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INUG DUCT I ON

The Newton-Kantorovich technique is a rigorous mathematical concept

based on funAioual analysis that transforms a non-linear partial dif-

ferential equation Into a sequence of linear partial differential

equations whose solutions converge to the solution of the original

non-linear problem providing appropriate conditions can be satisfied.

It has been employed operationally by Bellinan I to solve a variety of

non-linear problems with considerable success, and was more recently

used by Morihara and Cheng 2 to produce a numerical solution of the

steady-state Navier-Stokes equations in two-dimensions. Gabrielsen3,4

has established a mathematical justification for the use of the tech-

pique in solving the con-steady Navier-Stokes equations in two dimensions.

The Newt on-Kan torovich technique has major advantages over other

techniques used to solve the iwn-steady .4avier-Stokes equations. The

main computational advantage is t hat a sequence of linear partial

differential equations need on^y be solved rather than a single non-

linear one. A linear partial differential equation can be solved

numerically by simply solving a system of linear algebraic equations

directly, whereas a non-linear equation requires an elaborate iteration

procedure that may require more compute time and whose convergence Ls

often difficult to achieve especially at high Reynolds numbers. A

theoretical advantage of the te :hnique is that explicit error estimates

are attainable (that is, the difference between each linear solution

and the solution to the original non-linear problem).

It

i



3

The obvious disadvantage of the technique is that mc,re than one

linear partial dif?°.etential equation must he solved ii order tc achieve

a solution. In fact, based on the results of previoLS investigations

of the technique, the number of iterations of the procedure required

for convergence of the techngiue would appear to be ver y problem depen-

dent. Moriharn and Cheng 2 applied the technique to a steady flow in

the entrance region of a straight channel for various Reynolds numbers

and found that • '.e number of iterations required for convergence increased

rapidly with Reynolds ncunber. In addition, Gabrielsen 3 established an

upper bound for the error associated with the technique as applied to

the non-steady Navier-Stokes equations as a function of the number of

successive iterations and the Reynolds number. His analysis indicated

that the number of iterations required for convergence depended on the

accuracy of the initial guess at the solution, and that an increasingly

more accurate initial guess at the solution is required with increasing

Reynolds number in order to achieve convergence of the procedure in the

same number of iterations as required at lower Reynolds numbers. This

Reynolds number dependence is clue to the fact that the solution to the

Navier-Stokes equations becomes progressively more non-uniform and

more concentrated in a smaller region of the flow field with increasing

Reynolds number. The convergence_ of the procedure must also depend on

the shape of the geometry under:onsiderar.ion because the severity and

location of these non-uniforml ties and concentrations will vary with

geometry.

i
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For expedienc y , the actual [mf-lementation of the procedure was

accomplished by modifying an existing computer program written by

Meltt 'l	 'Ielitars code is considered one of the nos: advanced computer

programs in existence for numerically solving the laminar, unsteady,

Incompressible Aavier-Stokes equations in two dimensions, in that

the program is capable of determining the flow field about a flat

plate, n circular or elliptical cylinder, and symmetric or cambered

airfoils at arbitrary angles of attack including stall. The code is

also capable of performing solutions at any Reynolds ntunber for which

the laminar flow assumption is reasonable. Another feature of the

prograc: that was particularl y uFeful for the current study was that

the equations of motion were transformed into . the interior cf the unit

circle and the coordinate perpendicular to the surface of the geometric

shape was stretched depending on the Reynolds ntunber so that the solution

produced by the transformed equation was relatively similar for all

geometries and Reynolds numbers. This feature also produces a trans-

formed Navier-Stokes equation whose solution in relatively uniform

throughout the region of calculation.

For the purposes of our investigation, Mehta's code was modified

to solve each linear partial differential equation Produced by the

Newton-Kantorevich process. In ad,lition, due to computer storage

limitations, the program had to be simplified to perform computations

for only synunetric geometries and flow fields. Test cases were performed

for a circuldr cylinder at .a Reynolds number of 15 and `or a symmetrical

A
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124" thick airfoil at zero angle of attack at Reynolds numbers of 103.

