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SUMMARY

The Kirchhoff integral formulation, which is often applied in aeroacoustic
problems involving radiation from surfaces, is evaluated for its effectiveness
in quantitatively predicting the sound radiated from an oscillating airfoil
whose chord length is comparable with the acoustic wavelength. A rigid airfoil
section was oscillated at small amplitude in a medium at rest to produce the
sound field. Simultaneous amplitude and phase measurements were made of surface-
pressure and surface-~-velocity distributions and the acoustic free field. Mea-
sured surface pressure and motion are used in applying the theory, and airfoil
thickness and contour are taken into account. The result of the investigation
was that theory overpredicted the sound pressure level by 2 to 5 dB, depending
on direction. Differences were also noted in the sound-field phase behavior.

INTRODUCTION

The determination of sound in a bounded region due to fluctuating loading
acting over a boundary was first given by Kirchhoff (ref. 1) in his integral
formulation of Huygens' principle. Curle (ref. 2) applied Kirchhoff's results
to extend Lighthill's general theory of aerodynamic sound (ref. 3) to incorpo-
rate the influence of solid boundaries upon the sound field. Ffowes Williams
and Hawkings (ref. 4) generalized Curle's formulation to allow for arbitrary
convective motion of a surface.

The aeroacoustic formulations have received wide application. However, in
most practical problems of interest their use invariably involves assumptions in
order to reduce the equations to tractable forms. A customary assumption for
problems in which bodies - airfoils, in particular - encounter subsonic flow or
undergo subsonic motions is that the linear surface terms of velocity and pres-
sure dominate the production of the sound field, whereas the contributions from
Lighthill's quadrupole term and that of surface viscosity are negligible in com-
parison (e.g., refs. 5 to 14). With this assumption the aeroacoustic equations
reduce to Kirchhoff integral formulations.

The purpose of the present study is to examine experimentally the applica-
bility of Kirchhoff's formulation in predicting the radiated sound from an air-
foil undergoing a particular type of oscillatory motion. The study is motivated
by the lack of definitive experimental data in the literature establishing
directly that Kirchhoff's formulation provides the quantitative relationship
between the linear surface terms and the acoustic field. Previous experimental
studies of airfoil noise employing the theory (e.g., refs. 11 to 14) intrinsi-
cally involved factors which complicate the interpretation of the sound field,
such as the presence of turbulent and sheared flow and complex distribution of
surface pressure amplitude and phase. Also, the determination of the surface-
pressure distribution has normally involved the use of airfoil theory rather
than direct measurement. Such applications of the Kirchhoff formulation have



not always produced values that are in good quantitative agreement with the
noise determined experimentally.

An experimental approach which provides a controlled method of investigat-
ing the relationship between surface-velocity and surface-pressure distributions
and the resultant acoustic field is described herein. The noise source is a
symmetrical airfoil section which is oscillated at small amplitudes about its
center of gravity by a resonant vibratory system. To allow definitive compari-
son, tests were conducted in a stationary medium (no airflow), and only acoustic
pure tones were generated by the body. For the two particular frequencies exam-
ined, 301 and 477 Hz, the 45.72-cm (18.0-in.) chord airfoil was not small com-
pared with the acoustic wavelength. These frequencies were chosen because in
typical aeroacoustic problems the frequencies of interest frequently correspond
to wavelengths on the order of the chord length (see refs. 15 and 16).

Simultaneous amplitude and phase measurements were made of the velocity
and pressure distributions on the airfoil surface and of the acoustic free
field. The measured surface values of velocity and pressure are used in the
theory, with airfoil thickness and contour taken into account, to predict the
phase and amplitude of the acoustic free field. Differences are noted between
the predicted and experimental values of the sound-field amplitude and phase.

SYMBOLS

Values are given in both SI Units and U.S. Customary Units. Measurements
and calculations were made in U.S. Customary Units. Except when noted, surface
and sound pressures are presented in decibels (dB = 20 log (prms/ppef), where
Pref = 20 WPa (2 x 10~ dyn/em?)).

b airfoil semichord
c speed of sound in fluid medium at rest
Fy force per unit area exerted on fluid by solid boundary S in

xj~-direction

f test frequency, Hz

G density of volume source function internal to domain V
g acceleration due to gravity

H density of volume source function external to domain V
i =\/-1

i unit vector in xq- or yq-direction

3 unit vector in xp- or yp-direction

k wave number, w/c
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unit vector in X3- or y3-direction

semispan

component of Mach vector in direction of B, P * ¥/re

unit normal vector to surface (drawn outward from surface into fluid)
specified complex surface pressure amplitude at element m

absolute pressure

mean value of pressure in medium

gage pressure, p - Do

= | - ¥
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vector between observation point and source point,
surface of body

see equation (7)

Lighthill's stress tensor

observer time

fluid velocity in the y-frame

volume region

velocity of any point fixed in the Z-frame, 3§(£,T)/81

. -
surface normal velocity, Vv - n

observer position vector

T
source position vector, Z-+." ¥(Z,t) dt (the ¥- and Z-frames are
assumed to coincide at sourcg time T = 0)
angular displacement of airfoil in oscillatory motion
sound-field directivity angle (see figs. 4 and B1)
Dirac delta function

Kronecker delta (Gij =1 for i=3; 835=0 for iz 3)
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D

L1

unit height of airfoil segment (see fig. B1)
coordinate system affixed to body

slope of airfoil segment (see fig. B1)

angle between f and P (see fig. 1)

unit chord position of airfoil segment (see fig. B1)
instantaneous value of density

time-averaged value of density in medium

viscous stress tensor

emission time of source

scalar potentials

phase angle of surface acceleration at leading edge
phase angle of surface pressure

phase angle of sound pressure in acoustic field

angular frequency, rad/sec

Laplacian operator, 32 + 32 + 32
9y12 P dy3
differential operator, 9 1 + 9 5§+ .98 {
3y 1 dy> dy3

value within is taken at a retarded time T
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Subscripts:

b bottom of airfoil segment (see fig. B1)

i, components of a vector or summation indices

m particular element of the airfoil equivalent model (see fig. B1)
ref constant reference value

rms root-mean-square value

t top of airfoil segment (see fig. B1)



THEORY

The aerodynamic sound generated from a region which includes rigid surfaces
in arbitrary convective motion is given by Ffowcs Williams and Hawkings in ref-
erence 4. The solution relates the air density fluctuation p - Po = p(X,t) - Po
at position ¥ and time t in terms of space and time derivatives of surface
and volume integrals over source region ¥. For the coordinate system shown in
figure 1, the solution is (from ref. U4)

Me2(p - po) = T3 | aqv(@) - 2 Fi as(@)
P = Po 9xj 3x3 Jy | vl - My > %y Jg r|1 - M|

+8_f[_°qﬁl_ as(@) (1)
at Jg | r|1 - Mpj

In the volume integral, Tij is Lighthill's fluid stress tensor related by

Tij = pujuj + 5ij[kp - Po) - c2(p - po)] -0y (2)

The Reynolds stress term puju is usually taken as PoUiuj for low Mach num-
ber flow. The term éij[(p - Do) - c2(p - po)] represents the effect of heat
conduction, which is considered very small for low Mach number flow. The term
Ojj 1s the viscous stress tensor.

