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EFFECT OF TEMPERATURE ON THE ELECTRONIC INSTABILITY
AND THE CRYSTALLINE PHASE CHANGE AT LOW

TEMPERATURE OF ¥38! TYPE COMPOUNDS

J. Labbe and J. Friedel
College of Sciences, Solid State Physics, 91 Orsay

Introduction . - . - ' . .

In a preceding article [6], we showed that a Jahn-Teller /303
effect on the d band structure can explain the instability of the
cubic phase of type V^Si intermetallic superconductor compounds
at zero temperature, with the tetragonal phase being stable. In
this second part, we study the effect of temperature. By applying
Fermi statistics to our model, we show that the cubic phase re-
covers its stability above a certain temperature. This allows
the martensite transition observed at low temperature by Batterman
and Barrett [4] to be. understood. In addition, we show that, in
our model, the transition very likely is of -the first order but,
meanwhile, it is' only accompanied by slight discontinuities in
the variation of different physical parameters, such as lattice
distortion and the elastic constants. Likewise, the latent heat
of transformation certainly is .very low.

In the second section, we stress more particularly the vari-
ation of the elastic constants with temperature, -and we show that
the experimental results obtained by Testardi, Bateman, Reed and
Chirba [3] really appear to reveal a first order transition.

In the third section, we apply our calculations numerically
to" the example of 7381.

1. • Effect of temperature and order of the transition

" . For a finite value of the temperature T, we have to find the
value of e which gives the minimum free energy F=U-TS. The Fermi
level E'p is a function of e and T. Its value is given by the
equation
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where Ej?(0). "is the Fermi level for e=0 and T=0. At a nonzero
temperature, no band is ever completely empty and we cannot dis-
tinguish the cases e<ec5£c

<e<ec and-£c<£-

The free energy is a function of e and T; for a given temper-
ature T, its variation with e is written:
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where Ep is the Fermi level at temperature'T and e=0, and-recall- /30^
ing that there are 3N transition atoms in'all in the crystal
and Q electrons per transition atom in the d band under consider-
ation. 'In (II.2), the variation'of the contributions to entropy
with e, other than that of the d electrons, is disregarded.

Equation (II.1) can be solved numerically by. machine.cal-
culation. By successive approximations, E'-p is calculated for
various values of e and T. The corresponding numerical values
of dF are then obtained from (II.2). In this way, a system of
curves is obtained, which respresents, variations of dF with e
for various temperatures. Fig. 1 shows the system obtained in
this way for V^Si, as we shall see in Section 3- It is seen that
the cubic -phase (e=0) again becomes stable above a certain tem-
perature Tm.

In conclusion, at very low temperatures, the electrons re-
main confined in the bottom of the band, where the. density of
states is very high, which involves instability of the cubic phase.
On the other hand, when' the temperature rises, the band filling
is modified, to the benefit of a lower density of states, which
reduces the effect of electron instability. The presence of the
term 1/2 A'e2, which changes very little with temperature, thus
permits the cubic phase to regain its stability. To determine
the order of the transition, we have to find the detailed shape
'of the curves which correspond to neighboring temperatures of Tm,
for very small deformations e. Then, dF can be expanded with
respect to e, and the order of the transition can be found, in
such a way that the coefficients of this expansion vary with tem-
perature. Therefore, if the following is written:

J7-" = 3A" ( I I .3 )



Fig. 1. Variations dP of free
energy with distortion e for
various temperatures T.

Key: a. In eV per vanadium atom

coefficients A, B and C, ob-
tained from (II.l) and (II. 2)
by calculations too long. to be
reproduced here, are expressed
by:

A = a* q

-1 a2 * rE"
2 /B.

