CHARACTERIZATION, SHAPING, AND JOINING OF SiC/SUPERALLOY SHEET FOR EXHAUST SYSTEM COMPONENTS

J. A. Cornie

July 20, 1977
Final Report

NASA CR-135301
Contract NAS-19735
CHARACTERIZATION, SHAPING, AND
JOINING OF SiC/SUPERALLOY SHEET
FOR EXHAUST SYSTEM COMPONENTS

by J. A. Cornie

WESTINGHOUSE RESEARCH AND DEVELOPMENT CENTER

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center
Contract NAS-19735
Hafnium carbide was shown to be virtually inert when in contact with silicon carbide and Waspaloy for at least 200 hr at 1093°C (2000°F). Extensive interaction was noted with other superalloys such as HA-188. A continuous CVD HfC deposition process was developed for deposition of up to 8 μm on .14 mm (.0056") SiC tungsten core filament at rates as high as .6 m/min. The rate can be increased by increasing the length of the reactor and the output of the power supply used in resistive heating of the filament substrate.

The strength of HfC coated filament varies with thickness in a Griffith-like manner. This strength reduction was greater for HfC coatings than for tungsten coatings, presumably because of the greater ductility of tungsten. Satisfactory composite strengths were not obtained for a variety of identifiable reasons which are discussed. Room temperature modulus values measured were only slightly below rule-of-mixture predictions.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>COMPATIBILITY</td>
<td>2</td>
</tr>
<tr>
<td>FABRICATION AND PROCESSING</td>
<td>8</td>
</tr>
<tr>
<td>FILAMENT CHARACTERIZATION</td>
<td>17</td>
</tr>
<tr>
<td>COMPOSITE CHARACTERIZATION</td>
<td>24</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>27</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>28</td>
</tr>
</tbody>
</table>
FOREWORD

This technical report describes work performed for NASA-Lewis Research Center under Contract NAS3-19735 during the period January 1975 to April 30, 1977. It was submitted by the authors in July 1977. The contract with the Metallurgy and Metals Processing Department of Westinghouse Research and Development Center, Westinghouse Electric Corporation, Pittsburgh, PA 15235, was under the direction of Dr. Richard Barrows of the NASA-Lewis Research Center, Cleveland, OH.

Westinghouse personnel contributing to this program are: Dr. J. A. Cornie, Program Manager, Mr. J. W. Salatka and W. R. Lovic, Composite Fabrication, Hot Isostatic Pressing, and Filament Testing, G. A. Blann, Metallography, and E. Diaz, Composite Testing.
ABSTRACT

Hafnium carbide was shown to be virtually inert when in contact with silicon carbide and Waspaloy for at least 200 hr at 1093°C (2000°F). Extensive interaction was noted with other superalloys such as HA-188. A continuous CVD HfC deposition process was developed for deposition of up to 8 μm on .14 mm (.0056") SiC tungsten core filament at rates as high as .6 m/min. The rate can be increased by increasing the length of the reactor and the output of the power supply used in resistive heating of the filament substrate.

The strength of HfC coated filament varies with thickness in a Griffith-like manner. This strength reduction was greater for HfC coatings than for tungsten coatings, presumably because of the greater ductility of tungsten. Satisfactory composite strengths were not obtained for a variety of identifiable reasons which are discussed. Room temperature modulus values measured were only slightly below rule-of-mixture predictions.
ACKNOWLEDGEMENT

The technical assistance of the following individuals is gratefully acknowledged: I Ahamad of Watervliet Arsenal for providing CVD tungsten coated SiC filament, J. Hakim and P. Mazzei for developing a CVD apparatus and process for continuous CVD coating of HfC onto SiC filaments, R. Lovic for HIP and Composite Fabrication assistance, D. Kaminski for designing the filament winding apparatus, J. Salatka for encapsulation development, and G. Blann for developing metallographic techniques for SiC reinforced superalloys.
1. **INTRODUCTION**

The work on the previous contract (NAS3-18921) demonstrated that SiC filament could be fabricated at temperatures as low as 996°C (1825°F) if adequate protection against interdiffusion between matrix and fiber is provided. This protection can be in the form of a diffusion barrier applied to the filament surface prior to composite consolidation. Tungsten was used as the barrier with some success but more notable drawbacks. Tungsten increases the composite density and delays, but does not prevent the decomposition of the filament through interaction with matrix constituents.

A considerable amount of effort has been necessary to develop better barriers. Fortunately, candidates with a high probability of success were investigated during earlier studies. Hafnium carbide was shown to be virtually inert to interaction between SiC and the Waspaloy matrix and was selected as the barrier material. A Chemical Vapor Deposition (CVD) method was developed for continuously coating the SiC filament with HfC.

Fabrication techniques were developed utilizing matrix in the form of a powder tape sandwiched between monolayers of fiber in the desired orientation. Consolidation was accomplished by Hot Isostatically Pressing (HIP) after removal of the fugitive binder in the powder tape. Although the processing parameters were established during the previous program, much work still remained for process refinement and optimization. This work was continued under the present program.

A further objective of this program was the characterization of mechanical properties of the resultant composites as a function of thermal exposure at 982°C (1800°F).

The reader is referred to Reference 2 for the description and qualification of initial matrix materials.
2. COMPATIBILITY

Silicon carbide and any Ni, Co, or Fe base superalloy are inherently incompatible. This was dramatically demonstrated in the previous program (Contract NAS3-18921). Any attempt to circumvent the compatibility problem through alloy modifications would meet with failure. Although kinetics of the complex intermetallics can be affected somewhat, the laws of thermodynamics remain inviolate. A typical example of chemical interaction between SiC filament and superalloy matrices is shown in Fig. 1.

In order to prevent interaction between the filament and matrix, physical separation is necessary, in effect, a diffusion barrier. 1) The essential features of a good diffusion barrier are: (1) high temperature stability, (2) chemical compatibility with both the matrix and with the filament, and (3) mechanical compatibility with the fiber/matrix interface (thermal expansion match). Item 1 above is related to the melting point of the barrier. Refractory materials such as oxides, carbides, certain nitrides, and tungsten metal would be good candidates. Item 2 is related to the free energy of formation of candidate materials. Item 3 is related to the thermal expansion mismatch.

During earlier work at this laboratory, a similar problem (however with less disastrous consequences) was encountered when attempting to induce high temperature stability in tungsten/superalloy composites. 1

A number of candidate materials are compared for free energy of formation and thermal expansion mismatch in Table 1. Chemical potential vs temperature plots for selected carbides and oxides are given in Figs. 2 and 3, respectively. From free energy of formation
TABLE 1
THERMAL AND CHEMICAL STABILITY DATA

<table>
<thead>
<tr>
<th>Species</th>
<th>$\alpha \times 10^6/\degree\text{C}$</th>
<th>Temp. Range, °C</th>
<th>$\Delta G_{1500\degree\text{K}}^{\text{kcal}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>4.6</td>
<td>20 \rightarrow 2000</td>
<td></td>
</tr>
<tr>
<td>SiC</td>
<td>4.78</td>
<td>20 \rightarrow 1250</td>
<td>11.7</td>
</tr>
<tr>
<td>Matrix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waspalloy</td>
<td>12.8</td>
<td>20 \rightarrow 204</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>13.7</td>
<td>20 \rightarrow 426</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.4</td>
<td>20 \rightarrow 650</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.0</td>
<td>20 \rightarrow 870</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.7</td>
<td>20 \rightarrow 1093</td>
<td></td>
</tr>
<tr>
<td>Carbides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiC</td>
<td>7.74</td>
<td>20 \rightarrow 270</td>
<td>39</td>
</tr>
<tr>
<td>ZrC</td>
<td>6.73</td>
<td>20 \rightarrow 1100</td>
<td>43</td>
</tr>
<tr>
<td>HfC</td>
<td>6.59</td>
<td>20 \rightarrow 600</td>
<td>47</td>
</tr>
<tr>
<td>aC</td>
<td>6.29</td>
<td>20 \rightarrow 1100</td>
<td>.34</td>
</tr>
<tr>
<td>WC</td>
<td>3.84</td>
<td>20 \rightarrow 400</td>
<td>8</td>
</tr>
<tr>
<td>Oxides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>9.0</td>
<td>20 \rightarrow 982</td>
<td>202</td>
</tr>
<tr>
<td>Y$_2$O$_3$</td>
<td>8.5</td>
<td>20 \rightarrow 1093</td>
<td>207</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>4.9</td>
<td>20 \rightarrow 1093</td>
<td>160</td>
</tr>
<tr>
<td>ZrO$_2$</td>
<td>7.9</td>
<td>20 \rightarrow 1093</td>
<td>197</td>
</tr>
<tr>
<td>HfO$_2$</td>
<td>5.6</td>
<td>20 \rightarrow 1093</td>
<td>204</td>
</tr>
<tr>
<td>Cr$_2$O$_3$</td>
<td>6.9</td>
<td>20 \rightarrow 1093</td>
<td>108</td>
</tr>
<tr>
<td>Nitrides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiN</td>
<td>8.1</td>
<td>20 \rightarrow 600</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>600 \rightarrow 1400</td>
<td></td>
</tr>
<tr>
<td>ZrN</td>
<td>7.0</td>
<td>20 \rightarrow 600</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>7.7</td>
<td>600 \rightarrow 1400</td>
<td></td>
</tr>
<tr>
<td>HfN</td>
<td>6.5</td>
<td>20 \rightarrow 1400</td>
<td>.56</td>
</tr>
</tbody>
</table>
considerations alone, HfC would be the most stable carbide, HfN the
most stable nitride, and Al_2O_3, Y_2O_3, and HfO_2 being equally promising
as oxide barriers.

