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The work described in this report was performed by the Guidance
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ABSTRACT

j

7
I

A comprehensive sampled data analysis of a computer-controlled
manipulator is presented in terms of root loci for gain selection and
transient responses to step input functions. All parameter values
and their derivations where applicable are tabulated. The analysis,
while quite specific, uses normalized gain parameters, which allows
the results to be applied to any similar system regardless of individual
hardware parameter values.
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SECTION I

INTRODUCTION

The JPL Robot Research Program has the goal of applying robotics
to space exploration. As space mission requirements become more complex
and communication delays become longer, spacecraft must have more autonomy
to be able to perform useful tasks. Both these problems, complexity and
communication delay, are present in planetary surface rovers. For example,
a rover, must coordinate the functions of manipulation, vision, and loco-
motion in order to carry out tasks of scientific interest. Furthermore,
at earth-Mars distances, communication delays range from B to 40 min,
limiting direct control to very simple tasks. 	

w

Since a planetary rover is an obvious candidate for robotic appli-
cations, the JPL Robot Research Program has developed a breadboard Mars
roving vehicle.	 This breadboard development was chosen to give focus to
the program, and also represents the problem of developing basic robotic
capabilities (manipulation, vision, and locomotion) and coordinating their
operation.	 Typical surface exploration tasks were selected, consisting
of sample (rock, etc.) handling, and instrument assembly and deployment.
Sample handling and assembly impose stringent requirements on manipulator
motion.	 For sample handling, the manipulator must operate in an impre-
cisely known environment, avoiding obstacles which change at various
times.	 During assembly tasks, the environment is fairly well known, but
precise parts placement is important. 	 Both of these tasks then impose
requirements for precise control over the manipulator's motion: 	 sample
handling during the large motions and assembly at the motions' end points.
Additionally, the desired space application necessitates a simple program,
one which need not be run by a large computer. 	 Meeting the precise
control requirements requires a thorough knowledge of the control stability
and transient response characteristics of the closed-loop feedback system.
It io t;? intent of this report to present that information.

Since ti.a primary purpose of the rover development was to build an
overall rover system, subsystem technology was adapted from existing de-
signs wherever possible.	 The JPL rover manipulator design was based on
work originally done at Stanford University's Artificial Intelligence
Laboratory.	 Since JPL's requirements differed from those of Stanford,
additions and changes were made in the course of developing JPL's manipu-
lator system.

i

The Stanford design consists of a six-pointed, boom-configured mani-
pulator.	 All six links move simultaneously, providing coordinated motions.
The original control technique (Ref. 1) used a full representation of the
manipulator's mechanical and inertial characteristics.	 As development pro-
ceeded, it became apparent that the performance was not satisfactory, which
dictated changes verified by analysis. 	 Because of the increased control
loop response, simpler control techniques could be employed which placed
more reliance on standard servo loops to control the motion of the indivi-
dual links.	 Eventually, the very complicated model of inertias, reaction

1

torques, and driving torques was eliminated, which resulted in a considerable
savings in computer storage and computation time.•i

if	 1-1
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SECTION 11

EVOLUTION OF THE PRESENT CONTROL SYSTEM

The original system control soft,saare, as developed at Stanford,
modeled the entire manipulator in terms of inertia, reaction torques,
gravity torques, friction torques, and motor characteristics. In essence,
it was supposed to compute the torque characteristics necessary to perform
a maneuver in an open-loop manner, and if done correctly, the manipulator
could move very rapidly with no errur. However, position and rate
feedback were included to compensate for model errors. The first JPL
version of the control system was the same as the Stanford system from
which it was copied, except for the addition of tachometers in place of
numerical differentiation to obtain rate feedback. Over a period of time,
other changes were made which resulted in the present simpler system.

