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FOREWORD

This report discusses the numerical solutions obtained for the simplest
	 I

three-dimensional configuration, a flat plate, using the simplified Navier-

Stokes equations. A separate report is being written to present the results

for an axis; corner formed by two perpendicular plates. The leading-edye

problem, whi,:h is essentially two-dimensional, has been studied using both

the exact and the simplified Navier-Stokes equations, and will he described

in another report. These program listings and user's guide are to be docu-

mented in the fourth report.
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COMPUTATIONS OF SUPERSONIC VISCOUS FLOW OVEF.

A FINITE-WIDTH PLATE

ABSTRACT

Finite-difference methods are applied to solve the parabolic Navier-Stokes

equations for the flow over a finite-width plate at 
0  

and loo angles of

attack. The methods are developed on the basis of the operator-factorization

concept resulting in the split of a three-dimensional equation into successive

two-dimensional equations. Two verbions of the factorization, backward and

centered implicit schemes, are used and their results are compared. Available

numerical solutions and experimental data obtained at low Reynolds number con-

ditions are also used for comparison. The backward implicit method provides

a more successful solution, which ranges from the merged-layer to the strong-

interaction regimes. The present study also reveals the datailed structures

of the shear layer around and behind the side edge. 	 f
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1. INTRODUCTION

The problem of calculating viscous flow over simple configurations has been

of practical importance in fluid dynamics in connection, for example, with

the design of high-speed flying vehicles and with the investigation of flow

phenomena in test facilities. It is known that the viscous and heat conduct-

ing effects not only dominate the flow within a narrow layer adjacent to

the solid boundary, but also play an important role in shaping the flow struc-

tures near the leading edge, around the side edge, and behind the object.

These flow fields, being far more complex and interesting than their two-

dimensional counterparts, are not amenable to most of the existing methods of

analysis due to some basic difficulties. In the first place, the governing

equations, known as the Navier-Stokes equations, although providing an excel-

lent description of the flow field, are an elliptic type for which the numeri-

cal techniques are lengthy and cumbersome. Secondly, because of the occur-

rence of shocks and shear layers resulting in steep gradients of flow proper-

ties, sufficiently fine resolution is required to maintain acceptable accuracy

as well as a stable solution. Thus, even in some situations in which numeri-

cal solution is feasible, the computation cost is prohibitively high for fre-

quent applications. Consequently, there have been some attempts to solve the

flow problems with slightly different governing equations which possess para-

bolicity in one of the independent variables, usually along the coordinate

defining the main flow velocity. This set of equations, termed as the para-

bolic Navier-Stokes equations, is to be integrated spatially and requires sim-

pler and efficient numerical techniques, compared to that for the elliptic

Navier-Stokes equations. the object of the present work is to develop a new

algorithm to solve the parabolic equations and to evaluate its validity using

a problem of the flow passing a finite-width plate.

There exists strong evidence that the parabolic Navier-Stokes equations

can be used successfully to describe a large class of flow problems in which

the physical dissipations and the pressure gradient can be neglected in the

direction of the main flow. For example, ref. 1 and 2 have presented solu-

tions of the incompressible flow inside a rectangular duct, and ref. 3 and 4

have discussed their techniques for solving the compressible flow over
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a cone, an axial corner, and a finite-width plate. Although the problem

studied may be different in flow pro perty and in geometry, the governing equa-

tions employed have a close resemblance in the underlying assumption that the

streamwise second-order derivatives can be omitted from the complete Navier-

Stokes equations. Furthermore, 'he numerical techniques developed are typi-

fied by finite-difference integrations marching from one plane to the next,

both normal to the streamwise coordinate. The implicit schemes (rFf. 1,2,4)

are preferable over the explicit ones, owing to their unconditional stability

which allows a larger increment in the marching direction regardless of the

fact that steep gradients necessitate fine discretization of the space on the

integration plane. The combination usage of iterative and implicit schemes

(ref. 3) is particularly appealing when the second-order derivatives are only

present in one direction. In this technique and the ADI technique (ref. 4),

the solution of a sparse-banded linear system of equations resulting from

the direct application of implicit schemes to the gover;king equation is re-

placed by the solution of a tridiagonal system. The advantages achieved in

more efficient computation far outweighs the extra work involved. This also

suggests a further exploitation of the method of splitting (ref 5) to con-

struct other versions of difference techniques that may have more desirable

features in the stability, accuracy and in the efficiency for practical compu-

tations of three-dimensional flowfields. The essential concept of splitting

is to seek the solution of a multidimensional equation in two or three steps,

each involving the solution to a two-dimensional equation. In terms of dif-

ference operators, this idea can be worked out readily by means of factoriza-

tion, similar to that for an algebraic equation.