During the earlier study, a number of the candidate barrier
 compounds were applied to tungsten wire by R. F. sputtering, and wires
were enclosed in Mar-M-200 powder and HIP consolidated at 1020°C into
compatibility specimens. The diffusion of Ni through the various barriers
into the tungsten wire substrate as manifested by Ni enhanced recrystal-
lization of the outer layers of the tungsten wire is shown in Fig. 4
for the 1177°C (2150°F) isotherm. Hafnium carbide far surpassed the other
carbides. Hafnium nitride was not investigated at the time of the work
in Ref. 1. Later work has also shown HfN to be a very stable barrier.
However, due to the extreme range of nitrogen solubility in the HfN
structure, stoichiometry, i.e., the Hf/N ratio, is expected to have a
large effect on the diffusivity of Ni through HfN.

Tungsten and HfC were selected during the previous work on
NAS3-18921 as the most promising barriers for protecting SiC from
reaction with the Waspaloy matrix. Tungsten, however, forms inter-
metallics with both sides of the interface. This is best demonstrated
by observing the progressive interaction between the tungsten and the
SiC at the core, as shown in Fig. 5. This interaction greatly reduces
the strength of the filament. Tungsten forms intermetallic compounds
with matrix constituents on the matrix/barrier interface, as shown in
Fig. 6. The kinetics of growth of this compound at 982°C (1800°F) is
given in Fig. 7. The intermetallic compounds continue to grow until
the tungsten is completely consumed. The intermetallics, when in
contact with the SiC filament, are unstable and a number of reaction
products between SiC and the intermetallic compound are observed.
Tungsten would be an adequate diffusion retardant, however, thicker
tungsten layers would result in a density penalty as shown below.
A 1000 hr life specification would require approximately a 10 μm coating. Most of the density advantage from using SiC reinforcement in a superalloy composite would be lost with a 10 μm barrier.

Hafnium carbide is the most promising barrier candidate for the intended composite application. Work on the present contract was directed toward developing a technique for HfC deposition and for verifying the effectiveness of HfC as a barrier.

It was still necessary to verify the stability of HfC when in contact with SiC and to assess the compatibility between HfC and the various superalloy candidates from the previous contract (NAS3-18921). Slices of hot-pressed SiC were RF sputter deposited with HfC and HIP consolidated at 138 MPa (20 ksi), 996°C (1825°F) with Waspaloy, HA-188 and Hastelloy X powders into compatibility specimens. The couples were examined as HIP-consolidated and after thermal exposure at 982°C (1800°F) for 200 hr. The resulting optical micrographs are shown in Figs. 8, 9, and 10. The 12 μm thick HfC barrier prevented interdiffusion during the conditions investigated. However, some small interaction between the matrix and the HfC occurred after 200 hr at 982°C for the HA-188 and Hastelloy X/HfC/SiC couples and are shown in Figs. 12 and 13. No interaction was noted between the HfC and the Waspaloy matrix after 200 hr at 982°C, as shown in Figs. 8 and 11. Another encouraging result of this investigation was the lack of observable interaction between HfC and SiC.

Since very little reaction was noted at 982°C (1800°F) for any of the diffusion couples, accelerated tests were conducted at 1093°C (2000°F) to evaluate the margin of error in fabrication or application of SiC/superalloy composites. An Energy Dispersion X-ray (EDX) analysis
of the 10 hr at 1093°C Waspaloy/HfC/SiC couple is given in Fig. 14. The SEM photomicrographs revealed no microstructural changes resulting from the high temperature exposure. Slight amounts of Ti, Cr, Fe, and Co were detected in the barrier. Very little change in microstructure was noted in the Waspaloy/HfC/SiC couple after a 200 hr at 1093°C exposure, as shown in Fig. 15. The area shown in Fig. 15 was taken from the end of the wafer and received HfC during the total period of deposition. The two layers within the barrier are due to the interruption of the HfC sputter coating operation due to flipping the wafers over for total coverage. A thin intermediate phase between the Waspaloy matrix and the HfC coating is noted in Fig. 15. The EDX analysis shows this phase to be enriched in Ti and Mo with respect to the matrix and somewhat depleted in Cr, Fe, Co, and Ni. The barrier shows the same degree of impurities after 200 hr as it did after 10 hr at 1093°C with the exception of a slightly higher Ni content (130 counts after 200 hr vs no counts after 10 hr). All in all, this specimen displays a remarkable lack of interaction.

A somewhat greater interaction was noted between the constituents of the Hastelloy X/HfC/SiC couple after the 200 hr at 1093°C exposure of Fig. 16. A pronounced intermetallic phase is noted at the matrix/HfC interface and a second reaction zone at the HfC/SiC interface. An EDX analysis of the various features of this couple is also given in Fig. 16. Area A gives the characteristic counts above background for the Hastelloy X matrix. The intermetallic phase at the HfC/matrix interface (spot B) shows a concentration of Mo with some Si, Cr, Fe, Co, and Ni. The barrier shows about the same level of impurities as the previous (Waspaloy/HfC/SiC) couple in Fig. 15 with the exception of a slightly higher Cr content. The exceptionally high Cr content in the intermediate zone between HfC and SiC was unexpected.

The H.A. 188/HfC/SiC couple was decidedly unstable after 200 h at 1093°C, as shown in Fig. 17. The initial barrier (area C) is much depleted, as shown by its porosity. At least one zone is shown between
the initial coating and the matrix and two zones between the matrix and SiC are noted in Fig. 17. This couple demonstrates the inadequacy of HA-188 as a matrix candidate with HfC barriers.

Our earlier choice of Waspaloy as the reference matrix has been vindicated by these experiments. We should expect excellent chemical stability from the Waspaloy/HfC/SiC system at 982°C (1800°F), the temperature of intended application. An opportunity to examine TiN coated SiC occurred when a CVD vendor* placed a filament into a reactor. The CVD TiN coated SiC filaments were HIP consolidated into Hastelloy X and Waspaloy powders. The photomicrographs of Figs. 18 and 19 revealed the presence of diffusion zones for both couples after the 2 hr HIP cycle at 996°C (1825°F). Energy dispersive X-ray analysis performed on the areas of the SEM indicated in Figs. 18 and 19 revealed matrix constituents concentrated in the inner zones. This amount of interdiffusion was considered excessive and TiN was eliminated as a barrier candidate.

Although TiN was inadequate as a diffusion barrier, HfN shows great promise. However, the amount of effort required to develop CVD HfN techniques was considered to be greater than CVD HfC techniques which had previously been developed for tungsten filament.

* Materials Technology Corporation, Dallas, TX.
3. FABRICATION AND PROCESSING

A. Filament Coating

With HfC established as a viable barrier for the SiC/Waspaloy system, the task remained to develop a process for depositing a high quality coating of the barrier continuously onto the SiC filament. Since hafnium is an expensive starting material, methods of developing high material efficiency must be identified. Chemical vapor deposition appeared to offer the best technique and can be scaled up to continuous production. Resistance heating of the substrate (filament) was selected as the most efficient technique for providing the hot surface for deposition with minimal process loss of hafnium.

The apparatus designed for the CVD or HfC for this program is shown in Fig. 20. HfCl₄ gas is generated by passing HCl vapor over heated hafnium chips. The HfCl₄ vapor is reduced and carburized simultaneously by the proper balance of CH₄ (methane) and hydrogen on the hot filament substrate. A record of the parametric studies conducted during the development phase of the program is given in Table 2. Once continuous production capability was reached, deposition of 5-8 µm HfC onto the SiC substrate was accomplished at approximately .6 m/min (2 ft/min).