The first modification made at JPL was to change from voltage drive
to current drive amplifiers. A complete sampled data analysis done with
voltage drive showed that the gains would have to be changed for large
changes in in°rtia regardless of the fact that the inertia was continually
computed and used as a gain multiplier. Another advantage of current drive
was the elimination of the motor back electromotive force (EMN) compensation.
The second modification was to eliminate the friction compensation in the
control software and increase the gains for better performance. Unexpectedly
high frictional torque was encountered in the harmonic drive speed reduc-
tion gears. This was a sinusoid with angular motion, thus making the fric-
tion compensation useless since it used only a constant. Also the friction
in sliding ,joint 3 was very erratic. Considerably higher gains were required
to increase the response to these large and varying frictional torques.

The sampled data analysis done at that time was for a system with
1-cycle delay since all the signals were computed in sequence, then all
were sent out in sequence at the end of the sampled interval, resulting in
a full sampling interval delay. The root locus plots clearly indicated that
the gains could not be increased very much, so an analysis with no delay
was performed. This showed that a much better response could be obtained
with no delay. The solution was to change the program to compute each error
signal and immediately send out the result to that ,joint. This procedure
was repeated for each ,joint in turn. The result was a system with approxi-
mately 0.10-cycle delay with a sampling rate of 62.5/x. Another analysis
was now required which used a variable delay. Its root loci indicated,
as expected, a less responsive system than for zero delay, but still consid-
erably better than the original 1-cycle delay system. Later, the sampling
rate was doubled to 125/s, which required additional loci with t11e delay
now increased to 0.2. Despite the fact that the analysis indicated suffi-
cient stability margin with new high gain values, lower values were used
because the software continually computed very high erratic error signals.
This was traced to noise in the system, particularly ground-loop noise. A
solution was to introduce the rate error integral gain KIv . Its effect was
to increase the effective position gain ( Ke + KI v ), but the noise was re-
duced by the integration process. Again this necessitated an expansion of
the analysis and considerably more effort to display the root locus charac-
teristics and transient step responses.

2-1
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SECTION III
I

SYSTEM ANALYSIS

The analysis presented here uses conventional techniques for deter-
mining system gains and the resultant stability margin, and the steady-
state and transient behavior. Modified Z transforms are used since the
system employs sampled data with a fixed computation delay which is a small
fraction of the total sampling interval. Root locus plots in the Z-plane
unit circle indicate relative stability, and responses to step displacements
and disturbance torques indicate transient and steady-state response.

A.	 SYSTEM PARAMETERS AND TRANSFER FUNCTION

A flow diagram of the present manipulator control system is shown
in Fig. 1. It indicates the following three aistinet portions of each
control loop:

(1) The software or digital control located in the General Automa-
tion SPC-16/85 minicomputer.

(2) The manipulator ,joint drive motor, along with its current drive
amplifier, and the tachometer and angular position potentiometer
for feedback of rotation rate and angle, respectively.

(3) The interface between the computer and the manipulator, con-
sisting of digital-to-analog and analog-to-digital (A/D) con-
verters.

The digital control implies a finite sampling time or computation
cycle time shown by the sampler with period T in seconds. The sampling
rate is then the reciprocal of T.

Figure 2 replaces the various software and hardware blocks in Fig. 1
with their respective Laplace transforms. A minor point is that the A/D
converters do not continuously update but read only every T seconds, which
would require that the sampler switches be placed on the other side of
the converters. However, the effect is the same, and the sample and hold
are done appropriately in the analysis. Figure 2 can be reduced to the
simple flow diagram presented in Fig. 3(a).

Figure 3(a) represents the actual control system configuration. The
j	 approach here is to analyze this system for stability by deriving the charac-

teristic equation and plotting parametric root loci in the unit Z-plane
circle. Along with this, the transfer function for a step displacement
and a step disturbance torque will be derived using configurations 3(b)
and 3(c), respectively. The transient response to these step inputs can
be computed fiasily from the Z transfer function and plotted using a
general-purpose computer with its plotting equipment. The overall sampled
data transfer function for Fig. 3(a) is

3-1
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Figure 1.	 Physical Configuration of Manipulator Control Loops
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Figure 2. Analysis Configuration of Manipulator Control Loops
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whe-e the starred transform G"(s) represents the ordinary Laplace trans-

form of the sampled signal ea(t).