In the surface integrals, the surface force per unit area F; is given by
Fij = ni(p - po) - njUij (3)

where nj is the ith component of fi, which is the unit surface normal (positive
from surface into the fluid). The term Vh 1s the normal surface velocity.

Equation (1) reduces to that obtained from Curle's analysis {(ref. 2) when
surface convection is not a factor. Equation (1) is regarded as a complete and
exact description of the sound field.

The application of equation (1) to determine the sound produced for a
particular problem invariably involves assumptions, because the required flow
parameters normally can only be specified to a limited extent. Consider a slen-
der body, such as an airfoil section, producing sound due to its own motion
and/or its reaction to an encounter with a complicated subsonic flow pattern.

An important assumption for many applications is that the sound is dominated

by that produced by the net local force on the body and the motion of the body.
The primary argument used to justify this assumption for particular cases is
that the quadrupole-type noise source mechanism, represented by the volume inte-
gral of equation (1), is less efficient than the dipole- and monopole-type mech-
anisms, as represented in the surface integrals.

If, in addition to ignoring the contribution of the volume integral, one
also neglects in equation (1) the viscous components of the surface force, then
the sound field may be described by the following equation:



bmp' (Z,1) = da[p(R,t) - po]

1 _3_f PoCVy + P' cos B as(@) +f _p' cos B |4s() 1)
c at S r|1 - Mp] S r2l1 - Mp|

|1
as shown by Farassat (ref. 9). In equation (4), p'(%,t) is the acoustic pres-
sure at the observer; within the integrals, p' = p(z,T) - Po 1is the surface
"gage" pressure.

If the surface is stationary or is undergoing solid-body vibratory motion
of small amplitude, where |vp| << ¢, equation (4) may be simplified to

Bt (2,8) = 19 poc[vn] + [p'] cos 8 [o'] cos 8 as(y
higy ( ) E —t J; - dS(yavg) + A - dS(Yavg) (5)

where 7av , the average value of source coordinate ?(Z,T), coincides with the
8—coordinage affixed to the body. Equation (5) is Kirchhoff's integral formula.

(See appendix A.)

MEASUREMENTS
Description

Apparatus.- A sketch of the experimental airfoil model is shown in figure 2.
The rigid symmetrical NACA 0012 aluminum airfoil section (thickness-to-chord ratio
of 0.12) had a chord of 45.72 em (18.0 in.) and a span of 30.48 em (12.0 in.).
The airfoil was part of a resonant torsional vibration system which also
included torsional bars with inertia disks. The system was designed to produce
a sinusoidal oscillation of controllable amplitude about the center of gravity
of the airfoil section, located 19.05 em (7.50 in.) from the leading edge of the
airfoil. As illustrated in figure 2, the vibrational mode used was such that the
torsional motion at the two disks was 180° out of phase with the rigid-airfoil
rotational motion. This mode was generated and maintained by input supplied at
one of the inertia disks by an ordinary shaker unit (15.2 em (6.0 in.) in diame-
ter and 15.2 cm long) whose amplitude and frequency were controlled by a fre-
quency generator and a power supply.

For the tests two sets of 27.94-cm (11.0-in.) long torsional bars with
inertia disks having diameters of 30.48 em (12.0 in.) and 19.38 em (7.63 in.)
were used, and each produced the described mode at different tuning frequencies,
which were respectively 301 Hz and 477 Hz. A photograph of the experimental
model in the 301-Hz configuration is shown in figure 3. Pretest accelerometer
surveys verified the mode shape of the sinusoidal motion.

The tests were conducted in the Langley anechoic noise facility. The chamber
is approximately 7.6 m (25 ft) long, 7.6 m (25 ft) wide, and 7.0 m (23 ft) high.
Figure U4 shows the airfoil test assembly suspended from the ceiling in the
chamber. The center of the airfoil span was positioned 1.83 m (6.0 ft) from
the acoustic wedges of the floor and about 2.1 m (7 ft) from the wedges of the




nearest wall. The shaker was connected to the airfoil assembly by a small-
diameter steel rod secured at the shaker armature and at an off-center position
on the inertia disk. In addition to transmitting the sinusoidal input (lateral
rod displacement on the order of typically 10-3 cm) to the resonant vibratory
system, the placement of the rod prevented assembly misalignment and sway from
its vertical position.

Instrumentation.- A 2-g (0.0643-0z) piezoelectric accelerometer was used
to determine the rigid-airfoil motion. The accelerometer was mounted in an
instrument module and positioned 4.92 em (1.94 in.), measured chordwise, from
the leading edge. All wiring from the module led out of the test assembly
through the center of a torsional bar in such a way as to minimize extraneous
signal noise due to vibration.

To measure the sound field, fourteen 0.635-cm (0.25-in.) diameter and two
1.27-cm (0.5-in.) diameter, standard condenser free-field microphones were used.
The 16 microphones were positioned on a 2.44-m (8-ft) radius microphone boom.

As shown in the plan view of figure 4, the microphones were placed at 12° incre-
ments to cover a range of directivity angle B of 180°. Care was taken to posi-
tion the microphone diaphragm in the plane perpendicular to the airfoil surface
at the midspan within 1.3 em (0.5 in.) and at a 2.210-m (7.25-ft) radius from
the airfoil center of oscillation within 0.3 em (1/8 in.).

The airfoil surface-pressure distribution was determined with piezoresis-
tive silicon pressure transducers (ref. 17). The devices were chosen because
of their low acceleration sensitivity, small size, and excellent long-term sensi-
tivity and phase stability. The 0.3175-cm (1/8-in.) diameter diaphragm of the
transducer has its first resonant frequency at 70 kHz, and with a 10-V dec excita-
tion voltage, the transducer sensitivity is -117 dB(ref. 1 V)/Pa.

Eight fixed-position transducers and one variable-position transducer mea-
sured the surface pressure. On one side of the symmetrical airfoil, the fixed
transducers were flush mounted on the instrument module. These transducers were
located 3.175 em (1.25 in.) from the midspan and were positioned at 1.4, 9.7,
21.2, 31.9, 48.6, 61.8, 78.1, and 88.9 percent of the chord, measured from the
leading edge (chord length: U45.72 cm (18.0 in.)).