B. Composite Panel Fabrication

Filament Winding. A filament winding apparatus was designed, constructed, and placed into operation. The device shown in Fig. 21 attached to the tool bed of a 305 mm (12") lathe utilizes carriage feed gearing to provide the filament spacing required for a specific volume fraction. The filaments were tension-fed, by use of an infinitely adjustable magnetic brake shown on the spool axle of Fig. 21A, through a .38 mm (15 mil) diameter hole drilled axially through a Teflon cylinder (Fig. 21B) onto a 20 cm (8") diameter polished aluminum drum which was chucked and
TABLE 2. EXPERIMENTAL CVD PARAMETER STUDY FOR HfC DEPOSITION ON SiC FIBRE

<table>
<thead>
<tr>
<th>Expt. No.</th>
<th>Cooling</th>
<th>H2 Chl.</th>
<th>Total HCL</th>
<th>CH4 Speed</th>
<th>Power Setting</th>
<th>Volts</th>
<th>Amps</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD SiC-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>10</td>
<td>2</td>
<td>700</td>
<td>0.75</td>
<td>Fibre darkens and is embrittled due probably to the direct reaction with Hf halides</td>
</tr>
<tr>
<td>#2</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>10</td>
<td>2.5</td>
<td>700</td>
<td>0.8</td>
<td>Spalling</td>
</tr>
<tr>
<td>#3</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>10</td>
<td>6</td>
<td>700</td>
<td>0.8</td>
<td>Spalling</td>
</tr>
<tr>
<td>#4</td>
<td>50</td>
<td>200</td>
<td>250</td>
<td>10</td>
<td>6</td>
<td>625</td>
<td>0.8</td>
<td>No spalling, sample to R&D</td>
</tr>
<tr>
<td>#5</td>
<td>50</td>
<td>200</td>
<td>250</td>
<td>10</td>
<td>12</td>
<td>700</td>
<td>0.5</td>
<td>No spalling, sample to R&D</td>
</tr>
<tr>
<td>CVD SiC-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>10</td>
<td>12</td>
<td>705</td>
<td>0.8</td>
<td>Spalling</td>
</tr>
<tr>
<td>#2</td>
<td>100</td>
<td>300</td>
<td>400</td>
<td>10</td>
<td>9.5</td>
<td>705</td>
<td>0.8</td>
<td>No spalling, sample to R&D</td>
</tr>
<tr>
<td>#3</td>
<td>100</td>
<td>300</td>
<td>400</td>
<td>10</td>
<td>8</td>
<td>705</td>
<td>0.8</td>
<td>No spalling, sample to R&D</td>
</tr>
<tr>
<td>#4</td>
<td>100</td>
<td>300</td>
<td>400</td>
<td>10</td>
<td>20</td>
<td>705</td>
<td>0.5</td>
<td>Spalling</td>
</tr>
<tr>
<td>#5</td>
<td>100</td>
<td>400</td>
<td>500</td>
<td>10</td>
<td>12</td>
<td>705</td>
<td>0.5</td>
<td>No spalling, sample to R&D</td>
</tr>
<tr>
<td>#6</td>
<td>100</td>
<td>400</td>
<td>500</td>
<td>10</td>
<td>24</td>
<td>710</td>
<td>0.9</td>
<td>No spalling, sample to R&D</td>
</tr>
<tr>
<td>CVD SiC-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>100</td>
<td>400</td>
<td>500</td>
<td>10</td>
<td>5</td>
<td>650</td>
<td>0.5</td>
<td>Spalling</td>
</tr>
<tr>
<td>#2</td>
<td>100</td>
<td>400</td>
<td>500</td>
<td>10</td>
<td>6</td>
<td>650</td>
<td>0.5</td>
<td>Spalling</td>
</tr>
<tr>
<td>#3</td>
<td>100</td>
<td>400</td>
<td>500</td>
<td>10</td>
<td>20</td>
<td>690</td>
<td>0.5</td>
<td>Spalling</td>
</tr>
<tr>
<td>#4</td>
<td>100</td>
<td>500</td>
<td>640</td>
<td>10</td>
<td>24</td>
<td>770</td>
<td>0.45</td>
<td>Spalling - a small portion of fibre showed good adhesion.</td>
</tr>
<tr>
<td>#5</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>10</td>
<td>24</td>
<td>770</td>
<td>0.45</td>
<td>No spalling, but temperature of SiC fibre went out of control.</td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Expt. No.</th>
<th>H2 Cooling</th>
<th>Chlorination</th>
<th>Total</th>
<th>HCl</th>
<th>CH₄</th>
<th>Speed</th>
<th>Power Settings</th>
<th>Volts</th>
<th>Amps</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVD SiC-13</td>
<td>#1</td>
<td>100</td>
<td>175</td>
<td>275</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>660</td>
<td>0.35</td>
<td>Deposition rate very low</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>100</td>
<td>175</td>
<td>275</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>700</td>
<td>0.4</td>
<td>No spalling</td>
</tr>
<tr>
<td>CVD SiC-14</td>
<td>#2</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>4</td>
<td>10</td>
<td>12</td>
<td>650</td>
<td>0.5</td>
<td>Good quality adherent HfC coating (1.9 μm thick). About 100 ft. fibre coated of which 70 ft. used for laying down a duplex coating as in CVD SiC 15</td>
</tr>
<tr>
<td>CVD SiC-15</td>
<td>#1</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>4</td>
<td>15</td>
<td>12</td>
<td>500</td>
<td>0.76</td>
<td>No spalling, HfC thickness = 3.2 μm, 60 ft. of fibre obtained.</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>5</td>
<td>20</td>
<td>12</td>
<td>500</td>
<td>0.75</td>
<td>No spalling, HfC thickness = 3.3 μm.</td>
</tr>
</tbody>
</table>

NOTES:

(a) Hafnium metal was chlorinated at 700°C and walls of the CVD chamber were maintained at 450°C - 500°C during a deposition run.

(b) Reference to the temperature of the fibre in the table has been omitted since a temperature gradient prevails along the length of the fibre during a deposition run due to large differences in the resistivities of SiC and HfC.

(c) Temperature of the fibre at the inlet end of the CVD chamber was made to vary between 950°C - 1200°C, depending on the power setting, flow rates of gases and speed of travel of the fibre through the deposition chamber.
centered. The drum was first lined with a 25 μm thick Mylar film over which the powder tape is rolled and attached. Filament was then wound onto the powder tape surface at the desired pitch or spacing. The binder in the tape was softened by spraying with a mild solvent (Ethylene Glycol Monobutyl Ether) which, after drying, results in the fiber being embedded into the powder tape. Heating with a hot air blower after winding produces the same result. The dried green monolayer was then cut by scoring along a premachined groove in the drum and unpeeled for stacking into picture frame HIP capsules.

Binder Removal and Panel Fabrication. The early test specimens and panels fabricated on this program were outgassed as an "open face sandwich", i.e., the ply-pattern was laid-up in the picture frame can and outgassed with flowing hydrogen by slowly heating to ~450°C. After binder removal, the cover plate was then welded onto the green (but binder removed) lay-up and evacuated by electron beam closure. This method was advantageous because of the opportunity to inspect the lay-up for complete binder removal and because of the easy access of hydrogen to the binder and unrestricted flow for binder vaporization. However, the powder tape in the green composite stack is very friable, behaving much like a "clod of earth". During handling, some powder may shift or settle to certain areas in the capsule prior to HIP consolidation. Excessive shifting resulted in fiber breakage during HIP consolidation.

For the reasons given above, it was considered desirable to maintain a moderate compressive stress on the green composite lay-up during outgassing and handling. This compressive stress can best be provided by atmospheric pressure acting on the walls of a closed picture frame envelope during binder removal under a positive hydrogen flow at a reduced pressure. The capsule shown in Fig. 22 was utilized to remove the binder. The binder removal process was further modified by heating to 180–200°C and holding for 16 hr (overnight) then heating to 450°C at a rate of approximately 50°C/hr followed by more rapid heating (~150°C/hr) to 1000°C. This procedure insures total binder removal and hydrogen deoxidation.
of the powder surface. In addition, a small amount of sintering of the powder occurs and produces a more stable and less friable "green" compact.

Four small 2.54 x 15.2 cm (1" x 6") 4-ply uniaxial composites containing 50 v/o fiber were fabricated utilizing binder removal techniques and overall HIP can design discussed above. The object of these initial fabrication attempts was to evaluate several stacking arrangements and the use of parting compounds. The generalized stacking sequence is given below.

![Diagram of stacking sequence]

The parting compounds were boron nitride, graphite, and alumina painted onto the mild steel leaching plates in the form of an aqueous slurry.

The results of this fabrication experiment were decidedly unsatisfactory. The parting compound was too thin to provide a continuous friable layer and allowed diffusion bonding of the Waspaloy foil to the mild steel leachable inner can liner.

The second problem arose here due to thermal expansion differences between the composite and the HIP envelope. "Trouser Leg" tearing or delamination occurred after the end of the composite was exposed during leaching of the steel inner can. We would calculate, utilizing Schöberg's equation, an axial coefficient of thermal expansion for a uniaxial 50 v/o SiC/Waspaloy composite of 8.8×10^{-6} cm/cm/°C. The stainless steel and mild steel inner liner has an α of approximately 14 to 16×10^{-6} cm/cm/°C over the temperature range from RT to 1000°C. The resultant product is a double bimetallic strip as shown below. The
Cladding contracts more than the composite during cooling, placing the composite in compression. Since the steel is diffusion bonded to the matrix, the residual stress is relieved by trouser-leg tearing as indicated below.

Fortunately, this problem has a solution. The delamination can be prevented by use of end clips and by use of an effective parting compound. These measures were taken on the next panel fabricated as shown in Fig. 23.

The fabrication sequence was altered by enclosing the green composite bundle in a tack welded box fabricated from 0.076 mm (.003") thick Waspaloy foil. "U" shaped Waspaloy end clips were inserted to seal the ends of the box and prevent delamination after HIP can removal. The box is prevented from bonding with the HIP envelope by surrounding with refractory insulating felt. During the hot isostatic pressing operation, the refractory felt densifies but prevents diffusion bonding between the Waspaloy of the composite and the 304 SS of the HIP envelope. The thermal stresses due to the expansion differences between the composite bundle and the envelope result in delamination within the original felt layer rather than within the composite. The action of the refractory felt is shown in Fig. 24 where the fibers become imbedded in the 304 SS cover sheet.

