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FOREWORD 

The SPS systems definition study was initiated in December 1976. Part I was completed on May 1, 

1977. Part I included a principal analysis effort to  evaluate SPS energy conversion options and space 

construction locations. A transportation add-on task provided for further analysis of transportation 

options. operations. and costs. 

The study was managed by the Lyndon B. Johnson Space Center (JSC) of the National Aeronautics 

and Space Administrdtion (NASA). The Contracting Officer's Representative (COR) was Clarke 

Covington of JSC. JSC study management team members included: 
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Dick Kennedy 

Bob Ried 
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Hu Davis 
Harold Benson 

Stu Nachtwey 

Andrei Konradi 

Aiva Hardy 

Don Kessler 

Power Distribution 

Structure and Thermal 

Analysis 

Structural Analysis 

Man-Machine Interface 

Man-Machine Interface 

Transportation Systems 

Cost Analysis 

Microwave Biological 

Effects 

Space Radietion 

Environment 

Radiation Shielding 

Collision Probability 

The Boeing study manager was Gordon Woodcock. Boeing technical leaders were: 

Vince Caluori 

Dan Gregory 

Eldon Davis 

Hal DiRamio 

Dr. Joe Gauger 

Bob Conrad 

Rod Darrow 

Bill Emsley 

Photovol taic SPS's 

Thermal Engine SPS's 

Construction and Orbit-to- 

Orbit Transportation 

Earth-teOrbit 

Transportation 

Cost 

Mass Properties 

Operations 

Flight Control 

Jack Gewin 

Don Grim 

Henry Hillbrath 

Dr. Ted Kramer 

Keith Miller 

Jack Olson 

Dr. Henry Oman 

John Perry 

Power Distribution 

Electric Propulsion 

Propulsion 

Thermal Analysis and 

Optics 

Human Factors and 

Construction Operations 

Configuration Design 
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Structures 



The Part I Report includes a total of five volumes: 

Vol. I D 1 80-20689- 1 Executive Summary 

Vol. I1 D 180-20689-2 System Requhments and Energy Conversion Options 
Vol. 111 D 180-20689-3 Construction, Transportation, and Cost Analyses 

Vol. IV D 180-20689-4 SPS Transportation System Requirements 

Vol. V D 180-20689-5 SPS Transportation: Representative System Descriptions 

Requests for information should be directed to  Gordon R. Woodcock of the Boeing Aerospace 

Cornpan;. in Seattle or  Clarke Covington of the Future Prognms Division of the Johnson Space 

Center in Houston. 
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2.0 POINTaF-DEPARTU RE CONFIGURATIONS 

The pointafdeparture data came from four primary sources 

(1) A silicon photovoltaic SPS from JSC report 1 1568 (the "green book"). 

2 )  A Brayton thermal engine configuration from the Space-Based Power study, (Contract NAS8- 

3 1628). Boeing final report Dl 80-20309-2. 

(3) Earth-to-Orbit transportation systems from the Heavy Lift Launch Vehicle study. contract 

NAS8-32.169, Boeing final report Dl 80-20505-2. 

(4) Orbit-toarbit transportation systems from the Future Space Transportation Systems Analysis 

Study. contract NAS9-14323, Boeing final report D180-20242 (4  volumes). 

The SPS systems were resized in order that they be normalized t o  JSC microwzve power transmis- 

sion sysiem efficiencies. Mass properties data ior the initial configurations were not normalized. 

e.g.. the JSC configuration included 50% mass growth whereas the Brayton system included none. 

Mass properties data were normalized during the course of the study. 

2.1 SILICON PHOTOVOLTAIC SPS 

The silicon photovoltaic confiruraton adapted from the JSC study is shown in Figure 2 .  I .  This con- 

figuration employs a geometric concentration ratio of 2 (total projected area of solar collection is 

twice that of the photovoltaic blankets). using v-ridge alumin~zed Kapton plastic film reflectors. and 

is sized to provide a total of 10,000 megawatts of eiectric power at the output of the two receiving 

antennas on Earth. This corifigiiration employed estimating factors for solar blanket performance 

and mass properties from the JSC reference data. .I mass properties summary for this configuration 

is provided in Table 2-1. 

2.2 SOLAR BRAYTON CYCLE 

The Brayton cycle turbomachine provides a rotating shaft output which dri1r.r the generators. Sun- 

light is highly concentrated hy a dish-shaped reflective concentrator to  provide temperatures high 

enough to drive the thermal engne.  Thermal energy is added to the helium working fluid in heat 

exchanger tubing located within the cavity absorber. The hot gas is expanded through the turbine. 

providing power to  turn both the compressor and generator. The recuperator eschanges energy 

across the loop to increase the system efficiency. Waste heat is rejected through a pas-to-liquid heat 

exchanger to a liquid metal cooling loop; the liquid metal pumps use power dri~wn fro111 the 

generators. 
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Figure 2-1. Photovoltaic Reference Confwration 

Table 2-1. Photovoltaic Reference Confiiration 

1 1.0 Sdu energy collection system ( (36,616) 1 128.73 km2 with q = ,060 I 
Component 

1.1 Primary structure 
I I 2,493 1 - to array ares I 

1.2 Secondary structure I 189 1 - to array area I 

I 

Weight in metric tons 
(kg/1,000) 

I 1.3 Mechanical systems I 40 1 No change I 

Remarks 

1.4 Maintenance station I 85 1 No change (1 ,000 m3 enclosed volume) I 
1.5 Control I YQ 1 200 MT dry weight + 1-yr prop I 
1.6 Instrumentation1 

communications 

1.7 Solar-cell blankets 

1.8 Solar concentrators 

1.9 Power distribution 

20 MPTS 

Subtotal 

Growd, 

Total 

No change 

.4 kg/m2 

.04 ke/m2 - to 312 power of area 

L 
OBIGINAL PAGE IS 
OF POOR QUALITY 



The 10,000 volt ac output 'of the generators is stepped-up to  382,000 volts in transformers; this 

high voltage facilitates on-board distribution. Stepdown occurs in the rotary transformeb. Figure 

2-2 diagrams the cycle. Figure 2-3 shows the size-normalized SPS configuration and Table 2-2 pro- 

vides the point-ofdeparture mass statement. 

The radiator system for the baseline Brayton SPS is composed of water heat pipe panels fed by a 

NaK manifold system. Since the satellite is divided into four modules, the radiator area is divided 

into four sections. Each s-ction cools 16 Brayton turbomachlne sets. The radiator system for a 

single engine is made up of 184 panels each 10M x ?OM. These panels each have four connections 

which require welds; the manifold sections also require welds. The hisic flow diagram of a radiator 

section is shown in Figure 3 3 .  

The panel size of 10M x 10M is set by the assumed capability of the heaby lift launch vehicle. Each 
panel has four 20 cm diameter "throughpipt." stubs extending outward 30  cm. These require weld- 

ing; they can also be used to  hold the panel. 10M lengths of single tapered header are launched pre- 

welded to one quarter of the panels: one quarter of t k t  panels have no headers preattached. 

The headcrlpanel assembly takes place on a framework having no gaps larger than IOOM. The head- 

ers are attached to this frame with swinging links to allow expanwon'c.ontractio~~ in the system. 

All radiator tubes are stainless steel. The heat pipe panels c011le prrloadttd with water. The mani- 

folds and headers must be filled with NaK alter all welds are completed. 
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Figure 2-2. Solar Brayton Cycle 

CONCENTRATION 
RATIO 2,260 
OVERALL 
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TEMPERATURE 1.652'~ 

Figure 2-3. Thennal Engine Reference Confeuration 



Table 2-2. Brayton SPS Mass Statement 

Wei~ht in metric 

Facets 
structure 

I Solar concentrators 

I Conductiwe spine I 1,180 

tons (kg/1,000) 

1 Cavity absorber: I 
Tubing 
Insulation/skin/f rame 

Turbomachines 
Recuperaton/coolers 

I Generators, with cooling I 4,420 
I Step-up transformer with cooling 1 2,070 

Robry transformer with cooling 
Rectifierlfilter, with cooling 
Radiators with pumps 
Attitude control, stationkeeping 
MPTS 
Total 

46 PANELS 

I *(no growth) 

ARROilS INDICATE NaK TOW DIRECTION 

Figure 2-4. Radiator Schematic 
5 
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2.3 TRANSPORTATION 

Point-ofdeparture transportation systems included Earth-to-orbit and orbit-to-orbit systems. 

2.3.1 Earth-to-Orbit Systems 

2.3.1 . I  Heavy Lift Launch Vehicle 

A class 4 ballistic recoverable two stage contiguration was selected as the point-of-departure vehicle. 

The vehicle consists of two fully recoverable ballistic stages and a non-recoverable payload shroud. 

The configuration of the vehicle is shown in Figure 2-5 and includes two optional shroud sizes. The 

longer shroud would handle low density 20 kg/m3 (about I 1blftJ) payloads, the shorter 100 
kglrn3. For reference. the low density shroud is about the overall length of the first two stages of 

Saturn V and 1.66 times the diameter. The payload is cantilevered froni the forward face of the 

second stage and the shroud protects !he payload during boost. The vehicle's payload capability t o  

270 nm orbit is 277 000  kg (599,000 Ib). 

First Stage Design-The LOXIRP-I first stage of the vehicle IS a sea landing ballistic entry stage. The 

stage is conical in shape t o  fdcilitate installation of the engines and their closure doors. to  provide a 

low entry velocity and good stability in the sea. Nine gas generator cycle LOX/RP-I engines of a 

new design with a thrust of 20.7 x 106 N each, power the first stage. The LOX and RP-I tanks pro- 

vide both propellant containment and ullage space. Pressurizat~on gas 1s heated GOX for the LOX 

tank and heated helium for the RP-I tank. Helium is stored In alum~num tanks wi th~n  the LOX 

tank. Three SSME's ( ~ 2 0 )  are installed to  provide terminal deceleration prior to  a sea landing. 

Second Stage Design-The second xtage contiguration is dictated by aerodynamic balance require- 

ments at entry. Seven SSME's provide the main propulsion resulting in a TIW of approximately 0.9 

at ignition. Two KL-I0 engines provide on-orbit maneuvering and de-orbit thrust. The stage is 

deorbited by the RL-I 0 engines and enters bdllistically. Drogue deployed parachutes provide initial 

deceleration and ballutes are used t o  pitch the stage over for landing "engines first" on deployed 

legs. Two SSME's provide final braking just before touciidown on land. 

2.3.1.2 Crew Transportation Vehicle 

The crew transportation vehicle. a liquid booster growth version of tlle shuttic'. was adopted from 

the FSTS.4 study. Tht  Space Shuttle Growth concept represc.:.,, a direct evolut~on of the current 

system into an improvrd version which increases the payload capability to approximately 47 ( ~ 0 0  kg 

(105,000 Ib) ~ ~ i t l  lowers the operational cost. A representative candidate. show~i in F~gure 2-6. 

replaces the SRB's with a liquid propellant recoverable booster and was selected for use in this 

study. This configuratioti is a tandem arrangement, scries burn vehicle with a ballistically recover- 

able first stage. The Externsl Tank propellant load of 705 000 kg ( 1.550.000 Ib) has been retained 

for the series burn ascent mode. 
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The LOz/RP-I ballistic recoverable booster incorporates a conical shape for aft end forward entry 
and is powered by five F-l engines. The sequence of events following F-l engine shutdown includes 

the following: thc booster separates. doon close over the engine openings in the aft heat shield, the 

stage is oriented far entry by the reactic- control system, and finally 3 modified SSME's used for 

landing engines are ignited for a powered down-ran~~e sea landing. The landing engines providr 

deceleration to  near zero velocity. Nominally, this zero velocity occurs about 3 meters ( 10 ft ) from 

the sea suriace, where the engines are throttled back to a thrust to  weight of 0.8 allowing the stagc 

to  settle on the surface at a ~'ominal impact velocity of 3mlsec (10 fps). The booster shape provides 

inherent upright floating stability i~ :he water due to  its broad base and aft center of gravity 

location. 

Orbit-toorbit transportation is required for crews and for SPS hardwhre. Crew transportation is 

assumed to always use a high acceleration mode. High and low acceleration modes were considered 

for SPS hardware. as illustrated in Figure 2-7. Orbit transfer mission modes are defined by the vehi- 

cle ac~eleration level availabk and by where the SPS construction is to take place. Electric propul- 

sion systems involve very low acceleration requiring several months to complete the trip from low 

Earth orbit to geosynchronous orbit. The self-powered option assumed low Earth orbit construction 

and the separate powered options geosynchronous construction. 

The GEO assembly option for SPS requires a large common-stage LO/LH2 orbit transfer vehicle. 

Characteristics of the pointofdeparture system are shown in Figure 2-8. This vehicle was sized ior 
SPS hardware transportation but can be adapted for crew transportation; for the latter purpose, 

scaling down in size was to be evaluated. Low thrust separate (independent) power options for SPS 

hardware transportation were considered in the FSTSA study but were not included in this SPS 

itudy as they have no apparent advantage over the I.O2/LH2 high thrust system. A representative. 
self-power orbit transfer system installation concept from the FSTSA study is shown in Figure 2-9, 
assuming dlvision of the photovoltaic satellite into 4 modules for orbit transfer. Sorne characteris- 
tics of the installation at each corner (8 total installations per SPS): 

Electric power consumption 1 72 000 KW, 
Electric Thrust 8750 N ( 1970 ID() 

Propulsion hardware mass 835 000 kg (1.840.000 Ib) 

220 electric thrusters of I megawatt peak capacity 

38 propeliant tanks 

2 2  000 m l  (240.000 f t z )  of radiator area 

Orbit transfer system cost S 1 SO million (per corner) 

This illvstration shows magnetoplasrnadynamic (MPD) propulsion hardware. In the SPS study. 

emphasis was shifted from MPD to ion thrusters because interface characteristics could be better 

defined. 

9 
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3.0 ANALYSES CONDUCTED 

Thc point+fdeparture configurations were analyzed in considerable depth. in addition. the addi- 

tional energy conversion options shown in Figure 3.0-1 were analyzed. The description of analyses 

conducted are ordered as follows: 

3.1 SPS Requirements 

3.2 Photovoltaic Energy Conversion and SPS Configurations Vol. 11 

3.3 Thermal Engine Energy Conversion and SPS Configurations 
3.4 Construction Analyses 

3.5 Transports tion Analyses 

3.6 Collision Analyxs 

3.7 Cost Analycs 

Each sect i~n excepting the transportation analysis section is organized to provide a record of the 

work accomplished and a description of results. In accordance with tlre Part I Statement of Work as 
revised by the addim task. the transportation effort is to be separately documented. Volume 111 

therefore presents only transportation results. 

3.1 SPS REQUIREMENTS 

One of the sub+bjectives of the SPS System Definition Study is to identify and define require- 

ments on the SPS as a system. 

The SPS is intended to serve as a long-range nondepletable energy system. As such it should meet a 
set of nine general requirements applicable to  any such system: 

(1) The source of the energy should be nondepletable over time scales of at least hundreds of 
years. (A solar energy system clearly meets tius requirement.) 

(2) The system should not be capacity-limited. i.e.. it should be possible to install as much capac- 
ity as is desired. (if hydroelectric power could meet this requirement. there would be no 

energy crisis. ) 

(3  1 The system should be usable for baxload. i.e.. continuous service. 

(4) The system should produce much more energy over its lifetime than is invested to create and 
operate the system. 
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(5) The system should ha& acceptable economics. In the simplest terms, it should produce electric 
power th. :onsumers and industry can afford to  buy. 

(6) The system should be en'lironmentally acceptable in all respects, including air pollution water 
pollution, thermal pollution, hazards, land use, and any other unique factors associated with 

the particular nature of the system. The SPS, for example, must meet environmental standards 

(presently not well-defined) PIS regards communications experience and public exposure to  its 

microwave beam. 

(7) The system should not require excessive consumption of critical resources even to install the 
greatest plausible total capacity. (One SPS option studied about two years ago. for example, 

requred excessive use of tungsten and was subsequently dropped from further consideration.) 

(8) The system should have the potential for compatibility with power grids as regards reliability, 
availability. power characteristics, plant size, dnd ability to serve all regions of the world. 

(9) The system should admit to an orderly. manageable development program without excessive 
risk. cost. or calendar time required to reach initial commercial status. 

From these can be derived system and design requirements applicable to the SPS. The following 

partially complete set of requirements will be updated and expanded during Part 11 of the SPS sys- 

tems study to provide a more complete high-level specification for SPS systems. 

3.1.1 The Solar Power Satellite Concept 

Figure 3.:-1 illustrates the basic principle of the Solar Power Satellite (SPS). A power generating 

system converts sunlight into electric power which is converted into a narrow (total divergence 

angle of approximately 1/100 degree) microwave beam by the microwave transn~itter. These sys- 

tems are located in equatorial geosynchronous orbit and thus remain in line-of-sight with their asso- 

ciated microwave power receiving stations on the ground. At these stations the microwave power is 

converted into electricity suitable for integration into the local power network. 

Power conversion systems can be either photovoltaic or thermal cycle types. but in either case the 

electricity generated is to be used to power a microwave power transnlicsion system to deliver the 

energy to Earth. 

The microwave power receiving stations for the SPS consist of a large number (-lo9) of dipole 

antennas with associated rectifiers. integrated in c.n oval a;ray. Rectification of the received energy 

to direct current is accomplishrd by circuit elements which are integral to the dipole antennas. Fig- 
ure 3.1-2 is an artist's concept aerial view of such an array. 





Since the antenna intercepts and converts nearly all of the microwave energy but is nearly transpar- 

ent to  sunlight. it is possible that agriculture could be accomplished beneath it. Surrounding the 

antenna is a buffer zone to prevent public exposure to  stray microv~ave radiation more energetic 

than the continuous exposure standard (assumed to be more than I0  times more stringent than the 

current standard). These antennae could be placed relatively near demand points (note the city in 

the background of Figure 3.1-2). 

3.1.2 System Requirements Basis 

Utilization of space-based power generation could conceivably occur as a legislated action. 

prompted by the resultant increase of national energy independency. reduced pollution. infinite 
source, etc. However. about three-fourths of our electric power currently is produced by private 

utilities, suggesting that economics may be a major factor influencing space-based power incorpcra- 
tion. Thus, market elasticity must be considered, i.e.. sales will be infl~enced by the price of the 

product. 

Many factors have contributed to the increases in installed capacity (kW) and consumption (kwh). 

(1) Population growth-from 1956 to 1973 the rate was 1.3% per year. The rate is predicted to 
decline to 0.8% in the 1973 to 1990 period. Resultant populations. millions ( I ) :  

( 2 )  Rising standard of living-disposable income per person has been increasing: the trend is 
expected to continue ( 1 1: 

Year 1976 Slyear per person 
disposable income 

1964 . . . . . . . . . . . . . . . . . . . .  3740 

1974 . . . . . . . . . . . . . . . . .  . . 5 2 8 7  
. . . . . . . . . . . . . . . . . . .  1984 6784 
. . . . . . . . . . . . . . . . . . . .  1995 8542 

(3)  Relative reduction in electricity cost-as pointed out by Hannon (2) .  the cost of electricity 
energy has reduced relative to labor costs (electricity does not strike for higher wages). It thus 

seems appropriate that about 40% of our nation21 electricity use is for process heat and indus- 

trial power while only 9% goes for lighting (3). In the following plot (Figure 3.1-3) froin (2 )  



the ratio o f  manufacturing workers hourly wage :o industrial kwh cost of electricity is repre- 

sented as 1.0 in 195 1 on the ratio index scale. 

T h ~ s  item and the previous one are ultimately related, i.e , the rising standard of living is in part 

explainable in terms of the wage/electricity ratio. Thus minimizing energy costs is important 

t o  maintaining 4 high standard of living. 

Figure 3.1-4 shows trends In national installed generating capac~ty. Notc the diffe~ense between the 

1973 and 1974176 forec?sts. tl-hsre was n o  signi!icant change berween 1974 and 1076.) l i  is signifi- 

cant that the 1973 ar t~cle  1.1 ( 5 )  was titled "Utilities Plan Expanwn to Meet Records Demands" 

and that the 1974 title in ( 1 )  was "Slower Growth in Sales and Peaks Sparks Sharp Cut in Expan- 

sion Plans and Cost . ' . 

An explanation for the change in forecast is given in ( l j: at the end of 1973 an increase of 33.100 

MW in the sulnnier peak requrrr~ne~rt was forecast. An increase o f  32.607 hlW in capacity was 

planned for 19'4 to meet this peak. retire some obsolescent units and raise the national reserve 

margin t o  21';. However. energ) consenation (partly from recession-caused production decreases) 

cut the load growth. to on!). 15.530 S1k. resulting in a gerierat~ng marsin of 26.2'3. hlild winters in 

the 1974-76 period also cuntributed t o  the large reserve marglns. t The sebere 1977 winter appears 

to  be reversing the trend ; st:ttistics are not presently available. ) Consc.quently some of this margin 

can be applied !o subsequent growth needs. depressing tn? gro~vth curve. Figure 3.1-5 shows varia- 

tion of this margln w ~ t h  t1111c. 18 ! 1s generall) considered b) utilit~e?; to be desirable; the margin 

was 16.6'; in I 9bL) when reduct~ons and curtailments occurred. 

Some authors ha\e forecast andlor reso~nmended very low or  even lira energy growth rate. Hannon 

( 2 )  recornmends a Inure labor intensive econnmy. i.e.. one in \\111ih. in essence, human muscles per- 

form rather than electr~c motors. thereby mdking more (lower paying) jobs. One factor is the grow- 

ing labor pool resulting from population g r o ~ t h .  I f  the birth rate ~nstantly dropped t o  zero. the 

labor pool would >t i l l  ir?;rease in size for two dec4ti::s. 

A more rational view 15 that energy growth is essential it) economic health. Federal Energy Adminis- 

trator Zarb has recornme~~ded 3.5 ; to 4.5'; installed ca;.'!,:ity Rro\. ; I I  rate for 1975 t o  1985 (6). 

This range was plotted in Figure 3 . 1 4 .  

It is possible for national energy consumption to  remair. constant whlle the amount of electricity 

gentrated increases. In 1968. 2 I .'I.: of the energy expended went to  produce electricity. The last 

column shows ;I potent~al of 70.7'7 utilitation without significant changes in energy use technology; 

for example. electricit) could be u3r.d for all process heat. 
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Current Predictions 

Figure 3.1-6 shows historical (4) and forecasted ( 1  and 5) annual additions t o  U.S. ;nstalled capac- 

ity. Note that these arc net additions after retirement of obsolete capacity. Actual sales are 1% to 
2% greater. Again note the dramatic changes resulting from the capacity margin produced by 

reduced electricity consumption. The projected 1973 addition rate for the year 1990 was 64  GW 
(64000 MW): the 1974 projection is for 53 GW per ye r for 1990. The 1976 forecast shows a signif- 

icantly reduced growth rate beyond 1990, and a greatly reduced nuclear growth rate. 

In 1973. nuclear generated electricity provided 4.8% of our capacity. 'This was 16  vears from the 

initial power reactor and nine years after the first "commercially competitive" reactor of 1964. In 
the 16 years from 1963 until 1980 nuclear energy is forecast to  grow to  capture 13.6% of the elec- 

tric power market. In another 15 years it will represent 30!7 of our capacity (but provide over 50% 
of  the kwh) ( 1 ). It thus appt . reasonable to assume early market capture rates of 15% for SPS's 

(assuming equivalent economics). In England, nuclear capacity was added at approximately five 

times the percentage rate of the United States. Should superior economics be achieved, i.e., very 

low costs for space based powrr. the capture rate could be even higlirr. 

Other factors could also accelerate space power incorporation, such a5 nuclear power moratoriums 

or legislation which levies the full "social" costs of fossil fuel usage on the electric power customer. 

The current social cost for the use of coal. for example. may be 13 to 15 mills/kWh (7). 

REFERENCES 

(1) Electrical World. September 15, 1974. 

(2) Hannon, B.. "Energy Conservation and the Consumer." Science. I 1  July 1975 (Vol. 189. No. 
41 97). 
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( 6 )  "World News Beat." tlrctrical World. July I .  1975. 

(7) Morgan, M.  C;.. Rrrrkovic.11. B. R.  and Meier, A. K.. "The Social Costs of Producing Electrical 
Power from Coal: ,4 F~rs t  Order Calculation." IEEE Proceedings. Vol. 61, No. 10, October 1973. 
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3.1.3 SPS System Requirements 

This is a preliminary draft of SPS F -n requirements. Requirements are organized according t o  

the SPS systeni work breakdown s t n   re. This WBS is also t o  be used for system descriptions and 

cust data collection. (The WBS is being updated in Part 11 of the study.) 

WBS 1 .O1 SPS Sysrem 

1.01-1 The SPS systeni ~i ia l l  pruvilie electric poxc.1 for cornmzri i~l  utilization within the United 

States. Power output of the associated indiv~clua: ground inst~llaiiorls sllall be at 5 GW (5 x iq9 

Watts) each. with output form a; rr'q~:ircJ by local power network. 

1.01-2 The power source for these ground stations shall be located in geostationary orbit. with 

power transfer by .t  ~iiicrowave link. 

1.01-3 The system ~,onccpts for these programs, including facilities. launch equipment, etc., shall 

plovide for annual system additions in accordance with JSC sce~a r io  "t?" (Figure 3.1-7). The addi- 

tion rate shown in the figure shall be interpreted as a net capacity addition rate. Power c~utput  

degradation effects shall be compensated such that the figure represents actual total realizable out- 

put versus time with seasonal variations averaged over a year. 

1.01-4 Nominal lif,. of the satellite and ground receiving stations sllsll be 30 years assuming apyro- 

priate maintenance. This lifetime shall be used for investment arnorti~atron in cost and economic5 

studies. The system sliall be designed to allow indefinite extension 01' operating life with appropriate 

refurbishment. 

1.01-5 Tlie system design philosophy shall be t o  1nil:imize consumzr costs for electric power 

derived from this source. assuming JSC qcenario B as a reference capacity addition proeram and 

assuming that all developniental and operating costs. including transpol -ation and or' r .upport 

costs, are recovered from operatilit: revenue:. (This requirement is not intendrd as a recommend. d 
pricing policy. 

1.01-6 The nominal systern total capacity design limit shall be set at -000 GW for North America 

(about ten times the total installet1 electrical generating capacity for the U.S. in 1976). SPS satellites 

must therefore be capable of operating at inter-satellite se, ation distances as small as 50 km. This 

requirement applies to  stationkeep~ng capability, :.>ter-sat* a uplink RF interference, and propul- 

sion jet interference hct  ween satellites. 

1.01-7 Microwave Safety the de\ign standards follo:ving shall not be construed as reflecting any 

currently applicable standards or  as a recommendation or forecast as to any possible future stand- 

ards. They rt.prese:lt s t r inge~~t  de ;yn requirenients containing considerable margins to  allow fo:. 

unforeseen eftkcts. 
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1.01-7.1 Microwave flux density in tne ionosphere shall not exceed 2 5 mw/cm2. (This requirement 

may be modified upward or downward at such a time as experience warrants.) 

1.01 -7.2 Microwave flux density outside the restricted-access receiving site area &all nowhere 

exceed 0.1 mwlcm2 with a nominal design goal of 0.01 mw/cm2. The system shall be designed t o  
minimize or eliminate restricted access land area not actually used for the power receiving antenna. 

1.01-7.3 The aremge microwave flux density (outside the restricted receiving site areas) over the 
U.S. or any other large populated area resulting from operation of the system at rated capacity 
(5000 CW) shall not exceed 0.01 mw/cms. 

1.01-7.4 Microwave flux exposure limits for system workers shall be set at 1 mw/cmZ for continu- 

ous (i.e.. 8 hour workday) exposure and at 10 mwicm2 for exposure periods not to ex& 1 hour 

per 24hour day. Personnel working in areas of flux higher than these limits shall be suitably p m  
tecteii. e.g.. by a Faraday shield. 

1.01-8 System sizing shall be referenced to beginning-of-life conditions with any seasonal variations 

averaged over a year. The systems shall provide suitable means to maintain nominal output rating up 

to the bednning-of-life rating. 

1.01 -9 Energy Conversion option comparisons shall use the following r.1 lcrowave power transmis- 

sion link performance as a reference (Tahle 3.1-2). Clhese figures &all nbt in any way be construed 

as firm requirements or design guidelines oii the microwave system.) 

WPS 1.01.01 Solar Power Satellite (SPS) 

1.01.01-1 Orbit 

1.01.01-1.1 The nominal operational orbit for SPS's shall be circular at 00 inclination and 35786 
km altitude (radius=42 164 km). This is the geostationary orbit condition: each satellite will nomi- 

nally remain stationary over its assigned longitude point on the Earth's equator. 

1.01 -01-1.2 The orbit sha!! remain trimmed such that longitude drift due to perturbing effects does 
not reduce intersatellite distance below 50 km for a no-ninal spacing of 75 km. Nominal orbit error 

allocations are: out of plane 2.3'  equivalent to 1 5.5 km longitude error: eccentricity 0.0004, equiv- 

alent to 16.87 km longitudr. error: long-period drift 10 km. These allocations RSS to  25 km total 

random error. I o the e x  tcnt that the satellites can fly formation. e.g.. in a cooperatively perturbed 

mode. the longitudz of individual satellites can exceed 25 km frcm the nominal assiqncd location. 
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1 .01.01-1.3 SPS assigned longitudes shall be clusterrd together with a minimum nominal spacing 

of  75km (0.102°) in order to pnwme o w n  spaces in geosynchronous orbit for other types of sat- 

ellite wmices. 

1.01 -01-2 SPS's shall be designed to  have sufficient a:titudc: cwntrol t oque  capability and struc- 

turd integrity to  recover fram a loss-of-attitude-cwntml event. i.e.. to  mr i en t  from a gravity gra- 

dient stable attitude to  nominal flight attitude. 

1.01.01-3 SPS's shall be designed to  a capacity factor of  90C;. including planned and unplanned 

outages and degndation due to  iailzd elements. The 90'2 shall he applied to  nominal output if all 

SPS elements are functioning. Outpirt degradation. e.g. solar cell dzgradatiorl. due t o  natural envir- 

onment effects or  aging is not clrarged against capacity factor. 

1.01.014 No single failure o r  causative result thereof shall cause output from either SPS antenna to  

fall below 50'; of nominal. This requirement does not apply t o  shadowing by the earth o r  by other 

SPSs. 

1.01 -01 -5 Partial shadowing by an adjacent SAPS shall not cause disruption of operation of  o r  dam- 

age to. an SPS. Loss of output appropriate to the extent of shadowing is. of cvurx. acceptable. 

1.01.01-6 Each SPS shall haw sufficient onboa~G storage capability for all necessary consumaMes 

t o  sustain a minimum of one year of normal opcrations uithout resupply. This requirement includes 

s u p p n  e f  any crew that would hr. resident onboard an SPS either intcmiittently --crnntinuously. 

(3csidav11 t)tthrHIIJ implies lib~np rrbmnf the SPS. Crews living aboard s l ;pprt  vehicles or  syaems 

are not includtul). 

1.01.01-7 The SPS siiall be designed for construction in space from prefabricated elements and 

other materials dc1iverr.d to thr space construction sitetsl from earth hy a spacu transportation sys- 

tem. Design features and c-onstnrction mctliods shall slipport the minimum cast requirement 

(1.01-5). 

1.01.01-8 The SPS shall be capablc I)!' highly c.ontmlled startupsuch that lockon and flux pattern 

control of thc microwave power transcilsuon system can be verified at low poser  levels before 

ramping up to  full p0wr.r. rhc cntirc starttip and rampup process shall be contrr~llable to  maintain 

complete control of the power bcarn atid aroid damage due to transients or outaf-tolerance opera- 

tions of any SPS elemcnts. Partial o r  c-ornplctc shutdown shall he similarly controllable. This 

r~quirt.ment shall also apply to an! p s s ~ h l c  transient iliumination patterns restilting from partial o r  

complete shadow~np of the SPS. 

1.01.01-9 The SPS shall be tfcsigneJ to the follow~ng ioniring radiation environments: 

High Energy Particles 

For the high enq). trappcd electrons and portons. the electron flux maps ~ ~ - 4 f  I and 2 )  an J 
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the proton flux maps A P - ~ ( ~ ) ,  A P - ~ ( ~ ) ,  and ~ ~ - 7 ( 5 )  shall be used. The anticipated AP-8 proton 

flux map shall be used when it becomes available. These flux maps. described in a wries of publica- 

tions by J. Vette and ceworkers at the National Space Science Data Center. are the standard high 

energy trapped particle data source. 

I h e  solar proton environment expected at GEO has been predicted by a number of workers. but the 
model of J. lCind6). and the survey and predktions of W. R. webberl7)7 (*) have gained wide usage 

in the technical community. These data sources shall be used to  define both an expected and a 

worst case solar proton environment. 

Low Energy Particks 

Electrons of energy less than 250 keV, and proton, below 0.5 MeV are not treated in the trapped 

particle flux maps and must be defined from the r e ~ a r c h  literature. The S!C charging article by 

~ e ~ o r r e s t ( ~ )  is typical of the data available in this area that shall be used. 

:~nospheR Environment Defmition 

The NASA Space Vehicle Design Handbook ionosphere environrarnt shall be uxd. 

Refer~nces for Requirement 1 -0 1 -0 1 -9 
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WBS 1 -01 .01.01 Energy ~o l l ec t i on  & Concentration Subsystem 

(Note: Some SPS concepts may not in~.lude this subsystem) 

1 .O1 .01.01-1 The energy collection subsystem shall be designed t o  avoid variation in concentrated 

sunlight intensity that would damage or  seriously interfere with operation of. the energy conversbn 

subsystem. 

1.01.01.01 -2 The energy collection subsystem shall actively or  passively compensate for variations 

in sun elevation due to  s~tellite attitude. e.g.. flying pzrpendicitlar to  the orbit plane (POP). The 

e n e w  collection sirbs)sten~ shall also compensate for expected structural deformations in the SPS 

due to space tn\ironnient and other operational factors. 

1.01.01.01-3 The energy collection subsystem shall be designed to provide the concentration of 

ambient sunlight required b) thr energy conversion subsystem, after accounting for losses assa-i- 

ared with reflectit its. scattering, and geonietric errors. The concet~rrariot~ ratio shall be defined as 

the ratio of  (averagc concentrated solar flux per unit area of absorber surface)/(ambient solar flux). 

The gcomerric c.ot~c.rr~rrution fucror shall be defined as the ratio of  total projected area of sunlight 

intercepting surface to  total absorber sirface area. The ratio of concentration ratio t o  geometric con- 

centration factor IS the energy collection efficiency. 

1.01.01.01 -1 The e n e r a  collection subsystem shall be designed to  preclude arcing and/or other 

potentially damaging cffects associated with electrostatic charge buildup due t o  the geosynchronous 

orbit natural or indirced envlronrnents. 