The spanwise surface-pressure distribution was examined by a transducer
cemented to a thin steel plate which, in turn, was bonded at each chosen posi-
tion. As a result of this surface-mounting technique, the transducer diaphragm
was elevated 0.318 cm (1/8 in.) above the airfoil surface. Although this eleva-
tion precluded direct surface-pressure measurement, the spanwise distribution of
surface pressure amplitude and phase was -accurately determined by referencing
data obtained to values measured at flush-mounted transducer locations. The
movable transducer was positioned along the span in line with the 21.2-, 78.1-,
and 88.9-percent-chord flush-mounted transducer locations. These positions were
at 10.4, 25.0, 33.3, and 41.7 percent of the span, measured from the span center
line. The 10.4-percent-span positions (3.175 cm (1.25 in.) from the midspan)
were spanwise symmetrical to the flush-mounted transducer locations. An addi-
tional position employed was along the line of the flush-mounted transducer at
locations 97.2 percent of the chord, measured from the leading edge.



Experimental Procedure and Calibrations

Instrument calibrations.- For the surface-pressure transducers the output
voltage signal e 1is the sum of the combined signals due to pressure p and
acceleration a at the diaphragm. The voltage output ratio is

epef SpPref Pref  SpPref

where p and a, and thus e, are complex quantities, with the amplitude and
phase dependent on experimental conditions. The reference voltage eper is
determined by a chosen reference pressure pprer. The value of the ratio S,/Sp
has been determined by a two-part laboratory calibration on a random sample of
four pressure transducers. The pressure sensitivity S was found by an acous-
tic calibration, and the acceleration sensitivity perpendicular to the diaphragm
plane S, was determined for the transducers in a vacuum (an atmospheric pres-
sure of 667 Pa (5 mm Hg)).

A range of conditions was considered up to a frequency of 2 kHz, up to an
rms acceleration level of 15g, and up to a sound pressure level of 150 dB. The
average value of S/S, was 0.506 (mV/g)/(mV/Pa) with a standard deviation of
0.069. The value was independent of frequency and levels of acceleration and
pressure.

In addition to the instrumentation-laboratory calibration for the surface-
pressure transducers, on-site amplitude and phase calibrations were conducted
for the accelerometer, microphones, and surface-pressure transducers prior to
and during the data acquisition period. The calibration instruments included
a 100-Hz, 1gppg vibration calibrator, a 114-dB sound-level calibrator, and a
microphone-transducer acoustic calibrator whose calibration frequency is deter-
mined by a frequency generator. The outputs of these calibrators as a function
of frequency and sound level were compared with the outputs of several calibra-
tors of different types, and agreement was found.

The accelerometer signal was determined to be in phase with the accelera-
tion. Routine amplitude calibrations incorporated a substitute accelerometer
of the same type. Cross calibrations were made between the accelerometer and
its substitute at the beginning and end of the test progran.

The signals from the surface-pressure transducers were found to be in
phase with the pressure and acceleration variations. The transducers were phase
matched within 1° at both 301 Hz and 477 Hz. Amplitude calibrations were con-
ducted prior to each series of tests for 301 Hz and 477 Hz at 120 dB. No mea-
surable change occurred in the pressure-transducer calibration during the experi-
mental study.

Because of the condenser-microphone and preamplifier circuitry, the signals
from the microphones were inverted with respect to the acoustic pressure at the
diaphragms. The phase calibrations, which incorporated the same acoustic cali-
brator used for the surface-pressure transducers, showed that the microphones
were phase matched within a standard deviation of 2.3° for 301 Hz and within a



standard deviation of 6.2° for 477 Hz. The routine 114-dB amplitude calibra-
tions revealed less than a 0.25~dB variation in the calibrations for any one
microphone.

Anechoic chamber calibration.- The quality of the acoustic field was exam-
ined for the two pure-tone frequencies of interest with the use of an apparatus
(ref. 18) which simulates an ideal acoustic point source. The source emission
of the apparatus is from a small-diameter opening of a necked-down tube.

For the tests the airfoil assembly and shaker were removed from the chamber
and the acoustic driver of the calibrator apparatus was secured to the shaker
stand. The source was positioned in the center of the vacated airfoil assembly
region, equidistant to the 16 microphones. The results of the test are shown
in figure 5, where the directivity of the source as found by the microphones is
plotted in terms of sound pressure level and phase against microphone position
(the angle B). The phase was determined by referencing the microphone signals
to the acoustic driver input signal. The deviation shown from the mean values
of sound pressure level and phase indicates the quality of the acoustic field.

The results show anechoic behavior for the test frequencies within *1 4B
sound pressure level and *12° phase (except for results of one microphone). The
flagged symbols indicate that the phase was unstable for the microphone at
B = 1329, The data for the microphone at B = 156° are not included in fig-
ure 5 because the microphone was replaced during the experimental program.

Data acquisition and reduction.- For the tests the sinusoidal signals from
all instruments were appropriately conditioned for recording on a 14-track FM
analog tape recorder which was operated such that it had a flat frequency
response up to 10 kHz.

The primary instruments used to reduce the recorded calibration and experi-
mental data were two graphic level recorders and a phase meter. To enhance sta-
bility of the phase measurements, it was found convenient to employ two matched
dynamic tracking filters. The frequency was tuned by the accelerometer signal
and the frequency bandwidth used was 20 Hz. The accelerometer signal was used
to determine the motion of the rigid airfoil section and also as a phase refer-
ence for all pressure transducer and microphone signals. Determination of the
surface pressure amplitude and phase incorporated the use of equation (6).

Results

Surface-pressure and airfoil-motion measurements.- Four cases are consid-
ered. For a frequency of 301 Hz, the test airfoil-section motion produced rms
accelerations of 2.99g and 9.44g at the accelerometer location. These accelera-
tions ¢orrespond, respectively, to peak angular displacements o of 82.1 urad
and 259.3 urad. For a frequency of 477 Hz, the rms accelerations were 2.82g
and 8.91g, which correspond to o values of 30.8 prad and 97.6 prad, respec-
tively. For reference it is noted that the maximum oscillatory displacement
was located at the trailing edge, where the rms value was 0.049 mm (1.93 x 10-3
in.) for the 9.4lg case. Thus the maximum oscillatory velocity corresponds to
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a velocity of 0.131 m/s (0.429 ft/sec), which meets stated requirements for the
validity of equation (5).

The results for the eight flush-mounted pressure transducers are given in
table 1. Presented are the surface pressures and the phases by which the sinu-
soidal pressures lead the surface acceleration of the leading-edge region,
denoted by ¢p - 5. These results are also presented in figure 6, where the
levels of the rms surface pressures are given in decibels. Also shown in fig-
ure 6 are additional measurement values at the movable transducer position near
the trailing edge at 97.2 percent of the chord.