keferring to Fig. 2, the individual Laplace transfer functions are

G, = n	 Speed reduction gear ratio

KT
G2 = K2A2A1 —	 Motor and forward loop gains

Js2

KIv
G3 = Kv + ---	 Rate error proportional plus integral gains

s

KIe
G4 = Ke + —	 Position error proportional plus integral gains

s

G5 = -KiA3GTs	 Rate feedback gain

3-3
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06 = s	 Analytic differentiation of input function

G7 = 1	 Unity gain

Gg = -K1A 1 Gp	 Position feedback gain

1 - e-3T
Gho =	 Zero-order hold

s

1
G9 =	 Constant to convert torque to current, A

KT

As indicated in the definitions for the constant multipliers
K1, K2, and Kg, these constants ar6 for unitizing or essentially can-
celing the gains due to the various hardware elements and also to
introduce the gain multiplier J %KT. The effect of this is to make
each control loop a function -f only the gains Ke r Kv, Kle i and KIv•
Now the following element transfer functions reduce to

J^ KT 1

GZ KT 72 n

G5 = -ns

Gg = -1

The gear reduction ratio (n) now cancels from the transfer function,
but most importantly, each manipulator ,joint servo loop is dependent only
on the multipliers,

KC	Angular position error gain, s-2

Kle	 Angular position error integral gain, s-3

Kv	 Angular rate error gain, s-1

KIv	 Angular rate error integral gain, s-2

Thus, if the multiplier A l is equal to the reciprocal of the ratio
KTIJ (actual motor torque constant/actual total inertia at the motor shaft)
for each control loop and the same gain values are used, all manipulator
,joints will have the same stability margin and identical transient responses„
This is a very desirable situation, unless hardware limitations such as an
underpowered motor drive dictate decreased gains and slower response for
a particular joint.

In general, the KT parameter for each motor is known quite accurately,
but the inertia for some ,joints can change significantly, as indicated in
Table 1. Since the inertia value is no longer computed continuously, a
constant average value will be used. The approach is to multiply all four
gains by this deviation factor. The effect on stability is easily obtained

3-4
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Table 1. Values for Unitizirig Multipliers K 1 , K2 r and K3, and for
Parameters Used in Their Derivation ( Continuation 2)

Definition of Parameters

Al current drive amplifier gain

GP	 =_ angular position potentiometer for position
feedback

GT	 a angular rate tachometer for rate feedback

Al	 m A/D converter for position feedback

A2	 = D/A converter for error signal to motor

A3	 a A/D converter for rate feedback

n	 =_ gear, motor to manipulator, stepdown ratio

KT	 a nominal, motor torque constant

i
KT	 a value of motor torque constant ( referred to motor

shaft) used in computing program constant K2

J^	 __ value of inertia ( referred to motor shaft) used
in computing program constant K2

JO	 = value of J I referred to manipulator joint rather
than motor shaft

KTO value of KT referred to manipulator joint

JO	 = range of actual inertia referred to manipulator
Joint

JONO	 - ratio of constant inertia value used in program
(for K2 ) to actual value as manipulator configura-
tion changes

J%KT	 =_ motor characteristic constant used in computing K2

computed constant used to convert units from A/D
A 1 GP converter back to radians, and essentially unitize

angular position feedback gain

3-7



`i	 77-66
i

Table 1. Values for Unitizing Multipliers K1 i K2 r and K3, and for
Parameters Used in Their Derivation ( Continuation 3)

Definition of Parameters

J'

K2 = nA2AIKT

JO
^ 	 computed constant used to convert error signal

A2AIKTO to proper D/A converter units, and essntially
unitize all gains in loop except Ke i Kv, KIv,
and KI

n
e

K3 =	 = computed constant used to convert units from A/D

	

A30T	 converter back to rad /s, and essentially unitize
angular rate feedback gain; also to convert feed-
back from motor rad /s to manipulator rad/s to
agree with input signal units

by plotting the resultant root locus. If the stability or transient re-
sponse is degraded too much, the gaino for that particular joint can be
reduced or a simple algorithm can be used to compute the inertia change
as a function of manipulator joint configuration. An additional factor
to consider here is the change in inertia when manipulating a large ohject

