proportion estimates using sum of likelihoods.
 

First note that in an evaluation experiment, using this approach
 
would result in clustering and classification of data each time training
 
parameters are changed.
 

However, the procedure is a straightforward extension of Procedure 1.
 
Important decisions must be made along the way.
 

1. Weighting Training Segments Due to Random Selection Process
 

First of all, the selection of training segments must be carried
 
out in a manner that would simulate the random selection of training
 
fields. On an average the number of randomly selected fields would be
 
in like proportions from stratum to stratum as a function of the total
 
number of fields in each stratum. For example, suppose the universe of
 
data is comprised of two strata, each with ten fields. If six of those 
fields were to be selected at random from the twenty, one would,expect 
each stratum to be represented by three. To simulate this, training seg­
ments should be drawn from each strata in like proportions. Suppose, 
however, that two strata contained 8 and 6 segments respectively. If 
the training gain desired was 3.0, i.e., one-third of each strata required 
for training, the first stratumwould require 2.7 segments, the second 2 
segments. Since the selection of 2.7 segments is not possible, one may 
round and select 3 segments. In order to reflect this adjustment affecting 
the random character of the selection, weights need to be assigned to the 
training data as follows: 

For segment sij, the jth segment - the ith stratum, Si,
 

Let s.. be a training segment
 

Let t. be the number of segment in the ith stratum and t. the
 

number of training segment in the ith stratum.
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LEIM
 

Each segment s.. is assigned the weight:

13
 

t. 

ti1 

Recalling the earlier defined weight w . in the definition of a
1
 
set of training clusters, we can extend its definition to
 

i = 0i 

where V is related as mentioned to the classification technique employed.
 
This more fully discussed in what follows:
 

2. Weighting Training Segments With Respect to Classification Segments
 

As was mentioned earlier, data stratification could be used for pur­
poses of training only, or for purposes of classification as well. The
 
technique employed is related by a factor p. of the weight w. assigned to
 

1 1
 
each pixel of training data. If you recall, if pi = I for all segments
 
in strata i, then classification of segment si, is determined only by
 

those signature clusters defined fromstratum S.. However, this weight
 
may be adjusted to better represent one's confidence in the training data
 

available in each stratunwhen applied to an arbitrary segment. This
 
approach implies that the classifier has no confidence in applying signa­
tures derived from data from other stratum. Another approach is to employ
 
equal levles of confidence. An interim approach may be to establish con­
fidence levels empirically. For example, for purposes of our test and
 
evaluation the experiments constructed in FY77 provide within stratum and
 
across strata classification results.
 

The weight V. may be assigned so that segment s.j from stratum S.
 

would have associated weights Vk and pi"
 

pk = average error in signature extension Sk Si for all k 0 i 

Pi = average error in signature extension Si S.
 

(i.e., segments extend within stratum)
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Pk is applied to training data from Sk
 

Pi is applied to within stratum training data
 

Note that these weights would vary from segment to segment. Since
 
clusters are computed before classification, each strata would require
 
a different set of signature clusters rendering this approach impracti­
cal for test and evaluation purposes and making it clumsy for an opera­
tional system.
 

3. Weighting Clusters in Sum of Likelihoods
 

Training pixels within training segments can be selected using a
 
technique that attempts to insure representativeness, much as the CAMS
 
AI training selection approach, or selected randomly, as in the Pro­
cedure 1 209-point technique. The former requires that each derived 
cluster be weighted equally in classification when computing sum of 
likelihood. That is, pixel i is wheat if 

for m wheat clusters and n non-wheat clusters with likelihoods
 

P and PN respectively
 

1m
I n 

n XPiW > PjN
i=l j=1 

However random selection of training pixels requires that:
 

x is wheat if 

n m
 
SniPiw > njPN


i=1 i JJ
 

where nk is the number of pixels in cluster k. That is to say, clusters
 
are not equally weighted but in proportion to the number of samples they
 
represent.
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APPROACH 2 (Preclassification)
 

Consider the following alternative approach:
 

1. 	Select training segments from each stratum
 

2. 	Cluster the training pixels into subclasses independently
 
from each training segment
 

3. 	Employ the following classification procedure:
 

i. 	Classify each segment independentlyusing the
 
clusters from each other segment, determining
 
a wheat and non-wheat likelihood (i.e., for
 
m training segments, each segment is classified
 
m times).
 

ii. 	Sum likelihoods from each training segment to
 
determine wheat proportion estimate.
 

This approach offers two advantages for the test and evaluation of multi­
segment signature extension.
 