1.01.01.01-5 The cncrsy collec.tic:ir subsystem. ~f i t  uses activcl!-controlled elements. e.g.. for high 

cone-entmtion ratios. \hall 

a. employ distrihuted independent control and actuation systems such that no single failure will 

significantly degrade total output: 

h. not be hascd on maintenance of geometric precision of the main SPS structure t o  achieve the 

rrquircd optical pcrfornianse: 

c.  employ covtrol passband t'rccluer,~~es selected t o  nor interfere with overall attitude control of 

the SPS. 

WBS 1.01.01 .OZA Energy Coliversion Subsystem (Photovoltaic) 

1.01 .O1.02A-I The p l l o t o \ o l t ~ ~ ~ .  sj.stcni shall be rnodbl3ri.!ed into space installable blankets of TBD 
KWe nonilnal pcncr.tt:ng cap.ic.lty eaih at beg~nning of lift. ilnder monimal operating condlrior 



including applicable sunlight concentration. The nominal voltage output of each module shall be 

44,000 volts. (Value subject t o  change). 

1.01.01.02A-2 The photovoltaic system shall employ radiation shielding and/or annealing of the 

photovoltaic converters as appropriate t o  requirement 1.01-5 (minimum power cost). 

1.01.01.02A-3 lndividual converters (cells) shall be wired into the blanket array such that either 
open o r  short-circuit failures of individual converters d o  not cause 1) loss of  array output dispropor- 

tionate to the loss of the individual converter's contribution. or  2 )  arcing. 

1.01.01.02A-4 The photovoltaic system shall be designed such that a blanket module and/or its 
switchgear can be isolated from the operating onboard electric power distribution system, and its 
generated electricdl potential reduced to  safe Izvels. so that it may be serviced without shutdown of  

the entire energy conversion subsystem. 

WBS I .01.01.02B Energy Conwrsiov Subsystem (Thermal Engine) 

1.01 .01.02&1 The thermal engine systems shall be modularized into space installable elements, 

with a nominal generating capacity per machine set of TBD kw,. The nominal DC voltage output of 

each machine set shall be controllable within the range 40,000 to  45.000 volts at rated power out- 

put. (Voltage values subject t o  change.) 

1.01.01.02B-2 lndividual generators shall be provided with controls and connected t o  the onboard 

power distribution system such that planned or  unplanned shutdown of an individual generator 

does not impair operation of the SPS except for loss of the output contributed by'that generator. 

1.01.01.02B-3 lndividual engine generators shall be designed to allow senice. including entry to  

fluid %stems. without shutdown of functioning engine-generators, except in the case where access 

to the interior of  the cavity absorber may be required. 

1.01 .@I .02B-4 Fluid systems shall include scavenging and/or inventory control such that inten- 

tional or  unintentional breaches of fluid system integrity will not cause excessive loss of fluid. Such 

fluids losses as do occur shall be controlled to the degree necessary to prevent interference with o r  

degradation of SPS operat~on. e.g.. by vacuum plating, or  electrical arcing. 

1.01.01.02B-5 The cavity absorber assembly shall include light shields as rlecessary to divert stray 
concentrated light ( 1  t.., cavity aperture spillover) so that it does not induce a deleterous thermal 

environment in thc turbogenerator area and does not interfere with equipment senrice operations. 

The light shields shall not present false targets to the solar concentrator control systems. 



1 .01.01.02B-6 The thermal engine energy conversion system shall be capable of surviving without 

darn;t,je a maxirrlum-duration geosynchronous occulation (72 minutes) when entering the shadow 

cold, i.e.. after an extended shutdown period. and then reaching full power within one hour. 

1.01 .01.02B-7 Normal restart after occulation. i-e., upon entering the shadow hot. shall reach full 

power within five minutes after leaving the shadow. 

1.01 -01.02B-8 The net angular momentum due to  rotating machinery and circulating fluid for any 

SPS module shall be no more than 1 0 5  of that angular mornentum value represented by rotating 

the entire module one revolution per day about a principal axis parallel t o  the turbogenerator 

shafts. (This requirement is intended to minimize effects of machinery momenta on the flight con- 

trol system.) 

WBS 1 .01.01.03 Power Distribution System 

1.01 .01.03-1 The power distribution system shall conduct DC electrical power from the energy 

conversion system interfaces to the transmitter rotary joint interfaces. ( i t  is assumed that there are 

two 5 6 W  antennas and associated rotary joints per SPS.) The distribution system shall supply the 

following nominal voltages and currents t o  the rotary joint interface. 

Bus A 10.800 volts at 138.600 amps (5.65 GW) 

Bus B 39.700 volts at 59.400 amps (2.30 GW) 

A common return for these two si~pplies shall be provided. 

This requirement is based on estimated Klystron characteristics described in the following, and is 

subject to  revision. 

1.01 .01.03-1 Supporting Rationale Reference Klystron Parameters 

The following are the proposed parameters for the reference DC t o  RF converter: 

Tube Type : Klystron - Depressed Collector 

RF Power Or~tput:  70.9 KW 

Efficiency : 0.87 

Number of Deprc.;scd ('ollcc.tors: 3 

Modulating Anodc Voltage. 2 1.05 2.5V+0.55 

Bod) Xnodc Volt.ipc: 42.105\'?0.5',b 

Body AnoJc ('urrcnt: 0.1 1 Xnipcres 

Ream ('urrcnt. 2.20 Amperch 



TUBE ELEMENT REQUIREMENTS 

VOLTAGE CURRENT POWER 
ELEMENT (VOLTS DC) (AMPERES) (WATTS) % POWER 

COLL. A 40,000+5% 1.320 52,800 64.8 
COLL. B 37,895?5% .616 23,343 28.7 
COLL. C 4.2 1 125% -154 648 .8 

REGANODES 42.10520.51 . I  10 4.632 
HEATER 30 5.7 

TOTALS N/A 2 .?OO 8 1,453 100.0 

The tube output was increased to 70.9 KW in order t o  bring the collector voltages up to near 

40 KV. The proposed method for obtaining the required converter koltages is as follows. 

VOLTAGE SO1 JRCE 

Collector A Frqm power generation 
source 6! 40 KV k 5% 

Collector B From power generation 
source @ 37.9 KV 2 5% 

Modulating Anode From power processors 
Body Anode on  antenna. Power source 
Heater for processor is 40 KV 
Collector C from collector A supply. 

A simplified description is shown in Figure 3.1-8. 

1 .01.01.03-2 The power distribution system shall employ dedicated aluminuni conductors (not 

part o f  main structure) which are passively cooled by radiation to free space. 

1.01 -01.03-3 The power distribution system shall be sized to  min~mize the combined mass of itself 

and the remainder of the SPS. considering power distribution system mass. dissipative losses. and 

variations of  resistivity with operating temperature. 

1.01 -01.03-4 The power distribution system shall have switching and control equipment as nec- 

essary to  isolate the rotary joint and power transmission system from e n e r g  conversion system 

startup and shutdown transients. This requirement may be in part met be delayed activation of 
power distribution provided that the delay is not greater than 10 minutes. 



DULATING ANODE REFOCUSING SECT1 ON 

SEGMENTED COLLECTOR 

. 
DEPRESSED COLLECTOR OPERATION (EST.) 

CATHOOE BODY Vo = 42.1 KV 
-4 

PERVEANCE K = .25 x 1. 

TOTAL CURRENT = 2.20 AMPS = lo 

RF POWER OUTPUT - .765 Volo = 70.9 KW 

THREE SEGMEt-ITED DESIGN 
!. MOD. ANODE SUPPLY . 5Vo, . 0510 = .025 Vdo 

BODY SUPPLY - .No, .0510 = .025 Vole 
3. COLLECTOR A = .95V0, .6010 = .570 Vole 
4. COLLECTOR B . WVO, .281 = .252 Vole 

0 

5. COLLECTOR C . 10Vo, .0710 = .007 Vole 

TOTAL BEAM POWER .87WJo 

NET EFFICIENCY = .765/.679= 87% 

Figure 3.1-8. SPS Klystron Design Estimate 



3.2 PHOTOVOLTAIC SPS CON FIGURATION AN ALY SlS 

This section deals with the analyses that supported definition of the photovoltaic SPS options. A 
brief summary of photovoltaic results is as follows: 

The factor that perhaps made us feel most comfortable, in terms of evaluating the whole SPS con- 

cept. is that silicon cost did not appear too high. There has been a tendency to  think "if we n~us t  yo 

with the silicon satellite. it's going to  cost too much and maybe it won't make it." But our cost 

analyses indicate that silicon cost will not be too high, and that is probably most inlportant. Silicon 

also is less sensitive to cell performance than supposed. We f o ~ ~ n d .  especially for silicon, that the 

simpler satellite at a concentrat i~n ration of 1 is preferable. 

Annealing is a critically important technology. Preliminary test rCsi~lts sI1owed high promise for the 

eventual success of  annealing. With annealable satellites. self-power orbit transfer after LEO con- 

struction appearing promising. 

It is becoming clear that new sources would be required tu supply gallium for SPS's even at the 

quantities required for the t h i n ~ ~ e s t  of our fims. New sources of supply niay he available. Questions 

of production rate (can enough of it be supplied per year) are very botilersome. Even i T  a new 

supply were available at a reasonable recovery rate, thin film technology is :ritical for gallium. 

Higher concentration ratios migh alleviate this problem somewhat. 

3.2.1 Silicon Photovoltaics 

3.2.1.1 Array Analyses 

The reference solar array was the basis for comparison of altema!e concepts. It was derived i:.\rn 

the JSC concentrating configuration using silicon solar cells. modified hy the ~ncorporation of 50  

pm ( 2  mil) fused silica covers to  provide more-optimum protection from solar-tlae protons during 

a 30-year life. Features of the reference array concept are as follows: 



FEATURE 

Concen~ration ratio 

Substrate 

Concentrators 

SELECTICN RATIONALE 

2, less reflection and mis- Designated as reference case 
orientation losses 

Type t l F  Kapton, with Best available strength for 
integral printed circuit weight. Compatible with 
interccvr?cctions printed-circuit cell-to-cell 

connections made by welding 

Aluminized Kapton at Lightest weight of feasible 
60° with respect to plane altrrnatzs 
of solar cells, oversized t o  
fully illuminate cells when 
misoriented in worst-case 
manner. 

The solar cell design for the reference array is shown in Figure 3.2-1. with features and their selec- 

tion rationale outlined in Table 3.2-1. The manner in which cells are interconnected t o  form strings 

on a 650 by 496 meter module is shown in Figure 3.2-2. Each of these modules would contain 110 
of these 4-5-kV strings. 

Having both p a:-d n contacts available 011 the back side of the solar cell is important for automated 

assenlbly of the blanket. One way of achieving this feature is to  run the n-layer doping around the 

edges of the cell to  contacts on  the back. Recerit work sponsored by NASA's Lewis Research Center 

indicates that better cell performance will be obtained if only the metallization, appropriately 

insulated from the silicon, is run around the edge of the cell. 

The initial output of a solar cell in an array depends on the tempcraturc and light intensity. We used 

a -0.43 percent per OC temperature coefficient of ~naximurr. power. a value measured by Comsat 

with their violet cells. We also used their temperature coefficient of -0.37 percent per dcgree Z tor 

voi t age. 

A 257.07 r n ~ / c n i :  solar intensity was used in c3lculating the performance of cells as summarized 

in Table 3.2-2. It was based on the concentrators having a 0 . 9  reflectance. which heated the cells 

to  I 1SoC. We subsequently found that the reflectors would have a reflel-tance of 0.85, reducing 

initial cell temperature t o  1060C. n i s  revised intensity and temperature were not incorporated into 

the trade strrdy inasmuch AS it would not have changed the concl~~sion.  

The blanket asscrnblv factors represent optimistic values of packing factor and cell i ~ n i f ~ r m i t y .  The 

low cover absorption can be achicv. d witti tantalum pentoxide anti-reflective coated cells. 

The perfornlance calculations stlown in Table 3.2-3 were urc:irped to illustrate tht* true rcflcctor con- 

tribution t o  blankct output. For tile area cc~ncentratio ‘tie = 2 option, thew data show that thc 

effect~ve concentration ratio is considerably lower. 



ELECTROSTATICALLY BONDED 
DOW-CORNING BOROSl LlCA TE 
GLASS COVER 

ALIZATION, INSULATED 
NI SILICON, CONDUCTS 
RENT TO CONTACTS Opt 

HOLES IN  
SUPPOR1 ING KAPTON 7 

u- BACK OF CELL 

# 

@ 
PARALLEL-GAP WELDS 

e# MAKE ELECTRICAL 
CONNECTIONS AND SUPPORT 

INTERCONNECTOR - CELLS FROM INTERCONNECTCR 
THAT IS IMBEDDED IN  SUBSTRATE 

Figure 3.2-1. Solar Cell Design for Solar Power Satellite 

Tabk 3.21. Reference A m v  Concmt-Solar Cells 

I FEATURE SELECTION RATIONALE 

1 TYPE 

CELL SIZE 

CONNECTIONS 

EFFICIENCY 

COVER 

I OPERATING 
TEMPERATURE 

SILICON 

N- ON 9 

2 OHM - CM 

ON BACK OF CELL 

18 PERCENT WlTH 
AIR - MASS - ZERO 
SUNLIGHT, 2 6 ' ~  

2 - M IL  FUSED SILICA, 
ELECTROSTATIC - 
BONDED 

DESIGNATED AS BASELINE 

MORE hADlATlON - RESISTANT THAN P -ON 4. MOST OF THE 
SILICON W L A R  CELL DEVELOPMENT WORK IS BEING DONE ON 
N -ON 9 CELLS. 

BOEING TFSTS HAVE SHOWN THAT 2 OHM C M  VIOLET CELLS 
H A b  I V E  HIGHEST OUTPUT AFTER IRRADIATION WlTH 
7 x 10 ONE -MeV PROTONS. 

A POSSIBLE WIDTH FROM EDGE - DEFINED, FILM. FED G R o ~ H  
PROCESS (EcGl. 

REASONABLE TO HANULE, AND OBTAINABLE FROM HEAT - TRANSFER 
CRYSTAL - GROVdTH PROCESS. PROTOTYPES OBTAINABLE FROM 
5 - CM DIAMETER BOOL LARGER CELLS WOULD HAVE LOWER 
EFFICIENCY BECAUSE OF SHADOWING BY CURRENT -COLLECTING 
GRID. 

COMPATIBLE WlTti AUTOMATED ASSEMBLY OF ARRAY BLANKET. 

APPEARS ACHIEVABLE I N  PROOUCTION BY 1985. 

BEST COMPROM:SE, WlTH TWCKER COVERS INCREASIt!G ARRAY 
WEIGHT BECAUSE OF QUANTITY OF QUARTZ, AND THINNER COVERS 
INCREASING WEIGHT BEC4USE OF GREATER AREA TO COMPEYSATE 
FOR GREATER LOSS OF PCWER FROM RADlATlGN DEGRADATIOK 
DURING 30- YEAR +IF€. 

BASED ON THERMAL ANALYSIS. 
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oon 
SPACING 

1mm qk' BETIYEEMCELLS 
L O N E  SOLAR CELL 

Co#r thickness vdtase at ~~s Per kfor one 
bm, mils] load (kV) string* string (km) w (rn) 

M) (2) 44.0 521,760 6.65 4.16 

F i  3.2-2. Sdar Cell Sting for Supply@ tosd Voltage 

-=I Table 3.2-2. Solar Array Output Cakulations 

Cell performance facton: T = 1 15'~ 
P o (1 - 0.0043 AT) p ~ '  25 C 

v, = v ~ ~ o ~  (1 - o.wn AT) 
S = 135.3 + 0.9 x 135.3 = 2 57-07 rn~lun* 

Blanket assembly factors: Lost area = 0.96 
Cover absorption = 0.98 
Cell mismatch = 0.99 
1 2 ~  loss in section = 0.975 
Total = 0.9081 

Initial blanket output: - Po 257.07 x 0.18 (1 - 0.0043 [I 15% - 250~1) 
(0.9081) 

= 25.76 m~lcrn*  = 257.6 W / I ~ ~  



Array specifik output at 1 sundirect 
illumination (55°C) 

Amy temperat urc degradation 
at CR = 2 (106°C) 

Array specific output ( 106°C) 
from reflected sun 

Reflector flat~ress factor 5% - 13.9 w/m2 

Net output increlnent due to 
reflectors 

Integrated specific output 
inte~ratcd 011 t pu t 

UTeetive CR = I sun direct output = 1.40 

Efficiency 



The referencu sdar  array has a geometric concentration ratio of 2.0, with the direct sunlight seen 

by each ell k ~ g  suppkmeeted by sunlight reflected fnwn each side of the blanket, as shown in 

F i  3.2-3. With perfect reflectors each cell would be luminated with suniight having twice 

normal intensity. 

The actual sunlight at the sdar cells is less than twicx the direct sunlight. It is rcductd by absorption 

in the reflectors. non-flatness of the reflecting surface. Also, the reflectors must be ovenied to 

fully illuminate d l  cells under wont- misorientation. 

The sdar  array blanket is shown in Figure 3.24. This is representative design who* characteristics 

were incorporated in the photovoltaic SPS definition. 

3 2.1 -2 Reference Conferntion 

The reference silicon configuration IS shown in Figurr 3.2-5 as adjusted for the rwiscd sizing crite- 

ria. The :rough width has been reduced t o  6 19m as required for uniform illumination and the addi- 

tional beam frames required to  react the reflector tensioning loads ar\: shown. Mass properties for 

the reference configuration are shown in Table 3-24,  tracing evolution from the point-ofdepamm 

mass statement. This mass statement includes a So% growth allowance as used by JSC in JSC-11568 

to facilitate comparisons. Other mass data presented in this report d o  not include growth allowances. 
allowanies. 

The reference configuration does not meet the requirement of m~intaining rated output over 30 

years life. both the solar blankets and the reflectors degrade. End-of-life pzrforman;~ is summarized 

in Table 3.2-5. Detailed analyses of solar cell and reflector degradation were conducted. as reported 

in sections 3.2.5 and 3.2.6 respctively. Results are summarized in Figure 3 . 2 4 .  The basic energy 

conversion performance chain has been revised to reflect the 30 year degradation values for both 

cells and reflector. The effective concentration ratio is again considerably reduced from the area 

c-ncentration ratio of two. 

3.2.1 -3 Power Maintenance Analysis 

Power maintenance methods include initial ovenizing, annealing. and array addition. Initial oversiz- 

ing is thc least attractive option (see section 3.2.1.5). Annealing is the most attractive. if it can be 

made to work as well as current preliminary test results indicate. Array addition mairtains d a r  
array output by adding increments to restore capacity lost by radiation degradation. The refurbish- 

ment schedulc shown assumes that the solar power satellite a lw~ys delivers 10 GW from its Earth 

receiving station. and that at the end of each 5 years an appropriate solar amay increment is added. 



2. less refkction Oesignated bassline 
and misorientation 

TVPe HF w. Best available rtrength for 
with in- print- wei@tt. Compatible with 
ed-chuit inter- printed-circuit cel l - todl  
am- com~ctiom made by welding, 

Aluminized Kapton, Li#test weight of feasible 
aversized to fully alternates 
illuminate cells when 
misoriented in worst- 
casemanner 

I 

gnre 3.2-3. Ref' Sobr A m y  Concept 

STRING LENGTH 
6662m 

ACTIVE ARRAY AREA = 2701 m2 
TOTAL AREA AT 1% BLANKET FACTOR 2728 n? 

FOLD USTANCE 
CTVPICAL) 

2 4  COVERS SPECIFIC WEIGHT 0.537 kg/m2 
BLANKET \'JEIGHT 1465 kg 

L- 
TYPICAL 
BLANKET-TO- 

TVPlCAL EDGE BLANKET JOINT 

SUBSTRATE (2 mil) "STAPLE" 
(INCLUDES KAPTON. CONDUCTORS, AND ADHESIVES] 

F i  3 q-4. Reference S i n  Blanket Design (Desgn Voltage 44 000 V.E.O.L.) 
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ws448 Tabk 3.24. Photovoltaic Reference C o n m n t b n  Nominal Mam Summary Weight in Metric TOM 
I 

COMPONENT 

1.0 SOLAR ENERGY COLLECTION SYSTEM 

1.1 PRIMARY STRUCTURE 

1.2 SECONDARV STRUCTURE 

1.3 MECHANICAL SVSTEMS 

1.4 MAlNT ENANCE STATION 

1.6 CONTROL 

1.6 INSTRUMENTATION/ 
COMMUNICATIONS 

1.7 SOLAR-CELL BLANKETS. 

1.8 SOLAR CONCENTRATORS 

1.8 POWER DISTRIBUTION 

2 0  MPTS 

SUBTOTAL 

GROWTH 

TOTAL 
C 

REMARKS 
I 

INITIAL AREA l 129 k r n 2 , ~ l D ~ ~ ~ ~  Q CURREWTml46 km2 

OPTIMIZED CIRCULAR CHORDS + REDUCED MEMBRANE 
STRESS LEVEL 

-TO ARRAY AREA 

NO CHANQ E 

DELETED TO BE CONSISTENT WITH THERMAL ENGINE 

NO CHANGE (200 M.T. DRV WET + 1 YR PROPELLANT) 

NO CHANGE 

SPECIFIC WEIGHT DOWN TO .49 k#m2 (FROM .$4 w m 2 1  

INCLUDES TENSlONINQ/INSTALLATlON FACTOR 

INCLUDES SWITCH GEAR & INSTALLATION FACTOR 

NO CHANGE 

13% REDUCTION FROM MIDTERM - 26% HIGHER THAN 
INITIAL 

(60%) 

ORIENTATION 

(38,8161 

2,493 

189 

40 

86 

340 

4 

28,746 

6,149 

2,570 

16,371 

51,987 

26,994 

77,981 

MIDTERM 

(69,313) 

14,970 

208 

40 

.- 

340 

4 

37,692 

2.978 

3,180 

16,371 

74,684 

37,342 

1 12,028 

CURRENT 

(48,8121 

8,000 

208 

40 

- 
340 

4 

34,111 

3,278 

3,632 

16,371 

64,883 

32,442 

97,328 



Table 3.2-5. Reference C o n f i t i o n  Energy Comersisn E.O.L. (30 years) 

Array specific output at 1 sun direct 
illumination (2-mil coverglass, 55°C)' 

Array temperature degradation -1 5.7 w/m2* 
(89OC) at CR = 2 

Array specific output (89OC) from +6 1.11 w/rn2* 
reflected sun 

Reflector flatness factor 5% - 9.1 w/m2 
Net output i~~crement due to 
reflectors 

Integrated specific output 

integrated output 
Effective CR = 1 Slill diRCt O,It,,ut = 1.31 

Efficiency 

* ltcms subject to degradation 

IMITIAL SPECIFIC CUTPUT = 264.9 w/R/lZ 
EFFICIENCY = 9.55% 

PAGE @ 
Q U ~  

Figure 3.2-6. Array @ "CR = 2" Integrated Degradation 



The comparison of  savings to  be encountered for different maintenance schedules for a hypothetical 
1985-18 percent silicon solar cell was needed. 

Knowing the volt-arnpeit characteristics of the solar arrays, degradation was taken into account and 
curves for shortqircuit current, open-circuit voltage, maximum power voltage. and maximum power 

vs. years of  operation were generated, as shown in Figure 3.2-7. 

From this data three approaches were considered for installing the strings of solar cells in the array. 

Scheme 1 uses the total array installed initially. scheme 2 has its initial array sized to  accept a five 

year add-on schedule, and scheme 3 has its initial array sized :o accept a one year add-on schedule. 

All t h e e  schemes were analyzed using a lower limit of 17.6 GW and letting the initial array reach its 

maximum power voltage at 3 0  years. The three schemes are shown in Figure 3.2-8. 

It is evident that a savings of over three percent can be realized by using the five year maintenance 

schedule over installing the total array initially. A savings of only 0.80 percent can be realized for 

using the one year over the five year maintenance schedule. 

Thermal annealing is prohabiy the best method of restoring a degraded solar-cell array. Investigators 

at Simalation Physics. our subcontractor, have found from the literature that thermal annealing will 
restore proton damage. As a part of this study a test was conducted by Sim~l*lion Physics in which 
both electron beam and laser heating were used to anneal proton-irradiated cells that had been 

severely damaged by the equivalent of 1016 one-MeV electrons. About 50 percent of the lost capac- 

ity was restored. Results are reported in more detail in section 3 .2 .5 .  

The concentration ratio 2 configuration revised to  meet the ~ ~ i l u i r e n ~ e n t s  of a 5 year power output 

maintenance is considerably larger as shown in Figure 3.2-9. A trough was lidded on each side and 

the overall array was increased in length by more than 3 KM. 

3.2.1.4 Nonuniform Illumination Analysis 

At a given illumination intensity and temperature the current and boltage o f  a solar cell wi!l always 

correspond to  some point on the cell's volt-ampere curve. The ccll is oblivious of external circuit 

elements and parameters. 

Shown in Figure 3.2-10 are two colt-ampere curves, one for a fi~lly illuminated cell and the other 

for a cell which is not receiving illumination from one of the reflectors. The poorly ~lluminated cell 

runs cooler, hence can produce higher voltage, but its maxin~um current is Icss. Both cells. being In 

serics. must carry the same currcnt. The d~mly lit cell cannot carry much more than 11s short-circuit 

current, bccausc. if forced to do so, i t  would act as a reverse-hiascd diode and absorb boltagc. 
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MINIMUM GROUND OUTPUT * 10 GW FOR 30 VEAR LIFE 
6 VEAR POWER OUTPUT MAINTENENCE PLAN - TOTAL AREA = 244 K M ~  - TOTAL ACTIVE ARRAY = 1166 K M ~  - INITIAL ACTIVE ARRAY = 95.9 K M ~  - INITIAL MASS = 102.015 MT TROUGH RESERVED FOR 
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Fire 3.2-9. Amy Addition Silicon Confiiration 
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Figure 3.2-10. Dimmed CeUs Limit String Cumnt 



A solar cell can withstdnd some reverse bias without overheating. C311:ider the dimly illuminated 

cell. At its maximum power point it receives 196.2 mw/crn2 of sunlight. and radiates 182 watts of 

this as heat. At zero voltage it would radiate as heat all of its input, and at 380 mV reverse bias it 
3 

would radiate 310 mW/cm-. All o f  these values of radiated heat are less than what the cell nonna1;y 

radiates when illuminated with 250.3 mw/cm2 of sunlight. 

If only 15 percent of the string is dimmed. then the fully illuminated cells can produce 15 percent 
extra voltage by dropping back to  74 percent of their maximum-power current, reducing string out- 

put at 44 KV by 26 percent. Thus it can be seen that partial shadowing causes a disproportionate 

reduction of string output. 

Further examples of the effect of reflected-sunlight loss are shown on a plot of string output as a 

function of average illumination of  the cells in a series string (Figure 3.2-1 1 ). By average illumina- 

tion is meant the sum o: sunlight times area falling on fully illur~linated cells. plus that on partly 

illuminated cells, divided by string area. 

The solid line represents the maximum output that the string can have. assuming that illumination 

intensity does not change cell efficiency. Note the suppressed zeros on the axes. 

Again it is evident that reflector defects significantly reduce string output. 

The reference CR=2 structural configuration requires beams crossing the reflector ridges in the 

manner shown in Figure 3.2-1 2. A solar cell under the bean) would see at times Q.5-meter sections 

of the beam cross the Sun's disk. If the O.5m beam is 520x1 abovr the solar cell. it cc:lld absorb 14 
percent of the sunlight that would otherwise arrive at the cell. 

The best arrangement for the solar cell strings would be one in which the bean1 shadow passes over a 

few strings in the trough, rather than crossing all the strings in the trough. 

3.2.1.5 Configuration Comparisons 

A series of configuration comparisons was developed to  show the influences of the major tradeoffs. 

A gross cost estimating model. derived from the more detailed cost estimates described in section 

3 7, was used for cost comparisons. 

All satellites were defined to provide a minimum of I 0  gigawatts throughout their 30-~eaf'life. The 

one refcrcnce systenl shown in Figure 3.2-13 is a beginningof-life sircd system comparable to  the 

JSC point-of-departure configuration. It is compared to a 30-year, initially oversized system. Initial 

oversizing is a severe penalty: and there are better solutions. 
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ONE REFLECTOR DIRECTING 
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NO REFLECTED SUNLIGHT ON 
ONE SIDE. 
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Figure 3.2.1 1. Effect of Nonunifonn Illumination on Output of Solar Array String 
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The set of comparative configurations shown in Figure 3.2-14 assumes geosynchronous construction 

and concentration ratio 2. The oversized configuration has an estimated cost of some 1 5 billion dol- 

lars. An improved way t o  take care of the end of  lifelbeginning of life prohlrtrn is to add array at 

intervals. We found that a 5-year interval achieved most of the gain. Shorter than 5-year intervals 

provided little further improvement. Annealing provides the least-cost approach. 

The satellite configurations illustrated in Figure 3.2-15 compare concentration ratio 1 (no concen- 

tration) and concentration ratio 2 with array addition fo- power maintenance. Although the CR2 

system is very slightly !owkr in mass, its larger size and greater complexity result in somewhat higher 

cost. 

As illustrated in Figure 3.2-16, the CR2 versus CRl  trade strongly favors CRl with annealing. This 
is because the reflectors of the CR2 configuration also degrade, but car.:iot be restored by anneal- 

ing. Therefore, the satellite must be oversized as required to  compensate for reflector degradation. 

Annealing shows a major advantage over array addition for the LEO asser~ibly option. This is 

because the solar blankets used to  power the transfer are severely degraded (about 50%'. depending 

on coverglass thickness and transfer time) and the satellite mmt  be correspondir~gly oversized. In 

the transportation study, an analysis of the use of thicker coverglasses on that portion of the array 

used for transfer power showed that the added mass of coverglass almost exactly countered the 

reduced degradation; no  cost advantage was found. The power maintenance options for LEO assem- 

bly are corn pared in Figure 3.2- 17. 

The edditional radiation exposure resulting from th:: LEO/GEO transfer also increases the advantage 

of CRI over CR2, again bciause reflector degradation cannvt be restored The comparison is shown 

in Figure 3.2- 18. 

The LEO versus GEO trade is su~nmarized in Figure 3.2-19 for the case without an annealable array. 

The best maintenance scheme is then addiiig array at five year intervals; and here lve have an indica- 

tion of  a switchover. (Detailed transportation cost analyses. however, indicate a slight rrdvantage for 
LEO.) The reduced cost of transportation is countered by the higher acquisitions cost for the larger 

and more massive LEO assembly self-power option. LEO assembly with thc ;annealing-capability 

CRI configuration shows a significant cost advantage because transfer degradation penalties are 

minimized. 

Silicon performance sensitivities, starting from a reference figure of 18% and dropping 2 points per 

step, are shown in Figure 3.2-20. Even at 14% efficiency there is not a dramatic change in either 

Inass o r  cost. This indicates that achieving low cell costs is much mfre important than maximizing 

efficiency. 
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Figure 3.2-13. Silicon Satellite Sizing for 30-Year Minimum Output 
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ARRAY ADDIT ION 

CH=2 
10 GW MIN FOR 30 YRS. 
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SECTION 1 

SOLAR CELL PERFORMAfYCE PREDICTIONS 

A. EFFICIENCY AT ROOM TEWERATURE 

Our purpose is to predict the purforrnurce to be mticiprted 

from optimized GaAa solar cells in the 1990 time period, for solar 

power satellite (SPS) applications. To this effect, a single-crystal 

structure of the type iUustraW on Figure 1 is considered first. This 

structure is basically the same as that used in experimental cells pre- 

sently under dewslopment at Hughes Research Laboratories and at 

other laboratories. The efficiency of a eel! of this type has been 

calculated for a number of combinations of design parameters. Repre- 

sentative results of our c d d a t i o n s  for opcrakion at room temperature 

and in the absence of radiation damage are reproduced on Figure 2. 

These calculations correspond to the following values of the critical 

design parameters, which we consider realistic for future optimixed 

solar cells: 

17 -3 
Doping level of G d s :  ND = 2.10 ern 

N~ 
= 2. lo1* .mo3 

Minority carrier  L = 3 p m  
Diffusion length in 
GaAs 

(A1Ga)As window D = 0.2 pm 
thickness 

Normalized series Rs = 0.1 SZcm 
2 

resistance 

Shadowing ratio 5% 

Values of the parameters shown above have already been mea- 

sured in selected samples of GaAs material or  o n  experimental solar 

cells, even though the combination of all the above parameters in one 



Fig, 1. GaAs solar cell structure. 
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Fig. 2 .  A M 0  efficiency and short-circuit current density 
of (A1Ga)As GaAs solar  cell. 
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optimized solar cell has not yet been accomplished. The rate of 

progress toward achieving such optimiaotion has, however, been 

rapid enough to give us confidence that the type of performutee pre- 

d i c t d  by Figure 2 will be available by 1990, for practical GaAs solar 

cells. This rate of progress can be illustrated by the data of Figure 3 

which shows haw tho maximum efficiency of 2-cm x 2-cm GaAs solar 

cells made at the Hughes Research~aboratories has been increasing 

with time. It should be noted in the same context that IBM has already 
2 succeeded in making a limited number of smaller-area cells (-0, I ern ) 

with an A M 0  efficiency as high as 18.5%. 

On the basis of these results and of the above considerations, 

the beginning-of-lifeefficiency of a GaAs solar cell under A M 0  illumi- 

nation and in the absence of solar concentration is predicted to be, for 

the 1990 time period: 

B. EFFECT OF TEMPERATURE ON EFFICIENCY 

Conventional solar cells are optimized for room temperahre 

operation. When a cell operates at elevated temperatures there is a 

sigr:ificant decrease in the cell's open-circuit voltage and a slight 

increase in the short-circuit current. 

The open-circuit voltage is expressed as 

Jo is the diode s-ituration current given by 



Fig .  3 .  Hughes Research Laboratories C ~ A ~ A S / C ~ A S  solar cell 
efficiency. 
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The var ia t ion  of V with t empera tu re  has  been calculated f r o m  
OC 

t h e s e  equations and is shown on F i g u r e  4. A represen ta t ive  set of 

m e a s u r e d  values is a l s o  shown on F i g u r e  4, and is found t o  b e  in 

reasonable  a g r e e m e n t  with theory. 

The var ia t ion  of the  shor t -c i rcui t  c u r r e n t  Isc with t e m p e r a t u r e  

is determined by t h e  t e m p e r a t u r e  variat ion of the  opt ica l  absorpt ions  

coefficient and of the  minor i ty  c a r r i e r  diffuaion length, th-c affecting 

the  quantum efficiency, The re la t ive  impor tance  of these  effects  qn 

non-optimized GaAs cells is i l lus t ra ted  by a represen ta t ive  set of 

m e a s u r e m e n t s  reproduced i n  F i g u r e  5. In an optimized cell, how- 

ever ,  the quantum efficiency i s  expected to be c lose  enough to  unity s o  

that  th is  effect  becomes  less important.  F o r  a conservat ive  e s t i m a t e  

of the variat ion of the  total  A M 0  efficiency of an optimized GaAs s o l a r  

ce l l  as a function of t empera tu re ,  we the re fo re  do not include the  

effect of increas ing I with temperature.  The predicted var ia t ion  of 
S C  

efficiency with t e m p e r a t u r e  i s  i l lus t ra ted  on F igure  6 f o r  two cases :  

the  conservat ive  c a s e  jus t  outlined above, and the c a s e  where  I s C 

i n c r e a s e s  with t e m p e r a t u r e  a t  the  r a t e  determined exper imenta l ly  09 

F i g u r e  5, between 300 and 400 K. 