1. Comments on Joint 3

Joint or link 3 is the only sliding rather than rotational joint.
It has the conventional motor drive, with a 0.563-in. radius shaft
for driving the linear motion arm. Thus, the weight of the moving
part is essentially the mass, and the radius of gyration is the radius
of the drive shaft or gear. The joint can then be treated like all
the rest in terms of servo control and computation of K 1 , K2r and K3.
Both its rate and position feedback are abtained from rotary sensors
mounted on the motor ahaft, so that there is no gear reduction for
position as with all the other joints. ThG input function in terms
of inches has to be converted to radians by dividing by the radius

{	 (0.563 in.).
a

2. Truncation of A/D and D/A Converters

All the A/D converters are 13-bit devices, 1 sign bit and 12
data bits. A 10-V input into the A/D results in full-scale output or
2 12 = 4096 output units. Since the angular position potentiometer sensi-

r8

J
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}
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tivity is 3.274 V per manipulator radian, full-scale output represents
±3.054 red. The resultant truncation is ,13.054/4096 = 0.745 mrad for
all ,joints except 3. The angular rate sensitivity (referred to the
manipulator rather than the motor) and the resultant truncation differs
for some ,joints as indicated in Table 2.

The D/A converter' is a 10-bit device with one sign bit and 9
data bits. Full-scale input of ±29 = X12 results in 10 V output.
The truncation is then 0.0195 V, which can be converted to amps using
the Al values from Table 1 or to other units using the proper parameters.

B.	 STABILITY

The characteristic equation is obtained from Eq. (1) by combining the
given Laplace transforms of G 1 through 08 to obtain all the starred transforms,
and then converting them to their corresponding Z transforms. At this point,
it should be made clear that modified Z transforms will be used since we
are analyzing a sampled data svztaw with fixed delay; i.e., the position
and rate feedback data for one manipulator joint are read in essentially
simultaneously, and operated on to compute the output error signal, which
is then sent out to the drive motor prior to repeating the process for the
remaining five joints. Thus, a fixed computation delay TD is present, and
t1el total sampling interval T is determined by the time required to process
all six joints.

Table 2. Truncation of A/D Converters

Full-scale rate
	

Rate truncation

Joint	 motor rad/s	 manip rad/s	 mrad/s	 deg/s

1	 294 2.94 0.72 o.o4

2	 227 2.27 0.55 0.032

3	 2.82 2.82 0.69 0.039

4	 156 2.17 0.53 0.030



The individual modified Z transforms for the denominator of Eq. (1)
are:

mZ - m + 1 KTJ '
-G5G2Gho( Z ) = T Z(Z - 1) AT

T2 m2Z2 + Z(-2m2 + 2m + 1) + m2 2m + 1 KTJ
-G I G 2G 8Gho (Z) = — Z(Z - 1 )2	2 	 AT

(Kv + KIVT)Z - Kv
G3 (Z) = -

(Z- 1)

(Ke + K IeT)Z - Ke

	

G4( Z ) = -	
(z	 1)

The characteristic equation has the form

A4Z4 + A3z3 + A 2 Z 2 + A j Z + AO	0	 (2)

where

A4 = 1

A3 = -3 + M(C2 + C 3 ) + m 2(Cl + CO

A2 = 3 + 0 + 2m - 3m2) C1 + ( 1 - 3m ) C2 + ( I	 2m)C3
+ (1 + 2m - 2m2 )C4

Al = -1 + m(3m - 4)C1 + Om - 2 ) C2 + ( m	 1)C3 + (m	 1)2C4

AO = -(m - 1 )2C1 + (1	 m)C2

and

1	 KTJ
C 1 = - KeT2 —

2	 JK'T

KTJ
C2 = KVT -

^KT'

KTJ
= KjvT2 —

JKT'

I	 KTJ
C4 = 2 KIeT3 -

JKT'
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TD
M = 1 - —

T

TD 
= 0.1 (for T = 1	 s)

T	 62.5

TD = 0.2 ( for T	 s)
T	 125

The next step is to program Eq. (2) and compute the roots as a function
of the gains Ke , Kv, KIv, KIe, the sampling interval T, and the delay
from zero to one full cycle ( T). An interesting presentation is given
here for the case of zero delay.

