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INTRCDUCTION

The Newton-Kantorovich technique is a rigorous mathematical concept
based on functional analysis that transforms a non-linear partial dif-
ferential equation into a sequencc of linear partial differential
equations whose solutions converge to the solution of the original
non-linear problem providing appropriate conditions can be satisfied.
It has been employed operationally by Bellman1 to solve a variety of
non-linear problems with considerable success, and was more recently
used by Morihara and Cheng2 to produce a numerical solution of the
steady-state Navier-Stokes equations in two-dimensions. Gabrielsen3'a
has established a mathematical justification for the use of the tech-
nique in solving the non-steady Navier-Stokes equations in two dimensions,

The Newton-Kantorovich technique has major advantages over other
techniques used to solve the non-steady Javier-Stokes equations. The
main computational advantage is that a sequence of linear partial
differential equations need only be solved rather than a single non-
linear one. A linear partial differential equation can be solved
numerically by simply solving a system of linear algebraic equations
directly, whereas a non-linear equation requires an elaborate iteration
procedure that may require more compute time and whose convergence is
often difficult to achieve especially at high Reynolds numbers. A
thenretical advantage of the technique is that explicit error estimates
are attainable (that is, the difference between each linear solution

and the solution to th/ original non-linear problem).



The obvious disadvantage of the technique is that more than one
licear partial differential equation must be solved i1 order tc achieve
a solution. In fact, bascd on the results of previous investigations
of the technique, the number of iterations of the procedure required
for convergence of the technqiue would appear to be verv problem depen-
dent, Morihara and Chang2 applied the technique to a steady flow in
the entrance region of a straight channel for various Reynolds numbers
and found that * .e number of iterations required for convergence increased
rapidly with Reynolds number. In addition, Gabrielsen3 established an
upper bound for the error associated with the technique as applied to
the non-steady Navier-Stokes equations as a function of the number of
successive iterations and the Reynolds number. His analysis indicated
that the number of iterations required for convergence depended on the
accuracy of the initial guess at the solution, and that an increasingly
more accurate initial guess at the solution is required with increasing
Reynolds number in order to achieve convergence of the procedure in the
same number of iteraticns as required at lower Reynolds numbers. This
Reynolds number dependence is due to the fact that the solution to the
Navier-Stokes equations becomes progressively more non-uniform and
more concentrated in a smaller region of the flow field with increasing
Reynolds number. The convergence of the procedure must also depend on
the shape of the geometry under consideration because the severity and
location of these non-unifrrmities and concentrations will vary with

geometry.



For expediency, the actual implementation of the procedure was
accomplished by modifying an existing computer program written by
thtaﬁ. Mehta's code is considered one of the most advanced computer
programs in existence for numerically solving the laminar, unsteady,
incompressible Javier-Stokes equations in two dimensions, in that
the program is capable of determining the flow field about a flat
plate, a circular or elliptical cylinder, and symmetric or cambered
airfoils at arbitrary angles of attack including stall. The code is
also capable of performing solutions at any Reynolds number for which
the laminar flow assumption is reasonable., Another feature of the
program that was particularly ureful for the current study was that
the equations of motion were transformed intc the interior cf the unit
circle and the coordinate perpendicular to the surface of the geometric
shape was stretched depending on the Reynolds number so that the solution
produced by the transformed equation was relatively similar for all
geometrics and Reynolds numbers. This feature also produces a trans-
formed Navier-Stokes equation whose solution is relatively uniform
throughout the region of calculation.

For the purposes of our investigation, Mehta's code was modified
to solve each linear partial differential equation produced by the
Newton-Kantorcovich process. In addition, due to computer storage
limitations, the program had to be simplified to perform computations
for only symmetric geometries and flow fields. Test cases were performed

for a circular cylinder at a Reynolds number of 15 and ‘or a symmetrical



124 thick airfoil at zero angle of attack at Reynolds numbers of 103.

10‘. and 105. The results of the calculations using the Newton=Kantoiovich
procedure were in all cases compared with the results obtained for the

same problem by the original unmodified version of the program.



