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PREFACE
 

This report describes part' of a comprehensive and continuing pro

gram of research in multigpectral remote sensing of the environment
 

from aircraft and satellites and the supporting effort of ground-based
 

researchers in recording, coordinating, and'analyzing the data gathered
 

by these means. The basic obje6tive of this program is to-improve the
 

utility of remote sensing as a tool for providing decision makers with
 

timely and economical information from large geographical areas.
 

The feasibility of using remote sensing techniques to detect and
 

discriminate between objects or conditions at or near the surface of
 

the earth has been demonstrated. Applications in agriculture, urban
 

planning, water quality control, forest management, and other areas
 

have been developed. The thrust of this program is directed toward
 

the development and improvement of advanced remote sensing systems and
 

includes assisting in data collection, processing-and analysis, and
 

ground truth verification.
 

The specific focus of the work reported herein was the testing,
 

analysis and evaluation of several types of signature extension algo

rithms. Four types of signature extension related techniques were
 

examined: haze correction algorithms, data stratification procedures,
 

training sample selection strategies for multisegment training, and
 

crop development classifiers.
 

The research covered in this report was performed under NASA
 

Contract NAS9-14988. The program was carried out in ERIM's Infrared
 

and Optics Division which is directed by R. R. Legault, an Institute
 

Vice-President. The Project Director was Q. A. Holmes, Head of the
 

Information Systems and Analysis Department; and R. F. Nalepka, Head
 

of the Multispectral Analysis Section (MAS) was the Principal Investi

gator. The Institute number for this report is 122700-29-T.
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1 

Several algorithms and procedures which are candidates for inclu

sion in a large area crop inventory system were evaluated. -These algo

rithms and procedures may be divided into four distinct types:
 

1. 	Haze correction algorithms
 

2. 	Training sample selection strategies
 

3. 	Data stratification procedures
 

4. 	Permanently trained green development-trajectory
 
classifiers
 

The algorithms which were tested which fall into category one,
 

haze correction algorithms, are CROP-A [1] and XSTAR [2]. The XSTAR
 

algorithm has been extensively tested in both winter wheat (Kansas)
 

and spring wheat (North Dakota) areas, and appears to offer great
 

promise to large area crop inventory systems,
 

The training sample selection strategy available for testing was
 

Procedure B [3]. Although this algorithm was not extensively and com

pletely -tested, due to the algorithm becoming available only recently,
 

first results also show promise for future large area crop inventory
 

systems.
 

In the third category, stratifications of the data, two distinct
 

stratifications were available for testing; a stratification of the
 

data produced by UCB [4J and one produced by JSC [5], These stratifi

cations yielded a significant increase in classification accuracy,
 

however it-appears that both could be considerably improved. These
 

stratifications should be further tested using a multisegment training
 

strategy in order to more clearly establish their performance.
 

In the final category, green development-trajectory classifiers,
 

several contenders were tested. Four unitemporal green development
 

classifiers were evaluated, with and without haze correction, the
 

1 



Delta Classifier [6] was examined, and a crop development classifier
 

was tested which was developed as a result of signature modeling efforts
 

under this task. Results obtained using such classifiers are promising,
 

but additional more extensive testing is recommended using a more sub

stantial-data base covering several growiing seasons.
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2 

INTRODUCTION
 

Large area crop inventories using Landsat data have shown some
 

considerable success to date. However the cost of processing is still
 

very high, primarily because each sample segment must be individually
 

processed by an Analyst Interpreter (AI). Signature extension, the
 

ability to infer the signature of a crop based on signatures from
 

selected segments and features which can be automatically extracted
 

from the segments, would significantly lower processing cost by reducing
 

the amount of AT-data interaction required.
 

Many different approaches have been proposed to solve part or all
 

of what is referred to as 'the signature extension problem' -- finding
 

a technique or (more likely) a collection of techniques (a procedure)
 

to accomplish accurate signature extension. It is the goal of this
 

report to provide some of the necessary information about the effective

ness of these approaches in order to allow the development of a more
 

effective large area crop inventory system.
 

This report covers four types of signature extension techniques
 

and procedures:
 

1. Haze correction algorithms
 

2. Training sample selection strategies
 

3. Data stratification procedures
 

4. Green development-trajectory classifiers
 

It should be borne in mind that algorithms from several (or all) of
 

the above categories will likely be incorporated into any successful
 

signature extension system.
 

Section 3 of this report deals with haze correction algorithms,
 

of which two examples have been tested: CROP-A [1] and XSTAR [2].
 

Section 4 reports on tests of a training sample selection strategy
 

called Procedure B [3].
 

3 
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Section 5 covers evaluations of two stratifications of the data:
 

one by UCB [4] and one by JSC [5]. Optimal stratifications of the data
 

.are also investigated.
 

Section 6 reports on tests of several green development and tra

jectory classifiers, including the Delta Classifier [6] and a green 

development classifier produced as a byproduct of a signature modeling
 

effort under this task.
 

The final section, number 7, is a discussion of the ramifications
 

of the results reported in the previous sections as regards the future
 

of signature extension and large area crop inventories, In addition,
 

recommendations for future activities are included in this section.
 

4
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3 

HAZE CORRECTION ALGORITHMS
 

Two examples of haze correction algorithms were tested by this 

task. The first, CROP-A [1], is a cluster-matching algorithm. The 

other algorithm tested, XSTAR [2], employs a simplification of the 

Turner model of the atmosphere [7,8] to measure and correct for the 

effects of haze.
 

3.1 	 EVALUATION OF CROP-A
 

I The cluster-matching algorithm CROP-A was tested over ten sample
 

segments in Kansas using acquisitions from early and late May 1974
 

(see Appendix 1.1 for a more complete description of the data set).
 

The form of the evaluation experiment was to perform unitemporal,
 

matching-biophase signature extension between these sample segments,
 

first applying signatures from one segment directly to other segments
 

with no transformation of the mean or covariance of the signatures, and
 

then to repeat these extensions after transforming the mean and covar

iance of the signatures using an affine transformation as indicated by
 

CROP-A. The classification results using the untransformed signatures
 

may then be compared to the results using CROP-A transformed signatures,
 

and some conclusions drawn,
 

Classification results were obtained for each segment by classi

fying mean vectors computed from several wheat and non-wheat fields in
 

the segment, instead of classifying every pixel. This permitted a
 

great many classifications to be run relatively economically. That
 

field mean classification results are strongly indicative of pixel-by

pixel classification results are shown in a study reported in Appendix
 

II.
 

The performance measure used in the comparison between untrans

formed signature extension and CROP-A transformed signature extension
 

was the average accuracy of the field mean classification. This average
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accuracy is the average of the percent of wheat field means correctly
 

classified and the percent of non-wheat field means correctly classified.
 

The CROP-A experiment was carried out on a test bench known as
 

PROCAMS. PROCAMS (PROtotype CAMS) is a system of programs developed
 

at ERIM which embodies our current ideas of what the next generation of
 

large area crop inventory systems may look like. This test bench is
 

described fully in Appendix III.
 

The PROCAMS test bench consists of five subsystems: preprocessing,
 

data compression, training, signature transformation, and classification.
 

The preprocessing subsystem screens the data for clouds, cloud shadow,
 

water and bad data points, and then optionally applies corrective algo

rithms for removing haze or sun angle effects. The compression sub

system employs either the field mean approach described briefly above,
 

or randomly samples the data when proportion estimation results are
 

desired. The training subsystem employs ERIM's clustering algorithm [9]
 

to obtain signatures. The signature transformation subsystem is really
 

only for CROP-A, all other signature extension techniques tested are
 

incorporated in either the preprocessing or the classification sub

systems. The final subsystem which carries out the classification
 

employs a sum-of-likelihoods classifier which is similar to the one
 

employed in LACIE CAMS.
 

The major results of the CROP-A evaluation experiment are seen in
 

Table 1. Briefly, the classification results using CROP-A transformed
 

signatures were not as good as the classification results using untrans

formed signatures.
 

The primary difficulty with CROP-A seems to be that it makes the
 

assumption that the same materials are present in both training and
 

recognition scenes in order to make training cluster-recognition cluster
 

pairings. This assumption is quite often not true, and can account for
 

very large errors. Figures 1, 2, and 3 show what can happen when the
 

materials in both sites are not the same. All three figures show
 

6 
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TABLE 1. COMPARISON OF FIELD MEAN CLASSIFICATION RESULTS USING
 
LOCAL, UNTRANSFORMED AND CROP-A TRANSFORMED 


CLASSIFICATION USING: 


Local Signatures 


CROP-A Transformed 

Signatures 


Untransformed 

Signatures 


NUMBER OF CASES 


10 (Early May) 

10 (Late May) 


12 (Early May) 

31 (Late May) 


12 (Early May) 

31 (Late May) 


AVERAGE 
ACCURACY (%) 

90.7 

87.5 


78.3 

67.8 


85.0 

72.9 


SIGNATURES 

STANDARD
 
DEVIATION
 
OF AVERAGE 
ACCURACY (%) 

8.2
 
10.4
 

15.0
 
19.0
 

9.1
 
15.5
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cluster plots in Tasselled Cap transformed space [10]. Figure 1 shows
 

the clusters from the recognition site in Kearny County, Kansas Fig-.

ure 2 shows clusters from the training site in Finney County, Kansas.
 

