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PREFACE
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for NASA's Lyndon B. Johnson Space Center, Houston, Texas, by the
Environmental Research Institute of Michigan (ERIM). The basic objec-
tive of this program is tc develop remote sensing as a practical tool
for obtaining extensive envirommental information quickly and economi-
cally.

The specific focus of the work reported herein was on the test
and evaluation of the signature extemnsion approach to large area crop
inventories. This final report is complemented by an interim technical
report ERIM 122700-29-T entitled, "Evaluatiom of Signature Extension
Algorithms", by Alex P. Pentland.

The research covered in this report was performed under Contract
NAS9-14988 during the period 15 May 1976 to 14 November 1977. Mr. I.
Dale Browne (SF3)} served as the NASA Contract Technical Monitor, and
Mr. M. C. Trichel (SF3) was NASA Task Monitor. At ERIM, the work was
performed within the Infrared and Optics Division, headed by Richard
R. Legault, Vice—Président of ERIM, in the Information Systems and
Analysis Department, headed by Dr. Quentin A. Holmes. Mr. Richard F.
Nalepka, head of the Multispectral Analysis Section, served as Principal
Investigator, Mr. Richard Cicone and Mr. Alex Pentland shared responsi-
bilitiess as Task Leader.

The authors wish to acknowledge the assistance of other ERIM staff
members who have participated in the development of techniques in the
LACIE agricultural context examined herein. Mr. Richard Kauth and
Dr. Wyman Richardson contributed to the design of the multisegment
signature extension experiment reported herein. Mr. Robert Beswick
provided able support. Ms. Darlene Dickerson, Mrs. Elizabeth Hugg
and Ms. Martha Warren provided efficient and accurate typing support

throughout the contract period and for this report.
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1
SUMMARY

The overall objective of the research reported herein was to initi-
ate an evaluation of the signature extension approach to ;arge area crop
inventories utilizing space image data. The Large Area Crop Inventory
Experiment (LACTE) is an attempt to establish the feasibility of inven-
torying the production of wheat on a world-wide basis by utilizing
Landsat data. A basic 5x6-mile sampling region or segment is employed
and wheat production statistics are aggregated over estimates made
within each segment. The current estimation technique employed is
called Procedure 1. This technigue extracts training data from each
segment, applying the resultant measured statistics in classifying the
segment. This lecal training and clagsification procedure requires
that each segment be manipulated by an intervening Analyst Interpreter
(Al). Multisegment training and classification techniques attempt to
reduce the need for AT intervention. This is carried out by extracting
training statistics from a subset of segments and employing the statis-
tics or signatures to other segments, hence the term signature extension.

The activity was carried out in two phases. First, several algo-
rithms and procedures which were candidates for inclusion in a large
area crop inventory system were separately evaluated. Second, prepara-
tion was made to conduct an extensive signature extension systems evalu-
ation incorporating those candidate algorithms and procedures which
showed promise for crop imventories in a multisegment- environment, and
an analysis was carried out to investigate the Analyst Interpreter stage
in crop inventory.

The algorithms and procedures evaluated in the first phase of this

program are divided into four distinct types:

1. Haze correction algorithms

2. Training sample selection strategies
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3. Data stratification procedures

4., Permanently trained green development-—trajectory
classifiers,

The algorithms tested which fall into category ome, haze correc-
tion algorithms, are CROP-A [1] and XSTAR [2]. The XSTAR algorithm
has been extensively tested in both winter and spring wheat areas and
offers substantial benefit to large area crop inventory systens, )

The training sample selection strategy available for testing was
a preliminary version of Procedure B [3]. First results show its
promise for future large area crop inventory systems,

In the third category, stratifications of the data, two were
available for testing: a Statié stratification defined by UCB [4],
and one defined by JSC [5]. Employment of these stratifica%ions

vielded an increase in classification accuracies. It appears that

these stratifications should be further tested using a multisegment
training strategy in order to clearly establish their contribution to
improved performance in this environment.

In the final caFegory, green development-trajectory classifiers,
several algorithms were tested. Four unitemporal green development
classifiers, with and without haze correction, the Delta Classifier
[6], and a crop development classifier were tested. Results obtained
are promlsing, but additional testing is recommended using a more sub-
stantial data base covering several growing seasons.

The second phase of the program revolved about three basic concerns:

1. The definition and advanced design of an experiment to examine

the overall signature extension approach
2. Preparatory phases required to conduct such an experiment

3. Analysis of the nature of analyst interpreter errors and
the sensitivity of the signature extension approach to

analyst interpreter errors,
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required a definition of five basic components of an experiment
including: (1) the definition of the systems under test, (2) defini-
tion of performance measures, (3) definition of the measurement pro-
cedures, (4) specification of factors, parameters and levels desired,
and (5) specification of data sets. The systems to be evaluated incor-
porate the static stratifications defined by UCB and JSC, Procedure B
defined by ERIM, data preprocessing filters inciuding haze correction
defined by ERIM, and Multisegment Procedure 1. The particular perfor-
mance measure of most interest will be the measure of variation in
wheat proportion estimate as a function of training gain. The results
of the multisegment signature extension approach are to be compared to
standard LACIE Phase III local classification results.

Preparatory phases carried out to expedite the execution of this
experiment have included both data base specification and software
development. A preclassification technique was developed to facilitate
the evaluation of classification performance where training parameters,
like the number of training segments, would be varied to establish the
variation in performance.

The specification of a data base for testing led to an analysis
of the nature of Analyst Interpreter (AI) errors detected in the
labeling of wheat and non-wheat for training purposes. The Al's basic
tool is a false color image product generated from Landsat digital data
using a Production Film Converter (PFC) that maps Landsat bands 4, 5
and 7 into blue, red and greemn colors. The product currently in use
is called Product 1. Tt was determined that classification performance
in a multisegment enviromment is sensitive to AI labeling errors. Analy-
gsis of the image product indicated significant differences in the color
of wheat from one segment to another at the same stage in the crop
calendar. This is attributed to the technique employed in the genera-
tion of the image product as well as to the effect of other ancillary

parameters such as land use, haze and sun angle conditions.

3
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5

2
INTRODUCTION

The Large Area Crop Inventory Experiment (LACIE) is an attempt
to establish the feasibility of inventor&ing the productioen of wheat |
on a world-wide bésis through the use of Landsat space image data.

The experiﬁént can be structured into four basic components: (1) an
overall geogfaphical stratification of the regions of interest, (2) a
sampling strategy within strata utilizing five by six mile segments as
the bhasic sampling unit, (35 an estimation system for wheat production
within a strata; and (4) an aggregation of results. The techniques
employved have shown success to déte. However, the cost of the thixd
component, the within strata estimation system, is high, primarily
because each sample segment must be individually processed by an
Analyst Interpreter (AL). Multisegment signature extension, the
ability to infer the signature of a crop in many segments from a
selected subset of segments and features, would significantly lower
processing cost by reducing the amount of AL data interaction required.
In addition, the stratified selection of data samples for training
purposes may_Provide more robust signatures resulting in improved per—
formance.

Many different approaches have been proposed to solve part or all
of what is referred to as 'the signature extension problem' —- finding
a technique or, more liﬁely, a collection of techniques (a procedure)
to succeed at the accurate inventory of crops over a large area through
gignature extension. It is the-objective of this repert to (1) initi-
ate an evaluation of the overall signature extension-acreage estimation
approach, and (2) perform an evaluation of the components of that
approach. ’

The activity carried out to address these objectives was conducted
in two phases.

ORIGINAL PAGE IS
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The goal of the first phase was to provide some of the necessary
information concerning the effectiveness of candidate techniques and
procedures, and to identify technical needs in order to construct the
overall signature extension procedures for extensive evaluation. Four
signature extension techniques and related procedures were evaluated:
(1) haze correction algorithms, (2) training sample selection strate-
gies, (3) data stratification procedures, and (4) green development—
trajectory classifiers.

The goals of the second phase of activity were twofold. First,
the evaluatiocn of multisegment signature extension procedures was begun
through a specification of the experiment design and an initiation of
preparatory phases required to conduct such an experiment. Secondly,
an analysis of the cause and effect of Analyst Interpreter labeling
errors was initiated. One specific concern was the sensitivity of
signature extension classification results to AI labeling errors.

Section 3 of this report deals with Phase I of this project.
Secticn 3.1 réports tests of two haze correction algorithms tested:
CROP-A [1] and XSTAR [2]. Section 3.2 reports on tests of a prelimi-
nary version of a training sample selection strategy called Procedure
B [3]. Section 3.3 covers evaluztions of two stratifications of data:
one by UCB [4] and one by JSC [5]. Section 3.4 reports omn tests of
several green development and trazjectory classifiers, including the
Delta Classifier [6] and a green development classifier. Section 3.5
is a discussion of the ramifications of the Phase I project results.

Section 4 of this report deals with Phase II of this project.
Section 4.2 introduces the multisegment experiment design. Section 4.3
deseribes the preparatory phases of this experiqent. Section 4.4 des-
cribes the Analyst Interpreter labelling error- analysis carried out.
Section 4.5 summarizes the observations, conclusions and recommenda-—

tions derived during Phase I1 of this project,
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3
PHASE I: EVALUATION OF SIGNATURE EXTENSTON TECHNIQUES

The overall goal of this task is to evaluate the multisegment

signature extension approach to large area crop inventories. Signa-
ture extension pertains to the ability tﬁ infer the signature of a

crop in a group of segments based on signatures from a selected subset
of segments. One motivation for this approach to crop inventory is

that it would lower processing cost by reducing the amount of Analyst
Interpreter/data interaction required. A second motivation was bormn

out of research on specific signature extension techniques. The signa-
ture of a particular crop, that is, its statistical characteristics as

a function of spectral, temporal and ancillary conditions, may be better
understood and more accurately estimated in g multisegment environment.
The goal of Phase I of this project is to study certain signature exten-
sion techniques that appear to have promise and to recommend whether
the development of an accurate large crop inventory system using sig—

nature extension techniques is a feasible goal.

3.1 APPROACH

Four types of signature extension techmniques or related procedures

are examined:

1. Haze correction algorithms
2. Training gample selection strategies
3. Data stratification procedures

4. Green development-trajectory classifiers.

These techniques were evaluated using a compressed data base of
LACIE blind sites as is described in Appendix T. That data base is
known as the Fields Data Base and consists of the mean wvalues for each

field designated by an Analyst Interpreter during the LACIE operation.
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3.2 HAZE CORRECTION ALGORITHMS

Two examples of haze correction algorithms were tested by this
task. The first, CROP-A [1], is a cluster—-matching algorithm. The
other algorithm tested, XSTAR [2], employs a simplification of the
ERIM radiative transfer model [7,81 to measure and correct for the

effects of haze.

3.2.1 EVALUATION (OF CROP-A

The cluster-matching algorithm CROP-A was tested over ten sample
segments in Kansas using acduisitions from early and late May 1974
(see Appendix I.1 for .a more complete description of the data set).

The form of the evaluation experiment was to perform unitemporal,.
matching-biophase signature.extension between these sample segments,
first applying signatures from one segment directly to other segments
with no transformation of the mean or covariance of the signatures, and
then to repeat these extensions after transforming the mean and covar-
iance of the signatures using CROP-A transformation.

Classification results were obtained for each segment by classi-
fying mean vectors computed from several wheat and non-wheat fields in
the segment, instead of classifying every pixel. \This permitted a
great many classifications to be run relatively economically. That
field mean classification results are strongly indicative of pixel-by-
pixel classification results are shown in a study reported in Appen-—
dix II.

The performance measure used in the comparison betwéen untrans-—
formed signature extension and CROP-A transformed signature extension
was the average accuracy of the field mean classification. This average
accuracy is the average of the percent of wheat field means correctly
classified @nd the percent of non-wheat field means correctly classified.

The CROP-A experiment was carried out on a test bench known as
PROCAMS, PROCAMS (PROtotype CAMS) is a system of programs developed
at ERTM and is described fully in Appendix ITI.

]
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The major results of the CROP-A evaluation experiment are seen in

FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

Table 1. Briefly, the classification results using CROP-A transformed
signatures were not as good as the classification results using untrans-—
formed signatures.

The primary difficulty with CROP-A seems to be that it makes the
assumption that the same materials are presented in both training and
recognition scenes in order to make training cluster-recognition cluster

pairings. This assumption is quite often not true, and can account for

very large errors,

TABLE 1. COMPARISON OF FIELD MEAN CLASSIFICATION RESULTS USING
LOCAL, UNTRANSFORMED AND CROP-A TRANSFORMED SIGNATURES

STANDARD
DEVIATION
AVERAGE OF AVERAGE
CLASSTFICATICN USING: NUMBER OF CASES  ACCURACY (%) ACCURACY (%)

Local Signatures 10 (Early May) 90.7 8.2
10 (Late May) 87.5 10.4

CROP-A Transformed 12 (Early May) 78.3 15.0
Signatures 31 (Late May) 67.8 19.0
Untransformed 12 (Earlf May) 85.0 9.1
Signatures 31 (Late May) 72.9 15.5

3.2.2 EVALUATION OF XSTAR

XSTAR is a haze correction algorithm which employs a model of haze
effects derived from the ERIM radiative transfer model [7]. Briefly,
the XSTAR uses shifts of the data distribution in a linear combination
of Landsat channels known as the yellow direction in the Tasselled Cap
transformation [9] to measure the amount of haze present, and then cor-
recits for the effects of this haze using the haze model [8]. In all
tests of XSTAR, a simple cosine correction was also used to correct for

sun angle effects.
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The standard used to evaluate XSTAR was similar to that used for

CROP—-A, namely, compare classification results for untransformed sig-
nature extension and for signature extension where all data sets have
first been corrected to a standard haze condition using XSTAR.

Two different experiments were conducted to evaluate XSTAR. The
first was conducted using 1975-76 multitemporal (first and second bio-
windows*) data over 23 sample segments in Kansas for a total of 506
extensions. The second experiment was conducted using 1975-76 multi-
temporal (first, second and third biowindows) data over 18 sample
segments in North Dakota (306 possible extensions), where the crop of
interest is spring wheat. Appendices I.3 and I.4 contain a full des-
cription of these data sets.

In the Kansas eXperiments the performance measures used were the
field mean classification accuracy and the proportion estimation accu-
racy. In the North Dakota experiment the true spring wheat proportions
were unavailable, and so only the field mean classification accuracy
was used. The LACIE fields data base as of day 315 provided the field
definitions and crop type labels.

While both the field mean classification and proportiom estimation
results were fairly good when using XSTAR it was noted that the XSTAR
corrected results were no better than the untransformed results. This
was initially quite puzzling, because examination of cluster plots
both before and after XSTAR correction showed that XSTAR'was doing an

adequate job of correction for haze and other effects.

P

“Currently, the term biowindows (or alternatively biophases)
refers to a division of the crop calendar into four parts. Each divi-
sion is related to important phases in the growth pattern of wheat.
Biowindow 1 refers to the pre-emergent to the emergent stage. TFor
winter wheat this would be the periocd from planting about September
(about Julian date 285) through winter dormancy. Biowindow 2 refers
to the wheat greening up period to the point of heading. Biowindow 3
is associated with post-heading and the senescent stages. The final
biowindow refers to the harvesting stage in the growth cycle of wheat.

10
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The explanation for these results is found in the method of classi-
fication used: our method of classification was to use a sum-of-like-
lihoods classifier with no rejection threshold. It was this lack of a
rejection threshold which caused upntransformed signature extension to

yvield results comparable to the results obtained when using XSTAR,

According to the haze model used by XSTAR, the principal effect of

haze is to shift the data distribution along.the brightness axis of

the Tasselled Cap transfcrmed data space. It happens, however, that
the principal direction of discriminability between wheat and non-wheat
is orthogonal te this, parallel to the green direction of the trans-
formed space. Thus, the decision boundary formed by the sum-of-likeli-
hoods classifier is essentially parallel to the brightness axis. As
the amount of haze in a scene varies the data distribution moves along
this plane but does not cross it; thus, without thresholding, the
decision boundary formed from a training site in a high haze condition
was still reasonably effective in a test site with a low haze condi-
tion and vice versa.

The fact that not thresholding acts as a haze correction technique
is true only because the primary direction of discriminability between
wheat and non-wheat is orthogomal to the primary direction of haze shift.
With crops other than wheat, this haze compensation effect will not con-
tinue to hold true, TFurther, it can be seen that using a threshold
introduces a large bias, and significantly increases the RMS error in
proportion estimation.

In the multisegment training tests on 74 winter wheat data sets
over 39 Kansas segments (see Section 4) every proportion estimate using
a classificaticn threshold was less accurate than the corresponding
estimate without a threshold. Examination of this result showed that
in every case as the classification threshold was made smaller, the
accuracy of the proportion estimates increased. A more thorough dis-

cussion of these results may be found in the interim technical memo-—

randum "Bvaluation of Signature Extension Algorithms" [10].

11
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It is hypothesized that this increase in accuracy is due to pick-
ing up additional types of wheat which were not represented in the
training segment.

Because of the effects which occur when no classification thres-
hold is used, the North Dakota experiment was also run with and without
a classification threshold.