104 , and 10 5 . The results of the calculations using; thu Newt on- Kant ot ovich

procedure were in all cases compared with the results obtained for the

sanx, problem by the original unmodified version of the program.

t
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MATHk:4ATI':AL FORMULATION

The flow field exterior to the KeomAry under consideration is

mapped into the unit circle. As a result of this trisnsfornuitian,

the equation governing the unsteady, incompressible flow of a Newtonian

fluid may be expressed in terms of the vorticity w and the stream function

T as

N' r1 R a W - (-^t 
j Ir 1 , j + '—►- r + '	 ( L J- + J^  - r ^̂  R T1.

tai

)A	 ,)!	
(2)

and the conservation-law form of the convective terms is expressed as

Tf ^,^^ } = 
3 

;^ ^e A ^) {
f	 / ^,^ +a j ^l I _;19^w _aP, A '

	
(Y a9 /, ( 3)

The disturbance stream function is defined as ^ - Y - y where

	

11P	 I 

s	
.402

r ^r	 d^^`	 r	 ,r• ,^ Je

The mapping into the unit circle is accomplished by the transfo-oration

+	 t ^_....
	

(5)

where z - x + iy

K - re1A

Y - & + in

(4)

•
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A proper choice of the constants -y and c invoke q the solution for the

flow over any one of a number of shapes Incli-ding a flat plate, a

circular or elliptical cylinder, ur thick airfoils that may be sym-

metrical or cambered. The trailing edge of an airfoil shape may be

rounded o F f by defining

In order to minimize the effects of Reynolds rnimber on the uniformity

of the solution, the radial coordinate is stretched according to

-1 -	

ti	
I^

(_I

	 j

With

k j .	 to , ► r- r t r ^ ; I r+ - 3 b	 j 1
and	 'k4 . t,	 k G .	 ,- r,	 ^^ t T.rR .f. R. _	 (C -

The constants r o , kl and k2 gall positive) determine the value of p.

As r varies from r  to 1, p varies from 0 to 1. ne Reynolds number

is R - Uk/v (R and v are, respectively, the chord and kinematic viscoscity)

and L is the dimensionless chord.

The components of velocity ul and u, are defined in terms of the

disturbance strewn function as

rH	 J	 H Cdr af;	 .i^

i

o.
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For Reynolds members much larger than unity, the vorticity in the

flow field exists only near the body and in the wake. Away from this

region, the flow is es ,;entially irrotational. Therefore. the region

of calculation is subdivided into two parts: a Rmall viscous region

and a large irrotational region bounded by p and p with 49 9
o	 r	 —

(see Figure 1).

The boundary conditions applied along the boundaries of the

region of calculation are as follows:

1) On the surface (p - 1), the constraint of no slip is applied

in the form

and	 3̂_	 (10)
d.^

Condition (10) is used to calculate the surface vorticity from the

stream function equation (4) with ^p replaced by Y'.

2) Along the line of symmetry, the vorticity w and the disturbance

stream function ^ are specified to be zero.

3) The flow at the far boundary is constrained with first-order

differential relations obtained from the Aavier-Stokes equations by

dropping the tangential derivative of the pressure and viscous terms,

i.e., at the outer boundary, the inertia terms are dominant:

N r t	 r J ^P^ '6	 ( 11)

i
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and u 2 Is obtained from the 0 component of the Navier-Stokes equation.

That is,

--} . -

	
1-Ui W ]
	 (13),Z 'Lar H d 4

Note that, in (13) , w - 0 when 9, ° 9 !^ 9 1	 At t - 0, the flow is

•	 irrotational (without circulation), i.e., w - 0 and * - -yr2.

These boundary conditions are be= lieved to be superior to specifying

either potential flow or uniform velocity since eddies or vortices can

pass through the downstream boundary. Also, since the velocity far

away is not defined, the circulation there can change with time. There-

fore, equation (11) correct1jr represents the vorticity transport through

the downstream boundary. In equation (13), the absence of the tangential

pressure derivative will not significantly affect the motion of a vortex

through the boundary.