MATHEMATIAL FORMULATLON

The flow field exterior to the geometrv under consideration 1is
mapped into the unit circle., As a result of this transformation,
the equation governing the unsteady, incompressible flow of a Newtonian

fluid may be expressed in terms of the vorticity w and the stream function
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and the conservation-law form of the convective terms is expressed as
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The disturbance stream function is defined as ¢ = ¥ = y where
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The mapping into the unit circle is accomplished by the transfovmation
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A proper choice of the constants y and ¢ invokes the solution for the
flow over any one of a number of shapes Inclvding a flat plate, a
circular or elliptical cylinder, or thick airfoils that may be sym-
metrical or cambered. The trailing edge of an airfoil shape may be

rounded off by defining

C = [ £+ (,"'22)'-]("3‘) whee 0K§4| (6)

In order to minimize the effects of Reynolds number on the uniformity

of the solution, the radial coordinate is stretched according to
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The constants o k, and k2 {all positive) determine the value of p,

1
As r varies from g, to 1, p varies from O to 1. The Reyunolds number
is R = UL/v (L and v are, respectively, the chord and kinematic viscoscity)
and L is the dimensionless chord.

The components of velocity uy and u, are defined in terms of the
disturbance stream function as

\ N =
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For Reynolds mumbers much larger than unity, the vorticity in the
flow field exists only near the body and in the wake, Away from this
region, the flow is es=entially frrotational. Therefore, the region
of calculation is subdivided into two parts: a small viscous region
and a large irrotational region bounded by p_ and p_ with 9'_4,6591
(see Figure 1).

The boundary conditions applied along the boundaries of the
region of calculation are as follows:

1) On the surface (p = 1), the constraint of no slip is applied
in the form

yzo (01, 9«-‘-7) (9)
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and o (10)

Condition (10) is used to calculate the surface vorticity from the
stream function equation (4) with § replaced by VY.

2) Along the line of symmetry, the vorticity w and the disturbance
stream function § are specified to be zero,

3) The flow at the far boundary is constrained with first-order
differential relations obtained from the Wavier-Stokes equations by
dropping the tangential derivative of the pressure and viscous terms,

i.e., at the outer boundary, the inertia terms are dominant:

w_ of p(2

L
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(11)



and uy is obcained from the 8 component of the Navier-Stokes equation.

That 1s,
A - | ofu 4y
Note that, in (13), w = 0 when 9 £0£86, . At t =0, the flow is

irrotational (without circulation), i.e., w = 0 and y = -yrz.

These boundary conditions are believed to be superior to specifying
either potential flow or uniform velocity since eddies or vortices can
pass through the downstream boundary. Also, since the velocity far
away 1s not defined, the circulation there can change with time, There-
fore, equation (11) correctly represents the vorticity transport through
the downstream boundary. In equation (13), the absence of the tangential
pressure derivative will not significantly aifect the motion of a vortex
through the boundary.

The surface pressure distribution is obtained by integrating the

tangential component of the Navier-Stokes equation. That 1is,
)
:Lifjii’ - (14)
P*Rav) ¢
0
where p(0) = 0. The pressure coefficient Cp is, therefore, equal to

2p. On the surface, the tangential stress is given by o,, = (L/R)w.

Both p and gy, are made dimensionless with pUz. The coefficients of
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11ft, drag, and moment around the origin of the z plane (defined

as positive in the counter clockwise direction) are given by
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where the subscripts P and F, r§;pacuxvoly. represent ihc contributions
due to pressure and viscous forces.

The Newton-Kantorovich procedure transforms equation (1) into a
sequence nf linear partial differential equations (see Apnendix A for

development) each of which has the form,
2w

RS 3(5F)) ""+(Jm )_,f e
)] o

where Vey/ s - W (19)

Since the non-linearity in equation (1) occurs only in the Jacobian
term, the Newton-Kantorovich transformation affects this term alone.
The subscript m+l refers to the variables that must be determined by
solving the current linear partial differential equation and the sub-

script m refers to the variables that were determined by solving the
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previous linear partial differential equation in the sequence. The
Jacobian terms on the right hand side of equation (18) are now linear
because only the variables with subscript m+l are unknown. A sequence
of these equations are solved such that the solutions W and w, converge
to the exact solutions y and w of the non-linear problem described by
equations (1) and (4). As shown in references 1 and 3, the successive

approximations described by equation (18) converge quadratically.
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NUMERICAL FORMULAT LON

Two computer programs were used for performing the calculations
of the current study. The first computer program utilized the same
numerical technique as that used by N‘htle for solving the non-steady
incompressible Navier-Stokes equations lor arbitrary airfoils at angle
of attack but was a simpler version only applicable to symmetrical
airfolls at zero angle of attack. This computer program is referred
to as the original or ummodified program and was used as a means of
checking the validity of the Newton-Kantorovi h solutions. The second
program was sic« -~ to the first one except that it was modified so as
to solve tiic sequence of linear partial differentia’l equations required
by the Newton-Kantorovich concept and expressed in equation (18). The
details of the numerical procedure used for the original program may
be found in Reference 6. The numerical procedure used in utilizing
th Newton-Kantorovich concept is shown here.