Table 2 shows the average\classifiéation accuracy for thresholded
and unthresholded Qlassifications on XSTAR-corrected and uncorrected
data. The performance of unthresholded classification on XSTAR cor-
rected data is statistically no different than the unthresholded per-
formance on uncorrected data, but when a classification threshold is
used the performance on uncorrected data drops sufficiently to make
the performance on XSTAR corrected data significantly* better than the
performance on uncorrected data. The conclusion that may be reached
from this is that the XSTAR correction is in fact aligning the data
distributions from different sample segments, but that the unthresholded
classification is unimproved because the classifier decision boundary

is parallel to the principal direction of haze shift, as explained above.

TABLE 2. PERFORMANCE OF CLASSTFICATION ON XSTAR CORRECTED
AND UNCORRECTED SPRING WHEAT DATA (Average of 318
Signature Extensions)

Average Field Mean Classification Accuracy

Thrgsholded . Unthresholded
Classification™ Classification
XSTAR Corrected 60.107% 60.35%
Uncorrected 57.17% 61.65%

e
w

“0.001 Rejection Threshold

*
The significance level of 0.01 is used throughout this report.

12
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An analysis of the factors which were important in determining

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

the difference between performance on XSTAR corrected and on uncor-—
rected data indicated that the number of time periods involved in the
classification was the only significant factor, although the haze level
was also a significant factor at the 0.1 level. As more data acquisi-
tions are added to the classification the chance of an acquisition with
differing haze levels between the training and test sites increases,
and so the uncorrected accuracy remains the same or drops in spite of
the additional information in the classification, while the XSTAR cor-
rected accuracy increases.

The conclusion to be reached from these results is that XSTAR
performs a haze correction function which increases the accuracy of
field mean classification and proportion estimation as compared to
untransformed signature extension using a sum-of-likelihoods classifier

with a rejection threshold.

3.3 TRATNING SAMPLE SELECTION STRATEGIES

Another activity pursued under this contract by another task was
developing and demonstrating a training and elassification technique
called Procedure B [3]. This technique incorporates a training sample
selection strategy together with an unconventional classification tech—
nique. In order to separate the effects of the training procedure from
the effects of the classification procedure, and in order to evaluate
the effect of this training sample selection strategy on a LACIE-like
system, eaxrly in the contract period the PROCAMS test bench was modi-
fied to incorporate the training sample selection strategy of a pre-
liminary version of Procedure B.

The following is a description of the resulting classification
procedure, referred to as Multisegment CAMS. TFirst, apply the train-
ing sample selection strategy of Procedure B to a large collection of
LACIE sample segments. This selection strategy selects a number of

sample segments as training segments. These XSTAR-corrected training

13
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sample segments are then clustered as if they were simply one large,
contiguous portion of the data. The set of clusters generéted (signa-
tures) are then applied directly to all of the (XSTAR corrected) sample
segments within the original large data set, using the normal maximum
likelihood classifier.

In the original Procedure B demonstration, six LACIE sample seg-
ments were chosen to serve as training for all of the Kansas sample
segments. In all of the following experiments, these same six segments
were used for training both Procedure B and Multisegment CAMS classi-
fication. Local classification, used as a comparison, uses signatures
extracted on a segment by segment basis from the Fields Data Base (see
Appendix 1.4 for a complete description of the data base®). Multi-
segment CAMS and the local classification were run without a classifi-
cation threshold on the maximum likelihood classifier.

A comparison of proportion estimation accuracy for Procedure 3B,
Multisegment CAMS, and the 75-76 LACIE procedure of local training and
classification was carried out over 28 sample segments. None of the
differences in proportion estimation accuracy or bias were statistically
significant, due to the relatively large variance im the proportiocn
estimates. | ) .

A comparison using 74 Kansas data sets was carried out between
Multisegment CAMS and local training and classification. Again the
differences in proportion estimation accuracy (varianée) were not sta—
tistically significant, but now with the larger sample size Multisegment
CAMS revealed a statistically significant bias.

These results did not include a blas correction procedure such as

is being incorporated into LACIE. When considering an environment

*The Fields Data Base consists of a number of fields, extracted
from LACIE Blind Sites, that have beén designated and labeled by zn
Analyst Interpreter. This labeling was carried out late in the year
(Julian Dzte 315) which enabled the AL to use all available Landsat
imagery showing crop development throughout the year.

14
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where it is anticipated that a bias correction procedure such as Pro-

FORMERLY WILLOW RUN LABORATORIES, THE UNIWERSITY OF MICHIGAN

cedure 1 will be used, the training gain advantage enjoyed by a method
such as Multisegment CAMS is ;argely nullified by the need fer an AL
to process every sample segment anyway, for bias correction purposes.
If, however, the bias of a procedure were a relatively consistent
function of the true proportion (or ancillary variables), then the

AT would need to process only enough sample segments to allow for the
estimation of the bias correction functiom.

Such is the case with Multisegment CAMS. Because the same set
of signatures is used for all sample segments, much of the bias is
predictable. This is not true for local training and classification
methods. In the 74 data sets over Kansas, bias which was a function
of the true proportion of wheat accounted for only 5% of the error in
the local training and classification procedure, as compared to 30%
of the error in the Multisegment CAMS procedure.

Thus a linear bias correction rule trained over only the six
original training segments and then applied to the proportion esti-
mates for all of the data sets considerably improves the accuracy of
Multisegment CAMS, while the accuracy of local training and classifi-
cation is affected relatively little.

The difference in proportion estimation accuracy (variance) between
Multisegment CAMS (as bias corrected) and local training and classifi-
cation {corrected or uncorrected) is statistically significant at the
5% level. Neither of the biases are statistically signifiecant.

The above results indicate that a Procedure 1/CAMS system, modi-
fied to incorporate the Multisegment CAMS training and bias corrected
-procedures, might enjoy a large training gain advantage, together with

increased accuracy, as compared with the 75-76 LACIE procedures. It
is also possible that a Procedure 1/Multisegment CAMS system would be
more consistently accurate (in addition to being less expensive to Tun)
than a Procedure 1/local CAMS system if the AI's turn out to have a
large or randomly varying bias because of the consistent estimable bias

of Multisegment CAMS.
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3.4 DATA STRATIFICATION

Data stratification is the grouping of segments on the basis of
similarity in segment physical features which affect the performance
of signature extension. The primary difficulty in stratifying the
data is that it is not known which features of a segment {(which we
will hereafter refer to as ancillary variables) affect the pérformance
of signature extension.

Fox this reason the emphasis of the task in this area was twofold.
First, examine existing stratifications of the data and determine their
relationship to signature extension performance. Second, use the actual
performance of signature extensions to determine what factors are most

important in determining signature extension performance.

3.4.1 EXAMINATION OF AVAILABLE DATA STRATIFICATION

Two data stratifications were available for testing. The fivst of
these was developed by the University of California, Berkeley (UCB) [41,
and the second was developed by Johnson Space Center (JSC) personmel [5].

The UCB stratification was first examined in conjunction with the
CROP-A evaluation, using unitemporal Landsat data, collected in May 1974
over 10 segments in Kansas. The UCB stratification was broken down into
three levels of coarseness: the original UCB stratification, a coarser
version of the original stratification, and an even coarser version which
ignored soil type differences. '

The performance of within-strata signature extensions was then com-
pared to the performance of across-strata extensions, for sach of the
three coarsenesgwlevels of the UCB stratification, and for both CROP-A
transformed and untransformed signature extensions. The result was that
there was no statistically significant difference between within-strata
and across-strata signature extension performance, regardless of whether
CROP-A transformed or untransformed signatures were used. This seemed
to indicate that the stratification was too fine, and that a much coarser

[

stratification would probably suffice.
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The UCB and JSC stratifications were later examined much more

FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

carefully during the evaluation of XSTAR on 1975-76 multitemporal
Landsat data collected over 23 sample segments in Kansas (see Appen-
dix 1.3 for a completg description of the data). The form of the
evaluation experiment was to first perform all signature extensions
possible among the 23 segments (a total of 506 extensions) first using
untransformed signature extension, and then using XSTAR-corrected sig-
nature extension. The field mean performance of each of these exten-
sions was then tabulated, and the field mean performance of the within-
strata extensions was compared to the field mean performance of the
across—-strata extensions.

The original UCB stratification is composed of four parts: a
very fine soil stratification, a stratification based on land use and
irrigation in the segments, a stratification into three groups based
on a ten-year average of degree days for the segments, and a strati-
fication into four groups based on a ten-year average of the amount of
precipitation in a segment. These four parts of the stratification are
then combined (via a Cartesian cross—product of the three) to produce
what is referred to as the UCB data stratification. The soil strati-
fication resulted in a partitioning of our 23 data segments into 23
partitions. As a result signature extension analysis could not be
carried out. Our analysis was therefore restricted to three parts.

Eacl of the three component parts of this stratification were
then examined in combination and separately as well.

The difference between the within-strata accuracy and the across-
strata accuracy in eclassification of field means was not found to be
statistically significant when the land use/irrigation portion of the’
UCB stratification was used to stratify the data.

Stratifying using either the degree day portion or the precipi-
tation portion of the UCB strata produced a difference between within-
strata accuracy and the across—strata accuracy which was significant

at the 0.05 level. Within-strata accuracy was 72.8% for degree days

17
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strata and 82.4%‘for prezipitation. Across-strata accuracy was 67.3%
and 66.2% respectively.

The greatest difference between within-strata and acress-strata |
accuracy was found when the degree day and the precipitation portions
of the UCB stratification were both used to stratify the data into a
total of twelve groups. Within-strata accuracy was 86.5% and across-
strata 66.6%. This difference was significant at the ‘0.001 level.

An observation made from this analysis is that since precipita-
tion and degree days are related to crop development, the primary
effect of the successful portions of the UCB data stratification is
to insure a similar degree of crop development in both the training’
and test segments.

The analysis of the JSC data stratification was somewhat different.
Because none of the components of the stratification were available to
us, no analysis of the components could be conducted. JSC strata de-
fines "groups" and "subgroups'. Three levels of generalization of the

" level. First, the per-

JSC stratification were analyzed at a "group
formance of the "suggested" tFaining segment—test segment extensions
were analyzed. Second, the performance of extensions from any Segment
designated as a training seghent to any segment designated as a test
segment (both within the same strata) was examined. Third, the per-
formance of extensions between any segments within the same strata was
evaluated. In all three cases the accuracy of the extensions under
examination were compared to the average across—-strata signature exten—
sion accuracy. The "subgroups" defined in the JSC data stratification
were ignored in these evaluaﬁions, since none of these subgroups had
more than one of our testing segments in them.

Analysis of the first level of generalization, i.e., the "suggested”
extensions, could not be effectively carried out since it.was found that
there were only two examples of‘Such extensions within our data set,

hence no signifiecant results could be obtained.
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Fourteen out of the 506 possible extensions were between desig-—
nated training and designated test segments in the same strata, the
second level of generalization. "The field mean accuracy of these
fourteen was not much different than the avefage field mean accuracy,
and what difference there was was not statistically significant.

_The third level of generalization of the J5C stratification
examined, where all extensions within the same strata were compared
to the across-strata extensions, had a different result. The average
of the field mean accuracies of the within-strata extensions was found
to be significantly higher than the average across-strata accuracy
(70.5% vs. 62.6%).

Whereas the JSC stratifications yielded less substantial improve-
ment in the field mean accuracy than the UCB stratification, the
important issue realized is that partitioning of segments does yield
improved performance in field mean accuracy and therefore potentially
useful in a multisegment environment wherein proportion estimates are
of interest. In addition, the UCB strata analysis indicated that
physical variables agsociated with crop calendar afforded the best
results. This underlines the importance of accurate crop calendar
information. It is our judgement that a similar analysis of JSC com-

ponent variables would yield the same observatlon.

3.4.2 RELATTONSHIP OF ANCILLARY INFORMATION TO SIGRATURE
EXTENSION EERFORMANCE

For, each signature extension technique there is a unique best
stratification of the data which matches the assumptiocons on which the
development of the technique was based.

Thus, logically, one would need to choose a signature extension
algorithm and then choose a data stratification to match that particu-
lar algorithm. The simplest method to obtain the data stratification
for a particular algorithm is to use the actual performance of the algo-

rithm on various test-training pairs to determine what test segment-

19

E IS
ORIGINAL PAG
OF POOR qualITY



1]
L - FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

training segment differences affect classification performance. This
is what was done for both XSTAR corrected signature extension and for
untransformed signature extension.

The technique used to investigate the relationship between various
ancillary variables and the performance of signature extension between
those segments is a fairly straightforward one.

First, train separately on every site in the test set and then
extend each of these sets of training sfatistics to every other site
in the test set.

Secondly, pair the performance figures obtained from each of the
signature extensions with a list of ancillary variables which describe
the extension.

Third, use this list of ancillary variables to describe or charac-
terize the successful extensions.

This characterization of the successful signature extemsions can
then be used to derive the "best" stratification for the particular
.signature extension algorithm used in .the first step. This is done
by using the characterization of the successful extensions (possibly
a linear equation in the ancillary variables) to predict which exten-
sions are most likely to be successful. These pairs of extensions
with the best predicted performance are then said to be within the

same strata, and thus the stratification is complete,

This process was carried out fifst using 1975-76 Landsat data
over 23 segments in Kansas (see Appendix I.3 for a complete descrip-
tion of this data set), and later using 1975-76 Landsat data over 18
segments in North Dakota (see Appendix I.4 for a complete description
of this data set). The list of ancillary variables used in performing
this analysis is shown in Table 3.

Usipg the Kansas data set, the experiment was first carried out
using untransformed signature extension, as a control case. The char—

acterization of the successful signature extensions was accomplished
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TABLE 3. LIST OF ANCILLARY VARTABLES

I. GENERAL:
Degree Days (10 Year Average)
Land Use (% Agriculture)
Precipitation (10 Year Average)
Latitude
Longitude

Elevation

II. PASS SPECIFIC (Calculated for Each Passs:
Sun Angle
View Angle
Julian Date )
Crop Calendar (Robertson Scale) [4]
Difference Between Sites in Mean of
Soils Area in Landsat Space

Difference Between Sites in Mean of
Green Development Area in Landsat Space

Haze Diagnostic Calculated by XSTAR from
Yellow Shift of Data

Difference Between Sites in Additive Factor
Calculated by XSTAR

Difference Between Sites in Multiplicative
Factor Caleculated by XSTAR

Haze Value Calculated by XSTAR from
Yellow Shift of Data
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using a stepwise linear regression technique. The results of this

stepwise linear regression are given in Table 4 below.

TABLE 4. RESULTS OF STEPWISE LINEAR REGRESSION OF UNTRANSFORMED
SIGNATURE EXTENSTON RESULTS VS ANCILLARY INFORMATION

Cumulative Cumulative

Important Factors ] Standard Error R2
DIFFERENCE BETWEEN TRAINING AND
TEST SITE OF:
Mean of Soils Region in Landsat
Space, Biowindow 1 14.50 0.124
Longitude 14.27 0.153
View Angle, Biowindow 1 T 14.14 0.170
XSTAR Additive Factor,
Biowindow 2 14.05 0.183
Crop Calendar, Biowindow 2 13.98 0.192
Sun Angle, Biowindow 2 13.82 0.212

The final regression equation incorporating all of these factors
was used to predict performance of untransformed signature extension
between various pairs‘of sites. The predicted performance can be used
to generate a stratification which meets training gain or performance
criteria specified by the user. When the desired training gain was 1.2,
four out of the 23 sites were classified by signature extension rather
than local training, a savings of 20% in training cost. Using this 1.2
training gain stratification the proportion estimaéion bias in this

23 segment” sample is not statistically significant.

This experiment was then repeated using XSTAR, in place of untrans-
formed signature extemsion. Table 5 shows the results of the stepwise

linear regression of XSTAR's results versus the ancillary information.
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TABLE 5. RESULIS OF STEPWISE LINEAR REGRESSION OF XSTAR CORRECTED
SIGNATURE EXTENSION RESULTS VS ANCILLARY INFORMATION

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

Cunulative Cumulative
Important Factors Standard Error _R

DIFFERENCE BETWEEN TRATNTING AND

TEST SITE OF:

Mean of Green Development Region

in Landsat Space, Biowindow 1 15.461 0.080
Longitude ©15.176 0.116
Crop Calendar, Blowindow 2 15.031 0.134
Latitude 14.937 0.146
Sun Angle, Biowindow 2 . 14.853 0.158

This regression was used to define stratification of the data as
was done with the regression equation obtained for the untransformed
signature extension case. Proportion estimation results for XSTAR
corrected signature extension using the 1.2 training gain stratifica-
tion again, does not have a statistically significant bias.

When‘the above experiments were repeated using 1975-76 Landsat
.data over 18 North Dakota segments, the resultant regression equations
accounted for so small a portion of the total variance in field mean
accuracy it was uselesg in determining a stratification of the data.
The conclusion to be drawn from this result is that all of the eighteen
North Dakota sites were within the same stratum, as far as could be

discerned using our list of ancillary data.