The other part of the numerical algorithm involving the formulation of dif-

ference equations and the solution to the nonlinear equations also receive

considerable attention in this study. A mesh of cells, instead of points, is

uszd because of its recognized compatibility to satisfy the conservative laws,

both locally and globally (ref. 6). The cell formulation is recommended for

flow containing large gradients and fur separated flows. In order to solve

the nonlinear difference equations, an iterative procedure is developed which

retains the conservative property after the convergence is reached. A pre-

3
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F

scribed tolerance on the order of the truncation error in the difference

scheme is used to control the linearization error. These aspects are as im-

portant as the difference schemes to the success of computation, and hence

deserve equal attention in the development of a numerical algorithm.

As a test case for the new algorithm, the flow past a finite-width plate at

00 and 100 angles of attack is considered. This problem was solved in ref. 4

using an ADI technique and its solution was among one of the earlier success-

ful applications of the parabolic Navier-Stokes equations. However, it appears

from the published results that the computation was terminated prematurely at

a station quite close to the leading edge and that the inviscid-viscous interac-

tions near the side edge are not as strong as anticipated. These difficulties

may be caused in part by the fact that the ADI scheme is only marginally stable

and therefore not suited to deal with solutions containing rapid variations,

and in part by the use of a uniform mesh system which would fail to detect any

sharp change in properties around the side edge.

The following discussion is divided into five sections, each concentrating on
	

1.

one aspect of the numerical solution. They are given in the order of the

finite-difference methods, nonlinear difference equations, governing equations

and boundary conditions, mesh system and stability, and the flowfield results.

s
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2. FINITE DIFFERENCE METHODS

Consider a model partial differential equation in the conservative-law form

Fx+Gy
+Hz= 0
	

(2-1)

where F, G, and H are column vectors and also the function of a column vector

V. x, y and z are the Cartesian coordinates.

If the backward implicit scheme is applied directly to eq. (2-1), the resulting

difference equation is

Fi+l . 
F 
	 _ Ax 	 ;i+l 	 Gi+l	 _
	

H
	

- H i+l	 + 0 AX 
Jk	 jk	 Ay •	 ( J +^k	 j_^ )	 Azk ( jk+k	 jk-^	 i i )	 (2-2)

J

Subscripts j and k devote the locations of the cell point, j+^-k and jk+^ denote

the location of the cell line. Superscripts i and i+l refer to the previous

and present values. The computation space defined in the y-z plane is discre-

tized to have a mesh of cells, each having variable Ay j and Az k . The integra-

tion increment, Ax i , is also determined prior to solving eq. (2-2). Due to

the nonlinear form of eq. (2-2), a linearization procedure is adapted to ren-

der a linear system of equation in terms of V jk . This system of equations has

enarse- banded coefficient matrix, and requires lengthy computation. In prac-

tice, ',r ADI or an iterative-implicit technique in which the solution of a tri-

diagonal coefficient matrix is employed. The other alternative technique is

the method of fractional steps, whereby the solution to eq.(2-2) is obtained

from two equations

F* - Fi	

Ax 

i
	 (GI!	 - G*	 + 0 (Ax 2 )Jk	 jk	 Ayj	j+L7k	 j-^jk	 i

i +1	 Ax i (
H '+ ^ _	 i+l )	

(
Ax2)(2-3)

Fjk	 jk	 Azkjk+2	
H jk-	 + 0

The two successive	 ystep s constitute a cycle of the calculation, which can be

efficiently performed just as the ADI technique since k and j are fixed in the

first and the second equation, respectively.
OR1GI;vAI. ► A1a ►: 15
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LV
i+l 

= Vi (2-4)

A simple aralysis can be carried out to demorstrate the equivalence between

egs.(2-2) and (2-3) to the order of (Ax 1 ) 2 .	 Assuming F-G=H-V, eq.(2-2) can

be written in the operator notation such as

and eq.(2-3) becomes

LyV* = V i , L z V
i+l 

= V*

where

(2-5)

i

LV = -aVj-^k + aVj+^k - 
BVjk- ►j + BVjk+ ►

L 
y 

V	 -aV j -^k + 
V j k + av j+^,k

L Z V - -BVjk- 1, + V jk + BVjk +;,

with
	

a = nx i /nyj and B = nxi/nzk

By substituting the second into the first equation of eq.(2-5), it leads to

L 
y 

L 
z 
V = L Z Ly V = LV + 0(Ax^ )

Second-order accurate schemes may be constructed in the same manner. For

example, using the centered scheme, the difference equations are

Ax.	
1	 I

F jk	 F jk	 211yj	(Gj+^2k - G^_ 1k + G^+,,k - G^_kikl + 0(Axi 1

F^k l = F^ - 
nnz ("jk+^ 	 "jk- 1-, + H^k+ ► - H^ kl z1 + 0(nx3 )	 (2-6)

k

6
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or, in the operator notation

