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VIil., SIMPLIFIED MODELS OF THE ANNULAR
SUSPENSION AND POINTING SYSTEM (ASPS)
7.1 Introduction [ 1]

The Annular Suspension and Pointing System (ASPS) is a payload auxiliary
pointing device of the Space Shuttle. The ASPS is comprised of two major
subassemblies, a vernier and a coarse pointing subsystem.

The experiment is attached to a mounting plate/rim combination which is
suspended on magnetic bearing/actuators (MBA's) strategically located about the
rim. Fine pointing is achieved by "gimballing' the plate/rim within the MBA gaps.
Control about the experiment line-of-sight is obtained through the use of a non-
contacting rim drive and positioning torquer. All sensors used to close the servo
loops on the vernier system are noncontacting elements. Therefore, the experiment
is a free-flyer constrained only by the magnetic forces generated by the control
loops.

The configuration of the ASPS is shown in Fig. 7-1. The payload/plate/rim
combination is mounted on a set of coarse gimbals; an elevation and a lateral
coarse gimbal, which provide the slewing and coarse pointing capability of the
system. The pointing system concept is unique in that the vernier and coarse
pointing subsystem are separate entities. This approach allows for sub-arcsecond
pointing of the payload at any coarse gimbal position.

The three functions provided by the ASPS are: (1) pointing the payload,

(2) centering the payload in the magnetic actuator assembly, and (3) tracking

the payload mcunting plate and shuttle motions by the coarse gimbals. Rate and
position errors sensed by gyros and celestial sensors located on the payload are
processed by a controller which subsequently commands appropriate actuator forces
to point the payload. Proximeter sensors associated with the actuator clusters

detect the payload translation errors which are subsequently processed by the
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controller and used to ascertain the appropriate centering forces.

Figure 7-2 shows the payload and its mounting surface which is controlled
by the magnetic actuator assembly (MAA). The cables shown are for the purpose
of connecting electric power from the shuttle to the payload and the MAA on the

pallet.

7.2 The Planar Model of the ASPS [2]

In this section the equations of motion of a simplified planar model of the
ASPS are derived,

The small=-angle, small=displacement model shown in Fig. 7-3 is planar with
four degrees of freedom and is composed of a mount, a gimbal assembly (elevation),
a pallet with magnetic actuators, and a payload, The pallet has one rotational
degree of freedom relative to the mount, and the payload has two translational
and one rotational degrees of freedom relative to the pallet,

Let the four degrees of freedom be

¢l = attitude degree of freedom of the pallet relative to the mount

¢2 = attitude degree of freedom of the payload relative to the pallet

%, = translation degree of freedom of the payload relative to the pallet

z = translation degree of freedom of the payload relative to the pallet

|
The following coordinates are defined:
(xo,zo) = inertial axes

(xc,zﬁ) = inertial axes rotated through an angle of Iy relative to the

(xo,zo) axes, (¢M is defined as the gimb: angle).

(xm,zm) axes fixed at the pallet center of gravity (CG)
(x',zl) = static axes of the payload

(xi,zi) = axes fixed at the payload center of gravity (CG)

(xj,zj) axes fixed at the center of the base of the payload.

L
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The following system parameters are defined:
M, = mass of the payload = 600 Kg
M = mass of the pallet = 82 Kg
J = inertia of the pallet about its mass center = 3.1 Kg-m2
J, = inertia of the payload about its mass center = 503 Kg-m2
L = radius of the payload = 0.406 m
L_ = distance from the gimbal to the pallet CG = 0.2064 m
L, = distance from the pallet center to the payload CG = 1.486 m
r = distance from the gimbal assembly to the pallet center = 0.47 m
g ® distance from the gimbal assembly to the payload CG = 1.956 m
Py * distance from the mount base to the gimbal assembly = 0.75 m
Since the payload is suspended with respect to the pallet, there are many
ways of fixing its coordinates for the motion of rotation. 1In other words, the
angle ¢2 can be defined in a number of ways. Figure 7-4 illustrates the small-
angle votation of the pallet and the payload with ¥y measured as the angle between
the coordinate axes of (xl.zl) and (‘j'zj)' This configuration is defined as
Model 1 of the ASPS. Figure 7-5 illustrates the model of the ASPS with ¢2
measured at the CG of the payload; i.e., between the axes of (xl,zl) and (xi,zi).
The following coordinate transformations are identified:

Transformation from the static pallet axes to the mount axes:

cosy =sing¢
T = 2 : (7-1)
sincpH cos¢M

Transformation from the dynamic pallet axes to the static pallet axis:

'cos¢| -sing, I -¢"
TI = = (7-2)
sin¢| cos@I ¢| |
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Transformation from the dynamic pasload axes to the dynamic pallet axes:

“cosd -sind, 0 -0,
T, - 2 2. . (7-3)
bi"¢2 cos¢2 ¢2 |

The force vectors applied to the payload by the magnetic actuator assembly

are defined as:

-
Fi - 3 I magnetic force applied at the positive X displacement (7-4)
f
=
f|‘
Fp = = magnetic force applied at the negative x . displacement (7-5)
fZJ

The forces Fl and F2 are illustrated as shown in Fig. 7-5.
The torque applied by the gimbal assembly is designated as Tc' as shown in
Fig. 7-5.
The following vector distances are defined for the pallet and the payload.
Rl = vector distance from the gimbal assembly to the payload point of
application of Fl
R2 = vector distance from the gimbal assembly to the payload point of
application of F2
R3 = vector distance from the gimbal assembly to the pallet point of
application of Fl
Rﬁ = vector distance from the gimbal assembly to the pallet point of
application of Fz.

Equations of Motion of Model |

Using the degrees of freedom defined in the preceding sections, the kinetic

energy of the system in Fig. 7-4 is

TaKE =SR'HE& +3'N
2 mmm 24

¥ L {‘2 l— 3 1 2 -
iRi + 2901+ (0 + 9)) (7-6)

where the primes denote the transpose of a matrix, and



l’-L
. a .
R = b (7-7)
m I_ 0 I
. ) "l |
R, = + b, + ¢ (7-8)
i . 2 |
Z' : 0 3 0 _l

Substitution of Eqs. (7-7) and (7-8) into Eq. (7-6) gives

2 " F.-xg

i , S (VR TP i SN T I R S DT R A
T = K.E. M L + M,z +§+\‘(u| e Lb'pz} szp|+2Jl(¢|+¢-2J

(7-9)

Let the spring force applied to the system payload due to the cable be

designated as
[f (x,)
sx |

$
\;. fSZl{.)i

and the spring torque applied to the payload due to the cable be Ts(¢2). The

(7-10)

spring torque applied to the pallet duc to the cable is denoted as Tp(¢|).

The relation between the force F and the potential of the system, U, is

F=-W ("=11)

Thus, Us=uy, - If-d; (7-12)

where U0 = constant.

The potential energy of Model | is

¢2 Z) )
U=y, - {(fl - f")xl + (f2 + F3)z' + Jo Ts(-p)dq: + Jo fsz(z)dz + Jo fsx(x)dx
+(f-f)w+rplT()d+f¢'T()d (7-13)
3 2 '-'o'z 0 c P ‘I' 0 p ‘:’ ‘b 7 3
The Lagrangian is defined as
L =KE. -U (7-14)

Then from Eqs. (7-9) and (7-13), we get AL PAGIs 15
ORIGIN ALITY
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L= ln

2 n

2
+ (f' - fk)“l + (F, ¢ Fgrz) ¢ [o Ts(¢)d¢ + Jo

. . . 2
(xl = Lb¢z)

| .
+ 2Ji(¢,l * 9,
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0)2

X

|
fsz(z)dz + I fo (%) dx

0

¢ ¢
R R ' . i
+ (f fo)lb, + o T (e + . Tp(¢)d¢ Ug (7-15)
The Lagrange equation of motion is
id --Q{Qv- .0 I = 1,2,3,4 (7-16)
-:xi dt mi
where X) = Xy, Xy ® z'. x3 = @I and X, = &7-
For i = |, we have
ok A
*‘I I E fk £ fsx(xl) (7-17)

Thus,

a4 . . s
2% (X = by = Lty

-.'K|

For i = 2, we have

Then,

3 d (3 “

Jf% ) JT{SIT] = cHpxy  HnD) ¢ b APy =ty 2 A ixy) =0
(7-18)

dk _ .