3.4.3 THE UTILITY OF STRATTIFICATIONS OF(THE DATA

Section 3.4.1 illustrated that statile data stratifications based
on similarities between segments in average degree days and average
precipitation yield a considerable improvement in field mean classifi-
cation accuracy. Section 3.4.2 showed that other, often pass-specific

ancillary variables could be useful in a data stratification, and that
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such stratifications could be used to significantly lower the operating
cost of a large area crop inventory system.

It appears, therefore, that the stratification work done by UCB
and JSC should be extended to include dynamic or pass—-specific ancil-
lary variables. These data stratifications should also be evaluated

in a multisegment training environment.

3.5 OGREEN INDICATOR AND CROP DEVELOPME&T CLASSTIFTIERS

The general approach taken by signature extension classification
techniques has been to use some aspect of the wheat growth pattern as
viewed by Landsat as a criterion for classification; Classifiers
based on a green indicator calculate a 'green number" from the Land-
sat data, and claim that during some periocd of time only wheat pixels
will display green mumbers within a certain range. Crop development
classifiers are more sophisticated; they employ a model of what wheat
looks like to Landsat as-a function of time of year to classify wheat

from non-wheat.

3.5.1  TESTS OF SEVERAL CLASSTIFIERS

The performance of several green indicator classifiers was investi-
gated using 1975-76 sample .segment data over 23 Kansas blind sites
(see Appendix 1.3 for a more complete description of this data set).

The formulas for the green indicators tested. are shown in Table 6.

For each of these green development indicators a decision thres—
hold was trained over all of the field means in all of the test sites,
and the field mean classification accuracy was noted. This procedure
was applied to the first biowindow and second biowindow passes sepa-
rately, and then repeated using XSTAR haze corrected data. Table 7

summarizes these results Ffor Biowindows 1 and 2.
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TABLE 6. GREEN DEVELOPMENT INDICATORS AND THEIR FORMULAS

Name Formula¥®
G CH1-CH©4+ 96
VI Y(CH & - CH 2)/(CH &4 + CH 2) + 0.5
Ratio 7/5 . CH 4/CH 2
Tasselled Cap Green (CH1 x -0.28972) + (CHZ x -0.56199) +

(CH3 x 0.599153) + (CH4 x 0.49070)

TABLE 7. PERFORMANCE OF GREEN DEVELOPMENT INDICATORS

Average Field Mean Accuracy (percent):

Untransformed Data XSTAR Corrected Data
Indicator Bio 1 Bio 2 Bio 1 Bio 2
G 70 82 72 84
TVI 77 81 76 81
Ratio 76 81 75 82
Tasselled Cap Green 76 80 .12 30

“cH1 through CH4 correspond to Landsat Bands 4 through 7.
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These field mean classification accuracies imply that the green
development indicators hold considerable promise as proportion esti-
mators. Results of pixel-by-pixel proportion estimation over 23 seg-
ments using the G indicator in Biowindow 2, and the TVI indicator in
Biowindow 1 displayed a very large bias of about 10-16%. Further,
the variance of the error in proportion estimation for these indica-
tors was very large. This seemed to show that a more sophisticated
approach was required than the "if it's that green then, it must be
wheat' model employed by these green indicator classifiers.

The Delta Classifier does use a more sophisticated model of wheat
development. Accordingly, we used this technique to classify each of
the 23 test sites, comparing the field mean classification accuracy
cf the Delta Classifier to ancillary information via a regressiom.

It was concluded that such a classifier must include ancillary varia-
bles in the decision rule, so that the stage of crop development can

be more accurately known.

3.5.2 CROP DEVELOPMENT INVESTIGATIONS

An investigation into the properties of wheat development and
discriminability was initiated with the purpose of determining what
information was necessary to construct an accurate crop development
classifier., The first step of this investigation was to determine
what information was needed to discriminate wheat from non-wheat.
Two questions were asked. ¥First, what combinations of passes over a
site are needed during the growing season? And second, is Landsat data
two dimensional?, (i.e., do the first two channels of the Tasselled Cap
éransform, brightness and greenstuff, contain by far the majority of
the information needed for spectral discrimination)?

To investigate each of these .questions, 322 signature extensions
were carried out using five acquisition dates from the 1973~74 data

over 12 Kansas sites.
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The data set contained passes from five dates: 20 October,
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20 April, 9 May, 27 May and 12 Juﬁe. All combinations were tested
for performance both locally and in signature extension. The best
single date was 20 April, with 9 May and 27 May trailing in accuracy

* by 5 and 10% respectively. The combination of 20 October and 20 April
proved to be the best combination of passes with no other combination
approaching this. accuracy.

Investigating the information distribution in the Tasselled Cap
transform it was confirmed that most of the information needed to dis-
tinguish wheat from non-wheat is contained within the first two com-
ponents of this transform, namely brightness and greenstuff. It was
shown that the classification accuracy using these two channels was
only about 3% less than the accuracy using all four Landsat channels.

The results of this investigation guided us in the next step of
the investigation, which was the development of a statistical model of
wheat development. The data base used for this modeling effort con-
sisted of field means and ancillary information about those fields,
drawn from 74 multitemporal data sets over 39 Kansas ITS and biind
sites. Appendix I.4 gives a complete description of the sites and
the ancillary information used.

This empirical modeling has resulted in a pair of models which
predict the green and brightness development of a wheat pixel during
the second biowindow based on a statistical regression on the first
biowindow Landsat signal with anciliary data.

The green development model incorporates the following ancillary

information (listed.in order of importance):

Number of days into the growing season when data was acquired

Smount of greenness displayed by green development arm of
the Tasselled Cap

Crop calendar

1

10-year average of degree days
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The brightness model incorporates these ancillary variables
(again, in order of importance):

- Average brightness of scene

Brightness displayed by green development arm of Tasselled Cap

Greenness displayed by green development arm of Tasselled Cap

Sun angle

These two models were combined in a Deveiopment Model Classifier,
in the same manner as the Delta Classifier incorporates a crop develop-
ment model. The decision boundary of this classifier was then traimed
on the second biowindow of all 74 Kansas data sets, which resulted in
an average field mean classification accuracy of 78.1%. VWhen the
normal maximum likelihood classifier was trained on all 74 data sets
the resulting accuracy was 75.4%, showing that inclusion of the anecil-
lary information into the decision rule via the two models improved
field mean classification accuracy.

-In order to determine the stability of these models, the coeffi~
cients of the models were redetermined using 81 fields from 12 randomly
selected data sets. The coefficients of the models developed on only
12 data sets were quite similar to the coefficients of the miodel
developed using all 74 data sets.

As a further test of similarity, the new models were incorporated
into a Development Model Classifier and the coefficients: of the classi-
fier were then trained over these same 12 data sets; thus the classi-
fier was constructed using information from only 81 fields in 12 data
sets. This classifier was then used to classify all 74 data sets,
resulting in an average accuracy of 76.54. Table 8 shows how the
accuracies of several other classifiers compare to this accuracy.

The results of this modeling appear encpuraging enough to warrant
further testing and development in the future. Of particular interest
would be a model which was applicable throughout the crop vear. Such
a model could provide an ideal AI key, as well as the basis for a

classifier,
28
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TABLE 8. COMPARISON OF SEVERAL CLASSIFIERS

Field Mean
Number of Classification
Landsat Accuracy
Acquisitions (Average Over
Classifier Used 74 Data Sets)

Development Model Classifier
(trained on 12 data sets) 2 (Biowindows 1,2) 76.5%

Maximum Likelihood
(trained on all

74 data sets) . 1 (Biowindow 2) 75.4%

Delta Classifier 3 (Biowindows 1,2 70.1%
or 3,4)

Multisegment CAMS . 4 74.0%

3.6 PHASE I: CONCLUSIONS AND RECOMMENDATIONS

The development of an accurate large area crop inventory system
using signature extension techniques is a feasible goal. As we under-
stand it now .such a system would employ haze and sun angle corrected
data in a multisegment training and classification scheme which would
be applied within some stratification of the data, Support for this
view of signature extension is contained in the following discussion
of conclusions about each of the four types of signature extension
alpgorithms tested.

Two examples of haze correction algorithms were tested: CROP-A [1]
and XSTAR [2].

CROP-A was tested in a unitemporal mode on data collected in
1973<74 over ten sample segments in Kansas., Because of the uniformly
low level of haze present in these segments, no conclusion could be
reached about CROP-A's ability to compensate for haze. It was noted,
however, that in some cases CROP-A made gerious errors which actually
degraded classification performance. TFor this reason CROP-A was deemed
unsuitable for general application in large area crop inventories, and

was dropped from further consideration.

&
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The haze correction algorithm XSTAR was tested in a multitemporal
mode on 1975-76 LACIE sample segment data over 23 blind sites in Kansas
and 18 sample segments in North Dakota, providing a wide range of haze
levels and other conditions for evaluation of the algorithm. It was
found that this algorithm substantially improved signature extension
classification accuracy when a sum—of-likelihoods classifier was used
with an alien rejection threshold. Further, the accuracy of classi-
fication using the XSTAR haze correction was substantially the same
regardless of haze level or.differences between the test and training
sites.

An interesting and useful observation made during the tests was
that when no alien rejection threshold was used in the sum-of-likelihoods
classifier, untransformed signature extension achieved the same level of
classification accuracy as XSTAR haze corrected signature extension,

The explanation for this not totally expected result is that the wheat/
non-wheat decision boundary is typically nearly parallel to the princi-
pal direction of shifts in the data due to haze. Thus classification
accuracy is often little affected by haze level differences between test
and training sites given that no alien rejection threshold is used in
the classifier, that the only class of interest is wheat and that the
appropriate acquisitions are available.

The training sample. selection strategy available for testing at
this time was a preliminary version of Procedure B [3]. This training
sample selection strategy was used to select six sample segments as
training for all Kansas sample segments, a training gain of almost 12
to 1 (12 recognition sites for each training site). Multitemporal pro-
portion estimation results obtained by using the six selected sample
segments as training for classification of 74 multitemporal data sets
were extremely encouraging, and in fact were not statistically different
from multitemporal local training and classification proportion estima- ]

tion results (i.e., using all 74 data sets for training).
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One of the major findings of the above study was that nearly all
of the bias in the proportion estimates of the multisegment training
and classification procedure resulted from the particular configuration
of the signature set used for classification, rather than from peculi-
arities of the recognition sample segments. This meant that the pro-
portion estimation bias could be accurately corrected simply by esti-
mating the bias on the original six training segments. The bias cor-
rected proporticon estimates of the multisegment training and classi-
fication procedure were extremely accurate and had a low variance when
compared to local training and classification. This finding may have
important ramifications for reducing the cost and increasing the accu~
racy of bias correction procedures.

The third category of techniques and procedures examined was
stratification of the data. Two stratifications of the data were

available, one carried out by the University of California, Berkeley

[4] and another derived at JSC [5]. These stratifications were evalu—
ated by comparing the performance of within-strata and across-—strata
signature extensions, both before and after XSTAR haze correction,
using multitemporal sample segment data. Both of these stratifica-
tions significantly and substantially improved signature extension

classification performance.

The primary beneficial effect of these stratifications seemed to
be that they matched together segments with the same stage of crop
development. It was shown that these stratifications could be improved
by incorporating certain dynamic or passwspecific ancillary information
about the segments into the stratification procedure. These data stra-
tifications require further evaluation in conjunction with a multi-
segment training and classification system,

The fourth category of signature extension technigques examined
was that of green indicator and crop development trajectory classifiers.

It was found that such classifiers can be made robust enough to be
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applicable to a broad range of sample 5egments, and probably without
needing to be retrained each year. However these classifiers also
displayed an unacceptably high variance in proportion estimation
accuracy, due to the existence of a fairly iarge number of sample
segments with unusual development patterns.

It appears that in order to make such classifiers sufficiently
accurate for current day needs they will need to be modified to incorpo-
rate sufficient ancillary information (such as a crop calendaxr) into
the decision rule to account for sample segments with atypical develop-
ment patterns. The crop development modeling undertaken by this task

has been a first step towards solving this problem.

A recommendation of this task is that a further evaluation experi-

ment be carried out which closely examines the potential of the multi-
segment training and classification approach to signature extension.

Such an evaluation should also include an examination of the usefulness
of haze correction and data stratification techniques in a multisegment

environment.
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4

PHASE II: EVALUATION OF MULTISEGMENT SIGNATURE EXTENSION
PROCEDURES

Phase I of this task addressed the evaluation of signature exten-
sion techniques. The goals of the second phase of activity were two-
fold. Of first concern is the evaluation of multisegment signature
extension procedures. That is, an analysis of the effectiveness of
systems that incorporate those techniqués evaluated in Phase I. The
second concern of this phase of activity relates to an analysis of the
Analyst Interpreter's role in a multisegment signature extension
environment. Phase II has been carried out with the expectation of
continued test and evaluation of the signature extension approach
through the next contract year. Three specific activities were carried

out:

1. The definition and advanced design of an -experiment to examine

the overall signature extension approach
2. Preparatory phases to conduct such an experiment

3. Analysis of the nature of analyst interpreter errors and the
sensitivity of the signature extension approach to analyst

interpreter errors.

4.1 BACKGROUND

The LACIE Phase TTT operation employs a classification and men-
suration strategy called Procedure 1 [11]. Procedure 1 provides an
environment wherein a large number of domestic or foreign 5x6 mile seg-
ments are classified using local training procedures. Crop proportion
estimates for wheat are computed and bias corrected. Training is accom-
plished by clustering all pixels within a segment. The clustering algo-
rithm is seeded by a subset of labeled dots derived from 209 points that

occur at the nodes of a 10x10 pixel grid superimposed on the LACIE segment
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The clusters are named wheat or non-wheat by their association to
another subset of the 209 points that have been labeled by an analysF
interpreter using false color photo image interpretation techniques.
These clusters are then used to classify every pixel in the segment
from which they were derived using a sum of likelihood quadratic
classifier. Proportion estimates are derived for wheat and non-wheat
and bias corrected by multiplying the estimates using a performance
matrix derived from a third subset of the 209 dots. The procedure

is labor intensive in that each segment must be processed by an inter-
vening analyst interpreter., Proportion estimates are, in addition,
sensitive to AI labeling errors.

The multisegment signature extension environment is one wherein
an attempt would be made in reducing the need for local training.
That 1s, to process certain segments automatically without an Inter-
vening .analyst interpreter. A certain subset of segments would be
designated training sites. Training data would be dexrived from these
segments and used in classification throughout. Hence, specific seg-
menits can be more intensely photolnterpreted for training, hopefully
with a resultant reduciion in labeling error.

The multisegment signature extension approach, however, poses
a twofold requirement: an appropriate training segment selection
approach, and a bias correction approach employing non-local perfor-
mance expectations. Any operational system addressing the multisegment

signature extension approach to large area crop inventories is operating

under the one basic constraint that the smallést sampling unit is a

5x6 mile LACIE segment.

Research in signature extension has been based on selecting a mini-
mal set of training segments within a given area strapifiéation. This
requires that a given area to be mensurated must first be stratified
into partitions of relatively homogeneous class characteristics. A

multisegment signature extension test and evaluation experiment must
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examine proposed partitions for signature extension as well as classi-
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fication and mensuration procedures within the context of these parti-
tions. Hence the overall objectives of this investigation will be to
evaluate current UCB [4] and JSC [5] signature extension stratifica-

tions to determine if these products:

1. TIncrease the efficiency of the multisegment training selec-

tion technique termed Procedure B, and

2. Provide an efficient means for sampling to be used for
classification and mensuration employing a Procedure 1

operation extended into a multisegment environment.

4,2 ADVANCED MULTISEGMENT SIGNATURE EXTENSION EXPERIMENT DESIGN

4.2.1 APPROACH AND DESIGN SUMMARY
The design of a multisegment signature extenslon experiment
requires a specification of five basic components of an experiment.

These components include:

1. The systems under test

2. The performance measures

3. The measurement proéedures

4. The parameters, factors, and levels desired

5. The data sets.

Fach of these components are described in the following sections pro-
vided to more specifically detail this experiment. An overview of the
experiment is provided in the £following.

The overall signature extension approach to large area crop inven-
tories operates within the basic constraint that 5x6 mile Landsat data
segments are the basic sampling unit in estimating the proportion of
crops within a region of interest. The experiment to be conducted will
evaluate three procedures designed to function in a multisegment environ—
ment. Each of these three procedures will be evaluated in light of speci-

fied static stratifications of data.
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The three procedures to be evaluated shall be termed "Multisegment
Procedure 1', 'Procedure B' and 'Modified Procedure B'. The third pro-
cedure is a hybrid of the first two incorporating the training strategy
of Procedure B and the estimation strategy of Procedure 1.

The static data stratification to be examined includes: 1) a
local strategy wherein each segment is its own stratum; this is equi-~
valent to the current Procedure 1 strategy; 2) fixed boundary strai:egy
as defined by UCB and JSC; and 3) arbitrary strategy wherein all availa-
ble segments are in one stratum. Hence we will examine.strategies that,
for m segments, define either m strata, or one stratum, or some number,
n, between these extremes. The first strategy can be thought of as a
"Baseline' strategy since it currently is LACIE operatiomal.