The Z-plane loci for constant Kv or constant Ke are conveniently
circles with origins at - 1 and +1, respectively. The two radius equations
are

2
ry = 4 - 2KVT - KIVT2

2
re = (Ke + KIv)T2

where the gains are as defined previously. These expressions are exact
for no integral gain (KIe = 0), but they still apply for a large range
(0 —60,000) of KIe since the locus of the complex roots changes little,
and only the real root moves along the real axis as KI increases.
This has, of course, been checked using Eq. (2) with no delay (m = 1).

C.	 TRANSIENT AND STEADY-STATE STEP RESPONSE

Section B introduced the system characteristic equation, which,
for specific gain values, indicates the relative stability in terms of
location of the roots of this equation in the Z-plane unit circle. This
information is sometimes sufficient in itself, but usually it is desira-
ble to analyze the control system response to step inputs. In this case,
we are interested in response to steps of position AO and disturbance
torque T do. The transient response in terms of rise time, overshoot,
and damped oscillation frequency, along with the final steady-state re-
sponse to these inputs, is very useful information. Also, the actual
measured response obtained by applying these step inputs to the physical
system is a good indication of the accuracy of the system model and the
understanding of its performance.

1.	 Step Displacement Transfer Function

Equation (1) can be used to obtain the desired transfer function.
However, a slight modification is necessary since the second term in the

3-11
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numerator contains the differentiation a-ement 06)	 Normal inputs are
polynomials in joint angle as a function of time (nT). Thus, the analytic
differential can be easily computed, but a step input is never used by the
trajectory program and certainly not differentiated. Therefore, we can
think of an input step G Oi as a displacement error which occurs when the
loop is initially closed. The result is the elimination of the second
term in the numerator since it has no effect on this input.

For a step displacement input

AOi(Z) = GO Z
z-1

the output response is

AaiZ[m2Z2 + (-2m2 + 2m + 1)Z + (m - 1) 2][(C1 + C4)Z - C13
B OW _

	

	 ( 3)
(Z - 1) [A4Z 4 + A3z3 + A2Z2 + A1Z + Ao3

where all the parameters are as defined in Section B. To obtain the
transient response as a function of nT, it is necessary to expand
Eq. (3) to the following form:

DOi(B4Z 4 + B3z 3 + B2Z 2 + B1Z)
Oo(Z) _

	

	 -	 (4)

Z5 + (A3 - A4)Z 4 + (A2 - A3)Z 3 + (Al - A2 )Z2 + AO - A1)Z - AO

where

B4 = m2 (C1 + CO

B3 = (1 + 2m - 3m2 )C1 + (1 + 2m - 2M2 )C4

B2 = m0m - 4)C1 + (1 - M)2 C4

B1 = -(1 - .m)2C1

Division of Eq. (4) is easily programmed on a computer and the
step response obtained for a specific set of input parameters. If
the final value theorem is applied to Eq. (3),

(Z - 1)
oo(nT) =	 Oo(z)
n—m	 Z	 Z-1

2C4

244

as would be expected for an input step AO i . But if KIe is zeroed,
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ff
;a

I^ 2C1	 Ke

0 o(nT) =	 G01 =	 G01

d	 n. co	 2C1 + C2	 Ke + KIv

indicating that the rate integral gain (K I v) has to be zero or the
output will not reach G oi.

2.	 Step Torque Disturbance Transfer Function

Each manipulator Joint control system is subject to disturbance
torques, some joints more than others. These torques can be due to the
hand encountering an object, gravity effects, inertia reactions from
other points during movement, and, in this case, very large and changing
friction torques in the harmonic drive reduction gears. It is important
to know the transient and steady-state response to these torques, which
are generally not pure step inputs, but the step response analysis is
quite sufficient for selecting proper gains for optimum response in
conjunction with stability margin requirements.