First of all, determination of likelihoods can be performed before
 
training segments are selected. Clusters can be computed for every seg­
ment and applied in classifying every other segment. Proportion estimation
 

can be carried out for a variety of different training segments, simply by
 
summing the computed likelihoods corresponding to the training segments.
 
Clustering and likelihood calculation does not have to be recomputed for
 
each different set of training data.
 

More graphically, consider the following situation: given 5 train­
ing segments each pixel 3Z would have a vector associated with it as
 
follows:
 

(' 	 5W' P'N) 

where:
 

_k is 	the n channel mean vector
 

9W are wheat likelihoods corresponding to 
each of
 

5 training segments
 

are non-wheat likelihoods corresponding to each of
 N 5 	training segments
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Using Segments 2 and 3 as training i would be wheat If
 

PW2 	+ PW3 > PN2 + PN3
 

Using Segments I and 5 as training x would be wheat if
 

PW4 	+ PW5 > PN4 + PN5
 

A second advantage is that the weighting factor P can be applied
 
at classification, i.e., tally time to reflect a stratum training con­
fidence level. For example, if Segments 2 and 3 in the above example
 
were representatives of strata i and j, then apixel 3 from stratum Si
 
would be wheat if:
 

"iPW2 + "jPW3 > I iPN2 + PjPN3
 

What needs to be established is whether this technique appropriately
 
simulates the first approach. The essential difference is that in the
 
first approach clusters are determined for all training pixels at once,
 
rather than separate sets of clusters for each training segment. A sub­
class appearing in two segments would be represented at tally time by
 
two clusters, whereas only one cluster would appear using Approach 1.
 

We shall assume that the selection of training is done randomly.
 
as follows:*
Algebraically, the procedure is 


1. 	Determine the likelihood that E is wheat given each training
 
segment.
 

Given n training signatures SIG(sij) for the jth segment of the
 
ith-stratum
 

then the likelihood that a pixel 3:belongs to the wheat (or non­
wheat) signature sigi is pW Isigi ) or pN(-x9sigi) 

The sum of likelihoods that 7 is wheat is given by Pw(XISIG(sij))
 
where:
 

n 

pw( ISIG(s ij) = X nkpW (XIsigk ) k=l
 

where nk is the number of training pixels in sigk
 

Shown for wheat, similarly for non-wheat.
 

ill
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The total number of training wheat pixels in.SIG(sij) is given by
 

n 

Nn k=l k
 

2. Determine x is wheat given all training segments.
 

Let a set of m training segments be represented by {s. ..
 

Let the signatures derived from these training segments be SIG{s.j}.
 

Then the likelihood that a pixel i is wheat is given by
 

PW(X-ISIG{sij }) 

where
 

m 
I SIG(sij)= y k tkWw

P (x-SI~fs1)

pw(iISI G{s~iS ) = k= mfkwxII~~ 

k11w 7VWk­

where wk is the weight earlier aefined in Approach 1. 3 is wheat if
 

Pw(XISIG{sij ) > PN(XI-SIG{sij }) 

Approach 2 is an appropriate simulation of the Approach 1 under the
 

assumption of random selection of training pixels within a segment.
 

Differences in the trainiig-procedures are accounted' for by weighting,
 

at classification, each computed cluster subclass by its number of
 

pixel members. Hence, using Approach 2, a subclass appearing in two
 

segments, though represented by two clusters, are weighted in such a
 

way so as to contribute the same likelihoods as the corresponding
 

single cluster that would have been computed using Approach 1.
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APPENDIX V
 

DESCRIPTION OF DATA EMPLOYED IN ANALYST-INTERPRETER
 
LABELING ERROR ANALYSIS
 

The following tables, V-i to V-3, list the LACIE Blind Site 

Acquisitions for three biowindows employed in the Analyst-Interpreter-

Labeling Error Analysis described in Section 4.4. Pertinent 

ancillary information is also encoded in these tables as well as 

summarized in table V-4. 