C. THIN F I L M  VERSUS SINGLE CRYSTAL CELLS 

The predic t ions  of pe r fo rmance  given above were  made f o r  

s ingle-crys ta l  s o l a r  cells.  Thin-film cel ls  will approach the s a m e  

per fo rmance  under  the  following conditions: 

GaAs f i lm thickness t i s  l a r g e  when compared to  optical  
absorption deptk I /a: t > ( I  /a) where o = optical 
absorption coefficient of G a A s  f o r  photons of an energy  
l a r g e r  than t h e  bandgap of GaAs. 
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ESTIMATE WITH ALLOWANCE 
FOR INCREASE OF SHORT ClRCWlT - 
CURRENT WITH TEMPERATURE 
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Fig.  6. A M 0  efficiency versus temperature. 



S i z e  of individual c r y s t a l s  is l a r g e  when c ~ m p a r e d  to 
1 /a, if GaAs f i l m  is polycrystalline. 

Negligible leakage  c u r r e n t  o r c u t s  rt1or.g c r y s t a l  bounda- 
r i e s ,  if GaAs f i l m  is polycrystalline. 

T h e  f i r s t  condition is requ i red  f o r  efficient absorption of the 
3 l ight  in the GaAs thin film. Insofar  as <. >> 10 f o r  Saks ,  tkis f i r s t  

condition will conservat ive ly  be sat isf ied fo r  any film th ickness  

t > 10 pm. 

The second condition is requi red  to avoid excessi t*e s u r f a c e  

recombination l o s s e s  a t  the  c r y s t a l  boundaries,  assl~rriing that  t h e s e  

boundaries exhibit a high s u r f a c e  recombination velocity. Th i s  second 

condition i s  a!so l ikely tc. be o;  i isfied if t > 10 pm :f the c rys ta l  ':-en- 

s ions  a r e  on  the o r d e r  of the f i lm thickness t. 

The third condition must be sat isf ied tr, avoid loss  of 'en- 

c i rcu i tvo l t age .  Th5 ability to avoid leakage c u r r e n t  along cr., 3 :  

boundaries depends on s u r f a c e  doping and on su r face  sta tes ;  i t  is int i-  

ma te ly  re la ted  to  the  thin-f i lm growth te::hnique to  be  used. 

A number  of tkin-film growth techniques applicable to GaAs a r e  

present ly  under  i ~ v c s t i g a t i a n .  They includ:: ( I )  the vapor-phase  
2 chloride sys tem,  (2) the  peeled film technolr*gy, (3) meta lorganic  

chemical  vapor deposi t ion,  3s and (4: the p l a n a r  reac t ive  deposition 

technique. T h e  vasor -phace  ck-lcride sys tem so  fas  has  b e e r  used 

most ly  f o r  t h e  growth of AlAs or G?,As, 1 1 7 - t  it is a l s o  being cortsidered 

fo r  the  growth of GaAs on l sw-cos t  subs t ra t e s .  T t  e planar reac t ive  

1 .  W.D.  Johnston,  J r . ,  and W .M.  Callnhan, A p p l .  P h y s .  Lett .  - 28, 
:SO (1976). 

2.  P4. Konagai and K. Ta!c?hashi, Yroc .  of t h e  I~.lternztiona! Synlpo- 
s ium on Solar  Energy (!~lc:ct;.ochrmical Soc . ,  May 5-7, 1976, 
Washington, I3 C . ) ,  p.  154. 

3 .  P. Dapkus,  P roc .  of ERTIA Sclniann~~al  Scr!ar i'hotovcltaic 
P r o g r a m  R c v i c w  Mceting (Atig.  3 - 6 ,  1'176, O ~ . o n o ,  Maine-) y.  7 11. 

5. K .  R . Zanio,  ibid,  p.  92 1 . 



deposition technique has been used so far for the growth of InP, but it 

can also k modified to grow GaAs thin film. T I A ~  other two techniques 

are presently being explored directly for GaAs and (AtGalAs, 

Because of the early stage of these investigations, no meaning- 

ful experimental data a re  yet available to show if any penllty wi!l 

ultimately be associated with the thin-film approach, when compared 

to the single-crystal approach. The only meaningful prediction at this 

time for the performance of future thin-film CaAs solar cells remains, 

therefore, the l imit iwcase prediction of a performance equal to that 

of the single-crystal cells considered Ibove. 



S E C T I O N  2 

EFFECT OF RAD1ATK)N DAMAGE ON 
SOLAR CELL PERFOWANCE 

A. INTRODUCTION 

The solar  cell performance predictions given in Section 1 

correspond to begin-ling-of-life conditions (no radiation dunage). In 

the SPS application, however, high-energy-particle radiation i s  present, 

It is therefore important to evaluate the effect of this radiation on the 

performance of theGaAs so la r  cells  considered for this application. 

Solar cell radiation damage in a synchronous orbi t  resul ts  fro-n 

damage induced by protons and electrons. In solar  cells, damage pro- 

duced m o r e  than a few diffusion lengths f rom the junction edge has no 

effect on ei ther  the photocurrent o r  saturation current. The penetra- 

tion depth fo r  a high-energy p ro t c~ i  is deeper than for  a low-energy 

proton. Thus for  a high-energy proton, the distribution of damage 

centers in the solar  cell can be considered in f i r s t  approximation to be 

vniform, with most damage centers located far away from the junc- 

tion. On the other hand, damage centers  produced by low-energy pro- 

tons are not uniform and can do considerable damage to the junction 

space-charge region. This increases the diode saturation current  and 

decreases  the fill factor. This kind of d a n a g e  can cause serious 

reduction in the solar  cell open-circuit voltage Voc, in addition to 

reducing the diffusion length, the qtlantum efficiency, and the short- 

circuit current. Minimal shielding, however, will make these low- 

energy proton effects negligible. Electron damage in general i s  not as 

severe  ~s proton damage because the electron mass  is considerably 

smal ler  than that of the protcn. 

1)amage-equivalent, normally-incident (DENI) radiation has 

been established as  a laboratory tool to simulate omnidirectional 

radiation in space. It is used in this section for the evaluation of the 

effect of radiation damage on the GaAs so la r  cells. DENI allows the 



cllculation of an equivdea t  laboratory monoeaergetic, normal-incidentc 

radiation nuance f e q u i r d c n t  to dl components of the actual space 

radiation. This equiraleat  fluence 4= is defined by the following 

relationships : 

where 

ee = the damage equivalent 1 MeV electron fluence (or 10 MeV 

proton fluence) incident on a solar cell without coverglass. 

4(>E) - 9f>E+AE) = the isotropic p a r t ~ c l e  fluenee having ener-  

gies  in a small energy  increment AE grea t e r  than energy E, in 

the space orb i t  of interest. 

D(E, t )  = the relative damage coefficient for  isotropic flucnce 

of space particles of energy E on so la r  cel ls  shielded by a 

cover glass  of thickness t. 

For  Si  so la r  cells, it has  been found that a IO-MeV proton fluence 

can be converted to equivalent 1 -MeV electron fluence as folloars: 

+,(I MeV electrons) = 3000 +e(10 MeV protons) ( 5 )  

This relatioriship i s  an approximation for  silicon only. F o r  GaAs, the 

conversion factor has not yet been determined. F o r  the present  es t i -  

mate, however, i t  will be assumed to be of the s a m e  o rde r  of magnitude 

for  GaAs as  fo r  Si. This leads to  the observation that in synchronous 

orbit ,  most  of the damage can be expected to be due to the proton flux 

ra ther  than to the e lectrons ( s ee  paragraph 2. D). O u r  present es t i -  

mates  of GaAs so la r  cell  radiation damage and life for SPS applications 

will therefore be based on proton radiation damage in  this f i r s t -order  

approximation. 



B. RELATIVE DAMAGE COEFFICIENT 

The relative damage coefficient D(E, t) is determined by the 

relative density of damage centers pzoduced in the oemiconductot. 

This density is expected t o  b e  determined By the total range of the inci- 

dent particles that  penetrate the semiconductor. This range is related 

t o  the incident particle energy, the angle of incidence, and the cover- 

g lass  thickness. The range of proton t racks  i n  GaAs is almost  identi- 

cal t o  the range i n  Si (see Ref. 6). F o r  the present estimates,  we take 

therefore  the  relative damage coefficient D(E. t )  for GaAs to  be the 

same a s  for Si, as f a r  as proton radiation damage is concerned, F o r  

the present f irst-order calculations, the values of D(E, t )  used for  the 

GaAs so la r  cells  a s  a function of coverglass thickness a r c  therefore 

tke s ame  as those which have been established for Si and which are 

given i n  Ref. 7. (As will be shown fur ther  on, this does not mean that 

the damage constants are the same fo r  GaAs and for Si.) 

C.  RADIATION ENVIRONMENT IN SYNCHRONOUS ORBIT 

T o  determine the so la r  cell perforrnance degradation caused by  

radiation, the radiation environment t o  which these cells  are exposed 

must  be  defined. T o  this effect, the radiation environment of an SPS 

in  the synchronous orbit is assumed to  be the same as that applicable 

t o  1nte1s.t.~ The corresponding electron ecvironrnent in synchronous 

equatorial orbit is represented b y  the following expressions for  the 

t ime average integral fluence spectrum ': 
E 5 0.3 MeV: loglO 4e(>E) = 03.0 E + 7.7 (6 a )  

0 .  R. Hart, "Proton-Induced Atomic Displacements in Si and 
GaAs, " Internal Departmental Correspondence. HRL, Aug. 2,1976. 

7. J .  R .  Carter and H. Y .  Tada, "Solar Cell Radiation Handbook, " 
Report No. 21945-6001 -RU-00, TRW Systcms, prepared by 
J e t  Propulsion Lab Contract No. 953362 and NAS 7- 100, June 
1973, pg .  4-6, 4-13. 

8 .  .Solar Ccll  Array Design tiandbook, V o l .  1, .TIJI., Octc~bcr 1976, 
I)%. L . 5 - . i ,  2.5-5. 
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2 This fluence represents  the number of electrons per cm per 
sec above energy E in MeV. The integral  praton fluence spectrum for 

the miss ioa  i s  represemted by the following expressions 

rotons O ( > E )  = 6 . 5 x 1 0 ~ ~ e x ~ ( - 9 . 0 ~ ) ~  (7.1) 
P c m  - year 

1.0 < E MeV 

1.5 x 10" E -1.33 
E' = 

protons 
2 cm - cycle 

D. EFFECT OF RADIATION DAMAGE ON (GaA1)As-GaAs S O U R  
CELL CHARACTERISTICS 

The damage equivalent fluence for both protons and electrons 

is calculated using the procedure outlined in paragraph Z.A and the 

relative Jamage coefficients given in  Ref. 7 .  The fluence spectrum 

for both electrons and protons in synchronous orbit and used in this 

calculation is  that defined in paragraph 2. C. Table 1 shows the 

resu l t s  of this calculation of the equivalent fluences of I -MeV electrons 
* 

and of IO-MeV protons as a function of coverglass thickness.' Table 1 

shows that the normalized I -MeV electron fluence exceeds the 

normalized IO-MeV proton fluence by l e s s  than two o rde r s  of 

ZTable 1 re fe rs  t o  "coverglass thickness, " with the implication that 
the radiation protective mater ia l  provided on the solar  cell surface 
i s  glass. The relevant parameter  for radiation protection is, how- 
ever ,  the density of the mater ia l  multiplied by i ts  thickness. The 
pr imary  parameter  in Table 1 i s  therefore the coverglass thickness 
expressed in g!cm2. The actual thickness in mils  given corresponds 
t o  the density of glass. Ot!ier mater ia ls  can be used to  provide the 
s ame  protection, provided the thickness of such mater ia l  is related 
to  the thickness of the equivalent glass  cover b y  the ratio of the 
density of this material  to  the densit;r of glass. 
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Table 1 Calculatiem of Yearly Equivalent Flueace in 
Sgnchraaostcr Orbit 

magnitude. Alternately, the radiation damage caused by a 10-MeV 

proton is expected to  be a t  least three orders  of magnitude worse than 

that produced by a 1 MeV electron. (See paragraph 2. A and eq. ( 5 ) .  ) 

This leads t o  the observation of paragraph 2. A that proton radiation 

damage will be predominant, and that electron radiation damage can 

be neglected in our f i rs t -order  estimates. The equivalent 10-MeV 

proton fluencc shown in Table I for various thickncsscs of coverglass is 

a l so  plotted in Figure 7, for 33 years  of synchionous orbit. 

The damage equivalent fluence can now be used to determine 

the degradation in the minority c a r r i e r  diffusion length and the result-  

ing loss in so la r  cell efficiency. Equation (8) characterizes the 

Cove rghss  Thickness 
Electron Fluence 

(Normalized to 
1-MeV electron) 

electrcmslcm 2 

6 . 7 ~  10 13 

4.64 x l 0 l 3  

3.72 x 10 13 

2.65 x 10 13 

1.83 x I 0  I 3  

1.21 x I 0  13 

4 . 0 4 ~  10 12 

g/cmZ 

0 

0.168 r lo-'  

0.335 x 10-I 

0.671 x 10" 

0.112 

0.168 

0.335 

Protau Ftuence 
(Normalized to  
10 MeV protom) 

protonsf c m  2 

2.18 x 10 14 

1-67 x 10 I2 

8.02 x 10 
11 

3.71 x 10 I1 

2.08 x 10 
11 

1.33 x 10 11 

6.16 x l o l o  

mil 

0 

3 

6 

12 

20 

30 

60 
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degrada t im of so la r  cells in terms of the changes in the minority 

c a r r i e r  diffusion length L: 

where L is the initial value of the diffusion length and L is the final 
0 

value. K i s  the damage constant which is directly proportional t o  L 
the density of recombination centers. Once the damage constaat KL 

and B are known, then the cell 's short-circuit  current density (Is,), 

open-circuit voltage (Voc) maximum power (Pm) and output power 

efficiency (q) can be calculated using the same basic solar  cell eqw-  

tions used in Section 1. 

The damage constant KL for  silicon has been measured as a 

function of incident particle energies and i s  tabultied in Table 2. 

Table 2. Diffusion Length Damage Constant for Proton I r  radiati 9n 

KL (GaAs) I 7 

l 6  

8 x lo-' 

7 

6 x 1 o-? 

3.6 x 1 0 ' ~  

3 . L  10-7  

L. 6 x 
J 

. 
Energy (MeV) 

2 M e V  

7 

10 

30 

70 

100 

155 

KL (Si) 

8 x  lo-' 

4 

3.5 x I O - ~  

3 

1.8 x 10- 7 

1.6 

- 7 I . ?  x 10 
I 



Furthermore,  we est imate  (Ref. 6) that  the  a tom displacement 

density caused by proton impact in GaAs i s  approximately twice that 

of silicon. If one assumes  that the recombination center density i s  

proportional t o  the a tom displacement density in both mater ia ls ,  and 

since KL i s  a l so  direct ly  proportional t o  the recombi~tatioa center  

density, then one can expect K for GaAs t o  be two t imes  la rger  than L 
for  silicon, for the f i r s t  order  approximation. This i s  a l s o  shown in 

Table 2. With the values of KL given in Table 2 for GaAs and the 

values of equivalent 10-MeV proton fluence shown in Figure 7, the 

corresponding values of minority c a r r i e r  diffusion length, short  

circuit cur ren t  density, and so l a r  cell efficiency af ter  33 yea r s  

(3 so la r  cycles) in synchronous orbit  can be calculated. The resul ts  

of such a calculation a r e  summarized on Table 3. The so la r  cell 

efficiency anticipated af ter  33 year life according to  Table 3 ' ?lotted 

on Figure 8 as a function of coverglass thickness. Figure . - :ovides 

our best  present estimate for the tradeoff between GaAs so la r  cell 

efficiency and coverglass thickness* for SPS applications, accounting 

for  the radiation damage expected f rom 33 years  in synchronous orbit. 

Inspection of Figure 8 shows at  once that GaAs so l a r  cells a r e  

expected t o  be much more  resistant than a r e  Si solar  cel ls  to radia- 

tion damage in synchronous orbit. This is consistent with the expecta- 

tion that most of this damage is  caused by exposure to  high-energy 

protons, provided a minimal amount of coverglass protection i s  present 

for shielding against the lowest -energy protons. . The outstanding 

ability of GaAs so l a r  cel ls  to  res i s t  high-energy proton damage as 

r o m x r e d  to  Si solar  cells  had al ready been observed in the ear l ies t  
9 

studies of GaAs solar  cells. A qualitative explanation for this 

capability i s  the obrervatior that the optical absorption coefficient of 

CaP.s i s  much la rger  than that of Si. The ti8:cknes of the active part  

s e e  footnote to paragraph 2. D for radiation protective cover mater ia ls  
different f rom glass. 

Y 
.I. .T. Wysocki, "Radiation Studies on GaAs ant! Si Dc!vic.cs, " IElil' 
'f ransactions on Nut-lcar Science, Nttv. 190'5, p. 00-71). 
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Fig. 8 .  

DESIGN PARAMETERS 

K IDAMAGE -ANT) = 7 x to-' (NORMALIZED TO 10 lYkV 

COVERGLASS THICKNESS, mih 

Power conversion e f f i c i ency  versus coverglass th ickness  
after 3 3  years  in synchronous orbit. 



Table 3. (CaA1)Aa-GaAs Solar Cell Radiation Characteristics 
in Synchronous Orbit Normalized t o  10 M e V  Proton 

K = 7 x 10-7 

of the CaAs solar cell i s  consequently much smaller  than that af the 

Si cell. The minority ca r r i e r  diffusion length required in the GaAs 

cell i s  correspondingly much smaller. This means that a higher 

proton fluence will be tolerable in a CaAs cell than in a Si cell, before 

it decreases the minority ca r r i e r  diffusion length to values sufficiently 

low to  have a noticeable effect on the ce \ l t s  efficiency. 

While the predictions of Figure 2 and the above considerations 

indicate prospects for a superior radiation resistance of GaAs solar 

cells, it is essentiat to emphasize that the predictions of Figure 8 

s t i l l  lack a solid cxperimenlal foundation. One assumplinn that i s  

* 

Coverglas s 
Thic kaess 

(mil) 

0 

,I. 5 

3 

6 

12 

20 

30 

60 

Short Circuit 
Cur rent 
Density 

Is, mAlcm2 
5% Shadowing 

6 

25.19 

28.06 

28.86 

29.36 

29.58 

29.69 

29.80 

Total 
Equivalent 

~ l u e n c e  /cmZ 
-33 yr. 

7.2 x 10 15 

2 x  10 
14 

5 . 5 ~  10 13 

2.64 x 10 13 

1.22 x 10 13 

6.86 x 10" 

4.39 x 10 
12 

2 . 0 ~  10 12 

Maximum 
Power 
Output 
(mW) 

'n 

6. 79 

22.7 

25.35 

26. 1 

 onv version 
Efficiency 

% 

5 

16.76 

18.73 

I 19.27 

26.56 

26.76 

26.86 

26.9: 

19.62 

19.77 

19.8 

19.92 



open to  queetion ie  that the recombination center density i s  assumed 

t o  b e  directly proportional t o  the a tom displacement density, with the 

s a m e  proportionality constant fo r  GaAs and f o r  Si. 

E. ANNEALING EFFECTS 

The purpose of the  coverglass is to  prevent radiation particles, 

especially low-energy protons, f r o m  reaching the semiconductor and 

producing damage centers .  Alternatively, once such damage centers  

a r e  produced, it becomes of interest  t o  examine the possibility of 

removing them f rom the active regions of the so la r  cell.  This can be 

achieved1° either b y  thermal  annealing o r  by minority c a r r i e r  injection 

o r  by both. Such annealing could permit  reduction of the coverglass 

thickness t o  a nominal value (1 mi l  o r  l ess )  sufficient fo r  protection 

against  the lowest energy protons only (protons of energy < l  MeV, 

which a r e  expected t o  be the  most  damaging ones). 

Table 4 summarizes  the resul ts  of electron irradiation studies 

and of the  corresponding thermal  annealing on GaAs material .  This 

shows that most of the defects can be annealed a t  temperatures between 

200C to  300C. In addition to  this, Rockwell International has obtained 

encouraging results  l1 in annealing (A1Ga)As-GaAs solar  cells at 

temperatures  a s  low a s  125C, after  exposure of these cells to 

1-MeV electron radiation. Extrapolation of these resul ts  t o  the GaAs 

so la r  cells  to  be used on an  SPS i s  hazardous because these  resul ts  

apply t o  damage caused by electron irradiation.  While i t  is plausible 

that s imi la r  effects will be  availabl.: to  anneal radiation damage due to 

'OD. V. Lang and L. C. Kirne;ling, I1Observation of Recorr tiriation- 
Enhanced Defect Reactions in Semicondu~tors ,  " Phys.  R e v .  Letters  
Vol. 33, No. 8, Aug. 1974. 

'5. l?. Madcwcll and A .  A. Nussbcrgi:r, "A  Solar ' ' t~wcr  Systcnl will) 
GaAs Solar Cc:lls," AIAA Conl. on tilt: E'uturc of At*rc,spactr I'ctwc:r 
Systc:~~is,  St. Louis, Mo.,  March 3, 1977. 



Table 4. Electron Irradiation Thermal Annealing Results 

the proton flux which is of p r i m a r y  concern  i n  the SPS a,plication, 

exper imenta l  invest igat ion is s t i l l  requi red .  

The t h e r m a l  annealing t i m e  requi red  for  effective r eccvery  of 

so lar  ce l l  pe r fc rmance  can b e  expected to Le relat ively short ,  o  the 

o r d e r  of hours  a t  most .  Th i s  provides  the opportunity of periodically 

annealing g roups  of c e l l s  b y  forcing an adequate forward diode c u r r e n t  

through these  c e l l s  and obtaining the requi red  t e m p e r a t u r e  by e lec t r i ca l  

Author. 

Brehm L 
P e a r e w  

~ a t a u  i 
b.r#ez 

Jeong. 
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Stein 

I 
Mattauch 
k Healy 

ORIGINAL PAGE IS 
OF PWR QUALITY 

ORIGINAL PAGE fs 
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Material  

W m  
Epitaxial 
(liquid phaee) 

a-typs 
tSn-doped d 1 - 4 %  lo1 

P-tYP= 
fZn-doped) 
4 x 1015 cm-3 

w e  
Bulk 
all  n-type 

a-type 

'Si -doP) 2 x 10 7 cm-3 

P-tTPc 
(Zn-doped) 
6.5 x 1017 cm-3 

CaAm 
Bulk 

CaA l 
Epitaxial 
n-type 
6-doped) 
z x 1015 ern-3 

C ~ A B  
Bulk 
n-type 

;s;-;;Ed;m-3 

d Irrmdiatiolr 

cob' - 1.25 MeV 
a t  room tamp. 

etectron 

I MeV 
30 MeV 

I MeV 
30 MeV 

I MeV 
30 MeV 
30 MeV 

electron 
1.5-2.0 MeV 
a t  77 K 

electron 
L MeV at 80 K 
neutron a t  76 K 

electron 
7 MeV at 300 K 

i 

Aanea t Jq  

500 K 

500 K 

200-?MtO(. 
Ea I Z eV 

200-3W°C 
200-300°C 

1 50-200°C 
1 50-200°C 
150-2003C 

250 K a d  
460 K 

250 K and 

k v e l e  Faod 

0.13. 0.16. 0. 3 -V 
Below Ec 
(Hall Effect) 

9.059 and 0.10 eV 
Abwe  Ev 
fW.11 Effect) 

Er  - 0 . 1 5 c V  
intrinsic delert  

Ec  - 0.02 eV 

E v  + 0 . 1 7 e V  
E v  + 0 . f 7  eV 
Ev + 0.06 eV 

E c  - 0. IS eV 

Ec - 0 .14  eV 

Car r i e r  
Removal Rate 

cm-1 

0.0079 a t  297 K 
0.0123 a t  77 K 

0.001 I a t  297 K 
0.0022 a t  77 K 

1.6-L.2 
4. 5-5.9 

I. I 
7. 5 

2.7 
6 
4. 5 

2.9 at  80 K 

f c  - 0.31 eV 

76- 100 K 

0.0023 at 77 h Z65°C-3850C 
Ea 1.07 eV 



heating over limited periods of time. Assuming therm..l radiation 

cooling of the cells, the cell  temperature could, .' instance, be 

raised from an operating temperature of 50 C to , annealing tem- 

perature in excess  of 150 C by providing, via forward current, an 
2 electric power input of l e s s  than 0 . 2  W/cm . 



SECTION 3 

EFFICIENCY VS CONCENTRATION RATIO 

The short-circuit cur ren t  density of the (GaA1)As-GaAs solar 

cell  has  been derived for a -her of coaditiuas.'' Figure 9 shows 

this short-circuit current  density as a function of (GaPkl)As w i d o w  

layer tkickness. The short-circuit current  density is seen to  increase 

d e n  the (GaAl! i s  window layer -becomes very thin (D < 0.5 pm), 

which favors thin window layers. 

The total series resistaace of the cell has also been derived. 
13 

It cam be expressed through the following relationship: 

window contact contact 
layer  finger proper 

where 

f's 
= semiconductor resistivity ((GaA1)As window layer) 

D = thickness of fGaA1)As window layer 

Z a  = fii~ger lengL)l 

b = finger spacing 

w = finger width 

h = firrger height (thickness) 

-- 
l 2  lacerim Technical Repor t  Contract FT ,615-76-C-2 12, L.c.  1976. 

1 3 Q ~ a r i c r l t  .':regress itcport I, Contract 05-0104, I..el,. 1 9 i i .  
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Fig. 9. Short-circuit current density versus window layer 
thickness. 



f' f = resistivity of fiuger metal 

Rc = normalized metal-semiconductor contact resistance 
(S  cm2) 

The first term of the right-hand side represents the resistance 

of the (GaAljAs window layer, the second term represents the losses 

due to the resistance of the contact fingers, and the third term repre- 

sents semiconductor-metal contact resistance. Figure 10 shows the 

total series resistance as a function of window layer thickness. Fig- 

ure 10 O ~ O W S  that for a thin (CaAl!As layer (D < 0 . 5  pm) the total 

series resistance increases substantially. This variation of series 

resistance with window layer thickness is only a second-order effect 

for 1 sur illurninationat AMO. However, this may become a serious 

effect for a thin-window (A1Ga)As layer at higher concentration ratio. 

Figure 11 shows the power conversion efficiency versus con.rentration 

ratio for several thicknesses of (CaA1)As layer. For optimum solar 

cell design as a function of solar concentration ratio, the envelope of 

the curves of Figure 11 can be used. This i s  shown i n  Figure 12. 
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Fig .  1 G.  S e r i e s  re s i s tance  v e r s u s  window layer thickness .  
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Fig, 1 1 .  Ah40 power conversion versus concentration ratio, 
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SUN CONCENTRATION RATIO 

Fig. 12. Power conversion efficiency versus  concentration ratio. 



S E C T I O N  4 

GaAs SOLAR CELL COST AND WEIGHT ESTIMATES 

T h e  e s t i m a t e s  of c o s t  and weight of t he  s o l a r  ce l l  payload for  

SPS appl ica t ions  have  t o  be made o o  the b a s i s  of p r e s e n t  technology as 

wel l  as o n  what  is u l t imate ly  rea l izable .  P r a c t i c a l  s o l a r  c e l l s  made  

today are b a s e d  o n  s ingle  crystals of s i l i con  or GaAs.  Single-crys tz l  

s u b s t r a t e s  8 m i l  th ick  have  been  used  succes s fc l ly  f o r  the  fabricat ion 

of GaAs solar cells, and the  fabr ica t ion  method c a n  be  successfu l ly  

developed f o r  a manufactur ing line. T h e  cost and weight of c e l l s  manu-  

fac tured  on  t h i s  b a s i s  are ca lcu la ted  t o  be below the  va lues  both f o r  

d i s c r e t e  cells with m o d e r a t e  concentrat ion and f o r  flat  panels .  T h e  

u s e  of thin-f i lm c e l l s  is much  m o r e  a t t rac t ive .  Even though t h e  t ech -  

nology for t h e s e  cells is still in  its infancy, the advantages t o  be gained 

are signif icant  enough t o  just i fy its development.  

In  all of o u r  ca lcu la t ions  tha t  follow, c e r t a i n  simplifying 

a s sumpt ions  are made .  

(1 1 An eff ic iency of 20% AM0 is a s s u m e d  for  the  
C a A s  cell, both s ing le -c rys t a l  and thin-f i lm.  
I t  is o u r  feeling that a t  t he  p r e s e n t  s t age  of 
GaAs c e l l  technology, a n y  modification of t h i s  
number  would b e  a r b i t r a r y .  

( 2  1 The radiat ion d a m a g e  in GaAs is not  well enough 
understood t o  justify quantitatively exac t  p red ic -  
t ions  of t h e  end-of-life e f f ic ienc ies  for the  cells. 
However, the  information avai lable  both a t  Flughes 
and in the  l i t e r a t u r e  leads  u s  to bel ieve that  
GaAs  c e l l s  can  b e  expected t o  p e r f o r m  with l i t t le  
degradat ion,  e spec i a l ly  if t e m p e r a t u r e  annealing 
cap be  used  ( see  Section 2). Since future tech-  
nology wil: l ead  t o  opt imizat ion of ce l l  c h a r a c t e r -  
i s t i c s  us ing  the guidelines'presently available,  
we feel  justified in  a s suming  tha t  an  efficiency 
c l o s e  t o  20% A M 0  c a n  b e  expected f rom GaAs 
c e l l s  f o r  30 y e a r s  in synchronous orb i t .  



(3) T h e  b e e t  way t o  p r o t e c t  the cells f r o m  radia t ion  
d a m a g e  is still open to some quest ion.  Our 
ca l cu la t ions  in Sec t ion  2 idicate t h a t  a g l a s s  cove r  
of -5 mil would be desirable. However,  t he  
weight  cons ide ra t ions  f o r  s p a c e  appl ica t ions  and 
the complexi ty  of u s i n g  thick g l a s s  c o v e r s  in  
foldable  1 -mil p l a s t i c  b l anke t s  would lead  u s  t o  
be l i eve  t h a t  p l a s t i c  c o v e r  g l a s s e s  of t h e  o r d e r  
of 1 mil th i ckness  would have  t o  be p r e f e r r e d  
f o r  t h e  p r e s e n t  appl icat ion.  In t h i s  ca se ,  t he  
cell ef f ic iency  would d e g r a d e  as a funct ion of 
t h e  i n  orb i t ;  however ,  by  judicious in t roduct ion  
of anneal ing c y c l e s  as d i s c u s s e d  i n  p a r a g r a p h  2. E, 
t h e  GaAs cells c a n  be rtxpected t o  r e c o v e r  m o s t  of 
t h e i r  efficiency. With t h i s  mode  of operat ion,  t he  
e f f ic iency  of the  cells could b e  main ta ined  c l o s e  
to the  20% a s s u m e d  i n  t h e  ca lcu la t ions .  

(4 ) T h e  u s e  of a c o n c e n t r a t o r  and t h e  opt in lum con-  
cen t r a t ion  r a t i o  are dependent  o n  the  cos t -weight  
t r adeo f f s  between cell cost and concen t r a to r  cos t .  
At concen t r a t ions  o v e r  10, cooling b e c o m e s  m o r e  
and m o r e  demanding  and h a s  t o  b e  f ac to red  in. 
The c o s t  of GaAs cel ls ,  however,  can  b e  e s t i m a t e d  
independent ly f r o m  t h o s e  f o r  the concen t r a to r ,  
and we have  done  t h i s  for s e v e r a l  concen t r a t ions .  
T h e  d e c r e a s e  of s y s t e m  eff ic iency due  ta  the con- 
c e n t r a t o r  p r o p e r  i s  not cons ide red  in  the s imp le  
ca lcu la t ions  m a d e  he re ,  b e c a n s e  i t  is dependent  
on  t h e  spec i f ic  concent ra t ing  system. 

A. SINGLE-CRY STAL CELLS 

GaAs  c e l l s  with 20% A M 0  ef f ic iency  a t  ! sun can  b e  fabr ica ted  

krith s o m e  ex t r apo la t ion  of the  p r e s e n t  technology ava i lab le  at l laghes  

R e s e a r c h  L a b o r a t o r i e s .  With a p p r o p r i a t e  radia!;qn shielding, wc c a n  
2 

expec t  a power output of 27 m W / c m  f r o m  t h e s e  .-ells. The  cell a r e a  
2 

needed would then  b e  40 cm / lV .  If we a s s u m e  the c e l l s  to  be  200 pm 
2 

thick, 40 c m  would have  a weight of 4. 5 g. I n  l a r g e  quant i t ies ,  Ga l i s  

is expected t o  c o s t  no m o r e  than  o n e  do!lar per g r a m  for  s ing le -c rys t a l  

m a t e r i a l .  S ince  the  p roces s ing  l o s s e s  are  about 50":,, the cos t  of the  

GaAs for  the 4 .  5 g o f  cel ls  shou!d he in  t h e  ratige ~ 3 f  ! 1 t r  00. spect rolah':' 

laas e s t i m a t e d  tha t  the  c o s t  of c e l l  fabr ica t ion  using o u r  p r e s e n t  technique 

:::IJughcs A i r c r a f t  Company s11bs;diary.  



2 2 
will be about $2 .50  for a 4 cm cell, making it $25.00 for 40 cn  . 

2 Thus, the total cost of 40 cm of GaAs e ils would be ~ $ 3 5 . 0 0  for 

single-crystal cells. The cost of cells would then be $35. OOf W at 
2 single-crystal sun concentrations, using 4 cm discrete GaAa cells 

with 20% A M 0  efficiencj, and appropriate shielding against space 

rad~ation. 

For the SPS application, we have to consider the tradeoff 

involved in using moderate levels of concentration to reduce cell 

area. The judgement can be made on the basis of our discussion in 

Section 3. The tradeoff is between the weight, cost, and complexity 

of the concentrator structure with increasing concentration ratio versus 

the simplicity of the total s t r u c t u ~  ~t concentrations below -1 0 suns. 

At low concentrations no special cooling of the cells is  necessary and 

the concentrator can bemade of lightweight ( 1 mil thick) plastic. The 

area of cell required, and its weight, will go down by a factor almost 

equal to the concentration ratio. The actual gains will be reduced 

somewhat due to the sun-pointing inaccuracy of the concentrator, and 

due to reflection losses. In our calculations we neglect these factors, 

since a number of improvements on simple concentrator structures 

to reduce the effects of sun misalignment are in progress. Table 5 

summarizes the above cost-weight considerations for various concen- 

tration ratios. 