Each specified multisegment crop inventory procedure will be
evalvated in light of each of the three categories of data stratifi-
cation. The fixed boundary stratification strategy will, in addition,
evaluate three approaches to training and classification for each pro-
cedure: 1) within strata training, within strata or local classifica-
tion, 2) within strata training, across strata or global classifica-
tion, and 3) within strata training, weighted global or across strata
classification. Figure 1 flowcharts the experiment as described to
this point.

In addition to the evaluation of the specific procedures in their
overall performance with respect to ground truth and the current LACIE
approach, the sensitivity of each procedure as a function of a number
of parameters will be examined to some extent. Of particular interest
is the behavior of these approaches in light of certain data prepro-
cessing algorithms, specifically haze and sun angle external effects
corrections and data compressions using the greenness and brightness
channels of the Tasselled Cap transformation and/or BﬁOB sﬁatial/spectral
clustering. Another very important measure of each system is performance

as a function of training gain. Other procedure-specific parameters will

be analyzed as described in Section 4.2.5.
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FIGURE 1. FLOW DTAGRAM OF MULTISEGMENT SIGNATURE EXTENSION
PROCEDURE EVALUATION
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Performance measures of interest include not only performance
accuracy but also strata wide performance baséd on the distribution
of performances from individual segments. Data to be employed will
consist of LACIE blind sites in the Great Plains as described im

Section 4£.2.6.

4.2.2 SYSTEMS UNDER TEST
A multisegment signature extension classification and mensuration

system employing space imagé data is comprised c¢f four basic components:

1. Data preprocessing requirements
2. A training strategy
3. A proportion estimation strategy

4., Post c¢lassification bias correction strategy.

The training strategy involves both the training sample selection
strategy and signature determination. Keep in mind that the sampling
strategy requires the selection of training pixels or fields con-
strained to specific 5x6 mile segments within a given stratification
of data. Signature determination is the process of establishing infor-
mation representative of the classes of data or specific features of
interest within strata. Various classes of signature determination
strategies are available: One prominent strategy applies to statis-—
tical medeling of classes. This strategy assumes that the data is
Gaussian or Normally distributed. Anothe¥ strategy may employ analytic
and empirical signature modeling. We shall. restrict our analysis to
statistical strategies. i

The systems to be considered in this test and evaluation of multi-

segilent signature extension procedures are illustrated in Table 9.
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TABLE 9. PRINCIPAL PROCEDURAL STRATEGIES FOR TEST AND EVALUATION
TRAINING
DATA SIGNATURE PROPORTION POST BIAS
PREPROCESSING SELECTION DETERMINATION ESTIMATION CORRECTION
SUN ANGLE CORRECTION UCB STRATA PROCEDURE B WITHIN STRATA PERFORMANCE
MATRIX
- Random Selection = Procedure B
CORRECTION
HAZE GORRECTION - Procedure B CLUSTERING - Sum of Likelihoods {Procedure 1)
- Procedure 1
« all pixel
DATA COMPRESSION I5C STRATA (209 dots) . :lob: res REGRESSION
- BLOB ~ Field Means V3. ESTIMATE
- Rand Selecti
_ Tasselled Cap om selection - Blobs . 209 dots (ERTH)

— Manually-Defined

Flelds

- Procedure B

ARBITRARY STRATA
~ Random Selection

- Procedure B

ACROSS5 STRATA
- Procedure B
- Sum of Likelihoods
+ all pixels
« blobs
« 209 dots

REGRESSION VS,
ANCILLARY DATA
(TAMU)

T
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Numerous components are specified. An operational procedure employs

a subset of these components and may traverse different paths. For
example, one approach may (1) employ haze corrected pixel data,

(2a) Procedure B training selection strategy within UCB stratifica—
tion, (2b) determine signatures by clustering pixels, (3) employ sum
of likelihoods classification, and (4} bias ‘correct as in Procedure 1.
It is not feasible to examine all possible paths through this array

of procedural components. In addition, many systems with potential in
a multisegment environment are not herein specified. For example, the
proportion estimation strategies specified may rely on multitemporal
acquisitions of data. WNumerous multitemporal classifiers have been
proposed. TFurther testing of these, however, is required outside of
the multisegment framework. The systems proposed herein are -those
that have been in our opinion tested adequately to warrant further
examination in the multisegment environment.

The performance of these procedures must be evaluated not only
with respect to one another, but also with respect to a base line
system. That system will be the standard Procedure 1 employed in a
local or single—-segment environment.

The principal procedural strategies indicated in Figure 1 operate
within a partitioning framework. These strategies primarily include
Procedure B and a version of Procedure 1 adapted to the multisegment
environment. A composite system wherein a Procedure B training segment
selection strategy is employed and a Procedure l-like estimation strategy
is used in conjunction with the training strategy is another conceivable
processing strategy to be tested. The next two sections are presented
to provide information with regard to Procedure B and Procedure 1

training strategies in a multisegment/partitioning environment.
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4,2,2.1 Generalized Procedure 1 Training Strategy

We have noted that the multisegment signature extension approach
poses a training segment selection problem. Resultant classification
is sensitive to variational differenceg between training and test seg-

" ments. Procedure 1 employs a single segment or local approach to train-
ing and classification to eliminate those differences. Extending Pro-
cedure 1 to a multisegment environment requires partitioning segments
into 'like' groupings. The designation of these static stratifications
usging physical variables such as soil type and precipitation is an
attempt to associate segments in a manner that would minimize the
spectral differences between like classes in segments belonging to

the same strata. These strata can be used in two ways:

1. For Training Selection Purposes: To insure that all spec~
tral classes are represented in choosing segments from every

strata to be used across all segments in classification.

2. For Classification Purposes: Segments would be classified

using training data determined within thedir strata only.

In either case the Procedure 1 training strategy must be carried
out in a multisegment environment. The following is a gemeralization
of the signature extraction strategy to which Procedure 1 can be easily
adapted.

Consider n strata and m segnments where n < m. Segment Sij is
the jth segment of the ith strata Si. Let the signature set for
segment sij be SIG(sij). Let the training data for stratum Si be T(Si).
Call the Procedure 1 clustering function TT; then

n

IFTE w, T(8,) @

IH

SIG(sij)

where wy is a weight for each stratum.

PAGE IS
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If

(2)

then the strata are being used for classification purposes, i.e., the
segment is classified using signatures computed within the stratum of
which it is a member.

If

W, = for all i,j . . . (3

then the strata are being used for training purposes only, i.e., a
segment is classified using all signatures, but insuring that each
stratum is represented by training data.

The valué_of introducing this notation is twofold. TFirst of all,
the same signature extraction strategy currently employed locally in
FProcedure 1 can be employed in multisegment signature extraction.
Procedure 1 is simply the case where each segment is its own stratum
and 0, is defined as in (2). Secondly in computing SIG(sij) (the sig-
nature set to be applied to segment Sij) the training data from stratum
Si,(sij C Si)’ may be weighted more than training data from other
strata. This recognizes that important information for any one seg-
ment appears in every stratum, however, it is more likely that training

data within the same strata would be more significant.

4.2.2.2 Character of the Procedure B Training Selection Process
The training segment selection strategy that would be employed
in adapting Procedure 1 to a multisegment enviromment would likely be
carried out through random selection of a number of segments to satisfy
a training gain requirement. The accuracy and variance in the estimate
as a function of training gain is an important Ffactor to be measured in

this experiment.
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random selection of training segments is adequate would be closely
related to the measured variance in the estimate given a different
collection of training segments satisfying the gain requirement.
Procedure B is an attempt to provide a systematic technique in train-
ing segment selection that would insure that the segments selected

for training are adequate at a level of confidence higher than random
selection. This approach is based on the same philosophy as static
stratifications of regions Ey use of physical variables. That phil-
osophy being that there are natural groupings of data, and sampling
should be carried out to insure representation of these natural group-
ings. Whereés static stratifications base groupings on physical vari-
ables, Procedure B groups data within strata dynamically as a function
of measured spectral variables. These groupings are dynamic in the
sense that as additional spectral information is added, for example
additional temporal acquisitions, then the spectral strata ‘boundaries’'
may shift. Saﬁpling is carried out to insure representation within
each natural spectral grouping. The efficiency of this automatic seg-
ment selection approach in comparison to the random segment selection

approach is of interest.

4.2.3 TPERFORMANCE MEASURES

Evaluation of the multisegment signature extension procedures
under test will be characterized by a set of performance measures.
These can describe performapce within a segment, within a stratifi-
cation of data and across all strata. Performance measures can be

descriptive .or analytic.

4.2.3.1 Descriptive Performance Measures
Descriptive performance measures characterize a procedure in
reference to the baseline system, in this case the LACIE Phase III

Procedure 1. The three performance measures to be considered include:
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1. The differences in classification error
2. The differences in wheat proportion error

3. An estimate of the overall training gain

These performance measures provide a basis for comparison between

Procedure 1 and signature extension procedures employing partitioning.

4.2.3.2 Analytic Performance Measures

Analytic measures characterize the performance of a particular
signature extension approach in reference to the ground truth. A pri-
mary objective of error analysis is to estimate and describe the dis-
tribution of errors over many data sets. An understanding of this dis-
tribution provides insight to the functioning of the system under test
and may provide post-classification corrective measures. Analytic

measures to be considered include:

1. Bias in Proportiom Estimate: The displacement of the mean
of the predicted wheat proportion over a set of segments or

strata from the true proportion.

2. Correlation in Proportion Estimate: The degree of corre-
lation between predicted wheat proportion over a set of

segments or strata to the true proportiom.

3. Mean Square Error in Proportion Estimate: The sum of the
square of the distance of each estimate from the true pro-
portion; this is a measure of the accuracy of the estimate

without bias correction.

4, Variance in the Proportion Estimate: This measure is identi-
cal to the mean square error except employed after bias cor-

rection.
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2 . .
5. R": This measure is the square of the correlation coeffi-
. 2 R
cient; R~ canr be thought of as the percent of variation
about a regression line that can be accounted for by the

dependent wvariable in the regression equation.

Figure 2 is a display of six hypothetical test results. FEach -
iliustrates the effectiveness of variocus analytic performance measures
in describing the results. The ground truth proportion estimate is
plotted for a set of segments versus the predicted estimates. The 45°
line indicates the correct estimate.

Figure 2(a) illustrates a test result that is unbiased, highly
correlated to the truth and with low variance in the estimate. Figure
2(b) diagrams a biased result that is correlated with a high R? about
the dashed regression line. TFigures 2(c) and 2(d) are both uncorre-
lated results, however Figure 2{c} is not biased and with greater
variance than Figure 2(d). Whereas the variance of Figure 2(d) is
lesser, the mean square error could be greater. TFigure 2(e) illus-
trates a biased result that is highly correlated to the truth with a
very low variance. This result could be bias corrected by simply
shifting it toward the 45° line. Figure 2(b) could be similarly cor-
rected, but would result in a higher wvariance in error. However, a
multiplicative and additive correction would result in an equivalently
low variance estimate. TFigure 2(f) is somewhat similar to Figure 2(c).
Both results are unbiased, and both have high wvariance in the estimates.
However, whereas the results shown in Figure 2(c) are not well corre-
lated to the truth, Figure 2{f) is negatively correlated. This infor-

mation may give added insight in the analysis of the systems under test.

4.2.4 MEASUREMENT PROCEDURES
Section 4:2.2 indicated that an evaluation will be carried out for
three procedures: multisegment Procedure 1, Procedure B, and a modi-

fied Procedure B. Each of these procedures will in turn be evaluated
45
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in light of four physical stratifications of data: local, UCB, JSC, and
arbitrary partitions.

Any evaluation of the inherent value of static stratification
in a multisegment environment will require that the measures of per-—
formance discussed in Section 4.2.3 are statistically significant.

As a result a large number of classifications must be performed for

a large number of segments with procedural parameters

varied at each elagsification (see Section 4.2.5). This demands
judicious selection of the data base (see Section 4.2.6) and a classi-
fication strategy that minimizes cost.

The Procedure B classification strategy is described in Refer-
ence [12]. The sum of likelihoods classificatlon strategy is summarized
in the following. Appendix IV contains a more detalled specification
of this strategy.

The parameters varyving most rapidly in the proposed evaluation
are training parameters, for exaﬁple, the number of training segments
employed. Ordinarily this would require the determination of a set
of signatures and computation of proportion estimates for each set of
training parameters. A procedure has been devised and termed 'pre-
clagsification' which delays the need for setting training segment
selection parameters until after signature determination and after
classifying the data set.

The preclassification procedure to be employed in the test and

evaluation of signature extension procedures is as follows:

1. Select the set of segments potentizlly available for

training.

2. Determine signatures from each training segment inde-

pendently from others.

18
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3. Ewmploy the following claséification_procedure:;’ .

\J-' -
a. Clasgify each segment using the signatures _from each
other segment, determining a wheat and non-wheat like-
lihood (i.e., for m training segments, each segment is

classified m times).
co
b. Select the subset of segments to be used for training.

¢. Sum likelihoods from each‘training segment and detexr-

mine wheat prdportion estimate. .
¥

d.- For testing purposes, repeat (b) and (c) for each

variation in the training segment selection process,

Proportion estimation can be carried out for a variety of training
segment sets, simply by summing liinihoods corresponding to the appro-
priate training segments. Clusteriﬁg and 1likelihood calculation, the
two most complex operations computationally, do not have to be recom-
puted for each different set of training data. Appendix IV describes
how this preclassification procedure is logically equivalent to a more

standard approach.

4.2.5 PARAMETERS, FACTORS AND LEVELS ‘

A number of conditions in the evaluatién of specific multisegment
signature extension procedures will be varied. This is carried out in
order to examine the sensitivity of the procedures to various para-
meters, The underlying objective here is to understand not only that
a specific approach is or is not successful, but to understand why as
well.-

Parameters of particular interest in this evaluation are listed

and briefly described in the following.

1. Number of Training Segments: It is critical to evaluate the
/
performance of an appr¥oach as a function of training gain,

that is, the ratioc of the total number of segments processed
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to the number of segments used for training. The training
gain is a measure of the system's efficiency. Hence, the
number of segments used for training-must be wvaried. Not
only will the number of training segments be varied, but the
specific ones employed for a specifiec training gain will be
as well. This is required in a Procedure 1 context iﬂ order

to measure the variance in the estimate as a function of the

random training segment selection strategy. Concerns associated
with experiment cost effectiveness resulting from this require—

ment have been addressed in Section 4.2.4 and in Appendix IV.

Preprocessing: Phase I of this project evaluated certain

data preprocessing strategies and concluded that they may be
of considerable value in a multisegment enviromment. The
benefits of haze and sun angle external effects corrections
and data compression in using the Tasselled Cap transformation
and blobbing need to be evaluated in a multisegment signature

extension environment.

Training Weigﬁts as a Function of Strata: Every segment to

be classified may be so classified using training data from
within the local strata in which it belongs as well as from
other strata. Appendix IV discusses a weighting that will
vary from segment to segment associating a level of confidence
in the traiﬂing data drawn from different strata as applied

to a specific segment. Three sets of weights will be evalu-
ated. The first associates a full confidence in training

data from the local strata and a zero confidence level in all
other training data. In effect physical stratification of

the data is used mot onlf for training but also for classifica-

tion. A second weighting may employ an equal level of confidence

-
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in training data independent of the strata from which it is
drawn. A third weighting may employ a higher level of con-
fidence in local stratum training data and a lesser level -of
confidence im other data. The third approach suggests that
physical stratifications of the data are not truly static
boundaries, but rather confidence thresholds. Hence a con-
fidence weighting as a function of some distance measure may
be appropriate. The nature of that distance measure is still

to be investigated.

The Number of BLOB-Clusters: This  parameter pertains to

Procedure B. A blob-cluster, or B-cluster, is the spectral
stratification of the data described in Section 4.2.2.2. Tt
is a matter of investigation to analyze the sensitivity of

Procedure B to the number of spectral strata employed.

The Random Draw of BLOBS for B-Cluster Labeling: The esti-

mation mechanism in Procedure B requires that each B-cluster
or spectral stratification be estimated by a technique wherein
a random draw of BLOBS within the B-cluster are labeled and
aggregated. This approach ﬁay be employed as well for the

AT labeling of fields for Multisegment Procedure 1 training
purposes as an alternative to dot labeling. The system's
gensitivity to the number of the blobs using this approach

is of concern,

4,2,6 DATA SEIS

In an effort to attain statistically significant results, the

data base for this experiment will contain a large number of LACIE

blind site segments. However, in order to keep processing costs within

reason, four compressions of the data will be considered: (1) the aug-

mented AT Fields Data Base, (2) BLOB compression, (3) 209 dot samples,

and (4) ground truth Fields Data Base.
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Augmented Fields Data Base

The augmented fields data base is described in Appendix I. This
'represents a set of segments for which an analyst interpreter desig-
nated and labeled specific fields for training. Section 4.3 describes
a process carried"out to augment the data base with additional fields.
This data base is drawn from Kansas and North Dakota representing both
winter and spring wheat. Due to its availability, initial testing of
measurement procedures and signature extraction should be carried out

using this data base

BLOB Compression

BLOB.is a spectral-spatial clustering technique that groups data
into field-like shapes. -It is of interest to us to analyze this data
preprocessing technique to determine how accurately actual field shapes
are estimated and more importantly, to measure the- accuracy of crop pro-
portion estimates based om BLOB classification. This technique is of

particular interest in that it forms the basic unit of data in Procedure B.