The surface pressure distribution is obtained by integrating the

tangential component of the Navier-Stokes equation. That i.s,

a
L dP J='da	 (14)
R jr	 aC'

•	 0
where p(0) - 0. The pressure coefficient C  is, therefore, equal to

2p. On the surface, the tangential stress is given by a12 - (L/R)w.

Both p and a12 are made dimensionless with pU 2 . The coefficients of

i

(l2)
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lift, drab, and moment around the origin of the c plane (defined

as positive in the counter clockwise direction) art- given by

L L	 .. ^l

l	 < i
^j

G

JC `_	 `	 '`
^	 l	 '	 or.c'x

1	 ''
-c	 p - K ,1d (16)

I	 d .y JB

v^ t' .0

+MV

dx)	 1
.r' r	 z	 I	 [^^X 

iA 
♦ '`^ 

d fei	 ^"	
R

y	 )Wl,^ ,,.	 •'^'''

wnere the subscripts P and F,	 respec;cively, represent the contributions

due to pressure and viscous forces.

The Newton-Kantorovic.h procedure transforms equation (1) into a

sequence of linear partial differential equations (see Ap pendix A for

development) each of which iuss the form,

N r L dt
Id r

 jr 	 Jf 1	`J. 	 7

11
1r^'—'^+. `), JI w,,,, j3.^

where	 Q ^/ = -	 (19)

Since the non-linearity in equation (1) occurs only in the Jacobian

term, the Newton-Kantoruvich transformation affects this term alone.

The subscript rv+l refers to the variables that must he determined by

solving the current linear partial differential equation and the sub-

script m refers to the variables that were determined by solving the

do-
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previnus linear partial differential equation in the sequence. The

Jacobian terms On the right hand Aide- of equation (18) are now line:jr

because only the l ►ariables with suirscript re+l are unknown. A sequence

of these equations are solved such that the solutions ^p n and w 
n 

converge

f
	 to the t:xact solutions ^ and w of the non-linear problem described by

equations ( 1) and (4). As shown in references 1 and 3, the successive

er	 approximations described by egekition (18) converge quadratically.

or

i
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NU PICAL FORMULATION

"Iwo computer programs were used for performing the calculations

of the current study. The first computer program utilized the :game

numerical technique as that used by Mehta 6 for solving; the non-steady

incompressible Navier-Stokes equations for arbitrary airfoils at angle	
r

of attack but was a simpler version only applicable to symn ►etrical	 .

airfoils at zero angle of attack. This computer program is referred

to as the original or uivaodified program and was used as a means of

checking the validity of the Newton-Kantorov..h solutions. The second

prograu ► was al.	 - to the first one except that it was niodif ied so as

to solve t,:,: sequence of linear partial differentiat equations required

by the Newton-Kantorovich concept and expressed in equation (18). The

details of the numerical procedure used for the a:iginal program may

be found in Reference 6. The numerical procedure used in utilizing

tl Newton-Kantorovich concept is shown here.

Each Newton-Kantorovich linear syster, was solved by a three-point

backward time differencing and implicit factored central space dif-

ferencing scheme.

The spatially factored, time-differenced, expression for the

Newton-Ka ntorovich version of the vorticity transport equation (18)

is

;tit	
1J II 

^bt	 ulh _ ;,fit	 + ^(^
	 (TI

 W^^^ + T i
TA

4 (,tto l ee SP	
(20)

I	 f
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where the operators; d e and 
6  

are given as

	

7r n	 r
t 1 JL t [ ^ ( a^ r) »	 r^,i^. 1	 (21)

r	 G^^l',^, J 2 ^. a 	 f /	 f	 ^ti, lnrJ
' + ' r	 +^.` ~` Jr	 dr• ^^f 3 Jr L ^^tJH	 S&	