B. THIN-FILM CELLS 

The alternative to single-crystal cells i s  the use of thin films 

to produce the GaAs solar cells. Sinie the miinority carrier diffiision 

length i n  Cabs is of the or-ler of 5 pm, a thin film about 20 p m  would 

be adequate to give -tn acceptable solar cell. This wok : be a factor 

of 10 less than the 3-mil single-crystal cells considered in the pre- 

vious section and hence shou. d reduce the cell weight proportionately. 

Tlle vateria! s cost .hould alsc be proportionatcly l o w e r ,  and t h r  

t~tilizatit)n 131' trlatc: rial - probnttty - lore  cfficic!nl, s i , ~ t . c x  thin- f i lm 



Concentration 
Ratio 

Table 5. Cost- Weight Estimates rr a Function of Concentration Ratio 
for Single-Crystal GaAs Solar Cell8 

Cell Area 
(cm2 /watt ) 

Cell Weight 
(g / watt  ) 

Power/ kW/Kg 
(cell) 

Radiational cooling 
sufficient 

Cort (GaAs) 
($/watt) 

I Same cooling 
necerrary. 

Comment. 

Concentrator cost? 

Extensive coolinq 
including liquid 
circulation. 
Complex a ~ d  
coatly concentrator. 



technology is capable of more  efficient GaAs deposition than is 

single-crystal processing. The processing cost for the cell m a y  also 

be lower ultimately than that for single crystals. However, i t  should 

be noted that there a r e  still many difficult questions to be answered 

concerning thin-film cell operation and i ts  ultimate reliability. All 

the known results on silicon thin-film technology would lead us  to the 

conclusion that, with sufficient time and effort, one could hope to 

develop thin-film cells that could match single-crystal cells. On the 

basis of this projection, we postulate a 25-pm GaAs thin-film cell on 

a conducting metal film deposited on a one-mil plastic foil. 
2 

The weight of 40 .:m of "cell"wou1d be only about 0. 5 g of 

GaAs on such a structure. The weight of the plastic and metal would 

be comparable. The cost of CaAs would be ~ $ 0 .  50. This means that 

a watt of energy could be produced for a GaAs weight of 0. 5 g, a 4  a 

cost of $0. 50 fo- materials. No documented forecast for the fabrica- 

tion cost of thin-film cells can be made bcforc further development 

of the relevant fabrication tec11r:ology. It can 1,c assumed a s  an 

arbitrary guideline that fabrication costs \%.ill 111 timatcly be no tligher 

than materials cost. On this basis, a fabrication cost of $0. 50lwatt 

is  obtained, leading to a total cell cost of $1 /watt. A concentration 

of -5 can be considered for thin-fi!m GaAs cells.  If the plastic con- 

centrator is made a s  an integral foldable sheet with the GaAs thin- 

film ce.1 at the focus of the concentrating structure, the GaAs weight 

and cost can be reduced below that of the continuous thin film. The 

cost tradeoff will be between the simplicity of the thin-film deposition 

in a continuous sheet against the deposition of discrete elements on the 

concentrator structure. The weight advantage will probably rest  with 

the plastic concentrator design i f  a I-mil-or-less foil thickness can be 

used economically for this structure. The  thin-lilni cost considera- 

tion c a n  be su t~ lmar ized  as  follows: 



Cost-Weight Estimate for Thin F i l m  (CaAs) Solar Cel ts  

Concentration Cell  Area  Cell Weight Power/  Weight 
Ratio (crn21watt) $/watt)  (kw/kg)(celt) Cost/watt 

All the arguments given in  the concentrator design for the 

single-crystal  cells  a r e  equally valid for  the thin-film cells .  The 

misalignment with the sun will lower the efficiency somewhat and will 

dec rease  the cost  benefit to  be gained from concentration. It would 

a l so  appear that the thin film would be more susceptible to problems 

ar is ing f rom grain boundaries, especially as the cur ren t  density 

i nc reases  with higher concentration. These factors  must  be under- 

stood bet ter  before quantitative conclusions can be reached. 

C. SUMMARY 

The options for the SPS systems definitions should include GaAs 

ce l l s  since they have demonstrated higher efficiency and excellent life 

expectancy and stability f rom the data presently available. The cost/  

weight tradeoff with a concentration below 10 and using a simple plastic 

panel s eems  to be very attractive f rom projections that can be made 

based on data presently available. These will become even more con- 

vincing i f  thin-film GaAs solar cells  can be developed and shown 

acceptable for  long-term space applications. 



ADDENDUM 

At the  t i m e  of writing th i s  repor t ,  we have obtained pre l iminary  

exper imenta l  evidence on the  magnitude of 10-MeV proton radiation 

damage  for state-of- t i ie-art  (A1Ga)As-GaAs s o l a r  ce l l s .  Th i s  indi- 

ca tes  tha t  the  values f o r  the  10-MeV proton i r radia t ion  damage constant 

K indicated on Table  2 m a y  b e  toooptimist ic .  An important  conse-  L 
quence of th is  observation is that  the  possibilit ies of t h e r m a l  annealing 

of radiat ion damage on these  ce l l s  m a y  gain c r i t i ca l  impor tance  (see 

Section 2. E). The tradeoff  between end-of-life (33 yea r s )  power con- 

vers ion  efficiency and coverglass  thickness indicated on Fig.  8 is too 

optimist ic .  Heavier  protect ive cover  thicknesses will  m o s t  likely h e  

requi red  i n  th; absence  of t h e r m a l  annealing, leading to  u n z ~ c e p t a b l e  

weight penalties.  Th i s  penalty can b e  avoided if t h e r m a l  annealing i s  

found to be sufficiently effective. Alternately, a s y s t e m  using r e l a -  

t ively high so la r  concentration ra l ios  could to le ra te  relat ively thick 

s o l a r  cel l  coverglass  without substantial  sys tem weight penalty, if 

t h e r m a l  annealing cannot b e  rel ied upon. 



3.2.2.2 Gallium Required for Solar Power Satellites 

Plotted in Figure 3.2-21 is the quantity of gallium required for each 100 km2 of solar array, as a 
function of thickness of  gallium amliide. The actlve layer of gallium arsenide need by 3nly 3 to 5 
pm thick. However. a technique is not yet available for making high-efficiency solar cells from gal- 

lium arsenide l a y m  so t h i ~ .  

Possible m- .1 U.S. gallium production quantities, shown as arrows, are from "Availability of Gal- 
lium and Arsenic" by Dr. R. N. Anderson, Professor of Materials Science and Metallurgy. Stanfcrd 

University. He states that today's techniqups can recover 10 percent of the gallium in bauxite a113 

flyash from coal combustion. Ways of u ~ i ~ ~ s i n g  gallium production are: 

o Recover more gallium from bauxite. The French have a pi-ocess that recovers 20 percent of the 

gallium. 

o Extract gallii!m from sea water. 

o Develop foreign sources. 

o Extract gallium from oil sludge. 

3.2.2.3 Gallium Arsenide Configuration Comparisons 

For gallium amnide,  we did not look at  array addition as a power maintenance option. Oversizing 

and annealing are compared in Figure 3.2-22. With its less severe degradation charccteristics, the 

overall difference for gallium arsenide would be 1 to  2% in total array mass. The initial difference in 

area woulc! anly be about 6 to 7% (less than for initial oversizing). The advantages of anneal;..g are 

stibstantid but certainly not what was seen for silicon. One of tne interesting things about gallium 

arsenide is the low projected doilar value. However, later charts show so;;ic sensitivities which 

should temper thpt view somewhat. 

Shown in Figure 3.2-23 is the concentration ratio 2 vsrsus concentration ratro 1 i . for geos: .- 
chronous construction. With the high cost of the g~iiiurn arsenide array CR2 has a slight advantage. 

Piobably the most important factor was thr, superior performance of the gallium arsenide array at 

cmcentration ratio 2. The difference is small and it doesn't account for several other factors which 
,vould be an eventual trade. 1) Concentration ratio 1, as the construction analysis ,bowed. appears 

to be srtbstantially simpler t o  build. 2) The smaller satellite will have less problems concerned with 

conir?l ~ r , d  statlon keeping. 
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3.2.3.1 Radiation Damage to Thin-Fib Solar Cells 

A search for data on  radiation degradation of thin-film solar cells was conducted; nothing was found 

in the recent literature. 

A telephone call t o  Dr. Henry W. Brandhorst at NASA Lewis Research Center confirmed that no  

radiation damage testing had been done recently on  thin-film solar cells. The reason is that develop 

ment funding provided by ERDA for these cells is directed at tzrrestrial applications where radia- 

tion degradation is ::ot a problem. NASA Lewis Research Laboratory will radiation-test any thin- 

film solar cells that turn out to  be promising for space applications. 

Dr. Brandhorst d s o  explained that the lack of radiation degradation of thin-film solar cells results 

from the fact that long diffusion lengths are not a requirement for thin-film cell operation. The ini- 

tial minority-carrier lifetime in cadmium sulfide, for example. is only 0.5 ns. As a result. a fluence 

of  10'' one MeV electrons had virtually no  effect on the output of the cell. R p r c  3.2-29. repro- 

duced from the reference. illustrates the point. 

Dr. Brandhorst felt that the most advanced thin-film cell today is the one k i n g  developed by the 

University of Delaware. using cadmium sulfide. They are getting 8 percent efficiency in terrestrial 

sunlight, which corresponds t o  about 6 percent in space. 

3.2.3.2 Silicon Thin-Film Concept 

.4 space-manufacturttd silicon thin-film process concept was provided by General Electric under sub- 

contract. The remainder of this section presents their report. 

For power satellite applications, the semiconductor thickness and configuration should be designtd 

t o  optimize the cost and mass needed t o  generate the required power. 

The left hand of Figure 3.2-30 indicates the inherent efficiency obtainable from one ohm-cm Si 
with back surface field as a function of  Si t l i i i l i f ie~~ ifroni "Semiconductors :~nd Semimetsls". Vol. 

11. "Solar Cells" by H. J .  Hovel. Acaileniic Press. 1975). The cfficirncy climhs toward a limiting 

value of about 17'7 with most of the increase occuring at thicknesses less than 10 t o  20 microns. 

The right band part o f  the figurc. shows the specific power (watts!gran~) considering the increased 

weight of Si as its thickness is increased and assuming this is added t o  a constant mass consisting of 

10 micron A1 substrate. front metallization of conventional structure, anti-reflection coating and a 

25p cover glass on each side of the cell. As can he seen. increasing the Si thickness to 20 microns o r  

more causes a drop t'rorn the peak specifi: power which occurs a t  about 10 microns. This occurs 

bccausc. the rclatice increase in efficiency is less than the relative increase of weiplit in this range. 
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Further work is needed to'determine the actual efficiencies obtainable. However, it is likely that an 

optimum Si thickness of about 10 microns will stiil apply. 

Figure 3.2-31 shows the thin film series collectioil concept. It has the following features: 

o n-p polycrystalline silicon filni-Fraction of a micron n-type layer deposited on thin film p-type 
polycrysta!ine silicon. 

o Grains sirfficiently wide t o  approach single crystal efficiency-calculations by Hovel indicates 

that the grains' size should be 2-3 times the grain thickness to  obtain efficiencies approaching 

single crystal materials. 

o 113 micron alumium backing-it is addaptable t o  the GE continuous strip production technique. 

The aluminum provides for the series connection through a shingle overlay. 

o Shingle series connections with parallel strip front metallizing-it removes the width restriction 

on the cells and affords a technique for continuous series connections. 

o 25 micron electrostatically bonded glass cover slip-this is specified reference design in this 

study. It is suggested that this should be glass (instead of Kapton) because it can be electro- 

statically bonded (therefore no adhesive required). 

o Silicon thickness chosen t o  give maximum specific power (near 10 microns)-gives maximum 

power per unit weight. 

o Back surface field to  improve initial efficiency and t o  reduce radiation degradation-adapts 

itself easily t o  vapor deposition technique using multiple sources. 

The cost o f  the thin film cells was estimated based on a colltinuous strip production facility in low 

earth orbit (LEO). 

Material cost is based upon a structure consisting of a 1 Op A l conducting substrate coated with 1 Op 

of Si. The Schottky bsnier metallization is a 3 0  A layer of platinum. 1 0 5  of the Pt is covered by 

15p strips of Ag conductor. A 1000 A anti-reflection coating is assumed t o  cover the front face and 
a 25p thick cover glass is assumed on each face. Total weight of the cells is 165 gm/m2. Since 
masks. shields, etc. will become coated with the various evaporated materials, an additional 40% is 

added to  the materials cost t o  cover cost of recovery of this material. Material costs are based on 

current market costs for the metals and semiconductor. Cost of glass encapsulation is based upon 

information from "Integral Glass Encapsulation for Solar Arrays." 2nd quarter report (Nov. 1976) 

ERDA/JPL 95452 1-7Oj2. 
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We assume a $40 x lo6 facility cost based on cost data derived for other types of space manufactur- 

ing facilities and satellites. 

The transportation cost to  LEO is assumed to  be $IO/pound. Results are shown in Table 3.2-6. 

3.2.4 Power Distribution for Photovoltaic SPS 

3.2.4.1 Design Objectives and Assumptions 

The design objective for the power distribution system is to minimize the total SPS mass required t o  

generate and convert power. while providing are adequate capability t o  control and regulate power 

supplied to  the microwave power transmission system. Power distribution design requirements were 

stated under requirements item 1.0 1.01.03 in section 3.1. The principal design assumptions were, 

(1) main power would be distributed a t  or near 40,000 volts: (2) power processing wodd  be mini- 

mized t o  the extent practicable: (3) conductors will be passively-coolrd, lmm thick, aluminum 

sheet conductors. This thickness was selected as a minimum-gage value. 

3.2.4.2 Power Distribution Reference Design 

Klystron power and regulation requirements were estimated, including the ml Itiple-voltage require- 

ments for high efficiency depressed-collector operation. The Klystron used as a reference for this 

study required the power supplies indicated in the following table: 

P0wt.r Supply 

Collector A 

Collector B 

Collector C 

Regulated Anodes 

(2  ea. 2 1 ,050  V supplies 

in series) 

Heater (30 watts) 

Voltage (VDC) 
40,000?5% 

37,900+5% 
4,2 10% 

42.1 OOkS'X 

Current (Amperes) 

1.320 

0.6 16 

0.154 

0.1 10 

Power for the Collector C. the Regulated Anodes, and the Heater can be obtained from a DC/DC 
converter with eutputs for each. A converter efficiency of 96% is assumed. The source for the con- 

verter is the samc supply that provides power for Collector A. Figure 3.2-32 shows that the satellite 

can be designed with all solar cell power generator modules of the same design. The thirty power 

generation modules farthest from the rotary joint are connected in parallel and routed over dedi- 

cated conductors to the rotary joint. Thc conductor voltage drop is sufficient to drop the supply 

voltage to the required lrvel at the rotary joint. The seventy power generation modules nearest the 

rotary joint Jre connected in parallel and routed over separate conductors to  thc rotary joint. This 
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design concept requires a minimum of three ,slip rings on the rotary joint; one each for the Collector 

A and Collector B supplies, and one for the power return. Overall power distribution efficiency is 

91%. 

A photovoltaic solar power satellite having a given power output must have array area sufficient t o  

generate the regular power, plus an increment of area that generates the power lost in the power 

transmission network within the array. If the array is made larger to  take advantage of cells tnat use 

low in cost but low in efficiency, then the loss-generation requires an increment of array that is 

more remote from the rf amplifiers. The effect becomes more of a problem with lower-efficiency 

cells and with high aspect ratio configurations. 

The effect of transmission losses on array area is shown in Figure 3.2-33 as a function of power dis- 

tribution distance. 

The reference configuration was analyzed t o  determine the optimum conductor design operating 

temperature for minimizing the total satellite mass. The optimum conductor design operating tem- 
perature is approximately 8WC. As the conductors are made smaller and lighter, their power loss 

increases, resulting in a requirement for more solar array to  generaie tile power to feed the losses. 

The optimum occurs where the rate of array mass change begin to exceed the rate of reduction in 

conductor mass, as shown in Figure 3.2-34. 

The concept for conductor and switchgear installation on the reference configuration is shown in 

Figure 3.2-35. The system electrical schematic is shown in Figure 3.2-36. 

3.2.4.3 Alternate Design Approach 

Since approximately 140,000 solar cells are required in series to yrild 44,000 volts after 30  years, a 

configuration wllich ~~ti l ized these cells in a straight line was analyzed for.power distribution losses 

and mass. 

The configuration selecled has the cells connected as shown ir, the inset of Figure 3.2-37. With this 

configuration, 30 shadowing of the cells by superstructure above the cells can be allowed because of 
7 

the severr decrease in the cell string output caused by shadows. As can be seen, the I-R losses and 

the conductor mass required are considerzbly less for this configuration than for the reference con- 

figuration. This approach is particularly attractive for satellites with concentration ratio 1.  

3.2.4.4 Startup Control 

An analysis was made ot' the uccultation imposed requirements on the power distribution and con- 

trol system. The requirement t o  be satisfied is to keep the klystron supply voltages within ? 5 %  of 

nominal. 
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The array specific weight ;as asstuned to  be 0.54 ~ g / m ~  and the total flux falling on the cell was 
1 

2503 wlm-. Figure 3.2-38 shows the temperature response of the cells when the array is occulted 

from thc sun. A temr-rature of 12 1°K is reached at the end of 70 minutes. Upon emergence from 

the Earth's shadow, cell temperatures rise rapidly as shown ir Figure 3.2-39. The rate of tempera- 

ture rix can be increased significantly by open circuiting the cells. Steady state temperature is 

reached in 9 minutes openvircuited versus 20 minutes with the cells providing power to external 

loads. 

Figure 3.2-40 shows normalized array output as a function of array temperature. As can be seen, 
the change in array power and voltage is drmatic. In order to  maintain tke Klystron supply voltages 

within the *5W requirement, the array must be segmented to  provide control of the source voltage. 
Ten switchable levels are required on the array to provide the required voltage regulation (see Table 

3.2-7). This regulation requires considerably more complex solar cell blanket and power distribution 

and control systems than does a nonregulated array. 

Based upon the considerably :nore complex blanket and power distribution and control system and 

the additional mass required to  implement the changes required (approx. 1,000,000 Kg). it was 

decided to omit the regulation requirement and wait for approximately 6 minutes until the array 

voltage is within tolerance before beginning klystron operation. 

3.2.4.5 Power Distribution and Controls For SelfPowered L E M E O  Transportation 

The reference photovoltaic configuration is 5,076 meters by 28.800 meters excluding the antenna. 

Whrn divided into 16 segments, each segment is 3,600 meters by 2538 meters as shown in Figure 

3.2-4 1. Thruster panels are required on two diametrically opposed comers. 

Earlier estimates of photovoltaic SPS orbit transfer used a value of 7500 x c  for argon ion thruster 

ISP. Current orbit transfer optimizations have reduced this value to  500Qsec. The basic propulsion 
system consists of a thruster panel on each comer of the 3600 meter by 2538 meter photovoltaic 

SPS module. Each thrustor panel contains 900 thrusters. Each thruster requires 64.743 watts and 

each thruster panel requires 58,268,700 watts after power processing. Using a power processing 

efficiency of 0.95 the input power to the thruster panel was computed to be 61,335,474 watts. 

Based upon this panel power requirement the deployed array required to  deliver the power was 

computed. Plasma current losses were computed using the data described in the following section 

(3.2.4.6). 

The concept for acquiring power from the solar cell array consists of dividing the bay width up into 

N segments, each of which provides 1/N of the total bay voltage (i.e. if the bay voltage is 44,000 
volts and N=5. each segment provides 8,800 volts). The plasma current was computed and sub- 

tracted trom the array current to compute the segment outpuv current. Figure 3.2-41 presents the 

percentagc of the solar cells which must be deployed in ordcr to obtain the required thruster power 
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for two cases (performing orbit transfer with and without reflectors installed?. Much more array is 

required t o  be deployed for the case of no  reflectors installed for orbit transfer. This large differ- 

ence is due t o  the following three principal reasons: 1 )  the solar cell output is less without reflec- 

tors, 2) a larger array drea is required t o  collect the required power causing higher plasma current 

losses, 3) the larger array area increases the power distribution losses. Figure 3 . 2 4 3  shows the per- 

centage plasma current loss for the no reflector and with reflector cases and show: the higher loss 

for the n o  reflector case. 

The power distribi~tion and thruster panel power processing mass required t o  provide thruster panel 

power is shown in Figure 3.2-44. Three discrete points arc also shown for the condition of running 

the thruster screen grid directly from the power bus (i.e. no power processing for the screen grid 

supply). These points are not optimum from either the power system mass or  the percentage of 

deployed array. As the array acquisition voltage increases the total power distribution and process- 
ing mass asymptotically approaches the power processing mass of 245,000 kilograms. Figure 3.2-45 
was developed to show the contributic ~f thruster power, power processing losses, power distribu- 

1 
tion I-R losses. and plasma current power losses for the 2 5 O ~  conductor temperature-refleccor 

installed case. As can be seen in this figure, at higher array voltages the plasma current power loss 
'7 

predominates and at lower voltages the conductor I-R loss predominates. 

3.2.4.6 Power Loss By Leakage Through Plasma 

The space between 400 km altitude and the orbits of geosynchronous sateilites contains neutral 

atoms, free electrons, positive ions. and high-energy charged partisles. The nigh-energy particles, 

although damaging to  solar cells and optical surfaces, are not numercus enough to  carry a significant 

current. The free electrons. generated each morning when uitraviolet photons ionize neutrril atoms. 

have energies of around one to  two electron volts. This energy is dissipated in relictions with neutral 

atoms and ions. increasing the temperature of the medium to the region of 500' to 2 0 0 0 ~  K. The 

temperature of an electron is related t o  its e n e r n  by Boltrmann's constant, 8.6171 x 10.' eV per 

OK. 

An el~ctr icdly neutral gas containing free electrons and ions in equal numbers is called a plasma. A 
positively chsrgcd 5pherical electrode. say one cni in diameter, will collect electrons when inserted 
into a plasma. The volume in which electrons are influenced by the electrode. called a sheath, is 

much larger than the sphere. Somc of the electrons will orbit around the electrode and escape back 

out of the sheath. Currcnt ccllection is :hen said to be orbit-limited and is affected in a con~plex 
manner by the radius of the electrode, the vf~ltage of the electrode. and the temperature and density 

of the free electrons. 

The high-voltage 5olar-cell array for a solar power satellite looks more like a sheet electrode than 
1 

like a spherical probe. For example, let us assume that 10 km- of a solar power satellite array is 

deployed to  supply 1500-*~olt power for electric propulsion thrusters for raising the satellite from 
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low-Earth orbit, say 5 0 0  km, to  geosynchmnous orbit. K. L. Kennerud has developed a method of 

analyzing the leakage current from such arrays (Reference I )  based on fundamental equations 

developed by I. Langmuir (Reference 2). Kennenrd's technique converts the planar array into a 
sphere having the same uea, and then he calculates the radius cf  the electron sheath surrounding 

the array. His experiments with small positively charged solar-cell panels correlated well with his 
predictions. With a negatively charged panel which collected ions, his experimental measurements 

did not correlate well with theoretical predictions, perhaps because the ion sheath extended to  the 

chamber walls. 

Using Langmuir's equations, we determined that at 5 0 0  km the electron sheath extends to a few 

meters above the plane of the Edar cells, in the range of electron concentrations, electron tempera- 

tures, and array voltages of intemst. The calculation of leakage current then simplifies into analyz- 

ing the rate at which electrons drift into e electron sheath having essentially the same area as the 

solar array. This electron current Qr) is simply : 

- Ne Ee 
j r -  - (in A/cm2) 

3.7 x 10' 

where N, = electron density, in electrons per cm 3 

Ee = electron energy in eV 
The calculated leakage currents from a 1500-volt array for several altitudes are shown in Table 

3.2-8. 

A flow orelectrms from the plasma to the solar power satellite mbst be matched an equivalent flow 

of electrons out of the solar power satellite. Otherwise the satellite will bec-me negatively charged 

with respect to the plasma. and will cease attracting electrons. This flow of electrons away from the 
satellite is provided during orbit transfer by electron emitters whi~n  are installed for neutralizing the 

ions emitted by the thrusters. In geosynchronous orbit, where the satellite would be generating 

poBer, the electric thrusters would not be in operation. Furthermore. in'geosynchronous orbit the 

electron density is only about 100 per cm3. so the power lost through plasma leakage. even at 44 

kV, would be trivial. 

A negatively charged solar array would attract ions rather than electrons. However, ions are l e a  

mobile than ekctrons. and the ion current would be much smaller than the electron current 

observed with a positively charged solar array. Thus. the positively charged array is the worst case. 

Calcularions-Irving Langmuir. in Reference (2). provides the following equation for calculating 

electron urrent from plasma to  a positive electrode: 
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where 

D ro = - = Space-C%arge Sheath Radiw (cm 
jp? 

a = a function of rda  which is calculated as B o r n  below. 

jr = random current density of plasma electrons (amps/cm2) 

Ne E, = -- 
3.7 x l o l l  

gv ' 
P = a I + $ = impact p-eter (cm) 

a = radius of sphere having same area as array 

#I = fraction of sphere surface area uncovered 

Vp = potential applied to array, volts 

E, = average energy of electrons 

Ne = electron density (ebxtrons per cm3) 
I = electron c-amnt collected by the sphere (amperes) 

'0 Langmuir's table relating to a is not applicable to the large electrode areas involved in the solar 
power satellite. The value of a was detemined by iteration of the equation. 

where 

The analysis technique developed by K. 1. Kennevd wraps the solar array area (Aa) around a 

sphere, which then has radius a. For a 10 km2 may,  

Iterative calculation of a and the radius of the electron sheath results in the following ratio for a 10 

km2 a m y  at 1500V and at 500 km altitude: 
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Thus. the electron sheath is only 260 cm above the array, and for all practical purposes has the same 

area as the solar array. Therefore. a rny  radius a can be substituted for r,. and the leakage current 

simplifies to  

where 

with Ne = electron density. electrons, cm3 

T, = electron temperature. OK 

The values of leakage current shown in Table 3.2 - 8 were based on the Figure 3 .246  electron 

densities and electron temperatures from Reference 3. 

Effect of Voltage, Electron Temperature. and Electron Density-It is interesting to  note that in 

large solar arrays the voltage of the array does not significantly afir'ct the leakage current. The array 

voltage affects only the thickness of the electron sheath which is small compared with its other 

dimensions. For example, with a 1500-volt. 10 km2 array the sheath is on& 2.6 m thick at 500  km 

altitude. lnireasing the array voltage to  44 KV would increase the s h ~ a t h  thickness by only a few 

meters. 

Sheath thickness is affected by electron density and temperature. For example. in geosynchronous 

orbit the electron density is only about 1 0 0  electrons per cm3. -4 44 K V solar array operating in 

geosynchronous orbit would have a sheath radius IS percent larger than the radius of a sphere 

having the same area as the array. Contributing to this large ro are tlte array voltage. the low elec- 

tion density and !lot electron temperature. However. the plasn~a leaka_ee current in a solar array of a 

power satellite in geosynchronoas orbit is limited. not by the electron supply. but by the inability 

of the heavy ions to move to the satellite to neutralize the charge drposittd by collected electrons. 

The leakage electron current would no longer be neutralized by the emitters used with the ion pro- 

pulsion engines. and hence would he trivial. 
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3.2.5 Radiation Degradation Analyses and Annealing 

Predictions of the sunspot number for the coming Cycle 21 are compared in Figure 3.247. F. M. 
Smith bases his orediction on two non-synclimnous components related to planetcaused tidal vari- 

ations on the Sun. W. Giiessberg of the Astronomical Institute in West Germany, bases his predic- 

tions on 80-year repeatability of sunspot phenomena. Ted Cohen and Paul Lintz base their predic- 

tion on a periodicity of 179 years. obtained from a maximum entropy analysis. 

A solar power satellite launched in 1990 will experience Cycles 2 2 ,  23 and 24 for which no predic- 

tions have yet been made. We theafore used data averaged for us by Prof. W. R. Webber, University 

of New Hampshire, who is our consultant 07 solar activity. 

The average expected solar proton flucnce (> 10 MeV), and a 90'; value. are shown in Table 3.2-9). 
An equivalent I-MeV electron damage fluence for a 6 mil 10 ohmsm n!p solar cell with 6 mil cover 

slip and 3 mils of equivident back side Kapton. adhesive and myiar shielding is also given. The pro- 

ton damage coefficient used is shown in Figure 3.2-48 as "l!E." The electron damage coefficient is 

taken from the TRW Solar Cell Handbook. The incident proton spectral shape is shown in Figure 

3.249, while the trapped electron spectrum is shown in Figure 32-50. 

3.2.5.2 Solar Cell Radiation Degradation 

A radiationdegraded solar cell in a series string. operating at its maximum-power point to  supply a 

constant-voltage load. will not also operate at its maximum-power point when initially in geosyn- 

chronous orbit. The volt-ampere characteristic of the solar cell is needed for calculating the cell 

perfomlance under the differing illumination. temperature. and degradation conditions in solar 

power satellite operation. 

The characterization of a 1975 OCLI "Violet" cell shown in Figure 3.2-5 1 was useful in our analy- 

sis. We had recorded the voltagecurrent characteristic of the cell ilnder standard conditions after 

irradiation by 1 0 ~ 3 ,  1 0 ~ 5 ,  and 10j6 one-MeV electrons. Estimating the curves for 2 x lo1 
and 6 s 1 015 one-MzV electrons was straightforward. 

The estimated maximum power points for tligher temperatures and light intensities were based on 

the current being proportional to light intensity. and a 0.43 percent per degree C coefficient of 

maximum power. 
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Thinner solarcell covers admit more radiation, increasing the radiation damage in the cell. Plotted 
in Figure 3.2-52 Is the relative damage in a solar cell geosynchronous orbit, as a function of cover 
thickness, normalized to  a cover of 6-mils of fused silica. 

Note that when covers are thinned below 50 pm, the damage increases rapidly. This curve was used 
in &dating the performance of solar-cell blankets having various thicknesses of covers. 

One tnil(25.4m) of fuxed silica on a 100 km2 solar array weights about 5x lo6 kg. 

The solar p w e r  satellite performance estimates are based on, not 1977 solar cells, but rather on 
1987 solar cells which are predicted t o  have an efficiency of 18 percent. Test data from such cells 
is obviously not a~ailable, so array performance predictions had t o  be based on extrapolations of 
test data from today's best solar cells. 

An example of such extrapol2:ion is shown in Figure 3.2-53 where the maximum power outputs 
of Cornsat's completely nonnfl-:ti; : solar celb, and several others, are plotted as a function of o n e  
MeV fluence. This plot comes from the FaU 1935 Comsat Technical Review. We have added to  the 
plot the fluences that would be experienced by cells dtiring 30 years in geosynchronous orbit when 
protected by fused silica coven of various thicknesses. Note the ex traplation to  6 x 10 one-MeV 
electrons, where a nonreflective solar cell with a 2-mil cover has dropped t o  63.1 percent of its orih- 
inal maxirnum power. An 18-percent efficient s o l s  cell was assumed to  likewise drop to  63.1 per- 

cent of its initial maximum power after 3 0  years. 

The cell voltage establishes how many cells must be in series to develop 44 kV, and hence how long 
the solarcell string must be. The voltage of a 1976 backsurface-field cell. as a function of one-MeV 
electron fluence. appears in the JPL "Sclar Array Design Handbook," shown in Figure 3.2-54. 

Our prediction of the maximum-power vol?age of an 1 &percent efficient solar cell is shown as a 
dotted line. The right-most "X" corresponds to  0.446 volts from a cell protected by a 50pm (:-mil) 
fused silica cover. after 30  years. 

These voltages would be observed at 25W with the cell illuminated by 135.3 r n ~ l c r n ~  sunlight 
having an air-mass-zero spectrum. 

Summarized in Table 3.2-10 are the results of calculations of the performance of a solar-cell string 
after 30  years in geosynchronoi~s orbit, with varying thicknesses of cell covers. The thinner covers 
admit more radiation to  the cell, reducing power output and voltage. For zxample. the degraded cell 
with a 50 pm ( 2  mil) cover produces only 0.297 volts, requiring 149,390 such cells for 44.44 kV. 
The extra 0.44 kV is absorbed by 1R and dicde drops in the string. Each string is composed of 

groups of 4 cell in parallel. 
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Chatacteristic 

Flucnce after 30 yews 
in geosynchronous orbit 

Power output after 30 
years (rnwlcm21 

w/m2 
Maximum-power volt- 
age at 115OC (V) 
Cells in series for 
44,940 volts 
Calls in one string, 4 
cells wide 
String length (5 + 0.1 
cmlcell) (km) 
String width with length 
~nstrainad to 650 metem 
(10 + 0.1 cm/cell) (m) 
Strings per module of 
650 by 496m 
Curnnt per string (A) 
C u m  per module {A) 
P o w  module (MW) 

2 

6 x 1 0 ' ~  

15.82 
158.2 

0.297 

149,390 

597,560 

7.62 

4.73 

104.74 
10.657 
11 17.7 
49.1 1 

cover thickness 
6 

1 . 8 ~ 1 0 ~ ~  

18.38 
183.6 

0.308 

144,286 

577,144 

7.36 

4.674 

108.45 
1 1.923 
1293.2 1 
56.90 

Cell 
3 

2 . 7 ~ 1 0 ~ ~  

17.46 
174.6 

0.302 

147,153 

588,612 

7.5 

4.66 

106.33 
11.561 

1229.35 
54.05 

. 
(mils) 

12 i 
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20 

4 . 6 ~ 1 0 ~ ~  

20.89 
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0.328 

135,488 
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6.91 

4.30 
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Each string is ferpentined into a module 650 meters long. The 7.62 krn string of cells with 50 m 
(2 mil) covers would occupy a strip 4.73 meters wide in such a module, and 104.74 strings would 
fdl a module having dimensions of 650 by 496 m. The module would generate 49.1 1 MW after 30 
years in orbit. 

Note that the module with 50 pm (2 mil) coven generates after 30 years 13.7 percent less power 
than the module with e l l s  protected by 150 pm (6 mils) of fused silica. However, the thinner 
covers represent in a 100 km2 solar power satellite a saving of 20 million kg of mass. 

3.2.5.3 Annerlir: Study 

Analyses and tests of silicon solar cell annealing were conducted by Simulation Physica, Incorpo- 
rated under a subcontract. The remainder of this section presents their report. 
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This report covers Phase I of a study of "Thermal 

Annealing of Radiation Damage in Silicon Solar Cells". 

Purpose of the study is to establish feasibility for in 

situ annealing of radiation damage in silicon solar cells on 

the Solar Power Satellite if the satellite were to be 

asseabled in l w  earth orbit and transferred to geosynchronous 

orbit. The study is directed toward consideration of proton 

a g e ,  but the conclusions made are expected to be quali- 

tatively valid for damage by electron radiation as well. 

