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ABSTRACT

A general mathematical model for the prediction of performance of a

fluidized bed coal combustor (FBC) is developed.	 The basic elements of the model

consists of (a) hydrodynamics of gas and solids in the combustor; (b)

description of gas and solids contacting pattern; Cc) kinetics of combustion

rand (d)	 absorption of SO
2
 by limestone in the bed.. 	 The model is capable of

calculating the combustion efficiency, axial bed temperature_ profile, carbon

hold-up in the bed, oxygen and SO 2
 concentrations in the bubble and emulsion °)

phases, sulfur retention efficiency and particulate carry over by elutriationa

The effect of bed geometry, excess air, location of heat transfer coils in 3

the bed, calcium to sulfur ratio in the feeds, etc. is examined.

The calculated results are compared with experimental data reported

by the National Coal Board, England.	 Agreement between the calculated results

and the observed data are satisfactory in most cases. 	 Recommendations to
a

enhance the accuracy of prediction of the model are suggested.
a
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Section I

INTRODUCTION

Combustion of coal in a fluidized bed combustor (FBC) takes

place in a bed ,containing coal, clear, ash and SO 2 acceptor (limestone
r	 .

or dolomite) and operates at to relatively low temperature (800-900%).

IBC appears to he the mosi_ attractive' wiry among the alternative

schemes of direct coal combustion to meet near term energy needs or

r
the nation.	 'I •hr high heat	 transfer coefficient in fluidized bed

enables us to have smaller boilex volumes 
and 

less heat transfer

areas, per required comlm ,,t iun	 load than convc, ntional	 l-)ulverized

coal	 burning boilers. 	 'Hic	 low coal char hold up	 in the bed	 (1-4 wt.o

l
in carbon)	 and tlio I1resence of solid particles which are 	 inert from

pyrolysis or conibu•.1 ion prevents the agglOMCration, and caking of
_	 1

coal	 as well as	 t1w smoke generation.
*	 g

As hav(• huvii	 reviewed in several 	 current	 reports )	 a large

amount of tin l o	 from various pilot	 FK s	 have hccomc available concerning

the mean vex umetric heat release rates, heat transfer coefficients,

efficiencies oF'carbon combustion and sulfur diohidc capture. 	 However,

since,'thcs-e experimental tests have.	 concentrated on	 the	 feasibility-	 {

evaluation of FBC and the ,collection _of practical	 "know-bows",	 the

theoretical	 examination of these data	 is far behind	 ifiv experimental'
r

work.''
r	 i

', )	 "National	 Fluidized Bed Combustion Problem",	 Vol.	 II I	 Lind	 IV,	 the	 t
MITRE Corp. '(1974), 	 and Pror..	 of the Ath Internat ionA	 Conf.	 Mi
Fluidi Led	 Bed Combustion,	 Mclane, Vn	 (1975).''

f '1
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A great deal of work has been done in Great Britian on study of

the performance of FBC not only experimentally but also theoreticall..y.

However, only ittle information has been published. For sulfury	 P

dioxide retention by limestone in a fluidized bed combustion Bothell,

Gi ll and Morgan (1973) presented a theoretical model. llorio

3
and Wen (1975a) also formulated a. model for the removal of sulfur

dioxide by limestone from a FBC. This model considers the hydro -

dynamics of the fluidizing gas based on the Bubble Assemblage Model

(Mori and Wen"(1975b1.) and treats the variation in limestone reactivity

by the population balance technique. Recently as a part of this

project florio and lien (1976) developed a combustion model to analyze

the effect of elutriat.ion on the coal combustion efficiency.- In
3

addition the effect of axial solid mixing on the temperature profile

was also ccxilmined to explain the temperature nonuniformity and the
j

formation > C hot spot observed by 'Ruth -( 1975) i n the pressu,r i zed deep

fluidized hC'd;

In the 'related field of coal combustion, the combustion of carbon 	 `3

under oxygen lean' condition is antaiy-'L•d by l,evenspiel, Kunii rnd

Fitzgerald (1968). They emphasized tlic important role of the prosencc

of particles within the bubble on the combustion ratc. however, this

-	 finding seems to be for the oxygen Ir.in, cased where Inrbbles are

surrounded by carbon particles.	 In l , li(' on the other- hand, bubbles

are surrounded mostly by limestone uncl excess oxygen is present in the

emulsion phase. Despite the devclopmc•rr3 of fluidized Iced colirbustol*s,

there are still marry unsolved basic irlohlemS. Sonic c)t ` those` p rohlcrn

were rev,i , , iwd h, ^ hori o and Wen (1?175h 1 . Many Ihydrodyrrrrn i c co pier La t i rnis

I
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are not applicable to the range of operation and geometry of FBC.