It is seen that for both 301 and 477 Hz, the surface pressure amplitude
varies in approximate proportion to, and is approximately in phase with, the
surface acceleration (positive as directed from the surface into the medium).
The surface-pressure chordwise distributions are smooth and have minimum val-
ues and maximum phase change near the center of the sinusoidal oscillation (at
41.7 percent of the chord).

The results of the spanwise pressure survey for a 477-Hz case are shown
in figure 7. As previously discussed, the levels from the slightly elevated
movable transducer are referenced to values measured at flush-mounted transdu-
cer locations. The pressure phase is invariant over the span, whereas the pres-
sure level is essentially uniform over most of the span. The surface pressure
diminishes in level as the edge of the airfoil section is approached.

Predictions of the acoustic field and comparisons with experimental values.-
The measured values of surface pressure and velocity may be used in the theory,
as represented by equation (5), to predict the acoustic field for comparison
with the experimental values. Sufficient information is known to evaluate equa-
tion (5) accurately, because the pressure amplitudes on the side of the airfoil
not containing pressure transducers are identical with values obtained from the
instrumented side, but the phase of the pressure is shifted by 180°, This is
true because of airfoil geometric symmetry, motion antisymmetry, and the fact
that all measured quantities (motion, surface pressure, and sound pressure) were
sinusoidal with no discernible harmonics.

The contour of the actual experimental model is approximated by plane seg-
ments (see figs. 8(a) and (b)). Because of airfoil symmetry, the corresponding
segments on each side of the airfoil can be considered simultaneously in the
calculations. The amplitude and phase of the surface pressure are considered
uniform over the segments, whereas the chordwise dependence for velocity is
taken into account for each segment. In using equation (5) to develop the
model, the orientation and position of the surface with regard to an observer
in the sound field are accurately defined.

The airfoil equivalent model as shown in figure 8(b) is comprised of eight
elements that radiate independently, which is consistent with the integral form
of equation (5). For an observer in the far field of each individual element,
equation (5) becomes

10
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p'(,t) = SPV + SPP =Z (SPV)y + (SPP)y 7

m=1
where
SPV), = 1_ 3 Polvn] 4s 8
( ‘m i atf - d (8)
Sm
and
= 19 p'] cos 8 ds
(SPP)p WEL [ . (9)
m

where the small contribution from the last integral of equation (5) has been
excluded (see appendix B). The symbols SPV and SPP are complex quantities
and are respectively the sound pressure due to the surface-velocity term and
that due to the surface-pressure term.

Details of the evaluation of (SPV)p and (SPP)p are contained in appen-
dix B. Far-field approximations for each element m are employed; however,
the summation procedure rendering p'(X,t) represents a numerical integration
in which the far field of the airfoil itself is not assumed.

The prediction of the acoustic field for each experimental case is deter-
mined by using equation (7) with the values of (SPV), and (SPP), obtained
from equations (B8) and (B9), respectively. The experimental results contained
in table 1 and the airfoil section geometric constants and the physical con-
stants in table B1 are used to evaluate equations (B8) and (B9).

In figures 9 and 10 are presented the noise data that were measured simul-
taneously with the surface pressures and accelerations given in figure 6 (also
table 1). Presented are the sound pressure levels and corresponding phases by
which the sinusoidal sound pressures lead the airfoil-surface acceleration at
the leading-edge region, denoted by ¢sp -¥,, as a function of the directivity
angle B. All data are for measurement locations in the plane bisecting the
midspan of the airfoil section at a radius of 2.210 m (7.25 ft) from the center
of oscillation.

Also included in figures 9 and 10 are the corresponding theoretical predic-
tions determined from equation (7) by using the experimental data from table 1.
All theoretical levels include a negative 0.7-dB adjustment to account for the
spanwise-diminished surface pressure levels near the airfoil-section edges (see
fig. 7).

DISCUSSION OF RESULTS
It is seen that for both 301 Hz (fig. 9) and 477 Hz (fig. 10), the theoreti-
cally predicted acoustic levels are higher than those measured by some 2 to 5 dB,
depending on directivity angle B. The closest agreements appear near B = 900,

where it is noted the sound pressure would be expected to be determined for the

11



most part by the total fluctuating airfoil 1ift, since the retarded times for
all parts of the airfoil are approximately equal for the measurement position.

Of equal significance to sound pressure level for evaluation of the
theoretical-experimental comparison are the phase values. For all cases agree-
ment may be considered acceptable near B = 90°., However for 301 Hz at B rang-
ing from 12° to 1329, the theoretical change in phase is about 30° larger than
the measured change. For U477 Hz at the same B range, the theoretical change
in phase is about 50° larger than the measured change.

Note that the results for the microphone at B = 156° were not included
in the acoustic field calibration (see fig. 5). Therefore, no conclusions may
be drawn on the basis of the data points for this value of 8.

In view of the disagreement between the theoretical and experimental
results, an error analysis was performed (see appendix C). The error analysis
indicated that the experimental noise data of figures 9 and 10 should be accu-
rate within *1 dB in sound pressure level and about %120 in phase for at least
14 of the 16 microphones. However, because of the number of independent measur-
ing systems, only a smaller net error could result in the overall directivity
determination of sound pressure level and phase.

The accuracy of the theoretically predicted curves of figures 9 and 10 is
dependent on that of the surface measurements and the theoretical model. On
the basis of a cumulative component analysis, with allowances for possible exper-
imental procedural error, an ample error band to assign these curves should be
+1.5 dB in level and *15° in phase.

From the results of the error analysis, it is concluded that for the case
considered, the Kirchhoff solution did not accurately render the quantitative
relationship between the surface-velocity and surface-pressure distributions
and the resultant acoustic field.

It is of interest to note that this same trend of overpredicting the sound
has been found in other quantitative studies, which involved an analogous prob-
lem of noise from stationary airfoils encountering turbulent flow, as shown in
references 11 and 12. In contrast, good quantitative results were obtained in
studies of noise of high-tip-speed rotors (refs. 13 and 14), where the solution
of Kirchhoff's problem for surfaces in convective motion was employed using nor-
mal surface-velocity distributions and calculated steady-loading distributions
(unsteady loading being ignored).

This experimental study tests suitability of Kirchhoff's formulation for a
particular application; therefore the results cannot be generalized for all aero-
acoustic applications involving surfaces. The tests were conducted for only two
frequencies, whose acoustic wavelengths were comparable with the chord length,
and for only one type of oscillatory airfoil motion. Also, as pointed out in
reference 11, there are significant conceptual differences in the noise produced
by surface motion and that produced from a stationary surface opposing fluid
motion, although the same aerocacoustic theory embodies both. The results do,
however, serve to question the usefulness of normal surface-pressure measure-

12



ments used in Kirchhoff's formulation to predict noise accurately for arbitrary
situations involving surface-flow interaction.