LyV* - LyVi . LzV i+1 - LzV*

whe re

LYV=-ZLyV

(2-7)

and

L z V = - 2 LzV

Eq.(2-6) can be shown to be equivalent to the difference equation of eq.(2-1)

	

using the centered scheme in	 step. Eq.(2-6) is mo ,e accurate than eq.(2-3)

for smooth values of V. However eq.(2-3) is preferable when V has discontinui-

ties because the backward scheme provides numerical dissipation to smooth out

unwanted small wave-length oscillations.

The validity of approximating a multidimensional difference operator by a

sequence of two-dimensional operators has not received full theoretical

justification 'it the operators a ,-e nonlinear. Nevertheless, this method has

been used for solutions of various nonlinear problems and has also been used

successfully in the numerical applications. Finally the nonlinear operators

do not commute with each other in general, the following equations are used

instead. Egs.(2-3) and (2-6) in the actual applications become

L  (1y) 
2 L z Vi +2 = Vi

	

y	
(2-8)

	

L ^L^	 L2
	

V	 Li+2 =	 (L 
Y)
	 V'

	z y	 z	 z y	 z	 (2-9)

to maintain the desired formal order of accuracy.

? A ' 
V6
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3. SOLi.^" ION TO THE NONLINEAR DIFFERENCE EQUATIONS

Eq.(2-1) and its difference equation, eq.(2-6), are nonlinear, so a metnod of

linearization is devised to reduce the equations into a soluble form. It may

be advantageous to linearize the difference equations directly as shown below

because the conservative-law form can be retained throughout the iterations.

Assume there exist certain relationships between the column vectors F. G, H

and V, Vy , V z , wnere the subscripts denote the partial derivatives.

dF = PAdV

dG - PBdV - PCdVy - PDdVz

dH = PEdV - PFdV Z - PGdVy

where P, A, 8, C, D, E, F and G are square matrices, PA can be interpreted as

the Jacobian matrix of F with respect to V. etc. Making use of these relations,

iteration formulas are obtained according to the Newton-Raphson technique.

VW = V X + 6V

FZ+l = F  + (PA) ' 6V

GZ+1 = G  + (PB)' 6V - (PC 	 ?!Vy - (PD ^^ 6Vz

HZ+1 = H Z + (PE)' 6V - (PF)^ 6V z - (PG's 6V 
	

(3-1)

Here, Q indicates the iteration count. Updated functions are given on the left

side of equations, while Previous functions are on the right side. Since new

Jacobian matrices are computed at each iteration, the convergence of eq.(3-1)

is quadratic. In general, no more than five iterations are needed to ensure

that 6V's be lrss than a reasonable magnitude of tolerance i. The prescribed

value should be greater than the round-off error, but smaller than the trunca-

tion error due to the finite-difference approximation of eq.(2-1). A check is

made to see if ;6VI<c after each iteration. If every point on a fixed 4th or

kth line satis fies the condition, this line will be dropped out from the itera-

-8-



tive process. The iterations are terminated when every line has converged

solutions. This procedure is also known as the Guass-Seidel line iteration

technique as the updated value is used immediately in the iteration procedure,

The correction vector 6V is determined by solving a linear system of algebraic

equations, which is obtained after substituting eq.(3-1) into the first equa-

tion of eq.(2-6). The system of equations has the following form

b26V2 + c2 V3 = d2

aj 6Vj _ 1 + bj6Vj + cj6Vj+1 = dj

aj6Vj-1 + bj6Vj = d 	 (3-2)

with j =3,4 ... J-1. The coefficients in the first and the last equations have

incorporated the boundary conditions, hence they are slightly different from

the coefficients in the second equation. A general expression of these coef-

ficients can be derived as a function of the Jacobian matrices and the mesh

spacings.	 j

aj = a^ (PB)	 + (PC)/ (yj - Yjj_l	 j-z-1)
i

Ay

bj = - 20 (PA) j +(a2 - S2 )(PB) j - 
(PC ) j -^Z^ (Y i - Yj-1)

- (PC)j+k/
(yj+1 - Yj)

cj = -S1(PB)J+l + ( pc )j+3 (Yj+l - Yj)

d • _ Aŷ• (F^ - F') + G' 	 - G' 	 + Gi - Gk
'	 (3-3)

J 2oxi J	 J	 J+z	 J'z	 J+h	 J-i

Note that these groups of coefficients eq.(3-3) and eq.(3-2) are used to solve

for 6Vj at a fixed kth line. The mixed-derivatives involving values across

the kth line do not enter into the expressions. A similar type of equations

ORIGINAL PAGE
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and coefficients car be derived for 
6V  

at a fixes+ j th line. These equations

constitute a block tridiagonal system for which an efficient algorithm (described

in ref.10) is readily adopted for solution. It is of interest that as 16Vj1^E

Idi I must approach to c at the same rate. The recovery of the first equation

eq.(2-6) at the end of iterations implies that the conservative laws are fol-

lowed strictly. The weighting parameters are a =1/(l+R), at =a R, k=^	 /GY1	 2	 1	 ^ Y j-1	 j
likewise B 1 and B2 are obtained using R=.^Yj+l/Ayj.