Note that Finney County contains quite a bit of extremely green mate

rial, the result of extensive irrigation. Kearny County contains
 

almost none of this material. Figure 3 shows the Kearny clusters
 

transformed by CROP-A to match the Finney cluster distribution. The
 

result is clearly in error. In order to avoid errors of this type,
 

cluster matching algorithms must be employed only on scenes with the
 

same materials. Although stratification on this basis is conceptually
 

possible, the practical problems involved have not yet been solved.
 

3.2 EVALUATION OF XSTAR
 

XSTAR is a haze correction algorithm which employs a model of haze
 

effects derived from the ERIM atmospheric model [7]. Briefly, the
 

XSTAR uses shifts of the data distribution in the Tasselled Cap yellow
 

direction to measure the amount of haze present, and then corrects for
 

the effects of this haze using its haze model [8]. In all tests of
 

XSTAR, a simple cosine correction was also used to correct for sun
 

angle effects.
 

The standard used to evaluate XSTAR was similar to that used for
 

CROP-A, namely, compare classification results for untransformed sig

nature extension and for signature extension where all data sets have
 

first been corrected to a standard haze condition using XSTAR. In the
 

experiments to evaluate XSTAR all possible test site-recognition site
 

pairs were used.
 

Two different experiments were conducted to evaluate XSTAR. The
 

first was conducted using 1975-76 multitemporal (first and second bic

windows) data over 23 sample segments in Kansas for a total of 506
 

extensions. The second experiment was conducted.using 1975-76 multi

temporal (first, second and third biowindows) data over 18 sample
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segments in North Dakota (306 possible extensions), where the crop of
 

interest is spring wheat. Appendices I;3 and 1.4 contain a full des

cription of these data sets.
 

In the Kansas experiments ithe performance measures used were the
 

field mean classification"accuracy and the proportion estimation accu

racy. In the North Dakota expeilment the true spring wheat proportions
 

were unavailable, and so only the field mean classification accuracy
 

was used. The LACIE Fields Data Base as of day 315 provided the field
 

definitions and crop type lables. Because the accuracy of the: Al crop
 

type labels was in doubt for the North Dakota segments, the accuracy
 

of these labels was checked for two of the sites using ground truth in
 

the form of high altitude photography. The AI accuracy was 94% for
 

one of the sites, and 97.5% for the other, with all errors being ones
 

involving small numbers of pixels. The effect of these errors was mini

mized by a clustering algorithm which eliminates clusters with less
 

than one pixel for each channel in the'data (in this case, 16 pixels).
 

The PROCAMS system was used as the test bench in both experiments,
 

with the preprocessing subsystem being updated to use the program
 

SCREEN [11] which replaces the program BADLIN and CLOUD.
 

While both the field mean classification and proportion estimation
 

results were fairly good when using XSTAR it was noted that the XSTAR
 

corrected results were no better than the untransformed results. This
 

was initially quite puzzling, because examination of cluster plots
 

both before and after XSTAR correction showed that XSTAR was doing an
 

adequate job of correction for haze and other effects.
 

The explanation for these results is found in the method of classi

fication used: our method of classification was to use a sum-of-like

lihoods classifier with no rejection threshold. It was this lack of a
 

rejection threshold which caused untransformed signature extension to
 

yield results comparable to the results obtained when using XSTAR.
 

The physical explanation for the success of not thresholding as a
 

signature extension technique is shown in Figure 4. According to the
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haze model used by XSTAR, the principal effect of haze is to shift the 

data distribution along the brightness axis of the Tasselled Cap trans

formed data space. It happens, however, that fhe principal direction
 

of discriminability between wheat and non-wheat is orthogonal to this,
 

parallel to the green direction of the transformed space. Thus, the
 

decision boundary formed by the sum-of-likelihoods classifier is essen

tially parallel to the brightness axis. As the amount of haze in a
 

scene varies the data distribution moves along this plane but does not
 

cross it; thus, without thresholding, the decision boundary formed from
 

a training site in a high haze condition was still reasonably effective
 

in a test site with a low haze condition and vice versa.
 

The fact that not thresholding acts as a haze correction technique
 

is true only because the primary direction of discriminability between
 

wheat and non7wheat is orthogonal to the primary direction of haze shift.
 

With crops other than wheat, this haze compensation effect will not con

tinue to h6ld true.
 

Further, it appears that there is an even more important effect
 

arising from not using an alien rejection threshold in classification.
 

Local training and classification proportion estimates both with and
 

without a rejection threshold (one which would theoretically reject
 

0.1% of the data) were obtained using the 1975-76 Landsat data over
 

23 segments in Kansas. The results of these classifications are shown
 

in Table 2. It can be seen that using a threshold introduces a large
 

bias, and significantly increases the RMS error in proportion estimation.
 

In the multisegment training tests on 74 winter wheat data sets
 

over 39 Kansas segments (see Section 4) every proportion estimate using
 

a 'classification threshold was less accurate than the corresponding
 

estimate without a threshold. Examination of this result showed that
 

in every case as the classification threshold was made smaller, the
 

accuracy of the proportion estimates increased. Table 3 shows a typi

cal result comparing proportion estimation accuracy with and without a
 

threshold. The difference is.-statistically significant.
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TABLE 2. EFFECTS OF THRESHOLDING ON PROPORTION ESTIMATION
 
OVER 23 SEGMENTS IN KANSAS
 

Threshold = 0.1% No Threshold 

Estimated Estimated 
Proportion RMS Proportion EMS 
of Wheat Error of Wheat Error 

Local Training 16.6% 11.79% 23.7% 10.86% 

True Proportion 
of Wheat 23.0% 23.0% 

TABLE 3. 	CLASSIFICATION THRESHOLDS AND PROPORTION
 
ESTIMATION ACCURACY
 

Estimated RMS Error
 
Proportion for
 

Local Training and of Wheat Proportion
 
Classification Using: (True = 23.7%) Estimation
 

Rejection 	Threshold = 0.1% 9.4% 19.10%
 

No Rejection Threshold 	 23.6% 15.19%
 

It is hypothesized that this increase in accuracy is due to
 

picking up additional types of wheat which were not represented in
 

the training segment. Care must be used in applying this result,
 

however, because the data used in these tests was previously screened
 

to remove 	water, clouds, cloud shadows, and bad data.
 

Because of the effects which occur when no classification thres

hold is used, the North Dakota experiment was also run with and without
 

a classification threshold.
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Table 4 shows the average classification accuracy for thresholded
 

and unthresholded classifications on XSTAR-corrected and uncorrected
 

data. The performance of unthresholded classification on XSTAR cor

rected data is statistically no different than the unthresholded per

formance on uncorrected data, but when a classification threshold is
 

used the performance on uncorrected data drops sufficiently to make
 

the performance on XSTAR corrected data significantly* better than the
 

performance on uncorrected data. The conclusion that may be reached
 

from this is that the XSTAR correction is in fact aligning the data
 

distributions from different sample segments, but that the unthresholded
 

TABLE 4. 	PERFORMANCE OF CLASSIFICATIONS ON XSTAR CORRECTED
 
AND UNCORRECTED SPRING WHEAT DATA (Average of 318
 
Signature Extensions)
 

Average Field Mean Classification Accuracy
 

Thresholded Unthresholded
 
Classification* Classification
 

XSTAR Corrected 60.10% 	 60.35%
 

Uncorrected 	 57.17% 61.65%
 

0.001 Rejection Threshold
 

classification is unimproved because the classifier decision boundary
 

is parallel to the principal direction of haze shift, as explained above.
 

An analysis of the factors which were important in determining the
 

difference between performance on XSTAR corrected and on uncorrected
 

data indicated- that the number of time periods involved in the classi

fication was the only significant factor, although the haze level was also
 

The significance level of 0.01 is used throughout this report.
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a significant factor at the 0.1 level. Table 5 shows the effect of the
 

number of time periods used on thresholded classifications using XSTAR
 

corrected and uncorrected data. As more passes are added to the classi

fication the chance of a pass with differing haze levels between the
 

training and test sites increases, and so the uncorrected accuracy
 

remains the same or drops in spite of the additional information in the
 

classification, while the XSTAR corrected accuracy increases.
 

The conclusion to be reached from these results is that XSTAR per

forms a haze correction function which significantly increases the accu

racy of field mean classification and proportion estimation as compared
 

to untransformed signature extension using a sum-of-likelihoods classi

fier with a rejection threshold.
 

TABLE 5. EFFECT OF NUMBER OF PASSES USED IN CLASSIFICATION
 
(Average over 318 extensions in North Dakota)
 

Average Field Mean Classification Accuracy
 

Thresholded Thresholded 
Classification Classification 

Number of on XSTAR on Uncorrected 
Passes Used Corrected Data Data 

2 60.4% 56.9% 

3 60.4% 54.0% 

4 67.6% 55.2% 
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4 

TRAINING SAMPLE SELECTION STRATEGIES
 

During this year, Task 1 of this contract developed and demon

strated a training and classification technique called Procedure B.
 

This technique incorporates a training sample selection strategy
 

together with an unconventional classification technique. In order
 

to separate the effects of the training procedure from the effects
 

of the classification procedure, and in order to evaluate the effect
 

of this training sample selection strategy on a LACIE-like system,
 

the PROCAMS test bench was modified to incorporate the training sample
 

selection strategy of Procedure B.
 