209 Dot Samples

Upon overlaying a 10x10 pixel grid to‘a LACIE segment, 209 pixels
are repfesented at the nodes of the grid. Currently in LACIE Phase IIL
operations these '209 dots' are used in various stages including label-
ing of samples, cluster seeding, cluster labeling and bias correction.
The 209 dots for our purposes represent a reasonable random sampling of

the segment to be used for proportion estimation of wheat and non-wheat.

Ground Truth Data Base

-A task is currently underway wherein a number of LACIE blind sites
in the Great Plains are being processed to incorporate ground truth,
stratification and ancillary information. These data are expected to
be available within a six month period. As they become available, it
is our intention to phase our the use of the augmented fields data
base and replace it with these data statistically summarized om a

fielid by field basis.
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4.3 TIELDS DATA BASE PREPARATION AND AUGMENTATION

One of the important efforts in preparation for test and evaluation
of multisegment signature extension procedures is the development of
an adequate data base. The proper selection and labeling of training
fields within each test site is an essential part of the development
of this data base., The Fields Data Basé, uged for test and evaluation
of signaturé extension algorithms of Phase I of this project will be
used initially for the extraction of sigﬁatureS'and testing of multi-
segment signature extension procedures. To insure that the AL Fields
Data Base properly represents .each segment, the following procedure
was carried out-using LACIE Blind Site 1975-76, Day 315 Fields Data
Base. This data included 38 Kansas and 18 North Dakota test.sites

(see Appendix I.4 for a complete description of the data base).

1. Compare AI field designations with large scale annotated
ground truth high altitude photos and correct any AT

labeling errors.

2. Determine the degree to which AI field selection simulates

random field selection on a segment by segment basis.

3. Augment the fields data base to insure a simulated random

selection process.

4.3.1 LOCATING AL FIELD DESIGNATION ERRORS

The AI designations ("wheat" or "other") of defined fields were
checked against ground truth labels on aerial.photographs of the scenes
involved. This was done for 32 1975-1976 LACIE blind sites in Kansas
and 16 in North Dakota. For each segment three accuracy measures were

computed. They were defined as follows:

total no. of mis-labeled fields
total no. of defined fields

1. TOTAL ERROR =
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no., of fields labeled other when actually wheat
no. of defined fields actually wheat

. 2. MISSED WHEAT

no. of fields labeled wheat when actually other

3. FALSE WHEAT no. of defined fields actually other

A summary of the accuracy figures appears in Table 10. Analyst-
Interpreter accuracy on the North Dakota segments was net as good és
on the Kansas segments. This may be attributable to the presence of
the confusion crop barley in North Dakota and to the practice of strip
cropping. Two of the segments in Kansas, No, 1164 (68.4% false wheat)
and No. 1860. (54.5% missed wheat) were found to have anomolously large
error figures, The number of field designations changed per segment
ranged from 0 to 12,-averaging about 3.3 corrections per segment. An

average segment contains about 30 fields,

TABLE 10. SUMMARY OF AT ACCURACY MEASURES

NMorth Daketa Kansas
Error Ave. Error  Std. Dev. Ave. Error  Std. Dev.
T;tal ‘ 17.2% 6.7% < 11.4% 8.1%
Missed Wheat 26.7% 14.7% 20.0% 10.5%
False Wheat 6.1% 5.5% 3.3% 7.4%
Missed Wheat ... ’ bk _ 6.4

False Wheat

One observes the AI makes far fewer mistakes of labeling other
crops as wheat than the reverse mistake of labeling wheat as other.
The ratio MISSED WHEAT/FALSE WHEAT is 4.4 in North Dakota and 6.4 in
Kansas. This indicates the presence of a source of variation in the
appearance of wheat which is misleading the AI. An unknown source of

variation is not likely to make a crop other than wheat look like wheat.
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The AI looks at the development of a crop at key points in time, the
"biophases™ of wheat, and the pattern of development is- dentral in the
decision process. It is unlikely that small, random variations in the
appearance of fields would cause a non-wheat crop to be shifted into
this pattern. It is more likely to shift a wheat field beyond the
thresholds of the wheat pattern as. the AL conceives it. A statistical
investigation exploring AI error for these segments is reported in a

following section of this report.

4.3.2 SIMULATING A RANDOM TRAINING SELECTION

As has been described earlier, the Fields Data Base was selected
to conduct the test and evaluation of signature extension algorithms
in order to provide a compression of the data. This would both be
representative of the individual segments and result in a cost efféc—
tive apnalysis. Initially it was acceptable to assume that the Analyst
Interpreter could accurately represent the segments through field selec-
tion. That is, the AT designated fields were representative of the
segments in the sense that the variability in the data was accounted
for. Tt became & concern, however, that introducing human interaction
would bias representative selection. That is to say, the Analyst
Interpreter was not properly simulating a random training field selec-—
tion process. A random field selection process-would insure, in a
statistical‘sense, that the wvariability in each scene was properly
sampled. This concern led us to establish a procedure, termed CHECK,
whose function is to establish how closely AT field designations simu~

late random field selection. The following CHECK procedure was devised:

1. .Histogram the multitemporal segment of data:

—~ Tasselled Cap brightness and green channels

~ three bins per channel selected to separate
observed modes

2. Histogram AT designated training pixels using the same bins.
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3. Establish a criterion based on Step 1 as to which bins

were significant.

4. Compare two histograms to determine whether all significant

bins were represented by AL training pixels.

5. TUse a histogram map (similar to cluster map) to select
additional training to insure that each significant bimn

is represented by training pixels.

Keep in mind that the purpose of carrying out this procedure was
to insure that the AI training field selection process was not biased
in simulating a random training field selection process. Random train-
ing gelection statistically insures that important clusters of data
would be represented in proportion to their density. For example,
should ten percent of a scene fall intc a particular spectral class,
random sampling of the scene would insure that, on the average, ten
percent of the samples would fall into that spectral class. The histo-
gram approach was used since important clusters of data would tend to
fall into the same bins. By histogramming the data into bins, the AT
field designation could ye augmented by selecting samples from larger
bins that were missed by the AT.

Using data from two acquisition dates, four channels, there were
81 possible bins or classes in which a pixel could fall, To decide
which bins were most important to examine, the data was grouped accord-
ing to size. The first group consisted of all bins containing more
than 5% of the data, the second more than 1% of the data, the third
and fourth groups were cut off at the 0,5% and 0.1% levels. Figure 3°
shows a plot of bin size vs, average percent of the test site iﬁcluded
in each group. Only 25% of the data fall in bins containing over 5% of
the pixels, but 83% of the pixels are contained in the 1% level group.
Figure 4 is a plot of bin size vs. the number of bins within a group.

The number of bhins per group ranges from three to 67.
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The 1% level was found to be.the most optimum group to work with
when using two dates, containing 83% of the data in approximately 31
bins.

Several observations were made when comparing the training histo-
grams to the segment histograms on a bin by bin basis for 13 Kansas
segments.

In general if the bin contailned n% of the segment data then it
contained (n *+ 2.5)% of the AL designated training data. Cases where
this was not true usually involved the larger bins containing greater
than 7% of the data. In these cases if the bin contained n% of the
segment then it might contain (n + n/2)% of the training. Thus larger
bins were generally represented by AI designations. However bins con-
taining less than 2.5% of the total data may he completely missed by
AI training. This introduces a non~random character to the training
data. This type of missed training was found in 7 of the 13 test sites.
There was an average of 2.5 bins per segment not found in the AT desig-
nated training sets, with as many as 11 bins not represented by train-
ing in some segments,

Using the histogram maps (Figure 5 ) and ground truth photos new
fields were determined to complete the training set. On the example
histogram map omne can see definite field structure. The blank areas
symbolize data in bins with less than 1% of the data. These areas are
usually field boundaries and represent a mixture of vegetation types.
The field-like structure of the histogram indicates that important bins
that were not sappled by the AL are actually fields, Hence a better
simulation of random training selection could be achieved by zugmenting
the Fields Data Base with fields representing important bins that were
not represented by the AI fields. This was carried out for all of the
segments in the test data base. Overall there were 23 new polygons
added to the first 13 training segments examined, with as many as nine

added to a single site.
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4,3.3 FURTHER ANALYSIS USING CHECK

CHECK provides a framework within which any traininé selection
procedure may be examined to establish bias or non-random character-
istics. It can alsc be used to examine the characteristics of the
data as a function of the temporal dimensionality of the data. -1t is
well known statistically that an increase in the dimensionality of the
data provides neot oﬁl& the potential for more information, hut also the
need for more, or at least more accurate, training-sample selection in
order to describe the information content of various classes of data.

CHECK was used to examine the effectiveness of two training pro-
cedures as a function of additional multitemporal data acquisitiomns.
The two procedures include the AI training fleld designation, and samp-
ling based on the selection of every tenth pixel in every tenth line
of data. (The second procedure is not exactly equivalent to the train-
ing procedure employed in the LACIE Phase II Procedure I system.) The
purpose of this exercise was to establish how a fixed sampling of data
behaves as new information is added.

The CHECK procedure was carried out for data sets containing two,
then’ three and four multitemporal data acquisitions. The data was
histogrammed into three levels in the Tasselled Cap brightness and
green channels for each set of acquisitions. For two biophases, there
were a possible 81 bins of data (34 or three levels for each of four
channels of data). Three biophases provided a potential for 36 or
729 bins, and four biophases a potential for 6561 hins. Histograms
were examined for bins containing 0.1, 0.5, 1.0 and 5.0 percent of
the total number of pixels per segment. The 0,1% level was the only
level wherein 80% or more of the data in each segment was represented
for each set of acquisitions.

A number of observations can be made in examining these histo-
grams. Comparing the 209 point histograms to the-segment histograms

on a bin by bin basis for two biophases one finds a closer-to-randomly-
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selected training set than represented by the AT selected fields., If

a bin contained nZ of the segment data then the bin contained about

n + 1.5% of the 209 point training set, regardless of bin size. This
is no surprise since the 209 points were selected by arbitrarily super-
imposing a grid on the data set.

Upon extending the CHECK procedure to three and four acquisition
dates, employing these fixed sampling criteria leads to interesting
results. Figure 6 illustrates three methods: wall-to-wall ground
truth represented by the total number of bins, AL labeling, and use
of the 209 point grid. The 0.1% curves are presented since this c?vers
the majority of data points in all three acquisition cases. Notidg
that as the number of time periods increases, increasing the dimen-

sionality of the data, the amount of training required also increases.

250 1
BINs cONTAINING
2007 0.1% or MORE OF
DATA *1 STD. DEV.
2
= 50l
u 1504
o
LET]
a8
=3
=
100§
501 ’,4-” 209 poINTS {bins represented by
more than 1 pixel)
ﬂi-i_-“-—~“—1c—~AI FIELDS (bins represented by
1 ¥ f more than 0.1% of data)
3 4
2

NUMBER OF TIME PERIODS

FIGURE 6. NUMBER OF BINS CONTAINING 0.1%7 OR MORE OF DATA
COVERED BY TRAINING AS DETERMINED THROUGH CHECK
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The 209 point or AI labeling method does not adequately represent the
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data in and of themselves. Additional information must be provided.

This is precisely what the LACIE Procedure I training selection

approach attempts to address by augmenting the training selection

based on 209 points with an associated clustering algorithm. The
alternative approach would be to sample employing wall-to-wall ground
truth. Whereas wall-to-wall ground truth may not be a feasible approach,
we plan to investigate the use of 209 points in cluster labeling as in
Procedure 1 as well as a field seeking algorithm like BLOB in conjunc-
tion with the CHECK procedure as a technique to determine representa-

tive training fields.

4.4 ANATYST INTERFPRETER LABELING ERROR ANALYSIS-

Section 4.3 described activity that rglated to correcting Analyst
Interpreter labeling exrors in a number of 1975~76 LACIE Blind Site
segments in Kansas and North Dakota that currently comprise the test.
data base described in Appendix I. This was accomplished by comparing
the crop labels of AI designated fields to ground truth annotated high
altitude photography. An analysis of the nature of these labeling
errors was of interest for several reasons.

The Analyst Interpreter functions in a multisegment/multitemporal
environment. The labeling of wheat and non-wheat is carried on a
segment at a time, utilizing several false color Landsat images repre-
senting various biophases in the wheat crop calendar. The AT currently
is provided with false color imagery generated by a Production Film
Converter employing a specific color coding technique [13]. These
images are termed Product 1's. In addition to these images, other
aids are provided to assist the AI in understanding the local scene
characteristics that may affect the apparent colors of wheat and non-
wheat. However, multisegment signature extension is carried out by
the AT each and every time the AT labels wheat or non-wheat using the

non-segment specific, or global, information accumulated by experience.
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The error analysis carried out attempts to quantitatively address
questions pertaining tc the iﬁfluenge of the technique employed in the
generation of Product 1's upon the Al's ability to correctly label
wheat and upon subsequent classifications based on inaccurate signa-
tures derived from mislabelled samples. Two specific concerns war-—
ranted our analysis of the Product 1., First of all, the product is
generated using segment specific, not global, parameters, and secondly,

external effects, like haze and sun angle, are not accounted for.

4.4.1 APPROACH .
The analysis of the nature of Analyst Interpreter labeling errors

was carried out in six stages:

1. Comparison of AT designations with ground truth labels and
measurement of error rates. Section 4.3 described the AL error
found to be present in 46, 1975-76 LACIE blind sites and the

error statistics generated for each segment.

2. A brief consideration of the effect AT labeling errors have on
accuracy of proportion estimation. Described in Section 4.4.2

below.

3. A search for correlation between extent of labeling error and
various segment specific ancillary variables. Described in

.Section 4.4.3 below.

4. Development of a data base with field means of Landsat data
for three biophase acquisitions per segment and a technique
for display of the data in color space. Described in Section

4.4.4 below.

5. Diagnostic work relating color error with various acquisition
and segment specific variables. Intended approach shown in

Sgction 44,5,

6. Exploration of possible improvements in generation of false

color imagery. Plans are indicated in Section 4.4.6.
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Stages one through four have been completed at the time of this
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-

writing. Work on stages five and six is in progress.

4.4,2 EFFECT OF LABELING ERRORS ON PROPORTION ESTIMATION

Our consideration of the influence on proportion estimation of
mislabeled training fields was not intended to be definitive. We
wished to obtain a general idea, based on the data already at our
disposal, of the variance in proportion estimation which might be
attributed to mislabeling. As one indicator wﬁ considered segments
with missed wheat erxox but no false wheat error. We plotted missed
wheat error versus the fraction of wheat in scene that was detected,
i.e., the ratio of the proportion estimate im local classification
mode, to the ground -truth proportion of wheat in the scene. TFigure 7
reveals a tendency for detected proportion of wheat to fall off quickly
with missed wheat error. It suggests that for error greater than 24%
about 60% wheat detection may be expected.  The missed wheat error
statistic is only a crude measure of the amount of misinformation
given to the classifier, which probably accounts for much of the
scatter in Figure 7. ZEven so the missed wheat variable accounts for

about 40% of wvariance in the detected proportion of wheat.

4.4.3 CORRELATION OF LABELING ERRORS WITH ANCILLARY VARTABLES
Analyst—InEerpreter accuracy measures were regressed against the

following set of segment specific variables:
1. Ground truth percentage of wheat in the segment.
2. Long term average fOr growing season of Degree-Day sum.
3. Long term average for growing season of Precipitation
4. Elevation.
5. Latitude

6. Longitude
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In a somewhat unexpected result, we found AT accuracy not to be
correlated with percentage of wheat in a segment. Figure 8 demonstrates
the independence of missed wheat error from percentage of wheat im a
segment. A study conducted by Coberly, Tubbs and 0dell [13], indicated
the Product 1 might be susceptible to color distortion in scenes with
very little wheat and scenes dominated by wheat. This concern stemmed
from the fact that bias and scale values used in generating the Pré—
duct 1 are computed on.thg basis of variability in the contents of a
scene. Logically, the amount of wheat in a scene is an important
factor in how homogeneous the scene will appear. In the study cited,
wheat and non-wheat signatures were used to generate artificial scene
statistics, assuming different proportions of wheat, and these statis-
tics were used to compute corresponding bias and scale values. These
values indicated color distertion in scenes with little wheat (a lot
of variability) and scenes largely composed of wheat (little varia-
bility). The fact that AI error rates are not a function of propor-
tion of wheat in a scene makes us suspect that the study cited was too
simplistic in its assumptions. Proportion of wheat in a scene may be
one factor in color error but in real life it is one among many. The
conclusion of the study, that Product 1 is susceptible to distortiom,
is still valid. However, the range of factors involved and the sig-—
nificance of color shifts produced, have yet to be explored.

The other wvariables tested also proved uncorrelated with the single
exception of latitude. Latitude was found correlated to AI total error
with r = -.60 at a significance level below 0.001. As Figure 9 shows

this is mot a tight correlation but it appears to be real.