Substituting eq.(3-l) into the -.'irst equation of eq.(2-3) results in a bluck,

tridiagonal system of linear equations identical to that shown in eq.(3-2).

However, the coeffi'ients differ sornewnat from those given in eq.(3-3). bj

and d  have the following re ations instead.

oy .
b . = - ^ (PA +a, - B	 PB	 PC	 /

1	 ^xi	 j	 ( 1	 2^ ( ) j -	 j -s, ( yj - yj -1)

(PC)j+'1/(yj,l	 yjI

Al^i (

	 +;2 -i
(3-4)

Theref,.-e the seco.-.d-order accuracy in Ax can be gained in eq.(3-2) and eq.(3-3)

with little extra work.

An alternate approach to linearize eq.(2-9) is to solve for VP+l directl y from

VZ	 The Newton -Raphson technique leads to relations such as

and the resultant coefficients closely resemble those in eq.(3-3) and ( 3-0,
bot the accuracy ,nay not be as good because the round-off error is larger due

to Vj >>16Vj. Furthermore, the derivation of coefficients at the boundaries

becomes more complex (ref. 6). (6V 1 = 6Vd = 0 will be replaced by V 1 = V  = V.).

t
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4. GOVERNING tQUATIONS AND BOUNDARY CONDITIONS

The integration of the governing equations is performed along the x-axis in

the y-z plane. The computational space is defined by Orjy<H and 0<z<B , in

which the elate lies on the z-axis and 0<z<W.

The functions in eq.(2-1)

F  + G  + H z = 0	 (2-7)

are defined by

F = pu	 G=pv

Put+p	 PVU+TyX

PuV	 pv2+ay

LP uW	 II 	 )VW+TyzI

e+p)uJ
	 ;)E+(3y)u+Tyxu+Tyz+qy

JJ

H 

Pw+Tzx

PwV+T 
zy

Pw2+az

1) E+az)W+TZxu+TZyv +q J	 (4-1)
;he boundary conditions are given as

Y=O ,	u=Auy V=w=O, e=ew - ?Z 
P 

ey
I

	

	 r

0<z<w

w<z<h	 u  = w  = e  = py = Py = 0 , v=0 (a = 0) , vy=0(aN)

z=0,	 uz= vz=ez=pz=Pz=0,W=O

y=H or	 u=U.cos a, v=-U.sin a, w=0, a = eW , p= p. 	 p= p.	(4-2)
z-B

-1 1-	
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where p, u, v, w, p and a are, respectively, the density, velocity components

in (x,y,Z), pressure and the internal energy. The total internal energy is

c=a*0.5(u 2+v 2+w2 ). p indicates the pressure to be treated differently from

those appearing in the stress components, which are defined as follows.

r

Tyx = - µ uy , Tyz = T zy = - u(wy + v Z) , Tzx	
- uuZ

a	 p- (a+2u) vy - awz

a z = p - (X + 2u) w z - AVy

The heat fluxes are obtained from the expressions:

kk
q y = -
 

 c• e y	 q z =-	 e z

V	 v

(4-3)

(4-4)

where

2A + 3U = 0,	 k = C p II/P
r
 ,	 e = C 

v 
T and y = Cp/Cv

U is the viscosity coefficient given for air by

2.27x10-g
3/2 

u =	
T+T-1B 6

	
lb/sec

tI 	

(4-5)

k is the coefficient of thermal conductivity and is related to the Prandtl

numbe r , Pr = 0.71 for air. C  and C  are the specific heats at constant pres-

sure and volume. Their ratio, y,is equal to 1.4 for perfect air. T denotes

the temperature. a is the angle of attack.

Eq.(2-1) is supplemented by the equation of state

p = (Y-1) p e	 (4-6)

1
	 -12-



The boundary conditions nave taken into account the slip in velocity parallel

to the wall and the jump in temperature. A, the mean free path of air, can

be estimated by

U6,

A aFR
L

Re = 
^ U	 (4-1)

Two other important parameters used very often are the Reynolds number, Re,

and the viscous-inviscid interaction parameter, X. They are defined as

pCOVW x

R
ex

M3	 C
_	 _

u^	 'm" ^e
x

where M., is the f.-e^-stream Mach number and C is the Chapman-Rubesin constant,

C - WT./ uOOT .