Content of Phase I of this program has consisted 

essentially of the following: 

(i) A review of existing experience relative 

to thermal annealing of proton irradiated 

silicon solar cells. 

(ii) Experimental studies to determine 

feasibility of using directed energy 

techniques for annealing of proton 

irradiated cells. 

Existing information regarding annealing of radiation 
, 

damaged solar cells suggests that conventional thermal pro- 

cesses can be effsctive. However conventional technique, 

which is essentially a furnace procedure, consists of 



elevating the entire solar cell to an adequate temperature 

and maintaining that temperature for a sufficient period of 

time. Because necessary conditions involve periods of 

minutes at teaperatures of the order of SOO°C, it is 

questionable whether such methods vould be realistic for 

a practical array in space. 

Investigation of the feasibility of utilizing a con- 

cept of directed energy annealing has been undertaken because 

such an approach could be possible in spa~e~probably even on 

an array structure which is itself thermally unstable. A 

directed energy process uses the ecergy carried in a beam 

impacting upon the surface of the solar cell undergoing 

anneal. The energy can be carried in an electron, laser or 

photon flash beam. It is assumed that the heating produced 

by the beam is to be transient and spatially localized so 

as to accomplish necessary annealing of the solar cell with- 

out subjecting surrounding components such as the substrate 

to excessive thermal excursion. 

The material presented in this Phase I report can be 

summarized w r y  briefly as follows: 

(i) On the basis of existing informa- 

tion it is definitely possible to 

anneal proton radiation damage in 

silicon solar cells using furnace 

environment conditions. 



(ii) Degree of annealing depends primarily 

upon temperature employed; close to 

complete performance recovery can 

be achieved withir, the thermal limita- 

tions of the solar cell itself. 

(iii) A substantial degree of proton 

irradiated solar cell performance 

recovery has been dwnstrated 

using electron and laser beam 

directed energy sources. 

(iv) Achievable degree of performance 

recovery using directed energy has 

not been determined but is probably 

high. 
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SEcTI0~ XI 

REVIEW OF EXISTING IHFORMATIW CONCERN1.m 

ARNEIUm * PROTON DrMUGE IN SILICON SOLAR C E J S  

2.1 GeaSERAL 

Since the discovery in 1958 of the presence of large 

fluxes of charged particle radiations within the earth's 

geomagnetic field. there has k e n  continuing interest in 

the effects of radiations upon solar cells for space vehicles- 

Earlier studies were concerned both with the generation of 

radiation damage and with possibilities for its repair. AS 

solar array experience increased, the technology tended to 

standardize around successful history. Radiation damage 

work shifted to -hasize prevention of severe damage in con- 

junction with minimization of array initial overdesign 

necessary to provide for mavoidable effects. In particular, 

effective coverglass methods allowed nonpreventable proton 

damage to be reduced t~ l w  levels. Further consideration 

was not given to in situ thermal acneal of protor, damage 

losses. 

Proton and electron irradiation of silicon causes 

lattice atoms to be displaced, leaving interstitial$ and 

vacancies. Defe:t complexes involving the vacancies or 

interstitials and other elements of the crystal are formed 

which act to allow carrier recombinations causing loss of 



minority carrier lifetime and degrading solar cell performance. 

Although the individual defects created by protons are similar 

to those with electrons, the heavy mass of the proton results 

in localized multiple centers as opposed to point defects with 

electrons. It is generally considered thak~the cluster defect 

complexes associated with protons are somewhat more difficult 

to anneal than are the electron induced defects. 

2.2 IrITiiIUM-DOPED SOLAR CELLS 

On the assumption that the major threat to the solar 

cells of the Solar Power Satellite will be damage by protons 

able to penetrate a thin protective cover, lithium doped 

silicon solar cellc might be considered. The room temperature 

annea1L;g behavior produced by lithium in a P/N cell is 

extremely effective for the multiple defect complexes which 

are characteristic of damage produced by proton or neutron 

radiations. The best available information regarding proton 

damage recovery of lithium doped silicon solar cells is 

by Anspaugh and Carter"). They conclude "lithium cells would 

be a good choice to power a spacecraft in a radiation 

environment dominated by protons, provided the cells can be 

annealed periodically at sufficiently high temperature". 

The high temperature referred to in this instance need be 

only about 50°C. Figure 1 shows an example of normalized 

maximm power of N/P and lithium doped P/N cells as functions 

of 11 MeV proton fluence. Advantages of the lithium doped cell 

are clear. 
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Figure  1.  Normalized Maximum Power of N/P and Lithium 
Doped P / N  Cells Versus 11 MeV P r ot~n Fluence 



2.3 THERMAL ANNEALING OF PROTON DAMAGE 

Host of the work relevant to thermal annealing of 

proton irradiated solar cells without lithiw doping was per- 

formed by Beatty and Hill of NASA Langley (2'3) and by 

Faraday, Statlet and Tauke ( 4 e 5 1  of the Naval Research Labor- 

tary. Beatty and Hill investigated low to moderate 300°C 

temperature annealing of damage to silicon by high energy 

protons while Faraday, Statler and Tauke examined recovery 

of silicon solar cell damage due to lower energy protons using 

temperatures up to as high as 600°C. 

Beatty and Hill 

Beatty and Hill irradiate? both n- and p-type 1 ohm-cm 

silicon with 22, 40 and 158 HeV protons. Since minority 

carrier lifetime is one of the parameters most sensitive to 

radiation damage, they chose to monitor the unnormalized 

percentage of damage remaining, defined as 

t:here ro and rA are the pre-irradiation and post-irradiation 

annealed minority carrier lifetimes respectiveiy. Limited by 

an experimental oven facility with maximum temperature of 

only 300°C, their efforts on silicon fell shcrt of the practical 

results on solar cells by the NRL group. However, some of 

their observations are applicable. 
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Figure 2 shows percentage of defects remaining in 

p-type silicon irradiated with 1011 22-*V protons/cm2 as s 

function of annealing time at 100, 200 and 300°C. It is 

evident that the most recovery occurs at the highest anneal 

temperature and that after an initial anneal perid at given 

temperature, relatively little additional recovery will occur 

as a result of prolonged anneal at the same temperature. 

Annealing is fluence dependent. Dalila.-Je from higher 

proton fluences does not anneal as readily as damage from 

lower fluences. Figure 3 illustrates this effect. Annealing 

at 300°C is seen to be moderately effective on silicon 

irradiated at 22 MeV to fluence 1 x 10'' protons/cm2 and 

almost completely ineffective for fluence of 5 x 10 12 

The recovery characteristics of n- and p-type silicon 

are similar but recovered minority-carrier lifetime is 

apparently slightly better in n-type than in p-type 

Figure 4 illustrates this observation. 

As proton energy increases, the amount of damage re- 

maining after anneal decreases. Figure 5 shows this result 

for 200°C anneals and 1012 protons/cm2 fluences of 22, 40 and 

158 MeV protons on n-type material. 



Rnncal ing t im , hr 

Source: Beatty and Hill ( 3 )  

Figure 2. Fraction of Defects Remaining in p-Type 
Silicon Irradiated with 22 VeV Prot~ils 
to a Fluence of 4 = 1 x lo1- ~rotons/cm* 
as a Function of Anneal~ng Time of 100°C, 
200°C and 300°C (Unnormalized) 



Source: Beatty and Hill ( 3 )  

Figure 3. Dependence of Annealing of n-Type Si l ; .con 
a t  300°C on Fluence o f  22 MeV Protons 
(Unnorma 1 i zed) 



Source: Beatty and Hill ( 3 )  

2rce11tn~:c. of n-type 
Jct'ectr; i.ew:iriin;:, - 

Figure 4. Comparison of Annealing of Typical 
n- and p-Type Silicon Samples at 300°C 
After Irradiation with 2 MeV Protons t (4 = 1 x 1011 Protons/cm ) (unnormalized) 
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Annealing t ime ,  hr 

22 MeV 

40 MeV 

Source: Beatty and Hill ( 3 )  
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Figure 5. Comparison of 22, 40, and 158 MeV 
Proton Annealing at 200° for n-Type 
Silicon Irradiated to a Fluence of 
0 = 1 x 1012 protons/cm2 (unnomalired) 
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Faraday, Statler and Tauke 

Work at NRL involved 4.6 MeV proton irradiations of 

1.5 and 10 ohm-cm N/P Czochralski silicon solar cells. Cell 

junctions were approximately 0.5 pm deep which is considerably 

more than is typical of present technology but should have 

little bearing upon general validity of the results. All 

anneals were isochronal for 20 minutes in argon. To illustrate 

the approximate spacial distribution of damage produced by 

these proton irradiations, Figure 6 shows calculated energy 

deposition versus depth for 5 MeV protons in silico?. 

Figcre 7 shows tungsten illumination (2800°K) I-V 

characteristics of a 10 ohm-cm cell before and after 

irradiation to 1012 protons/cm2 and after annealing at various 

temperatures. The 502O characteristic shows close to complete 

recovery of pre-irradiation performance. 

Figure 8 shows recovered maximum power output of 10 

ohm-cm cells as a function of annealing temperature fcr three 

irradiation fluences. It can be seen that for lo1' protons/crn 2 

fluence the 500°C anneal does effect complete recovery, but 
CI 

cells exposed to 1011 or lo1* protono/cmA exhibit minor 

remaining output loss. The shape of the recovery character- 

istics for these cells suggests that they would have benefited 

from additional anneal to slightly higher temperature. 
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Figure 6 .  Calculated Depth/Dose Profile for 
5 MeV Protons in Silicon 



VOLTAGE (V) 

Source: Faraday, Statler and Tauke 
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t igure 7. I-V Characteristics of Proton Irradiated 
Cell as Function of Anneal Temperature 
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Source: Faraday, Statler and Tauke (5)  

I 1 i I I 1 I t t 8 I ? 

C m 

- 

- 

d 

- 

d 

- 

d 

- 

- 
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An unnormalized percent damage remaining was defined 

where I. and IA were short-circuit currents before irradiation 

and after irradiation and annealing respectively. Figure 9 

shows this percent damage remaining as function of annealing 

temperatun for 10 ohm-cm cells exposed to different fluences. 

Figure 10 compares similar data for 1.5 and 10 ohm-cm cells 

2 after 1012 proton/cm f luencer. It is o~vious that a lna jor 

anneal step occurs at temperature above 300aC and recovery is 

consistently close to complete after 500°C. 

Figure 11 gives the effect of annealing temperature to 

as high as 600°C on minority carrier diffusion lengths in 

the proton irradiated cells. NRL considered that this data 

indicated the hardest damage to anneal is that of high fluences 

on law resistivity cells. Nevertheless, even under these 

conditions recovery could be quite effective. 
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ANNEALING TEKPCRATURE ' C  

Zmrce: Faraday, Stater and Tauke ( 5 )  

Figure 9. Unannealed Fraction of Short Circuit Current 
Versus Annealing Temperature for 10 Ohm-cm 
N/P Cells As Functions of 4.6  MeV Proton 
Fluences 
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Figure 10. Unannealed Fraction of Short Circuit Current 
Versus Annealing Temperatures for 1.5 and 
10 Ohm-cn N/P Cells Irradiated to 1012 p/cm2 
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Figure 11. Isochronal Annealing of Minority Carrier 
Diffusion Length in N/P Silicon Solar Cells 
Fol33wing Irradiation by 4.6 MeV Protons 



SECTION I11 

FEASIBILITY STUDIES ON DIRECTED ENERGY 

ANNEALING OF SILICON SOLAR CELLS 

3.1 RATIONALE 

The information sumaarized above shows that it is 

possible to use thermal annealing to restore performance of 

a silicon solar cell damaged by proton irradiGtion, But, 

is it feasible? It has been shown that temperatures approach- 

ing SOO°C or even more are required for periods which are 

probably of the order of minutes. While the solar cell can 

withstand the environment, the remaining structure of a light- 

weight array probably cannot. The process involved is 

essentially an oven anneal and it is dif-icult to visualize 

any means to perform the slow exposure without involving 

the entire array structure. 

However the possibility does exist of alternate anneal- 

ing procedures which would not necessarily subject elements 

of the array, other than the solar cells, to excessive 

temperatures. The concept involves the use of directed 

energy beams to produce temperature transients which could 

remain primarily localized within the soicr cells. As an 

example of this type of annealing action, Simulation Physics 

uses a single submicrosecond pulse of relatively low energy 

electrons to produce the same annealing of ion implant damaged 
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layers in silicon as can be achieved in a furnace at 750°C 

for 30 nin~tes'~). The ability to produce satisfactory 

annealing by a short duration temperature spike results because 

the temperature achieved is higher than would be used in a 

furnace but is quenched before any deleterious effects can 

occur. 

3.2 EXPERIMENTAL TESTING 

Among the directed energy beam sources which might be 

considered for annealing of solar cell proton radiation damage 

are pulsed and scanned lasers, pulsed and scanned electron 

beams and high intensity photon flashtubes. To experimentally 

investigate feasibility of directed energy methods, tests were 

conducted using a scanned DC electron beam and a pulsed Nd:YAG 

laser. 

Solar cells used were assorted high performance types 

supplied by Boeing. The cells had been irradiated to 

2 5 x 1012 1 MeV protons/cm . Cells did not have protective 

coverglasses . 

DC Electron Beam 

Parameters of the sczqning DC electron beam selected 

for solar cell tests wete: 



Beam diameter: 1 .3  cm 

Sweep raster: 100 x 1000 Hz 

Energy : 60-90 keV 

Current : 1 mA 

Scan durat ion:  15 sec 

Electron beam energy depos i t ion  p r o f i l e s  are shown i n  Figure 12. 

I r r a d i a t e d  solar cells suppl ied by Boeing w e r e  mounted 

onto aluminum s u b s t r a t e s  approximately 0.020 inch th ick  by 

conductive s i l v e r  epoxy. The DC e l e c t r o n  beam is meant t o  

raise temperature of t h e  e n t i r e  s o l a r  c e l l .  Tho s u b s t r a t e  

presented some d i f f i c u l t i e s  wi th  t h e  e l e c t r o n  beam heat ing 

because hea t  t r a n s f e r  from t h e  cell to  t h e  alumincm heat  s ink  

occurred i n  reg ions  wi th  conductive epoxy but  no t  elsewhere. 

A s  a r e s u l t  temperature nonuniformities w e r e  pro6uced ac ros s  

t h e  cell area and it w a s  impossible to eva lua te  l o c a l  tempera- 

t u r e s .  

Nd:YAG Laser 

Parameters of t h e  neodymium doped y t t r ium aluminum 

garne t  1.06 pm pulse  mode laser used f o r  t e s t i n g  w e r e :  

Beam diameter : 0 . 3  cm 

Pulse width: sec 

pulse  energy: 3  joule/pulse 

Energy deposi t ion p r o f i l e  f o r  t h e  l a s e r  p u l s e  is given i n  

Figure 13. Predic ted i n i t i a l  l o c a l  temperature p r o f i l e  i s  

shown i n  Figure 14 .  
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Figure 12 Deposition Profile: Monoei~ergetic 
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Because of the puls@ mode operation and reflection 

from the back conduct, mounting of the cells by conductive 

epoxy had relatively little influence on temperature 

uniformity. Short pulses produce essentially local transient 

heating with the entire cell eventually to be annealed as the 

laser pulse is stepped across the surface. Stepping distance 

for the step and pulse sequence was 0.13 cm on some samples 

and 0.06 cm on others. Although laser beam diameter was 

0 . 3  cm, nonuniformity of the spot was such that even with the 

narrow step spacings not all of the cell surface was annealed 

and the annealed area pattern was visible on surfaces after 

processing. Power density level of the laser was selected 

at a level just below that found to praduce mechanical 

damme to the silicon. 

Boeing provided initial and post proton irradiation 

Air Mass Zero I-V characteristiqs on the test cells. 

Simulation Physics repeated AM0 measurements prior to and 

following anneal. Neasurements were made using a Spectrosun 

X-25 MkII AM0 simulator and 25OC test block. 

3 . 3  DIRECTED ENERGY ANNEAL TEST RESULTS 

Significant recovery of cell performance was Accomplished 

using both the scanned electron beam and pulsed laser. Table I 

summarizes test cell data. Figures 15 through 21 present 
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ANO I-V characteristics of the test cells of Table I and 

include : 

(i) Initial (30.C) 

(ii) After 5 x 1012 protons/cla2 ( 30°C)  

(iii) After pulsed laser or electron beam 

anneal (2S°C) 

Figure 18 shows the effect of laser anneal conditions 

on a control cell without proton irradiation damage. No per- 

formance degradation resulted. Figure 21 shows t3e effect of 

the electron beam on a nonirradiated control cell. In this 

case a decrease in short circuit current resulted which is 

attributed to a change In the AR coating rather than to 

electron induced damage of the silicon lattice or cell junction. 

It is expected that AR coating effects could be avoided by 

variation of the oeam parameters. 

It. is important to again point out that, because the 

Nd:YAG laser beam spot was nonsymmetrical, the stepping sequence 

Aid not cover the total cell area. More cell recovery would 

have occurred under the same test conditions if the entire 

cell surface had been processed. 

The directed energy anneal feasibility test results 

are considered to be extremely promising. The short time 

available and limited scope of this effort prevented any 

possibility of analyticaily and/or experimentally optimizing 
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Figure 15. The Effect of Pulsed Laser Anneal 
on Violet Cell 8E 
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Figure 16. The Effect of Pulsed Laser Anneal 
on Iiybrid S/P Cell 9C 



Figure 17. The E f f e c t  of Pulsed Laser Anneal 
on V i o l e t  Cell 12E 
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Figure i9. The Effect of DC Klectron Beam Anneal 
on Gybrid N/P Cell 8C 



Figure 20. The Effect of DC Electrofi Beam 
Anneal on Conventional N/P Cell 9G 



INITIAL 

.. 

- 
AFTER 60  KV 
UC e-BFM 

- 

I 

D 

D 

AM0 2S°C 

... 

I I I I I 
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process conditions. Test parameters had to be selected 

almost arbitrarily using immediately available facilities. 

Even so, substantial annealing was achieved by both directed. 

energy ntethods. 

The results suggest that directed energy techniques 

and hardware can be developed to produce highly effective 

short duration annealing of proton irradiated solar cells 

mounted to an array structure which may be unable to withstand 

a conventional thermal anneal environment. Such capability 

could have major impact upon planning of the Solar Power 

Satellite. 
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3.2.6 Reflector Analysis 

A detailed analysis of reflector performance was conducted in order to  evaluate the performance 

benefits realizable from the concentration ratio 2 ref~rence SPS configuration. This section presents 

the results of this analysis. The individual effects presented herein were jointly numerically inte- 

grated in order t o  obtain the reflector performance data described in Section 3.2.1. 

Reflectance V e m s  Speculuity: The data shown in Figure 3.2-55 were obtained in tests by The 
Boeing Engineering and Construction Division in conjunction with an ERDA Contract for ground 

solar power. It is clear that t o  obtain high reflec~ance a measure of non-,pecularity (beam spread) 

must be accepted. 

Simulated Sohr Reflection from Aluminized Film: Figure 3.2-56 illustrates the requirement for 
biaxidly tensioning the reflectors if maximum performance is to be achieved. This relationship 

appears to be a result of the microfinish cf  the Kapton substrate. 

, Reflectance Versus Incidence and Wavelength: Figcre 3.2-57 shows that for the sun's circularly 
polarized light (RAw) the reflectance is reduced wi!h incieased incidence until very shallow grating 

angles are reached. This change in reflectance is a function of wavelength with the predominant 

rates of change occurring at approximately 800 millimicrons (mp). 

Reflectance Loss Versus Wavelength at 60° Incidence: Figure 3.2-58 summarizes the losses pre- 
dicted with previous data for the CR=2 reflector configuration at 60° incidence. 

Reflectance Versus Wavelength: The reference in Figure 3.2-59 is for an aluminized optical flat and 

demonstrates the characteristic loss in reflectance at .8 pm waveizngth which is inherent to alumi- 

num. An extrapolation of our aluminized Kapton test data to all wavelengtia is also shown in 

Figure 3.2-59 by the dashed line and the iower line is th: net reflectance after considering the losses 

due to the incidence angle. 

Solar Cell Spectral Response: The solar cell spectral response characteristics shown in Figure 3.2-60 
were used together with the data from the previous chart to establisi~ an ictegrated reflectance value 

for the reflectors at beginning of life of approximately 85%. 

Reflector Radiation Degradation: The chief cause of reflector degradation wil! be the radiatioll 

environment. Tests conducted by Boeing During the Project Able investigations provide a sketchy 

data base upon which the degradation forecast of Figure 3.2-61 is based. 

ORIGINAL PAGE IS 
OE POOR QUAWTY 



1.0 

0.9 - e - 120 

0.8 - 
SAMPLE 

0.7 NORMAL 
REFLECTANCE INCIDENCE 

( ENERGY COLLECTED 0-6 ' 
ENERGY INCIDENT 1 

0.5 . 

0.4 - SOURCE 
CONE ANGLE -COLLECTOR 

0.3- SAMPLE CONE ANGLE 

0.2 - FIRST SURFACE ALUMtNlZEb 

0.1 
l-ml KAPTON-H FILM 
WAVELENGTH = 628 nm 

O o  
I I 

0.5 1.0 1.5 
COLLECTOR CONE ANGLE (DEGREES) 
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Figure 3.2-56 Simulated Solar Refkction From Aluminized Fibn 
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Figure 3.2-57 Reflectance V e m  Incidence at Four Wavelengths 
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Figure 3.2-58 Reflectance Loss Versus Wavelength at 60° Incidence 
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A m y  Trougb Szhg: In addition to  basic high reflectance ot  the reflector material, the diief 
requirement which the reflectors must meet is to provide * niform it1umimt;-;. of the active solar 

array. The trough must therefore be reduced in size as a function of the reflected ray beam width in 
order to  avoid nonuniform llumination a t  the edges. as shown in Figure 3.262. 

Rrdbctor Tcmpenturr Grdi tnt :  A further result of the reflected beam width is the illumination 
overlap a t  the trough corners. This overlap results in the reflector temperature profde shown in Fig- 

ure 3.243 which cpments a design requirement on reflector flatness 

Refkctor Membrasc Andysis: Ir. x i e r  to assess the biaxial stress required to maintain reflector 
flatness a membrane stress analysis was performed. Results of several identified design cases are 
summarized in Fijpre 3.2-64. The effect of the one meter deflection caused by solar pressure is 

shown on the following chart. 

Effect of lhin Fihn Concentrator Defamation on Local Solar Ftux: Data shown in Figure 32-65 
were calculated using the Boeing "Thermal Radiative Interchange Factor" program and demonstrate 

the focusing of the reflected light from the solar pressure deformed reflector. If the reflector were 

ideal then the local concentration ration would be un i f~nn  at 1.8. The ~lonuniformity shown would 
have a significant performance impact. 

Creep in -ton Refkctor: Kapion creep characteristics were found in iiational Bureau of Stand- 

zrds data which was used in calculating the creep characteristics shown in Figure 32-66. These data 

reyesent a considerably smailer design problem than eartier estimates that projected creep to con- 

tinue at the initial rate. 

3.2.7 Structures Adyses 

The structural analyses for Part I gave primary emphasis to development of credible structural mass 

properties to support the evaluation of alternate energy conversion and construction location 

options. Most of the cffort was aimed 3t the reference mncentration ratio 2 truss and at a concen- 

tration ratio 1 planar truss. Thew and other options are illustrated in Figure 3.267. 

The structural mass determined at the midterm s f  Par: I reflected a substantial increase over the 

JSC reference configuration. from 2500  metric tons to almost 15.000 tons. This was due to  a 

change from a three-tier structure (SPS built from 30-meter beams built from I-meter beams built 
from structural elements) to a two-tier structure (SPS built from ?@meters beams built from stmc- 

turd elements). The noncircular beam caps that wew shown in Figure 32-67 were used. The prifici- 

pal design load came frow providing the biaxial stress of 6.9 MPa 1OOO psi in the Kapton reflectors. 



Rrfbdrd my beam width causes 
d o w W t i o a a t - d r a _  

OS? SUNS BEAM WIDTH 

NOMECULARIN OF ALWlNIZED KAPTON - Q1° SATELUTE STEERING TOLE- - 
1.e TOTAL BEAM VWOTH 

S&AR ARRAY 
TEMPERATURE = 69@R 

SOLAR ARRAY a 

EMlSSlVlTY = 0.83 a 
0, 

FILM EMISSIVITY W 
P 

= 0.05 ALUMINIZE0 SJDE - 0.64 WON S~DE a 
a 
W a FILMABSO~VITY - a14 w 
t 
f 
=! 
Y 

ORIGWAL PAGE IS 
OF POOR Q U ~  

ALUMINIZED 

SOLAR 
ARRAY SIM 

DISTANCE ALONG KAPTON FILM (xm) 



CRELIMINARY RESULTS 
W psi &-AXIAL STRESS APPLIED IN ALL CASLS 
1/2 MIL KAPTION 

1000 pti BI AXUL STRESS 
APPLIED A DISCREET ATTACH 

k POINTS 
1 CWRESSIVE STRESXS 
1 REVERSE TO TE;USILE WITHIN 
1 .W OF EACH ATTACH POlNT 

INDICATING LOCALIZED 
I WRlNKLUONLY I 

DEFLECTION DOE TO SOLAR PRESSURE - USING 650 r 660 BAY SIZE = 1 METER 
-Q850~15Q NO DE.~LECTlO!U 

F~UIC 3.2-64 Reflector Maabrrae Andy& 

I 
FILM DEFORMATION = 1 METRE IN 650 METRES 
FILM ASSUMED TO BE PERFECT SPECULAR REFLECTOR 
ARRAY ABSORPTANCE 0.900 

YSTANCE FROM ARRAY EDGE - m 

3.245 Effect Of Thin Film Conctlbtntor Dtfomution On bed S o h  Flux 

180 



#O RAfXATION DEGRADATtOlY 

as ' 

a4 - 

48 - JO VEARS - 2 7  M CREE? 
1 YEAR - 1.6 M CREEP 
450HRS-OZMCRLE? 

a? - 

STRESS = 6.895 x lo6 ~ l i n ~  (1000 pril 
TEMPERATURE = *1( (T00 F1 

*BASED OAl INTERIM REPORT 2?!j.(K7@1. "WERIAAL-PHYSICAL PROPERTIES OF 
DACRON THREAD. MYLAR, AND KAPTOtd" PREPARED BY NBS. BOLOER. COLO. 
10302 JULY 1970 

F ' i  3.246 Calculrted Creep In Kapton RcflectoP 

REFERENCE TR 
WITH TRWGH 

OPTION TO ELIMI;;ATE 
SUPER STRUCTURE 

ALL B E ! !  ARE 20 M BEAMS 

L PUNARTRI~SSFORCR-IOR 
NClhl CONTIGUOUS ARRAY CR > 2 

~ E ~ A L  PAGE IS 
Q PooB q u ~ t l ~ p  Fin 3.247 Photovoltaic Structural Conccpts 



Subsequent t o  the midterm a more detailed analysis of the structure was conducted to reduct the 

mass. Three levels of biaxid stress were considered: 6.9 MPa (1000 psi), 3.9 Mpa (570 psi), ad 1.7 
MPa (250 psi). Material density data were reviiwed, resulting in a rebision downward by 122. The 
structure concept and load condition analyzed are shown in Figure 3.248. 

Assuming all diagonals are tension straps which are wrapped around the basic truss configuration of 

chods and battens, it follows that there is a precompression load in tt.: battens and a pretension 

load in the diagonals. If the pretensioc load in the straps is eqtia! to SK of the tension load, then it 

can be shown that after the concentrator fdm is stretched, the total tension load in one diagonal 

will increase, while the total tension load in the other diagonal will drop to zero. Likewise, the com- 

pression load in the batten will increase. 

The analysis proceedeS in three steps: 

1. Determine allowable long column stress and local buckling stress and the wstulting bean cap 

tube radius, thickness. as.! % a s  as a function of column load f i e  results are presented in 
Figure 3.249. There is substantial uncertainty in the Ictc-d bickling dress as the source data 

were for aluminu~n rather ,,,,n gaphi!e composite and exhitit sonsider;,le scatter at high 

va!!!es of R/t. Figure 32-70 shows the variation in tube characteristics with column load. 

2. Develop structural mass properties assumine no constraints on tube radius or thickness. 

3. Develop structural mas. properties for rcprexnrative size constrainij (0.254 m. radius and 200 
pm tkir-tness as minimurr gage). 

Table 3.2-1 1 is typical of the calculations used to  determine member mass, Figure 3.2-7 1 shows 

results. The upti,, :d tubes have a marked advar,~rtgt. over standarddiameter tubes and were 

selected. A11 the selected optimized tubes exceed the 200 pm minimum eage thickness. The reflec- 

tor was tensicned to 3.9 MPa (571) psi) and the structural bays had two intermediate members. 

3.2.8 Mam Roperites 

The mass pr.~perties analyses conducted in Part I were directed to developirg comparison data and 

therefore cx,luded common elements such as controls and the microudve p w e r  transmission 

system. 

The silicon mass data shown in Table 3.2-1 2 are reduced from our previous baseline prima~ily by a 

reduction in tolerances on the silicon cells themselves. (Previous values reflected 3 s;eclfica!ion or 
do-notexceed -,lass rather than an averagc or expected mass.) E ~ t h  silicon and (:ah have a 15% 
factor applied. The 75 pm (3-mil) covers and masses shown for silicon were -=a in all nonannealed 

cases while 50 pm (?-mil) was retainrd for annealed arrays. 
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COLUMN LENGTH = 78r (20 METERS) 
GRAPHITE TUBE 
PtNNED ENDS 
~ = 2 0 ~ 1 0 8 ? ~ 1  
DENSITY = .058 L B / ~ N ~  
UFS. = 1.5 

COLUMN END LOAD 1000 LB (LIMITI 
Fylre 3.2-70: Tube Radius, IhicW, 4 Weight Variation with Cohmm lad. 

(No Conrtraints on Tuk  Radius or ThiCLIKI) 

Tab& 3-21 1: Chord !&zing (No Constrrints on Tube Radius or 'ihicLnsr) 

v 
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Figwe 3.2-71 Stmcturil Weight Impact of Reflector Stress b v c l  

wsw6 
Table 3.2-1 2 Photovoltaic Blanket Weight Buildups 

srvco l lSabCclBlrnLet~ '~ t  
ITEM W N U W  TUICKNESS MU FACT00 

&G.) w r l l M 1 ~ 1  CILS, 'T"9" w m  I 

CQVERUUSEO SILICA 220 -08 
CELLS - tlLl#)ll 23s 59.94 
W ~ E R C O U W E C ~  - COPPER 001 2m.w 
IIIC~OS~IIG FILM - IWTON. 142 not 
WlUVE, CELLS TO FlLM 1 .40 %66 
rPntmvE, W T O N  lo rmon 1.40 - 

TMEORETRAL I l f iGMT 424.w4n.sa 

 TOLE^ U)#S b INSTALLATION (16%) UIUI~ w 
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lNlERCOllNECT fYbUueOlMlucn W Y U U  

C.k Sobt Cell BhnLct W w t  
COVERS - FUSED SILICA 220 65.00 LQO 0161 107.a 
CELLS - U h3i 1x13 0.40 8.- U 2 1  
IUMTRATES - TllANIUM 4.50 1 I C P  0.50 0.m 65.21 
INTERCO~NECT s - COPPE- RW zz7.u 0.50 a m  ~2.71 
(;V1ORTIhG FILM - KCSIdN* 1.42 %.Ct 1.00 Qm0 32.U 
ADHESIVE. SUOSTRATE S TO FILM 1 .*O 36.50 OW am0 1COQ 
ADHESIVE. W T O N  TO U U T O h  1.40 W QIOO 14.22 - 

TNEORE~IUL l ~ ~ n  
2 M I S  COVER 

TOLERANCES L INSTALL %'all (IS%) a 1 3  
1 MIL CELL & LUUTRATE - 

ELTIMAT- 'ACTUAL WEW? S h O  

a MIU UIET 6 UE~~~CQWUICT n ~ALLIUU miwrn OAY 
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'Ihe mass summary shown in Table 3.2-13 recovers a substantial amount of the 44% midterm 

increase. The four major mas contributors in the energy collection sys.em were all addressed t o  an 
aait ional  level of definition resulting in decreases to structure and array and increase to  the reflec- 

tors and power distribution. 

This mass statement includes !he 50% growth allowance used in the JSC reference configuration 

definition, for comparison purposes. Mass datz shown elsewhere in this document do not include a 

growth allowance. Included in the Part I1 effort will be a mass uncertainty analysis and a recom- 

mended revision to  the mass growth allowance. 

3.2.9 Payload Packaging 

The goal in packaging SPS components is to have each Earth launch be mass rather than volume lim- 

ited and therefore result in the least possible number of launches. Various options in terms of the 

payload mix on each launch and the payload design approach are possible. 

In the case of the payload sl~roud, recoverable designs are desirable since an expendable shroud 

sued for mass limited payload flights may be quite long (40 meter for low density payloads) and 

cost approximately C,? million. The maximum length of shroud assumed for a recoverable design 

when used with a two stage ballistic/ba!listic launch vehiclc is 23 meters with a diameter (usable) of 

17.2 meters. The launch vehicle p lyload capability w ~ s  400.000 Kg; a payload density of 70 ~ g l r n 3  

would fill the specified payload shroud. 

Photovoltaic sate:lite components were found to have densities far gra ter  than the shroud paylo~d 

density of 70 and therefore result in .nass limited flights. The assumed component density 

and number of launches for the major components making up a 69 million Kg satellite (excluding 

MPTS) are shown in Table 3.2-14. 

Payload shroud volume utilization by representative photovoltaic components is illustrated in 

Figure 3.3-72 fur the case of the 23m recoverable shroud. Again, tl .j shroud length was initially 

assumed because of the 20m segmented beam design and the desire to have reflector widths as large 

as possible to minimite the number of the oworbit attachments. As indicated by this simple illustra- 

tion, a low utilization factor exists and future work cot~ld consider shorter shroudlengths. 



Tabk 3.2-13 PbotodtJc Refe~cna Coftfburtion N o m i d  Mae !hmmaq W t d t  in Metric Torrs 

Tabk 3.2-1 4 Photovoltaic Packaging 
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3.2.10 Reliability and Maintainability 

A reliability and maintenance assessment was conducted for the two reference satellite systems 

(silicon photovoltaic and Braytcn thennal cngine). The assessment is limited to  the power genera- 

tion and distribution systems since they cause the major differences in maintenance concept. Reli- 

ability data was obtained from Boeing's Experience Analysis Center and preliminary work started t o  

determine expected Ll.are rates. Failure data indicates that a considerable. continuous, mainte- 

nance effort will be required t o  maintain either satellite in operation with the goals of a .95 power 

output while available. Preliminary results are as follcws: 

The large nurnbrr of solar cells on an SPS ( 1  4.5 x 1 o9 is typical) leads to a potential reliability prob- 

lem even though the estiniatcd MTBF per cell is also large, i.e.. lo8 hours. 0 . x  the 30-year life of 

the SPS, approximately 3.6cb of the cells would be expected to  fail. This is not of itsett a very sig- 

nificant value: the problem arises because of the lengthy series-parallel strings. Four paralkl x 130,000 

series. I f  any two cells out any foitr-pardllel set fail. the :rmsining two cannot carry tne string 

current As the string current 4rops. its vcjltage will rise ~ n d  the delta voltage appears a c r x s  the 

failed point. The probability of a two-ce!l-in-parallel falluri. somewhere in the string is quite large. 