For instance, the bubble size distribution affects the performance

of a fluidized bed reactor significantly but the data available
1

are mostly for the case of a non-tapered column without the presence

of internals. A general bubble size correlation without presence

of internals was given by Mori and Wen (197Sa). Recently Rowe (1976)'

presented a correlation of a different type. However, the behavior

of bubbles is likely to change by the presence of internal heat

exchange tubes or by the tapering of the bed wall. - The knowledge

a
of the bubble behavior for large particle size at very high gas

velocity is also uncertain.'

The complexity of coal and limestone kinetics is another

difficulty of the FBC model development. The devolatilization

of coal particles, the effects of temperature and ambient` gas

composition on the calcination product from limestone and the
3

mechanism of sulfur dioxide-lime reaction are very complicated.

The critical problem is whether the reaction kinetic models

formulated can be simplified so that they can be incorporated into

the hydrodynamic model, of FBC and still be accurate enough to describe
r	 -I

actual process phenomena.

The objective of this report is to develop a general model of

a. Fluidized Bed Combustor which can provide a complete simulation

of the FBC operation minimizing the use of adjustable parameters. The

model must be checked by the experimental data to verify the accuracy.

In addition, the study should provide information regarding the areas

of experimental' or theoretical research needed to improve' the under-

standing of the phenomena and thus the model performance of a FBC.





Section 1I

ASSESSMENT OF THE BASIC FACTORS IN hBC MODELING

The following three major aspects of the general modeling of

i Fluidized Bed Combustors are examined in this section, r

1.,	 Hydrodynamics for gas and solids.

I^
2.	 Description of gas and solids contacting process.

3.	 Kinetics for combustion and limestone - SO 2 reaction.

1.	 Hydrodynamics of gas and solids in FBC

1-1.	 Bubble Size,

Bubble size is one of the most critical parameters in Fluidized

Bed Reactor Modeling affecting the bubble rising velocity and gas

exchange between bubble, phase and emulsion phase. 	 The 'previous

measurements are summarized	 in Table 1.	 Correlations for- the axial

distribution of bubble sizepreviously proposed by many investigcjiors
a

are listed in Table'2.

-	 Mori and Wen	 (1975a)	 developed a geiieira1_ correlatiorn for th y '
s

r

bubble size distribution which can takeinto consideration the cI,"(.,cts,
a

of distributor design and tower diameter.	 Tbu correlation	 i:= gi vc•rr

i

by

DBm	
1113

l

D	 D	 = e^Yp	 (-0.3 Z/Dt )	 (2-1)

Bm -	 Bo

where the maximum bubble diameter D BnI and	 initi,, il	 bubble diamctt•r' Irfio

are given by the 'Following equations:

ORIGINAL pAG IS
OF POOR QUALITY

y



:AIBL , CO' :)I'i 1ONS FOR THE BUBBLE
DIA	 ,E:: r.	 FLUIDIZE- BED

B:	 Bubble cap; T: tuyere; P e :	 perforated plate; Po :	 porous 'plate or screon

No. of holes"

in the
Inv°c.sti gat ors D t, cm Solid particles d

P, cm
umf, cm^s u /'o `^nf nistributox

'^ D

1tiorther(1973) 20 Quartz sand 0.0053 1.8 5 Po
100

C iii ba(_973) 20 Crushed silica 0.0089 0.: ' 1039 P
0.0210 2. S5 2_8,

e, 241

Ge1dart.(1971) 30.8 Sand 0.0128 1.2 2.6-7.7 Pe
'
3100

Rowe (H,H, 30 X 20* Alumina 0.021 2.54 1.25-2.5
30 X 30*'' Carbon 0.0296 8.0 1.3_1.7