We interpret this to mean there exists a factor which

1. Characteristically varies with geographic latitude of

a segment and

2. 1Is capable of influencing AT accuracy in a fairly strong

mannert.
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The adjusted crop calendar provided for the AT is a critical factor
in the labeling process. The crop calendar also varies characteris-
tically with latitude because of climatic Changes. Our first sus-
picion in this matter is, therefore, that unrecognized inaccuracies

in crop calendar adjustment procedure exist which are tied to latitude.
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Effort was directed toward obtaining a display of field mean data
in color space, i.e., a chromaticity diagram. The idea of this is to
have a graphical portrayal of the distribution of colors of fields as
they appear on the Product 1 false-color imagery. Distance in color
space is an indicator of distinguishability between colors to the
human eye. It was felt a display of the fields in color space would
be a direct, insightful tool for addressing the labeling problem.

Fmplementing the technique required three steps.

. 1. A data base was established containing the following informa—

tion for each segment (see Appendix V).

a. The mean value in each of Landsat bands four through
seven for each defined field in the scene.

b. The ground truth designation of each field (wheat or
non-wheat) .

c. The AT label for each defined field.

d. The bias and scale factors used to transform the
Landsat data before production of the Product 1

imagery.

2. TFor each acquisition in the data base an affine transformation
was applied to the field mean data of the Landsat cliannels,
exactly as if the data were being prepared for input to the

blue, green and red color guns of the PFC, viz:

B A X + B

11 1
G = A2X2 + 32
R = A4X4 + B4

Here A, and B, (i = 1,2,4) are the scale and bias factors for
an acquisition as computed by current procedures [13]. After

transformation any values of R, G, or B falling outside the
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range 0-256 (the color iptensity range of the PFC) are termi-
nated to the appropriate end point.
This data can be displayed on a two-dimensional chromaticity

diagram after a normalization of the variables:

r = R/T
g = G/T
T = BG+B (see Figure 11)

Tt is not mecessary to plot b (b = B/T) because of the restraint
r+gth = 1.

The (T, r, g) color space is not uniform because one cannot say
there is a unique relationship, valid everywhere on the (r,g)
graph, between distance and distinguishability of colors.

There are transformations with which one can approximate a
uniform color scale (UCS). The CIE 1960 UCS diagram is an
example. It is defined as a projective transform of the CIE
1931 (x,y)-chromaticity diagram (Figure 12). To map our (r,g,b)
space to the standard (x,y.,z) chromaticity space the following
relations were employed [15]:

0.49000r + 0.31000g -+ 0.200005
* = 0.66697r + 1.13240g + 1.200635~

0.17697r + 0.81240¢ + 0.01063
1 = 3
Y = 0.66697r + 1.13240¢ + 1.200635

0.00000r + 0.01000¢ + 0.990005
0.66697; + 1.13240g + 1.20063h

=
T o=

This transformation must be considered approximate in .our case because

the colors of the PFC are not exactly the standard (R,G,B) primaries.

We proceeded on the belief this would allow an improvement in uniform—

ity of the diagram if not optimum uniformity. The CIE UCS mapping is

given by the fcllowing equations [14]:
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_ 4x .
T ox + 12y + 3
V= x4 12y + 3

Figure 10 displays the color ranges of the CIE X-Y chromaticity
diagram. Figure 11 shows ellipses which represent statistical varia-
tion of chromaticity matches. The length of the axes of the ellipses
represent the distance in color space required to make two colors just
distinguishable to the eye. Observe that this distance is much smaller
in the blue area of the (x,y) diagram than in the green. Obviously
this space is not uniform. After transformation teo (U,V) space
(Figure 12) the ellipses are more or less comparable throughout the
diagram, indicating improved uniformity: Figures 13 and 14 show a

Biowindow 2 LACIE segment in (r,g) space and in (U,V) space.

4.4.5 FACTORS AFFECTING QUALITY OF THE PRODUCT 1
Our approach to investigating the labeling problem has two basic

hypotheées behind it:

1. The current method of generating Product l's introduces colorx
errors which adversely affect the Analyst-Interpreters' ability

to correctly label wheat and non—-wheat in some instances.

2. An array of factors affect the quality of Product 1l's and
these factors must be recognized before the production of

any standard Landsat film product.

Statement 1 refers to color error. We understand this term along the
following lines. Three criteria of film quality are proposed by Toyo
Kaneko [16]. These include color level resolution, brightness, and

color distortion. The first two are closely related and important for
training field selection and delineation. The color distortion criterion

is important for training field labeling [17]. Color distortion is the
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most important criterion in dot labeling. We cqncgive of color dis-
tortion as a change in hue, saturation, and brightness, i.e., colors
of a given pixel, from time to time within a given segment. It should
be thought of as a change in color from segment to segment of pixels
with like reflectance. Color error is, therefore, defined for ocur pur-
poses as a distortion of color from one segment or time periecd to
another of two objects having the same reflectance. We are implying
that the geoal of any false color image display is to map objects of
the same reflectance into the same color, regardless of place or time
of acquisition, and make important differences between objects appear
visible to the human eye.

To make our work more direct and quantitative we intend that color
error be given analytic measures. TFor example one might consider the
distance in (U,V) color space of the average color of wheat in a scene
from some defined reference point as a measure of color error. With a
measure of color distortion in hand we will be in a position to address
the question of what factors cause color shifting in Product 1 imagery -
and determine their relative significance., Among the variables we will

want to Include in this analysis are the following:

a. haze level

b. sun angle

c. soil color

d. crop calendar

e. proportion of wheat in the scene

f. color composition of wheat and non—wheat

g. amount of clouds, water im scene.

Most of these variables are acquisition specific, i.e., are different
for each Landsat pass over a particular segment. It is understood that
the AT need not have been considering any particular acquisition in his

work. We are not looking for correlations between acquisition specific
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variables and Al error rates; we endeavor to understand the Product 1
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in ways which allow it to be generally improved. A reduction in label-~

ing error may then be anticipated.

4.4.6 EXPLORATION OF POSSIBLE IMPROVEMENTS

The technique of display described in Section 4.4.4 gives us a
special vantage point from which to explore ramifications of suggested
improvements in production of false color imaéery. Some suggestions
will arise out of the diagnostic work described in Section 4.4.5.

Other possibilities which will be evaluated include the following:

1. Correction of data for haze level and sun angle before pro-

duction of imagery.

2. Use of a different technique for computing bias and scale

factors:

Hocutt method
b. Kaneko method
¢. Krauss method

d. NWew methods as our understanding suggests them.

3. Application of the Tasselled Cap transformation to the data
prior to generation of imagery. The brightness, greenmess
and vellow dimensions of the data to be used as inputs to
the green, red and blue guns of the PFC after scaling by omne

or another technique.

&.4.7 DISCUSSION

As a background to the discussion we present some (U,V) chromaticity
diagrams of acquisitions available in our data set. 1In these figures
wheat fields are designated by circles and non-wheat fields by tri-
angles. A blackened-in circle or triangle indicates the AL mislabeled
the field. TFigures 15(a) and (b) show acquisitions of two segments in
the second biophase. Tigures 16(a) through (d) show biophases one and
two for two segments. Figure 17 shows =z complete 3 biophase history

for one segment.
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Looking at what we have thus far we can point to some disturbing
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things about Product 1 imagery. Figures 15(a), 15(b) and 16(b) show
color space distribufion of fields in three segments. Note how different
the distribution of wheat color is between these segments, despite the
fact the acquisitions were within one day of each other and the crop
calendars are virtually identical. We have hypothesized this marked
alteration in the wheat color signature from segment to segment is the
result of using freely varying bias and scale values for scaling of

data and not taking account of haze and illumination (sun angle) effects.
The Analyst-Interpreter must interpret imagery using ancillary informa-
tion, crop calendar estimates, historical agricultuxal statistics, and
ground truth information. This is necessary to allow the AT to adjust
the recognition of wheat to each segment and each acquisition. Because
of the artificial variability of the Product 1 image, the presence of
wheat and its approximate stage of development can never be addressed
from the Product 1 image slone.

Consider the interpretation problem of Segment 1164. The color
distribution of fields in this segment are shown in Figures 16(a) and
16(b) for acquisitions in biophases 1 and 2. Of the acquisitions made
in 1975-76 on 1164, Julian date 124 stands out as the ené to potentially
distinguish wheat and non-wheat. There were no other acquisitions in
the second or third biophases. This acquisition was at the same crop
calendar point as the acquisitions of Figure 15. 1If one adopts the
color signature of wheat displayed in Figure 15(a), (i.e., if one over-
lays the chromaticity diagram of 1164 on 1171) it appears 1164 coﬁtains
mainly wheat. If one adopts the color signature of 1166, Figure 15(b),
it appears 1164 containsg little or no wheat.

The AT assigned the label of wheat to 707 of the fields in Segment
1164. 1In fact, there were no wheat fields among the fields defined on
1164.

79



) ERiM

Segment 1164 is not a special case of color distortion. It does
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not have extreme biag and scale values associated with it and could
not be flagged by looking at these wvalues. In this case the AT failed
to find the proper boundary for interpreting the color of crops in this
scene. This is an example of. complete miscuing on the crop color sig-
natures for a particular segment. This error ig possible because of
the artificial variability of the Product 1 which makes it necessary

to tailor recognition of wheat to each segment and each acquisition

on that segment. This raises for us the concern that even when'this
taileoring is basically successful the fit may be too unnecessarily
tight or too loose. This lies in the realm of the individual Al's
interpretation. It is a difficult tailoring task to perfoim on scant
information about qualities of Product 1 imagery. We know the inter-
pretation of false—colox imagery can produce completely-accurate 1abel-
ing of fields on some segments. It is our conjecture that a portion

of the 21% average missed wheat error and 11% average false wheat error
are due to difficulties in interpretation introduced by color signature
variability in Product 1 imagery.

A linear discriminant function was trained over all segmeﬁts and
three time periods, to sze how well a universal wheat signature could
be applied to individual segments. The result of applying the best
linear universal discriminant to individual segments was essentially
random classification. To illustrate the reason for this we have com-
puted.linear discriminant boundaries bektween wheat and non-wheat on a
local, segment by segment basis,'for 5 segments with virtually the same
crop calendar at acquisition. Figure 18 shows how much these boundaries
shift between segments.

The technique of labeling fields by interpretation of false color
imagery with shifting color signatures requires two things: 1) sub-
stantial local inforxrmation, ancillary data and ground truth compariscon,

and 2) self restraint on the part‘of the interpreter not to apply earlier
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training where it might not be valid. We believe this necessity for
restraint may contribute to inaccuracy anyway in the form of missed
wheat errors.

As an alternative to the above, we propose investigation be
directed toward establishing a way of producing imagery with stable
discrimination boundaries. We believe the techniques discussed in
this section provide the proper tools and we feel the explorationé
envisaged ought to be carried out.

In the data set we are currently working with we have field means
data for 51 acquisitions. These acquisitions are spread among 32
1975-76 Kansas segments and three time periods. The segment numbers
along with date, crop calendar, and error statistics are listed in
Appendix V. We feel the extent of this data set is only marginal for
the analyses we would like to perform. We would hope to have a new,
larger set of acquisitions made available to us at a future point in
time. This would allow us to be more definitive about qualitative

conclusions and would make quantitative analysis feasible,

4.5 TPHASE II: CONCLUSIONS AND RECOMMENDATTONS

Phase II of this.project has concentrated on a twofold purpose:
(1} the specification of an experiment design for the tést and evalua-
tion of overall signature extension procedures for large area crop
inventory, and (2) an analysis of Analyst Interpreter wheat labeling
errors.

Phase I documented that the development of accurate large area
crop inventory systems using signature extension technidques is a
feasible goal. The evaluation of three such techniques has been speci-
fied in the experiment design. These include & multisegment adaptation
of Procedure 1, currently employed in LACIE as a lbcal or single seg-
ment procedure, Procedure B, developed at ERIM, and a modified version
of Procedure B, incorporating the training selection strategy of Pro-

cedure B and the classification strategy of Procedure 1.
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In addition to the evaluation of these three overall procedures,

a number of procedural parameters will be varied to determine the
effect on classification results. These parameters include the number
of segmenis used in training, and the incorporation of various data
preprocessing techniques, specifically sun angle, haze effect correc-
tions, and data compression strategies.

A most important aspect in the analysis of these multisegment

signature extension techniques is their performance as a function of
the use of static stratifications of the data. Three sets of strati-
fications will be employed including: (1) physical stratifications
of the data based on ancillary variables as defined by UCB and JSC,
(2) an arbitrary stratification wherein all segments are grouped into
one stratum, and (3} a "baseline' stratification wherein each segment
is its own stratum, equivalently local or éingle segment training and
classification.

Preparatory stages in the execution of the experiment to evaluate
these overall multisegment signature extension procedures included the
development of a data set for purposes of initial evaluation. This
data set was drawn from the Fields Data Base. One step in its pre-
paration includes the correction of Analyst-Interpreter labeling errors.
The ensuing analysis of these labeling errors revealed that classifica-
tion performance in a multisegment environment was sensitive to AT
labeling errors.

In an attempt to understand the nature of these errors in order
to provide recommendations as to improved labeling techniques, it was
determined that the current pfocedure used in production of the Landsat
Product 1 false color imagery has certain undesirable characteristics.
Specifically, the color of wheat differed substantially from segment
to segment at the same stages in the crop calendar.

It is recommended that the data base used in the analysis of AL

‘errors be expanded to incorporate additional acquisitions for existing
' 83-
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segments as well as additional segments in order to establish a data

base that can be analyzed adequately to establish statistical signifi-
cance. In addition, the technique employed in the analysis of the
Product 1 imagery is a most useful approach to the analysis of other
false color image products. That technique employs a mapping of field
means into color space coordinates transformed into a space wherein
Buclidean distance is more closely correlated to the human eye's ability
to diseriminate colors. Hence analysis of an AL's ability to discrimi;
nate wheat [rom non-wheat can be carried out statistically. A compari-
son of wvarious image production techniques in this fashion would be of
great value. It was also observed that the presence of haze or clouds
in a scene may adversely affect image products. Techniques to reduce
haze effects and screen clouds should be dincorporated into the image

production process.
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APPENDIX I B
DATA PREPARATION

The preparation of an adequate data base for the evaluation of
signature extension algorithms was one of the major activities of this
task. This activity had two separate phases. TFirst, 1973-74 data was
prepared to allow us to begin our first testing immediately. TLater
when 1975-76 LACIE sample segment data was received, together with the
fields data base, activities were begun. to prepare a large, comprehen-
sive data base which included ancillary information about the sample-
segment and the specific passes in the data set.

Because the preparation of data was an ongoing activity, this
appendix has been organized to reflect the state of the data base used
for testing at the end of each of four periods covered by this
report. Thus experiments conducted during the third quarter will refer

to Section I.3 of this appendix for a complete description of their data.

I.1l TFIRST PERIOD

The Landsat data used during the first period consists of ten
1973-74 LACIE sample segments over Kamsas, mainly in the Southwest Crop
Reporting District as shown in Figure I-1l. Two of the sample segments
are Intensive Study Sites (ITS) with wall-to—-wall ground truth as deter-
mined by ground teams, and the remaining 8 sample segments are Statis—
tical Reporting Service (SRS) sites with field labeling determined by
NASA/JSC analysts based upon examination of the imagery itself. Imagery
from several Landsat passes over each of these sites is available, and
these images have been registered to each other. Table I-1 shows the
sample segﬁents, hoy the ground truth was obtained, and the dates of

imagery collection used in the tests reported here.
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TABLE I-1. FIRST PERIOD DATA BASE

Sample Ground Acquisition
Site Name Segment HNo. Truth Dates Used
Morton 1042 ‘ ITs 5/8, 5/26
Finney 1034 ITS 5/8, 5/26
Graham 1018 SRS 5/8, 5/26
Lane 1026 SRS 5/8, 5/26
Scott 1029 SRS 5/8, 5/26
Grant 1036 SRS 5/9, 5/27
Kearny 1040 SRS 5/9, 5/27
Haskell 1065 SRS - 5/9, 5/27
N. Stevens 1045 SRS 5/9, 5/27
5. Stevens 1045 SRS 5/9, 5/27

1.2 SECOND PERICD

During the second period, 1973-74 multitemporal LACIE sample
segments over 12 sites in Kansas were prepared. Figure I-2 shows
their spatial distribution (two of the sites are in Stevens County).
Four of these sample segments —- over Ellis, Saline, Morton, and
Finney -~ are Intensive Test Sites with wall-to-wall ground truth as
determined by ground teams, while the remaining eight sample segments
are SRS sites with field labeling determined by NASA/JSC analysts based
uponn examination of the imagery itself. Data from several Landsat
passes over each of these sites is available, and has been registered
to each other. Table I-2 shows the sample segments, and the dates of

imagery collection used in the tests reported here.
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TABLE I-2. 1973-74 MULTITEMPORAL LACTE SAMPLE SEGMENTS

Sample

Site Name Segment No. )

Morton 1042 10/23/73, 5/9/74, 5/27/14, 6/7/74
Finney 1034 10/23/73, 4/20/74, 5/8/74, 5/26/74
Saline 1114 10/20/73, 4/18/74
_Ellis 1106 10/21)73, 5/26/74, 6/12/74

Graham 1018 10/4/73, 4/20/74, 5/26/74

Lane 1026 10/4/73, 4/20/74, 5/26/74

Scott 1029 10/4/73, 4/20/74, 5/26/74

Grant 1036 10/23/73, 5/9/74, 5/27/74

Kearny 1040 10/23/73, 5/9/74, 5/27/74

Haskell 1065 10/23/73, 5/9/74, 5/27/74

N. Stevens © 1045 10/23/73, 5/27/74, 6/14/74

3. Stevens 1045 - 10/23/73, 5/27/74, 6/14/74

JI.3 THIRD PERIOD

After receipt in December 1976 of a large data set consisting of
the 75-76 LACIE sample segments over the U.S., together with the Fields
Data Base as of Day 315, the following data base was prepared.