TABLE V-1. BIOWINDOW ONE ACQUISITIONS
 

Segment Julian Crop* Missed Wheat False Wheat 

Number Date 1975 Calendar Fraction Fraction 

1035 312 0.0 0.28 0.12 

1041 312 0.0 0.28 0.12 

1154 311 0.0 0.03 0.02 

1163 327 0.0 0.18 0.0 

1164 326 0.0 0.0 0.70 

1165 326 - 0.0 0.0 0.07 

1166 327 0.0 0.16 0.10 

1167 327 0.0 0.28 0.0 

1171 364 0.0 0.13 0.0 

1172 328 0.0 0.28 0.0 

1176 364 0.0 0.44 0.0 

1179 364 0.0 0.20 0.0 

1181 345 0.0 0.08 0.0 

1852 295 0.0 0.20 0.05 

1854 295 0.0 0.28 0.0 

1865 349 0.0 0.20 0.0 

1880 311 0.0 0.15 0.0 

1882 311 0.0 0.33 0.0 

1883 328 0.0 0.0 0.0 

1887 311 0.0 0.07 0.0 

* 0.0 implies information not available. 
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TABLE V-2. BIOWINDOW TWO ACQUISITIONS 

Segment Julian Crop Missed Wheat False Wheat 

Number Date Calendar Fraction Fraction 

1020 128 3.17 0.09 0.0 

1035 127 3.40 0.28 0.12 

1041 127 3.40 0.28 0.12 

1154 090 2.76 0.03 0.02 

1163 124 3.61 0.18 0.0 

1164 124 3.52 0.0 0.70 

1165 124 3.61 0.0 0.07 

1166 124 3.52 0.16 0.10 

1167 124 3.52 0.28 0.0 

1171 125 3.50 0.13 0.0 

1184 124 3.66 0.23 0.0 

1851 127 3.22 0.28 0.06 

1861 128 3.30 0.17 0.08 

1865 127 3.42 0.20 0.0 

1884 125 3.50 0.18 0.0 

1886 127 3.46 0.27 0.07 

1887 127 3.35 0.07 0.0 

TABLE V-3. BIOWINDOW THREE ACQUISITIONS
 

Segment Julian Crop Missed Wheat False Wheat
 
Number Date 1976 Calendar Fraction Fraction
 

1019 164 4.60 0.07 0.0
 

1163 142 3.98 0.18 0.0
 

1167 142 3.93 0.28 0.0
 

1169 144 4.00 0.27 0.35
 

1180 141 4.11 0.24 0.02
 

1854 154 4.14 0.28 0.0
 

1857 154 4.10 0.33 0.10
 

1861 164 4.55 0.17 0.08
 

1865 136 3.58 0.20 0.0
 

1880 127 3.34 0.15 0.0
 

,1882 152 4.15 0.33 0.0
 

1887 135 3.55 0.07 0.0
 

114
 



TABLE V-4. DESCRIPTION OF ANCILLARY DATA
 

Variable N Minimum Maximum Mean Std Dev 

1. Segment 39 1019.0 1988.0 . 

2. Number of Wheat 
Fields 39 0.0 32.0 12.4 6.32 

3. Number of Other 
Fields 39 9.0 46.0 21.0 8.42 

4. Number of Missed 
Wheat Fields 39 0.0 8.0 2.05 1.97 

5. Number of False 
Wheat Fields 39 0.0 12.0 0.90 2.11 

6. Fraction of Missed 
Wheat 38 0.0 0.44 0.16795 0.128 

7. Fraction of False 
Wheat 39 0.0 0.706 0.04912 0.126 

8. Fraction of Total 
Error 39 0.0 0.706 0.103 0.125 

9. Number of Fields 39 17.0 75.0 33.4 12.7 

10. Julian Date 1 39 294 127 ...... 

11. Julian Date 2 39 311 128 .. 

12 . Ju l an Date 3 3 9 364 199 .... .. 

13. Degree-days 38 1910.0 2540.0 2245.7 146.38 

14. Crop Calendar 1 39 0.0 3.4 0.49 1.07 

15. Crop Calendar 2 39 0.0 3.66 2.7 1.32 

16. Crop Calendar 3 39 0.0 6.0 4.0 0.90 

17. GAMMA 1 38 - 0.6 0.22 0.03 0.07 

18. GAHM& 2 37 - 0.22 0.20 0.01 0.D7 

19. GAMMA 3 38 - 0.26 0.14 - 0.03 0.09 

20. Elevation 39 0.0 3500.0 1882.1 826.11 

21. THETA 1 39 35.0 69.0 ...... 

22. THETA 2 39 35.0 68.0 --­

23. THETA 3 39 31.0 68.0 ...... 

24. Precipitation 39 0.0 15.0 7.9 4.40 

25. Land Use 39 0.0 4.0 2.3 1.67 

26. Latitude 39 37.0 39.70 38.3 0.80 

27. Longitude 39 94.8 101.80 98.4 2.06 

28. Haze Diagnostic 1 39 -- 1.36 4.61 0.53 1.44 

29. Haze Diagnostic 2 39 4.26 3.67 0.21 1.39 

30. Haze Diagnostic 3 39 - 4.45 2.96 0.71 1.76 
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