(22

and the cross derivative terms Q, F, and G as

r: ,1	 k r`	 .r` â ^o I	 y ^	 a	 ^,^, 1 1

a
T r

F	 r r' ^ati	 -^^Le

n	 n	 n	 ^^.	
^r H	

.,
LAJ

'In

:r L + ^
^^ d	 af,

►i	 a w 1	 n

(24)
d H \	 m+	 Je	 on	 dC' J J

L3 dr

t dr \	 frq. , JO

The values of the three-point backward time difference parameters are

T = 3

T1 C -4

T2 = 1

and the trauformation parameter A is

I

A - H 
2 
r 2 L
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Consistent with the spatial factoring concept, equation (20) is

split into two equations whose finite difference a,.ilogies each produce

tri-diagonal systems of equations. That is,

C' FA ^)^.ti.i _ ^nt^	 (26)

and

(^- TAtSA/"^4-^ -
^r (C^^^rvl^ TC Tw

m^i + T r^n^1)	 •

4(4t) : 	SP
+	 i ` A
	

wm+,	 (27)

The spatial derivatives associated with equations (26) and (27) as well

as equation (19) were appriximated by central differencing formulas

everywhere except at the boundaries of the flow field. The truncation

error for the vorticity equation is 0[(iip) 2 + (A6) 2 + (At) 2 j except

at the first two time steps where the temporal error is 0[Atj because a;

two-point backward •;ifference formula is required such that T 1 - 2,
T2 - -2, and T 3 - 0. The truncation error for the disturbance stream
function equation is 0[(6p) 2 + (A9)2j.

The no-slip boundary condition represented by equations (9) and (10)

is reformulated in terms of vorticity. The finite difference expression

	

for this boundary condition is	 y

J m.i (^+34r)N `	 GrY —
	 -(N r 

^) -;M ^ + ar^r	
28

-3 z ^.ar—^
Jr	 Jr'

ii

-	 -	 _
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The truncation error for this formulation is 0[Ar 2 1• In addition, the

condition T - 0 Is also satisfied on this boundary. Along the lines

of Hymmetry the boundary conditions w - 0 +uid ^ - 0 are specified. At

the outer boundary, the finite difference forms of equations (26) and

(27) are used to describe the vorticity condition except that the

diffusion terms are deleted and forward space differencing is used

in the p direction. This formulation results in a first order trun-

cation error in the space variable p. The disturbance stream function

at this boundary is obtained from the finite-difference form of equa-

tions (12) and (13):

k!
mri 3	 P(HU

+ 	+4 W^
L ^ ► ^	 ^' c, ^m+1	 m+r

	

where 1h	 ^

	

1fAr^	
— I	 4L1t(UW o 	 ^u2rus^<r^r '^u,^lui=^ ..

'	 469 rew#— 

( T2 oz
ri- f

	 LA
^^'m^i

present values of the vorticity at a wall grid point is determined

M

(31)
M +1

re 6 1 is a relaxation parameter and k is an iteration counter.

(29)

(30)
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Once the solution to the linear system of equations has been

i r

obtained as described above at a particular time step, the Newton-

Kantorovich procedure is invoked to produce a new linear system and

the process is repeated as many times ,is required for convergence to

the solution of the non-linear system for that time step. Then the

entire procedure is advanced to the next time step. The initial guess,

wO , at the solution_ for each time step, was determined on the basis of

an extrapolation of the converged solutions at the two previous time

steps. That is,

C	
_ w	

(32)

This approximation has a truncation error of 0(At 2). At the first

time step w  was set to zero and the potential flow stream function

was prescribed for ^ 0 . At the second time step w  and ^o are set equal

to the converged solutions at the first time step. For subsequent

time steps, ^0 was set equal to the converged solution at the previous

time step.

Since the truncation error of the Newton-Kantorovich approximation

is 0[Aw • AO], the truncation error of the initial guess at the first time
	 a

step is not determinable in terms of At, but at the second time step it

is 0 [At 3 1 and at subsequent time steps it is 0 [At 4 1.
	 t.