The output response for an input torque is

G2G1GgT do
O o =	 —	 (5)

1 - *G 5G2Gho - G 1^3G 8Gho 4

The torque T do refers to an output torque and has to be multiplied by
the gear stepdown ratio n to reference it to the motor shaft. Then it
must be multiplied by the torque-to-current conversion factor G 9 , which
results in a numerator

2

G2G 1 G9Tdo( s ) = K G2Tdo(s)
T

Here, G2 is thg motor transfer function KT/Js 2 and is not multiplied by
the constant J/KT as in the previous derivation for an input 01 (Eq. 1).
Letting the torque input be a step torque T do/s results in a numerator

'	 n2Tdo

	

G2G1G9Tdo(s) = —	 (6)
Js3

The Z-transform of Eq. (6) is

{

.;

n2TdoT2 [m2Z2 + ( -2m2 + 2m + 1)Z + (m - 1)2]
G2GiG9Tdo(Z) _	 (7)

2J (Z - 1)3

Making all the denominator substitutions in Eq. (5) as was done in
Section C-1 results in a factor of Z transposed to the numerator, and
the final transfer function for a step torque is
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n2TdoT2 [m2Z2 + (-2m2 + 2m + 1)Z2 + (m - 1)2Z]

0 0( Z ) `	
2J
	

A4Z" + A3Z3 + A2Z2 + A1Z + Ao

	 (8)

where the denominator coefficients are as defined in Section B and T do
has units of ounce-inches if J is in ounce-inoh-seconds squared. Again
the transient response can easily be obtained by programming the division
of Eq. (8) for a specific set of parameters.

It is of interest to apply the final value theorem to Eq. (8),
assuming nonzero values for all the gains:

Go( nT) =Oo(L) = 0
n— Co	 Z	 Z-1

Thus, for a step torque, a transient error in O o occurs but decays to zero.
But if the position error integral term K 1e is zero, the output error
becomes

n2TdoT2	 n2ldoKT
On	

J(2C1 + C3) -	
(9)

J * KT(Ke + KIv)
—co 

For a 10,000-oz-in, step torque, an inertia (J) of 0.034 oz-in.-32
W multiplier = 0.034 and KT/KT	 1), a gear reduction ratio of 11100, and
a Ke value of 3600, the steady-state position error from Eq. (9) is 0.47
deg. With any value of KIe inserted, this error decays to zero, but
a larger value of K Ie will cause it to decay faster. Some of these torque
response characteristics are given in the Append?,x. It should be noted
from Eq. (9) that the magnitude of the steady-state error with no KIe,
and even the magnitude of the transient response to a step torque with
KIe in, will vary for each joint as a function of the gain multiplier J,
and the ratio KT /KT . Generally, KT/KT will be unity; therefore, the error
is determined by the factor n 2/Ji since each joint will have the same
Value of Ke and KIv as selected from the root locus plots.

The above discussion of the transient position error due to a
disturbance torque indicates why it is important to analyze such re-
sponses as well as select proper gains for stability. Every manipulator
joint should operate with the same gains Ke, Kv, K 1e, KIv) and have the
same locus of roots, but as indicated above, the error due to a disturbance
torque will be a function of the factor n 2/Y which differs for most of
the Joints, as indicated in Table 1. It is important to consider this,
since reaction torq• • as are reflected back to each joint during movement.
Of course, these are reduced by the gear reduction ratio n. A more sig-
nificant effect is from the varying friction torque. This torque is not
reduced by n and is a real problem if it is high and the gains are low,
resulting in an undesirable rough motion. Table 1 indicates why ,joints
3 through 6 are particularly susceptible to this type of disturbance as
shown by their relative hi gh values of n/J'. The parameter n is not
squared here since it is assumed that the friction torque is not reduced
by n, but the resulting transient position error is referred to the output
by the remaining n factor.
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SECTION IV