To facilitate the numerical computations, three new vectors are introduced

as

	

V = a	 V  = py^	 V  
= P 

	

u	
u 
	 u Z

	

v	 v	 v

	

y	 Z

	

w	 w	 w

	

y	 Z

	

e	 ey	 eZ	 (4-8)

The Jacobian matrices of F, G, and H with respect to V, V,y , and V  are

PA = aV

1PB	
aV	

PC 
_ 

aV
y

PE = 
oV	 PF a^Z

ORIGmR
OF Y^
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0 0 0 U 0 0 0

U P ^'
0 0 0 0 U 0

p
v 0 P

0 0
0 0 0 0

w

2

0 0 P

1 / que P+gp 0 0 gaU

i,q Pu Pv pu J

B	 y 0 P 0 0	 C= p 0 0 0 0

0

0

00 v 0 0 0 0
0

u

0

0

x+2u 0 0

ge/a 0 v
0

9
0 0 0 u

 00 0 0 v 0

0 0 0 0 Y9u/pr
g v e 0 Ygae 0 gav

E =	 w
0 0 a 0	 F= 0 0 0

0

0

0

0

00 w 0 0 0 0 U

p 0

0 0
w

0 0 0

O

0

0

u

0 X+2u 0

ge /P 0
0

0
0

w	 9
Y9ae	 9Pw I

ILo 0 0 v YgM/Pr

gwe

and q 2 = u 2 + v 2 + w 2 .	 9
a

= Y"^ + ap " 
0,

a^and	 a e
=o.

These expressions are used later in the derivation of linear system of equation

acid also in the analyses of satiability. The Jacobians associated with mixed

derivatives, i.e., 3V 	
and aV
	

, are not needed, so they are omitted from

z	 y
eq.(4-9).
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5. MESH SYSTEM AND STABILITY ANALYSIS

The computational domain outlined in section 4 is divided into a mesh of rec-

tangular cells, each of which has variable length and height. The smallest

cell is located at the leading edge, whereas the largest cell is at the oppo-

site corner of the region. Integers are used to designate the cell number;

half-integers designate the line between two cells. This system of cells is

determined prior to the -omputation by means of a procedure to be described

in the following. First, an estimate is made of Ay l or Ay2 using the smallest

value of the boundary-layer thickness at X=L and the mean free path of the

free stream, i.e., Ay l = min(6,A), where 6 = 0.31/v'rCL and A given in the

previous section. Then an exponential function is employed to determine Ayj,

wnere j=3,4 ... J F . This function relates the transformed coordinate y in

the computational space t) the physical coordinate, by	 = (ec7-l)h/(ec-l)

O gy <1 , OJy<h. C is the parameter to be determined itera,.,vely in order to

satisfy the requirement that y l =0.5 Ay2, yj+l = y j +0.5Gyj and yJF = h. JF

is the number of fine cells in the y direction. On top of this system of fine

cells, there is a system of coarse cells. The height of those cells are uni-

form and obtained from Ay  = (H-h)/(JL-JF) witn yj+1 = yj +0.5Ay and yJL = H,

where JL is the total number of cells along the j-axis.

The width of cells is nonuniform in the region near the side edge and uniform

elsewhere. The procedure to determine Az k and z k are similar to that for ,Vj

and y j except that for this case Az
ks	

Azks-1 are specified to insure that

fine resolution is provided at the side edge, ks designates the selected

location of the side edge. Likewise, Ar i and xi are estimated using the re-

quirement that Ax l = A,, , and x  = IL where ILis the total number of integration

steps.

The mesh of cells is constructed to properly resolve the gradients of flow pro-

perties that may occur near the leading edge and around the side edge. It is

unnecessary to be concerned with the efficiency and the stability of the numeri-

cal computations because as for an implicit scheme, these aspects are no longer

dictated by the CFL condition controlling Ax i . A simple analysis of stability

M
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is presented to show that the present algorithm indeed is unconditionally

stable. Consider a set of linear equations corresponding to eq.(2-1)

	

AVx+BVy-CVyY=0
	

(5-1)

1
	

A, B, and C are given in section 4.

•	 Eq.(5-1) is composed of the hyperbolic and the parabolic equations, and their

difference f ,jrms obtained from the centered scheme are

i(( i+1 _ 	 Ax 	 i	 i+^	 i+
A. V.	

