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ABSTRACT

The far-field acoustic scattering by a prolate spheroid with axial
point sources near the tip of the body was measured. Data were tiken for
ka between 10-160 where (a) is the cemi-major axis of the spheroidal.
Comparisons were made with numerical results obtained by an integral
equation based on the simple source method, with appropriate coordinate
stretching introduced to permit high frequency solutions with a minimal
number of grid points. Theory and experiment agree within experimental
error except for the highest frequencies in the shadow region, where very
rapid changes in pressure make precise measurements difficult. The results
show that for frequencies of aeroacoustic interest, the scattered field is

very large and cannot be ignored.
I. INTRODUCTION

This paper is concerned with the scattering and diffraction of sound
from a rigid prolate spheroid, with a source situated at a point along the

major axis and near the tip of the body (see fig. 1).



The physical problem that motivated this work is to determine the
scattering by an airplane fuselage, of the sound of a jet engine mounted
on the axis and behind th: hody. This seattering is beina neglected by
the current schemes for flyover noise prediction, and it was the intention
of the authors to test whether this neglect was justified. The airplane
fuselage will be modeled by an elongated ellipsoid.

The far-field sound is a superposition of the incident field and the
scattered field due to the presence of the body. A complete treatment of
this problem requires the computation of the scattering with a variable
flow over the body. This will »ermit the computation of the noise generated
by an airplane in motion. Here we consider only the case of zerc flow. The
case of constant flow can be reduced to the case of zero flow by a Galilean
transformation. A discussion of the effect of constant flow based on geo-
matrical optics is given in reference 1.

Several techniques are available for the numerical computation of the
scattered field. These are discussed in section 2. These methods were
compared, and it was found that for the frequencies of interest, the integral
equation method, using appropriate coordinate stretching, was best able to
provide accurate solutions over the entire far field. This method and the
stretching transformation which is crucial to its success is discussed in
section 3.

In order to verify the accuracy of the numerical scheme an experiment
was conducted. An experimental point source was placed near the tip of a

spheroid with a shape that conforms to that of a typical airplane fuselage.

The experiment is described in section 4 and the results are given in section §.
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The major conclusion of this paper is that the scattered field is a
crucial component of the acoustic far field for frequencies of aeroacoustic
interest, Prediction schemnes which do not account for the scattering will

not accurately deseribe the acoustic far ficld.
I1. TECHNIQUES FOR NUMERICAL SOLUTiON

The acoustic potential ¢ will be a solution of the wave equation,

which reduces to the Helmholtz equation
2
A + ko =0 (2.1)

in the frequency domain. Here k is the reciprocal wavelength. In order
to work with nondimensional quantities we introduce the term ka where (a)
is the semi-major axis. The solution to equation (2.1) becomes more diffi-
cult as ka increases because of the oscillatory behavior of the solutions.
For aeroacoustic applications, however, (a) is required to be large, such that
the solutions for ka > 100 will be required.

Three techniques are currently used to compute the scattered field:

1. Expansion in eigenfunctions

2. Integral equation methods

3. Asymptotic methods

The expansion in eigenfunctions, which is restricted to special bodies,
is based on the fact that the Helmholtz equatiun is separable in the prolate
spheroidal coordinate system. Thus, the solution can be written as an
infinite series of the ecigenfunctions of the separated operators (see ref-
erence 2). This series converges very slowly unless ka 1is small and thus

this method is not suitable for the computation of aercacoustic scattering

and will not be considered further.
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The integral equation method involves solving a Fredholm equation of
the second kind over the surface of the scatterer. A general discussion
of this method is given in reference 3 and a detailed discussion of its
application to the present problem is given in section 3. The numerical
solution of the equation for large values of ka can only be done effi-
ciently *f new coordinates are introduced on the body. If done properly,
accurate solutions for values of ka of interest can be obtained. This
method was used to generate the basic numerical results of this paper and
for reasons to be described below, it is believed that this is the best of
the three methods in obtaining solutions at aeroacoustic frequencies.