The successfully pressed panel (capsule #8880-5 as disassembled after HIP consolidation) is shown in Fig. 25. Parts A and B are the top and bottom 304 SS covers of the HIP envelope and Part C is the composite panel. Delamination of the HIP capsule occurred spontaneously after the original picture frame was sliced away.
Examination of the HIP compact revealed no internal delamination. Fiber alignment remained excellent as shown in Fig. 26. The composite did have some defects, as shown in Figs. 27 and 28. There are several instances of fiber to fiber contact and occasional reaction blooms, presumably due to coating defects. A tungsten barrier layer was applied to the filament utilized in this particular panel. At higher magnification in Fig. 28, other defects related to hot isostatic pressing are noted. Item A occurs between fibers along a line perpendicular to the major compaction direction. Item D is a reaction bloom, C is a defect peculiar to the ductile tungsten barrier where the barrier plastically deforms and flows with the movement of matrix during consolidation. This flow may be one cause of the reaction blooms. The intensity of the flow is shown in the ovality of the previously spherical powder particles in areas between fibers oriented 45° to the consolidation direction, as shown in "B" type areas in Fig. 28.

A number of the composite panels were fabricated and delivered to the Government, as shown in Fig. 29. The strengths of these composites were inadequate, as will be discussed later. A closer evaluation of composite defects was required.

The most-obvious defect noted earlier in Fig. 28 was reaction blooms at coating defects. It was believed that the defects noted in Fig. 28 would be eliminated by application of a HfC barrier coating. This was not the case with the initial lot of developmental HfC coated SiC filament. Several explanations for the poor performance of the composite were considered, including chemical interaction through coating defects. It has been demonstrated (and will be discussed in the next section) that filament strength is lowered by the coating and handling steps in composite fabrication. However, the remaining fiber strength (given in the next section) is more than adequate to provide composite strengthening. We concluded that the strength deterioration must be related to the composite fabrication steps after the coating process.
It became necessary to examine the fibers in-situ to determine where the fiber deterioration was taking place. A section of as HIP consolidated composite panel was painted with Stoner-Mudge, an electrolytic resist lacquer. A small section (1 cm x 1/2 cm) was left unpainted and was electropolished in a 10% tartaric acid 7% HCl/methanol solution. The matrix was electrolytically removed until the first ply of the SiC filament was exposed, as shown in Fig. 30. A notable feature on the exposed filament surface are a number of tuberous growths or "blooms", indicating interaction between the matrix and SiC filament. The structure of these defects are shown clearly in the SEM photographs in Fig. 31. Additional surface features and energy dispersive X-ray spectra for selected areas are presented in Fig. 32. Area A contains every element present in the matrix in addition to Si. The Si comes from the interaction between Waspaloy and the filament. Other features from the unaffected surface show Hf from the HfC coating with perhaps some small amounts of matrix contamination.

The surface features and the X-ray analysis indicate that interaction occurred between the matrix and filament. The "blooms" are localized and only occur on certain filaments and not others. This leads us to conclude that coating imperfections allowed the interaction to occur. Further, we can see that the exposed filaments were not damaged by the fabrication process or HIP sequence as was originally feared.

The observation and location of a problem are the first steps to the solution. This program was not intended to be a coating development study. Yet, because of the reactivity between uncoated SiC and superalloys we were forced to divert a considerable effort into that direction at the expense of the fabrication and evaluation tasks. We can see that any realization of the inherent strength of SiC in a superalloy composite will be initially limited by the integrity of the barrier coating.
A number of fabrication related defects are shown in the radiographs of composite panels in Fig. 33. The mottled appearance represents nonuniformity of matrix distribution. Local movement of the powder apparently occurs during application of pressure during the HIP process. Panels A, B, and to some extent C show a thinning of matrix material near the circumference of the panels. In these cases, the matrix is actually extruded from between the filaments. Considerable change in fiber spacing and alignment occur as a result of this movement as shown in Figs. 34 and 35 which are micrographs taken from central and edge regions of a panel. Another feature seen in Fig. 33C is called "Mud Cracking" for lack of a better description, and presumably occurs as a result of too rapid binder removal. Bubbling of the binder also can cause local thinning of matrix powder, as seen in the speckled appearance of panel C and B. Microscopic examination of the radiograph shows some distortion of the filament near the thin spots.

The lateral matrix extrusion phenomenon can be corrected by tighter packing in the HIP envelope. The matrix powder will not extrude if properly confined.

Panel C (P-77-46) has a more uniform appearance than the other panels. This panel has 25 v/o reinforcement as compared to the 50 v/o in the other panels of Fig. 33.

In summary, fabrication defects appear to fall in the following categories:

1) Insufficient consolidation.
2) Coating flaws resulting in chemical interaction between the filament and matrix.
3) Matrix extrusion away from the composite during HIP.
4) Matrix distribution irregularities due to local movement during binder removal.
4. FILAMENT CHARACTERIZATION

The results of RT tensile tests of all of the various lots of tungsten core SiC received from the government are given in Table 3. A few of the better, more consistent materials and one lot of the poorest material were selected for tensile characterization at 982°C. The purpose of this evaluation was to screen the available material for fiber having adequate RT and 982°C strength and to characterize the relationship between RT and elevated temperature properties. These data and the RT reference properties are summarized in Table 4. Fiber Lot 8S-125 was selected for the initial CVD coating parametric study and Lots 8S-123A and 8S-124 were selected for scale-up production of HfC coated SiC filament.

Several lots of filament evaluated in the previous program (NAS3-18921) were given in vacuo thermal exposures of 200 hr at 982°C. The as-received RT and 982°C tensile data are compared to the thermally exposed RT and 982°C tensile strengths in Table 5. Fiber Lots 8S-69, 8S-80, and 8S-662 were CVD tungsten coated. There is an interesting comparison of properties of the uncoated vs W-coated fiber lots. Uncoated, unexposed materials display a characteristic decrease in tensile properties between RT and 982°C. A drastic decrease also occurs after the 200 hr thermal exposure. This must be due in part to interactions between the tungsten core and SiC, and possibly to surface damage during the thermal exposure handling. The small but significant increase in strength of the thermally exposed material at 982°C over that at RT was unexpected. A possible explanation is a decrease in notch sensitivity of W-core SiC filament at elevated temperatures.
<table>
<thead>
<tr>
<th>Lot #</th>
<th># Revs*</th>
<th>Diameter</th>
<th>σ**</th>
<th>σ_max</th>
<th>σ_min</th>
<th>Std Dev</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mm</td>
<td>in. x 10^3</td>
<td>ksi</td>
<td>MPa</td>
<td>ksi</td>
<td>MPa</td>
</tr>
<tr>
<td>88-120</td>
<td>5040</td>
<td>143.0</td>
<td>5.63</td>
<td>441.2</td>
<td>3041</td>
<td>495.4</td>
<td>3413</td>
</tr>
<tr>
<td>88-121</td>
<td>7230</td>
<td>145.3</td>
<td>5.72</td>
<td>386.6</td>
<td>2668</td>
<td>422.4</td>
<td>3048</td>
</tr>
<tr>
<td>88-122</td>
<td>4600</td>
<td>143.5</td>
<td>5.65</td>
<td>497.5</td>
<td>3434</td>
<td>514.5</td>
<td>3547</td>
</tr>
<tr>
<td>88-123A</td>
<td>3562</td>
<td>144.8</td>
<td>5.7</td>
<td>495.0</td>
<td>3413</td>
<td>522.8</td>
<td>3606</td>
</tr>
<tr>
<td>88-123B</td>
<td>675</td>
<td>151.6</td>
<td>5.97</td>
<td>511.3</td>
<td>3523</td>
<td>540.2</td>
<td>3723</td>
</tr>
<tr>
<td>88-124</td>
<td>1300</td>
<td>147.8</td>
<td>5.82</td>
<td>541.4</td>
<td>3730</td>
<td>556.0</td>
<td>3834</td>
</tr>
<tr>
<td>88-125</td>
<td>3912</td>
<td>149.9</td>
<td>5.9</td>
<td>527.0</td>
<td>3634</td>
<td>564.6</td>
<td>3893</td>
</tr>
<tr>
<td>88-126</td>
<td>1850</td>
<td>145.8</td>
<td>5.78</td>
<td>496.1</td>
<td>3420</td>
<td>520.4</td>
<td>3585</td>
</tr>
<tr>
<td>88-127</td>
<td>6634</td>
<td>145.3</td>
<td>5.72</td>
<td>463.5</td>
<td>3200</td>
<td>494.0</td>
<td>3406</td>
</tr>
<tr>
<td>88-132</td>
<td>5912</td>
<td>144.3</td>
<td>5.68</td>
<td>448.1</td>
<td>3090</td>
<td>512.8</td>
<td>3557</td>
</tr>
<tr>
<td>88-133</td>
<td>5878</td>
<td>148.1</td>
<td>5.83</td>
<td>430.7</td>
<td>2971</td>
<td>478.5</td>
<td>3303</td>
</tr>
<tr>
<td>88-134</td>
<td>14167</td>
<td>144.8</td>
<td>5.70</td>
<td>482.6</td>
<td>3330</td>
<td>509.8</td>
<td>3516</td>
</tr>
<tr>
<td>88-135</td>
<td>6277</td>
<td>143.5</td>
<td>5.65</td>
<td>432.7</td>
<td>2990</td>
<td>496.9</td>
<td>3427</td>
</tr>
<tr>
<td>88-138</td>
<td>6466</td>
<td>138.9</td>
<td>5.47</td>
<td>455.0</td>
<td>3137</td>
<td>526.1</td>
<td>3627</td>
</tr>
<tr>
<td>88-140</td>
<td>275</td>
<td>143.0</td>
<td>5.63</td>
<td>456.0</td>
<td>3144</td>
<td>495.4</td>
<td>3413</td>
</tr>
<tr>
<td>88-160</td>
<td>4444</td>
<td>145.0</td>
<td>5.63</td>
<td>464.5</td>
<td>3208</td>
<td>498.5</td>
<td>3379</td>
</tr>
<tr>
<td>88-161</td>
<td>967</td>
<td>142.7</td>
<td>5.62</td>
<td>464.5</td>
<td>3208</td>
<td>484.9</td>
<td>3344</td>
</tr>
<tr>
<td>88-162</td>
<td>2920</td>
<td>140.5</td>
<td>5.53</td>
<td>402.0</td>
<td>3170</td>
<td>486.7</td>
<td>3358</td>
</tr>
<tr>
<td>88-163</td>
<td>2126</td>
<td>144.3</td>
<td>5.68</td>
<td>373.8</td>
<td>2578</td>
<td>481.5</td>
<td>3389</td>
</tr>
<tr>
<td>88-164</td>
<td>5720</td>
<td>140.5</td>
<td>5.53</td>
<td>491.5</td>
<td>3389</td>
<td>513.5</td>
<td>3544</td>
</tr>
<tr>
<td>88-166</td>
<td>4682</td>
<td>143.5</td>
<td>5.65</td>
<td>467.9</td>
<td>3227</td>
<td>483.7</td>
<td>3337</td>
</tr>
<tr>
<td>88-167</td>
<td>10152</td>
<td>145.3</td>
<td>5.72</td>
<td>437.3</td>
<td>3013</td>
<td>455.3</td>
<td>3137</td>
</tr>
<tr>
<td>88-168</td>
<td>3257</td>
<td>142.2</td>
<td>5.60</td>
<td>446.7</td>
<td>3082</td>
<td>483.4</td>
<td>3330</td>
</tr>
<tr>
<td>88-169</td>
<td>2069</td>
<td>141.0</td>
<td>5.55</td>
<td>440.2</td>
<td>3034</td>
<td>435.7</td>
<td>3144</td>
</tr>
<tr>
<td>88-171</td>
<td>2086</td>
<td>142.7</td>
<td>5.62</td>
<td>464.5</td>
<td>3203</td>
<td>480.6</td>
<td>3316</td>
</tr>
<tr>
<td>88-117</td>
<td>1805</td>
<td>141.7</td>
<td>5.58</td>
<td>487.2</td>
<td>3368</td>
<td>522.3</td>
<td>3600</td>
</tr>
<tr>
<td>8S-62</td>
<td>1825</td>
<td>141.7</td>
<td>5.555</td>
<td>429.3</td>
<td>2998</td>
<td>404.6</td>
<td>3082</td>
</tr>
</tbody>
</table>