This problem carr be corrected or minimized by pardlleling Idrger numbers of cells. c.g., i O  instead 

of 4, and by d ; A e  shunting. l'liese measures were adopted for the Part I1 photovoltaic SPS designs. 

The analysis tasks conducted were: 

1 .  Identify subsystem configurations of baseline satt:llites. tiown to the line replacrahlt. unit 

(LRU). including a parts count of lower levei 

2. From historical data and considerations of application. determine failure modes, maintenance 

requirements. and mean time bcrween failure (MTBF) or mean time between main'enance 

(MTBM) data Sol cach yrirt. 

3 .  Compute h i l i~re  rates and maintenanci. rates (rcpa~r ratcs) for each part or  subassembly. 

Determine powzr lost due to  failure or  maintenancc. 

These were completed for the satellite configurations identified a t  the Part I Milterni Briefinr. 

Corrections t o  systcni dcsigns wcre incorporated as a result of :his ana!ysis to r e d u ~ e  the impact o: 

maintenance problems identified. 
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Table 3.2-15 shows the results of these tasks. The last co lun~n identifies the average power lost due 

t a  the failure and maintenance. The MTTR col:~nln data is primarily based on data obtained from a 

survey documented irl "IEEE Transactions on Industry Applications." The survey report was 

skrted in Vol. IA-lO,h02, MarchIApril, 1974, in ap article entitleri "Report on Reilability Survey 

of Industrial Plant:." The M'I'BF data was obtained from our  Experience Analysis Center, MIL- 
HMBK-217B. the above lEEE Report, and other industry artic!es used to  confirm the validity of 

data. ' h e  maintenance co .:pts, Iljgistic colicepts, and maintenance cquipment can be used as a 

basis for operational nmin t~,iance and logistics requirements defiriition. 

The utility industry expended approxin~ately 6% of revenues for ~~~rr in t rnance  in 1974 and 6.8% in 

1973. Of this maintenance expense approximately half was charged t o  the gcneraiion plants. The 

remainder of the maintenance expenses are charged t o  power transmission and distribution system. 

Surveys of nuclear plant availability have shown that availability increases from approxinr,.itely 60% 

to  85% 7c-;~thin a six year period after the plant is first brought on line. This is due to  an effort 

towards the improvement of avai!abilitp and the overcoming of infarlt mortality failures. 

A review of the IEEE reliability survey, mentioned above. was conducted by one of the IEEE sub- 

t.ommittee members. HIS review indicated that the following 4 items contributed t o  a very large 

percpntage of plant failures (-. 50%). 

2 .  Application engineering, improper application 

3. Inadequate installation and testing prior t o  startup (proot ?:st) 

Table 3.1-16 prcserits a summary of  the l i is tor i~~il  data reviewed in order to  m ~ ~ e  these predtction;. 

3.2.1 1 CPC Coscentrator Performance 

Threedimension~l comp8xind parabolic concentrators (CPC's) belong t o  a class of reflective optical 

concentrators introduced hy Wins t~n  and co-workers at Argonne Kational Laboratory In 1974. The 

stirface ecometry of  these conccatra~ors is achieved by translating and rotating the axis of a para- 

bola relstlve to  a s i o s~s~ :~ : ed  npticdl axls and then rotating the sk:wed parabola around the optical 

axis t :, foml a 3 ~ ! r f ~ ~ .  (;i rt.voltion as shown in Figure 3.2-73. The arigle between thc optical axis 

and parabola axis is c;l!!~d !hrb 3il.t'lTt;ltl~e half-angle Oc. 
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Table 3.2-1 6 Continued 
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PARABOLA ' I 

ROTATE SKEWED PAR- 
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Figure 3.2-73 CPC Surface Generation 

CPC's represent an alternative means for concentrating solar energy on photovoltaic arrays. Boeing 

developed a concentrated SPS photovoltaic array concept using CPC's under contract NAS 8-3 1628. 
In the current study. an evaluation of the performance of CPC's was prrformtd. In particular, the 

following questions were answered t o  help determine the advantages o r  disadvantages of CPC's com- 

pared to more conventional "V" ridge concentration concepts. 

1 .  What is the off-axis performance of three-dimensional CPC's? 

2. How does the choice of acceptance half-angle, Oc, affect CPC performance? 

3. What is the distribution of solar flux over rhz concentrator receiver area? 

4. How is the geometry of the CPC affected by acceptance half-angle? 



A MonteCarlo ray-trace computer program was modified t o  accept the CPC geometry. The nominal 

angle between the CPC optical axis and rays entering the aperture was specified along with the dis- 

persion angle between rays (0.5 degrees for solar flux at Earth orbit). 

Other input variables were CPC acceptance half angle 82, concentration ratio and receiver diameter. 

The program computed the distribution of flux on the receiver area, and average number of reflec- 

tions experienced by all rays reaching the receiver. 

Computed off-axis performance of a three dimensional CPC with a concentration ratio of 6 is 

shown in Figure 3.2-74. The total energy loss is broken down intt) cell reflection loss, mirror reflec- 

tion loss and rejection loss. The cell reflection loss accounts for the fact that 10% of the energy 

reaching the cell was reflected. Mirror reflection loss arise from the absorption or  solar energy by 

the CPC reflective surface. In this particular case. it was assumed that 15% of the solar energy inci- 

dent on CPC surfaces b a s  absorbed and 85% retlected specularly . Rejection loss accounted for 

energy which was reflected back out of the CPC aperture after several reflections from the CPC sur- 

face. This rejection loss would occur if the CPC surface were a perfect reflector and the receiver a 

perfect absorber. At high off-axis angles. the amount of e n e r g  reflected back out the aperture 

became significantly large. A rule of thumb for estimating the off axis performance of CPC's is that 

rejection loss 1s only a few percent until the angle between the optical axis and incident rays approaches 

the acceptance halt angle. 

A comparison of off-dxis performancr of C'PC's with :-lo ~ n d  l l .SO acceptance half-angles is pre- 

sented in Figure 3.2-75. Concentration ratio is 6 for both options. H'herc the angle between the CPC 

optical axis and incident rays was small. total performance of rtir 1 1 .So acceptance half-angle CPC 

was greater than that of the 24O half-angle CPC. The perfc;rmance of the 1 l.SO acceptance half- 

angle CPC dropped off steadily at off-axis angles in excess of #' while the 24O acceptance half-angle 

CPC performance remained essentially constant out to an off-axis angle of 16O to 20° and then 

decreased rapidly. 

Figure 3.2-76 shows a typical predicted flux distribution on the receiver surface of a concentration 

ratio 6 CPC for a zero degree off-axis angle. Local concentration ratio. from the receiver centerline 

out  t o  3 0 7  of radius, was constant at 0.9. This area received only those rays which entered the 

aperture and intercepted the receiver with no intermediate reflections from the CPC walls. Energy 

reflected from CPC walls fell in two distinct rings, one centered about a radius ratio of 0.6. and one 

at the outer radius of the receiver. 

The re!ationship between CPC depth and acceptance half-angle is shown in Figure 3.2-77 for a con- 

centration ratio 6 device. Transaction of the CPC produces a shorter and therefore lighter device, 

however. off axis performance is degraded as was shown in Flgure 3 .2 -75 .  
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3.3 Thermal Engine SPS Configuration Analyses 

This section of the Part I report covers the thermal engine options. There are three varieties: ( 1 )  

thermionics, which is a type of  non-mechanical engine that works on thermodynamic principles, 

(2) gas cycle, and (3) Rankine vapor cycle. 

In Part 1, several key problems and issues were addressed: on a system involving plumbing, pumps, 
valves, and rotating machines, reliability and maintenahlee is an importal~t question as is the defini- 

tion of cycle state points. Power generation module size was also addressed. Going from 4 to 16 

modules, for example, actually turned out t o  make the system lighter. We have consistently endeav- 

ored to  reduce the mass of the system. We have carefully looked at what materials we use, as regards 

costs, and to the general availability o f  reserves, etc in the thermal engine system, up t o  this point, 

we have used ~eflectors made up of a large number of individual facets, which must be pointed. We 

analyzed the impact of flying a thermal engine satellite module by self-power from low orbit to  geo- 

synchronous orbit, and what must be done to the module in order t o  acconlplish that. And we con- 

sidered what must be don2 with thermal engine component designs to package them into the launch 

vehicles. We had to make some design adjustments in this area. 

Principal thermal engine results were as follows: Three options were recommended for rejection. (1) 

the thermionics SPS system continued to  show total masses approaching twice tho:: of Brayton, 

potassium Rankine, or s;!ican photovoltaic. (2)  Organic Rankine is temperatur- limited by pyrolysis 

of the material such that good cycle efficiency cannot be obtained at heat rejection temperatures of 

practical interest. (3) Steam Rankine is not temperature limited by water decomposition but the 

themlodynamic properties of water are such that condensation must taKe place at lower tempera- 
tures than desired. A steam cycle operated at the minimum mass statepoints would be almost a 

steam Brayton cycle, with no advantages over helium Brayton. 

The Brayton and potassium vapor Rankine cycles are quite attractive from the mass and cost stand- 

point. Costs for these options are quite comparable and were based on industrial turbogenerator 

experience. 



Carap',ilPI design solutions were developed for d l  o f  the major system elements. The general 
m a  of the thermal engine W s  was signif~1~ltly niodifjdd to enhxe  constwhbility. This 
iaduded reducing &e module size f m  about 4000 megawatts to about 1000 megawatts (onboard) 
output and &&ng to a simpler m e u t n t o r  geometry. 

Wtiv i ty  analyses were conducted on Brayton and Rankine turbine iniet temperatures. The semi- 
tieity was small enough to merit consideration of lower temperatures for develophentill systems; 

this could ~oduce development cost. 

The three types of thermal engines hart common subsystem dements as indicated by Table 33-1. 
For example, a r e k t o r  (the o p t i d  conctntrator) is ueed by all candidates. The cavity absorber is 
rtso common. as is the use of graphitetpoxy structure th-wt, and the use of heat pipe radi, 

toas. The themionic system does not usc pumped fluids in th5 radiator; localized heat pipes are! 

used irstead. Turbo generators are not required in the thermionic system; however, it is necessary to 
usc motor generaton to  step up the low voltage DC oztput of the thermionic diodes to high voltage 

DC. Therefore, the thermionic system has rotating components also. 

Subsystems analyses are described primarily in terms of the Brayton reference systems; these results 
w m  a h  arptied to the other options. 

33.1 SoQr Brayton Cycle SPS 

The simplified &ematic shown in Figure 3.3-1 illustrates the fundamental elements of the Brayton 

SPS. 

The solar concentrator reflects and focuses highly concentrated sunlight into the cavity absorber 

aperture. The cavity absorber is an insulated shell lined with heat exchanger tubing. Helium gas 

flowing through this tubing becomes heated (simultaneously preventing cavity over heating). 

Hot helium expands through the turbine, doing the work of turning the compressor and the gener- 

ator. Thc compressor forces the helium flow around the cycle loop. Minimum gas temperature 

cccurs at the exit of the cooler. which is a gas-tdiquid heat exchanger interfacing the helium loop 

to  the radiator system. The recuperator is a gas-to-gas heat exchanger which inmases the system 

efficiency by exchanging energy between the "hot" and "cold" sides of the cycie. The recuperator 

causes the average turbine temperature to be higher and the average compressor temperature lower 

for given maximrim and minimum cycle temperatures. 

Waste heat is rejeztcd by a liquid metal radiator system. The working fluid is a solium-potassium 

eutectic (NaK). NaK pumping is by a motor/pump system drawing power from the generator. 
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33.1.1 -tiol € & h a  

Seren changes from previous study d t s  were introduced as foilom: 

1. Tat JSC MlT3 was d, with t m  S C W  trzrsmitters supplied at 40 000V. 

2. lk.rrct current powe distribution ( d t e d  from this change). 

3. Gnphite epoxy structure o, as employed. 

4. Beun builders were assumed for structure fabnation. 

5. The SPS was sized for asmage :fitcdve insuhtion. 

6. Refkctor deqradatioa data were inco~iporated. 

7. Hardwa~e was sized for shroud of twostage b ~ i c f b ~ t i c  HLLV froilgh)y 17m dia by 25m 

h). 

The ground output remains at 10 GW, but is now divided between two transmitters. nese are 
Klystron type, at 39,000 i-olts ds. As a result, the SPS i less massive with a d-c. power distribution 

system - 

The structure system baselined is graphite epoxy. Triangular beams are fonned in orbit, from canis- 

t en  of flai parts, wing "!mm machines." The system is sited to provide an annual output 

of 10 GW despite variations in solar iilumination (induding occultation). System sizing ako includes 

allowance for radiation induced depradation of the plastic film reflectors (using test data from pmj- 

ect "ABLE") AIl hardware must also be :rrmsportabk within a 17 meter shroud diameter. 

The initial configuration resulting from these changes is shcwn in Figurc 3.3-2. 

The reference SPS was flown perpendicular to the orbit plane-rather than directly faang the sun. It 
maintained a horizontal attitude with respect to the Earth's equator below. This attittde awids the 
persistent gravity gradient torques that would result from directl;. faang the sum. and reduce- con- 
trol problems and propellant expenditure. As 2 result. the suniight incident on the satellite varies 

wasonally with direction. as shown in Figure 3.3-3. There is. associated with this apparent motion, 

a concentrator performvlce loss of several percent. 

By rolling the satellite 1800 about the axis to the sun at each equinox, the apparent motion of the 

sun could be halved 3s illustrated in Figure 3.34. 





.a- - --- - -= - .. - 

mu- 
- - '.. mil* 

~~2 



-IN& PAGE lS 
OF POOR QC'ALITY 

F e  3.3-2 G d  -t-Sok Power Sate#ite S o h  Bnyton 





The apparent solar motion with respect to the tilted solar concentratordishes is only + and -1 1.740 
shown in Figure 3.3-5. 

If the roll motion is accomplished by thrusters near the antennas, only 50,000 kg of propellant 
wouid be required at each equinox for a specific impulse of 10.000 seconds. If the tips are to see no 
more than 0.001 G (0.00982 m/sec2) four hours would be required for the roll maneuver. 

An alternative approach yielding higher efficiency would be wticulation of r:~e four dishes, which 
would then be constantly adjusted to face the sun (roll would not be required). 

The tilt and roll maneuver increases annual system efficiency about 7%. Articulation would yield a 
total improvement of about 10%. 

The general arrangement of the resulting CPS configuration is shown in Figure 3.3-6. Modules are 
attached mechanically at three points: two apexes of the concentrator "dish" and the end of the 
bbspme." 

The four modules are each mounted with an 11.74O tilt with respect to the long axis. Note that 
antenna mounting is at the apex of the hexagond concentrators rather than at the center of an 
edge. This allows power distribution down a cavity absorber support arm. Thus the north-south axis 

of the SPSis not parallel to the spine. 

The construction concept selected for the photovoltaic SPS designs in effect "extrudes" the satel- 
lite. The initial concept for construction of the four module thermal engine satellite involved a small 
facility surrounding the cavity absorber and "free-form" construction of the solar concentrators. 
Construction equipment moved about using the SPS structure as support. A "facilitized" construc- 
tion concept for the thermal engine "dish" concentrators was developed. While the concept appears 
feasible it does not appraoch the simple "extrusion" concept. 

Therefore, ihe thermal engine SPS configuration was revised to permit "extrusion." One module of 
such a satellite is shown in Fig. 3.3-7. As with the previous hexagonal dish configuration, a "halo" 
radiator surrounds the cavity absorber, which is mounted above the solar concentrator by two s u p  
port arms. The solar reflector facets are arranged in the form of a trough; the trough is a straight 
line along the north-south axis of the satellite and is parabolic in cross section. The north3outh 
dimension of the module is 0.707 of the width of the trough; looking down on the module the facet 
area wouM be seen to be circular except for the straight portions at the north and south ends. 
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Whik better suited for construction, this concept will not have the optical efficiency of the dish 
~~. Thc e f f i c y  dative to the 1.0 of a perfect circular parabobid is expected to 0.92; 
the prrtriouo hexagonal dish efficiency was 0.96. In the hexagoral dish the facets were ananged with 

a just enough to preclude tnecbnical interferenac. In the hwgh arrangement tbe f a t s  
uader the cavity can also be dose together. At the north and south edges the facets must be titted 

d spaad apart to prtvent shadowing The antishrdotwing gaps between f a t s  are now estimated 

at 16% of the retkctor area. Thus the concrntntor structure is increased 16% m area over hex- 
nd dish. but the facet area is increased mly 6-38. 

At the time this change was made, the module size was also reduced, therefore. requiring a total of 

16 d u i e s  to obtain the required total output. Such a system wiry the "trough" conapt kcribcd 
rbovr is shorn in Fi's 3.38 and 3.3-9. Six modules a r  arranged dong the north-south axis, with 

the transmitten mounted at each end. Dree power diaribution "spines" interconnect the modules 

d antennas. 

This crxlfmtion provides two benefits in addition to constructability: 

The module size is appropriate to a pilot plant; 

An entire module can be shut down for servicing of machinery without excessive impact on 

plant output. 

Bnyton cycle analysis employed a hierarchy of manually-interfaced computer models initially 
developed during an earlier study. The overail modeling approach is diagrammed in Figure 3.3-10. 
Concentrator-absorber and rzdiator models and analyses are described under sections 3.34 and 
33-6, rcspectivelr. Cycle analyses were conducted over a range of temperatures. Results are 
in Fires  3.3-1 1 and 3.3-1 2. Table 3.3-2 summarizes state points for the Brayton system at two 

representative temperatures. 

To facilitate the evaluation of intercooling and reheat as potential performance improvement 

features for t3e closed Brayton Cycle a simple efficiency prediction technique has been developed 

which closely approximates the more detailed complS?er analyses. In this technique the cycle em- 

ciency is calculated by: 



where: = Efficiency factors of bearing lass & turbine disk amling = 0.98 

T = Turbine efticiency = 0.920 

ER = Recuprator effective- = T2 - T1 
T4 - T I  

To = Cooler gas outlet temperature 

T 1 = Compressor outkt temperature 

f 2 = Cavity heat absorber inlet tempxatur~ 

T3 = Cavity absorber outlet temperature 

Tq = Turbine outlet temperature 
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Reheat is the use of two turbine sections with two heat exchanger assemblies in the cavity. After 

turbine expansion of gas heated in one heat exchanger the flow reenters the cavity for further heat- 

ing in the second h u t  exchanger and is then expanded through the second turbine as shown in Fig- 
ures 3.3-13. Intercooling is the use of two compressor sections and two coolers (gas-tdiquid heat 

exchangers interfacing the gas flow t o  the radiator system). 

After passing through one cooler and compressor, the flow is cooled again (heating occurs during 

compression) and then passes through the second cooler and second compressor. The net effect is to  

increase the average cycle temperature ratio, which tends to  increase cycle efficiency. However, the 
radiator mean heat rejection temperature reduces, so that there is less heat rejection per unit area. 

Higher efftciency means less heat to reject, however a prelimirlary analysis was performed t o  deter- 

mine that reheat may offer net mass reduction sufficient to  warrant the additional complexity as 

noted in the Figure. 

33.2 Rankine Cycles 

3 3.2.1 Rankine Cycle Screening 
This section describes the results of a preliminary evaluation of Kankine thermal engine concepts. 

Liquid metal organic and steam Rankine cycles were investigated, and their performance, size and 

mass characteristics were compared with the Brayton cycle reference system. 

The objectives of this study were to  identify thermal engine energy conversion options for the Solar 

Power Satellite (SPS) and perform a series of screening tests to cull out concents that fail to meet 

minimum performance, mass. and cost criteria. Evaluation data were develcped for concepts which 

successfully passcd through all screening tests. The results of this study provide a quantitative 

comparison of the perfomnnce, mass. and cost characteristics of thermal engine energy conversion 

concepts for generation of ele~:~r!:~a! power in space. 

Specific thermal engine concept investigated in this study were the following: 

1. Basic Rankine cycle 

2. Regenerated Rankine cycle 

3. Regenerated Rankine cycle with reheat ORIGINAL PAGB Is 
OF POOR QUALITY 

4. Rnnktne cycle with steam extraction feedwater heating 

Schematic diagram of these cycles are shown in Figure 3.3-14. Three working fluids: potassium, 

organics, and water, were studied. 



D 1 80-20689-2 
BRAYliCMl+ REHEAT 

a With mhc8t. turMite erhrurt Ir rpp%d te rrothw 
cavity 8bdOrbCt 8ccDJon 8 d  fscR p.wd t h r o e  
a rcrond turbine. 

With nw mvprrtor ?If- &tor 
ltlapnturc inmasea 

Figure 3.3-13 Reheat Could Reduce System Mass Approximately 7% 
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A four-step screening process was adopted to identify viable thermal engine coticepts. The screening 
process steps atre shown in Figure 3.3-1 5. Parametric cycle performance data was developed for dl 
candidate cycles. Figure 3.3-16 shows a typical set of performance data for steam Rankine cycles. 
The thermal efficiency of each candidate cycle was compared with the efficiency of the Brayton 
cycle baseline system. Concepts exhibiting efficiencies greater than 45.6% were passed on to  the 
next test. First order mass estimates were made for concepts which failed the performance screen. 
If the concept was found to be competitive with the Brayton system on the basis of mass, regard- 
less of lower cycle efficiency, then it too was passed on to the next screen. The potassium Rankine 
cycles, for example. exhibited thennal efficiencies between. 27 and 32 percent, well below the 
Brayton cycle value. However, they were found to  have approximately the same mass as the Brayton 
cycle, in a large part due to smaller radiators, and were therefore advanced t o  the next screening test. 
Concepts which failed both the performance and massestimate screening tests were the organic 
Rankine system and basic steam Rankine system. 

In the second screening test, candidate concept having peak cycle temperatures in excess of 16440K 
were discarded. Low pressure steam Rankine concepts weze dropped from further consideration at 
this point. 

Mass models of major energy conversion system components were developed for cycle concepts 
which successfully advanced through the peak temperature screening test. The energy conversion 
system was defined as consisting of the solar concentrator reflector facets artd structure, cavity heat 

absorber assembly, regenerator/cooler, turbomachines, and main radiator. Mass models were 
developed for radiators, heat absorbers, regenerators ;lnd turbines. Solar concentrator mass was 
assumed to vary with cycle efficiency according to the expression 

where Mi = solar concentrator mass of candidate system 
Ni = cycle efficiency of candidate system 

MB = solar concentrator mass of Brayton baseline 
NB = cycle efficiency of Brayton baseline 
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The m v e n i o n  system mas of each candidate cycle conap t  was calculated and compuod with the 

mass of the Brayton cyck conversion system. High preaurr steam Rankine cycles, both regenerated 

and regenerated with reheat, were found t o  be more massive than the Brayton cycle baseline md 
were consequently dropped from further consideration. In the case of the steam Rankine cyck 

options. radiator and turbomachinery masses were significantly greater than the companding 

components of the Bnyton cycle system. Radiator mass for the 14220K potassium Rankine cyck 

was one-third that of the Bnyton cycle radiator. however. turbine and solar concentrator mass were 

so great that this advantag was lost. High turbine mass was caused by l a m  wheel diameters and 

luge number of stages necessary t o  expand through an 80: 1 ratio. 

Tht large number of stages and great difference in wheel size between high and low pressure ends crf 

the turbine necessitated a design consisting of a high pressure section with its own shaft and housing 

plus two low prenure sections each having separate shafts and housings. This design was essentially 
three separate turb<wnac?ines with associated interconnecting ducting and controls. The 14220K 

potssium Rankine system was more massive than the reference Brayton system but was retained 

for comparison with lower temperature Brayton systems. 

The potassium Rankine cycle with 1 W K  turbine inlet temperature was the only thermal engine 
option for which initial and operating costs were projected to  be approximately equal to  Brayton 

system costs. Hence. the 1 W K  potassium Rankine system was passed through the find screening 

test and therefore was considered as a viable alternative to  the Brayton cycle concept. 

Table 3.3-3 summarizes performance and significant thermodynamic \3iiables for candidate energy 

conversion concepts. Cycle efficiencies of the potassium Rankine options were sacrificed in order to 
'keep the low pressure stages of the turbines from growing to  ufiiractable dimensions. S t e m  Rankine 

cycle efftciencies ranged from 32 to 42%. however efficiencies in the high end of this range could 

only be achieved at high turbine inlet temperature or  pressures. 

Effective temperature. heat rejection. projec:ed area, and mass of radiators for candidate thermal 

engine options are compared in Table 3.34. The common denominator for each option in this 

comparison is equal system power output. Differences in heat rejection levels are due to different 

cycle efficiencies. Projected area is influenced mainly by effective radiator temperature and heat 

rejection level according to the relationship. 

where Q = heat rejection 
T = effective radiator temperature 
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!bed significant resuits are presented in this comparison. First, an alternative radiator m c e p t  

utilizing water as a transport fluid was found to  be competitive, from a mass stadpoint ,  with the 

baseline KAK radiator for the Bnyton cycle system. The radiator receives an 52S°K mixture of 
s t u n t e d  liquid a d  vaporired water from the helium coder. As the mixture flows through the 

radiator, it condenses at an almost cocstant temperature of 52S°K. Downstream of the point at 
whicb the vapor has completely wndensed. the radiator tempmture decreases in a normal manner. 

Radiators for potassium Rankine cycle options were significantly less massive than Brayton cycle 

radiators. This was largely due to  the higher heat rejection temperatuns (837QK vs 4760K) chosen 

for the potassium Rrnkine cycles. The least massive radiator designs were those utilizing the potas- 

sium working fluid as a heat transport medium. The potacsiutn was assumed t c  enter t k  designs 

as a saturated vapor ar?J exited as a saturated liquid resulting in a uniform temperature radiator 

which operated at the maximum heat rejection temperature possible for the cyde. Utilization of a 

nonmndecdng fluid such as KAK to reject heat from the Rankine cyde options results in iower 

effective radiator temperatures and consequently larger areas and more massive radiators. 

Steam Ranhi# cyde radiators were two to three times more massive than the Brayton cycle base 

line ndiator. This was mainly due to  the low k t  rejection temperatw necessary t o  achieve cyck 

efficiencies which were approximately equal t o  those of the Brayton cyde. An additional limit on 

condensing water radiators was the sharp increase in pmsure with increasing temperature for the 

vapor-liquid state. Thus. as radiator temperature was increased manifolds. headers. and tubing 

became heavier due to increasing pressure. 

The results of cavity heat absorber mass predictions are presented in Table 3.3-5. The facton having 

major influence on heat absorber mass were fluid templratulr and preswre. Absorber tube wail 

thickness was determined by stress level and the crcep rupture strength t o  the wall material. Massive 

absorber assemblies resulted from a combination of high fluid pressure and degraded tube -dl 
strength due to elevated temperaturn. Convecti\*e heat transfer ct::fficients between the working 
fluid and absorber tube wall also influenced heat absorber system mass. Absorber tube length varied 

inversely with heat transfer coefficients and consequently heat absorber mass was lzss for systems 

in which high heat transfer coefficients were maintained. 

CRElNAL PAGE IS 
O P O O O B Q U ~  





The potassium Rankine system with 1422OK t h i n e  inlet temperature had the lowest absorber 

mas of all systems considered. This was due to a combination of low ( 1 4 2 2 ~ ~ )  peak temperature 

and low working fluid pressure (1.1 Mpa: 200 psia vs 3.5 Mpa; Soc psia for the Brayton baseline 

system). The sensitivity of absorber mass to  pressure and temperature is demonstrated by a five-fold 

increase in absorber mass w h i d  resulted from ar, increase in potassium saturation temperature from 
1422OK to 1 6M°K. 

A comparison of conversion system mass for five candidate thermal engine options is summarized in 
Table 3.3-6. The masses are clustered into two discrete groups. The potassium Rankine options and 

Bnyton baseline concept masses are grouped at about SO x lo6 Kg while the steam Rankine sys- 

tems fall in a ~ g i o n  beyond 100 x lo6 Kg. The major contributors to  convenion system mass of 

the potassium Rankine options were the turbines. while radiators were by far the most massive ele- 

ment of the steam Rankine systems. No cooler weights 3re shown for the Rankine cycles because 

the cycle working fluid was utilized as the radiator fluid thereby eliminating the need for a heat 

exchanger. Both potassium Rankine cycles and the 81 1°K turbine inlet temperature steam Rankine 

cycle were designed with the turbine expansion process terminating in the two phase region. Hence 

there was no temperature potential for regeneration in these cycles. 

33.2.2 P o W u m  Rankine Cycle 

The following mria; vapor Rankine cycle analysis was provided by General Electric under 

subcontract. 

The alkali metal Rankine cycle provides a thermal energy conversion system operating in the tur- 

bine inlet temperature range from 2 1 0 0 ~ ~  to  2500°F and a heat rejection radiator temperature of 

1 100°~.  Compared to  the Brayton cycle, the system utilizes a low power liquid metal pump rather 

t h a ~  a compressor to  transport the working fluid and does not utilize a high temperature recupera- 

tor. Heat can be directly rejected from the system in a condensing space radiator without the 
requirement for an intermediate heat exchanger vr cooler. Each turbine system consists of a high 

pressure double flow turbine and two low pressure double flow turbines. 

The cycle is diagrammed in Figure 3.3-1 7 

A broad spectrum of materials evaluation and component design. development and testing exists in 

alkali met11 Rankine cycle technology. Prior efforts for small scale nuclear power applications in 

space provided the background from which to  consider Solar Power Satellite applications. The 

following items are highlights from these programs: 

10 years. S24M prior space power program 
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a 800,000 hours alkali metd tliling/condensing testing 

a Refractory alloy p r o c w  torming, machining, & welding established 

a Alkali metal purification, analysis, handling and control established 

a Materials compatibility in alkali metals determined 

a Alkali metal bearings and bearing materials investigated 

a EM boiler feed pumps operated 10,000 hours at 1000"~  - 1 WF 

Dump tanks. gettering systems, valves, oxygen meters, etc. evaluated 

a 450 KWe potassium turboalternator designed for space 

A significant amount of boiling-condensing test experience has k e n  developed in several organiza- 

tions on potassium and. to a much lesser extent on cesium. The effort has included large amounts of 

work required in establishing materials compatibility. materials processing methods and the neces- 

sary controls on alkali metal impurities necessary for satisfactory operation of larger scale facilities. 

Much development work has been done in subsystem loops to establish heat transfer data or to con- 

firm the design and operating characteristics of various components such as liquid metal bearings, 

valves, pumps. scales, etc. Testing experience is summarized in Table 3.3-7. 

Many hours of test data hake been accumulated on "once-through" potassium boilers in the tem- 

perature regime from 1400-2200°F. Correlations of heat transfer and pressure drop data have 

covered : 

Liquid phase heat transfer 

Nucleate boiling 

Fiim boiling 

Critical heat flux 

Vapor superheat 

Typical correlation data are shown in Figure 3.3-18. 

A valid basis of heat transfer data exists for design of aikaii metal Rankine cycle components. 
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Hydrodynamically lubricated pivot pad bearings were developed and tested under load at tempera- 
tures in the 800-1000°F range in liquid potassium for hundreds of hours. The stability of hydro- 

dynamic bearings and shaft assemblies were also evaluated in many fluids as a means of developing 

b r i n g  stability prediction criteria. The technology of alkali metal bearing also included extensive 

work on the characterization of potential alkali metal bearing materials such as refractory alloys and 
metal-bonded carbides, particularly in friction and wear characteristics under vacuum and liquid 

potassium. 

Testing of alkali metal rotating seals were also undertaken in the test facility. 

Liquid potassium flow control valves were designed, built and tested under intermittent actuating 

conditions for 5000 hours at a temperature of 1 9 0 0 ~ ~  without sie'ting or  deterioration. A p p m  

priate selection and integration of materials in the design assured reliable operation in both alkali 

metal and space environments at these high temperatures. 

An electromagnetic boiler feed pump, capable of operating at a liquid metal temperature up to  
1 400°F, was designed, built and tested for 1 0,000 haurs pumping potassium at 1 OOOOF and at flow 

rates up to  3.25 lb/sec. The pump featured a T-I 1 1 alloy helical pump duct and a high temperature 

stator with a 1000°F maximum operating tetnperature; the stator materials consisted of Hiperco 27 
magnetic laminations, 99% alumina slot insulators. type "St' glass tape interwinding insulation and 

nickel-clad silver conductors joined by brazing in the end turns. Pump windings were cooled by 

liquid NaK at 800-9W°F. 

A 400 KWth, three-loop heat transfer facility was used to confirm the design and performance char- 
acteristics of prototypical "once-through" boilers and of condensers suitable for space power appli- 

cations. This facility featured an electrically heated primary loop of T-11 1 (Ta-1 OW-1 Hf) containing 

lithium and operating at temperatures of 2 2 ~ ~ ~ .  a secondary T-l 1 1 loop containing boiling and 

condensing potassium and a third. heat rejection loop of AISI Type 316 stainless steel containing 

NaK and rejecting heat through a NaKfair radiator outside the simulated ultra high vacuum space 

environment. 

The facility operated, trouble free, for over 2500 hours at maximum temperatures up to 2 0 0 0 ~ ~  

and confirmed the ability to design. fabricate and test space-type boilers and condensers. 

The ability to purify and analyze liquid metals for such contaminants as carbon. ?xjrgen, nitrogen. 

hydrogen and various metallic elements was advanced considerably during the alkali metal Rankine 

cycle space power program. Contamination levels of less than 10 ppm oxygen were routinely 

achieved. The technology included the development of analytical methods, specifications, proce- 

dures and equipment. 



Distillation, hot trapping and cold trapping were used as purification methods, although hot t r a p  

ping with titanium or zirconium getters were most effective and most commonly used, particularly 

for controlling impurities immediately prior to  and during the course of operation of component 

development, materials compatibility and heat transfer test loops. 

With propedy purified liquid metal in a properly alloyed refractory metal, welded in a properly con- 

trolled environment and in a component or loop desigraed to be leak proof, there was no corrosion 

problem. 

The use of direct sampling and analysis of alkali metal from an operating component and the appli- 

cation of continuous reading oxygen meters was most helpful in detecting and correcting system 

deficiencies. Operating, maintenance and system repair experience was obtained. 