The Landsat data used consisted of 75-76 Landsat data over 21
Blind Sites and two Intensive Test Sites (ITS) in Kansas. These 23
sites represented all of the Blind Sites and ITS sites in Kansas with
cloud—-free passes in early Biowindow one, and in Biowindow two. Only
these two passes were used in any of the experiments described in this
report, although a pass from each of the remaining bicwindows was also
prepared. These four passes were merged to form multitemporal data
sets, and then screened to eliminate areas covered by cloud, cloud

shadow or water in any of the four biowindows.
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Signatures were computed for each of these 23 sites, and a data
tape consisting of field means was also produced. The Fields Data
Base as of Day 315 was used in these steps.

The final step in data preparation was to prepare a list of
ancillary information for zach of the sites. The types of ancillary
information and the range of each ancillary wvariable appears below in

Table I~3. Figure I-3 shows the distribution of these sites in Kansas.

I.4 TFOURTH PERIOD

The fourth gériod data base consisted primarily of 74 data sets
over 38 sample segments in Kansas (35 blind sites and 3 intensive test
sites) and 18 data sets over 18 sample segments in North Dakota. ZEach
of the data sets consists of four acquisitions of 75-76 LACIE sample
segment data, one from each crop development biowindow whenever possible.
Only the first two biowindows of the Kansas data and the first three
biowindows of the North Dakota data were ever used. Along with the
Landsat data is ancillary data pertaining to the sample segment, and
to the various Landsat acquisitions used in the data set.

The fields data base as of Day 315 was used to provide the field
designations which were used in lieu of ground truth in our evaluatiomns.
Tables I-4 and I-5 show the ranges of important ancillary variables for
the winter wheat and spring wheat data, respectively. The ancillary
variable called "crop calendar™ is the Robextson crop calendar, and the
variable "gamma" is the haze factor calculated by XSTAR [2]. The haze

levels represented in these data sets span a fairly broad range.
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TABLE I-3. ANCILLARY VARTABLES AND THEIR RANGE

Ancillary Variable Range

GENERAL: _

Degree Days (10 Year Average) 2060 - 2470
Land Use (% Agriculture) 10%Z - 100%
Precipitation (10 Year Average) ' 7.2 — 12,9V
Latitude 37.1° - 39.2°
Longitude 94.9° ~ 101.5°
Elevation 900" - 3350

PASS SPECIFIC (Calculated for Each Pass):

Sun Angle 56° - 67°; 35° - 46°

View Angle -5.5% = 4.5%; -6.0° - 4.0°
Julian Date 294 - 349; 87 - 127

Crop Calendar (Robertson Scale) 0 - 0; 2.76 - 3.66
CALCULATED FROM DATA:

Difference Between Sites in Mean of

Soils Area in Tandsat Space 0 - 37.735 0 — 48.65
Difference Between Sites in Mean of

Green Development Area in Landsat Space - 0 - 35.77; 0 — 60.72

Haze Diagnostic Calculated by XSTAR

from Yellow Shift of Data -1.36 - 0.86; -4.26 - 0.73
Difference Between Sites in Additive

Factor Calculated by XSTAR 0 - 19.06; 0 — 17.04
Difference Between Sites in Multipli-

cative Factor Calculated by XSTAR 0 - 0.14; 0 - 0.42

Haze Value Calculated by XSTAR from .

Yellow Shift of Data -0.06 - 0.03; -0.22 - 0.03
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TABLE I-4.

RANCE OF ANCILLARY DATA
Winter Wheat (Kansas) Data

1910 - 2525
PrecipITATION (INcHES) 1 - 15

5~ 100

Crop CALENDAR
Crop CALENDAR
Crop CALENDAR

Cror CALENDAR

0~ 3.3

3.0~ 3.6
3.5- 14,8
4,5 - 6.0

ELEVATION
LATITUDE
LonGITUDE

SuN ANGLE

SuN ANGLE

Sun ANGLE

SuN ANGLE

g00* - 3350'

37.00 - 39,70

94,89 - 101,5°
460 - 680 Gamma
350 -~ 469 Gamma
310 - 36°  Gamma
310 - 340 Gamma

-.08 - .23
-5 - .19

-22 - 19

~25 - .17
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TABLE I-5. RANGE OF ANCILLARY DATA
Spring Wheat (North Dakota) Data

2360 - 2520

PRECIPITATION (INCHss) 7.8 - 9,2

. % AGRICULTURE
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JULIAN DATE
Time PERIOD 2
JuLian DaTe
TiMe PerioD 3
JuLian DaTE

TiMe Periop &
JuL1AN DATE

127-131

144-150

164-186

198-204

5 - 100

Sun ANGLE

Sun ANGLE

SuN ANGLE

SuN ANGLE

330 -~ 390

330

330

390

ELEVATION
LATITUDE
LONGITUDE

GAMMA

GaMma

GAMMA

GAMMA

950" -~ 2600'

46,29 - 48,80
96,7% - 103.8°
- 11 - .12

-5 -1

- 41 - 1
-.01 - .18
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APPENDIX IT
CLASSIFICATION ACCURACY USING COMPRESSED DATA

COMPRESS is an optional data compression procedure within PROCAMS.
The object of data compression is to greatly reduce the processing time
required to run portions Ef PROCAMS and therefore reduce the cost of
processing the data. COMPRESS computes a mean value for the pixels
contained within each training field. _

This data compression normally is performed after the preprocess—
ing and training stages of PROCAMS and before classification.

However, before we begin to conduct extensive experiments on com-
pressed data, we would like to know whether or not it is wvalid to draw
inferences about results for normal uncompressed data from results
obtained using compressed data.

To answer this éuéstion we examined two different types of classi-
fication: local classification and siénatﬁre extension results using
untransformed signatures from another site. Both compressed and uncom-
pressed data were used for each éype of classification. Nine LACTE
sample segments from 1973-74 Landsat data over Kansas were used for
this test. Most of the sample segments are from the Southwest Crop
Reporting Distriet of Kansas, all afe from western Kansas.

Table TI-1 shows local classification accuracy for Morton and
Finney Counties, early in May and late in May. A comparison of average
classification accuracy on compressed and uncompressed data is given,
The difference between‘aﬁeragé classification accuracy using compressed
and uncompressed data is 1.2%. The standard deviation of the difference
in classification accuracy using the compressed and uncompressed data
is 2.78%.
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TABLE II-1. LOCAL CLASSIFICATION ACCURACY (Compressed
vs Uncompressed Data)

Classification Accuracy

(D)

Site Compressed Uncompressed -
Morton Early May 96 91
Finney - Early May 97 93
Morton Late May 92 90
Finney Late May . 97 98

Average: 95.5 94.3

Table I1~2 shows signature extension results using untransformed
signatures from remote sites. The classification accuracy is given
for compressed and uncompressed‘data for each of twenty cases. 8ix
of the signature extensions are from the eérly May data and fourteen
from the late May data. The average of the difference in the classi-
fication accuracy between’ compressed and uncompressed data is 7.9%.
The standard deviation of the difference between classification accu-
racies is 6.89%. The correlation coefficient between the compressed
and uncompressed data is 0.856., This correlation is significant at -
the 0.0005 level. ' '

These results would tend to support the belief that inferences
can be drawn about the overall performance of various algorithms on
normal uncompressed data from the results of tesfs of these algorithms

on compressed data. -
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TABLE ITI-2, UNTRANSFORMED SIGNATURE EXTENSION RESULTS COMPARING
COMPRESSED AND UNCOMPRESSED DATA i

Site From

Morton
Morton

Morton

Finney
Finney

Finney

Morton
Morton
Morton
Morton
Morton

Morton

Finney
Finney
Finney
Finney
Finney
Finney
Finney

Finney

Site To

Finney
Grant

Haskell

Morton
Grant

Haskell

Finney
Graham
Grant
Haskell
N. Stevens

S. Stevens

Morton
Graham
Lane
Scott
Grant
Haskell
N. Stevens

S. Stevens

Time Period

Early May
Early May
Early May

Early May
Early May
Early May

Late May
Late May
Late May
Late May
Late May
Late May

Late May
Late May
Late May
Late May
Late May
‘Late May
Late May
Late May

Average:

97

Accuracy
(%)
Not
Compressed "Compressed
91 93
60 85
78 88
76 80
71 90
100 99
54 50
6l 72
69 75
77 86
82 87
57 66
53 55
64 75
85 84
87 97
54 75
64 79
55 61
50 49
69.4 77.3
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APPENDIX TITI
DESCRIPTION OF THE PROCAMS TEST BENCH

A signature extension algorithm cennot stand alone; it requires
data quality control programs, signature extraction techniques, a.
classifier and other related pfﬁcedures and proee;ses to form a com-
plete classification system. TFor the testing of signature extension
algorithms, the classifigatibn_system PROCAMS was used as the test
bench into which various:techniques were incorporated .for evaluation.
PROCAMS, whose development was begun by ERIM during the FY76 contract
period, was designed to be a state-of-the-art test bench for.a wide
range of data processing algorithms, including signature extension
algorithms. ‘

The PROCAMS gystem consists of several modules whidh can be
grouped into five general subsystems: preprocessing, data compressioﬁ,
training, signature transformation, and classification. A brief des-
cription of the five subsystems of PROCAMS follows, together with a
flow chart (Figure ITI-1). ‘

The preprocessing portion of PROCAMS consists of set—uﬁ programs,
data quality algorithms, and, optionally, a haze correction technique.
Originally there were two routines which performed the function of pre-
paring the data for PROCAMS. These are PRECAMS, a subroutine to set
up the header record with information needed for subsequent processing,
and SUBTIME, a subroutine which selects the spatial and temporal sub-
set of the data which is to be processed and modifies ‘the header infof;
mation accordingly. Data quality algorithms include'subroutine BADLINE,
which detects and flags bad data lines using a data channel which is
appended for just this purpose, and subroutine CLOUD which identifies
and similarly records pixels which correspond to clouds, cloud shadow,
and water. These four programs were later replaced by one program
called SCREEN [18]. The final (aid optional) stage of the prepro-

cessing is haze correctiomn.
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2

!

Data compression is an optional step in PROCAMS Whicﬂ is used to
lower processing costs when several passes through the data are antici-
pated. Two types of data compression were used in PROCAMS.

The first data compression technique computes the average

signal values over each field to produce a mean value or "average pixel".
This subroutine, called COMPRESS, yields data compression ratios of up
to 100 to 1. This technique is applicable only when fields have been
defined. ‘

When proporticn estimation results are desired, the data may be
sampled randomly to achieve an effective data compression.

The third step of PROCAMS (training) is implemented in ERIM's
clustering algorithm CLUSTR,

The fourth subsystem in PROCAMS (signature transformation) is
signature extension, a role which is filled by the cluster matching
routine CROP-A developed by ERIM.

The final portion of PROCAMS consists of the classification and
tabulation programs. PROCAMS uses a sum—of-likelihoods decision rule
for its classifier, similar to the one used in the LACIE classification
and mensuration subsystem. Properly trained, this classifier has been

shown to perform mearly as well as any classifier yet designed.
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4

APPENDIX IV
TWO APPROACHES TO MULTISEGMENT PROCEDURE 1

This appendix addresses the classification technique to be used
in evaluating static stratification in a multisegment enviromment. We
have termed this approach 'preclassification'. ;

Overall Objective

Develop an experiment design which will efficiently and effec—
tively evaluate static stratification of space image data in a multi-
segment signature extension enviromment for the purpose of large area
crop inventory.

Enviromment and Training Selection

The current LACIE Procedure 1 provides an environment wherein a
large number of segments are classified using local training procedures
and crop proportion estimates computed by pixel count.

The multisegment signature extension environment is cne wherein
an attempt would be made in reducing the need for local training. A
certain subset of segments would be designated training sites. Clusters
would be computed from these segments, labeled according to their associ-
ation to training dots, and used in classification throughout. Hence,
specific segments can be more intensely photointerpreted for training,
hopefully with a resultant reduction of labeling error.

The multisegment signature extension approach, however, poses a
training segment selection problem. The resultant classification is
sensitive to variational differences between training and test segments.
The designation of static stratifications of segments using variables
such as soil type and precipitation is an attempt to associate segments
in a manner that would minimize the spectral differences between like
classes in segments belonging to the same strata. These stratifica-
tions .can then be used in one of two ways:

1. Tor training selection purposes: To insure that all spec-
tral classes are represented in choosing training segments
from every strata to be used across all segments in classi-
fication.

2. Yor classification purposes: Segments would be classified
using signature clusters determined within their stratum
only.
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These two applications of static stratification in multisegment
signature extension can be generalized.

Consider n strata and.m segments where n 5:m.
Segment sij is the jth segment of the.iﬁilstéatunlsi.
The signature set for segment Si4 is SIG(sij).
The training data forstratumsi is T(Si).-
Call the clusteriﬁg functiOn’Tr, thén

n

SIG(sij) = 13=T1 w, T(S, )

where w, is a weight for each stratum.
If for k=41 w =1

k£ i w =0

then Case 2 above is implied, i.e., the segment is classified usinhg
signatures computed only within its own stratum.

If

w, = wj for all i,j

then Case 1 is implied, i.e., a segment is classified using all sigha-
tures, but insuring that each stratumis represented.

The wvalue of introducing this notation lies in that the weights
W, can vary anywhere between the two cases. For example, it may be
useful to use stratification for training and in computing SIG(si-),
weighting the training data from stratumi (T(Si) more than for other
strata. This recognizes that important information for any one segment

appears in every stratum, however, it is more 1likely that training within
the same stratum would be more significant.
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For purposes of further discussion, reference will be made to
three partitions of data: (1) within segment, all pixels from a 5x6
mile LACIE segment; (2) within stratum, all segments within a defined
stratification of segments; (3) within universe, all segments.

Problem

Any evaluation of the inherent wvalue of static stratification in
-a multisegment enviromment will require measures of performance that
are statistically significant. These measures may include: (1) within
segment classification accuracy, (2) within stratumclassification accu-
racy, and (3) within universe classification accuracy. BEach of these
measures may be determined as a function of training gain. As a vesult,
a large number of classifications must be performed for a large number
of segments, varying the training data at each classification. The
cost of such an experiment could be prohibitive. What legitimate
training and classification algorithm should be employed to maximize
testing efficiency? In other words, what logical extension of Pro-
cedure 1 into a multisegment enviromment will be required to evaluate
static stratification?

Two Approaches to Multisegment Procedure 1

The following pages document two approaches to extending Pro-
cedure 1 into a multisegment environment. The second approach is
called preclassification and is described to be logically equivalent
to the first approach. The first approach is a straightforward exten-
sion of Procedure 1. Before getting into the details of each, consider
the following graphics in order to group the salient aspects of each
approach.

The first approach combines the training data first, extracts
signatures from the combined training data set, then estimates propor-
tions for wheat and non-wheat. Preclassification differs in that infor-
mation from the training segments is not combined until after likeldi-
hoods are calculated. The particular advantage of this approach for
test and evaluation purposes lies in the fact that training segment
selection does not have to be carried out first. The details of these
two approaches are described in the following sections.
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APPROACH 1
Consider the following approach:

1. Select training segments from each strata
2. Merge training segment data together
3. {Cluster the training pixels into subclasses

4, Calculate proportion estimates using sum of likelihoods.

First note that in an evaluation experiment, using this approach
would result in clustering and classification of data each time training
parameters are changed.

However, the procedure is a straightforward extension of Procedure 1.
Important decisions must be made along the way.

1. Weighting Training Segments Due to Random Selection Process

First of all, the selection of training segments must be carried
out in a manner that would simulate the random selection of training
fields. On an average the number of randomly selected fields would be
in like propertions from stratumto stratum as a function of the total
number of fields in each stratum. For example, suppose the universe of
data is comprised of two strata, each with ten fields. If six of those
fields were to be selected at random from the twenty, one would. expect
each stratum to be represented by three. To simulate this, training seg-
ments should be drawn from each strata in like proportions. Suppose,
however, that two strata contained 8 and 6 segments respectively. If
the training gain desired was 3.0, i.e., one-~third of each strata required
for training, the first stratumwould require 2.7 segments, the second 2
segments. Since the selection of 2.7 segments is not possible, one may
round and select 3 segments. In order to reflect this adjustment affecting
the random character of the selection, weights need to be assigned to the
training data as follows:

For segment Sij’ the jth

segment - the ith stratum, Si’
Let Sij be a training segment -

Let ti be the number of segment in the 1th stratun and t; the

number of training segment in the ith gtratum.