Quartz 0.013S 2.75 2.2-6.6 Po
30"X 20* Ballotini -0.0325 8.0 1.6-2.4

Glass powder 0.0268 5.5 1.7-.2.7
G Whi`:.ehcad(1967) 61 X 61* 1.8--6.9 4

61 X 61* Silica sand 0.015 2.S 2.5-6.6 T 16
122 X 122* 3.2-6.2 64 T
122 X 122* 2-.1-6.3 16

1.trni i (1967) 20 M. S. cat. 0.015 2.0 9.s Pe 7Q
a

40 1.5-25 Pe
'

314	 v

Yasui(1938) Glass beads 0.0242 7.56, 1:5--'	 S

10.2 Glass beads 0.0175 4.7 1.5-2.7 Po g

U.O:P:cat. 0.0060 0.418 2_10

Coal 0.0450 19.4 1.S-1.75

Toei,(196S) 10 Y 10*	 _Glass beads 0.0137 2.2S 1.5-4.0 Po
Kobayashi 10.0 Crushed silica 0.0210 2.55 2-9.7 Pei 1850

A;i+x(1971) 15.0 Sand 0.016 2.4 3.1-5.2 Pe, 37
Tomita(1971) _ 21.4 1S4

! 37,8 Sand 0.0202 4:0 4.25 Pei 575
I' 59.9 1450

Lai ttiglarten(1960) 7.'6 Glass beads 0.0074 0.727 2-54 Po
P.(' X59) 0.0086 0.63 4-10

10.0 Conductive coke 0.0156 1.83 1.5-6
0.0344 6.8 1.5	 3 Po

Bc7;.on(196S) 50 Sand 0.0071 1.0** 2 15 Pei _.78

Fry c:r(1974 22.9 Sand 0.0071 1.70 1.47 B 61

*Diameter of a cylinder having same crass-sectional area of the actual red was used for calculation.
**Gas floe rate through the dense phase reported by Botton (1968),
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TABLE 2, SUMMARY OF CORRELATIONS FOR BUBBLE
DIAMETER IN FLUIDIZED BEDS

Yasui et al. (1958)	 DB = 1.6ppdp (u—° — 1 )
 0.63	 Z

umf

Kato and Wen (1969)	 D 	 1 4p d ( u o ) Z + D' B
B	 p p u	

o
mf	 r

Park et al. (1969)	 DB = 33.3 dpl. 5 ( u o 	1 ) 0.77 Z
	 1

umf

u	 0.33(0.032Z)0.54
Whitehead et al. (1961)	 D	

o
B = 9.76 (	 )

u	 ,

	

mf	
4,

Rowe et al. (1972)	 DB = -A + BZ + C (uo

umf

+ DZ( uo) + E ( uo )2

	umf 	
umf

Geldart (1971)	 DB = D' Bo + 0.027 (uo	 umf)0.94 Z	 l

4
Chiba et al. (1973) 	 DB = DBo" 

127/6 
-''1) (Z - ZBo)/

D"	 }+ 1 2/ 7 for Z< Z a
- Bo	 k

Mori and Wen (1975)	
Dmax DB

e 
0.3Z/D a

Dmax DBo

Rowe (1976)	 D = (u - u )0.5 ( Z + Z ) 3/4 / gl/4 

**

B	 o	 mf	 o
3

i

*Numerical method is used to calculate D for Z > ZI	 B	 k
O

DBo' _ (6G/,ff) 
r4/g0.2 

and DBo ^^ _ (6G/TrkB) 0.4/g0.2
'	 s

where A, B, C, D, E and k B are constants determined by the properties	 s
of the solid particles; Z Bo is the height of the jet above the distributor,
(cm); and Zk is the height from the bottom of the bed where the bubble
radius becomes equal to the pitch of the holes in the distributor, (cm).
G denotes the volmetric gas flow rate through a nozzle (cm3/sec)

** Zo is a constant characterizing a distributor.

ORIGINAL PAGE IS
OF POOR QUALITY
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DBm = 
0.652	 [ At 	(u o - umf)] 0.4	 (2-2)