The following is a description of the resulting classification
 

procedure, referred to as Multisegment CAMS. First, apply the train

ing sample selection strategy of Procedure B to a large collection of
 

LACIE sample segments. This involves screening the segments for bad
 

data, and applying the XSTAR correction to them. This training sample
 

selection strategy selects a number of sample segments as training
 

segments. These XSTAR-corrected training sample segments are then
 

clustered as if they were simply one large, contiguous portion of the
 

data. This produces a set of clusters which are supposed to contain
 

all of the variability of the original large data set after XSTAR
 

correction. These signatures are then applied directly to all of the
 

(XSTAR corrected) sample segments within the original large data set,
 

using the normal maximum likelihood classifier.
 

In the original Procedure B demonstration, six LACIE sample seg

ments were chosen to serve as training for all of the Kansas sample
 

segments. In all of the following experiments1 these same six segments
 

were used for training both Procedure B and Multisegment CAMS. The
 

training for the local classification used as a comparison comes from
 

the Day 315 fields data base (see Appendix 1.4 for a complete descrip

tion of the data base). Multisegment CAMS and the local classification
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were run without a classification threshold on the maximum likelihood
 

classifier.
 

Table 6 shows a comparison of accuracy in proportion estimation
 

for Procedure B, Multisegment CAMS and the 75-76 LACIE procedure of
 

local training and classification over the 28 sample segments on whicb
 

Procedure B has been used. 'None of the differences in proportion esti

mation accuracy or bias are statistically significant; due to'-the rela

tively large variance in the proportion estimates.
 

TABLE 6. 	COMPARISON OF PROPORTION ESTIMATION ACCURACY USING
 
PROCEDURE B, MULTISEGMENT CAMS AND LOCAL CLASSIFICA-

TION ON 28 DATA SETS OVER KANSAS (6 Training'Sites)
 

Estimation Proportion RMS Error for 

Wheat (True = 20.4%) Proportion Estimates 

Procedure B 23.5% 9.93% 

Multisegment CAMS' 16.6% 12.67% 

Local Training/ 
Classification' 20.9% 10.69% 

Table 7 shows a comparison of accuracy in proportion estimation
 

between Multisegment CAMS and local training and classification over all
 

74 data sets in Kansas. Again, the differences in proportion estimation
 

accuracy (variance) are not statistically signfficant, but now with the
 

larger sample size Multisegment CAMS reveals a statistically significant
 

bias.
 

TABLE 7. 	COMPARISON OF PROPORTION ESTIMATION ACCURACY USING
 
MULTISEGMENT CAMS, LOCAL-CLASSIFICATION ON 74 DATA
 
SETS OVER KANSAS (6 Training Sites)
 

Estimated Proportioft RMS Error for
 
Wheat (True = 23.7%) Proportion ,Estimates
 

Multisegment CAMS. 18.5% 	 15.05%
 

Local Training!
 
Classification 23.6%- 15.19%
 

20
 



WILLOW RUN LASORATORIES. THE UNIVERITY OF MICHIGANMFORMERLY 

The results shown in Tables 6 and 7 do not include a bias correc

tion procedure such as is being incorporated into LACIE. When con

sidering an environment where it is anticipated that a bias correction
 

procedure such as Procedure 1 will be used, the training gain advantage
 

enjoyed by a method such as Multisegment CAMS is largely nullifie'by

the fL&ed for an AT .to process every sample segment anyway, for bias
 

correction purposes. If, however, the bias of a procedure were a rela

tively consistent function of the true proportion (or ancillary varia

bles), then the Al would need to process only enough sample segments to
 

allow for the estimation of the bias correction function.
 

Such is the case with Multisegment CAMS. Because the same set of
 

signatures is used for all sample segments, much of the bias is pre

dictable. This is not true for local training and classification
 

methods,-where the number and relative spectral positioning of the
 

signatures changes from segment to segment. In the 74 data sets over
 

Kansas, bias which was a function of the true proportion of wheat
 

accounted for only 5% of the error in the local training and classi

fication procedure, as compared to 30% of the error in the Multisegment
 

CAMS procedure.
 

Thus a linear bias correction rule trained over only the six
 

original training segments and then applied to the proportion esti

mates for all of the data sets considerably improves the accuracy of
 

Multisegment CAMS, while the accuracy of local training and classifi

cation is 	affected relatively little, as shown in Table 8.
 

TABLE 8. 	BIAS CORRECTION RULES (Developed on
 

the 6 Training Segments)
 

Corrected Proportion RMS Error of 
Estimate of Wheat- Corrected Proportion 

74 Segments Estimate - 74 Segments 

(True = 23.7%) 

Multisegment CAMS' 22.9 11.44% 

Local Training/ 
Classification 20.8 14.12% 
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The difference in proportion estimation accuracy (variance) between
 

Multisegment CAMS (as bias corrected) and local training and classifi

cation (corrected or uncorrected) is statistically significant at the
 

5% level. Neither of the biases are statistically significant.
 

The above results indicate that a Procedure l/CAMS system, modi

fied to incorporate the Multisegment CAMS training and bias corrected'
 

procedures, might enjoy a large.training gain advantage, together with
 

increased accuracy, as compared with the 75-76 LACIE procedures. It
 

is also'possible that a Procedure i/Multisegment CAMS system would be
 

more consistently accurate (in addition to being much cheaper to run)
 

than a Procedure l/local CAMS system if the AI's turn out to have a
 

large or randomly varying bias because of the consistent estimable bias
 

of Multisegment CAMS.
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5 

DATA STRATIFICATION
 

Data stratification is the grouping of segments on the basis of
 

similarity in segment features which affect the performance of signa

ture extension. This idea has always been an attractive one, primarily
 

because a good data stratification would allow a great reduction in the
 

amount of training required to achieve a desired level of performance.
 

The primary difficulty in stratifying the data is that it is not known
 

which features of a segment (which we will hereafter refer to as ancil

lary variables) affect the performance of signature extension, or how
 

important these features might be.
 

For this reason the emphasis of this task in this area was two

fold. First, examine existing stratifications of the data and determine
 

their relationship to signature extension performance. Second, use the
 

actual performance of signature extensions to determine what factors
 

are most important in determining signature extension performance.
 

5.1 EXAMINATION OF AVAILABLE DATA STRATIFICATION
 

Two data stratifications were available for testing. The first
 

of these was developed by the University of California, Berkeley, (UCB),
 

[4] and the second was developed by Johnson Space Center (JSC) per

sonnel [5].
 

The UCB stratification was first examined in conjunction with the
 

CROP-A evaluation, using unitemporal Landsat data, collected in May
 

1974 over 10 segments in Kansas (see Appendix I.1 for a complete des

cription of the data set). The UCB stratification was broken down
 

into three levels of coarseness: the original UCB stratification, a
 

coarser version of the original stratification, and an even coarser
 

version which ignored soil type differences.
 

The performance of within-strata signature extensions was then
 

compared to the performance of across-strata extensions, for each of
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the three coarseness-levels of the UCB stratification, and for both
 

CROP-A transformed and untransformed signature extensions. The result
 

was that there was no statistically significant difference between
 

within-strata and across-strata signature extension performance,
 

regardless of whether CROP-A transformed or untransformed signatures
 

were used. This seemed'to indicate that.the stratification was too
 

fine; and that a much coarser stratification would probably suffice,
 

although the test sites were from too small a region to be really
 

definite. Figures 5 and 6 show envelopes drawn by hand around the
 

clusters from each of several sites. Note that all of the envelopes
 

for the ten sites are similar, which suggests that there is very little
 

difference in haze level or soil color between them.
 

These two figures also illustrate an ad hoc attempt at stratifi

cation of the sites into two groups. This stratification has a sta

tistically significant effect on classification accuracy -- but not the
 

effect of dividing the data into two groups within which there is a
 

high accuracy'of signature extension classification. This stratifica

tion separates the sites into those with good classification results
 

(Figure 5) and those with poor classification results (Figure 6). The
 

sites with poor classification results -- Morton, Grant, South Stevens
 

and North Stevens -- are all from the southwestern corner of Kansas,
 

which suggests that some effect such as a local drought may be responsi

ble for their poor performance.
 

The UCB and JSC stratifications were later examined much more
 

carefully during the evaluation of XSTAR on 1975-76 multitemporal
 

Landsat ,data collected over 23 sample segments in Kansas (see Appendix
 

1.3 for a complete description of the data). The form of the evalua

tion experiment was to first perform all signature extensions possible
 

among the 23 segments (a total of 506 extensions) first using untrans

formed signature extension, and then using XSTAR-corrected signature
 

extension. The field mean performance of each of these extensions
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were then tabulated, and the field mean performance of the within-strata
 

extensions was compared to the field mean performance of the across

strata extensions.
 

The UCB stratification is composed of three parts: a very fine
 

stratification based on land use and irrigation in the segments, a
 

stratification into three groups based on a ten-year average of degree
 

days for the segments, and a stratification into four groups based on
 

a ten-year average of the amount of precipitation in a segment. These
 

three parts of the stratification are then combined (via a Cartesian
 

cross-product of the three) to produce what is referred to as the UCB
 

data stratification.
 

It was found that of the 506 extensions we had full information
 

about the UCB stratification for only 169 extensions, and only four
 

of these were within-strata extensions. As a result, even though
 

these four extensions had an average field mean accuracy of about 80%,
 

as compared to 70% overall average field mean accuracy, the difference
 

was not statistically significant.
 

Each of the three component parts of this stratification were
 

then examined separately in a similar fashioi. Table 9 shows the
 

result of these examinations.
 