167



Sty

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

Each segment S;j is assigned the weight:

t.

L
i ¢!
1

Recalling the earlier defined weight W, in the definition of a

set of training clusters, we can extend its definition to
_ T
LY ]

where p is related as mentioned to the classification techrique employed.
This more fully discussed in what follows:

2, Weighting Training Segments With Respect to Classification Segments

As was mentioned earlier, data stratification could be used for pur-
poses of training only, or for purposes of classification as well. The
technique employed is related by a factor LA of the weight Wy assigned to
each pixel of training data. If you recall, if v, o= 1 for all segments
in strata i, then eclassification of segment Sq4 is determined only hy
those sipgnature clusters defined fromstratuglsi. However, this weight
may be adjusted to better represent one's confidence in the training data
available in each stratumwhen applied to an arbitrary segment. This
approach implies that the classifier has no confidence in applying signa-
tures derived from data from other stratume Another approach is to employ
equal levles of confidence. An interim approach may be to establish con-
fidence levels empirically. For example, for purposes of our test and

evaluation the experiments constructed in FY77 provide within stratum and
acroas strata classification results.

The weight W, may be assigned so that segment sij frmnstratumsi
would have associated weights My and By

W, = average error in signature extension Sk > Si for all k # i

My average error in signature extension Si > Si

(i.e., segments extend within stratum)
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My is applied to training data from Sk

My is applied to within stratumtraining data

Note that these weights would vary from segment to segment. Since
clusters are computed before clagsification, each strata would require
a different set of signature clusters rendering this approach impracti-

cal for test and evaluation purposes and making it clumsy for an opera-
tional system.

3. Weighting Clusters in Sum of lLikelihoods

Praining pixels within training segments can be selected using a
technique that attempts to insure representativeness, much as the CAMS
AL training selection approach, or selected randomly, as in the Pro-
cedure 1 209-point technique. The former requires that each derived
cluster be weighted equally in classification when computing sum of
likelihood. That is, pixel X is wheat if

for m wheat clusters and n non-wheat clusters with likelihoods
Py and pN‘respectively

i
n

| o1

EIH

m
Pyw 7 E

=1 131\7

However random selection of training pixels requires that:

% is wheat if

n m

) np, I n.o,
jhy TP T 3"3n

where n,_ is the number of pixels in cluster k. That is to say, clusters
are not equally weighted but in proportion to the number of samples they
represent.
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APPROACH 2 (Preclassification)

Consider the following alternative approach:
1. Select training segments from each stratum

2. Cluster the training pixels into subclasses independently
from each training segment

3. Employ the following classification procedure:

i. Classify each segment independently.using the
clusters from each other segment, determining
a wheat and non-wheat likelihood (i.e., for
m training segments, each segment is classified
m times). ’ :

ii. Sum likelihoods from each training segment to
determine wheat proportion estimate.

This approach offers two advantages for the test and evaluation of multi-
segment signature extension.

First of all, determination of likelihoods can be performed before
training segments are selected. Clusters can be computed for every seg-
ment and applied in classifying every other segment. Proportion estimation
can be carried out for a variety of different training segments, simply by
suming the computed likelihoods corresponding to the training segments.
Clustering and likelihood calculation does not have to be recomputed for
each different set of training data.

More graphically, consider the following situation: given 5 train-

ing segments each pixel X would have a vector associated with it as
follows:

(E! .EW’ EN)
where:

X is the n channel mean vector

P,, are wheat likelihoods corresponding to-each of
5 training segments

P.. are nopn~wheat likelihoods corresponding to each of
5 training segments
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Pz T Py3 ” Py T Py3
Using Segments 1 and 5 as training x would be wheat if
Pus ¥ Pys ” Pyg * Pys

A second advantage is that the welghting factor u can be applied
at classification, i.e., tally time to reflect a stratum training con-
fidence level. For example, if Segments 2 and 3 in the above example
were representatives of strata i and j, then apixel X from stratum S,
would be wheat if: *

HiPyo T HyPys ™ WiPyy + Py

What needs to be established is whether this technique appropriately
simulates the first approach. The essential difference is that in the
first approach clusters are determined for all training pixels at once,
rather than separate sets of clusters for each training segment. A sub-
class appearing in two segments would be represented at tally time by
two clusters, whereas only one cluster would appear using Approach 1.

We shall assume that the selection of training is done randomly.
Algebraically, the procedure is as follows:*

1. Determine the likelihood that X is wheat given each training
segment.

Given n training signatures SIG(si.) for the jt
ith stratum J

h segment of the

then the likelihood that a pixel X belongs to the wheat (or non-
wheat) signature sn'_g:.L is pw(Elsigi) or pN(ilsigi)

The sum of likelihoods that X is wheat is given by pw(§|SIG(sij))
where:

n
Py (X|ST6(s;,)) = k£1 mpy (Elsig)

where N is the number of training pixels in sigk

Shown for wheat, similarly for non-wheat.
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The total number of training wheat pixels in SIG(sij) is given by

2. Determine X is wheat given all training segments.

Let a set of m training segments be represented by {sij}.
Let the signatures derived from these training segments be SIG{sij}.

" Then the likelihood that a pixei‘i'is wheat is given by
pwcfl SIG{sij b

where o

m
kzl mkaCxlSIG(sij))
% .
w, e
k=i k Wk

pw(i|51:f;{sij b=

where Wy is the weight earlier defined in Approach 1. X is wheat if

pw(El SIG{Sij 1 > pN(E[-SIG{Sij b

Approach 2 is an appropriate simulation of the Approach 1 under the
assumption of random selection of training pixels within a segment.
Differences in the training -procedures are accounted for by weighting,
at classification, each computed cluster subclass by its number of
pixel members. Hence, using Approach 2, a subclass appearing in two
segments, though represented by two clusters, are weighted in such a
way so as to contribute the same likelihoods as the corresponding
single cluster that would have been computed using Approach 1.
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APPENDIX V

DESCRIPTION OF DATA EMPLOYED IN ANALYST-INTERPRETER
LABELING ERROR ANATYSIS

The following tables, V-1 to V-3, list the LACIE Blind Site

Acquisitions for three biowindows employed in the Analyst-Interpreter:

Labeling Error Analysis described in Section 4.4,

Pertinent

ancillary information is also encoded in these tables as well as

summarized in table V-4.

TABLE V-1. BIOWINDOW ONE ACQUISITIONS
Segment Julian Crop* Missed Wheat False Wheat
Number Date 1975 Calendar Fraction Fraction
1035 312 0.0 0.28 0.12
1051 312 0.0 0.28 0.12
1154 311 0.0 0.03 0.02
1163 327 0.0 0.18 0.0

1164 326 0.0 0.0 0.70
1165 326 0.0 0.0 0.07
1166 327 0.0 0.16 0.10
1167 327 ¢.0 0.28 0.0

1171 364 0.0 0.13 0.0

1172 328 0.0 0.28 0.0

1176 364 0.0 0.44 0.0

1179 364 0.0 .20 0.0

1181 345 0.¢ 0.08 0.0

1852 295 0.0 0.20 0.05
1854 2485 0.0 0.28 0.0

1865 349 0.0 0.20 0.0

1880 311 0.0 0.15 0.0

1882 311 0.0 0.33 0.0

1883 328 0.0 0.0 0.0

1887 311 0.0 0.07 0.0

* 0.0 implies information not available.
GE 15
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TABLE V-2. BIOWINDOW TWO ACQUISITIONS

Segment Julian Crop Missed Wheat False Wheat
Numbex Date , Calendar Fraction - Fraction
1020 128 3.17 0.09 0.0
1035 127 3.40 0.28 0.12
1041 127 3.40 0.28 0.12
1154 090 2.76 0.03 0.02
1163 124 3161 0.18 0.0
1164 124 3.52 0.0 0.70
1165 124 3.61 0. 0.07
1166 124 3.52 0.16 0.10
1167 124 3.52 0.28 0.0
1171 125 3.50 0.13 0.0
1184 124 3.66 0.23 0.0
1851 127 3.22 ° 0.28 0.06
1861 128 3.30 0.17 0.08
1865 127 3.42 0.20 0.0
1884 125 3.50 0.18 0.0
1886 127 3.46 0.27 0.07
1887 127 3.35 0.07 0.0

TABLE V-3. BIOWINDCW THREE ACQUISITIONS

Segment Julian Crop Missed Wheat False Wheat
Humber Date 1976 Calendar Fraction Fraction
1019 . 164 4.60 0.07 0.0
1163 142 3.98 0.18 0.0
1167 142 3.93 0.28 0.0
1169 144 4.00 0.27 0.35
1180 141 4,11 0.24 0.02
1854 154 414 0.28 0.0 -
1857 154 4.10 0.33 0.10
1861 164 4,55 0.17 0.08
1865 136 3.58 0.20 0.0
1880 127 3.34 0.15 0.0

+ 1882 152 4.15 0.33 0.0
1887 135 3.55 0.07 0.0
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N

TABLE V-4. DESCRIPTION OF ANCILLARY DATA

Variable N Mininum Maxamum Mean Std Dev

1. Segment 39 1019.0 1988.0 -— -—
2. HNumber of Wheat

Fields 39 0.0 32.0 12.4 6.32
3. HNumber of Other

Faelds 39 9.0 46.0 21.0 8.42
4, HNumber of Missed

Wheat Fields 39 0.0 8.0 2.05 1.97
5. MNumber of False ’

Wheat Fields 39 0.0 12.0 0.9%0 2.11
6. Fraction of Missed

Wheat 38 0.0 0.44 0.16795 0.128
7. Fraction of False

Wheat 39 g.0 0.706 0.04912 0.126
8. Praction of Total

Error 39 0.0 0.706 0.103 0.125
9. Number of Fields 39 17.0 75.0 33.4 12.7 .
10. Julian Date 1 39 294 127 - -
11. Julian Date 2 39 311 128 ——— —_—
12. Jdulian Date 3 39 364 193 —— —_—
13. Degree-~days 38 1910.0 2540.0 2245.7 146.38
14. Crop Calendar 1 39 0.0 3.4 0.49 1.07
15. Crop Galendar 2 39 0.0 3.66 2.7 1.32
16. {rop Calendar 3 39 0.0 6.0 4.0 0.90
17, GAMMA 1 38 - 0.6 0.22 0.03 0.07
18. GAMMA 2 37 - 0.22 0.20 - 0.01 0.07
19. GaMMA 3 a8 - 0.26 0.14 - 0.03 0.09
20. Elevation 39 0.0 3500.0 1882.1 826.11
21. THETA 1 39 35.0 69.0 - —

- 22, THETA 2 39 35.0 68.0 -— -—
23, THETA 3 39 31.0 68.0 ——— ——
24, Precipitation 39 0.0 15.0 7.9 4.40
25. Land Use 39 0.0 4.0 2.3 1.67
26, Latitude 39 37.0 39.70 38.3 0.80
27. Longitude 39 94.8 101.80 98.4 2.06
28. Haze Diagnostic 1 39 -"1.36 4.61 0.53 L.44
29. Haze Diagnostic 2 39 - 4.26 3.67 0.21 1.39
30. Haze Diagnostic 3 39 - 4.45 2.96 - 0.71 1.76
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Director, EROS Program
Washingtor, D.C. 20242

ATTN: Mr. J. ¥. Denoyer

U.S. Department of Interior
Geological Survey

GSA Building, Room 5213
Washington, D.C. 20242

ATTN: Mr. W. A. Fischer

NASA Wallops
Wallops Station, Virginia 23337

ATTN: Mr. James Bettle

Purdue University

Purdue Industrial Research Park
1200 Potter Drive

West Lafayette, Indiana 47906

ATTN: Dr. David Landgrebe
ATTN: Mr. Terry Phillips
ATTN: Dr. Marvin Bauer
ATTN: Dr. Philip Swain

U.S. Department of Interior
EROS Office
Washington, D.C. 20242

ATTN: Dr. Raymond W. Fary
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U.S. Department of Interior
Geological Survey

801 19th Street, N.W.
Washington, D.C. 20242

ATTN: Mr. Charles Withington _ (1

U.S. Department of Interior
EROS Office
Washington, D.C. 20242

ATTN: Mr. William Hemphill (1)

Chief of Technical Support

Western Envirommental Research Laboratories
Environmental Protection Agency

P.0. Box 15027 |

Las Vegas, Nevada 89114

ATTN: Mr. Leslie Dunn (1D

NASA/Langley Research
Mail Stop 470
Hampton, Virginia 23365

ATTN: Mr. William Howle (1L

U.S. Geological Survey

Branch of Regional Geophysics
Denver Federal Center, Building 25
Denver, Colorado 80225

ATTN: Mr. Kenneth Watson (1)

NAVOCEANO, Code 7001
Bay St. Louis, MS 39520

ATTN: Mr. J. W. Sherman, III (1)
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U.S. Department of Agriculture

Administrator

Agricultural Stabilization and
Conservation Service

Washington, D.C.

ATTN: Mr. Kenneth Frick N

Pacific Southwest Forest & Range Experiment
Station

U.S. Forest Service

P.0. Box 245

Berkeley, California 94701

ATTN: Mr. R. C. Heller (1)

University of Texas at Dallas

Box 688
Richardson, Texas 75080
ATTN: Dr. Patrick L. 0dell ) (1)

Department of Mathematice
University of Houston
Houston, Texas 77004

ATTN: Dr. Henry Decell (1)

Institute for Computer Services and
Applications

Rice University

Houston, Texas 77001

ATTN: Dr. M. Stuart Lynn (1)

U.S. National Park Service
Western Regional Office

450 Golden Gate Avenue

San Francisco, California 94102

ATTN: Mr. M. Kolipimski (1)
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U.8. Department of Agriculture
Statistical Reporting Service
Room 4833, South Bldg.
Washington, D.C. 20250

ATTN: G. F. Hart/W. H. Wigton ‘ (2)

U.S. Department of Agriculture
Statistical Reporting Sérvice
Washington, D.C. 20250

ATTN: Mr. H. L. Trelogan, Administrator (1)

Ames Research Center ] :
National Aeronautics & Space Administration
Moffett Field, California 94035

ATTN: Dr. D. M. Deerwester ) (1)

Goddard Space Flight Center
National Aeronautics & Space Administration
Gréenbelt, Maryland 20771

ATTN: Mr. W. Alford, 563 ' (D)
ATTN: Dr. J. Barker, 923 . ~(D

Lewis Research Center
National Aeronautics & Space Administration
21000 Brookpark Road e
Cleveland, Ohio 44135

ATTN: Dr. Herman Mark (L
John F. Kénqedy Space Center

National Aeronautics & Space Administration
Kennedy Space Center, Florida 32899

ATTN: Mr. J. P. Claybourne/AA-STA (1)

NASA/Langley
Mail Stop 214
Bampton, Virginia 23665

ATIN: Mr. James L. Raper &D)
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Texas A&M University
Institute of Statistics
College Station, Texas 77843

ATTN: Dr. H. 0. Hartley (1)

Texas Tech University
Department of Mathematics
P.0. Box 4319

Lubbock, Texas 79404

ATTN: Dr. T. Boullion BN

University of Tulsa
Math-Sciences Department
600 South College

Tulsa, Oklahoma 74104

ATTN: Dr. William A. Coberly (1

S&D - DIR
Marshall Space Flight Center
Huntsville, Alabama 35812

ATTN: Mr. Cecil Messer (1

Code 168-427

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91103

ATTN: Mr. Fred Billingsley (1L

NASA Headquarters
Washington, D.C. 20546

ATTN: Mr. W. Stoney/ER )
ATTN: - Mr. Leonard Jaffe/ER (1
ATTN: Mr. M. Molloy/ERR 1)
ATTN: Mr. James R. Morrison/ERR (1)
ATTN: Ms. Ruth Whitman/ERR (1)
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Mr. James D. Nichols (1)
Space Sciences Laboratory, Room 260

University of California

Berkeley, California 94720

Texas ASM University
Remote Sensing Center
College Station, Texas 77843

ATTN: Mr. J. C. Harlan 1 .

U.S. Department of Agriculture
12th & Independence, SW

Room 3745-5
Washington, D.C. 20250
ATTN: Mr. Clark Ison {1

LACIE Project Office (FAS)

University of Arkansas
Mathematics Department
Fayetteville, Arkansas 72704

ATTN: Dr. Jack D. Tubbs 0

U.5. Department of Agriculture
Foreign Agricultural Service
Washington, D.C. 20250

ATTN: Drxr. Howard L. Hill (1)

University of California
Remote Sensing Laboratory
129 Mulford Hall

Berkeley, Califorania 94720

ATIN: Ms. Claire M. Hay (1)

IBM
1100 NASA Road One
Houston,. Texas 77058

ATTN: Mr. R. E. Oliver/Code 56 (1)
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