Vi /	 Ay Bj (Vj+l	 Vj -1)	
(5-2)

I

Ai. (Vi +l - Vi. l = A x
 
	 C  ( Vi + - V i. +^ + ViOa

J	 J	 J/	 (Ay  )
2	 J\ J +1	 J	 J-1 /	

(5-3)

The amplification matrices for these equations are obtained using the Von

Neumann's method (ref. 7) as

G = I - v^-ia A -1 B since

H	 I+ 771a A B sin Y

G= I	 A-1 C sin 2 2
P	 _

I+^ S A C sin 

(5-4)

(5-5)

(Ax i 	 2	 fix.
where	 a = 	 B =	 i

2ayj 	 (cy Y = jAYj 	and I is the unit matrix.

The eigenvectors are obtained by solving polynomials of the foliowing equations.

lIa H - A-1 BI = 0

I I a, p - A -1 C l = 0	 ORI 

PIER ^tV  

1̂,I,Y	I
OF

asp... Au 1k+- A'WiM6 . ,	 s	
—

1
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Thus

(v 9
vvv=c v+c

(5-6)
H	 u u	 u u

P	 a+21j Yu
(5-7)p  p	 pu /'	 k pu I

since .ney are real variables, that	 implies IGH 1<l	 and	 IGp 1<1.	 Thus	 egs.(5-2)

and	 (5-3) are always stable.

If the backward scheme is used, the numerator in egs.(5-4) and (5-5) are re-

placed by ar identity matrix. Following the same procedure, the same conclu-

sion is arrived at.

It is worth mentioning that numerical instability could arise if the stream-

wise pressure is treated on the same basis as other variables in eq.(2-1).

For this case, F and A become

F = pu A= u p 0 0 0

pu t+p ge/p u 0 0 g

puv 0 0 u 0 0

puw 0 0 0 u 0

(pe+p)u J gue ygpe 0 0 gpu

The corresponding eigenvalues are

v	 v	 uv + c	 u2+v2-a2= (5-8)
H	 u	 u u2-a2

- ( 0	 X+2	
a3 a 4 ( 5 • 	)X

P

r

they will nave complex components if u 2 +c
2 <a , where a is the local sonic

	

	
3

i
speed. Further, a 3 and ^4 in eq.(5-9) are also complex. Therefore egs.(5-2)

and (5-3) become unstable if p is used instead of T. This stability problem

was known in earlier work of solving the parabolic N-S equations (ref.4 	 and	 ?^
i

p x was eliminated.f rom the governing equations. A better approach is to employ

-17-
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the pressure gradient obtained at the upstream station, but the improvement

of accuracy is not noticeable if Ax i 's are made nonuniform (ref. 8).

W

The efficiency of implicit schemes is not necessarily higher than that of ex-

plicit schemes. The advantage of selecting the larger step increments and

extremely fine cell sizes is penalized by a relatively large amount of compu-

tation time solving the nonlinear equations. In fact, more iterations are re-

quired in the procedure described in section 3 for regions where properties

change rapidly, compared to regions near the undisturbed free stream. In

general, the efficiency of a particular scheme depends upon the nature of the

problem to be solved, and varies appreciably with the equation formulation and

the performance of the nonlinear solver. For a leading-edge problem, ref. 4

indicates that the ADI scheme is substantially more economic to use than the

straightforward explicit scheme. The present algorithm should be comparable

with the ADI in the aspect of efficiency; however, there is no evidence avail-

able to verify it at this time.

-18-
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6. FLOWFIELD OVER A FINITE-WIDTH PLATE

The numerical computations have focused on a case that was studied and reported

in ref. 4. A limited amount of data was also available from a test facility

consisting of a nozzle placed inside a Mach 12 blowdown tunnel. Due to the

large drop in stagnation pressure, extremely low densities are achieved in

the test section. The free stream conditions upstream of the plate have a

Reynolds number, Rem = 300/in and a Mach number, M * = 5.15. The free stream

temperature is Tm = 2300 R, while the wall temperature is T m = 4600R. The

numerical results were obtained from an ADI scheme using a mesh of points with

constant spacings in the transverse and lateral directions,also in the stream-

wise directions. Comparisons with the experimental data were made at y _ 10;

a station displays strong merged-layer characteristics.

The computational domain and the mesh of cells were devised in a different

manner than those used in ref. 4 in an attempt to properly represent the

flowfield structures around the side edge. The size of the domain is given

as follows:	 L=2 in., H=2.4 in., h=0.48 in., w=2.16 in. and b=3.03 in. The

cell system is designated by the notation (JF)JLxKL(KS), as (12)32x32(20),

where JL and KL are the total number of cells along y and z coordinates. The

numbers in the parentheses indicate the total number of nonuniform cells along

y, and the location of the side edge. The resulting cell dimensions are

oy l =Gy 2 = 0.024in., and 
Az 20 

'nz19=0.0123 in. A schematic of the cell system is

shown in fig. 2. The streamwise increments are also nonuniform and determined

by a procedure described in the previous section after assigning Ax 1 =0.024 in.

and K= 30, the number of steps. Note the smallest cell used is greater than the

mean free path, which is Am= 0.03 in. for this case.