The difference between the within-strata accuracy and the across

strata accuracy was not found to be statistically significant when the
 

land use/irrigation portion of the UCB stratification was used to
 

stratify the data. In fact the within-strata accuracy was slightly
 

lower than the across-strata accuracy.
 

Stratifying using either the degree day portion of the precipi

tation portion of the UCB strata produced a difference between within

strata accuracy and the across-strata accuracy which was significant
 

at the 0.05 level.
 

The greatest difference between within-strata and across-strata
 

accuracy was found when the degree day and the precipitation portions
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TABLE 9. FIELD MEAN ACCURACY ANALYSIS OF PORTIONS OF THE UCB DATA STRATIFICATION
 

Portion(s) of the Average Accuracy Average Accuracy 
# Extensions Across-Strata (%)UCB Stratification # Extensions Within-Strata (%) 

Used Within-Strata XSTAR Untransformed Across-Strata XSTAR Untransformed 
I 

Land Use and
 
Irrigation 12 67.2 68.2 157 70.4 69.4
 

Degree Days
 
(10 year average) 74 72.8 72,.8 95 67.3 66.6
 

Precipitation 
(10 year average) 41 82.4 80.1 128 66.2 65.9 r 

0 

Degree Days and
 

Precipitation
 
Together 26 86.5 84.5 143 66.6 66.6
 

C 
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of the UCB stratification were both used to stratify the data into a
 

total of twelve groups'. -This difference was significant at the 0.001
 

level.
 

The conclusion reached from this analysis is that the primary
 

effect of the successful portions of the UCB data stratification is
 

to insure a similar degree of crop development in both the training
 

and test segments.
 

The analysis of the JSC data stratification was somewhat different.
 

Because none of the components of the stratification were available to
 

us, no analysis of the components could be conducted. However, three
 

levels of generalization of the JSC stratification were analyzed. First,
 

the performance of the "suggested" training segment-test segment exten

sions were analyzed. Second, the performance of extensions from any
 

segment designated as a training segment to any segment designated as
 

a test segment (both, of course, within the same strata) was examined.
 

Third, the performance of extensions between any segments within the
 

same strata was evaluated. In all three cases'the accuracy of the
 

extensions under examination were compared to the average across-strata
 

signature extension accuracy. It should be noted that the t'sub-groups
 

defined in the JSC data stratification were ignored in these evaluations,
 

because none of these subgroups had more than one of our testing seg

ments in them.
 

When the suggested signature extensions were examined it was found
 

that there were only two examples of such extensions within our data
 

set, so no significant results could be obtained.
 

Fourteen out of the 506 possible extensions were between designated
 

training and designated test segments in the same strata. The field
 

mean accuracy of these fourteen was not much different than the average
 

field mean accuracy, and what difference there was was not statistically
 

significant.
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The third level of generalization of the JSC stratification
 

examined, where all extensions within the same strata were compared.
 

to the across-strata extensions, had a different result. The average
 

of the field mean accuracies of the within-strata extensions was found
 

to be significantly higher than. the average across-strata accuracy.
 

Table 10 shows the results obtained. The differences are significant
 

at the 0.005 level.
 

TABLE 10. 	 FIELD MEAN ACCURACY ANALYSIS OF JSC 
DATA STRATIFICATION 

XSTAR Corrected Untransformed 
Signature Signature 
Extension . Extension 

Extensions Within-Strata
 
(46 cases) 70.5% 69.0%
 

Extensions Across-Strata
 
(444 cases) 62.6% 62.0%
 

5.2 ,RELATIONSHIP OF ANCILLARY INFORMATION TO SIGNATURE EXTENSION
 

PERFORMANCE
 

For each signature extension technique there is a unique best
 

stratification of the data which matches the assumptions on which the
 

development of the technique was based. This best stratification is
 

usually different from the best stratification -for any other algorithm.
 

For instance, CROP-A needs to have a stratification which provides
 

it was test segment-training segment pairs with the same crops present
 

in both segments. XSTAR needs no such restriction, but currently
 

requires that the haze level within each segment be fairly uniform.
 

Thus, logically, one would need to choose a signature extension
 

algorithm and then choose a data stratification to match that particu

lar algorithm. The simplest method to obtain the data stratification
 

30
 



.ISRIM 
FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN 

for a particular algorithm is to use the actual performance of the 

algorithm on various test-training pairs to determine what test segment

training segment differences affect classification performance. This
 

is what was done for both XSTAR corrected signature extension and for
 

untransformed signature extension.
 

The technique used to investigate the relationship of the differ

ence in various ancillary variables (segment features) between test
 

segment and training segment to the performance of signature extension
 

between those segments is a fairly straightforward one.
 

First, train separately on every site in the test set and then
 

extend each of these sets of training statistics to every other site
 

in the test set. This involves n2 - n signature extensions and classi

fications, where n is the number of sites in the test set.
 

Secondly, pair the performance figures obtained from each of
 

2
these n - n signature extensions with a list of ancillary variables 

which describe the extension -- for instance, difference between the 

two sites in degree days, precipitation, sun angle, and so forth. 

Third, use this list of ancillary variables to characterize the
 

successful extensions -- for instance, one might perform a multiple
 

linear regression between the ancillary variables and the signature
 

extension performance figure.
 

Lastly, this characterization of the successful signature exten

sions can be used to derive the "best" stratification for the particu

lar 3ignature extension algorithm used in the first step. This is
 

done by using the characterization of the successful extensions
 

j(possibly a linear equation in the ancillary variables) to predict
 

which extensions are most likely to be successful. These pairs of
 

extensions with the best predicted performance are then said to be
 

within the same strata, and thus the stratification is complete.
 

This process was carried out first using 1975-76 Landsat data
 

over 23 segments in Kansas. (see Appendix 1.3 for a complete description
 

31
 

ORIGINAL PAGE IS 
OF POOR QUALITY 



of this data set), and later using 1975-76 Landsat data over 18 segments
 

in North Dakota (see Appendix 1.4 for a complete description of this
 

data set). The list of ancillary variables used in performing this
 

analysis is shown in Table 11.
 

TABLE 11. LIST OF ANCILLARY VARIABLES
 

I. GENERAL: 

Degree Days (10 Year Average) 

Land Use (% Agriculture) 

Precipitation (10 Year Average) 

Latitude 

Longitude 

Elevation 

II. PASS SPECIFIC (Calculated for Each Pass):
 

Sun Angle
 

View Angle
 

Julian Date
 

Crop Calendar (Robertson Scale)
 

Difference Between Sites in Mean of
 
Soils Area in Landsat Space
 

Difference Between Sites in Mean of
 
Green Development Area in Landsat Space
 

Haze Diagnostic Calculated by XSTAR from
 
Yefloi Shift of Data
 

Difference Between Sites in Additive Factor
 
Calculated by XSTAR
 

Difference Between Sites in Multiplicative
 
Factor Calculated by XSTAR_
 

Haze Value Calculated by XSTAR from Yellow
 
Shift of Data
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Using the Kansas data set, the experiment was first carried out
 

using untransformed signature extension, as a control case. The
 

characterization of the successful signature extensions was accom

plished using a stepwise linear regression technique which adds vari

ables one at a time to the regression equation, starting with the most
 

significant and continuing until none of the remaining variables have
 

.an effect on the regression equation which is significant at the 0.05
 

level. The results of this stepwise linear regression are given in
 

Table 12 below.
 

TABLE 12. 	RESULTS OF STEPWISE LINEAR REGRESSION OF UNTRANSFORMED
 
SIGNATURE EXTENSION RESULTS VS ANCILLARY INFORMATION
 

Cumulative Cumulative
 
R2
 Important Factors 	 Standard Error 


DIFFERENCE BETWEEN TRAINING AND
 
TEST SITE OF:
 

Mean of Soils Region in Landsat Space,
 
Biowindow 1 14.50 0.124
 

Longitude 14.27 0.153
 

View Angle, Biowindow 1 14.14 0.170
 

XSTAR Additive Factor, Biowindow 2 14.05 0.183
 

Crop Calendar, Biowindow 2 13.98 0.192
 

Sun Angle, Biowindow 2 13.82 0.212 

The final regression equation incorporating all of these factors
 

was used to predict performance of untransformed signature extension
 

between various pairs of sites. The predicted performance can be used
 

to generate a stratification which meets training gain or performance
 

criteria specified by the user. Figure 7 shows the stratification
 

obtained when the desired training gain is 1.2 (i.e., four out of the
 

23 sites are classified by signature extension rather than local training,
 

a savings of 20% in training cost). Figure 8 shows average field mean
 

33 

ORIT kMIYNG 



104, 

FiGURE 7 
UNTRAKFORMED STRATR 

J(AMSAS 

NAfOR IORTO, 

(TRAINING GAIN 

3.1fm jc (,l 
11oIAll 

CIO 
CLAr 

pof, Alowlj Vic,901 

ArCH,"N 

lo... M4,0 444 

Of;A A "lle 

r4 

rAN 

A JIOI I 

JILNIq 
0-01 

N 

Rict 

"'NiAsom Rion 

4 WORR 

HASC 
-

ram 

-of so,' UNN
'Noffi 

C, loDaz"', N "a 
'Ofteft 

C 

jr(rz, JW410 

"Ito 

1C, , 
1 

111AIIII 

AA YT 

dA4114 5v Hr r W14r 

. 
W43 0 

2114 

0 

-
'AOXCL 

vli. 1 



FI'URE 8
 
UNTRANSFORMED PERFORMANCE ON
 

COMPRESSED DATA
 
10-


LOCAL RECOGNITION
 

Uto 

L90 

z 

t.U 80 

I.n W ~U. " 
>1 

(9 S 

Un 

Lc- u,70 

UNSTRATIFIED
 

PERFORMANCE
 

60. C,
 

1.3 3,5 7.8 23.0
 
2.4 5714.4 2. 