Each Newton-Kantorovich linear systern was solved by a three-point
backward time differencing and implicit factored central space dif=-
ferencing scheme,

The spatially factored, time-differenced, expression for the

Newton-Kantorovich version of the vorticity transport equation (18)

is
(1- 5 6= 35 4) eh = 55 (0 F 96) -2 (T +0l)
+?$T % é u%” (20)
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where the operators 6 and 6 are given as
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The values of the three-point backward time difference parameters are

T=3
T, = -4
T2 = 1

and the tranformation parameter A 1is

A= Hztz

=



Consistent with the spatial factoring concept, equation (20) is
split into two equations whose finite difference auilogies each produce

tri-diagonal systems of equations. That is,

2‘-‘-“ n = *
(‘ ') o T LU"H»I (26)
and
:Ar - Zm’-' nel n-4
(1"—1;;3‘ ulm.‘ : (erf\s)- —(Tw = ft'dm“)
V5 G st T n
4‘(?7‘ 2L, (27)

The spatial derivatives associated with equations (26) and (27) as well
as equation (19) were approximated by central differencing formulas
everywhere except at the boundaries of the flow field., The truncation
error for the vorticity equation is ()[(l.m)2 + (Ae)2 + (At)zl except
at the first two time steps where the temporal error is 0[At] because a

two-point backward ..ifference formula is required such that T, = 2,

1
'I'2 = -2, and T3 = 0, The truncation error for the disturbance stream
function equation is 0[(Ap)2 + (A6)2]-

The no-slip boundary condition represented lv equations (9) and (10)
is reformulated in terms of vorticity. The finite difference expression

for this boundary condition is

| G(Vu P %L-l ) oy ‘ t)ﬂr
W = e ———— Bt me| me ) al o —
JLM'H (2+3M‘)H‘[ art (H r un_l y AY oy (28)
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The truncation error for this formulation is 0[Ar2]. In addition, the
condition ¥ = 0 is also satisfied on this boundary. Along the lines
of symmetry the boundary conditlons w = 0 and y = 0 are specified. At
the outer boundary, the finite difference forms of equations (26) and
(27) are used to describe the vorticity condition except that the
diffusion terms are deleted and forward space differencing is used

in the p direction. This formulation results in a first order trun-
cation error in the epace variable p. The disturbance stream function
at this boundary is obtained from the finite-difference form of equa-

tions (12) and (13):

l" JOP n n
i - 4V _9:. 1 '
"mil (d"/ )( ‘1 A"mﬂ+ ‘-"mvi ‘MOI ] ()9)
where ~ %
(uz) & -—,-[—.Jﬂt(u'ﬂwn + (ulz"“").l'li *— ‘)"j =
o T, A, 4ae(rﬂj
- (T +Tu ) ] (30)
'(J'mu
The present values of the vorticity at a wall grid point is determined
from
K hi
w . 'l'ﬂ (A&))m : (31)

where 81 is a relaxation parameter and k is an iteration counter.
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Once the solution to the linear system of equations has been
obtained as described above at a particular time step, the Newton=-
Kantorovich procedure is invoked to produce a new linear system and
the process is repeated as many times as required for convergence to
the solution of the non-linear system for that time step. Then the
entire procedure is advanced to the next time step. The initial guess,
wys Aat the solution for each time step, was determined on the basis of
an extrapolation of the converged solutions at the two previous time

steps. That is,
‘s = ) = w (32)

This approximation has a truncation error of O(A:Z). At the first

time step w, was set to zero and the potential flow stream function
was prescribed for Vo* At the second time step Wy and wo are set equal
to the converged solutions at the first time step. For subsequent

time steps, *o was set equal to the converged solution at the previous
time step.

Since the truncation error of the Newton-Kantorovich approximation
is O[Aw * AYy], the truncation error of the initial guess at the first time
step is not determinable in terms of At, but at the second time step it
is 0[At3] and at subsequent time steps it is O[Atql.