En(E) j(E) dE

E* n(E) f'(E) dE +A'

(II.
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.
f(E) is the Permi .function AT . and f'(E), f"(E),
f" (E),...are its successive derivatives with respect to energy
E. is the coefficient of the term in e in the expansion of
displacement E'p-Ep of the Permi level, and it is given by

En(E) /'(A-)

B' and C' are the anharmonic contributions of the conduction elec- 7305
trons and nontransition atoms; B' can be roughly estimated from
the equation of state of Griineisen. He finds B'=-6A' (B'<0). It
is very difficult to evaluate C', but we shall see that it is
reasonable to disregard it in a certain temperature region.



A machine calculation permits" A,BandC to be determined for
various temperatures T. Figs. 2A, 2B and 2C also indicate the
behavior of their variations with T, for the particular case of
¥38!. . . .
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Fig. 2. Variations with tem-
perature T of coefficients A,
B and C of the expansion

of .the free energy for very small
distortions .

Key: a. In eV per vanadium atom
b. T in. °K

It follows from the
theory of Landau [1] that
the transition can only be
second order, if coefficients
A and B cancel for the same
temperature. In principle,
this can occur for a well
determined value of the
initial filling of the band.
But, this possibility can
only be considered accidental,
It would be quite extraordin-
ary for the -filling to have
just the required value. On
the other hand, group theory
[2] shows that B has no cause
to be 'identically zero due
to crystal symmetry. There-
fore, if the change in the
structure under study here
does not make any other _.
parameter than uniform dis-
tortion e interfere,.the
transition is certainly of
the first order. But, we
find that, in fact, in the
cases of interest to us.,
coefficients A and B cancel
for similar, temperatures,
so that, if the transition
really is of the first order,
it is, meanwhile, only ac-
companied by slight discon-
tinuities in variation of
the physical parameters. In
addition, it only brings a
low latent heat into play.

We call TO the temperature for which.A cancels by changing
sign. Generally, B and C are zero for this temperature, and the
transition is first order.. In -the immediate vicinity of TQ, A
can be expanded in T-Tg, and A^K(T-To) can be written, where
K is a positive constant. If this vicinity is small enough, B and
C can be identical to their values at TO, or BO=B(TQ) and CO=C(TQ).



CQ has to be positive for there to be a transition. The number
of solutions of the equation dF(e)=0 depends on the sign of the
discriminant

which cancels out for the temperature

T» = T0 + (2/9) (IJ»fCQ K)

and there then is a double root

(II.7)

(II..8)

The. first order transition occurs at temperature Tm. BQ can
be positive or negative, according to the initial filling of the
bands. Pigs.- 3A and 3B show the behavior of the variations of dF
with £ for very'close temperatures Tm, respectively, in the cases 7306
BQ>O and Bo<0. •

.The- latent heat of trans-
formation is equal to the. vari-
ation AU of the internal energy
between the states (T=Tm, e=0)
and {T=Tm, e=e(Tm)}. The .
Helmoltz relation permits the
writing of '..

AU = AF— ?'(;>/;>7') (AF). (II.9)

The free energy is the same
for the two .states under consid-
eration. Therefore,- AF.= 0. On
the other hand, the following is
obtained from (II. 3) ..'

Fig. 3. Variations dF of free
energy with distortion e for
temperatures T very near trans-
ition temperature Tm, in .the
cases B0>0 (Pig. 3a) and BQ<O
<Pig. 3b). ' ; 3W{ A(Tm) e(

C(Tm) e»(7'w)

D(Tm}

T-Tm



But, since dF has a minimum at e=e(Tm) , we have •••'.

A(Tn) c(7'ra) + B(Tm) t*(Tm] + C(Tm) ̂(Tm) = 0

and, therefore,

&U = 3AT.