EXPECTED TRAINING GAIN
 
=
(TRAINING GAIN RECOGNITION SITES/# TRAINING SITES)
 



J R I M FORMERLY WILLOW RUN LABORATORIES THE UNIVERSMY OF MICHICAN 

classification accuracy over the 23 sites as a function of training
 

gain. Table 13 shows pixel-by-pixel proportion estimation results
 

using the 1.2 training gain stratification shown in Figure 7. The
 

proportion estimation-bias in this 23 segment sample is not statisti

cally significant. -. 

,TABLE 13. 	 UNTRANSFORMED SIGNATURE EXTENSION PROPORTION ESTIMATION
 

RESULTS OVER 23 SITES IN KANSAS
 

Estimated Standard 
Proportion RMS Deviation 
of Wheat Errors of Error 

Local Training 	 23.7% 10.86% 11.12%
 

Untransformed Signature
 
Extension (Training
 
Gain of 1.2) 25.1% 11.40% 11.52%
 

True Proportions of Wheat 23.0%
 

This experiment was then repeated using XSTAR, in place of untrans

formed signature extension. Table 14 shows the results of the stepwise
 

linear regression of XSTAR's results versus the ancillary information.
 

TABLE 14. 	 RESULTS OF STEPWISE LINEAR REGRESSION OF XSTAR CORRECTED 
SIGNATURE EXTENSION RESULTS VS ANCILLARY INFORMATION 

Cumulative Cumulative 
R2
Important Factors 	 Standard Error 


DIFFERENCE 	BETWEEN TRAINING AND
 
TEST SITE OF:
 

Mean of Green Development Region
 
in Landsat 	Space, Biowindow 1 15.461 
 0.080
 

Longitude 	 15.176 
 0.116
 

Crop Calendar, Biowindow 2 15.031 
 0.134
 

Latitude 14.937 
 0.146
 

0.158
Sun Angle, 	Biowindow 2 14.853 
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This regression equation was used to define stratification of
 

the data as was done with the regression equation obtained for the
 

untransformed signature extension case. Figure 9 shows the stratifi

cation obtained when the desired' training gain is 1.2. Figure 10
 

shows the relationship of average field mean classification accuracy
 

over the 23 sites as a function of training gain. Table 15 shows
 

pixel-by-pixel proportion estimation results for XSTAR corrected sig

nature extension using the 1.2 training gain stratification shown in
 

Figure 9. Again, this proportion estimation result does not have a
 

statistically significant bias.
 

TABLE 15. 	 XSTAR CORRECTED SIGNATURE EXTENSION PROPORTION
 
ESTIMATION RESULTS OVER 23 SITES IN KANSAS
 

Estimated Standard 

Proportion RMS Deviation 
of Wheat Error of Error 

Local Training 	 23.7% 10.86% 11.12%
 

XSTAR Corrected Signature
 
Extension (Training Gain
 
of 1.2) 23.8% 13.19% 13.46%,
 

True Proportions of Wheat 23.0%
 

When the above experiments were repeated using 1975-76 Landsat
 

data over 18 North Dakota segments, the resultant regression equa

tions accounted for so small a portion (less than 5%) of the total
 

variance in field mean accuracy as to be useless in determining a
 

stratification of the data. The conclusion to be drawn from this is
 

that all of the eighteen North Dakota sites were within the same
 

stratum, as far as could be discerned using our list of ancillary
 

data.
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5.3 	 THE UTILITY OF STRATIFICATIONS OF THE DATA
 

Section 5.1 showed that static data stratifications based on
 

similarities between segments in average degree days and average pre

cipitation yield a considerable improvement in field mean classifica

tion accuracy. Section 5.2 showed that other, often pass-specific
 

ancillary variables.could be useful in a data stratification, and that
 

such stratifications could be used to significantly lower the operating
 

cost of a large area crop inventory system.
 

It appears, therefore, that the stratification work done by UCB
 

and JSC should be extended to include dynamic or pass-specific ancil

lary variables. These data stratifications should also be evaluated
 

in a multisegment training environment.
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6 

GREEN INDICATOR AND CROP DEVELOPMENT CLASSIFIERS 

Any classification technique which employs a decision rule which
 

has been trained in one place or time and can be used to classify in
 

a different place or time is accomplishing signature exten

sion.. The general approach taken by these classification techniques
 

has been to use some aspect of the wheat growth pattern as viewed by
 

Landsat as a criterion for classification. Classifiers based on a
 

green indicator calculate a "green number" from the Landsat data; and
 

claim that during some period of time only wheat pixels will display
 

green numbers within a certain range. Thus during the relevant time
 

period, any pixel with a green number within this range is to be called
 

wheat. Crop development classifiers are more sophisticated; they
 

employ a model of what wheat looks like to Landsat as a function of
 

time of year.to classify wheat from non-wheat, so that any pixel whose
 

Landsat signal values are sufficiently close to what the model predicts
 

is called wheat. The Delta classifier is an example of such a
 

classifier.
 

6.1 TESTS OF SEVERAL CLASSIFIERS
 

The performance of several green indicator classifiers was
 

investigated using 1975-76 sample segment data over 23 Kansas
 

blind sites (see Appendix 1.3 for a more complete description of this
 

data set). The formulas for the green indicators tested are shown
 

in table 16.
 

41
 



RIM FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN 

TABLE 16 GREEN DEVELOPMENT INDICATORS AND THEIR FORMULAS 

Name 	 Formula
 

G 	 CH 1 - CH 4 + 96 

TVI " 
-(CH 4 - CH 2)./(CH 4 + CH 2) + 0.5 

Ratio 7/5 CH 4/CH 2
 

Tasselled Cap Green CHI*-0.28972 + CH2*-0.56199
 
+ CH3*0.599153 + CH4*0.49070
 

For each of these green development indicators a decision thres

hold was trained over all of the field means in all of the test sites,
 

and the field mean classification accuracy was noted. This procedure
 

was applied to the first biowindow and second biowindow passes sepa

rately, and then repeated using XSTAR haze corrected data. The field
 

mean accuracies obtained in this fashion are an upper bound on the per

formance of these green development indicators as a classification
 

procedure. Table l7sunmarizes these results for Biowindow 1, and,
 

Table 18summarizes the results for Biowindow 2.
 

TABLE 17 PERFORMANCE OF 	GREEN DEVELOPMENT INDICATORS
 

BIOWINDOW 1
 

Average-Field Mean Average Field Mean
 
Accuracy: Accuracy:
 

Indicator Untransformed Data XSTAR Corrected Data
 

G 70 72
 

TVI 77 
 76
 

Ratio 7/5 76 
 75
 

Tasselled Cap Green 76 
 72
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TABLE 18 PERFORMANCE OF GREEN DEVELOPMENT INDICATORS
 
BIOWINDOW 2 

Average Field Mean Average Field Mean 
Accuracy: Accuracy: 

Indicator Untransformed Data XSTAR Corrected Data 

G. 82.4 83.9 

TVI 81.2 81.3 

Ratio 7/5 81.2 82.2 

Tasselled Cap Green 80.3 79.9 

These field mean classification accuracies seemed to indicate that
 

the green development indicators hold considerable promise as
 

proportion estimators. Results of pixel-by-pixel proportion estimation
 

over the 23 segments using the G indicator in Biowindow 2, and the TVI
 

indicator in Biowindow 1 are.given in Table 19.
 

TABLE 19 PROPORTION ESTIMATION RESULTS OF GREEN DEVELOPMENT
 
INDICATORS OVER 23 SITES IN KANSAS
 

Indicator Estimated Proportion of Wheat
 

TVI, Biowindow 1 39.8%
 

G, Biowindow 2 33.9%
 

True Proportion of Wheat 23.0%
 

As can be seen from table 1 the green indicators, even when
 

optimally trained on field means, displayed a very large bias. Further,
 

the variance of the error in proportion estimation for these indicators
 

was very large. This seemed to indicate that a more sophisticated
 

approach was required than the "if its that green then, it must be wheat"
 

model employed by these green indicator classifiers.
 

The Delta classifier does use a more sophisticated model of wheat
 

development. It requires good data from three different biowindows
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in order to make a discrimination between wheat and non-wheat. Accord

ingly, we used the Delta Classifier to classify each of the 23 test
 

sites, and obtained an average field mean classification accuracy of
 

71%. It should be pointed out, however, that while one pass was
 

available in each of the four biowindows, these passes were not
 

selected with an eye to optimizing the Delta Classifier's performance.-


This not-terribly-high field mean accuracy led us to investigate the
 

reasons for these problems. Comparing the field mean classification
 

accuracy of the Delta Classifier to ancillary information via a regres

sion; it was discovered that the following four factors significantly
 

affected the performance of the Delta Classifier in Kansas:
 

Degree Days (10 Year Average)
 

Precipitation (10 Year Average)
 

Longitude
 

XSTAR's Haze Coefficient Gamma,
 
in Biowindow 3
 

It was concluded that in order to be successful, such a classi

fier must include ancillary information (such as a crop calendar) in
 

the decision rule, so that the stage of crop development can be more
 

accurately known.
 