}	
(2-3)DBo - 

0.347 {At (uo - um£)/nd 0,4

Equation (2-1) was derived empirically but it can be obtained as
r,

a solution ofthe following differential equation for the case of a

-	 non-tapered fluidized bed,

dDB
	 0.3	

(D	 _ D)	 (2-4)
R 	 t	 Bm	 B

I.C. 	
DB = DBo	

at Z = 0	 (2-5)

Equation (2-1) can cover the previous data listed in Table 1 within

50 %	 error.	 However, all of the data used were from fluidized beds

without the presence of bed internals and from beds without tapered

wall.	 No general correlations'&pplicable to beds with tapered; geometry

and with bed internals have been developed. 	 In spite of the fact that

there is no supporting experimental data available,_ Equations (2-4) and

(2-5) are used for the case of tapered beds and the beds with internal

tubes in order to maintain the consistency with Equation (2-1). 	 The

validity of Equation (2-4) should be examined by future experiments_. y

The maximum bubble size D m is a function of the distance from the

distribution when the bed is a tapered one.	 DBm should also be modified

when horizontal cooling tubes are present.	 This work is left for the
_;J,

second phase study.

1-2. 	 Bubble rising velocity

Table 3 shows the previous investigation of the bubble rising

velocity.	 The available correlations are also listed in the table.`

The absolute rising velocity of a bubble is affected not only by the

-
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TABLE 3. SUMMARY OF THE MEASUREMENTS AND CORRELATION FOR
THE RTSING VELOCITY OF A SINGLE BUBBLE

GB = Glass beads
S = Sand
SS = Swede seeds
C = Coke
AC = Alumina Catalyst

Investigators Bed Size Particle size Measuring	 Given
r	 j

cm technique	 Correlation

. Davidson et al* 7.6 GB, d = 150 u Capacitance	 L 0.71	 gDB
(1959) 15.2 X15.2

S dp= 400 u
Probe	 co

p

SS, d=170u
p

1
Harrison F Leung*'
(1962a) 61.0 x 61.0, S	 , _ d = 60-150 Capacitance	 u = 0.64	 gDp

B.S. Mesh probe	
B^ B 

Rowe & 14.0 GB, d = 50 DissectionuB= 0.60	 gDB
Partridge P of the bed
(1962)

Toei et al* 7.6 GB, d = 80-100# X-ray Photo-	 uB = 0.66 gDB
(1966) 10.0 X 10.0 GB, dp= 16-24# graphy and	 co

S dp= 80-120# Capacitance
j S ` dp = 35-48# probe

pvc pdp = 80-100#
1 i

Park et al + 10.0 C
d	

= 344,154, Electro-	 uB = 0. 63 gDB
^

i (1969) P 86 U resistivity	 co

probe

0.64 g1/2Rowe & 29.5 X 14.4 GB d = 300-400 U X-ray Photo-	 uB
Matsuno p graphy 0.521

DB(1971)

Donsi et al 35.0 AC dp= 170-350 F Photography	 uB = 0.545 g
(1972) co

*`= Wall correction factor from Uno and Kinter (19S6) was used in these works.

+	 The relation u^ = u B - (u o - u % was applied to obtain uB
co

ORIGINAL XGB'
r
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bubble size but also by the location and sizes of the surrounding bubbles.

Therefore, the correlation gives only the average value of the rising

velocity.	 The rising velocity is also affected by the presence of
i

internals, but a general theory has not been developed to take the effect

of internals into account. 	 Therefore, in the present model the r

f

following form is adopted:
I.