Comparisons are first made among the theoretical predictions of the pressure

distributions across the stream in the lateral direction. Figure 3 shows

that tnere are significant differences in pressure values near the side edge,

but a good agreement toward the plane of symmetry and the opposite side in the

free stream. The centered solution indicates a very sharp drop of pressure

right at the side edge; the backward solution predicts a moderate variation,

_19-	 ORIGIN RL ^^ A
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whereas the previous ADI results display a slight change in pressure across

the side edge. It is very difficult to assess the accuracy yielded by these

computations without data from other sources. By observation from the pub-

lished results in ref. 4, the shear layer characteristics might have been par-

tially ignored because the mesh system is relatively coarse, even though the

computational domain is less than half of that used in the present computa-

tions. On the other hand,the appreciable differences between the centered

and the backward solutions are affected to some extent by the numerical dissi-

pations of the schemes. The centered scheme is known to provide more accurate

results if the solution is smooth, but may exaggerate the results for a rapidly

varying solution. Further, due to its lack of damping, small-wave length dis-

turbances tend to grow and eventually become outbound. Indeed, it was found

in the present calculation that the centered solution encountered some diffi-

culties with the iterative procedure after reaching X=6.6 at K=25 when negative

densities appeared in some cells neighboring the side edge. In contrast, the

results obtained from the dissipative backward scheme are stable throughout

the integration and appear to yield reasonable accuracy. For this reason, the

backward scheme has been employed in the entire study.

Other than the differences existing between theoretical pressure results, there

is also slight disagreements with the available experimental data in the flow

flux at the midspan of the plate. The reason for the deviation within the

boundary layer is not yet determined. The theoretical predictions of flux agree

with each other very well, except near the region where the maximum value occurs. 	 j

These curves are not asymptotic to zero at y=0, since the slip velocity is used

there.

Figure 4 presents a series of pressure distributions vs. z-coordinate. The
i

pressure starts out with the free stream value, slowly builds up its magnitude

as the slip velocity reduces, and finally reaches the peak value p = 5.25 pW at

X=19.5. At the beginning there is a smooth transition from the surface pressure

to the free stream pressure outside of the plate. It is seen in figure 4(a)

that the pressure distribution resembles closely that within a normal shock.

Figures 4(b) through 4(d) show the detailed variations of pressure as the flow

moves downstream. A discontinuity is developed within the shear layer sur-
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rounding the edge, then dissipates and diffuses sideways as the shear layer

grows thicker and reduces the magnitude of gradients. At the end of the com-

putation, X=5.35 or X-2 in., the side edge has started to lose its influence

on the local flowfield. The mechanism producing the pressure discontinuities

must originate from the strong i nteractions between the flow and t":: plate.

Due to the presence of a plate in the flow, the kinetic energy transforms

}	 directly into the internal energy on top of the plate. This process doe; not

taKe place immediately because the rarefaction effect predominates at the

leading edge. The flow over the plate adjusts itself rather quickly, but

slowly in the shear layer around the edge. Therefore, the pressure retains

a higher value for a longer distance outside the plate until the physical

dissipation fi,ially smooths out the nozzles. Unfortunately, no experimental data

are available in this region, so c ,)nfirmation of the prediction cannot be made

at this time. Note that the side edge effect has almost reached the center-

line as indicated in figure 4(e). This points out the possibility that the flow

c^.nnot be considered two-dimensional at X=L when the aspect ratio, W/L, is less

than, unity.

The distributions of the coefficients of skin friction, T xyAPU? , and of

heat transfer, (q+uT xy )/p^U. (H tM- H tw ), are giver, in figures 5(a) and 5(b), re-

spectively. As explained earlier, the shear layer increases its extent with

decreasing values of x, and moreover the shear layer creates relatively higher

heating at the edge compared to that at the center. Judging from these figures,

however, the flow field remains two-dimensional at the centerline.

Figure 6 shows the velocity vector, constant contours of w, pressure, and tem-

perature plotted on the plane normal to the x-coordinate at X=5.35. it indi-

cates an upward motion of flow above the plate. Near the edge, however, a side-

ways motion predominates. Away from the side region, there are no transverse

and lateral velocity components. The lateral velocity is plotted in constant

contours to show that the highest value occurs somewhere out in the free stream

and that w changes rapidly at the side edge. The pressure contours exhibit a

leading-edge oblique shock above and a side-edge shock next to the side edge.