* Number of revolutions on an 8" dia spool, as received.

** Average of 10 tests.
TABLE 4

Room Temperature and 982°C Tensile Strengths of Selected Fiber Lots

<table>
<thead>
<tr>
<th>Lot No.</th>
<th>R.T. Tensile Strength</th>
<th>982°C (1800°F) Tensile Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ</td>
<td>Std. Dev.*</td>
</tr>
<tr>
<td>8S-117</td>
<td>487.2 ksi</td>
<td>3360 MPa</td>
</tr>
<tr>
<td>8S-123A</td>
<td>497.5 ksi</td>
<td>3430 MPa</td>
</tr>
<tr>
<td>8S-124</td>
<td>511.3 ksi</td>
<td>3520 MPa</td>
</tr>
<tr>
<td>8S-125</td>
<td>541.4 ksi</td>
<td>3730 MPa</td>
</tr>
<tr>
<td>8S-126</td>
<td>527.0 ksi</td>
<td>3630 MPa</td>
</tr>
<tr>
<td>8S-127</td>
<td>496.1 ksi</td>
<td>3430 MPa</td>
</tr>
<tr>
<td>8S-135</td>
<td>482.6 ksi</td>
<td>3330 MPa</td>
</tr>
<tr>
<td>8S-163</td>
<td>373.8 ksi</td>
<td>2580 MPa</td>
</tr>
<tr>
<td>8S-114</td>
<td>491.5 ksi</td>
<td>3390 MPa</td>
</tr>
<tr>
<td>8S-166</td>
<td>467.9 ksi</td>
<td>3230 MPa</td>
</tr>
<tr>
<td>8S-164</td>
<td>491.5 ksi</td>
<td>3389 MPa</td>
</tr>
</tbody>
</table>

* Results of 10 tests.
TABLE 5

Tensile Strength of Thermally Exposed SiC Filament - ksi (MPa)

<table>
<thead>
<tr>
<th>Lot No.</th>
<th>$\bar{\sigma}$ (Mean)</th>
<th>σ_{Maximum}</th>
<th>σ_{Minimum}</th>
<th>Standard Deviation</th>
<th>As Received σ_{Mean}</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT Test After 200 hr Exposure at 982°C (1800°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8S-100</td>
<td>217 (1496)</td>
<td>242 (1669)</td>
<td>197 (1358)</td>
<td>13.9 (95.8)</td>
<td>450 (3103)</td>
</tr>
<tr>
<td>8S-69*</td>
<td>163 (1124)</td>
<td>322 (2220)</td>
<td>125 (862)</td>
<td>54.1 (373.0)</td>
<td>446 (3075)</td>
</tr>
<tr>
<td>8S-662*</td>
<td>184 (1269)</td>
<td>206 (1420)</td>
<td>161 (1110)</td>
<td>10.8 (74.5)</td>
<td>434 (2992)</td>
</tr>
<tr>
<td>8S-106</td>
<td>214 (1476)</td>
<td>233 (1607)</td>
<td>197 (1358)</td>
<td>10.9 (75.2)</td>
<td>460 (3172)</td>
</tr>
<tr>
<td>8S-98</td>
<td>238 (1641)</td>
<td>269 (1855)</td>
<td>152 (1048)</td>
<td>36.8 (253.7)</td>
<td>490 (3379)</td>
</tr>
<tr>
<td>8S-80*</td>
<td>193 (1331)</td>
<td>206 (1420)</td>
<td>170 (1172)</td>
<td>10.9 (75.2)</td>
<td>414 (2855)</td>
</tr>
</tbody>
</table>

σ_{mean}

<table>
<thead>
<tr>
<th>982°C (1800°F) Test After 200 hr Exposure at 982°C (1800°F)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8S-100</td>
<td>203 (1400)</td>
<td>287 (1979)</td>
<td>143 (986)</td>
<td>47.2 (325.4)</td>
<td>205 (1414)</td>
</tr>
<tr>
<td>8S-69*</td>
<td>253 (1744)</td>
<td>269 (1855)</td>
<td>241 (1662)</td>
<td>9.5 (65.5)</td>
<td>294 (2027)</td>
</tr>
<tr>
<td>8S-662*</td>
<td>312 (2151)</td>
<td>376 (2593)</td>
<td>269 (1855)</td>
<td>42.1 (290.3)</td>
<td>296 (2068)</td>
</tr>
<tr>
<td>8S-106</td>
<td>287 (1979)</td>
<td>340 (2344)</td>
<td>170 (1172)</td>
<td>50.4 (347.5)</td>
<td>197 (1358)</td>
</tr>
<tr>
<td>8S-98</td>
<td>278 (1917)</td>
<td>340 (2344)</td>
<td>224 (1544)</td>
<td>49.3 (339.9)</td>
<td>208 (1434)</td>
</tr>
<tr>
<td>8S-80*</td>
<td>365 (2517)</td>
<td>376 (2593)</td>
<td>340 (2344)</td>
<td>15.1 (104.1)</td>
<td>343 (2365)</td>
</tr>
</tbody>
</table>

* W coated
The CVD W-coated lots 8S-80 and 8S-662 were even more interesting in behavior in that the 982°C strength actually improved after a 200 hr thermal exposure at 982°C. Inversely, the RT strength of the W-coated lots was drastically lower after thermal exposure. These effects again must be related to a decreased notch sensitivity at 982°C as compared to ambient temperature, i.e., surface interaction of SiC and tungsten decreases fiber strength at RT. At 982°C the tungsten must actually contribute to the fiber strength.

Strength of HfC Coated SiC. The RT tensile strengths of developmental lots of HfC coated SiC filament are given in Table 6. A deterioration of strength is noted after coating. These filament strength data are plotted vs coating thickness in Fig. 36. The functional relationship appears to follow a Griffith-type form. This relationship may be explained by the structure of the coating. An SEM examination of the coated filament revealed a very tenacious HfC coating that resisted spalling. The SEM photograph in Fig. 37 is of a specimen taken from a tensile test where a severe shock accompanies the rupture. The columnar structure of the coating noted in this photograph and the brittle nature of HfC must be related to the Griffith-type behavior of coated filament.