‘TET - V9 + f3 + fsz(zl)

Y S .

7 Tl

|
ok . 43 1 . u3 3 N
iz, dt[SE]J Mz, + (Fy ¢ f) +f (2)) =0 (7-19)

For i = 3, we have

ad

)

1£L = wl H (- rpX) * rzl

1ﬁ| At az

= 1(0)) + T (6))

Xy #rgby +r b,

) + 4 pl * 1| + 4
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ad -
I*T'J - Tc(¢|) + Tp(@l. LIS

2 2yy 3 = .
(Jm U ML "l'b)“l (J‘ + HiLbrbH2 0 (7-20)

For | = k, we have

J‘\ ,

"2 (r - fz)L + Ts(*z)

aé = . i
532 Hlbe +r L Hipl + M, Lb®2 I 1 Jiyz

;li d d e
. » ,_(___} - rs(@z) + (f3 - fz)L ML
- (MiLbrb + Ji)$| - (NiLi + Jl)-';'2 =0 (7-21)

The Lagrange equations in Eqs. (7-18), (7-19), (7-20) and (7-21) are written

in matrix form as follows:

. i . ST . . .
Hi 0 H‘rb MiLb X fl fh+fsx(x')
0 M, 0 0 z, ] f2+f3+fsx(z’) i)
2 2 2
Hrg O S LW L L] 9 T (947, (4))
2 "
f"lLb 0 LT JiM L } “¢2J ( fz)L+TS(®2{J
Equations of Motion of Model 2
For the ASPS system Model 2, the kinetic energy of the system is still
given by Eq. (7-6), and hm is as defined i Eq. (7-7), except that
. i b
Ri - 2 + lr'l (7'23)
Z, 0
Substitution of Eqs. (7-7) and (7-23) into Eq. (7-6) gives
= Sy L o B M BT .2
e 2 A HE AR L HCE RN AR (NN {7-2%)

The potential energy of the Model 2 is S
ORIGINAL PAGE
OF POOR QUALITY
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: xl z' ‘3’2
U=uy = ((f, = f)x + {0 fo (x)dx + (f, + f}”i + Jo fo (2)dz + Io T (9)de
o [P 5 corin o T2 vothren s 15 e Hdbbe 00y = T0H) (7-25)
Jo ¢© ¥ JO p ' 3 i | b u*2
The Lagrangian & is given by
L8 L Y T D TP
L= KE. - U=3ML ¢ +M2Z + i L T L LR R T (9, + 9,
) o
¢+ (f, - W%y f (xjdx + (f, ¢ f. )z, + f (z)dz
| sx 2 il
0 0
. [ T (4)do + T ($)dp + i T (¢)dd + ((F, = )L
0 i WL bl T y 3
+ (f) - f“)Lbl@Z - U, (7-26,

The Lagrange equation of motion is given by Eq. (7-16).
Following the same procedure as for Model 1, the Lagrange equations of

Model 2 are derived by use of Eqs. (7-16) =nu (7-26), and the result is

M; 0 o, o [ %, [ ff (%)) 8
0 M; 0 0 El g ftfatf,, (z))
Miry 0 J 44 ‘”mLZ*"iri i $l Tc(¢l)+rp(¢!
o 0 J; 5 _«'152“ (L =)L eT (6))
(7-27)
In the analysis conducted in the ensuing sections the equations of motions

of Mocdel 2 will be used. One reason for this selection is that the mass matyix

of Eg. (7-27) is simpler than that of Model | in Eq. (7-22).

Another reason for
using Model 2 is that the model uses the center of gravity of the payload as
the reference point of rotation, which is more logical.