A natural inclination may be to consider that the neglect of viscous effects
in the Kirchhoff formulation should not give rise to as much disagreement as
shown in the results. However in another respect the surface-pressure data
(fig. 6) suggest that viscous effects may not be negligible. The pressure load-
ings appear to approach constant levels at the edges rather than tending to
zero. This behavior is consistent with that found in some recent studies of
unsteady aerodynamics (refs. 19 and 20) demonstrating failure of the classical
Kutta-Joukowski condition at the edges of airfoils operating at high reduced
frequency. Such discrepancies, as explained in reference 21, may be due to
linear viscous effects. If it is indeed true that one must consider airfoil
theory for unsteady, viscous flow to describe the surface-pressure distribution
properly, then it may be suggested that one should not ignore viscosity in the
prediction of the sound field.

CONCLUSIONS

For a particular rigid body undergoing vibratory motion, the quantitative
relationship between surface-velocity and surface-pressure distributions and
the resultant acoustic free field was examined and compared with that predicted
from the Kirchhoff integral formulation.

To allow definitive comparison for pressure levels and phase, the acoustic
data generated were pure tone and the tests were conducted in a stationary
medium (no airflow). A symmetrical airfoil section was oscillated at small
amplitudes at two frequencies: 301 and 477 Hz. These frequencies correspond
to values of the compressible frequency parameter (wave number times airfoil
semichord) of 1.3 and 2.0.

The theory was applied by using measured airfoil surface pressure and
motion to predict the sound field, which was compared with experimental values.
It was found that for both test frequencies,

1. The applied theory overpredicts the measured sound pressure level by
2 to 5 dB, depending on directivity angle.

2. The phase variation, over a large range of directivity angle, is over-
predicted by the theory.

3. The closest overall agreement for sound pressure level and phase appears
near the directivity angle which corresponds to a location perpendicular to the
airfoil chord line. However, even here differences are significant.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

October 31, 1977
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APPENDIX A

THE KIRCHHOFF FORMULATION

This appendix gives a summary of the derivation of a solution to the inhomo-
geneous scalar wave equation. This solution contains the surface integral known
as Kirchhoff's integral formulation of Huygens' principle, which is shown to be
equivalent to equation (5), the equation applied in this experimental study.

Consider the sound inside a given domain as being determined by the sound
sources inside this domain and by sound which enters from the outside. Mathe-
matically, one relates the sound field to its sources by integrating an inhomo-
geneous differential equation. Let ¥ represent a scalar potential, let
G(¥,t) be the density of the source function internal to a domain V, and let
H(¥,t) be the density of the source function external to domain V. It is
assumed that throughout the domain V, the medium containing the source G(?,t)
is homogeneous and isotropic and contains no surfaces which would reflect or
scatter sound waves. Within domain V the scalar function Y satisfies the

equation

vay _ 182 . _q(7,t) (41)
2 3t2

where ¢ 1is the speed of sound.
Let domain V be closed and bounded by a regular surface S and let &

and Y be any two scalar potentials whose first and second derivatives are con-
tinuous throughout V and on S. Given this, Green's integral is valid:

(YV26 _ OV2Y¥) gV = <<p Y _ vy 9%\ 45 (42)
v s on on

where 0/9n denotes differentiation along the normal to S (normal positive
into V). Let X be a fixed observation point within V and

r = \/(x1 - ¥1)2 + (x2 - ¥2)2 + (x3 - y3)2 (43)
be the distance of the fixed point from a variable point ?. (See fig. A1.)

In equation (A2), ¥ is identified with the desired solution of the wave
equation (A1). The function ® is taken as a function relating the result in
the field at ® due to an activity at ?.

The Kirchhoff theory of integration is used to obtain Y (e.g., refs. 1
and 22 to 25) from the wave equation (A1), the prescribed conditions of conti-
nuity (eq. (A2)), and a choice of function ®. To allow the desired solution,
function ® is conveniently taken as the elementary solution of the homogeneous

equation

14
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v -1 3% . o (A4)
c2 3t
which is
®=Agsm-r (A5
8t 3) )

This is the free-field Green's function (see ref. 7), where A is an arbitrary
constant, t is time, and § is the Dirac delta (or impulse) function. The
result is the solution to the inhomogeneous scalar wave equation (A1), also
known as the Kirchhoff formula,

2e)=1L 1 1 1 9 (1) . 1 orlo¥|] _ 1}jo¥ S
¥, e 4 v r[G] v+ 4n L {[‘y]an(r') er an[at] r-[an]} d (46)

where the symbol [G] = G(?,t - E) denotes a function taken at retarded time
T:t—z. c
e

In equation (A6) the volume integral is a particular solution of the inhomo-
geneous wave equation which physically represents the contribution of all sources
G contained within V. The surface integral is a general solution of the homo-
geneous equation (A4), where the integral extends over S and accounts for all
sources H 1located outside V.

The Kirchhoff formula can be applied for an infinite region V contain-
ing the observer point % and bounded internally by a closed surface S. The
restriction formerly introduced - that the surface of integration is a closed
surface containing ¥ - is satisfied by assuming that a portion of the surface
is displaced to infinity, where its contribution to the integral is zero. (See
fig. A2.) Such a procedure is valid whenever the Sommerfeld condition is satis-
fied, that is, when the product Y¥r is less than some constant, which is always
the case for the acoustic phenomena considered here.

In reference 2, Curle employed equation (A6) and the Lighthill formulation
of aerodynamic sound to determine the influence of solid boundaries upon the
sound field.

The surface integral of equation (A6) is what may be described as
Kirchhoff's integral formulation of Huygens' principle, as seen in refer-
ence 1. In equation (A6), if one lets ¥ equal the velocity potential, not-
ing that the acoustic pressure p'(%,t) = c2(p - py) = P,3¥/3t and velocity

vp e (-Vy¥) ~ i = —gg, then one obtains
n
mopr(R,e) = 12 Poc[va] + [p7] c0s © 45, [ [p'] cos § 45 (AT)
c 3t J r S 2
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where in the integrals, p' 1is the surface gage pressure and

cos § = -A - Vyr = -or
on

which is the cosine of the angle between the surface normal and vector
P=%-9F (see fig. 1). Equation (A7) is identical with equation (5) and,
except for the omission of convective effects, is that found by Farassat in

reference 9.
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APPENDIX B

DERIVATION OF THEORETICAL MODEL

The purpose of this appendix is to show the derivation of the velocity
term (SPV)y and the pressure term (SPP)y for the theoretical model used
for the prediction of the acoustic field in the experimental section.