The dark layer at the interface between the coating and the SiC substrate was examined by energy dispersion X-ray analysis and did not appear to be related to interdiffusion of SiC and HfC. The scattering efficiency of electrons is proportional to the atomic number of the target. A layer darker in appearance should be composed of a substance with a lower average atomic number than SiC. We assume that the layer is supersaturated with carbon. This layer is either formed during filament processing or it forms during decomposition of methane during the initial coating operation. The dark layer is also visible in the optical micrographs in Fig. 38 and in the post-HIP condition in Fig. 39. The optical photomicrographs of the filament after HIP, 2 hr at 1025°C (1875°F), 207 MPa (30 ksi), show the structure of the coating and the dark layer to be unaltered by thermal exposure.
TABLE 6

Room Temperature Tensile Strength of CVD HfC Coated SiC(W) Filament

<table>
<thead>
<tr>
<th>Lot</th>
<th>Coating Thickness</th>
<th>σ_{ave}</th>
<th>σ_{max}</th>
<th>σ_{min}</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ksi</td>
<td>MPa</td>
<td>ksi</td>
<td>MPa</td>
</tr>
<tr>
<td>8S-73</td>
<td>Single pass</td>
<td>325</td>
<td>2241</td>
<td>405</td>
<td>2793</td>
</tr>
<tr>
<td></td>
<td>Double pass</td>
<td>269</td>
<td>1855</td>
<td>313</td>
<td>2158</td>
</tr>
<tr>
<td>8S-125</td>
<td>Uncoated</td>
<td>541</td>
<td>3730</td>
<td>556</td>
<td>3830</td>
</tr>
<tr>
<td>Run #22</td>
<td>Single pass</td>
<td>270</td>
<td>1862</td>
<td>295</td>
<td>2034</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>270</td>
<td>1862</td>
<td>295</td>
<td>2034</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>257</td>
<td>1772</td>
<td>287</td>
<td>1979</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>237</td>
<td>1634</td>
<td>278</td>
<td>1917</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>216</td>
<td>1800</td>
<td>278</td>
<td>1917</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>199</td>
<td>1374</td>
<td>209</td>
<td>1441</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>223</td>
<td>1538</td>
<td>232</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>7.4</td>
<td>229</td>
<td>1579</td>
<td>243</td>
<td>1674</td>
</tr>
<tr>
<td></td>
<td>7.4</td>
<td>221</td>
<td>1524</td>
<td>238</td>
<td>1641</td>
</tr>
<tr>
<td></td>
<td>5.9</td>
<td>264</td>
<td>1820</td>
<td>302</td>
<td>2085</td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>273</td>
<td>1882</td>
<td>296</td>
<td>2043</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>295</td>
<td>2034</td>
<td>312</td>
<td>2151</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>288</td>
<td>1987</td>
<td>306</td>
<td>2110</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>291</td>
<td>2006</td>
<td>313</td>
<td>2160</td>
</tr>
<tr>
<td></td>
<td>3.9</td>
<td>300</td>
<td>2068</td>
<td>371</td>
<td>2555</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>369</td>
<td>2541</td>
<td>403</td>
<td>2777</td>
</tr>
<tr>
<td></td>
<td>3.9 (middle)</td>
<td>374</td>
<td>2579</td>
<td>410</td>
<td>2826</td>
</tr>
<tr>
<td></td>
<td>3.9 (end)</td>
<td>358</td>
<td>2470</td>
<td>530</td>
<td>3654</td>
</tr>
</tbody>
</table>

* Average to 10 tests.

** Position of sample with respect to coating sequence.
X-ray diffraction analyses were conducted on the coated filament from several lots of material. The results and atomic percent carbon inferred from the lattice parameter data are tabulated below.

<table>
<thead>
<tr>
<th>Run</th>
<th>Lattice Parameter (Å)</th>
<th>Atomic % Carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>4.6483</td>
<td>53.0</td>
</tr>
<tr>
<td>36</td>
<td>4.6495</td>
<td>53.6</td>
</tr>
<tr>
<td>37</td>
<td>4.6475</td>
<td>52.5</td>
</tr>
<tr>
<td>38</td>
<td>4.6490</td>
<td>53.4</td>
</tr>
<tr>
<td>39</td>
<td>4.6477</td>
<td>52.8</td>
</tr>
</tbody>
</table>

These data indicate that the HfC coatings are also supersaturated with carbon.

We conclude this section by stating that a number of things happen to the filament, all of which to some degree deteriorate the tensile strength. The deterioration processes are associated with the following:

1) Interaction between filament and the tungsten core after extended thermal exposure.

2) Griffith relationship between coating thickness and strength of filament.

3) Coating defects resulting in interaction between matrix and filament.

4) Columnar structure of the HfC barrier coating.

Further research on the HfC coating is necessary. Specifically, the effect of stoichiometry and coating morphology should be further evaluated.
5. COMPOSITE CHARACTERIZATION

The strength values obtained have been inadequate. + 982°C (1800°F) strengths have been just a few thousand psi greater than unreinforced matrix values and RT values have been 40% less than the base line matrix strength.

Composite Tensile Tests. The first composites evaluated were tungsten coated lots of material. Tensile specimens were EDM machined from panel 8S80-5. The strengths are tabulated below.

<table>
<thead>
<tr>
<th>Specimen*</th>
<th>RT UTS - ksi (MPa)</th>
<th>982°C (1800°F UTS - ksi (MPa))</th>
</tr>
</thead>
<tbody>
<tr>
<td>8S80-5A</td>
<td>37.2 (256)</td>
<td></td>
</tr>
<tr>
<td>8S80-5B</td>
<td>58.8 (405)</td>
<td></td>
</tr>
<tr>
<td>8S80-5-1</td>
<td>12.45 (85.84)</td>
<td></td>
</tr>
<tr>
<td>8S80-5-2</td>
<td>11.82 (81.50)</td>
<td></td>
</tr>
</tbody>
</table>

* 25 mm gage length for RT test, 15.2 cm long strip with 20 mm heated zone for 982°C (1800°F test).

Radiographs of the room temperature specimens are shown in Fig. 40. The location of the fractures correspond with a warpage or misalignment of the filament in specimen A and a local matrix thinning in specimen B. The metallographic data of this particular composite panel was discussed earlier in reference to Fig. 27 and 28. A number of defects were noted at that time which apparently contributed to the low strengths.

High hopes were held for the first experimental lot of HfC coated filament. These filaments were composited into panels P154.

+ See note at the end of this section.
The following strengths were measured:

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Temperature</th>
<th>UTS MPa</th>
<th>ksi</th>
<th>Waspaloy UTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P154-1(50 v/o)</td>
<td>760°C 1400°F</td>
<td>417</td>
<td>60.4</td>
<td>115</td>
</tr>
<tr>
<td>P154-2(50 v/o)</td>
<td>982°C 1800°F</td>
<td>147.5</td>
<td>21.4</td>
<td>18.9</td>
</tr>
</tbody>
</table>

Again, the values were significantly lower than rule-of-mixture predictions. A SEM examination of the fracture surfaces in Fig. 41 shows the L/D ratio of pulled out filament to be approximately 12. The shearing took place at the interface between the coating and the filament, as shown in Fig. 41. This phenomenon occurred at both 982°C and 76°C.

The last panel investigated was P40-38 (nominal 50 v/o within the composite bundle) and was made from production HfC coated filament. The RT and 982°C (1800°F) strength is given below.

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Temperature</th>
<th>UTS MPa</th>
<th>ksi</th>
<th>Modulus X 10^6 psi</th>
<th>MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>P40-38-1A</td>
<td>RT RT</td>
<td>574</td>
<td>82.2</td>
<td>37.8</td>
<td>2.61 x 10^{11}</td>
</tr>
<tr>
<td>P40-38-2A</td>
<td>RT RT</td>
<td>557</td>
<td>79.7</td>
<td>37.0</td>
<td>2.55 x 10^{11}</td>
</tr>
<tr>
<td>P40-38-2</td>
<td>982 1800</td>
<td>147</td>
<td>21.0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>P40-38-3</td>
<td>982 1800</td>
<td>107</td>
<td>15.3</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Modulus values were approximately 5 x 10^6 psi less than rule-of-mixture of a 39 v/o composite (including a 50 v/o fiber bundle and extra matrix cladding used for surface protection).

The low temperature strength of this panel, though still inadequate, was an improvement over that of the tungsten barrier coated material discussed earlier. The high temperature strength was little changed.
There is greater evidence of the tenaciousness of the coating in Fig. 42. Although most pulled-out filaments were stripped of the barrier coating, numerous examples of adherent HfC were noted. This adherence was also noted in the room temperature tested specimens.

NOTE: Work performed on NSF Grant #DMR-76-0286 has a direct bearing on the results presented here. A composite was fabricated having ~15 v/o HfC coated SiC filament reinforcement. This panel was tested at RT and 982°C (1800°F). The following results were obtained.