Substitution of the system parameters into Eq. (7-27), we have
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- - e T
600 0 1173.6 o || X fofre s, (x))
0 600 0 0 z, - Forfatf ,(2)
-1173.6 0 2805.15 503 || §, T ()47 (9))
0 0 503 503 || 9, | (Fymfpla(fy=F ) LT (0))

(7-28)

7.3 Control of the ZI Dynamics of the Payload

Equation (7-28) indicates that the z, dynamics of the ASPS are not coupled

to the other three degrees of freedom. The z, dynamics are described by

niEI -f, + f3 + fsz(zl) (7-29)

The magnetic actuator forces fz + f3 are controlled by feeding back the

variables z, and 2z The control equation is

e
fy + g = Kyzy - K2y (7-30)
where Kp = 37.861 N/m and Kr = 211.01 N/m/sec.

Substitution of Eq. (7-30) into Eq. (7-29), we have

Mi"' = -sz' - Kr_zl + fsz(z|) (7-31)

Figure 7-6 shows the state diagram of the z, dynamics of the ASPS with the

|
continuous-data position-plus-rate controller. The nutation st(z') in the
state diagram represents the functional relation of the wire cable which is
attached to tne center of the payload mounting surface.

If the wire cable is modelling by a linear spring, st(zl) is simply a

constant, -KS (N/m); that is,
fsz(z|) - -Ksz' (7-32)

A nonlinear spring characteristic for st(zl) is shown in Fig. 7-7.

However, since the mass of the payload is 600 Kg, and the spring constant is

13*
ouuersl £y
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Figure 7-6. State diagram of the z, dynamics
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only 0.35 N/m, the effect of the wire cable on the payload dynamics is not
going to be substantial,

The characteristic equation of the continuous-data ASPS z dynamic system

with the linear wire cable spring characteristic is

2 | 2 L
Mi‘ + Kra + Kp + K5 0 (7-33)
or

600s% + 211.01s + 38.211 = 0 (7-34)
The damping ratio of the system is

L = 0.6968 (7-35)
and the undamped natural frequency is

@ - 0.2524 rad/sec (7-36)

Analysis of the Digital ASPS z Dynamics

When the z, dynamics of the ASPS are controlled by a digital position=-plus-

rate controller, the dynamic equation is

Mi5| + Kz = f(t) + f3(t) (7-37)
where
fz(t) + f3(t) = fz(kT) + f3(kT) kT < t < (k+1)T (7-38)

Then the control equation is

fo(kT) + fo(ke) = -szi(kT) - Kréi(kT) (7-39)

Figure 7-8 shows the block diagram of the linear digital ASPS payload (zI dynamics) .
Since all the system parameters are given, except the sampling period T, we
shall study the maximum value of T for asymptotic stability.

The characteristic equation of the digital system in Fig. 7-8 is

| -3 Krlsz K /s3
3(2) & 1 ¢ At = 2 ')} z + —PK =0 (7-40)
| 1 + . 4 S-Z ] + i 3 5‘2
M. Mi

ORIGINAL PAGE 13
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The z-transforms in the last equation arc evaluated as follows:

e - - (?"‘I)
a 2 ks 2 S

§ + - 2 = 2zcos e T+ 1

| i i

Rl F =+ Tl g z(z - cos/%ﬁiﬁi T) oS
b 2 Ks Ks Al 22 - 2zcos|]K /M, T + |

s(s” + ﬁ") s i

i

Substitution of the last two equations into Eq. (7-40) and simplifying, we have

2 Ky K. Ky K, Ky K, ks K K
z + WK sin = T = Ko cos| &= T+ " 2cos o iz * )+ K- " R cos|a= : 5
i's i s i 5 i s S i

= K
-J;T,':KT sin F?T =0 (7-43)

Substituting the system parameters into the last equation, yielding,

130

z2 + (14.55975in0.02415T = 110.1688c0s0.02415T + 108.1688)2z + 1 - 14,.5597sin0.02415T

-108.1688co0s0.02415T + 108.1688 = 0 (7-44)

The roots of the last equation as a function of T are tabulated below and the root

locus diagram with T as a variable parameter is shown in Fig. 7-9. The critical

value of T for asymptotic stability is approximately 5.7 sec.