Computations of pressure coefficients on the surface and a deter-

urination of the loads are made for each time t with a finite-difference

integration fornula derived by combining wo four-point expressions
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(in order to have a lower effective truncation error). The integral

of any function f (p) between the modal points i and i + 1 on the

surface are expressed as

1,;l^lI11,+^^^l,^

where ^ _ ;Z4^11 ^ r t I ^ ^arl D ^4r2 + fw43/
C

i

This formula is used first to determine the pressure from equation (14)

and then is used to compute the loads. The pressure :alculations

require the normal vorticity gradient, which is represented by

1 I

This equation has a truncation error of 0 (Ap). A formula with a smaller

truncation error is not used because the derivation of the surface

vorticity with a truncation error of 0(Ap) 2 requires the use of a formula

identical to the above equation for 	 ^N ^Y Z cJ J/JP
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IIISCUSSION of MMI.MCAL USULTS

'Me two computer programs discussed in the previous section were

both used to determine the flow field about a circular cylinder at a

Reynold-: numher of 15, and a 12". thick symmetrical airfoil at zero	
0-9

angle of attack nt Reynolds numbers of 10 3 , 104 , and 10 5 . In all

cases, the bodies under consideration were impulsively started. The

cases for the circular cylinder at a Reynolds number of 15 and the

airfoil at a Reynolds rtar.ber of 10,000 were computed until a steady

state was achieved, while the other cases were run for early time only.

"he results calculated by both programs were compared with each other

as a basis for determining the number of iterations of the aewton-

Kar► torovich procedure required for convergence. Figures 2 through 5

illustrate some of the numerical results and table I summarizes the

convergence characteristics of the technique for these calculations.

In general., the results obtained by both techniques were in excellent

agreement with each other. As seen in the figures, the maximum dif-

ferences between the two sets of results was aLout 11. This difference

did not decrease with an increase in the number of Newton-Kantorovi ,h

iterations but did decrease with a finer spatial grid. This indicates

that the difference between the solutions was tue to the slightly

different finite difference approximations to the Navier-Stokes equa-

tions produced by the two techniques.



early time were very inaccurate (see Numerici
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In addition. Table I showN that finer spatial grids were required

at the higher Reynolds numbers in order to achieve the same level

of agreement. This was due to the fact ttit the solutions becar.e more

non-uniform in the circumferential direction with increasing Reynolds

number. Since the circumferential coordinate was not stretched with 	
Ga.. ►

Reynolds number as was the radial coordinate, the number of grid elements

in the circumferential direction had to be increased in order to maintain

the same level of accuracy in the regions of large gradients in the

so lut Ion.

The convergence characteristics of the :Newton-Kantorovich procedure

were excellent for all test cases performed. In fact, after the first

several time steps of each test case, the initial guesses for succeeding

time steps were sufficiently accurate that only a single iteration was

required to achieve convergence; and thus the technique became completely

non-iterative with respect to the non-linearity in the equations. This is

illustrated in Figure 6 for the Reynolds number 10 4 where the vorticity

at a particular point in the flow field is plotted versus time using;

one Newt on-Kantorov ich iteration and is compared to the same case using,

two iterations. For the first several time steps, two iterations were

required for convergence of the Reynolds number 15, 10? , and 10 4 cases,

and a third Iteration was required for convergence of the Reynolds

number 10 5 case. These succeeding iterations at the earliest time

steps were required because the initial guesses at the solution for



20

Sr.Wllur time steps were required at the higher Reynolds nkuabers

to achieve a sufficiently accurate initial guess at the solution to

preserve the number of iterations required for convergence of the

procedure. However, smaller time. stops were required anyway to achieve

convergence of the surface vorticity boundary condition at these

Reynolds ntunhers. Hence, these time step restrictions are consistent

with the solutior procedure and not a limitation due to the Newton-

Kantorovich process.

i

L-
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CONCLUSIONS

Based on the results obtained in the rurre

Ka ntorovich technique can be successfully appli

solution of the lawinar, non-steady, incompressible, two-dimensional

Navier-Stokes equations. The convergence characteristics of the tech-

nique were excellent for all geometries and Reynolds numbers tested.