DISCUSSION OF STABILITY AND TRANSIENT RESPONSE AS A FUNCTION OF GAINS

The data to be summarized here consists of a series of root locus
plots and transient step responses presented in the Appendix. These
are only a very small fraction of the total plots generated during
the extended study of this system. No attempt will be made here to
analyze and compare each successive system. The important point is
to analyze the present and, it is hoped, final system configuration.
This final system is one which has a sampling rate of 125 per second
and about 20% delay. Unfortunately, the increase in sampling rate
from 62.5 to 125 occurred after the analysis was completed. The bulk
of the plots therefore pertain to a system with a sampling rate of
62.5 and 10% delay. A few computer runs were made at the higher sampling
rate to justify a reasonable set of gains, but a thorough set of locus
plots was not obtained. This is not necessarily a problem since
the data presented should give a good insight into the system response.

The discussion of stability and transient response here will
refer to each figure from the Appendix in turn.

The Z-plane unit circle is displayed in Fig. A-1 with constant
damping ratio and constant damped frequency radii superimposed. For
a simple second-order system, the damping ratio ( ^) and damped frequency
(w d ) apply directly to any set of complex roots in the unit circle.
Higher-order systems will not produce the simple second -order response,
but the complex pole location is still very informative since the relative
location of two sets of poles gives some insight into the transient
response to displacement errors and disturbance torques. The damped
frequency, which is indicated as a function of the sampling frequency,
is particularly important in estimating the response time to input
disturbances.

Zero-delay loci are shown in Fig. A-2 to indicate the very high
gains and fast response possible. Of coure, zero delay is not obtainable
at such high sampling rates since it takes time to compute the error
signals. The interesting aspect is that the loci are circles with origins
at -1 and +1 and are easily drawn for any value of Ke, Kv, and KIv-
It should be noted that these loci apply only for zero position integral
gain K1e and a sampling rate of 62.5 per second.

The zero -delay loci in Fig. A-3 are presented only to show the
change for the higher, 125 sampling rate. The radii r y and re for
a specific complex pole location are shown to indicate that, given
these magnitudes and selecting one gain, the other two gains can be
computed using the given equation.

An arbitrary point on the loci of Fig. A-3 was selected in
Fig. A-4 and the integral gain then varied from zero to 80 , 000. The
system is still stable ( for zero delay), but obviously the complex
root moves toward lesser damping and stability margin as the integral
gain increases.

4-1
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Figure A-5 presents the first loci with delay other than zero.
The delay TO/T is varied from zero to 0,30 to show how the system becomes
unstable as the delay becomes larger than 0.30. The zero-delay point
should coincide with the pole location for this set of gains in
Fig. A-3.

In Fig. A-6, we have complete loci for a 10% delay and sampling
rate of 60 per second. It indicates how radically the loci for zero
delay in Fig. A-3 distort as the delay changes from zero. These loci
are only for one pair of complex roots. There is another pair of complex
roots at the lower frequency, but it is not shown here.

Both complex roots are shown in Fig. A-7 for three sets of gains,
The position integral gain Kle is then varied from zero to 30,000.
The interesting point here is that the higher-frequency complex pole
hardly moves, but the lower-frequency one, which is indicative of the
system response to a step torque, moves toward lower damping, which
implies more overshoot in the step response.

Since the inertia is no longer computed, the average value used
may not always equal the actual changing value. This has the effect
of multiplying all the gains by the ratio 4J. Figure A-8 shows the
destabilizing effect and the interesting fact that one root becomes
less stable as J%J increases, but the other root becomes less stable
as J%J decreases.

Figure A-9 shows complete loci for 10% delay and the rate integral
gain KIv set to 1000. It should be compared to Fig. A-6 to show how
the loci change as KIv is changed from zero. Other loci were plotted
for values of KIv larger than 1000 and indicate a shift upward toward
less stability, as would be expected.

Both complex roots could not be shown in Fig. A-9; therefore,
three sets were selected in Fig. A-10 to indicate their movement as the
position integral gain Kle is varied from zero to 30,000. This is
a repetition of Fig. A-7 only with different gains; in particular,
KIv is now 1000 instead of zero. The results are similar '.n that the
higher-frequency root changes little, but the lower-frequency root
moves toward less damping.