Sampling period

T (sec) Characteristic Equation Roots
0.1 2* - ).962 + 0.965 = 0 0.98 + j0.069
0.5 2% - 1.8162 + 0.832 = 0 0.908 + j0.086k
1.0 2% - 1.6163z + 0.680 = 0 0.808 + j0.164
2.0 2% - 1.1686z + 0.4232 = 0 0.584 + j0.286
3.0 22 - 0.657z + 0.2298 = 0 0.328 + j0.349
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4.0 22 - 0.0821z + 0.1 = 0 0.041 + j 0.3135
5.0 2% + 0,556z + 0.0338 = 0 -0.4865, -0.0695
5.7 2% + 1,04z + 0.02533 = 0 -1.01, -0.025
6.0 22 +1.2572 + 003124 = 0 -1.23, -0.0254

The time responses of the digital system in Fig. 7-8 for various sampling
periods are shown in Fig. 7-10. The initial value of zl(t) is chosen to be 0,002
m, since the static bearing gap of Z is only 0.0076 m, 50 that tihe maximum
constraints on the magnitude of 2z, are +0.0038 m. The time responses in Fig. 7-10
substantiates the root locus findings; when T = 6 sec, the closed-ioop system
is unstable. The time responses are quite good for T less than or equal to 3
seconds.

Effects of Quantization

The block diagram of the digital ASPS payload z dynamics with the quantization
effect is shown in Fig. 7-11. The input-output characteristics of the quantizer
are illustrated in Fig. 7-12. The quantization level is denoted by h in meter.
The effects of quantization can be classified into threec catagories: (1)
stable system with steady-state error, (2) unstable system with sustained oscilla-
tion, and (3) unstable system with unbounded responses. The last case is possible
since no saturation is assumed in the system model.
The steady-state error due to quatization can be determined by using the
least-upper bound method [3] and the condition of sustained oscillations is
found by use of the discrete describing function.
The ''characteristic equation' of the system shown in Fig. 7-11 is written
g % ) | K+ K /s
A(z) = 1 + Q(2)() - 2 )bM-Szl RKs -2
| +ﬁ.i.5

=0 (7-45)

where Q(z) denotes the discrete describing function of the quantizer.

_— . —a— - ——— . e em—— o wa e e —— e a—
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Figqure 7-11. Block diagram of the digital ASPS payload zl dynamics
with quantization.
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The z-transform of the last equation is evaluated using the results in Eqs. (7-41)

and (7-42). Equation (7-45) becomes

Alz) = | + Q(I)G (:) =0 (7-46)

- g (/—shf“T-&o:/-':T+-—E)z -f-L slnFT -—Ecoz:fi—-‘-TO»
F |

(z) -

(7-47)
z2° = 2zcos ﬁ? T+

For Kp = 37.861, Kr = 21).0}, "i = 600, and Ks = 0.35, the last equation is

simplified to

(z) . 14.55975in0.024157-108.168Bc0os0.02415T+108.1688)z ~ 14.55975in0.02415T
2% - 22c080.02415T + |

(7-48)
-108.1688cos0.02415T + 108.1688

Figure 7=13 shows the plots of ch(z) for various periods of sustained
oscillations T. = NT, N = 2,3,4,... . The sampling period T varies along the
curves. The square block in the figure which is centered at =] represents the
bounds on the critical regions of =1/Q(2z) [4] . Theoretically, the intersects
between the critical regions of =1/Q(z) and Geq(z) represent conditions of
self-sustained oscillations. It is clear from Fig. 7-13 that the system should
be free from sustained oscillations for all sampling periods less than 2 seconds.

Figure 7-14 illustrates the Geq(z) plots for K. = 3.5 N/m, 10 times the
nominal value. As po.nted out earlier, since the mass of the payload is so large,
the light spring effect of the wire cable does not materially affect the performance
of the system. Figure 7-15 further illustrates that even with K. =35 N/m, 100
times the nominal value, the characteristics of the system for sampling periods
less than 2 seconds are not significantly affected.