In fact, except for the first several time steps. the procedure requires

only one iteration to achieve suitable convergence; that is, the pro-

cedure becomes non-iterative with regard to the handling of the non-

linear terms in the Navier-Stokes equation:.. This conclusion indicates

a potential for significant reduction in computation time over other

current iterative techniques.

M•
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APPLND 1 X

The nonlinear, nonstationary linvier—Stokers equations, which can

be described mat! ► ematically by

^^	 N

ti
-AW	 v	 ^'

o ^! ^S ^ = 6, J !^'^' ^ ^ S j 1 6,

with ^5^ = (^
t-c

can, equivalently, be described in the form

F (/\^) _ 
0	 'yam/	 (2)

t =,,

Operator 1' of	 (?) will be considered a mapping from the 6anach Space Clr(S)

into the Sanarh space Co0 (S), where C iN (S) (x,y,t)	 :J	 times continuously

differentiable in (x,v) e S,1' times continuously differentiable in
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J
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6

t,0 <	 t <od,	 inclusive of	 sp a tial derivatives up throug h order IN I21j	 Notc
ti ►at L ]denotes greatcst integer part.	 CTN (5) will be considered under

the nn rsn

11 I 11

-r— ^ N 7

--	 ^ ^.l ^ ►M 4 X

^ h f. ; ' y"

}
T p'

LN	 "
LLJJ

J

^^ 6 S

a^A^
y	 ►^ - M^

In order to apply Newton's wethod as generalized to function spaces

5
by Kantorovich , it is necessary to determirit , whether or not P', the

Frechet derivative of operator P of equation (2), P", and (P') i exist,

and if they exist, upper bounds for I(Pl/, (^Y"^^, and/((P')- 
I// must bc^

determined.

It can be readily shown (see (3),(4)) that P'(,, o ) exists for

arbitrary C 1 4 (S), and that

1

Similarly, it can be shown ((3)(4)) that

for arbitrary y o , y, 6 in c 1 (S) . Also,

if

for some initial guess ^ 0 6 C 1 4 (S), then the algorithm
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fav

converges to the solution of (2) (.-.ee (S)).

Therefore, it re¢iains to rietemine if and when P' ( Wo ) -1 exists and

to obtain an upper estimate for

To this end, let m	 0 in Eq. (3). Therefore,

^o(^s) = b, , ^; ^^s) = 6, , d^ ^s) =fit ^ a-^; (^s)= ^Z

1 0	 r=^

Let ;F = 7I — ;	 ; therefore, — ^^ , =P^^`f.' f 	 If^' exists, then

Hence, we seek a solution's}' of the problem
t

-f°'^^;)^'^	 4L	 0.
U

Let	 f7 ^^^ ) i ,L^r̂ -Vl^tl -t A	
}

w4Q.re A is a ^,..e^^	 oP^r-.ate• Ce (-5	 ^^ 7^ C0^s/

Equation (4) can, therefore, be expressed by

(5)t
ll(fc °

an-
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I

u

Let 1^ be 1efinel as followh:

'`^' !Ye. t) = - f / r	 LA S )'Y'J(Y,d,Y) t PN)lr, r) 6 ^^, ,^ ►' ; x, ^'t)

^J

where

1
I	 I	

V	 ,
	 I	 ^^

	

It can be Directly shown that it 'Y' of (6) exists, thVr,	 -iatisfies

(4), where G is the Green's function of La Place's equation for S

and 11  the kernel function for the heat equation

Olt-, /N^ =0	 0, Sr
v	 O

r =J

In order to determine sufficient conditions under which y cf
eq-1atlon (6) will exist, let B denote the ]it ►ear operation:

F	 r

Equation (6) therefore takes the forty

(3 A)

Let CO 3 (S) = the completion of CO 3 (S) under the norm
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lI A
^1I =	 4 r l	 * 01 k r I ^: I	 t KI g v	

^„1' 	1
IX,d 	„S ! a k-5 ,,	 E . S

?toeof Y <.D a-, t f- 0 e

+ 	 ►+1 Cc if / 1^ r l
1

-^ MA K r	 I	 r J	 .	 », At •	 l	 I
^^

ixs	
S

r
'^

ES	 r'a & S

o -!2 f -e-
o` 	 a ^t^.e 0-• A

^ ^ 4 r I n '^'^ f
	 + +.i r l	 1	 •

	

xi0) E S

	
a,d F S

	