6.2 CROP DEVELOPMENT INVESTIGATIONS
 

An investigation into the properties of wheat' development and
 

discriminability was initiated with the purpose of determining what

information was necessary to construct an accurate crop development
 

classifier. The first step of this investigation was to determine
 

what information was needed to discriminate wheat from non-wheat.
 

Two questions were asked. First, what combinations of passes over a.
 

site are needed? And second, is Landsat data two dimensional?, (i.e.,
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do the first two channels of the Tasselled Cap transform, brightness
 

and greenstuff, contain all the discriminability information?)
 

To investigate each of these ideas, 322 signature extensions
 

were carried out using 1973-74 data over 12 Kansas sites (see Appendix
 

1.2 for a more complete description of the data set) this included
 

all possible extensions with matching biophases. The results of the
 

investigation into these two questions are briefly summarized below:
 

1. 	Best Dates for Classification. The data set contained passes
 

from five dates: 20 October, 20 April, 9 May, 27 May, and
 

12 June. All combinations of these dates were ,tested for
 

performance both locally and in signature extension. The
 

best single date was found to be the 20 April date, with
 

the average accuracies of the 9 May and 27 May dates trailing
 

by 5 and 10% respectively. There was a tie for the best
 

combination of passes: any combination of passes containing
 

both the 20 October and 20 April dates performed about equally,
 

and no other combination of two passes approached the accuracy
 

of this October-April combination.
 

2. 	Information Distribution in the Tasselled Cap Transform.
 

Each of the 322 extensions were also performed using only
 

the first two components of the Tasselled Cap Transform --


Brightness and Greenstuff. It was found that average accuracy
 

using onlythese two channels was about 3% less than the
 

accuracy using all four Landsat channels; for multitemporal
 

extensions, average accuracy decreased by about 3% for each
 

time period added beyond the first time period as compared
 

to untransformed accuracy. This trend did not hold whenever
 

the April pass was one of the passes used in the extension;
 

in these cases there was no significant decrease in accuracy.
 

It is hypothesized that most of the information needed to
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distinguish wheat from non-wheat can be obtained from the
 

green development seen by Landsat at any fixed point in a
 

crop calendar, and that the green development information
 

is contained within the first two components of the Tasselled
 

Cap 'transform.
 

The results of this investigation guided is in the next step
 

of the investigation, which was'the development of a fairly sophisti

cated model of wheat development as seen by Landsat, as a function of
 

both time and ancillary information relating to crop development, haze
 

level, illumination of the site and so forth. The data base used for
 

this modeling effort consisted of field means and ancillary information
 

about those fields, drawn from 74 multitemporal data sets over 39
 

Kansas ITS and blind sites. Appendix 1.4 gives a complete description
 

of the sites and the ancillary information used.
 

This empirical modeling has resulted in a pair of models which
 

predict the green and brightness development of a wheat pixel through

out the second biowindow.
 

The green development model, which has a correlation with observed
 

signals of 0.907 and a residual error of three counts, incorporates
 

the following ancillary' information (listed in order of importance):
 

- Number of dafs into growing season when data was acquired 

- Amount of greenness displayed by green development arm of 
the Tasselled Cap 

- Crop calendar
 

- 10-year average of degree days
 

The brightness model, which has a correlation with observed
 

signal values of 0.80 and a residual error of 6.7 counts, incorporates
 

these ancillary variables (again, in order of importance):
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- Average brightness of scene 

- Brightness displayed by green development arm of Tasselled Cap 

- Greenness displayed by green development arm of Tasselled Cap 

- Sun angle 

These two models were incorporated into a Development Model
 

Classifier, in the same manner as the Delta Classifier incorporates
 

a crop development model. The decision boundary of this classifier
 

was then trained on the second biowindow of all 74 Kansas data sets,
 

which resulted in an average field mean classification accuracy of
 

78.1%. When the normal maximum likelihood classifier was trained on
 

all 74 data sets the resulting accuracy was only 75.4%, showing that
 

inclusion of the ancillary information into the decision rule via the
 

two models had significantly improved classification accuracy.
 

Such models (or classifiers) are useful only it they are stable
 

in the sense that if they are constructed or trained on only a small
 

portion of the data they still yield approximately the same results
 

as if all the data were used. If they are stable in this sense, then
 

they derive their accuracy from underlying physical processes and may
 

well be applicable (with perhaps small changes) to other places and
 

other years. At the worst, if they are stable then they can be
 

accurately trained anew each year using only a small number of sample
 

segments, and at a correspondingly small cost.
 

In order to determine the stability of these models, the-coeffi

cients of the models were redetermined using 81 fields from 12 randomly
 

selected data sets. The coefficients of the models developed on only
 

12 data sets were quite similar to the coefficients of the model
 

developed using all 74 data sets.
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As a further test of similarity, the new models were incorporated
 

into a Development Model Classifier and the coefficients of the classi

fier were then trained over these same 12 data sets; thus the classifier
 

was constructed using information from only 81 fields in 12 data sets.
 

This classifier was'then used to classify all 74 data sets, resulting
 

in an average accuracy of 76.5%. Table 20 shows how the accuracies
 

of-several other,classifiers compare to this accuracy.
 

TABLE 20. COMPARISON OF SEVERAL CLASSIFIERS
 

Field Mean 
Number of Classification 
Landsat Accuracy 

Acquisitions (Average Over 
Classifier Used 74 Data Sets) 

Development Model Classifier 
(trained on 12 data sets) 2 (Biowindows - 76.5% 

Maximum Likelihood 
,2) 

(trained on all 74 <data - 1 (Biowindow 2) 75.4% 
sets) 

Delta Classifier 3 (Biowindows 
1, 2, or 3, 4) 70.1% 

Multisegment CAMS 4 74.0% 

The results of this modeling appear encouraging enough to
 

warrant further-testing and development in the future. Of particular
 

interest would be a model which was applicable throughout the crop
 

year. Such a model could provide an ideal AI key, as well as the
 

basis for a classifier.
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7
 

CONCLUSIONS AND RECOMENDATIONS
 

The overall conclusion of this report is that the development of
 

an accurate large area crop inventory system using signature extension
 

techniques is a feasible goal. As we understand it now such a system
 

would employ haze and sun angle corrected data in a multisegment train

ing and classification scheme which would be applied within some strati

fication of the data. Support for this view of signature extension is
 

contained in the following discussion of conclusions about each of the
 

four types of signature extension algorithms tested.
 

Two examples of haze correction algorithms were tested: CROP-A [1]
 

and XSTAR [2].
 

CROP-A was tested in a unitemporal mode on data collected in
 

1973-74 over ten sample segments in Kansas. Because of the uniformly
 

low level of haze present in these segments, no conclusion could be
 

reached about CROP-A's ability to compensate for haze. It was noted,
 

however, that CROP-A made serious errors which actually degraded
 

classification performance (as compared to simply applying signatures
 

from one segment directly to a different segment, called untransformed
 

signature extension) whenever the types of materials found in the
 

training and test sites were substantially different. For this reason
 

CROP-A was deemed to be unsuitable for general application in large
 

area crop inventories, and was dropped from further consideration.
 

The haze correction algorithm XSTAR was tested in a multitemporal
 

mode on 175-76 LACIE sample segment data over 23 blind sites in Kansas
 

and 18 sample segments in North Dakota, providing a wide range of haze
 

levels and other conditions for evaluation of the algorithm. It was
 

found that this algorithm substantially improved signature extension
 

classification accuracy when a sum-of-likelihoods classifier was used
 

with an alien rejection threshold. Further, the accuracy of the XSTAR
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haze correction was substantially the same regardless of haze level or
 

differences between the test and training sites.
 

An interesting discovery made during the tests was that when no
 

alien rejection threshold was used in the sum-of-likelihoods classifier,
 

untransformed signature extension achieved the same level of classifi

cation accuracy as XSTAR haze corrected signature extension. Two
 

factors were responsible for this unexpected result. First, the wheat

non wheat decision boundary is typically neariy parallel to the princi

pal direction of shifts in the data due to haze. Thus classification
 

accuracy is often little affected by haze level differences between
 

test and training sites given that no alien rejection threshold is used
 

in the classifier and that the only class of interest is wheat.' The
 

second factor in this result is noise introduced by errors in the test

ing procedure which may have had the effect of degrading the classifica

tion accuracy of XSTAR corrected signature extension. Two sources of
 

noise were discovered in the testing procedure. The major source of
 

noise came from the AI field designations and crop labels that were
 

used in computing performance figures. Later analysis disclosed that
 

the AI had approximately a 7% crop labeling error rate in Kansas and
 

a 14% crop labeling error rate in North Dakota. Another source of
 

noise was programming error which resulted in truncating the haze diag

nostic vector to integer values. This truncation is not considered to
 

be a serious source of noise.
 

The training sample selection strategy available for testing at
 

this time was Procedure B [3]. This training sample selection strategy
 

was used to select six sample segments as training for all Kansas sample
 

segments, a training gain of almost 12 to 1 (12 recognition sites for
 

each training site). Multitemporal proportion estimation results
 

obtained by using the six selected sample segments as training for
 

classification of 74 multitemporal data sets over 38 Kansas blind and
 

ITS sites were extremely encouraging, and in fact were not statistically
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different from multitemporal local training and classification propor

tion estimation results.
 