<table>
<thead>
<tr>
<th>Specimen No.</th>
<th>Temperature</th>
<th>UTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P57-39-3A</td>
<td>RT</td>
<td>95.5</td>
</tr>
<tr>
<td>-3B</td>
<td>"</td>
<td>120.3</td>
</tr>
<tr>
<td>-1</td>
<td>982</td>
<td>27.7</td>
</tr>
<tr>
<td>-2</td>
<td>982</td>
<td>17.2</td>
</tr>
</tbody>
</table>

These values are considerably greater than those reported in this report for material containing twice the volume fraction of filament. Physical separation of the filament must be an important consideration. Calculations utilizing the actual volume fraction of the overall section revealed a filament stress of 586 MPa (~85 ksi) from 191 MPa (27.7 ksi) 982°C data point. Although this is a significant improvement over previous results, the full strength potential of the filament has yet to be realized.
6. DISCUSSION

The strengths obtained from the panels were unsatisfactory. The reasons appear to be due to a combination of process related defects. The filament itself loses over half its strength as a consequence of the coating. If the barrier is imperfect chemical interaction takes place, further weakening the reinforcement. Finally, local movement of the matrix due to lateral extrusion during HIP or bubble formation and "mud cracking" during binder removal seem to finish the list of defects leading to loss of strength.

It is unfortunate that most of the effort on this program had to be directed toward compatibility considerations and barrier development. The defects discussed above, though requiring effort, can be eliminated. Work in progress under NSF grant on lower volume fraction composites has shed more light on the fabricating problems and lead us to be more optimistic as to the potential of SiC reinforced superalloys. In spite of the low strength results shown here, SiC reinforced superalloys with useful properties are within reach and should be further investigated.
7. REFERENCES

Fig. 1. Microstructure of SiC/Hastelloy X Composite After HIP, 2 Hours at 1825°F (996°C), 15,000 psi
Fig. 2 -- Chemical potential of carbon for selected carbides
Fig. 3 -- Standard free energy of formation of selected oxides for the reaction $2 \frac{x}{y} M + O_2 \rightarrow 2\frac{y}{x} M_2O_y$
Fig. 4. Kinetic Data From 2150°F Diffusion Barrier Study
Fig. 5. Growth of Intermediate Phases Between Tungsten Core and SiC at 1800°F.
Fig. 6. Chemical Interaction Between Waspaloy and CVD W Coated SiC After 200 Hours at 982°C (1800°F).
Fig. 7. Growth Kinetics of Intermediate Phase Between Candidate Matrix Alloys and CVD Tungsten Coated SiC at 982°C (1800°F)
Fig. 8. Diffusion Couples Between Waspaloy and RF Sputtered HfC on a SiC Substrate, as HIP (a) and After 200 Hours at 982°C (1800°F) (b).
Fig. 9. Diffusion couple between HA-188 and RF sputtered HfC on a SiC substrate, as HIP consolidated (a) (996°C (1825°F), 138 MPA (20 ksi), 2 hr) and after 200 hrs at 982°C (1800°F) (b).
Fig. 10. - Diffusion couple between Hastelloy X and RF sputtered HfC on SiC substrate, as HIP (a) and after 200 hrs at 982°C (1800°F) (b).
Fig. 11. SEM* of diffusion couple between Waspaloy (left), RF sputtered HfC (center) on a SiC substrate (right), as HIP (a) and after 200 hrs at 982°C (1800°F) (b).

*10% chromic-electrolytic etch
Fig. 12. SEM* of Diffusion Couple Between HA-188 (left) and RF Sputtered HfC (center) on a SiC Substrate (right), as HIP (a) and After 200 Hours at 982°C (1800°F) (b).

*10% Chromic-electrolytic Etch
As HIP

(a)

P-148
2300X

200 hrs @982°C (1800°F)

(b)

P-154
2300X

Fig. 13. SEM* of Diffusion Couple Between Hastelloy X (left) and RF Sputtered HfC (center) on a SiC Substrate (right), as HIP (a) and After 200 Hours at 982°C (1800°F) (b).

* 10% Chromic-electrolytic Etch
<table>
<thead>
<tr>
<th>Element-Areas</th>
<th>Radiation-Angled</th>
<th>Al</th>
<th>Si</th>
<th>Hf</th>
<th>Mo</th>
<th>Ti</th>
<th>Cr</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzed</td>
<td>keV</td>
<td>1.49</td>
<td>1.74</td>
<td>1.64</td>
<td>9.02</td>
<td>2.29</td>
<td>4.51</td>
<td>5.41</td>
<td>6.40</td>
<td>6.92</td>
</tr>
<tr>
<td>A (Matrix)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1188</td>
<td>1082</td>
<td>6283</td>
<td>205</td>
<td>2548</td>
<td>9464</td>
</tr>
<tr>
<td>B (Barrier)</td>
<td>--</td>
<td>--</td>
<td>9292</td>
<td>1105</td>
<td>--</td>
<td>38</td>
<td>149</td>
<td>28</td>
<td>164</td>
<td>--</td>
</tr>
<tr>
<td>C (SiC)</td>
<td>--</td>
<td>10909</td>
<td>--</td>
<td>205</td>
<td>--</td>
<td>56</td>
<td>--</td>
<td>18</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Fig. 14a. Waspaloy/HfC/SiC Diffusion Couple After 10 Hours at 1093°C (2000°F).

Microstructural and EDX Analysis of Selected Areas.
Fig. 15a. Waspaloy/HfC/SiC Diffusion Couple After 200 Hours at 1093°C (2000°F).
Microstructure and EDX Analysis of Selected Areas.
EDX Analysis of Selected Areas of Waspaloy/HfC/SiC Diffusion Couple After 200 Hours at 1093°C (2000°F).
Fig. 16a. Hastelloy X/HfC/SiC Diffusion Couple After 200 Hours at 1093°C (2000°F). Microstructure and EDX Analysis of Selected Areas.
Fig. 16b. EDX Analysis of Selected Areas of Hastelloy X/HfC/SiC Diffusion Couple After 200 Hours at 1093°C (2000°F).
Area	Radiation Analysis	Element Radiation keV	Al	Si	Hf	Cr	Mn	Fe	Co	Ni	W		
Area A	--	Al Kα,β	1.49	1.74	1.64	7.90	5.41	5.89	6.40	6.92	7.47	8.4	1.77
Area B	--	Si Kα,β	--	--	--	--	5349	--	107	4247	4925	631	*
Area C	--	Hf Kα,β	5752	--	--	--	9137	--	59	1851	630	78	
Area D	781	Cr Kα	9307	2255	283	--	225	--	28	2630	1931	**3942	1017
Area E	801	Mn Kα	9087	--	28	--	9202	3942	1017	6938			

* Si Kα,β covered by WmKα.
** Mn covered by CrKβ.

Fig. 17a. HA-188/HfC/SiC diffusion couple after 200 hr at 1093°C (2000°F). Microstructural and EDX analysis of selected areas.
Fig. 17b. EDX analysis of selected areas of HA-188/HfC/SiC diffusion couple after 200 h at 1093°C (2000°F).
Fig. 18. Energy Dispersive X-ray Analysis of Interface Between TiN Coated SiC Fibers and Hastelloy X Matrix After 2 Hours HIP at 996°C (1825°F), 103 MPa (15,000 psi).
<table>
<thead>
<tr>
<th>Elem/Area</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al kα</td>
<td>134</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Si kα</td>
<td>--</td>
<td>600</td>
<td>60</td>
<td>940</td>
<td>175</td>
<td>3260</td>
</tr>
<tr>
<td>Ti kα</td>
<td>512</td>
<td>2786</td>
<td>3860</td>
<td>3700</td>
<td>2880</td>
<td>3600</td>
</tr>
<tr>
<td>Cr kα</td>
<td>2480</td>
<td>3567</td>
<td>130</td>
<td>337</td>
<td>65</td>
<td>160</td>
</tr>
<tr>
<td>Fe kα</td>
<td>132</td>
<td>30</td>
<td>20</td>
<td>280</td>
<td>50</td>
<td>5530</td>
</tr>
<tr>
<td>Co kα</td>
<td>1143</td>
<td>414</td>
<td>16</td>
<td>963</td>
<td>110</td>
<td>1336</td>
</tr>
<tr>
<td>Ni kα</td>
<td>3615</td>
<td>1700</td>
<td>90</td>
<td>2500</td>
<td>220</td>
<td>3514</td>
</tr>
<tr>
<td>Zr kα</td>
<td>33</td>
<td>1300</td>
<td>200</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

*4000 cts in max channel

Fig. 19. Energy Dispersive X-ray Analysis of Interface Between TiN Coated SiC Fibers and Waspaloy Matrix as-HIP 2 Hours at 996°C (1825°F), 103 MPa (15,000 psi).
Fig. 20. CVD Apparatus for Depositing Refractory Metal Carbides and Nitrides on SiC Filament.
Fig. 21. Filament Winding Apparatus.
Fig. 22. HIP capsule prior to binder removal, evacuation, and forge sealing.
A. Picture frame can with inlet and exit pinch-off tubes
B. Parting agent - refractory felt
C. Composite bundle with (a) Waspaloy foil liner, (b) end clips, and (c) powder tape and SiC green layup.
D. Top cover