Computations of pressure coefficients on the surface and a deter-
mination of the loads are made for each time t with a finite-difference

integration foraula derived by combining two four-point expressions
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(1n order to have a lower effective truncation error). The integral
of any function f (p) between the modal points {1 and { + 1 on the

surface are expressed as

L (U1 +19

1'-.‘0\' I' L_)

where l " |_|_ ga(“{r‘ . I»f{“_ ‘.11","&*’.43)
| A4

| __-4[_ L1 & ( —-f
l‘:nox.\ ﬂ‘.l'l'fi I31’¢4; 142)
This formula is used first to determine the pressure from equation (14)
and then is used to compute the loads. The pressure calculations

require the normal vorticity gradient, which is represented by

Jw ) |

e - s, . g

¢ '(w"m. Y

This equation has a truncation error of 0 (Ap). A formula with a smalier
truncation error is not used because the derivation of the surface
vorticity with a truncation error of O(M)2 requires the use of a formula

identical to the above equation for Q(H :rz(.))/JP.
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DISCUSSION OF NUMERICAL RESULTS

The two computer programs discussed in the previous section were
both used to determine the flow field about a circular cylinder at a
Reynolds number of 15, and a 12% thick symmetrical airfoil at zero

3. 10‘. and 105. In all

angle of attack at Reynolds numbers of 10
cuses, the bodies under consideration were impulsively started. The
cases for the circular cylinder at a Reynolds number of 15 and the
airfoil at a Reynolds number of 10,000 were computed until a steady
state was achieved, while the other cases were run for early time only.
“he results calculated by both programs were compared with each other
as a basis for determining the number of iterations of the lewton=-
Kantorovich procedure required for convergence. Figures 2 through 5
illustrate some of the numerical results and table I summarizes the
convergence characteristics of the technique for these calculations.

In general, the results obtained by both techniques were in excellent
agreement with each other., As seen in the figures, the maximum dif-
ferences between the two sets of results was aLlout 1%Z. This difference
did not decrease with an increase in the number of Newton-Kantorovi h
iterations but did decrease with a finer spatial grid. This indicates
that the difference between the solutions was due to the slightly
different finite diffcrence approximations to the Navier-Stokes equa-

tions produced by the two techniques.
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In addition, Table I shows that finer spatial grids were required
at the higher Reynolds numbers in order to achieve the same level
of agreement. This was due to the fact tf it the solutions became more
non-uniform in the circumferential direction with increasing Reynolds
number, Since the circumferential coordinate was not stretched with
Reynolds number as was the radial coordinate, the number of grid elements
in the circumferential direction had to be {ncreased in order to maintain
the same level of accuracy in the regions of large gradients in the
solution,

The convergence characteristics of the Newton-Kantorovich procedure
were excellent for all test cases performed., In fact, after the first
several time steps of each test case, the initial guesses for succeeding
time steps were sufficiently accurate that only a single iteration was
required to achieve convergence; and thus the technique became completely
non-iterative with respect to the non-linearity in the equations. This is
illustrated in Figure 6 for the Reynolds number 104 where the vorticity
at a particular point in the flow field is plotted versus time using
one Newton-Kantorovich iteration and is compared to the same case using
two iterations. For the first several time steps, two iterations were
required for convergence of the Reynolds number 15, 103. and 10‘ cases,
and a third iteration was required for convergence of the Reynolds
number 10s case, These succeeding iterations at the earliest time

steps were required because the initial guesses at the solution for

early :ime were very inaccurate (see Numerical Formulation).
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Smaller time steps were required at the higher Reynolds numbers
to achieve a sufficiently accurate initial guess at the solution to
preserve the number of iterations required for convergence of the
procedure, However, smaller time steps were required anyway to achieve
convergence of the surface vorticity boundary condition at these
Reynolds numbers. Hence, these time step restrictions are consistent
with the soluticr procedure and not a limitation due to the Newton-

Kantorovich process.
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CONCLUSIONS

Based on the results obtained in the current study, the Newton-
Kantorovich technique can be successfully applied to the numerical
solution of the laminar, non-steady, incompressibie, two-dimensional
Navier-Stokes equations., The convergence characteristics of the tech-
nique were excellent for all geometries and Reynolds numbers tested.

In fact, except for the first several time sceps, the procedure requires
only one iteration to achieve suitable convergence; that is, the pro-
cedure becomes non-iterative with regard to the handling of the non-
linear terms in the Navier-Stokes equations., This conclusion indicates
a potential for significant reduction in computation time over other

current iterative techniques.