Each of the radiating elements illustrated in figure 8(b) is approximated
by straight plane segments of which the cross section and its coordinate sys-
tem are shown in figure B1. In this figure the origin represents the pivotal
point of the rigid-airfoil vibration, and the observer at position ¥ is at a
constant radius rg from the origin and is at an angle B with respect to the
Xp-axis. The observer remains in the xp-x3 plane.

In figure B1 the two segments representing the element m are denoted as
top and bottom. The coordinate ¥3 i8 given by

v3 = ble - n(E - &,)]

for the top segment and by

y3 = -b[e - n(E - &)] (1 £ £ &) (B1)
for the bottom segment. Here
b semichord of the airfoil
£ unit position on yp-axis, yo/b
n slope of segment m
€ unit height, y3/b, at center of segment m

The normal iy Ffor the top segment is

fo L

= n
v1 + n2 V1 + n2

whereas for the bottom segment one obtains

fiy

fp=_n _3-__1 ¢

1 +n V1 o+ n2

The surface velocity v, in equation (8) for element m has linear variation
in the y,-direction. The prescribed sinusoidal velocity is

vy = iwab exp imt{[s - n(§ - 50)33 + gﬁ}

17



APPENDIX B

for the top and
Vp = iwab exp imt{—[e - n(g - Eo)]j'\ + gﬁ}

for the bottom, where o is the angular displacement. The surface pressure p'
in equation (9) is assumed to be uniform and sinusoidal over each segment. For
the top segment of element m, p' = Py exp iwt, and for the bottom segment,

p' = -Pp exp iwt, because of symmetry of the airfoil and antisymmetry of the
surface motion. The term Py is a complex quantity in order to allow phase
specification between pressure and surface motion. For the top segment the
normal velocity v, 1is

L, 1+ﬂ[e - n( -so>]
Vn,t =V © Nt = iwabE exp iwt
VI + n2

and, correspondingly for the bottom segment,
Yn,b = v -y = ~Vn,t

For the integrals of equations (8) and (9) the_differential surface area
for the element m is dS = dyq\1 + n¢ dyo, = dy1b\1 + n? df. The coordinate
y1 varies from -% to &, where & is the semispan of the airfoil. The fol-

lowing is obtained for equation (8):

L 2
(SPV)pp = —u——-pobzwza I I [5(1 - n2) + nle + nf';o)] exp l:i“’(t - Z—tﬁ
2 Vg

'y

_ &xp [i‘”(t - ?ﬂ dg dyq (B2)

Equation (9) becomes

% &2 . r
(sPp), = rPwPm\1 + n? f J cos Ot exp [iw(t - c_t)}
m= —————— L 7
Ure Lo %4 ry

-~ . r‘b
_ cos Bp exp [uu(t - 6—)] dE dyq (B3)
Iy

The radii ry and rp are respectively the distance from the dlfferentlal area
dS of the top and dS of the bottom segment to the observer at %X. The angle
et is the angle between the normal at dS for the top segment and the radius
riy. Correspondingly, eb is the angle between the normal for the bottom seg-

ment and ry.

From the coordinate system illustrated in figure B1 the center of element
m at § = g = (§1 + £2)/2 1is at a radius rp from X. The value of rp is

18



APPENDIX B

given by ry =‘J}02 + (Egb)2 + 2rgEob cos B. The radius rp makes an angle Bp
with respect to the ys-axis which is related by

2 2 2
cos Bm - Em + (gob) - o (Bu)

2rpEob

The distance from a point within element m on the yp-axis to X is approxi-
mated closely by rp + b(§ - £,) cos Bp. Therefore, the radius ry from a
point on the top segment to X is

ry = rp + b(§ - £5) cos By - b[é - n(E - £x)] sin By
For the bottom segment this radius is

rp = rp + b(§ - £,) cos Bp + b[e - n(€ - Eo)] sin Bp
Rearranging the expressions for re and rp gives

k
ry = rp - 20 . éQ(kx + kg) + %(kx + kg)

k
(B5)
ko Eo
rp = g + 0 - 20(ky, - kq) + &(ky - kg)
b m " i X s BX s
where
k wave number, w/c
kg = kbe sin Bp
Ky = kb cos By
kg = kbn sin By
The cosines of angles 6t and éb are approximated as follows:
N ~N
~~nt'?m_ n 1 .
cos O¢ = = - cos By + —— sin By
Tm 1+ n2 1 + n2
(B6)
5 . hp - By n 1
cos Op = = - cos Bp - sin By
"m V1 o+ ﬂ2 1+ n2 )

The preceding approximations for r¢, rp, cos ét’ and cos 6b are valid for
each point on the segments because & << rp, where & is the airfoil semispan
on the yji-axis.

For the integrals of equations (B2) and (B3), only first-order approxima-
tions are required for ry and rp in the denominators. These are determined
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by evaluating the previously obtained values of ry and rp at the center of
each segment, which are defined as r¢ o, and rp,o and are found to be
ry o X rp - €b sin By
(B7)
rp + €b sin By

144

p,o0

To evaluate equations (B2) and (B3), it_is noted that the values obtained
for the radii ry and rp and the angles 6y and 0O, are independent of the
yi-coordinate. Also, the only dependence of these values on the variable & is
contained in the last terms of the approximations for ry and rp in equa-

tions (B5). Upon integration and rearrangement, equations (B2) and (B3) become,
respectively,
_ =P gw20b2L (1 - n2) exp |i(wt - krp) A
(SPV)p = —2 = [ m ] = +4§£7}t,0
x |1 + i(kx + ks)ﬂ(ﬁ + ngo) _ Bm 1 + i(kx - ks)n(E + nﬁo)
1 -1 (kx - kglrp,o 1 -n2
, iCm _ iDy (B8)
rt,o Tb,o
and
(SPP), = -Pmklbﬂ1 + N2 exp [i(wt - krm)]<Am cos 5t _ Bp cos 6b> (B9)
27 rt.o b,o
where
ik . R
Ay = S;g_éiﬁgz{exp [-1(1{x + kg)(Ep - io)J - exp [—l(kx + kg)(&q - go)]}
-ik ) .
By = %’f_llzs_O?{exp [-ilky - kg)(E2 = Eo)] - exp [-ilky - kg)(E7 - £o>j}
ik . .
Cp = fgz}éfigz{gz exp [fl(kx + kg)(Eo - Eo)] - &4 exp [}1(kx + kg)(§q - Eo)]}
and
-ik . .
Dp = E;g_é_EEQE{EZ exp [-1(kx - kg)(€p - Eoi] - L9 exp [}1(kx - kg)(&q - Eo)]}

These equations, when applied to equation (7), render the prediction of the

sound field as based on the airfoil equivalent model shown in figure 8(b). Equa-
tions (B8) and (B9) are calculated by using experimental results of table 1 and
the coordinates and slopes of the airfoil equivalent model given in table Bt.