The potassium turboalternator shown in Figure 3.3-19 was conceptually designed for the space 

power program of the 1960's. Its design included fluid dynamic analysis, selection of materials, 

stress analysis, motor dynamics, vibration analysis, selection and design of radial and thrust bear- 

ings, and magnetic and electrical design of the homopolar alternator. The extent of the design analy- 

sis, and the supporting technology which it utilized, indicated the feasibility of using Rankine cycle 

turbine components for nuclear power applications in space at significant power levels. 

This background provided the basis for the SP5 metal vapor Rankine subsystem analysis. 

Cycle studies indicate parametrically. the effects ot higher turbine inlet temperatures and reduced 

condensing temperatures on improvements in cycle efficiency, as   own in Figure 3.3-20. 

Turbine inlet temperatures above 2100°F might require considerable technical assessment of the 

use of materials which are, as yet, unproven. 

Improvements in efficiency by use of reduced condensing temperatures are offset by larger turbine 

flow areas required to accommodate increased vapor volume flows. The volume flow is approxi- 

mately universely proportional to the vapor pressure of condensing potassium: 

Temperature OF: K Vapor Pressure-psiz Volume Flow Ratio 







Whrle the  cycle efficiencies o f  these Rankine Systems are not as high as the  selected 2 5 0 0 ' ~  Bray- 

ton  cycle. the  system has o ther  advantages. princrpally. improved heat transfer coefficients and 

higher radiator temperatures. These can impact t v o m b l y  on  other  portion3 of  the  power conversion 

system in which substantial weight and s i ~ c  is inbolved. 

T h e  critical cycle parameters are presented in Table 3.3-8 for  potassium vapor turbine systems with 

a condensing t en~pera tu re  of  1 1 0 0 ~ ~  and turbine inlet temperatures of -ither 2 1 0 0 ~ F  t o  7500°F. 

Turbine flow rates and power levels were selected to  match appropr1atr:y waled fluid dynamic ver- 

sions of  prellmrnary potassium turbine designs developed in earlier studies of I: nd based alkali rnetal 

topping cycles for steam. The number of turbine Fystenls req~~rr t ld  f i l l .  4 8 0 0  MWe is shown. The  

engrneering definitron presented here provides the h ~ w s  for e ~ a l u a t i n g  the  effects o f  these unique 

cycles on  the size (and wclpht of  the  cavity heat absorbers and the  space radiators. 

TABLE 3.3-8 

POTASSIUh! RANKINE C).C'LFS 

Turbint. Inlet Temperature. OF 

Turbine lnlet Preshure. PSlA 

Flow Rate (each turhinc) LB,'Sec 

Power Generated, MWe 

Condensing Tempcraturt., OF 

Turbine Exit C)uali:y* 

Condensing Pressure. PSlA 

Heat Rejection, BTUISec 

Pressure Rise in Pump. PSI 

Pump Work, BTUISec 

Heat Added in Boiler, BTU!St.c 

Cycle Efficiency. ?4 

Number of Turbincs for  3800  MWe 

Total  Flow. LBiSec 

Total  Heat A d d i t ~ o n .  J3TU"St.i 

Total  Heat Rtjectien.  BTU 'Sec 

*Neglecting Moijture Extraction 
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A single stage, split flow refractory alloy high pressure turbine with super alloy and stai.rless steel 

inlet and outlet scrolls was developed in preliminary design form for previous public utility power 

systems studiet. I t  was intended for use at turbine inlet temperatuxs of 1500 - 170d°F. In its 

original design film. both weight and cost analysis were made; in subsequent studies the design, 

weight and cost were rescaled to smaller component sizes appropriate for reasonable component 

development and manufacture. The high pressure turbine is shown in Figure 3.3-2 1 .  

These modified designs and esiimates formed the basis for extrapolation of high pressure turbine 

cornponetit designs weights and costs from the 1500-1700°1- range to the 2100-2500 range. This 

was accomplished parametrically by addition of one refractory alloy stage for the 2 100 turbine and 

by addition of two stages for the 2500°F turbine. 

While the refractory alloy technology has been demonstrated in earlier component testing and tur- 

bine design studies for the Space Power Program, it is not zxpecterf that refractory alloy technology 

would support a 2500°F loqg life turbine. 

Multistage Split Flow Superalloy Turbines were also developed and rescaled in size weight and cost 

from an original public utility power study in a manner similar to that described for the high pres- 

sure turbine. 

In the current study, the rescaled turbine designs weight, and costs were used for the required low 

pressure turbines. For the 1500°F turbine system the low pressure turbine had 3 stages and a 

1 3 5 0 ~ ~  turbine inlet temperature. For the higher temperature turblne system the low pressure tur- 

bine had 4 stages and a 1450°F turbine inlet temperature. 

'n all cases the size. flow areas and number of low pressure turbines were scaled or selected to 

match the requiwt. flow from the high pressure turbine. The low pressure turbine concept is shown 

in Figure 3.3-22. 

Preliminary p, sium turbine designs have been made for the 2100°F and 2500° cycles. The 

2 1 0 0 ~ ~  turbine design is based on superalloys in the low pressure stages and molybdenum disks and 

blades in the high pressure turbine. The high pressure turbine was scaled from a previous design of 

emaller size (1.5 MWe) for a space power plant; because of such large scaling factors additional 

design effort is required to refine the accuracy of the size, weight and cost estimates. The low +res- 

sure turbines were scaled from turbines for a topping cycle study for coal fired steam pla, ts; that 

study also provided the basis for the eshmated weights and costs. 



C E R E R A L  
ELECTRIC 

. . ,  a ,  

i i i N M 1  ma sySTEuS STUOEs 

FOR U T L I T V  #I IER SYSTEMS 

\ 

-1s FW WFRM-Y 
ALLOY NRBHE COMWMNTS 

' \  

! , !::, I 
1 111; . 111. 

, , . I ,  
' 1 

. 

----- ~ - . -- . 

I 
4- I 

- .  z,? L - -  

. . 

m* - 

s-. I- 

Figure 3.3-21 High Pressure Potassium Turbines 

GENERAL 
ELECTRIC uf ILrW S Y m M  3 N 0 E S  space division 

PROV(DE M S l S  FOR SUER 
ALLOY N R S N E  COVPOMNTS 

Figure 3.3-22 Low Pressure Potassium Turbines 

243 ORIGINAL PAGE IS 
OF POOR QUALITY 



For the 2500°F system the low pressure turbines are the same as for the 2 1 OO°F system. The high 

pnssun turbine is a preliminary design in which two stages were added in front of a previous design 
for 1 70O0F. These two high temperature stages rltilize silicon carbide for discs and blades. Prelimi- 

nary design calculations indicate that these two stages can be designed with stresses of 10,000 psi, 

but additional design work is needed. The weights and cost for the high pressure turbine are very 

appn . umate. 

In each cycle the Iiinh *,.esurr iurbinr. consists of only a few turbine stages; each high pressure tur- 

bine has double flow such ;la: one high pressure turbine feeds two low pressure turbines, each of 

the latter also being of doubic flow configuration. This is necessary to handle the increasing iurbine 

flow area in the succeeding turbine stages and adds considerably to the size and weights of high 

pressure turbine &ri?lls connecting and feeding the low pressure turbines and the inlet and exhaust 

scrolls of the law pressure turbine. 

Turbine design Jet1 are summhrized in Figure 3.3-23. 

Both Brayton and Rankine cycle systems will require large diameter turbine disn. (Figure 3.3-24). 

The largest diameter turbine disc forged from a very high temperature superalloy was the Astroloy 

forging used in the GE Supersonic Transport Engine !SST): it had a nominal diameter of about 40 

inches. A lower temperature alloy. INCO 608. has been forged In diameten to 68 inches. These 

discs represent the present maximum sire for existing stateqf-the-art materials technology for 

superalloys. Refractory alloy turbine discs. such as molybdenun~ TZM. are restricted to about 40 

inches in diameter because of arc casting and extrusion facility size limits. 

Studies in the area of powder metallurgy indicate that larger size disn up to, or larger than. 80 

inches are possible by preparation of powder metal billets of uniform composition. achieving full 

density on existing maximum site high temperarure. high pressure auto-claves and forging to  disc 

size by a combination of limited upset forging in a 50.000 ton press (maximum size), cross rolling 

on the largest plate mill in the US and finish localized. or sector. forging in the nation's largest press 

forge. 

The preparation of large size superalloy and refractory alloy discs will be a major undertaking. The 

preparation of silicon carbide discs of sizes approaching 65 inches will also be a major problem for 

which the practical difficulties are perhaps more difficult to envision at present. 



TURBINE INLET TEMPERATURE. OF 2 100 

NUMBER OF HP TURBINES 22 
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Figure 3.3-23 Preliminary Potassi~~m Turbine Configurations* 





The relatively large turbine sizes and weights cl ' the potassium turbines scaled from prior land-based 

power conversion system studiei suggests the possibility of considering the use of cesium as a work- 

ing fluid to reduce t u r b i x  size. In prior space power studies the relatively low power levels required 

and small turbine sizes occasioned by the use of cesium as a working fluid would have resulted in 

small first stage turbines. very short first stage turbine blades and significant first stage tip losses. 

Thew effects are of less consequence in the larger power level turbines now being considered 

The more significant advantages and disadvantages of cesium turbines are presented qualitatively. 

The physical and thermodynamic properties of cesium result In smaller diameter turbines with 

fewer s tags .  As a resi~lt of the reduced number of stages turblnz dibk temperatures are lower than 

for equivalent potasslum systems: furthermore. the reduced expansion ratio of cesium vapor tur- 

bines should limit the growth of scroll weights and sizes in the latter stages. 

Prior comparative studies of potassium and cesium turbines over a more limited temperature range 

indicate cesium turbines could weigh much less than half that of similar potassium turbines. Specific 

preliminary design effort is necessary t o  determine the effec!iveness of  sucl: potential weight 

reductions. 

3.3.3 Thermionic SPS 

Figure 3.3-25 shows the thermionii SPS :onfiguration as developed in the "Space Based Power" 

study (Contract M S 8 - 3  1628 ). 

Thermionic diodes surrounded the cavity absorber and rejected their waste heat directly through 

heat pipe fins. A tradzoff conducted as a part of the subject study showed this design solution t o  be 

less massive than the use o i  separate radiators with a heat transport fluid loop. In addition. it  was 

far simpler. 

3.3.3.1 Converter Design 

The themionic convcrtcr 1s inhcrcntly a high temperature. high currcnt. low voltapc devict.. Provld- 

Ing a configuration that <,in reject waste heat and scries-connest thc converter diodes electrically 

without heat shdrts is a niajor design problem. 
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Analysis o f  simple cooling fins indicatrd that they would be far too massive. The alternative 

approach is to  employ a heat-pipe concept to provide a uniform radiator temperature and, thereby. 

achieve unltbrrn heat rejection temperature and hlgh fin efficiency. A number of  configurations 

were considered: the one judged best IS shown in cross section in Figure 3.3-26. Sizing of  the emit- 

ter is determined by loss of material frcm thermal vaporization over its thirty-year lifetime. minimi- 

zation of resistive power losses. and we~ght considerations: sizing of  the collector depends on resis- 

tive and weight considerations. 

? 

Note the relatively massive bus5ars. These must dissipate their I-R loss t o  the heat pipe radiator, 

which is at a temperature of IOOOK ( 1 3 3 0 ° ~ , .  The higher fen1per;lture cavity is blocked from the 

busbars by the insulation shown. The busbars carry a current of I290A. Alternative busbar designs, 

such as sodium filled steel tubes were evaluated: copper is lighter. 

Figure 3.3-27 presents an isomi.:rii: cutaway of the convener. I t  shows the side o f  the converter 

which would face the cavity interior The hexagonal assembly is the heat pipe radiator. 

3.3.3.2 Mass Reduction .Analysis 

Reconfiguration of the h a t  pipe radutors for the diodes of the thermi.;llic SPS would allow a signi- 

ficant mass reduct~on. T h ~ s  is because the form of the heat pipes set? the distance between the indi- 

vidual diodes and hence the length o f  the interelectrode busbars i7r t~et .n these diodes The heat 

pipes are hex:~rc.nal w ~ t h  the circula~ diodes mounted a t  their centers as shown in Figure 3.3-28. 

1 

The heat pipe projected ares is 0.1 M- each so that the center to center d~stance is 34 cm. The 

diodes are 10 cm in diameter. The resultant huzbar length fallowing for the curvature) is approxi- 

mately 26 cm. The busbar cross section is about 13 cm2: their material is copper. Hence !!1e mass of 

one buzbar is approxrmately 2.83 kg. 

17.47 x lo6 diodes were required for a l O  GW grl-und output SPS. Thus the total busbar mass is 

49.6 x lo6 kg. wh~ch is 25.1". of the total mass o i  196.84 x lo6 kg for the entire thermionic SPS. 

2 The bl!sbarc run quite hot slnce they can only dissipate their I R power io the adjacent heat pipe 

radiator which has a mean temperature of  ~ C I U ~ .  The resistivity of the copper is consequently so 
-I 

high that the busbar I-R loss amounts to 14'; of the diode output. 

Reconfiguration of the heat p ~ p e  rad~ators to  the form shown in Figure ?.3-29 expected to  have 

almost no effect on t h C  mass of the heat plpe. 
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Figure 3.3-26 SPS Thermionic Converter Design 
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Figure 3.3-28 Diode Configuration From Space-Based Power Study 

Figure 3.3-29 Improved Diode Cor~figuration 



The busbar length in this arrangement would be approximately 7 cm (the busbar must still contain a 

special section of  high thermal resistivity to block emitter t o  collector thermal losses). The resultant 
3 

mass is approximately 0.80 kg per busbar. The 1-R loss in the busbars would now only be approxi- 

mately 4% of the diode output. 

Reduction in busbar I'R loss would impact approximately 185 x 1 o6 kg of the original SPS mass (it 

does not effect the transmitter). The new corresponding mass is: 

The lower I'R drop reduces the number of diodes and hence the number of busbars required to  

15.65 x la6. The busbar mass is thus "only" 12.5 x lo6 kg instead of the 

it would otherwise have been. Thus an additional mass reduction of 

may be subtracted from the 165.7 X lo6 kg. to yield a final of 133.9 X lo6. which plus the 

transmitter gives a total thermionic SPS mass of  145.8 X lo6 kg. 

This new mass is still about 80% more than thdt of  the Brayton system. 

The closer busbar spacing shown above still only allows about 140 diodes t o  be placed in a 20 m 

long series string. Thus a series stnng of this length would not yield more than the 150 volt limit 

estimated for the high temperature elrctncal insulation. 



3.3.4 Radiator System 

3.3.4.1 Radiator Design Requirements 

The dominant Inass element in the Brayton system 1s the radiator. It has the job of rejecting 22.5 

gigawatts of [hernial power in the basellne design ( the  waste hedt t o  he rejected from the cycle). 

About 40 gigawatts of energy is input t o  the gas, about 17 1s d~ailable to  go to  the transmitter. 

and the remainder must be rejected by the rad~ator .  Nominal 1nlt.t ~ n d  outlet teniperatures are 

644K and 377K. respectively. We must select an appropriate (1.e.. o p t ~ n i u m )  pumping power. If 

the fluid manifolds are small. they a:e light but have high pressure drop, so more power must be 

taken from the output to  drive the pumps. Also, we want n o  net gr~leration of angular momentum. 

Any loop of fluid flow or  turning turbomachine requires another going iri the opposite direction, 

like contra-rotating propellers on an airplane. 

We have somewhat arbi tmily  selected a meteoroid protection requirement for the manifolds such 

that a major penetration and repair is expected to  occur at five year ~ntewals.  Radiators must with- 

stand b.' - .hut down when passing through the Earth's shadow and 5tal.t up agaln in five minutes. 

Flgure 3.3-30 shc.vs that as a solar power satellite orbits the Earth Jnd the Earth orbits the Sun. the 

SPS is always pointing towards the Sun. The smaller figure shows thc r.tdiator oriented to  be in the 

plane of the ecliptic and edgewise to  the main meteroroid flux. 

The previous figure showed the radiator placed In the plane of th?  ecl~ptic.  Figure 3.3-3 1 shows the 

flux concentrated at a low angle t o  the ecl~pt lc  plane. T h ~ s  a n g u l ~ r  cor:e.,tration extends round the 

leading edge of the radiator fro111 helion t o  anti-helion Thus. the radlator sees the meteoroid flux 

impinging in a concentration at  an angle of approximately 15O to ~ t s  plane of motion. Meteorold 

armoring analyses used this preferential orient,rtion approach, resulting in a significant reduction in 

armor requirements. 



Figure 3.3-30 SPS Radiators Can be Prefel~ntially Oriented 
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. 3.3.4.2 Reference (4-module SPS) Radiator Design 

The radiator for the mid-tern c ~ilfiguration (four modales in the satellite) is shown in Figure 

3.3-32. With 64 turbomachines, this require!{ 16 engines per module. The cavity absorber with tile 

engines is in the center. Thc concentrator is below, \vit!i its concentrated cnergy entering the aper- 

ture. The radiator panels are divided i ~ t o  groups. Panels with thc number I cool engir.: nut i~ber  1 .  

number 2 cools number 2 ;  8 cools number 6 and so forth. 1; t i  clear that the manifold3 fcr  number 

8 are much longer ihan the manifolds for numbcr onc. There 1% a ~ ~ g n ~ t i c a ~ i t  mass penalty associated 

with the  liquid metal in manifolds. 

The definition of radiator panels was based on this radiator des~gn .  The panel design was subse- 

quently applied t o  the revised radiator design for the 16-module configurat~on. 

Figure 3.3-33 indicates the diameters of the man~folds  and hcddcrb. The headers are ccllter-fed. so 

that temperature induced length charires c;e lirllvtd This reduces th.: angular motion at the ends of 

the heat dissipation panels. 

The basic elenient of rtle radiator panels is the heat plpe. Over 11mitt.d lengths the heat plpe is an 

extren~ely efficient heat transport mr~ilianism. bring hundreds of tilnc more effective tha11. for 

instance. a solid copper rod. Figure 3.2-34 ~ l l ~ ~ s t r a t e s  the heat pipe p r ~ n t . ~ ~ d e  

The working fluid vaporizes as hed! input is provider1 to  the etdporator section. The v?por moves 

thiough the pipe t o  the condensor sectiun. Heie the fluid give3 up it\ latent heat of vaporization and 

returns to  the liquid state The fluid returns to the evaporator section b caplllarq actlon 

If compatible materials (fluid. wick and tube)  arc used. a hedt pipe o p e r a t i , , ~  wtthln ~ t s  deslgn range 

has an almost indefinite operational life. 

Heat transport capability is shown in Fipure 3 3-35 (nondimensional) for various hcat pipe fluids 

over a range of temperature. lnitlal optimltatlans of the Brayton SPS Indicated a radiator tetnpera- 

ture range requiring mercury uorking fluid. Known reserves of mercury were not sutficient for the 

baselined SPS program. Therefore the temperature range was adjusted t o  allow the use of water 

heat pipes. 
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Shown in Figure 3.3-36 is a cross section of three heatpipes and some pertinent information relative 

t o  them. The heatpipes are spaced apart approximately 1.5 diameters. Fin\ *re not used. ?he heat- 

pipes, themselves, provide the radiating area. The working fluid is water. The heatpipc shell is thin 

stainless steel, with an internal stainless ster'l sireen wick. 

The panels illustrated in Figure 3.3-37 are 5 by 20 meters, and s~zed  t o  stack in the launch vehicle 

payload bay. They reject the cycle waste heat from u.itrr heat pipes. Hot liquid metal travels 

through the throughpipe giving up 11s heat to the heat p~pi.. arriched t o  it: heat pipes alternate in 

direction as shown. They are the heat rejectron element.\. 1hi.r dre no  fins. Thc heat pipes are 

spaced at about one and one half times their d~ameter .  

The 63 turbomachines of the Bra) ton SPS each have a iadiator schematic as shown in Figure 

3.3-38. The accumulator (a  zero gratity t! pe, keeps the \ah: I m p  iuil despite volunie changes from 

temperature changes and manitold iWrtp. Hor NaK IS admltted to  ihtl three p u m p .  The 57.20 kW 

indicated is the electrical input t o  e3;h pump. The manifolds candt~._-t the tlow to  the header s y ~ t e m  

which directs the tlow to the heat-dissiption panel>. Vxives are proirdzd where appropriate. 

Figure 3.3-39 is a layout drawing ior the ~ipdated reference radiator ;orifiguration. 

3.3.4.3 Revised ( 16-Module, Radialor Configuration 

This radiator configuratior: take3 ~ l d \ a n t a g ~  of the required 1 3 ' ~ ~ '  11:roughpipe diameter. and has 

shorter manifolds as illustrated In Flgurc. 7-10. 

One motivation to  go to 16 modules was to  ha\z a module \i/e c l o e r  t o  the size of a developn~ental 

unit. When we changed to that slze c four engine3 per module). the manliolds became short. The 

basic job of the manifold IS t o  carry the fluid out to the radiaror panel. The liqu~d metal travels 

througn a throughpipe. gi\ing up its heat tc. t!lc heat pipes it passes through. Wrth four engines per 

module (sixteen modules) and ~ i t h  >qLi~re ndiator  panels as shown here I[ is clear that we don't 

have long manifold Icngths. The t o t . i l  :n~ni irdd mass In the SPS ha:. been greatly reduced by going 

t o  sixteen modules. Also. we hdit. rC.iilrzd that the throughpipes i l ;  the panels cap be connected in 

series to  eliminate the nnumerou\ ~nterntcdlate headcrs. because the througnplpes must have 2 large 

diameter and resulting low pressure drop In order t o  provide enough heat transfcr Area t o  transfer 

the heat to  the heat p ~ p e \  

Note thdt the pu~nps  ~nclude a redundarlt sct tor both the hot and the cold (o r  return) s~dcs. That is. 

each pump has a redundant lor matching pump to  reduce the time hetwecn servicing penods on the 

pump set. 





HEAT PIPES TRANSITION TO 
RECTANGU LA 3 EVAPORATOR 
SECTIONS AROUND M K  
THROUGHPIPES 

. -. - 

NaK FLOW 4- 

Ce-4 - - 3- 4- 
4- 

Fi_eure 3.3-37 Heat Pipe Panel Details 

ACCUMULATOR 

Figure 3.3-38 Radiator Flow Schematic ( NaK Loop. 64 Per SPS) 
YRIOINAL PAGE IS 26 1 
*qF POOR Q U 4 L I n  





QBECIUWG PAGE BLAW WI 

~ A L  PAGE IS 
*-4- 



@ .. L' .. :..., e . 3 -  ... ..I % .. . , l  . r * r ,  

Figum 3.3-39 Radiator Confvumtion Revised Radiator Confrguratiun 

263 6 264 
ORIGINAL PAGE iS 
OF mft QL'AWTY 
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CURRENT APPROACH: 

Fikure 3.340 Radiator Configuration 
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3.3.4.4 Radiator Analyses 

The result of radiator design analyses are described in this section. The objective of the work was t o  

develop radiator design for the thermal engine energy-conversion options which were advanced t o  

the system mass screening test. The radiator designs were based on first-order cons~derations and 

mass estimates made from these designs were uwd in the system mass screening test to identify low- 

mass concepts. Radiator muss co~trparisot~ daru quoted it1 rlris set f i o ~ ~  clre )or unu ~herutul o ~ t g k u  o f  

,375 nreguwurr ge~~eruring capaci?,'. The flgtrrcjs should be ,,~lrlripliecl h ~ .  hJ to urrirr clt cl lot01 SPS 

I-lass cvtrtpurison. 

Two basic types of radiators were modeled in this analysis. The first type utilized a s~nglr-phase 

fluid. either gas or  iiquid, to  transport energy to the radiating surfaces. The second type of radiator 

used a condensing vapor as ar ?nergy transport fluid. 

Computer models were developed for each radiator type. input variables included heat loss rate. 

radiator material properties, fluid properties, environmental variables. and fluid boundary condi- 

tions (temperature and pressure at inlet and outlet). The models calculated radiator area. ducting 

size and wall thickness. radiator length and width. fluid mass flow rate and pressure drop. pump size 

and mass of each major radiator element. 

Potassium Rankine Cycle Radiators 

Two types of radiators were investigated for the potassium R~nkinc. cycle options. Rad~ators which 

utilized the potassium working fluid as a heat trapsport medium were found to  be the least massive 

of the two radiator options. The potassium entered these radiators in the two-phase state at high 

vapor quality and was completely condensed at the outlet. These radiaton operated at a nearly uni- 

form temperature and. since the cycle working fluid rejected its encrgy directly to space. there was 

no requirement for a heat exchanger. The second type of radiator studied was a single phase XaK 

loop system. Since tile &.kin-. cycle characteristical!y rejects energy as constant temperature. this 

concept had 1 lower effective average temperature than the condensing potassium radiator. This 

fact. in conjunction with the requirement for a heat exchanger. resulted in NaK radiator system 

being more than twice as massive as the condensing potassium designs. 

F~gurc 3.3-41 shows the essential element of the condensing potassium radiator. Saturated vapor. o r  

vapor-liquid mixture. enters the tapered inlet header and is distributed to the tl1rougl1-pipes. Energy 

rejected from the condensing fluid in thc throughpipes is conducted into thc tins and radiated to 

space. The condensing region of the radiator. in whlch the fluid in the throughpipes exists in the 

two-phase state, is isothermal. An additional element of length is added to  the throughp~pes to  

ensure that the fluid is subcooled when it exits from the throughpipes. This ellminates boillnp in the 
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collection header by decreasing the saturation pressure below the static pressure at the header 

outlet. 

Figure 3.3-41 shows a plot of thermodynamic states encoui.tered by the potassium as it passes 

through the radiator ducts. The potassiuiu enters the Inlet header in the saturated state and becomes 

slightly superheated as the static pressure drops due to friction. It enters the throughpipes and 

reaches saturation temperature. A i  this point the potassiun~ condenses. and as static pressure drops 

due to  friction, temperature decreases along the saturation trniprrature - pressure line. The satura- 

tion ten.perature - pressure line is followed until condensation is complete and the fluid beconles 

scl.cooled. The amount of subcooling is determined by the frictional pressure drop in the outlet 

heauen. This ensures that the saturation line is not crossed before the ilkid exits from the header. 

Radiators for 1 6 0 0 ~ ~  Potassium Rankine Cycle 

Figure 3.343 show5 the predicted condensing potassium radiator mass as a function of Reynolds 

~iumber and throughpipe diameter. The maximum Reynolds number was limited by the require- 

ment that frictional pressure drop in the throughpipes and collection header could not exceed the 

saturation temperature of rhe potassium at the throughpipe entrance. Minimum mass was found t o  
6 occur for a throughpipe diameter of 15.24 cm and a Reynolds number of 3.0 X 10 . 

A summary of the sensitivity of major radiator element mass to  throughpipe Reynolds number is 

presented in Figure 3 . 3 4 4 .  Fluid Reynolds numbers in the throughpipes and headers were related 

by the condition that the friction pressure drop in each header must equal tile pressure drop &cross 

the throughpipes. Hence working fluid mass decreased with incr:asing Reynolds number because 

header diameter decreased t o  satisfy the requirement for equal pressare drop in throughpipes and 

manifolds. The reduction in diameter also caused the mass of header ducts to decrease with increas- 

ing Reynolds number. Tht  increase in heat pipe mass with increasing Reynolds number was cau5ed 

by addltional subcooling area requlred by greater frictional pressure drop in the outlet header. 

Noncondensing KaK radiators similar to the des~gn utilized in the Brayton baseline system were 

investigated for application to  the potasslum Kankine cycle concept. Sensitivity oa'radiator element 

mass to NaK outlet temperature is shown in Figure 3.345 for an inlet temperiturc ?f 844OK. Inlet 

temperature was fixed by the condensing temperature of the potassium. 

Heat pipe mass dropped with Increasing NaK outlet temperature because the average effective radid- 

tor tempera rlre increased allowing rad~ator area to drop. Working fluid and header mass increased 

with Increa\lag NaK outlet temperature. This was due to a reduction In throughp~pe length, causing 

the rad~rltor to become extremely w~de .  Since the headers ran along the width of the radiator, an 

increase in radiator width retulted in long headen with greater wall mass and fluid volume. Total 

radiator nia\s W ~ F ,  found to be min~mrzed as N:rK outlet temperature of about 5 1 0 ~ ~ .  
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The  influence of throughpipe diameter on radiator mass is presented ir ; .: r e s  3.346. Throughpipe 

length increased with increasing diameter. This caused radiator width crcreasr and resulted in 

shorter, less massive headers. Fluid n.ass in :he headers also decreased. However. as diameter 

increased the throughpipe volume increased and the total NaK inventory wak rnimum at a 

throughpipe diameter of 9.5 cm and then increased Total radiator mass was r~ . ,n imi~ed  ;it a 

through pipe diameter of 10 cm. 

Figure 3 . 3 4 7  shows the influence of throughpipe Reynolds number on the NaK radiator mass. 

Total r a d i a t ~ r  mass 31 the pressure drop limit was 11.5 X lo4 Kg at a Reynolds number of 4.04 X 
6 10 . Most of the reduction in mass arose from decreased header d~anit-ter which was caused by the 

requirenic.nt that header pressurr drop equal the pressure drop in the thrc ughpipes. The total mass 

of 11.5 X lo4  Kg for the NaK radiator is almost 3 tinies greater than the 8.5 X IC '  Kg mass of the 

condensing potass~uni radiator. A large portion of this difference was due to an effect~ve tempera- 

ture of 707OK for the NaK radiator compared to  8 3 7 O ~  for the potassium design. 

Radiators for 1 4 2 2 ~  Potassium Rankine Cycle 

Heat rejection for the 1422OK potassium Rankine cycl occurred at  80 ( O K .  the s z n e  heat rejection 

ter.,perature selected for t h r  1 6 0 0 ~ ~  pctassium Rar.nine cycle. Figure 3.3-48 shows the variation of 

total radiator mass wltli potassium Revnolds number in the throughpipes. Minimum radiator mass 

at the ,Irt.ssure drop limit was 1 2  X 10" l ip .  This value was greater than that of the 1 6 0 0 ' ~  pc;as- 

sium Rankine cycle radiator because a larger area was required to reject the addition21 e lergy arising 

from lower cycle efficiency. The cycle. effiClrncy of the 1 - 1 2 O  cycle was 27.6':; con,pared to  3 1.6':: 

for the 1 600°K cycle. 

Radiators for Steam Rankine Cycles 

Steam Rankine cycle radiators were an order ol' magnitude more massive than the potassiur,i cycle 

radiator. This wac caused by the low I ~ ~ b a t  rejection tempera!lJre which were required t o  achieve 

cycle efficirnLiCs in excess of 70';. The influence of throughp~pe Rcynoldc, number and pipe dia- 

meter on rat. .,[or mass are shown in F~pure  3.3-49. The temperature of the conder~slng uater  at the 

radiator pailel entlrtncr v:~s 3 6 7 ' ~  at a pressure of ' 1 . 5  PSlA Minimum mass occl~rred at a 

throughplpe diameter o i  h.8  c ~ i l  and a Reynolds number of 1.43 X lo6. 
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Condensing Water Radiator for Brayton Cycle 

An alternative radiator concept, utilizing water rather than NaK, was investigated for the Brayton 

baseline cycle concepts. The advantages of water o n  its higher density and specific heat. low cost, 

and compatibility with more structural materials. Major disadvantages are its fairly high freezing 

temperature and the fact that water expands upon freezing. giving rise t o  the possibility of tube 

rupture. 

Figure 3.3-50 shows tlre main elements of the water radiator system. Th: Brayton cycle working 

fluid exits from t'.e regenerator and passes through two heat exch;lngerj where it is cooled prior 

to  entering the compressor. The heat exchangers transfer thermal energy from the helium to  the 

water. Subcooled water enters the preheater and exists as saturated liquid. A fraction of the liquid 

is diverted from the stream and the remainder dlrected into the boiler. Steam exits from the boiler 

and is mixed with the saturated liquid. The mixture enters the radiator where it is condensed and 

subcooled. 

The locus i.l' thermodynamic states experienced by the Brayton cycle working fluid and radiator 

heat transport fluid are shown in Figure 3.3-51. Helium enters the boiler at 672OK and exits at 

approximately ?$OK in excess of the safr~ration temperature of the boiling water. It then preheats. 

and the helium temperature is reduced to  the compressor inlet temperatun?. 39I0K. The water tem- 

perature. on  the other hand eqters the preheater at 3 6 3 ' ~  and exits at saturation conditions. 

An analysis of water radiator concepts was performed. Independent variables were throughpipe 

Reynolds number and water saturation temperature. Throughpipe Reynolds number was varied for 

fixed values of saturation temperature and the minimum mass points were determined. The locus of 

min~mum mass points was then plotted against saturation temperature as chown in Figure 3.3-52. 

The mass of the subcooled section of the rad~ator  increased with increasing saturation temperature 

while the mass of the condensing section decreased Total radiator mass war found t o  be a minimum 

at a saturation temperature of 52j0K. 

The relatior~ship between radiator mass and pump power for condensing water r ad~a ton  have 

525OK saturation tzmperature and 3 6 3 O ~  outlet temperature is shown in Figure 3.3-53. Each point 

on the abscissa represents a specific throughpipe Reynolds number. Increasing values of pump 

power correcpond to decreasing values of Reynolds number. Radiator mass was found to  approach 
4 an asymptotic value of about 43.3 X 10 Kg as pump power increased beyond 450 KW. 
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A mass breakdown of  the m i n m ~ r  .-I .+  ond den sing water radiator is summarized in Figure 3.3-54. 

The major contributors to tot-' -.iir,it,,r mass were the heat pipes in both the condensing and s u b  

cooled sections. Heat pip?. ... 6-0ur:r.d for 705 of the total mass. whlle throughpipes accounted for 

about 13%. Radiator fluid was found t o  make up 1 4 3  of  the total radiator mass and header ducting 

accounted for the remaining 3%. 

The condensing water radiator and baseline haK radiator are compared in Figure ? 3-55. The con- 

densing water radiator was slightly more massive than the baselint NaK radiator. however the con- 

densing water radiator reqlrired an order of niagnitudc less pump power. Additional energy conver- 

sion system mass required to  supply pump power was calculated for both radiator concepts. When 

this mass was added to radiator mass. the condensing water concept wds to  be less masslve than the 

baseline KaK system. 

Specific masses of five radiator concepts are compared in Figure 3 3-56 condensing stcam radiators 

for saturation temperatures ranging from 367OK to  476OK were found to have the lowest specific 

mass. This low specific mass resulted from low fluid pressures and high heats of vaporization asso- 

ciated with the range of saturation temperature considered. Unfortunately advantage could not be 

taken of the small spe~i f ic  mas> charactenst~c of  low temperature condcn5ing steam radiators since 

low temperatures dictated that largc rddiating areas were required and the net eftect was to  produce 

extremely large and consequently massive radiators. 