uB	 uo	
mf + K

B	gDB	 (2-6)
_i

1-3.	 Gas velocity in emulsion phase

`	 The gas velocity in the emulsion phase could become downward at s

high gas velocity depending on the circulation pattern of particles.
I

The possibility of downward flow was pointed out by Kunii, Yoshida and

'	 Hiraki (1967) and was further examined, by Fryer and Potter (1975)
i

j	 However, the 'complete description of the gas flow pattern in emulsion'

j	 phase has not been clearly established as reviewed by Horio_and Wen
I	 I

(1975b)
I i

As long as the gas flow rate in the emulsion phaseis much smaller

than that in the bubble, phase, the calculated conversion may not be

affected very much regardless of the gas flow rage assumed in the

emulsion phase.	 That is the reason why it is assumed in the Bubble

Assemblage Model (Mori and Wen (1975b))that the gas flow rate in the r

emulsion phase is zero. i

Therefore, in the present model the gas flow rate is calculated

based on the two-phase theory to keep a consistency with hydrodynamic

model.	 This assumption can be easily changed simply by putting a

x
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diff'event value for emulsion phase flow rate. However, if negative flow

rate (i.e. downward flow) is assumed, we need to solve the two-point

boundary value problem to obtain the gas concentration profile as shown

by Fryer and Potter (1975):

(	
1-4.	 Solids Mixing

The mixing of solids is caused by the motion of bubbles and their

wakes as shown by the experimental study of Rowe and Partridge (1965).

The effects of bubbling phenomena on solids mixing are classified into
a

two categories, i.e. bulk circulation and local turbulent mixing.	 The
a

bulk circulation rate due to the lifting of particles by bubbles is usually

expressed as	 (Woollard and Potter ( 1968)).,

upward flow rate of particles

u-
	 At fw (1 ` - emf)	 cm3/sec

0	 m
f^

where f	 is the ratio of the particles volume in the wake of the bubble
w

including the accompanied void space lifted upward by the ,bubble to the

volume of the bubble. 	 Since the area available for the downward flow of

solid$ is At { 1 - eB (1 + fw)}, the mean residence time of particles in

the downward flow is {1 - EB (1 + fw)}Lf^ {fw (uo	umf)}'	 The mean cycle

time for circulation 0c is given as the sum of the residence times of

upward and downwardmovements. 3

+	 Oc - L f [ 1/uB + {1 - e B	 (1 + fw) }^{fw (uo - um£) }]	 (2-7)

where uB denotes the average rising velocity of the bubble.

ORIGINA PAGE IS
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The average bubble fraction e B = (Lf Lmf)/Lf is approximated by

j	 E;	 (uo - um f) / uB	
(2-8)

t

UB can be eliminated from Equation (2-7) by substituting Equation (2-8).

Thus, a simple expression for solid cycle time can be obtained as follows:

Cc Lmf /(uo - umf) fw	 (2-9)	
r

Therefore, the cycle time of solid circulation is nearly as rapid

as the passage of the gas (Lf/u o) except for the case of low gas velocity.

Therefore, the assumption of complete mixing is acceptable.

However, for the tapered bed wall or in the presence of the internal

tubes or baffles in the bed the cycle time and the solid mixing intensity

will be reduced. According to Sutherland (1961) the mixing index from

tapered bed is much lower than that from non-tapered bed in the range

I
uo/umf	 1.0-1.3. The packing affects the solid mixing drastically as 	 >

i
reported by Gabor (1966). It can be expected that in a tapered FBC

with many heat exchange tubes, the solid mixing is probably very poor.

However,, the way to estimate the value of f w for the case of a fluidized

j	 bed with internal tubes has not been established and, therefore, fw

remains an adjustable parameter in the present model. Since the exchange

of particles between the wake phase and the emulsion phase is expected
a

to be fast even under the presence of internals, the single phase back

flow cell model is applied to simulate the axial temperature profile.

There is a very close resemblance between the present model and the

dispersion model. The relationship between the model parameters is given

by (see Horio and Wen (1976)).

4

EZ	
(u o - umf) fw AZ	 C2-10

^.	

1,, - s B
	

a
f

where AZ is the height of a complete mixing cell in the backflow cell model.
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1-5.	 Elutriation of Char and Fines

It is assumed that the char size before combustion is the same as the

size of the coal fed in.	 The elutriation rate of fine particles is pro-

portional to the concentration of the fines in the bed and the cross-

sectional area of the bed for elutriation At., therefore,

*	 w
dwe _ At Ic	

W	
*	 dy,	 [g/sec]_	 (2-11)

b
;

where d ive is the elutriation rate of coal/char particles whose diameter

is between y and y + dy, W
c
 and Wb are the weight of char and the weight

i
of total bed materials respectively, ^* dy denotes -the weight fraction

of fine based on the total weight of char whose size is between y and

m	 y + dy.	 K	 is the specific elutriation rate constant.	 The available (

correlations for K	 are listed in Table 4.	 However, most of the

correlations are not applicable for the size range less than 150 microns.