One of the major findings of the above study was that nearly all
 

of the bias in the proportion estimates of the multisegment training
 

and classification procedure resulted from the particular configuration
 

of the signature set used for classification, rather than from peculi

arities of the recognition sample segments. This meant that the pro

portion estimation bias could be accurately corrected simply by esti

mating the bias on the original six training segments. The bias cor

rected proportion estimates of the multisegment training and classi

fication procedure were extremely accurate and had a low variance when
 

compared to local training and classification. This finding may have
 

important ramifications for reducing the cost and increasing the accu

racy of bias correction procedures.
 

The third category of techniques and procedures examined was strati

fication of the data. Two stratifications of the data were available,
 

one carried out by the University of California, Berkeley [4] and another
 

accomplished at JSC [5]. These stratifications were evaluated by com

paring the performance of within-strata and across-strata signature
 

extensions, both before and after XSTAR haze correction, using multi

temporal sample segment data collected over 23 blind sites in Kansas.
 

Both of these stratifications significantly and substantially improved
 

signature extension classification performance.
 

The primary beneficial effect of these stratifications seemed to
 

be that they matched together segments with the same stage of crop
 

development. It was shown that these stratifications could be improved
 

by incorporating certain dynamic or pass-specific ancillary information
 

about the segments into the stratification procedure. These data strat

ifications require further evaluation in conjunction with a multisegment
 

training and classification system.
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The fourth category of signature extension techniques examined was
 

that of green indicator and crop development trajectory classifiers,
 

such as the Delta.Classifier. Several such classification schemes
 

were examined using the 74 multitemporal data sets collected over 38
 

Kansas blind and ITS sites. 'It was found that such classifiers can
 

be.made robust enough to be applicable to a broad range-of sample seg

ments, and probably without needing to be retrained each year. However
 

these classifiers also displayed an unacceptably high variance.in pro

portion estimation accuracy, due to-the existence of a fairly large
 

number of sample segments with unusual development patterns.
 

It appears that in order to make such classifiers sufficiently
 

accurate for current day needs they will need to.be modified to incorpo

rate sufficient ancillary information (such as a crop calendar) into
 

the decision rule to account for sample segments with atypical develop

ment patterns. The crop development modeling undertaken by this task
 

has made a first step towards solving this problem.
 

The recommendation of this task is that a-further evaluation experi

ment be carried out which closely examines the potential of the multi

segment training and classification approach to signature extension.
 

Such -an evaluation should also include an examination of the usefulness
 

of haze correction and data stratification techniques in a.multisegment
 

environment.
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APPENDIX I
 

DATA PREPARATION
 

The preparation of an adequate data base for the evaluation of
 

signature extension algorithms was one of the major activities of this
 

task. This activity had two separate phases. First, 1973-74 data was
 

prepared to allow us to begin our first testing immediately. Later
 

when 1975-76 LACIE sample segment data was received, together with the
 

fields data base, activities were begun to prepare a large, comprehen

sive data base which included ancillary information about the sample
 

segment and the specific passes in the data set.
 

Because the preparation of data was an ongoing activity, this
 

appendix has been organized to reflect the state of the data base used
 

for testing at the end of each of four periods covered by this
 

report. Thus experiments conducted during the third quarter will refer
 

to Section 1.3 of this appendix for a complete description of their data.
 

1.1 FIRST PERIOD
 

The Landsat data used during the first period consists of ten
 

1973-74 LACIE sample segments over Kansas, mainly in the Southwest Crop
 

Reporting District as shown in Figure I-1. Two of the sample segments
 

are Intensive Study Sites (ITS) with wall-to-wall ground truth as deter

mined by ground teams, and the remaining 8 sample segments are Statis

tical Reporting Service (SRS) sites with field labeling determined by
 

NASA/JSC analysts based upon examination of the imagery itself. Imagery
 

from several Landsat passes over each of these sites is available, and
 

these images have been registered to each other. Table I-I shows the
 

sample segments, how the ground truth was obtained, and the dates of
 

imagery collection used in the tests reported here.
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TABLE I-1. FIRST PERIOD DATA BASE
 

Sample Ground Acquisition
 

Site Name Segment No. Truth Dates Used
 

Morton 1042 ITS 5/8, 5/26
 

Finney 1034 ITS 5/8, 5/26
 

Graham 1018 SRS 5/8, 5/26
 

Lane 1026 SRS 5/8, 5/26
 

Scott 1029 SRS 5/8, 5/26
 

Grant 1036 SRS 5/9, 5/27
 

Kearny 1040 SRS 5/9, 5127
 

Haskell 1065 SRS 5/9, 5/27
 

N. Stevens 1045 SRS 5/9, 5/27
 

S. Stevens 1045 SRS 5/9, 5127
 

1.2 SECOND PERIOD
 

During the second period, 1973-74 multitemporal LACIE sample
 

segments over 12 sites in Kansas were prepared. Figure 1-2 shows
 

their spatial distribution (two of the sites are in Stevens County).
 

Four of these sample segments -- over Ellis, Saline, Morton, and
 

Finney -- are Intensive Test Sites with wall-to-wall ground truth as
 

determined by ground teams, while the remaining eight sample segments
 

are SRS sites with field labeling determined by NASA/JSC analysts based
 

upon examination of the imagery itself. Data from several Landsat
 

passes over each of these sites is available, and has been registered
 

to each other. Table 1-2 shows the sample segments, and the dates of
 

imagery collection used in the tests reported here.
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TABLE 1-2. 1973-74 MULTITEMPORAL LACIE SAMPLE SEGMENTS
 

Sample 
Site Name Segment No. 

Morton 1042 

Finney 1034 

Saline 1114 

Ellis 1106 

Graham 1018 

Lane 1026 

Scott 1029 

Grant 1036 

Kearny 1040 

HaskeIl 1065 

N. Stevens 1045 

S. Stevens 1045 

1.3 THIRD PERIOD
 

10/23/73, 5/9/74, 5/27/74, 6/7/74
 

10/23/73, 4/20/74, 5/8/74, $/26/74
 

10/20/73, 4/18/74
 

10/21/73, 5/26/74, 6/12/74
 

10/4/73, 4/20/74, 5/26/74
 

10/4/73, 4/20/74, 5/26/74
 

10/4/73, 4/20/74, 5/26/74
 

10/23/73, 5/9/74, 5/27/74
 

10/23/73, 5/9/74, 5/27/74
 

10/23/73, 5/9/74, 5/27/74
 

10/23/73, 5/27/74, 6/14/74
 

10/23/73, 5/27/74, 6/14/74
 

After receipt in December 1976 of a large data set consisting of
 

the 75-76 LACIE sample segments over the U.S., together with the Fields
 

Data Base as of Day 315, the following data base was prepared.
 

The Landsat data used consisted of 75-76 Landsat data over 21
 

Blind Sites and two Intensive Test Sites (ITS) in Kansas. These 23
 

sites represented all of the Blind Sites and ITS sites in Kansas with
 

cloud-free passes in early Biowindow one, and in Biowindow two. only
 

these two passes were used in any of the experiments described in this
 

report, although a pass from each of the remaining biowindows was also
 

prepared. These four passes were merged to form multitemporal data
 

sets, and then screened to eliminate areas covered by cloud, cloud
 

shadow or water in any of the four biowindows.
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Signatures were computed for each of these 23 sites, and a data
 

tape 	consisting of field means was also produced. The Fields Data
 

Base 	as of Day 315 was used in these steps.
 

The final step in data preparation was to prepare a list of
 

ancillary information for each of the sites. The types of ancillary
 

information and the range of each ancillary variable appears below in
 

Table 1-3. Figure 1-3 shows the distribution of these sites in Kansas.
 

1.4 	FOURTH PERIOD
 

The fourth period data base consisted primarily of 74 data sets
 

over 	38 sample segments in Kansas (35 blind sites and 3 intensive test
 

sites) and 18 data sets over 18 sample segments in North Dakota. Each
 

of the data sets consists of four acquisitions of 75-76 LACIE sample
 

segment data, one from each crop development biowindow whenever possible.
 

Only 	the first two biowindows of the Kansas data and the first three
 

biowindows of the North Dakota data were ever used. Along with the
 

Landsat data is ancillary data pertaining to the sample segment, and
 

to the various Landsat acquisitions used in the data set.
 

The fields data base as of Day 315 was used to provide the field
 

designations which were used in lieu of ground truth in our evaluations.
 

Limited comparisons of the Kansas field designations with actual ground
 

truth showed no discrepancies. North Dakota (spring wheat) field desig

nations were then compared with ground truth over two of the sample
 

segments. The analyst interpreters were found to have accuracies of
 

94% and 97.5% over these two sample segments.
 