APPENDIX

The nonlinear, nonstationery Navier-Stokes equations, which can

be described mathematically by

- = = AT
AN, —rannyt "5&‘1" A% 5] i
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with Wsz:;:I/S)

can, equivalently, be described in the form

p(Y) =0 S @
#(25)= 4, , aves)-h , is)- B 5).

Operator P of (2) will be considered a mapping from the Banach Space C:{*‘(S)

into the Banach space COO(S). where CTN(S) :'-E(X.Y.t) N times continuously

differentiable in (x,y)€ S,T times continuously differentiable in



23

t,0 < t <od, inclusive of spatial derivatives up through order[N/ZJ} Note

that [ Jdenotes greatest integer part, C N(S) will be considered under

I, = ééj s (2 Y
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o meo ;4-5 'Dt"")y"'%ﬂ-m

the norm
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In order to apply Newton's wethod as generalized to function spaces

-f'g 2 ma i %':‘f%n-an],

by Kantomvichs. it is necessary to determine whether or not P', the
Frechet derivative of operator P of equation (2), P", and (P')-1 exist,
and if they exist, upper bounds for /{P//, HP"//, and]((}”)'l// must be
determined.

It can be readily shown (see (3),(4)) thac P'('po) exists for

arbitrary Cll‘(S), and that

P'r%) = 42~ —spa KA ) ad % 2
A >k ; '-'aaz A 9%

Similarly, it can be shown ((3)(4)) that

) o = gao +6A1 -8, 24 - ¢, 2e;
for arbitrary w s $, 6 in C s AIBO,
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for some initial guess ) € Clb(s), then the algorithm
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PR) + PP Ke) =0, Hulos) = b, it f5) b, e [ = F5) )

ey

converges to the solution of (2) (ree (5)).

Therefore, it remains to determine if and when l"(wo)'1 exists and
/
to obtain an upper estimate for // p/%) -I//

To this end, let m = 0 in Eq. (3). Therefore,

o= P%) + PY/%)(4-"%) in C

Ah(D5)= by, H(5)= b , 2%05)=), , a4 (25)=4,
4{.’(: E(S) 5 and ’yl"/ -f(.‘)‘
se (=0
Let :F:"f,""v.’ ; therefore, = F('t)ﬂf‘/‘t]-f‘_‘-. If;-exhts, then
2 - /
¥ = - Ple) PO%) .

Hence, we seek a mlutlon¢of the ?roblem
o = POK) +P(k)F, #2920 a¥() 00 JZ:o,m

Let P't%) = a2~ -+da +A
wlere A is o finewr operats F(3) wH C:(’),

4r)f = Yol ~o% G i, ad ‘o 4, .

Equation (4) can, therefore, be expressed by

6’7‘; ~rALF = - P%)- A% )“?,'?'7“)“",“7#*57:0(”

"
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Let AF be defined as follows:

Fopn= - [[] franiFacyn « oy, e} tysey e

.J:'.;f,»(rd&‘«j;

where

oy, xpnogse )= €I Ty, 1))

It can be Jirectly shown that 1£”f' of (6) exists, then“f satisfies
(4), where G is the Green's Function of La Place's equation for S

and H’the kernel function for the heat equation

é-wacﬁ 580 WS
¢/°¢>$)=o/ ¢/tw:0

In order to determine sufficient conditions under which : of

equation (6) will exist, let B denote the linear operation:

i " . ’ 4 ’ . . ‘
Bz:-IX‘fz(l,’b 2’)6-' {Y, )YP "x/").;t-’} )A‘é‘”A//4 1
Equation (6) therefore takes the form

(T-84)% = grPt¥)

Let COJ(S) = the completion of C03(S) under the norm
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If (BA) is considered a mapping from Co (§) into (20 (8), and

” BAyLI, then (I - BA)-l exists, and"? = (I - m)'l

BP(4f). Therefore, in
order to show that ':;' exists, it is sufficient to show that ” B/II/A’H ‘-’-

A (=]
To this end consider A as a mapping from Co‘ into CUO. For ‘f & Co J
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Since /]A“ = Suf “ A 4” by definition,
wo
44 ‘
AL) @ = =% 29, - a% 9 ¥, ady+ &% ¢,
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and

//A.dlc° = max l’A¢/= Y ,-:EAdi -A‘Y;&Ci!-r "ﬂ'.dg 44‘34!}

&

it follows that l/ A”.‘."M.t , where
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by definition. Therefore, since

/,Bé/éjt ay (16214 l“‘@»\*l(“}’*K"‘)’-/*“‘*)p/
tl(8e) |+ [(a82),] + [case) ] )

l & f F i L /

/I Bl “ o £y vy, r,‘;/r-’)‘){_’g(n,;/x;)}—rlgkfghlg,w;}

Ohte pt -+ ’éi’t) ] o/r“ﬁ'/?"n/r;//'
f N
s [ LB O g en ] of# b pe )i

Let ¢
My » mar ﬂgﬁ'ﬂ'} i e el b ] 16 i, )dig g
J

My = mar (1%, 1%, ] 1a%,] fow]).