*
.	 Correlations B, C and D give similar values for K 	 in the range greater

than 150 microns, but below this size the rate constants of correlations

C and D decrease with an increase in particle size. 	 Correlation A is

derived in this study based on the experimental data of the saturation

carrying capacity for uniform-sized particles reported by Zenz and Weil

(1958).	 Although these data are not the rate of elutriation of fines,

the order of magnitude of correlation A is not very much different from <a

other correlations in the range d o > 150 microns.	 Comparison of

correlations A and B is shown in Figure 1.i
In the modeling of FBC, the attention is focused on the effect of a

freeboard	 and the presence of bubbles.	 The concentration of fines

decreases ;exponentially along the height above the bed surface and 'reaches

ORIGINAL PAGE IS
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TABLE {E	 Correlations for elutriation rate constant

A. Zenz and Weil (1958) t

1.87 u 2
5.27 x 10 -5 	 (u0 2/g 

d	 Ps 2 ) °	 2	 581.8

gdpps
K*

P u
g °	 1.15

2

u

' 4.97 x 10_3uo2/g dp P S 2 ) °	 2	
581.8

gdpPs

B. Yagi and Aoji-(1955)tt

i K*d

u	 = Fr [0.0015 Ret0,6
	 1.2
+ 0.01 Re t^

C. Wen and Hashinger (1960)

-_ K*	 -5	 0.5	 0.725	 Ps Pg
= 1.52 x 10	 Fr	 Re 

t	 [
Pg(uo

-ut )	 Pg,
]

D. Tanaka and Shinohara	 (1972)
0.15

^*	 P	 Pg
= 0.045, Re t

0.3 Fro 5	 ( p 	 )
P (u o_ut )

i g	 g

The equation is fitted by the present authors.

-{t) The equation is fitted by Leva and Wen (1971)

is	 Fr = (uo- LIt) 2/gdp, Ret	 dp ut Pg/u

I



correlation A
--- correlation B

(cf. Table 4 )

848 °C
-	 ®	 13=3

t
900 °C 1

FBC 1

pressure,	 at m 5 4 `"
coal feed rate,kg /h 170105

excess air, 	 0/0 17 15_
001

u0
N^
E

0)

(

r	 ^

10

15
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the equilibrium value at TDH. Large, Martinie and Bergongnore (1976)

modified the equation by Zenz and Weil (1958) as follows:

F. _. Fib , + Fio exp	 (-ai Z)	 (2-12)

where F. is the fractional entrainment of ith size internal and Z is

height from the bed surface.	 However, the available data are not

sufficient to develop correlations for parameters in Equation (2 -12)

and, therefore, the effect of freeboard is not considered in the present

model.	 -

2,;	Description of Gas and Solid Contacting in FBC

The bubble hydrodynamics, solids mixing and the size distribution
I

of char particles are the major factors in the mathematical formulation_

of the gas-solid contacting process in a FBC.

The Bubble Assemblage Model can be characterized by the following

features:

1.	 Discrete representation for the axial distribution of process

variables, which is convenient for the numerical computation of complex
i

reaction system.	 -

2.	 The effect of bubble sizeon the axial gas and solid mixing is

considered automatically by setting :the-_compartment height equal to the

average bubble diameter at the middle cross section of each compartment.

3.	 Bubble size is a function of the bed diameter and is axially

distributed.	 It is estimated by applying an empirical correlation.

4.	 Bubbles and clouds are both combined into the bubble phase. 	 The

gas interchange coefficient between the bubble phase and the emulsion

phase is a function of the bubble size and distributed axially.

F
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S. The effect of distributor geometry on hydrodynamics is considered

by the formulation of a separate jet region from the bubbling region.

In the jet region, jet height correlation and initial bubble correlation

are used.