The least-upper bound error analysis of the quantization effect is performed

by referring to the system block diagram shown in Fiqg. 7-16. The quantizer is

ORIGINAL PAGE 1S
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Figure 7-16. Block diagram of the digital ASPS payload 2

dynamics
for the least=upper bound analysis of quantization elfvct!.
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dynamics with quantization,
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Figure 7-17. Computer program of the simulation of the ASPS payload z
dynamics with quantization.
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replaced by the noise input with an amplitude of +h/2.
The z-transform of the displacement Z due to the noise input is

(1 ;

-z ) | z
Z)(2) = =771) b[ﬂis5(l + K sTE/M) AL (7-49)

where A(z) is as given in Eq. (7-40).

In EL]- (7'“9).
-1, ] = |
(1 -2z ') - = (1 -2")
B{Mis3(l + KS:. 2/"i)] z’Mis(sz 4 KS,’HF)]
) (z+ 1) - cos}KS/Hi T) ks
Kb z2 - chos/Ks/Hi T+ 1
Thus,

| h z
iz + N - cos’KS/Mi T)(tg)(z =1
Z,(z) = .
| 2 ! R " > R 5 5
2 + ETE_ sin ﬁ% T = KR cos| = T+ KE = 2cos{g= T]z ¥ 1+ EE
i's i 5 i s i s

(7-51)
L BT
- K cos W T - ;TR& sinle= :
s i is i
The final steady-state value of zl(kT) is given by
1im z](kT) = lim (1 - z-')
- 2=|
K
2 5 h h
EZ (1 - cos Mi T)(+ 2) *3
= H K "X +x (7-52)
" i Ty My 5P
z2i1 + KS)(I cos M; T)

This result shows that the least-upper bound on the steady-state value of zl(kT)
due to quantization is inversely proportional to Kb and Kp.

For the given values of Ks and Kp, we have
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h

+-r-
: -2
1?: zl(kT) = 8207 " + 0.013085237h (7-53)

Thus, for a gquantization level of Z‘k. the final error in z, is +0,000817827 m,

whereas it is +0.000051114 m for a quantization level of 2.8.

7.4 Computer Simulation of the ASPS Payload 2 Dynamics with Quantization

In this section the ) dynamics of the ASPS payload are simulated to study
the effects of quantization. The computer program is given in Fig. 7-17.

Figure 7-18 illustrates the time responses of zl(t) of the ASPS payload with
and without quantization, for the sampling period of T = | second. The initial
value of zl(t) was chosen to be 0.002 m. As predicted by the discrete describing
function analysis, the system does not exhibit any sustained oscillations when
T =1 sec. However, the nonzero quantization levels did produce steady-state
errors in zl(t). The computer simulated results and the results obtained by
the least=-upper bound method are tabuiated below for comparison. It is expected
that the errors predicted by the least-upper bound method will be greater, since
it is a worst-case study.

Sampling Period T = | sec

Quantization level h (m) 51(w) least-upper bound (m) El(w) simulation (m)
2™ + 0.0008178 ~0.000kk44
29 + 0.000051114 0.000036

Figure 7-13 also shows that with the quantization level of 2-8 (8 bits), the
time response of 7l(t) is very close to that of zl(t) without quantization, so
that a larger word length seems unnecessary unless a smaller steady-state error
is required.

Figure 7-19 illustrates the time responses of zl(t) for T = 2 sec. For

h = Zﬁh. the error is =0.0003 at t = 50 sec and ~till increasing. For h = 2-8,
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the response actually exhibited a sustained oscillation with a peak-to-peak
amplitude of 0,000066 m. As shown in Fig. 7-13, when T = 2 sec, the system is
marginal in generating sustained osci'lations. It should be noted that the
digital computer is not the most suitable for simulating digital systems with
quantizers, since the computer itself is a digital system with its own quantization
levels. However, the results obtained here are conclusive enough to indicate
the quantization effects in the ASPS payload, and are useful in the selection of
the sampling period and the quantization level.

For sampling periods greater than 2 seconds, the computer simulation results

showed that sustained oscillations always existed.
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