The set of loci in Fig. A-11 is the same as that in Fig. A-8, only
for different gains, and KIv is equal to 1000 rather than zero. Again,
the hig;,er-frequency root moves toward less damping as the ratio J/J
increases, but the lower-frequenoy root moves toward less damping as 	 =

J%J decreases.

In Fig. A-12, the first loci for a sampling rate of 125 per second
show the same destabilizing effect as the delay changes from zero to
30$. The gain sets were used arbitrarily only for illustration since
neither set is very stable as the delay is much above 10%.

The loci shown in Fig. A-13 can be compared to those in
Figs. A-4 and A-10, which also show the effect of varying the position
integral gain K1e . The sampling rate here is 125 per second, and
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the gain sets were arbitrary, although all three sets could be used.
However, set A would have to use a reduced K1e, probably less than
40,000.

The four step displacement responses in Fig. A-1 11 show the faster
response with larger position gain Ke and also the overshoot increases
with added position integral gain K1e. These and the ones shown in
Fig. A- 15 are mainly for comparison purposes since the delay here is
zero.

The faster response gain set from Fig. A-14 is used in Fig. A-15
to illustrate the better response, to a step torque disturbance, as
the position integra', gain is increased.. However, response D indicates
possibly undesirable overshoot as KIe gets very 'large. Also, one has
to consider the consequent position error overshoot shown in Fig. A-14
as KIe increases in magnitude.

The responses in Figs. A-16 and A - 17 are more realistic than
the previous two since the delay is 10% with a sampling rate of 60
per second. This is the actual case with the manipulator, unless the
125-per-second sampling rate is used, which means the delay is 20%.
Figure A-16 is interesting in that it shows the effect of the rate
integral gain KIv on the position step response. In general, a large
value of KIv will slow the position step response and eliminate the
overshoot. As KIe is increased, the response increases but still avoids
any significant overshoot. Response A shows that with zero integral
gain the response will reach only a fraction of the input, by the ratio

of Ke/(Ke + KIv).

The response curves in Fig. A - 17 clearly show the rapid increase
in recovery from a step torque as the position integral gain (KIe)
is increased. The maximum value used is determined by the amount of
overshoot one is willing to tolerate.

W
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SECTION V

SUMMARY AND CCJCLUSIONS

The sampled data nontt•ol system used for each of the joints in
the JPL manipulator has been described in detail in terms of root loans
plots and transient step responses. The mathematical derivations of
the various transfer functions are presented, as are all the hardware
parameter values. The derivations are for a sampled data system with
fixed delay, employing position and rate feedback and current drive
for the d.c. drive motor in each ,joint. Position and rate integrals
are computed in the manipulator software, as is the input drive function
which defines the ,joint movements as a function of time.

A small fraction of the root locus plots generated is presented
in the appendix, and indicates relative stability as a function of:

(1) Computation delay (10 to 30% of sampling interval).

(2) Position gain, rate gain, position integral gain, and rate
integral gain.

(3) Inertia change (±40%).

(4) Sampling rate ( 62.5 and 1?r+ per second).

A sample of the transient responses to input steps of position
and torque is presented in the appendix. These transient responses
indicate the response time variation as a function of the position
and integral gains.

Based on t4 :e data presented here, it can be concluded that the
performanoe of the manipulator can be made to conform to criteria calling
for very fast response by increasing the gains properly, as indicated
in the root locus plots and transient responses; e.g., a response time
constant of less than 0.1 s can be obtained with a sampling rate of
60 per second!.

An important feature of this analysis is that the various hardware
gains and parameters such as inertia of motor torque constant have
all been normalized by using their reciprocal values as gain Multipliers
in the software. Thus the gain va;;,Azs used throughout this analysis
wil l, apply to any similar control system after its hardware gains have
sii.^larly been eliminated or considered as part o f the total loop gain
defined here.
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APPENDIX

ROOT LOCI AND TRANSIENT ;ESPONSE CHARACTERISTICS
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Figure A-14. Transient Response to a Step Displacement of 0.5 deg
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