The third method, asymptotic expansion, includes both the counventional
geometrical optics expansion and the theory of geometrical diffraction of
J. Keller (see reference 4).

Geometrical optics involves obtaining the solution to the scattering
problem by the method of ray tracing. Referring to figure 2, the total
field at the point P is found by assuming a solution of the form

i (P)eixlp - P*| .
-z — e e
bﬂlp I P*I

¢inc
where ¢1nc is the incident wave. Here P* is the origin of the reflected
wave going through P (see fig. 2) and =z(P) is obtained through a
principle of "conversioun of energy” along ray tubes (see reference 2 for
more details).

It is apparent from figure 2 that Lhere is a region of space where no

wave can penetvate. This is called the shadow region and the geometrical
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optics approximation in this region § = 0. An impre 4 approximation 1s
obtained by the theory of geomotrical dlffeaction a . deseribed in refer-
ence 4.

Referring to figure 3, rays incident on the curve tanpency €,

excite surface ravs (also called creoping waves) from whieh real waves ore
shed off tangent %o the body. Analytical formulas have heen developed for
these diffracted waves (see for example reference 2, pope “74)

Both these expansions are valid as Ik + ®, Ceometvrical optiecs reanires
ka large where {a) is the semi-major avis. Geometric diffra-tion, however,
is based on the radius of curvature at the tip of the body and requires the
wavelength to be small with respect to this lengrh scale. Sinece ary model
of an airplane fuselage will be an elongated ellipscid, this will have a
relatively small radius of curvature and thus peometric A1ffraction will
have a more restricted domain of validity than gecmetrical optice.

Results to be presented indicatc that geometrie diffraction is very
inaccurate at frequencies of aeroscoustie interest. At the highest fre-
quencies considered errors of the order of 5 decibels have been for
Geometrical optics also becomes inaccurate as the far-field peint approaches
the shadow region. Furthermore, it is found that the effezt of the scatter-
ing is strongest in and near the shadow region. Thus, the integral equation
method although more expensive than the asymptotic methods, is the only
presently known method able to provide aceurate numerical solutions in all

regions of the far field, for the frequenciecs considered.



III. NUMERICAL SCHEME

The scattering problem described previously can be described mathe-

matically as the solution to the following problem:
2
a. Ap + k"p = =8(p - q) (3.1
b. ¢n =0 on E
c. °r - ik » O(r » =)

where ¢ is the velocity potential. Here k = w/c 1is the wave number,

q 1is the source point, and E denotes the spheroid which models the
airplane fuselage. We consider only axial sources so that the problem
(3.1) is symmetric in the azimuthal direction (see fig. 1). The condition
(3.1b) expresses the fact that the scattering is hard (zero normal velocity
on the surface). The condition (3.1¢) (the radiation condition) ensures
that the problem (3.1) has a unique solution.

The problem (3.1) is set up for numerical solution by writing

o= 0"+ ¢°
whzre ¢s is the singular part of the solution

: Jiklp - a

4
"lp - al



and ¢' 1is the scattered field and will be a solution to the problem

a. A+ K20'= 0 (3.2)
.. 2°
b. ¢; a¢n on E

(38 ¢; - 1kd'+ O(r +» =)

The problem (3.2) is converted to an integral equation using the
eingle layer potential method (see reference 3). One assumes a solution

¢ of the form

¢'(p) = ” O(q)G(P.q)qu (3.3)
E

where G is the free space Green's function

Jklp - qf

G(p,q) = m

and o is to be determined. The physical interpretation of (3.3) is of a
distribution of point sources with density ¢ such that the total field is
the superposition of the field from each of the point sources.