• - ' • (11.10)

'2. Variation of elastic constants with temperature

In our model, we can predict the behavior of the variations
with temperature of the total modulus of shear At which is con-
nected to the constants of rigidity C 1 1 and Ci2, calculated for a
crystal volume containing 3N transition atoms, by

• • 3AM, = | (Cn - C18). •••••'. (11.11)

For T>Tm., dF is at a minimum for e=0, and At is the coef-
ficient A, given by equation (II. 4); Contribution A' of the
conduction -electrons is positive, and it varies very little with
temperature. On the other hand, contribution A" of the d electrons
expressed by' the first two terms in (II. 4), is negative, and it
decreases very rapidly in absolute value as the temperature in-
creases. For temperatures immediately above Tm, A' and A" have
almost equal absolute values, and At is very -small. On the con-
trary, at ordinary -temperatures, A" has an absolute value of no
more than one tenth of the value of A'. At is then nine tenths
of A'. Fig. 2A shows that, just above Tm, the variations of At
with T can be considered linear, and their extension to the left
intersects the temperature axis at T=Tg, with TO very slightly
less than Tm (Fig. 4). Difference Tm-To is obtained from (II. 7).
This anomaly in the behavior of At has been brought out experi-
mentally in ¥381 by Testardi , . Bateman , Reed and Chirba [3].

For T<;Tm, dF is at a minimum at a certain value e(T) of e,
different from zero. Then, At is no longer equal to coefficient
A given by (II. 4), -but it. is directly connected to the second
order coefficient of the expansion of dF in e-e(T). Thus, it is
found that -

A, = A + 1l3t(T) + 3Ce«(7-) + U)#(T) (11.12)

where D is the coefficient of the fifth order term in (II. 3)-,
which can be written De5/5.

For T=Tm, (II. 8) and (11.12) show that At(Tm)=A(Tm) + 4De
3 (Tin),

which means that the modulus of shear has adiscontlnuity for De3(Tm)
during the transition though it is very small, because it is pro-
portional to e3(Tm). This is. quite -consistant with the fact that.'



Tc To Tm

the transition is of the first
order,

3. Application to case of V-jSi

In V3Si, the distortion
observed by Batterman and Barrett
[*J] is tetragonal, with a positive
value of e. Therefore, we are
in b or c of the discussion of
I.2.E [6], and the number Q of
electrons in the nearly empty d
band per transition atom satisfies
the 'double' inequality

2 2.__f „«„» _ n ̂  - *,9 <s_. „.,- ,-

which, with (I. 11) expanded by
Q, is also written

Fig. 4. Variations of modulus
of shear A^ with temperature
T. ' '

Morin and Malta [5] have measured the electron specific
heat in ¥38!, at temperatures between 0°K arid 25°K, and the value
they obtain for the density of states at the... Fermi level, can be
considered as relating to the tetragonal phase. They find a
numerical value of 11 eV-1 per vanadium atom, with the two direc-
tions of spin taken into . account . The following then is obtained
from (1.^5) ,

/307

or, by disregarding the small term'aqe/2,

n(Ery~(Q/4) X 11 ~ 25 eV-
1.

On the other hand, Batterman and Barrett find

• . ' ' .. a(\ +c)/« l- = 1,0025

or e= 10~3

The following then is obtained from (I.11) and (1.21)

1,07 X l(r-3~Sa<]l-zA'n(Ef). (II.:

Experimentally,-at ordinary temperatures," it is found that
[3] Cn= 2. 87-1012 erg-cm-3 and C 12 =1~. 20-10

 12 erg-'cm-3.

The crystal parameter' is 2a=iJ.72 A. The number of vanadium
,22atoms per cm3 is, therefore 3N-6(2a)~3 =5.72.10

From -(11.21) , it is then found that, at. 300°K, At = 27.il eV per
vanadium atom. According to Section 2, it is then seen that
there has to be A'=30 eV per transition atom.

7



Relation (11.1*1) involves aq=1.57. This leads to acknowledge-
ment, for the unknown parameter, which is the coefficient of
Slater, of the vanadium atom in the crystal, the quite reasonable
numerical value q=0.67 A"1'.