Fig. 23. Layup Assembly for Composite Mini- Panels.
Fig. 24. Fiberfrax Refractory Felt Remnants Imbedded in 304 Cover Plate After Parting From Waspaloy Composite After HIP at 996°C (1875°F) 2 Hours at 138 MPa (20 ksi).
Fig. 25. Post HIP Can #8S80-5 After Separation of Top and Bottom HIP Enclosures (A & B From Composite Panel C). Dark Color is Due to Parting Compound.
Fig. 26. Radiographs of HIP Panel 8S80-5 Prior to Decanning.
Fig. 27. Cross Section of Composite Panel 8S80-5A. Note Numerous Areas of Interaction Between Fiber and Matrix.
Fig. 28. Cross Section of Head Section of Specimen 8S80-5A.
Etchant: Electrolytic - 10% Chromic Acid.
Fig. 29. Uniaxial, Six Ply, 55 v/o Tungsten Coated SiC/Waspaloy Composite Panels.
Fig. 30. Electrolytically Exposed Filament in as HIP Panel No. P154.
Note Growth of Interaction "Blooms" at Coating Defects on Filament Surface.
Fig. 31. SEM Photographs of "Blooms" on the Surface of Electrulytically Exposed HfC Coated SiC Filament from Composite Panel P-154.
<table>
<thead>
<tr>
<th>KEV</th>
<th>Rad</th>
<th>Cts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.83</td>
<td>66P</td>
<td></td>
<td>0.73</td>
<td>181P</td>
<td></td>
<td>1.31</td>
<td>208P</td>
<td></td>
<td>0.84</td>
<td>50P</td>
<td></td>
<td>1.40</td>
<td>26P</td>
<td></td>
</tr>
<tr>
<td>1.71</td>
<td>Si-Ka</td>
<td>897P</td>
<td>1.66</td>
<td>Hf-Ma</td>
<td>3080P</td>
<td>1.65</td>
<td>Hf-Ma</td>
<td>3129P</td>
<td>1.55</td>
<td>Al-Ka</td>
<td>62P</td>
<td>1.74</td>
<td>Si-Ka</td>
<td>340P</td>
</tr>
<tr>
<td>2.32</td>
<td>Mo-Lx</td>
<td>540P</td>
<td>2.09</td>
<td>Hf-Ma</td>
<td>101P</td>
<td>2.16</td>
<td>Au-Mo</td>
<td>1260P</td>
<td>2.14</td>
<td>Au</td>
<td>304P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.59</td>
<td></td>
<td>156P</td>
<td></td>
<td>4.43</td>
<td></td>
<td>2.87</td>
<td>Pd-L8</td>
<td>747P</td>
<td>2.86</td>
<td>Pd</td>
<td>181P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>Ti-Ka</td>
<td>615P</td>
<td>5.39</td>
<td>Ti-Ka</td>
<td>430P</td>
<td>5.39</td>
<td>Ti-Ka</td>
<td>294P</td>
<td>8.07</td>
<td>Ti</td>
<td>14P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.40</td>
<td>Cr-Ka</td>
<td>3215P</td>
<td>6.90</td>
<td>Cr-Ka</td>
<td>475P</td>
<td>6.90</td>
<td>Cr-Ka</td>
<td>2150P</td>
<td>9.65</td>
<td>Cr</td>
<td>55P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.94</td>
<td>Cr-Kb</td>
<td>422P</td>
<td>7.85</td>
<td>Hf-Lx</td>
<td>821P</td>
<td>5.94</td>
<td>Cr-Kb</td>
<td>218P</td>
<td>11.40</td>
<td>Cr-Kb</td>
<td>20P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.89</td>
<td>Co-Ku</td>
<td>955P</td>
<td>9.73</td>
<td>Hf-Lx</td>
<td>329P</td>
<td>6.89</td>
<td>Co-Ku</td>
<td>885P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.45</td>
<td>Ni-Ka</td>
<td>2048P</td>
<td>9.24</td>
<td>Hf-Lx</td>
<td>159P</td>
<td>7.44</td>
<td>Ni-Ka</td>
<td>333P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.23</td>
<td>Ni-Kb</td>
<td>256P</td>
<td>10.47</td>
<td>Hf-Lx</td>
<td>40P</td>
<td>8.22</td>
<td>Ni-Kb</td>
<td>417P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.43</td>
<td>Au</td>
<td>229P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Area A

Area B

Area C

Fig. 32. Energy Dispersive X-ray Analysis of Filament Surface Features From Composite Panel P-154.
Fig. 33. Radiographs of Composite Panels Prior to HIP Envelope Removal.
Fig. 33(Continued) Radiographs of Composite Panels Prior to HIP Envelope Removal.
Fig. 34. As HIP (P40-38) cut from between specimens P40-58 #1A #1B Q-437
Fig. 35. - As HIP (P40-38) Cut From Between Edge Specimen P40-38 #4A #4B Q-438
Fig. 36. Variation of Room Temperature Tensile Strength With CVD-HfC Thickness
Fig. 37. SEM Photographs of CVD HfC Coated SiC Filament. Fiber Lot 85-125 - Run No. 31.
Fig. 38. CVD HfC Run No. 38f on SiC Lot 85-125. As Coated and Ni Plated.
Fig. 39. Microstructure of Central Region of P40-38.
Fig. 40. Room Temperature Tensile Specimens 8S80-5A and B With Pre- and Post-Test Radiographs
Fig. 41. Fracture Surfaces of HfC Coated SiC/Waspalloy Composite P-154 After Tensile Testing at Indicated Temperatures.
Fig. 42. Fracture Surface of Specimen P40-38-2 After Tensile Testing at 982°C (1800°F).
Martin-Marietta Corp.
P. O. Box 5837 MP 129
Orlando, FL 32805
Attn: R. A. Mayor (1)

NETCO
2225 E. 28th St. (Bldg. 5)
Long Beach, CA 90806
Attn: L. W. Davis (1)

Midwest Research Institute
425 Volker Blvd.
Kansas City, MO 61110
Attn: J. R. Hancock (1)

Rockwell International
Space Division
12214 Lakewood Blvd.
Downey, CA 90241
Attn: A. J. Yeast (1)

Rensselaer Polytechnic Inst.
Materials Engineering Dept.
Troy, NY 12181
Attn: R. J. Diefendorf (1)

Rockwell International
Los Angeles Division
International Airport
Los Angeles, CA 90045
Attn: C. Hamilton (SB08) (1)

Sandia Corporation
P. O. Box 5800
Albuquerque, NM 87115
Attn: D. M. Schuster - 5840 (1)

Solar Div. - Int. Harvester
2200 Pacific Coast Highway
San Diego, CA 92138
Attn: A. G. Metcalfe (1)

Dr. E. Scala
Consulting Engineer
P. O. Box 1362
Cortland, NY 13045 (1)

TRW Systems Group
One Space Park
Redondo Beach, CA 90278
Attn: A. Toy (1)

Southwest Research Institute
8500 Culebra Rd - Box 28510
San Antonio, TX 78284
Attn: G. C. Grimes (1)

TRW Equipment Laboratories
Materials Technology
23555 Euclid Avenue
Cleveland, OH 44117
Attn: I. J. Toth (1)

TRW Equipment Laboratories
Materials Technology
23555 Euclid Avenue
Cleveland, OH 44117
Attn: P. Melnyk (1)

TRW Equipment Laboratories
Materials Technology
23555 Euclid Avenue
Cleveland, OH 44117
Attn: I. J. Toth (1)

Union Carbide Corp.
Farra Technical Center
P. O. Box 6116
Cleveland, OH 44101
Attn: R. V. Sara (1)

United Technologies Corp.
Pratt & Whitney Div.
E. Hartford, CT 06108
Attn: Tony Dennis (1)

Southwest Research Institute
8500 Culebra Rd - Box 28510
San Antonio, TX 78284
Attn: G. C. Grimes (1)

TRW Equipment Laboratories
Materials Technology
23555 Euclid Avenue
Cleveland, OH 44117
Attn: I. J. Toth (1)

TRW Equipment Laboratories
Materials Technology
23555 Euclid Avenue
Cleveland, OH 44117
Attn: P. Melnyk (1)
United Technologies Corp.
Pratt & Whitney Div.
West Palm Beach, FL 33402
Attn: Tech. Library (1)

United Technologies Corp.
Hamilton-Standard Div.
Windsor Locks, CT 06096
Attn: W. Ryan (1)

United Technologies Corp.
Sikorsky Aircraft Div.
Stratford, CT 06497
Attn: Tech. Library (1)

United Technologies Corp.
Research Laboratories
East Hartford, CT 06108
Attn: M. A. DeCresente (1)

United Technologies Corp.
Pratt & Whitney Aircraft Div.
E. Hartford, CT 06108
Attn: S. Bleckerman (1)

Westinghouse Electric Corp.
Research & Development Center
1310 Beulah Road
Pittsburgh, PA 15235
Attn: J. A. Cornie (1)

The Boeing Aerospace Co.
P. O. Box 3707
Seattle, WA 98124
Attn: T. J. Bosworth (1)

United Technologies Corp.
Hamilton-Standard Div.
Windsor Locks, CT 06096
Attn: W. A. Percival (1)

United Technologies Corp.
Research Laboratories
East Hartford, CT 06108
Attn: F. S. Galasso (1)

United Technologies Corp.
Research Laboratories
East Hartford, CT 06108
Attn: K. M. Prewo (1)

University of Tennessee
Space Institute
Tullahoma, TN 37388
Attn: M. A. Wright (1)

Whittaker Corp.
Research & Development Div.
3540 Aero Court
San Diego, CA 92123
Attn: Tech. Library (1)

Deposits & Composites, Inc.
318 Victory Drive
Herndon, VA 22070
Attn: J. C. Withers (1)

NASA-Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135
Attn: R. G. Barrows (34)