On taking the normal derivative of (3.3) and letting the point »p
approach the surface E one obtains the surface Fredholm equation of the
second kind for the unknown function © (see reference 3)

ﬂzﬂl - ” d;\qfﬁ (q‘)Gn (q9,9"') = -0, (2) (3.4)
O 1

where ¢n is the prescribed Neumann data (from (3.2b)).
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If O denotes the polar angle of the ellipsoid E (see fig. 1) then
by the axial symmetry (3.4) can be converted into a one-dimensional equation

1(22). - I d6'0(6')H(0,0") = -4 _(0) (3.5)

N2 e

where the kernel function H(6,6') 1is the kernel in (3.4) integrated in
the azimuthal direction and multiplied by the area factors.

There are two main difficulties associated with the equation (3.5).

It is known that the equation will become singular if k 1is an eigenvalue
of the interior Dirichlet problem. This problem of the interior resonances
has been considered by various authors and the reader is referred to
reference 3 for a comprehensive discussion of techniques for dealing with
this problem.

It has been found that these singularities do not extend over a wide
frequency range, and for the purpose of obtaining a power rpectrum, this
is not an 1:nortant problem.

A much more critic:l problem is that of adequately resolving the solu-
tion at high frequencies. A measure of the oscillatory behavior of the
solution is the nondimensional quantity ka where (a) is some length scale
associated with the body. Ve will take (a) as the semi-major axis. The
study of aeroacoustic scattering requi;es ka v 100 and at these fre-
quencies many grid points are required. 1In order to obtain solutions at

these frequencies, appropriate coordinates must be introduced.



Using an evenly spaced grid the equation (3.5) is converted to a
linear system

a(e,)

—e - p § OO N0, ,0, 1 = =4 (0,) (3.6)

2 b

where h 1is the mesh spacing. The diagonal entry n(aj.ej) is not a
functional evaluation because of the singularity in the kerne)l function,
but instead represents the integral of H across the singularity.

In order to obtain high frequency solutions with a minimal number of
grid points new angular coordinates [(0) are introduced into the equation
(3.5). Using an evenly spaced grid the equations (3.5) and (3.6) are
entirely valid Zn the new coordinates except that the kernel function H
will now be multiplied by %%l "

A l-parameter family of new coordinates is introduced by the formula

8= tan "t o tan 4

where o is the free parameter. The parameter o 1is chosen sc that the
right hand side of (3.6) is smoothest in this coordinate system. This is
described in more detail in reference 5 where numerical results show that
high frequency solutions can be obtained with relatively coarse grid. For
the ellipsoid considered here a = 5 1is optimal and the numerical solutions
used here were generated with this parameter. On the basis of numerical
tests described in reference 5, it is believed that for all frequencies
considered, the solution generated by the integral equation is accurate

to a relative error of 10 percent.
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IV. EXPERIMENT

A prolate spheroidal body, figure 1, was constructed of hard fiber-
glass material with major axis length of 107.95 cm and with minor axis of
15.24 em corresponding to an aspect ratic of 7,0833. The acoustic source
consists of a 60 watt acoustic driver necked down to a sma’l tubular opening.
The driver is placed inside the body with the tube exiting at one tip and
extending 1,9 em outward. When driven by an oscillator at a discrete fre-
quency, the output of this source consists of tones at the oscillator fre-
quency and its harmonics. By appropriate fiitering, the measured signal
consisrs essentially of a discrate freguency.

This source possesses the well-"nown characteristic of radiating
approximately uniformly in all directions in a stationary medium as long
as the wavelength of the sound is considerably larger than the tube diameter '
{(see reference 6). Since its physical operation consists of a time rate of
mass fluctuation, it corresponds to an acoustic monopole. Three different
tubes were used, ranging in size from 0.76 to 0.20 em. The far-field
intenaity and directivity were experimentally established without the body
in the range of frequencies between 1.4 to 16 KHz, over 180 degrees. The
intensity field was constant to within 0.5 decibels about the arc except at
the highest frequencies where correction uas required.