The prediction ignores the near-field term of equation (5). This term is easily
accounted for in equation (B9) by multiplying Ay by the factor 1 + (1/ikrg o)
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and By by the factor 1 + (1/ikry o). However, the contribution of these fac-
tors is small because the observer at X is considered in the far field of the
element m.

A more approximate theoretical model is obtained when one assumes that the
airfoil thickness is zero (fig. 8(c)), in which case the values of € and n
of equation (B1) become zero; this requires kg = kg = 0, cos O = -cos Op,
Pt,0 = 'b,0 = 'm» Ap = By, and Cy = Dy. As a result, the contribution from
the (SPV)p term in equation (B8) is zero.

In addition to the preceding approximation in regard to thickness, if the
value of ky multiplied by the width of the element &, - £4 1is small, then
the terms A, and By each approach the value -i(§3 - £1). The total force
on the element m is 2Pp(28)(E> - £9)b = Fp; substituting this value in equa-
tion (B9) gives

(SPP)p = M‘g exp l:m)(t - ‘”_m)} ' (B10)
Trp c

Now if the previously mentioned near-field factors are inserted, equation (B10)
becomes

Fp cos Bt ex [ﬁn(t - EEH
(SPP)p = D tlmrp c _(ik + ; )
m m

which represents the sound radiated by a simple dipole.
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APPENDIX C

ERROR ANALYSIS

In order to evaluate the accuracy of the comparisons between theoretical
and experimental results in figures 9 and 10, one can examine the individual
experimental and theoretical components and their contribution to the
comparisons.

Experimental Accuracy

The expected accuracy of the experimental noise data can be determined
from the results of the acoustic field test in figure 5. The figure shows a
scatter error of *1 dB in sound pressure level and *12° in phase for 14 of the
16 independent microphone systems.

The accelerometer measurements are predicted to be accurate within 6 per-
cent. This would correspond to an error of 0.5 dB in level for the calculated
contribution of the surface-velocity term (eq. (8)) to the noise prediction
equation. As will be shown in this appendix, the contribution of the surface-
velocity term is very small compared with that of the surface-pressure term
(eq. (9)). Therefore, any expected accelerometer measurement error contributes
very little to the experimental-theoretical comparisons.

The surface-pressure transducers were found to give very repeatable cali-
bration and pressure measurement results. In determining a reasonable error
band for the pressure data, one may look to differences found between transdu-
cers in regard to the sensitivity ratio S,/Sp, defined in equation (6). On
the basis of calculations made by using the standard deviation of the calibrated
values of Sa/Sp, the expected error is less than #0.6 dB in surface pressure
level and less than +1.0° in phase for any datum point of figure 6. By using
this error band, an analysis of conceivable error buildup in the prediction of
the sound field renders an expected error band of 1.2 dB in sound pressure
level and +10° in phase for the theoretical curves of figures 9 and 10.

Model Accuracy

The effect of the degree of theoretical-model refinement was examined and
some results are shown in figure C1. In this figure various predictions, based
on model refinements of figure 8, are given of sound pressure level and phase
as a function of directivity angle R for two of the experimental cases. No
experimental noise data are shown.

It is seen that the predictions using the airfoil equivalent model, used
for the theoretical curves of figures 9 and 10, are closely approximated by
using a model with assumed zero airfoil thickness in noise calculations. With
zero thickness, the value of equation (8) reduces to zero and that of equa-
tion (9) increases slightly; this renders a total prediction reduction of only
about 0.5 dB in sound pressure level and a change in phase of less than 2.00°.
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This shows that for the experimental cases considered in this study, airfoil
contour refinement may be regarded as unnecessary.

An even more approximate prediction is obtained when the airfoil is
replaced by two simple dipoles whose strength is determined by summing measure-
ments over the surface and whose positions are specified near the centroids of
the in-phase regions (fig. 8(d)). The calculated results for three values of
the angle £ are shown in figure C1 for the two-dipole approximation and are
seen to be within 1.5 dB of the values for the more exact models.

The effect on prediction of increasing the number of radiating elements
beyond eight was examined. It was found that for surface-pressure distribu-
tions similar to those of figure 6, additional refinement incorporating more
elements could result in changes of only about 0.1 dB in predicted noise level.
Therefore, for the cases considered, eight theoretical model elements are suf-
ficient for accurate prediction.

Spanwise compactness is assumed in the model and is allowed because of
the acoustic-field measuring positions, which were in the plane perpendicular
to the airfoil surface at the midspan. Analysis has determined that the maxi-
mum expected error due to this assumption would be a negligible difference of
10-3 dB in sound pressure level and less than 1° in phase.

Also, as previously mentioned, there was 0.7 dB subtracted from the theo-
retical values of figures 9 and 10 to account for spanwise diminishing levels
near the airfoil edges. This should be an accurate adjustment within 0.1 dB,
assuming the spanwise level continues to drop near the edge in the manner indi-
cated in figure 7.

23



REFERENCES

1. Baker, Bevan B.; and Copson, E. T.: The Mathematical Theory of Huygens'

10.

11.

12.

13.

14,

15.

24

Principle. Second ed. Oxford Univ. Press, 1969, pp. 1-44,

Curle, N.: The Influence of Solid Boundaries Upon Aerodynamic Sound. Proc.
R. Soc. (London), ser. A, vol. 231, no. 1187, Sept. 20, 1955, pp. 505-514.

Lighthill, M. J.: On Sound Generated Aerodynamically. I. General Theory.
Proc. R. Soc. (London), vol. 211, no. 1107, Mar. 20, 1952, pp. 564-587.

Ffowecs Williams, J. E.; and Hawkings, D. L.: Sound Generation by Turbulence
and Surfaces in Arbitrary Motion. Philos. Trans. R. Soc. London, ser. A,
vol. 264, no. 1151, May 8, 1969, pp. 321-342,

. Amiet, R. K.: Acoustic Radiation From an Airfoil in a Turbulent Stream.

J. Sound & Vib., vol. 41, no. U4, Aug. 1975, pp. 407-420.

Sharland, I. J.: Sources of Noise in Axial Flow Fans. J. Sound & Vib.,
vol. 1, no. 3, July 1964, pp. 302-322.

. Morse, Philip M.; and Ingard, K. Uno: Theoretical Acoustics. McGraw-Hill

Book Co., Inc., ¢.1968, p. 321.

. Richards, E, J.; and Mead, D. J., eds.: Noise and Acoustic Fatigue in Aero-

nautics. John Wiley & Sons, Ltd., 1968.

Farassat, F.: Theory of Noise Generation From Moving Bodies With an Applica-
tion to Helicopter Rotors. NASA TR R-451, 1975.