NaK and condrnsing steam radutors for the Brsyton cycle baseline s}stem were found t o  have 

almost identical sp.:iifii masses. Spzc~tic masses of potassium radidtor ranged bztueen 6.5 ~ g : m :  

dnd 8.0 Kg m2. Thr high values of  specific mass for these radidtors was due t o  h e . 1 ~ ~  heat p~pes  and 

a large in;entory of  potassium. Sodrum heat pipes utilized in the potassium radiator were almost 

50C7r healier than the water-filled heat p ~ p s  of the Brayton and steam Rankine radiators. The large 

potassium inventory resulted from the low spzc~tic heat and density of potassium. 

3.3 4.5 Investigation of a "Roll-Up'. Radiator Concept 

The midterm hawline thrrnial engine SPS radlator system conbisted of 23.552 panels. each of whlch 

reqlrired four welds to connect it into ?r. \.;stem. The panel count results from the sred require- 

ment for the total radlator dnd tile p n c l  sue f10m x 2Om) dictated by 'he cdpab~ilt) of the pa,- 

load bay of the launch vehicle. 

A "roll-up" r a d i s t ~ r  concept was investigated to determine the practlial~t> of J rad~ator panrl. for 

example 2Jm x 5OOm. whiill would hc rolled lntv a t h ~ n  cylinder 2On1 h ~ g h  and I 'm In d~arnetc.r 

which ~ o l . ! d  thu\ f i t  tlie pd)load h.1) 
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Figure 3.3-54 Radiator Mass Breakdown -Condensing Water Radiator 
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In order to roll in this fashion the manifold tubes of the panel must have a relatively small diameter 

t o  pxclul e excessive stress. For a maximum stress of 3.5 x 108 N / M ~  (50.000psi) and a bend radius 

of 8.5m. the maximum tube diameter is 3.0 cm. 

Pressure drop in the tubes IS determined by: 

(Constants) X (Volume flow)' (Length) 

The volume flow is a direct function of the power to  be dissipated and temperature drop across the 

radiator. The flow can be conducted to  the heat pipes through various numbers of p ip~s .  A large 

pipe c o ~ n t  means small diameters and high pressure drops; a srnall pipe count the reverse. High pres- 

sure drops require high pumping power. a parasitic drain on the SPS busbar output. Each KW of 

pumping power requires approximately 4.5 kg of additional po.ver generation system. 

No manifold didmeter'count combination could be found which did not involve extrrmely high 

pumping power penalties. The minimum tube diameter was approximately 7.0 cm. which is too 

large for rolling. 

Thus the roll-up concept does not appear practical. Perhaps in a very advanced SPS with say. 2000K 

turbine inlet tcmperat.lrtrs and a high temperature. high delta temperature rsdlator the volume flow 

could be small enough to  make 3.0 cm tubes practical. 

3.3.5 Power Distribution 

The power distribution system for :he 4-nlodule (midterm (:onfiguration) Brayton thermal engine 

satellite was analyzed to  deterrnlnr conductor mass and transmission losses. Table 3.3-9 shows the 

results c f  the analysis. The trar.,,nission losses are 6.1 '3. The conductor mass does not include any 

support structure nor any required insulators. This power distribution system IS higher in perform- 

ance snd lower in m: ; than the AC system used in the pcint-of-departure Brayton system. 

Flgure 3.3-57 shows a powcr distribution schematic for the 4-module system. 

An analysis was also performed t o  dcttlrmine !he power distribution system for the 16 n~odule 

thermal engrne SPS. 7-he conduitors used In this analysis arc I millinieter thick conductor grade 

aluminum itiet,t> 



Table 3.3-9 
Thermal Engine Satellite Power Distribution 

1 mm Sheet Conductor at lOOOC 

End 
Distance Voltage Current Width Mass 1% Loss 

Section Meters Volts Amperes Meters Kg. Wal ts 

1 .  Rotary Joint to 3540 42.164 139.500 22.06 210.907 1.15 x 108 

Module A - I A  

2. Rotary Joint to 3540 10,408 58,900 9.3 1 89.01 1 .49 x lo8 

Module A - Ig 

3. Rotary Joint to 3540 -- 198.460 31.37 299.916: 1 . 6 4 ~ 1 ~ 8  

Module A - Conimon 

4. Module A to 4300 44.465 95.553 15.1 1 175.404 .95 x 108 

Module B 1 ~ 2  

5. Module A to 4300 -- 95.553 15.11 1?5.40.1 .95x108 

hlodulc B Common 

Total - 1 2 Satellite 

Totdl - Satellite 
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The results of a trade t o  select the op t imun~ c o n d ~ ~ c t o r  design cperatinp temperature are shown in 

Figure 3.3-58. A value of 3.6 kg,'KW was u x d  t o  compute the power generation mass required t o  

compensate for conductor shown In Table 3.3-10. A conductor design operating temperature of 

50°C was xlcctt'd as optimum. 

The 16-module thermal englne SPS with conductors oprtrzting at 5O0C has I ~ R  locxs of 0.719 giga- 

watts and conductor mass of  3.1 *? metric ions. Ccnductor widths, currents. and r n d u l e  voltages 

are shown in Figure 3.3-59. An improvement in power distribution mass could be realized if. rather 

than as shown in the figure. the pow*-r from the auter  rows of geotar~tion modules is routed down 

conductors attached to a beam from the end modules of the outer rows dire#-tly t o  the rotary joint. 

For this case iht: conductor m a s  is 3.982 metr;.c tons and the I:R losses are 0.668 gigawatts. 

A total of 64 circuit breakers and 70 disconnect switches are required for the power distribation 

systems. Housekeeping and stationkeep:ng reorlirements are as was sho\vn on Figure 3.3-57 except 

that there will be 16 module control centrrs instead of 4. 

3.3.6 Concentrator;.4bsorber Svstems 

3.3.6.1 Solar Concentrator Confieuration Evolution 

Ideally, the perfect concentrator would he a paraboloid. obtaining a geometric efficiency of about 

975  (not  including retlect~vity of the mate~ldl).  Our baseline dt the begnning ot the study was an 

approximate form of this. slightly Icss efiiciect but more c-onvenient to bulld. It evolved as illlrstrated 

in Figure 3.3-60 what we call d par.ibolii trough. which <.in he more easily constructed. The facets 

fit in the roughly circular arca shown. In other ~ o r d s .  thcre are none in the corners where they 

would be 3 long distance abhay from the savir). High concentration ratios are achievable with a 

f ugh if the facets at thc end are tiited UP t o  approsinlate a 3-dimcns1onal concentrator. 

/ 
' 3.3.6.2 Concen trator:'Ahorber Analyses 

The concentrator s)sti'~n that wt' Il,j\c 111 this study phase and in our previous work obtains 

high sunliglit concentration. ranging tn,m 1 300 to  3.000 times ambiei~t sunlight, into a cavity 

absorber by .I mirror c.o:~c.r.~~-rator Tl l~s con*:entrator has a large number of i,idividual reflector 

facets shaped so that thty fit onc to  another to  cover the surface. These facets are pivoted at the 

center. movable over small angles. so as to  steer their reflected solar energy into the cavlty. This 

achieves a high concentration ratio into a smi~ll aperture. without requiring an extremely accurate 

structure that mainta~ns its form over a land period of tlme. Also. when flying perpendicular t o  the 

orbit planc, as thc sun "movr\" north and soutll over :he seasons (just as it docs here on earth) the 

facets prov~de tlic st.~ri-trach~ng. The concept is illustrated in Figure. 3.3-61. 
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Figure 3.3-58 Thennal Engine SPS Mass Optimization For Power Distribution (16 Modules SPS) 



Table 3.3-10 T.E. Generator Output Requirements To Provide Antenna Power (16 Module SPS) 
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The concentratorjabsorber design includes four parameters that can be varied t o  minimize the 

system mass, at a given cavity interior wall temperature, and for a given thermal power available t o  

operate the engines. (The power withdrawn is the total thermal input t o  the engines, including cycle 

waste heat. 

1. Number of facets (heliostats). A higher number increases efficiency (Figure 3.3-62) but also 

increases mass. 

3. Geometric concentration ratio !GCR): concentrator an.a!cavity aperture area. High GCR 
improves absorber efficiency but decreases concentrator efficiency. 

3 .  Cavity area ratio. interior wall areaiaperture w a .  Higher values improve absorber efficiency 

but increases its size and mass. 

4. Thic~ness  of cavity wall t hen31  insulation More insillation reduces heat loss but increases 

mass. 

The mass optimization model diaerarnmed in Figure 3 . 3 4 3  was used to  select values of these para- 

meters. Results are shown In Figure 3.3-64. Three of the parameters reviewed essentially constant 

over the range of wall femperatures ~nvestigated. CCR changed slightly. The curve of usefu! power 

per unit mass served as an input t o  the cycle analysis and optimization described in Section 7 ? : 

3.3.6.3 Reflector Design 

The requirements listed below gu~ded tlie development of tlie reflector facet system. The sixth and 

seventh requirements relate to facet pointing relative to the cavity absorber aperture. 

REFLECTOR F.ICFT REQUIREMENTS 

High reflectivity (C.80 initial) 
Low mass p > r  unit are;, f0.05 &lrn2! 
Flat surface 
.'3ccurste point r f 10 minutes. maximum) 
No calibrdt~on rcijuir:rf after installation 
l.lus~ tuld "cold" cavity when required 
Must look away; from "hot" cavity when required 
Long mean time between failure 
h o  frame wiring 



Figure 3.342 Comparison of Concentrator Computer Modeling With Initial Estimates 

Performance of paraboloidal concentrator (60° r i m  angle) relative t o  facet 
size, when il luminated by a source o f  angular width equal to that o f  the sun. 
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At the right of Figure 3.3-65 is shown a rear view of the facet. i.e., the reflective surface is on the 

reverse side. The hexagonal plastic film sheet is formed of  8 micrometer (0.00033 inch) Kapton. 

Three edges are supported by graphite epoxy edge members. The three edge members are tensioned 

apart by bridles attached ro rocker arms mounted at the end of the three radial members. Springs 

mounted in the radial arms near the hub are the soilrce of the tension. 

The facet is mounted t o  the 1.5 m support beam by means of a 1.0 m long post. The hub assembly 

contains the sensor and srnvo-mechanism systems and the solar cell power supply required for their 

operation. The actual area of the facet is 933 square meters. 

Concentrator performance varies with sun off-axis angle. 

The data shown In Figure 3.3-66 resulted from a computerized analysis of a faceted solar zoncen- 

trator. The aperture of the cavlty absorber has 111370 of the projected area of the concentrator 

and 10.000 hexagonal reflector facets were uwd. The contribution of each facet was calculated. 

including effects of s h a d s i n g  and blockage by adjacent facets. 

Concentrator efficiencl. is the ratio of light delibered into the aperture to the light captured by the 

concentrator allowing for concentrator. tilt. as shown. The concentrator efficiency with the sun on- 

axis is 0.96 for a light spread angle of 1 .O0. (To  determine overall concentrator/reflector perform- 

ance, multiply the concentrator performance at a given spread angle by the facet reflectivity at the 

same spread angle. ) 

Plastic film retlcctors are believed to degrade with radiation. Very little data are available. but there 

were some sslnple tests conducted under Project ABLE. 

The Project ABLE tests irraduted plastic film samples with a simuiated geosynchronous orbit 

environment, but at an accelerated rate. The material used was Kapton (which showed lower degra- 

dation that Mylar). The prtniary damage mechanism was apparantly bubbling within the plastic 

film by stopped low energy protons wliic~li found electronis and became hydrogen. An interpreta- 

tion of the data 1,; shown in Flgurc 3.3-67. 

With the "tilt and roll" dcs~pn the facets must track the sun through the apparent ar,gular range of  

+ anll - I  1.740, ('onsequ~:nti! the facets must be capable of moving + and -5.880. a total capability 

o f  + and -70 1s basrllned. + a ~ l d  - l o  1s a~sunied to  be suificient for the other axis. For the revised 

configuration (no t i l t  and roll) tlle facets mu\t track through 124O. 
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Figure 3.3-65 Retkctor Frcct-(HeIiostat) Thermal Engine S.P.S. 



SPS-295 9 For baseline concentrator ratio of 1320, 10,000 facets, 30-degree rim angle 
Light spread angle as defined here does not include the 0.5-degree inherent fiom 
the width of the Sun 
Does not include effect of film reflectivity and facet gaps 

SUN OFF-AXIS ANGLE (DEGREES) 
0 

CONCENTRATOR 
EFFICIENCY . 

7 

C---- 

.c---- I EFFICIENCY - - 
I ,COMPUTED - 
I ONTHlS - 7 

AREA 7 

a- -- 
- - - 

b u 
C 

00 
Q 

Effect un concentrator flying 
P.O.P. 00 9 

Cosine 23.47O = 0.91 7 C3 

9 Cor~centrator efficie~rcy at 
23.47O = 0.87 

The product of the above is 
0.80 (this represents the 

I I I a I I solstice performance). 
0 0.25 0.50 0.75 1.00 1.25 1.50 Averaged over the yenr, a loss 

LIGHT SPREAD ANGLE FROM FACET (DEGREES) of sl)l~roxi~rrately 9.5% results. 
* For bbstraight-beam, three-zone concen tratort" 
the curved-dish efficiency is estimated a t  97%. 

Figure 3.3-66 Response of Faceted Concentrator to Solar Position 
(Geometric Efndency, Reflectivity Not Included) 



POTENTIAL IMPROVEMENT: SOLID ALUMINUM MIRRORS, POSSIBLY WITH 
VAPOR OEPOOITEO ALUMINUM SURFACE 
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Figure 3.347 Plastic Film Perfomance: Radiation Degradation (From Project 'Able') 
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The baselined facet pointing system incorporates a swiveling detector tube mounted above the facet 

surface as illustrated in Figure 3.368. On either side of the central partition in the tube are mounted 

cuads of silicon detector cells. A modulated light source is provided at the cavity aperture; light is 

admitted to  the upper detectors by a small aperture. The detector tube is driven until it is aligned 

with rays from the modulated light source. The lower silicon detectors respond to light reflected 
from the metallized surface of the facet. The facet is driven about the two axes as required to p s i -  

tion the light spot from the facet on the center of the lower detector quad. Thus the reflected light 

from the facet is aimed at the cavity aperture. 

Two approaches sre suggested for provision of a modulated light target at the cavity as illustrated 

in Figure 3.3-69. Both require some reflectivity from a high temperature surface. Redundant light 

sources can be used for reliability. 

The moments of inertia of the reflector facets art quite low. Thus for the baselined angular accelera- 

tion only two milliwatts of mechanical drive power suffices. Consequently a small area of solar 

cells located at the facet hub will suffice to power the facet. 

The drive mechanism should ideally have no bearings. friction. etc. Bimetallics are a potentially 

desirable solution. 

The following design assumptions were used: 

1. Facet drive requirsment assumptions: 

a. Angular acceleration or  0.01 deg/sec2 
(attains 0.1 degisec in 10 seconds) 

b. Maximum angular rate of 0.1 deg/sec 

2. Moments of inertia of facet are such that maximum angular acceleration can be provided in 
both axes with a mechanical power of less than 2.0 mW. 

3. Facet and detector tube drive plus logic circuit operation can probably be accomplished with 

less than 100 1,W. Thus, entire facet operation can be powered by a few solar cells. 

.4. Logic chip will probably be less complex that that of a pocket calculator. 
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m m 7  Silicon detectors can track a modulated light source across the s o t r  disk. - 
\ r' -or Alignment sequence: 
' I , I  1. Witllou t cavity light source, 

I 
I 

facet drive is commanded 
I to end of travel (no power 
I 
I 

to cavity). 
\ 

\ I 
CAVITY DETECTOR - \ 2. When modulation of light 

I 
APERTURE GIMBALS, source is as required, detector 

DRIVE, tube aligns wit11 light source. 

DETECTOR I 3. Facet drive syste111 positions 
TUBE I facet such that  reflected rays 

fro111 facet are aligned with- 
detector tube axis and hence 

S A F C T  
are aimed s t  cavity. 

# -"-, 
SOLAR \ DRIVE 
REFLECTANCE \ SYSTEM 

4. If modulation is removed, 
APERTURE L I logic causes facet drive to 

I gimbal stop. 

Figure 3.348 Pointing the Facets 
k7O and * 1 Travel 
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Two approaches to providing s modulated light target: 

CAVITY n 
MODULATED 'a)- VC7L- -CARBON 
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5 .  Facet and detector drive options: 

a. Bimetallic elements with cirntrolled electric heaters 

b. Solenoids 

c. Motors with gear trains 

The primary circuit elements and their interrelationships are shnwn in Figure 3.3-70. A critical 

elltment is the output from tile modulation detector which cause5 thc facet to  "look away" when 

modulation 1s not present upon the cavity light source. 

A possible approach to facet packaging for launch is illustmtrd in Figure 3.3-71. The facet is folded 

three times and then rolled around the edge members. The radial arams. when folded. secure the 

detector tube tbr launch. 

3.3.6.4 Absorber Design 

A typical cavity absorber panel 1s sliowrl An Figure 3.3-72; items such as turbomachines. recuperator/ 

coolers or  NaK pumps are not shown. On the cavity interior side are mounted the heat absorber 

tubing loops which are heated by the concentrated solar radiation. Above the panel are four helium 

header tubes: thtse are provided with a me?t*roroid protectioni'insulation housing. The "skin" of the 

panel is multi-layer high temperature. stabilized by a crisscross wire pattern. 

Figure 3.3-73 shows one o f  the 16 cavities which make up the I0 gigdwatt ground output SPS. The 

cavity ic  supported by two 20-meter beam support arms and has beneath its aperture a light shield 

which prevents stray high concentration light from falling on the servicing areas associated with the 

turbo ~nachintts. Two turbo machines can be seen along with some of the helium manifolds. 

Iht .  dashed outline in Figure 3.3-74 represents the cavity absorber. 64 meters in diameter at the 

aperture. 101 meten In diameter at the major section. Indication is given of the location of a single 

turbo-machine.. Ledding to t h t  turbo machine is the hot manifold, that is, tlie manifold section which 

directs hot I~eliuni to t11r turblne rnlet of thc machine. Cooled helium from the radiator section 

<nters the cold lnanrfold and is routed to the header sections both above and below the central hot 

man~fo ld  ah chown. On the rlpht 14  \hewn a crors section of a panel assembly with a cold and hot 

header csteridr to thc cavity and heat absorber tubing inside the cavity. 
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On the right of Figure 3.3-75 is shown an uninsulated helium duct that contains pr.:ssurized helium 

at 1608 Kelvin and 4.1 4 x 1 o6 N / M ~  (600 PSI). The interior diameter of t5e duct is one meter To  

withstand these conditions for 30 years requircs .a 7rrssure shell thickness of 17  centimeters as 

shoun.  The resultant mass of a one meter length i n ~ s  Jucting is 5,630 kilograms. On the left 1s 

shown a in~ulated qection t o  withstand similar condit~ons. That is, it is one meter in interior diameter 

wiih helium at the same tenipcrratures and pressures. However, this system is insulated That is. 

there is an lnterior liner, then insdlation (whlch could be columbium wool). foilowed by the outside 

pressurr shell. 'This pressure shell need be only 2.3 centin1etc.r~ t!.lck t o  withstand the long term 

temperatures and : -cssures. since i i  operates at only 1.300 Kelvir rather than t h t  full 1608 Kelvin. 

Critical t o  this concept are vents in the Interior liner. This allcws helium t o  saturate the insulation. 

W i t h ~ u t  this, the interior pressure shzl! o r  thr  interior liter would feel the full pressure. With the 

vents. the helium pressure is transmitted through the insulation t o  the exterior pressure shell. 

Thl. engine configuration shown in F~gurt. 3.3-76 was produced for the "Space-Based Power" study 

by the Garrett Corp. 

The second generation turbocompressor includes a sixteen stage axial compressor and a six stage 

axial turbine. The rotor is supported by hydrostatic gas journal bearings outboard of the aero- 

dynamic wheels and a hydrostatic gas thrust bearing between the turbine and compressor. An axial 

thrust balancing piston will bc located between the l:ompressor and turblne t o  limit the thrust loads 

and thus minimize the thnlst bearing size and power loss. 

The ASTAR 81 IC turbine end structure is shown to  include internal insulation which is required to  

reduc: the unit mass. No insulation benef~t is included in the tota: turbocompressor mass figure 

however. 

The . ~erator,'cooler package conceptual design shown in Figure 3.3-77 was also developed by 

the ( Corp. 

The platc-fln pure countrrflow recuperato; and  finned tube cross counterflow gas to NaK cooler 

are composed of niultiplc nlodu1t.s cont,r~nt.tl wlthin two pressure vessels for each 300 M W  engine 

nlotiule. The recuperator,'cooler niodule at right shows the comprec;sor disc-hargc. flow entering the 

package at the top a17d heinp dr\tnhuted t o  the recuperator modules. The cold ex ha^.' flow of the 

cooler is d1rt.ctt.d around th t ,  contalnrncnt pressure vessel to  limit the vcscel pressure and tempera- 

turt 
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3.3.6.5 Cavity Heat Absorber Analysis 

An andysis of cavity heat absorber mass characteristics was performed t o  support the thermal 

engine cycle option mass screening test. Figure 3.3-78 shows the cavity absorber nodel  utilized t o  

predict heat flux incident on ,,bsorber tubes. Independent variables affecting tube flux were 

geometric cwncentration ratio, tube wall temperature. concentration efficiency, Ne, and the ratio of 

cavity wall area t o  aperture area. 

Saturation pressure - temperature characteristics of several candidate Rankine working fluids are 

compared in Figure 3.3-79. This comparison illustrates the high vapor pressures which are character- 

istic of water and the boiling temperature limit of 6500K. At temperatures below 650°K the vapor 

pressure cii  water is about four orders of magnitude greater than that of cesium. rubidium o r  potiis- 

sium. 

R a n k i n e ~ y c l ~  c ~ v i t y  heat absorbers have tour zones in which distinctly different heat transfer 

phenomena exist. Fluid entenng t!ie brat crhxorher is in the subcooled state and heat transfer can 

he described by conventional liqu~d foried-c.onv~tc~icr. models. When the liquid tempe~ature 

approaches the saturatron value. vapor bubbles form zt the f i : k  wdii dtld the nucleate boiling zone 

is entered. The mass of vapor increases in the ilow direction and. when approximatciy 60 to 8U"c of 

the liquid has been vaporized. the tuhe wall 1% no longer wetted by a continuous film of liquid. 

Instead, the remaining liquld exists as droplets borne along hy the tlowing vapor. This heat transfer 

regime is referred to  at the liquiddeficient regime and heat transier is described conservatively by 

gas forced-convection models. The mixture average temperature remains slightly above the srltura- 

tion value cntil all the liquid is evaporated. This marks the entrance to  the superheat region in 

which this fluid is completcl\ vaporized. 

Dzielopmcnt of a model for predicting heat abwrhcr mass required an analysis of heat transfer 

bctween the fluid z;ld containment tube ivalis. Power dbsorbcd bl- the fluid in each zone of the 

absorber was dcterniined by the expression. 

single phaw fluid flow 

boiling or liquid dificlrnt regime 

where Q = power transierr~*d to 11u1d 

111 = ~ l i ~ i ~ i  mas\ tlow rate in , i l l  tubers 

Cp = ~ p c ~ ~ f ~ c .  I~eat  of fluid 

AT = t~-mperature increaie of fluid 

3 X  = lnircasc in p i h i  fract~on of vaporized liquid 

hfg = hcrlt of vaponration 



O
R

IG
W

U
 PA

G
E 

OF' Pooa Q
U

~
 



VAPOR PRESSURE - PSlA 

I / WATER A-u 

0 600 700 900 1100 9- 9 5 0 0  1700 
SATURATION TEMPERATURE -OK 

Figure 3.3-79 Saturation Pressures of Candidate Rankine Working Fluids 
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Tube wall temperature was determined by the expression: 

where q l  = local net radiative heat flux on tube outer wall (see Figure 

h = heat transfer coefficient between tube inner wall and fluid 

Tf = local fluid bulk temperature 

Values of  convective boiling heat transfer coeiGi-ient for potassium and water are shown in Figure 

3.3-80 and 3.3-8 I. The range of values for potassium. based on experimental d a b .  is between 15 and 

6 0  kwlmz-OK while average boiling heat transfer coefiicients ranged from 15 to 35 kwlmz-OK. 

Tube wall temperature. along with fluid pressure wore used in a thick-wall tube stress model to  

determine wall thickness for 30 year life. Absorber tube lengths required in each heat transfer zone 

were calculated from the equation : 

where D = internal diameter of  absorber tubes 

Nt = total number of parallel tlow tubes 

Fluid and tube wall temperature profiles in potassium and water heat absorbers are shown in 

F~gures 3.3-82 and 3.3-83. Major differences between the potassium and water :emperature profiles 

were the longer tube length required for boiling and liquiddeficient heat transfer in the potassium 

heat absorber and the higher average wall temperature. Details of  heat absorbers for four thermal 

engine cycle options are compared with the Brayton baseline heat absorber in Table 3.3-1 1 .  The 

Braytor. baseline heat absorber design incorporated 10 to  10 times more tubes than the Rankine 

cycle absorbers however the tubr's were much shorter. 
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Figure 3.3-80 Average Boiling Heat Transfer Coefficients For Potassium 
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Figure 3.3-81 Average Boiling Heat Transfer Coefficients For Water 
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3.3.7 Thermal Engine Structures Analysis 

The thermal engine systems utilized the same main structure beams as designed for photovoltaics 

(section 3.2.6). Since internal material stretching loads were not present. design loading conditions 

were not identified except for one condition appearing in the self-powered orbit transfer situation. 

Figure 3.3-84 shows an end view of one module of a 16 module SPS. After construction in low 

earth orbit. electric thrust is applied t o  accelerate the mociule. The thrust is shown here as being 

applied at each side and directed upward. This is mere11 one ot' the orientations which the thrust 

will take as the module rotates about the earth. However, in this onentation the thrust will tend t o  

buckle the 30 meter beam support arms. Analysis of the resultant loads as shown that the beam sup- 

port arms have a factor of safety more than 3 for this condition. 

3.3.8 Thermal Engine Mass Properties 

Thermal engine mass properties analyses concentrated on the radiator as the most massive system 

element. Mass estimating was performed pnmarily on a parametric basis. 

Figure 3.3-85 shows a breakdown of the mass of all of the radldtors in a 10 gigawatt ground output 

Brayton SPS. i.e.. the mass of all 64 radiators for 64 turbomachine sets. The dominant element is 

the panels. heatpipes plus through-pipes. shown here without the water which fills the heatpipe:. 

Next in order of significance is the NsK (sodium-potassium thl~tecti<I which fills the through-?iprs. 

headers and manifolds. Finally. the w2tt.r manifolds. pumps, rts. .  wh~ch  form a relatively small 

portion of the overall system mass. 

The pumps include a redundant set for both the hot and the cold (or  return) $ides. That 1s. each 

pump has a redundant or  matching pump to redi:ce the time between servicing penods on the pump 

set. 

Figure 3.3-86 mass statemel:r is for a 10 gigawatt ground output Brayton SPS. Note that the radl- 

ator system don~rnates. approximatel) 3 1 mi1l;on kilograms out ot' the total of approximately 80 

million kilograms. Elements such ds the structure. turbo machines, cdvities, etc.. are relativ~!y light. 

The mass of the t'acets includes the structure to tenr,ion the plastic film supported. etc. Thus. the 

structural mass of the satcl:~tc is truly the sun] of the mass glven here under structure. plus much of 

the mass given under fdcets. 

Figure 3.3-87 present\ the mass statement for the comparable potassii~m Rank~nc SPS. 
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Figure 3.3-85 Radiator Mass Breakdown-Brayton SPS 
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3.3.9 Thermal Engine SPS Packaging 

Components of thermal engine satellites have been found to  be relatively low in density with the 

exception of a few c-omponcnts. The major components, density and number of  flights required 

with the initial packaging appraach (initial design and no  component mixing) and the number 

required for a mass limited condition (82  million kg satellite excluding MPTS) is shown in Table 

3.3-1 2. 

The dominating feature of  this data is that the number of flights re.ulting from initla1 packaping 

densities exceed a mass iimitcd pack.qing caw by over 4GO. Further inspection indicates the biggest 

gatn in reducing the azrltal number of rllghts C611 be obtained by further invcstigaticn of the radiator 

pancll'hea ier ;om-@ner,fs C~nxqur t i~ t ly .  the following design modifications were incorporat-.Z: 

a. Removal of ;ilc bu!ky rrtr.:corcid bumpers from the XiiK throiig!!piycr of the radiator panels: 

!he heat pipe: which wrap around the tfirougtrpipzr provrde sufficient protection. 

b. Change of the rttlrctor iacrr edge members t o  a des~gn shicli f la i~cns fur packaging r FIgure 

3.3-58 j. 

c Modiiication oi the radiator panels to not I n c o p r i t e  pre-attached headers. 

As a result of i h t ~  modific;ltions tile number of flights was reduced irom o w r  535 to  130. 

420 flights IS stiil more than twc hundrdd over the mass !mired condition. an additional 

approach was taken to rrdl:cine thr  numbcr of fl:g!~ts. Thi5 was to include more than one type of 

component in e3~t .  launch. The result o' this approach was to  reducc the numhrr of flights to  237. 
lrxiudcd in thib qui f i t~ ty  were 14 ekpndablr  shroud flights t o  accommodate very low density 

components. Use of recoverable shrouds ior thcw flights would have required 28 flights instead of 

14 and resulted rn a cost penalty of over SSO rnllllon as compared t o  expending shrouds. A graphical 

representation o i  the change in number of flights and the number of flights with multiple 

componen: t y p s  is shcwn in Figure 3 .349  

Payload shrord volume utili~ation for the therma! engine satellite is generally greater than 909 

smce the majority o the volume was required to  reach a mass limited condition. 

As a final notc on thcrnial engine satell~te packaging, it should be stated that a!tiiough the number 

of tl~ghrs cxcrrdcd the 111asb limited nurnhcr of flights by 28 (13%) it is assumed with further design 

and packapnp ;~naty>i\ the number of flights can reach a mass limited condrt i~r .  
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T a b  3-11 2 Thermal Engine Payload Packqhg-One Component Type per Launch - 
RECOVERABLE SHROUD ALL- 70 KG& 

TOTAL FLIGHTS (ONE COMFONEhT W E !  632 

FLIGHT QUANTITY IF MASS U M l T  ED 208 

COMPONENT 
TYPE 

BEAMS 

20 METER 
5 METER 

1.5 METER 

FACETS 
HUBIRADIALS 
EDGER LASTIC 

RADIATORS 

PANELYHEAOERS 
MANIFOLDS 
MAK 

CAVITY 

BASIC PANELS 
RECUPE RATOR 
TURBINE 
OTHER 

EST. No. 
Of FLIGHTS 

4 

97 
21 

332 
7 

W 

22 
4.3 
21 
26 

PACKAGE D 
DENSITY 
~ K G I M ~ )  

850 
TBD 
TBD 

5 
30 

40 
35 

300 

56 
65 

145 
30 

LAUNCH L Y l T  

MASS 

r' 

v' 

VOLUME 

:: 
P 
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NEW EDGE MEMBER (BOOST) 

- 

NEU EDGE MEMBER (OPERATION) 

Figure S 3-88 Facet Changes for Higher P a c k i  Density 
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3.3.10 Thennal Engine Reliability and Maintenance 

3.3.10.1 Turbomachine Experience 

Inspe~tion and maintenance procedures for centrai power generation station and 1,larine steam tur- 

bines in the 300 biW sire range are well established. Frequency of  inspection is dependent on the 

type of service expcrienccd by the turbine. For the c a x  of turbines in continuous service the 

normal i~ispei t io~i  period is 5 years. Turbines subjected to  i~r~ermit tent  service wquire more fre- 

quent inspections due to  greater blade and bearing wear during start and ;top transients. Downtime 

for inspection and preventative rnaintenanie is approximately 5 t o  6 weeks with a cost of 5300.000 
to  s3cw.000. 

Steam turbinc. blade lifi. based on General Electric field service experience is vp  t o  30 years for 

coldensing turbines and greater than 3 0  years for noncmndensing turbines. Blade replacement costs 

are greatest for the lower pressure stages whew wheel diameter and blade length are greatest. 

a Re-blading cost 

Last stage: SJ00.000 to  5300,000 plus labor 

High-pressure stages. S80.000 to  S 100.000 plus labor 

In addition to  longer blade life. noncondensing turbines allow higher wheel speeds with resulting 

improved efficiency and relaxed turbine mounting frame stiffness and alignment requirements. 

3.3.10.2 Failure Rate and Maintenance Requirement Estimates 

Failure rates and maintenance requirements for thermal engines appear acceptable (hlTBF's are 

much shortcr. hut t!ie number of conlpc.ir.nts is proportionately smaller), except for leakage of 

fluid systrms. 

F lu~d  leakage in IVaK systems may be a prohlrm unless ieakage MTBF's much lower than repre- 

sentative industry experience can be obtained. This indicates a need for a technology advancement 

program to develo:, the necessary joint reliabil~ty. NaK Icakage data were primarily from experi- 

mental hardware and probably rctlcct technical immaturity. Results are summarized in Table 

3.3-1 3. A summar) of source data is provided in Table 3.3-1 4. 
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Table 3.3-14 (Continued) 



Table 3.3-1 4 (Continued) 

THERMAL CYCLE SOLAR POWER SATELLITE 

- 
SOURCE 

LMEC 69-7 VOLI, TABLE 1-74 
PG 1-85 

RAOC-TR-75-22, PG 2-96 

D2 AGM 121 01 -1 , PG 38 

FRD VOLI, PG 437 

LMEC 69-7 VOL I, TABLE 1-1 00 
PG 1-263 

LMEC 69-7 VOLI, TABLE 1-434 
PG 1-445 

LMEC 69-7 VOL I, TABLE 1-161 
PG 1-491 

RADC-TR-75-22, PG 2-1 70 

LMEC 69-7 VOL I, TABLE 1-34 
PG 1-82 

MTTR ADJ FAC 

2 

30 

NONE 

40 

2 

4 

6 

11 

6 

HEAT TRANSFER 

CONDENSOR (COOLER ) 

M'CTING (STAINLESS 
STEEL) 500-600 P S I  

JOINTS, WELDED 

VALVE, REGULATOR 

THERMAL CONTROL PWR GEN 
THERMAL CYCLE 

PUMP SlJB SYS 

PUMP, LIQUID SODIUM 

CONTROLS 

TEMP SENSOR 

SERVO MOTOR 
CONTROL 

MOTOR ELECT DRIVE 

i 

AOJ VALIE 
FAILIIO HRS 

62.5 

2.0 

.0005 

7.2 

100.0 

52.5 

24.67 

.07 

20.83 

MTBF (HRS) 

8,000 

16,667 

- 
3,47,2 

5,000 

4,762 

6,711 

1,250,000 

8,000 

OPER HRS 

125 

60 

;OOPr 

288 

200 

21 0 

148 

.80 

125 

ENVIRO 

GND 

ACFT-FLT 

CMP LAB 

ACFT-FLT 

GI0 

GND 

GND 

GND 

GND 
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