Tables 1-4 and 1-5 show the ranges of important ancillary variables
 

for the winter wheat and spring wheat data, respectively. The ancillary
 

.variable called "crop calendar" is the Robertson crop calendar, and the
 

variable "gamma" is the haze factor calculated by XSTAR [2]. The haze
 

levels represented in these data sets span a fairly broad range.
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TABLE 1-3. ANCILLARY VARIABLES AND THEIR RANGE
 

Ancillary Variable Range 

GENERAL: 

Degree Days (10 Year Average) 2060 - 2470 

Land Use (% Agriculture) 10% - 100% 

Precipitation (10 Year Average) 7.2" - 12.9" 

Latitude 37.10 - 39.20 

Longitude 94.9 - 101.50 

Elevation 900' - 3350' 

PASS SPECIFIC (Calculated for Each Pass):
 

Sun Angle 56 - 67; 350 - 460
 

° 
View Angle -5.5 - 4.5; -6.00 - 4.00 

Julian Date 294 - 349; 87 - 127 

Crop Calendar (Robertson Scale) 0 - 0; 2.76 - 3.66 

CALCULATED FROM DATA:
 

Difference Between Sites in Mean of
 
Soils Area in Landsat Space 0 - 37.73; 0 - 48.65
 

Difference Between Sites in Mean of 
Green Development Area in Landsat Space 0 - 35.77; 0 - 60.72 

Haze Diagnostic Calculated by XSTAR 
from Yellow Shift of Data -1.36 - 0.86; -4.26 - 0.73 

Difference Between Sites in Additive 
Factor Calculated by XSTAR 0 - 19.06; 0 - 17.04 

Differende Between Sites in Multipli
cative Factor Calculated by XSTAR 0 - 0.14; 0 - 0:42
 

Haze Value Calculated by XSTAR from 
Yellow Shift of Data -0.06 - 0.03; -0.22 - 0.03 
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TABLE 1-4. RANGE OF ANCILLARY 

Winter Wheat (Kansas) Data 

DATA 

DEGREE DAYS 

PRECIPITATION (INCHES) 

% AGRICULTURE 

1910 - 2525 

1 - 15 

5 - 100 

ELEVATION 

LATITUDE 

LONGITUDE 

900' - 3350' 

37,0o - 39.70 

9480  101,50 

H 

BIOWINDOW 1 
JULIAN DATE 291-90 CROP CALENDAR 0 - 3,3 SUN ANGLE 460 - 680 GAMMA -.08 - .23 

B!OWINDOW 2 
JULIAN DATE 90-138 CROP CALENDAR 3,0 -3,6 SUN ANGLE 350 460 GAMMA -,5 -.19 

r 

0 

BIOWINDOW 3 

JULIAN DATE 
BIOWINDOW 3 

135-163 CROP CALENDAR 3.3- 4.8 SUN ANGLE 31o- 36 GAMMA -.22 - .19 
0 

JULIAN DATE 135-163 CROP CALENDAR 4.5 - 6,0 SUN ANGLE 310 - 34 GAMMA -.25 - .17 



TABLE 1-5. RANGE OF ANCILLARY DATA 

Spring Wheat (North Dakota) Data 

DEGREE DAYS 2360 - 2520 ELEVATION 950' - 2600' 

PRECIPITATION (INCHES) 7.8 - 9.2 LATITUDE 46,2 - 4880 

% AGRICULTURE 5 - 100 LONGITUDE 96,70 - 103,80 

TIME PERIDA 1 
JULIAN DATE 127-131 SUN ANGLE 330 - 390 GAMMA -.11 - .12 

TIME PERID 
JULIAN DATE 144-150 SUN ANGLE 330 - 390 GAMMA -.5 - .1r 

r 

TIME PERIOD 4 
JULIAN DATE 198-204 SUN ANGLE 330 - 390 GAMMA -.01 - .18 

0 
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- APPENDIX II 

CLASSIFICATION ACCURACY'USING COMPRESSED DATA 

(John Stinson) 

COMPRESS is an optional data compression procedure within PROCAMS.
 

The object of 'ata compression is to greatly reduce the processing time
 

required to run portions of PROCAMS and therefore reduce the cost of
 

processing.the data. COMPRESS computes a mean value for the pixels
 

contained within each training field.
 

This data compression normally is performed after the preprocess

ing and training stages of PROCAMS and before classification.
 

However, before we begin to conduct extensive experiments on com

pressed data, we would like to know whether or not it is valid to draw
 

inferences about results for normal uncompressed data from results
 

obtained using compressed data.
 

To answer this question we examined two different types of classi

fication.: local. classification.and,signature extension results using
 

untransformed signatures from another site. Both compressed and uncom

pressed data were used for each type of classification. Nine LACIE
 

sample segments from 1973-74 Landsat data over Kansas were used for
 

this test. Most of the sample segments are from the Southwest Crop
 

Reporting District of Kansas, all are from western Kansas.
 

Table II-1 shows local classification accuracy for Morton and
 

Finney Counties, early in May and late in May. A comparison of~average
 

classification accuracy on compressed and uncompressed data is given.
 

The.difference between average classification,accuracy using compressed
 

and uncompressed data is 1.2%. The standard deviation of the difference
 

in classification accuracy using the compressed and uncompressed data
 

is 2.78%.
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TABLE II-i. 	LOCAL CLASSIFICATION ACCURACY (Compressed
 

vs Uncompressed Data)
 

Classification Accuracy
 
(%) 

Site Compressed Uncompressed 

Morton Early May 96 91 

Finney Early May 97 98-

Morton Late May. 92 90 

Finney Late May 97 98 

Average: 95.5 94.3 

Table 11-2 shows signature extension results using untransformed 

signatures from remote-sites. The classification accuracy is given 

for compressed and uncompressed data for each of twenty cases. Six 

of the signature extensions are from the'early May data and fourteen 

from the late May data. The average of'the difference in the classi

fication accutacy between compressed and uncompressed data is 7.9%. 

The standard deviation of the difference between classification accu

racies is 6.89%. The correlation coefficient between the compressed 

and uncompressed data is 0.856. This correlation is significant at 

the 0.0005 level. -

These results would.tend to support the belief that inferences
 

can be drawn'about the overall performance of various algorithms on
 

normal uncompressed data from the results of tests of these algorithms
 

on compressed data.
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TABLE 11-2. 	 UNTRANSFORMED SIGNATURE EXTENSION RESULTS COMPARING 
COMPRESSED AND UNCOMPRESSED DATA 

Accuracy
 
(M) 

Not
 
Site From Site To Time Period Compressed Compressed
 

Morton Finney Early May 91 	 93
 

Morton Grant Early May 60 	 85
 

Morton Haskell Early May 78 	 88
 

Finney Morton Early May 76 	 80
 

Finney Grant Early May 71 	 90
 

Finney Haskell Early May 100 	 99
 

Morton Finney Late May 54 	 50
 

Morton Graham Late May 61 	 72
 

Morton Grant Late May 69 	 75
 

Morton Haskell Late May 77 	 86
 

Morton 	 N. Stevens Late May 82 87
 

Morton 	 S. Stevens Late May 57 66
 

-Finney Morton Late May 53 55
 

Finney Graham Late May 64 75
 

Finney Lane Late May 85 84
 

Finney Scott Late May 87 97
 

Finney Grant Late May 54 75
 

Finney Haskell Late May 64 79
 

Finney N. Stevens Late May 55 61
 

Finney S. Stevens Late May 50 49
 

Average: 	 69.4 
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APPENDIX I1 

DESCRIPTION OF THE TEST BENCH
 

A signature extension algorithm cannot stand alone; it requires
 

data quality control programs, signature extraction techniques, a
 

classifier and other related procedures and processes to form a com

plete classification system. For the testing of signature extension
 

algorithms, the classification system PROCAMS was used as the test
 

bench into which various techniques were incorporated for evaluation.
 

PROCAMS, whose development was begun by ERIM during the FY76 contract
 

period, was designed to be a state-of-the-art test bench for a wide
 

range of data processing algorithms, including signature extension
 

algorithms.
 

The PROCAMS system consists of several modules which can be
 

grouped into five general subsystems: preprocessing, data compression,
 

training, signature transformation, and classification. A brief des

cription of the five subsystems of PROCAMS follows, together with a
 

flow chart (Figure III-1).
 

The preprocessing portion of PROCAMS consists of set-up programs,
 

data quality algorithms, and, optionally, a haze correction technique.
 

Originally there were two routines which performed the function of pre

paring the data for PROCAMS. These are PRECAMS, a subroutine to set
 

up the header record with information needed for subsequent processing,
 

and SUBTIME, a subroutine which selects the spatial and temporal sub

set of the data which is to be processed and modifies the header infor

mation accordingly. Data quality algorithms include subroutine BADLINE,
 

which detects and flags bad data lines using a data channel which is
 

appended for just this purpose, and subroutine CLOUD which identifies
 

and similarly records pixels which correspond to clouds, cloud shadow,
 

and water. These four programs were later replaced by one program
 

called SCREEN [ 11 3- The final (aid optional) stage of the prepro

cessing is haze correction.
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INPUT DATA
 

SUBTDIE 

BADLINE
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FIGURE III-i. FLOW CHART OF THE PROCAMS SYSTEM 
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Data compression is an optional step in PROCAMS which is used to
 

lower processing costs when several passes through the data are antici

pated. Two types of data compression were used in PROCAMS.
 

The first data compression technique computes the average
 

signal values over each field to produce a mean value or "average pixel".
 

This subroutine, called COMPRESS, yields data compression ratios of up
 

to 100 to 1. This technique is applicable only when fields have been
 

defined.
 

When proportion estimation results are desired, the data may be
 

sampled randomly to achieve an effective data compression.
 

The third step of PROCAMS (training) is implemented in ERIM's
 

clustering algorithm CLUSTR [9].
 

The fourth subsystem in PROCAMS (signature transformation) is
 

signature extension, a role which is filled by the cluster matching
 

routine CROP-A developed by ERIM.
 

The final portion of PROCAMS consists of the classification and
 

tabulation programs. PROCAMS uses a sum-of-likelihoods decision rule
 

for its classifier, similar to the one used in the LACIE classification
 

and mensuration subsystem. Properly trained, this classifier has been
 

shown to perform nearly as well as any classifier yet designed [12].
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