Farassat, F.; and Brown, T. J.: Development of a Noncompact Source Theory
With Applications to Helicopter Rotors. AIAA Paper No. 76-563, 1976.

Clark, P. J. F.; and Ribner, H. S.: Direct Correlation of Fluctuating Lift
With Radiated Sound for an Airfoil in Turbulent Flow. J. Acoust. Soc.
America, vol. 46, no.3, Sept. 1969, pp. 802-805.

Paterson, Robert W.; and Amiet, Ray K.: Acoustic Radiation and Surface
Pressure Characteristics of an Airfoil Due to Incident Turbulence. AIAA
Paper No. 76-571, July 1976.

Farassat, F.; and Brown, T. J.: A New Capability for Predicting Helicopter
Rotor and Propeller Noise Including the Effect of Forward Motion. NASA
T™M X-T4037, 1977.

Hanson, Donald B.: Near Field Noise of High Tip Speed Propellers in Forward
Flight. AIAA Paper No. 76-565, July 1976.

Hardin, Jay C.: Airframe Self-Noise - Four Years of Research. Aerodynamic
Noise, AGARD-LS-80, Jan. 1977, pp. 6-1 - 6-19.



16. Commerford, G. L.; and Carta, F. 0.: An Exploratory Investigation of the
Unsteady Aerodynamic Response of a Two-Dimensional Airfoil at High Reduced
Frequency. AIAA Paper No. 73-309, Mar. 1973.

17. IS Pressure Transducers. LQ Series - Thin Line Design. Bull. KPS-LQ3 Ser.,
Kulite Semiconductor Products, Inc.

18. Norum, Thomas D.: Measured and Calculated Transmission Losses of Sound
Waves Through a Helium Layer. NASA TN D-7230, 1973.

19. Satyanarayana, B.; and Davis, Sanford: Experimental Studies of Trailing-
Edge Conditions on an Oscillating Airfoil at Frequency Parameters of Up
to One. AIAA Paper No. 77-450, Mar. 1977.

20. Archibald, F. S.: Unsteady Kutta Condition at High Values of the Reduced
Frequency Parameter. J. Airer., vol. 12, no. 6, June 1975, pp. 545-500.

21. Yates, John E.: On the Singular Role of Viscosity in the Theory of Thin
Airfoils. Rep. 306 (Contract NO0O14-76-C-0576), Aeronaut. Res. Assoc.
Princeton, Inc., May 1977.

22. Stratton, Julius Adams: Electromagnetic Theory. McGraw-Hill Book Co., Inec.,
1941, pp. 424-428, H60-U64.

23. Lamb, Horace: Hydrodynamics. Sixth ed. Cambridge Univ. Press, 1932,
pp. 498-502.

24. Skudrzyk, Eugen: The Foundations of Acoustics. Springer-Verlag, 1971,
pp. 489-500.

25. Malecki, I. (Irena Bellert, transl.): Physical Foundations of Technical
Acoustices. Pergamon Press, Inc., ¢.1969, pp. 149-162.

25



9¢

TABLE 1.- TEST CONDITIONS AND SURFACE PRESSURE RESULTS®

|

f = 301 Hz; f = 301 Hz; f = 477 Hz; f = 477 Hz;
Transducer a = 82.1 yrad o = 259.3 prad a = 30.8 prad o = 97.6 urad
Transducer | location,
number percent chord {Peak pressure,| Phase, Peak pressure,| Phase, Peak pressure,! Phase, Peak pressure,| Phase,
|Pgl, Pa $p - ®a,° |Pn| , Pa Pp - 9a,° |Pnl|, Pa ¢p - 9a,P |Pgl, Pa ¢p - ®a,°
deg deg deg deg
1 1.4 5.77 356 | 2447 36 | 7.65 3 22.73 4
; !
2 9.7 5.63 359 1 21.36 | 355 | 6.17 0 19.53 0
3 21.2 5.31 359 1 21,35 ' 355 6.64 6 20.43 6
! ; | :
4 31.9 1.58 i 0 ! 7.42 i 343 i 3.09 : 22 9.26 23
i I |
5 48.6 2.91 161 k|69 C301 139 9.62 140
6 61.8 6.44 164 | 26.27 ;s b T3 171 23.53 17
7 78.1 9.49 Looqes . 37.93 175 1 11.03 170 34.88 170
, |
\ 8 88.9 10.39 .62 40.26 176 11.96 '[ 171 38.34 173
L '

Terminology consistent with that of equation (B9).

p -

?Pa

is the phase by which the surface pressure leads the normal surface acceleration near airfoil leading edge.




Semichord,

Semispan,

TABLE B1.- CONSTANTS FOR EQUATIONS (B8) AND (B9)

(a) Physical and geometric constants

b, m (Ft) . . . . & ¢ v« v i i e e v e s e v o« . . 0,2286 (0.750)

L, m (FE) .« ¢ v ¢ i e e e e e e e e e e e e e . . 0.1524 (0.500)
Measurement radius, rg, m (ft) 2.21 (7.25)
Speed of sound, ¢, m/s (ft/sec) 344 (1130)
Mean air density, pq, kg/m3 (lbm/ft3) 1.20 (0.075)
Acceleration due to gravity, g, m/s2 (ft/sec2) . . . . . . . 9.8066 (32.174)

(b) Coordinates and slopes of airfoil equivalent model

‘Element Transducer

number, location, € n €2 €1
m percent chord
1 1.4 0.055 | -0.600 | -0.722 | -0.833
2 9.7 . 100 -.111 -.522 -.722
3 21.2 117 | -.050 | -.300 | -.522
Yy 31.9 116 .olo -.022 -.300
5 48.6 . 106 .038 273 | =-.023
6 61.8 .085 .101 .569 273
7 78.1 .058 .094 .843 .569
8 88.9 .022 .137 1.166 .843
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Figure 1.- Coordinate systems and integration region
for equations (1) and (4).
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mode employed in tests.
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Figure 3.- Experimental model in the 301-Hz configuration.
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Figure 5.- Results of acoustic field test for the microphones all at a radius of
2.210 m (7.25 ft) from simple source at airfoil location (airfoil removed).
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(a) Actual airfoil model.

(b) Airfoil equivalent model (eight elements).
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(c¢) Zero-thickness model (eight elements).

(d) Two-dipole approximation.

Figure 8.~ Illustrations of actual model and theoretical models used
in the investigation.
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Figure 9.- Sound pressure level and phase as a function of directivity angle
B at a measurement radius of 2.210 m (7.25 ft) for airfoil oscillating
at f = 301 Hz.
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Figure Al1.- Integration region for Kirchhoff formula.
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Figure A2.- Integration region for Kirchhoff formula when region V
is bounded internally by surface S.
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Figure B1.- Coordinate system used in development of sound field
formulation of an airfoil equivalent element.
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