The acoustic measurements were taken outdoors, and the model was placed
1.9 meters akove the anechoic floor (see reference 7). Data were obtained
on a circle centered at the source, with a radius of 10.9 meters corresponding

to approximately 10 times the body length, a reascnable far-field distance.
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Measurements were taken at 10 different angles from 0 degrees to 190 denrees
where O degrees is the axis of the sonrce. Pressure sigrals werr measired
with # 1.3 cm diameter condenser microphone and the data were passed
through a bandpass filter, with tg; oscillating frequency set to an
accuracy of *1 Hz. The error of the electronic system, including readout,
was estimatel as within 0.5 decibels. The microphones were mounted level
vith the body on an especially designed arc support to minimize possible
reflection from the mounting. The long distances between the microphones
and source made precise positioning very difficult using conventional

positioning methods. Because of this error, phases could not be accuratelv

determined and are not reported on.
V. COMPARISON AND DISCUSSION OF RESULTS

Figures 4-6 are graphs of the decibel level change relative te the
axial direction, as a function of the angle from the source. The graphs
chow the comparison between measurcd and computed results. The measured
data were averaged over five realinps taken at different ti-es.

It is found that at low frequencies the scattered field is very small
relative to the iacident field except in the viecinity of the shadew region.
This explains the flatness of graphs 4 and 5 near 00 = (). This effect is
due to the slenderness of the bodv. Computations with wider sphercids at
constant frequency show that scattering in dirvcections near the axis increascs
as the body becomes spherical.

As the frequency varied from 1.4 KMz to 16.5 KHz, the dip in the shadow

region increased by 5 db. This is the reglon of largest experimental
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difficulty because of the sharpness of the dip, which increases with fre-
quency and is sensitive to the angular position. Agreement even near this
point is within experimental error cxeept for the highest frequency where the
dip is extremely sharp. The experimental data will, in peneral, give a
smaller dip, because the microphones average a relatively large angular
spread.

We note that as the wavelength decreases, the difference between mininum
and maximum pressure increases and the pressure field itself becomes more
oscillatory as a function of the far-field angle. For example, at 16.4 Kiz
the difference is of the order cf 8 decibels, and this is rougnly consistent
with the measuremer. , for still higher frequencies the present measurement
technique will liive to be improved in order to resolve the rapidly oscillating
acoustic pressure. At the lowest frequency of 1.41 KMz, the difference is
only 2 decibels, and in the illuminated region the pressure is essentially
flat. Thus, the scatter.d field in all regions of space becomes stronger
as the “requency increases.

For the experimental body, the frequency of 16.4 KNz corresponds to a
ka of 166 for a typical fuselage 70 meters long. This corresponds to a
frequancy of approximately .3 Kiz which is near the peak of the jet noise
spectra. Thus, the major conclusion is that scattering cannot be ignored
for any aeroacoustic application and must be included in any prediction
scheme.

The plot for 16.4 KHz includes comparison of reaults.ohtained by

experiment, integral equation, and geometrical optics and diffractior. The
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very large inaccuracy of the asymptotic method near the shadow region is
evident., The integral equation has heen applied for higher values of ka
but will become expensive in storape and require spectral programming to
obtain solutions out of core.

The 16.4 ¥Hz snlution could bo generated in core because of a proper
choice of the stretching parameter. A grid of 169 point was used on a
Cyber 175 machine. The computation of the matrix (see (3.6)) required
105 sec. while the solution in the far-field can be computed in .9 sec.
per point. The integral equation becomes more efficient the larger the
number of field puints required. From the figure for 16.4 KHz and from
comparisons discussed in reference 5 it is apparent that geometrical opties
provides accurate solutions except near tl« shadow region. Thus, in practice
the integral equation methiod is required only near the shadow region, making
it more costly per point. However, at present, no other method can provide

accurate solutions in t° vicinity of the shadow region.
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