° V
	

Ot. r <v0

If (M) is considered a mapping from C O (S) into C
&%#

(S), and

1i BAYLL 1, then ( I - t;A) -1 exists, and Ar - ( I - BA) -l Bi'(' ). Therefore, in
>	

)
	order to show that	 exists, it is sufficient to show that 	 /I BI ^l

AP 0
To this end consider A as a mapping from Co 

ti 
into Co ri . For At E ^ J

	

Jr	
E

Lr	 a^, E S
of ^.o

bo, OL t l ^-^ t I^.1 r^-i	 r x k I	 ^^ I
f ^ 1 1^,	 X F	 \

Since	 rl J^I = Sk	 Il	 ^11	 by definition,

kIk-
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E

a nd

f! R ¢If	 = W0.k /,"^ 1 = kx I	 ^x — d r S t I^ x ^3 -r 47%

Co	 G	 /`	 C5

it follows that J1 A f 1 ^ M , where

d

0-- R A	 ( /	 Afok	 ^ I

 
x E

D ^ f L-OO

N	 11^ )

Consider B as 	 mapping from C 0 into CC 3 .	 (I ^ I) = Sy^	 ^J ^ ^ ,^
3

by definition. Therefore, sine	 Co

C	 ^	 ^

/,Y

^.e t	 f

^Mb mar ^^ )	
y/X XS'...^^^^- f^63^^^^ J^ l^^.11l ,̂^ftl^^^^^X. "d
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There fore, for	 Al L l^	 exists, and ^` R (I - BA)
-1

 RY(^;). Hence,

it f ollows direct)-y that -1''( 0 ) -1	 (I - IA)
-1
 R and that

e	 .
From the precedIng, it directly follows that if	 thethe initial

educated guess, is judiciously chosen, a sequence of functions

n (n - 1, 2,	 .) can be directly constructed that conver,_ 	 the

exact solution of the nonlinear, nonstationary Navier-Stokes problem

as expressed by Equat i on (1). In addition, an explicit error estimate

can he directly determined for each approximate solution t .
n

Explicitly Chun, for

z^Z
with /^, ^^^, the sequence of 	 is determined by Equation (3) exists

•

and converges to the exact solution'* of Equation (1).

Moreover, under these conditions, the method yields the explicit

error estimate

Al

1	 I ^4..	 ..	 1	 J

,.
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The actual application of th9 Newton-Kantorovich method to equation (1)

produces a sequence of equations of the following form:

a

I

MX

Define the vorticity, w, as

W=- Lt r

Hence, the final form of the equation becomes

01 W.,.	 _	 Q u^
_ _ T	 hrµ.	 `f',,, I T ( ^^, "" 4. r }	 + J ( N̂'^ wn'

Transforming this equation into the interior of the unit circle and

transforming the radial coordinate to a new variable p that allows for

stretching of the solution in that direction produces

H " dt	
-(^ 1 ^ + +jPx ^o.

r

I
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Table 1 Summary of test cases herformud during the current study.

GEOMETRY REYNOLDS
NO.

GRID
it x r

TIME
RANGE

I	 TIME
STEP
SIZES

TOTAL
TIME
STEPS

NEWTON KANIOROVICN
ITERATIONS EARLY

TIME

CYLINDER 15 33 x 40 0-40 i.5 80 2

AIRFOIL 1000 65 x 84 0-.2 .01 20 2

AIRFOIL 10000 65 x 84
i
	0-35 .01-.16 260 2

A I R F O I L 100000 129 x 84 0-.1 .01 10 3

ri

e



i = JL 1-U

(rd 1)r
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r^
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i = IM	 02	 27T

i=2
	

i = IL

aU2	 1 0 (U l2 + U22)

cat

	

[iH	 3
	 +U^w

Fib;. 1 Domain of calo	 ition, boundary conditions, and grid notation.
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