28

= _ -1
Therefore, for H“ % <. l/‘r exists, and Y = (I - BA) BP (). Hence,
- -1
it follows directly that =P'( 0) 1, (I - BA) B and that

TR . M Y
flr'ee) = (= HBIIAM 1% My

From the preceding, it directly follows that if“f'o, the initial

educated guess, is judiciously chosen, a sequence of functions

’ n(n =1, 2, + « +) can be directly constructed that conver, ~ the
exact solution of the nonlinear, nonstationary Navier-Stokes problem
as expressed by Equation (1). In addition, an explicit errcr estimate

can be directly determined for each approximate solution ‘f'ﬂ.

Explicitly then, for )_‘.
(I - Mg Ma
(Y%
)] pew) | < "WE

with 1‘1’; ”“J, the sequence of "f'n'a determined by Equation (3) exists

and converges to the exact solution"."* of Equation (1).
Moreover, under these conditions, the method yields the explicit

error estimate

ne!

2 =l
T ngt”‘) )l
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The actual application of the Newton-Kantorovich method to equation (1)

produces a sequence of equations of the following form:

-

?_(AW,',,,, )' VA"‘—\ ’ ‘ ‘Pn- A?’ . ?A'? l*vl’.r -y:-' AV, : -A% V""
f ; ’j . | . ? ¥ : 3 o

Ay V.r,é tOK Y
|
Define the vorticity, w, as

‘t.}:‘Af

Hence, the final form of the equation becomes

j_f_t.,,., "'VAH- -T(,'.'," } J.(Un,Vm) J-( .m ¥

Transforming this equation into the interior of the unit circle and
transforming the radial coordinate to a new variable p that allows for

stretching of the solution in that direction produces

o sl Gt (2 s

e/ ' wlp
T () 5 -;:;.:-f-")}




1.

2.

4.

7.

30

REFERENCES

Bellman: Quasilinearization and Nonlinear Boundary-Value Problems.
Rand Corporation, Santa Monica, California, 1965,

Morihara, H. and Cheng, R. T.: Numerical Solution of the Viscous
Flow in the Entrance Region of Parallel Plates. Journal of
Computational Physics, Vol. 11, p. 550-572, 1973.

Cabrielsen, R. E. and Karel, S.: A Femily of Approximate Solutions
and Explicit Error Estimates for the Nonlinear Stationary Navier-
Stokes Problem. NASA ™ X-62,497, January 1975.

Cabrielsen, R. E.: An Effective Solution to the Nonlinear, Non=-
Stationary Navier-Stokes Equations for Two Dimensions. NASA
™ X-62,493, August 1975,

Kantorovich, L. V. and Akilov, G. P.: Functional Analysis in
Normal Spaces. Pergamon Press, New York, H. Y., 1964,

Mehta, U. B.: Dynamic Stall of an Oscillating Airfoil. To appear
in the Proceedings of AGARD Symposium on Unsteady Aerodynamics,
Ottawa, Canada, September 1977,

Mehta, U. B. and Lavan, Z.: Starting Vortex, Separation Bubbles,
and Stall - A Numerical Study of Laminar Unsteady Flow Around an
Airfoil, Journal of Fluid Mechanies, Vol. 67, part 2, January
1975,



31

Table 1 Summary of test cases performed during the current study.

|
GEOMETRY | REYNOLDS | GRID TIME TIME | TOTAL | NEWTON-KANTOROVICH
NO. vxr RANGE | STEP | TIME ITERATIONS EARLY
SIZES | STEPS TIME
CYLINDER 15 33 x 40 0-40 5 80 2
AIRFOIL 1000 65 x 84 0-.2 01 20 2
AIRFOIL 10000 65 x 84 0-36 |.01-16] 260 2
AIRFOIL 100000 129x 84| 0-1 0 10 3
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