The width 2|,Em| of the d band under consideration is, like-
wise, a parameter which we no not know, but, from (11.13), it is
found that

,l,82cV < 21/q < 2/,2 t-V.

This is a very reasonable order of magnitude for the nar-
rowest d band, i.e., the dZy x2_y2 band. . .

For example, let us take |2 Em|=2.20 eV. Prom (1.11), Q=0.0593
is then found. It is found in case b of I". 2.E.

The machine calculations reported in 1 then give the following
results, which can be.read in Figs. 2 A,B and C:

K - 1 eV degree"1 per vanadium atom
Bo = -0.5*103 eV per vanadium atom - . . '
CQ= 1.6-105 Ev per vanadium atom •

••.T0 = 13.3°K. • ' • • • ' .

(II.7) and (II.8) then give

.Tm=i3.4°K and e(Tm)=0.2-10-
3.

The experimental value of Tm is clearly -greater than 20 to
25°K. Actually, while our unidirectional model really results in
a high, narrow peak for the density of states, It does not give
us its exact shape in the immediate vicinity of the bottom of the
band with certainty. But,-for a very slightly occupied band (here,
'Ep-Em~10-

3 eV), this shape begins to be of importance, as soon as
the temperature rises a dozen degrees above absolute zero.

Fig. 5 represents the calculated variation of e with temper-
ature T. It is seen that, when T. increases, initially, e hardly
varies. On the other hand, when T approaches Tm, e begins to de-
crease very rapidly. This appears to be in agreement with experi-
ment [4]. • . .

For T=Tm, e only has an eighth of its value at 0°K. There-
fore, the transition is only"accompanied by a slight discontinuity,
which is quite difficult to detect experimentally. Furthermore,
the calculation gives (Fig. 2) :



= A---- 1 cV-dc-r-1 per vanadium atom,

r-3-m

l*\ = -!/'
xM'/r-Tm

/i x-io5

Formula (11.10) then gives, for the latent heat of transform-
ation AU-0.006 calorie per gram atom in transition. Such a low
value is difficult to measure.

0,2

io3e

Tin 'H '

Tm 15

Finally, since the trans-
ition is first order, hyster-
esis can be expected. With
the inhomogeneities of the
crystal taken into account,
this undoubtedly spreads out
the transition temperature.
Different portions of the
crystal do not undergo all
the changes of structure at
the same temperature. Only
measurements made on a speci-
men which is very suitable
from the metallurgical point
of- view have a chance of .
making an infinite specific
heat peak appear, which cor-
responds to the existence of
latent heat. On the other
hand, if the transformation
was -second order, a specific
heat peak of finite height,
but without hysteresis, would

be expected. The absence of a peak in the measured specific heat
[51 is in agreement with a first order transformation.

To summarize, among the parameters which interfere in our
calculations, crystal parameter a and the coefficient of shear A'
at ordinary temperatures are known experimentally with certainty.-
On the other hand, the.specific heat measurements only give us an
indicatio.n. of the order of magnitude of the density of states n(Ep)
at the Fermi level. Likewise, in reference to the values usually
excepted for the transition elements, we have 'only a rough idea
of the width 2|Em| of the narrowest d band and of the coefficient-,
of Slater q of the vanadium atom in the crystal.

By using these 5 numerical values, our calculations permit -
interpretation of the low temperature values and the thermal

Fig. 5. Calculated variations of
distortion e with temperature T
in the tetragonal phase.

Key: a. T in °K



variations of two physical quantities: distortion in- the
tetragonal phase and a coefficient of shear. Distortion e at
low temperature has a value, which is in good agreement with that
measured by Batterman and Barrett. They also allow the difference
in electron specific heat in the two phases, tetragonal and cubic
to be understood.

Transition temperature Tm is only obtained in order of mag-
nitude. Actually, different numerical tests show that it only
varies slowly with band width. However, it depends greatly on
details of the density of states n(E), in the vicinity of the
Fermi level, and these are little known.'
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