The temperature contours disclose the location of a distontinuity near the

edge, which has a stronger intensity than the leading-edge shock.

-21-
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More computations were carried out at angles of attack, a e 10
0
 and -10°, which

represent the wind and the lee sides of the plate, respectively. The primary

purpose is to check the capability of the numerical algorithms under more

severe conditions. It would be of interest from the practical point of view

to consider the entire flowfield on both sides of the plate, but this neces-

sitates extensive modification of the program while it adds little value to

our objective. In the present approach, these two cases are treated indepen-

dently, with different boundary conditions imposed at y=0 and b_z<w to approxi-

mate the flow vector continuation. Other than this modification, free stream

velocity becomes uOD
n U

OD
cos OL and vann-sin a. The computational region and the

cell system are the same as those for a-00 . Despite the fact that this approach

sacrifices physical velocity, the predictive potential of the algorithm cAn

still be evaluated and assessed.

Figure 7 shows the pressure distributions vs.z-coordinate given at selected

x-stations. The wiggles in pressure distributions are believed to be caused

by insufficient space resolution, since flow properties change more drastically

around the side edge. Regardless of the local numerical problems, the compu-

tation was completed a. x = 2" for both cases. The x-component of shear ;tress

and the heat fluxes behave in the same manner as those predicted for a = 0
0

,

hence they are not repeated. One additional feature, which bears no counter-

part in the a n0° case, is the flow separation across the lee side of the plate

and a stronger lateral flow on the wind side. Shown in fig. 8 are the skin

friction coefficients, T
yz
/^pU? , vs. z on both sides of the plate. The in-

fluence of the side edge is felt at an earlier station on the renter plane.

It is indicative that for a plate of aspect ratio equal to unity, the flow on

the plane of symmetry is definitely not two-dimensional when the plate is

placed at an angle to the free stream. The significance of the results ob-

tained is in the d 4 scuvery of separated flow immediately over the side edge.

The lateral extent of separation is seen to be proportional to the streamwise

coordinate. The separation becomes stronger as x increases. Figure 9 shows

that the transverse extent of the cross flow separation also increases with x.

-22-
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Figure 10(a) shows the lee side cross flow velocity vector obtained at x = 2" and

4".	 It exhibits a stronger lateral reversed flow region farther away from the

leading edge. But, a complete vortex has not yet been established, probably

due to the small angle of attack, which is not able to produce a full vortex.

Figure 10(b) is the constant contour plots of lee side pressure at two stations.

The pressure discontinuity adjacent to the side grows as does the lateral ve-

locity.

All the comp liti.tions were performed on an IBM 370-168 computer usin5 approxi••

mately four minutes of CPU. The computation time required can vary from one

case to another, because even with the same number of cells and streamwise

steps, some may need more iterations in solving the nonlinear difference equ-l-

tions than others. An understanding of flow characteristics is helpful in the

selection of computational region and mesh, which could reduce the requirement

of computation time and increase the accuracy of the results.



7. CONCLUSIONS

It has been shown that the finite-difference methods constructed using the

method of fractioi,a? steps has promising potential in solving the parabolic

•

	

	 Navier-Stokes equations. This study has concentrated on the computation of

viscous flow passing a finite-width plate, and utilized both centered and

backw .ird difference schemes to integrate the equations along the streamwise

coordinate. The applicability of the centered  h-ame is found to be suscep-

tible to shocks and shear layers in the flow field and hence not used in

calculations. The solutions obtained from the backward scheme appear to be

stable and reasonably accurate. The numerical algorithm is featured with

the conservative-law formulation in the difference equations and with a lin-

earization procedure that is also consistent with the conservative law. Re-

marks pertaining to the flat-plate problem at flow incidence are summarized

as follows:

1. This work has revealed the e xistence of a shear layer around the side

edge of the plate. Its intensity reduces from the peak value near the

leading edge as the flow moves downstream, but it r emains discernable

well into the weak-interaction regime.

2. The pr-ssure distribution along the center line is more sensitive than

other measurable quantities to the flow expansion about the edge. For

the conditions used, the flow shouli! be treated three-dimensionally when

tha aspect ratio, W/L, is close to unity.

3. A cross flow separation is predicted on the lee side at 	 -100 ; however,

the complete formatio, of a vortex has not been established.

4. The solution to this problem can be obtained from the elliptical Navier-

Stokes eq uations using a time-dependent method, but it would require 100

times as much )mputation time.

5. The present method of solution	 restricted to a class of viscous flow

problems which do not involve a local reversed flow region in the direction

of the main stream and the streamwise pressure gradient is negligible.
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