6. The gas velocity through the emulsion phase is assumed negligible.
r

The present FBC model also has most of the features of the Bubble

Assemblage Model except items 2 and 6. Since the effect of compartment

size distribution is minor in most of the cases, fixed compartment size

is used to avoid the complexity in temperature iteration. For the

estimation of bubble size Equation (2-6) is applied in the FBC model so

that the change in the cross-sectional area can be automatically taken

into account.

Gas interchange coefficient is estimated by the following correlation

proposed by Kobayashi, Arai and Sunagawa ;(1967) : 	 3

KBE	 ll/DB 	(C.G.S. Unit)	 (2-13)

i
The following correlation by Basov et al. is used to estimate the

vertical jet height:

d	 A
h. =	 p	 {n	

o
(u - u -) }0.35	 (C. G.S. Unit)	 (2-14)

^	 0.0007 + 0.556 dp	 nd	 m}-

However, in the case of FBC many distributors have horizontal nozzles

and the direct application. of Equation (2-14) can result in too large

jet height. Therefore, in the case of horizontal jets Equation (2-14) is

multiplied by an adjusting coefficient.

In regard to the bulk solid mixing, three models are formulated and

tested: (1) complete mixing, (2) single phase backflow cell model,
i

(
I	 (3) two phase backflow cell model. Figure 2 illustrates the single phase

k	 and two phase backflow cell models. Since the solid circulation is usually





very fast in the fluidized bed combustor operation, the simple model based on

the assumption of complete mixing is still useful and practical for rough

estimation.	 In the latter two models the same compartment size as that

of the ,gas phase model is used. r

The axial variation of the size distribution of char causes the l

axial distribution of average particle surface area available for

combustion.	 In addition the change in the size distribution of char

affects the rate of elutriation. 	 The total surface area of char for

combustion can be written as

total surface area	 surface area	 total volume
of char per unit	 _	 per unit volume	 y	 of char per unit
volume of bed	 of char	 volume of bed

The second term of the right hand side of the above equation is
i

dependent on the bulk solids mixing model and can be 'calculated from

material balance.	 However, the first term must be determined by popu-

lation balance for char particles which are shrinking during the course

of combustion.

A general model which takes into consideration the variation in

the size distribution density function is developed in Section 3. j

However, because of the numerical difficulties encountered in solving
2

the equations of this model an alternative model is developed which

considers only the overall size distribution of char. 	 In this simplified

model the axial variation of the total surface area of char per unit
y

volume of bed can still be taken into account by considering the variation

of the last term of Equation (2-15) based on the material balance. j

I
y.
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The different combination of the gas-phase model, the bulk solids

mixing model and the model for the specific surfacearea of char provides

a complete FBC model but of different level of sophistication. Three

models of different complexity are developed in this research. The 	 r

definition of each model can be found in Table S.

3. Kinetics for coal combustion and limestone - SO 2 reaction

3-1. Coal combustion

The thermal decomposition of coal particles is completed almost

instantaneously and produces volatile product and char. The following

equations are recommended by Field et al. (1967) to estimate the

weight fractions of volatile products.

CH4 	0.201 - 0.469 Xvm + 0.241 X
2vm

H2	O.157 - 0.868 Xvm + 1.338 Xvm 	
2-16

(	 )

CO	 0.135 - 0.900 X	 + 1.906 X2	
vm	

vm

CO =`0.423 - 2.653 X	 + 4.845 X2
vm	 vm

H2O	 0.409 - 2.389 Xvm -+ 4.554 Xvm

Tar + Other = -'0.325 + 7.279 X 	 - 12.880 Xv

	

vm	 m

where Xvm_is the weight fraction of proximate volatile matter of coal on
1

dry ash free (daf) basis The composition of 'char produced by rapid heating 	 g

is different for each system aTid for each type of coal but no general

study is available. Therefore, in this work it is simply assumed that

the volatile H and_0 are released and react with 'oxygen 'inslantaneously

while carbon, nitrogen and sulphur remain in the char. The release ra ge of sulphur

is assumed to be proportional to the combustion rate of carbon.
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C
iotal	 i	 Gas Bulk solid Axial variation Temperature Volume Tract- Surface area Reactivity of
r.: Ia'.	 z,,.i^	 e mixing of char size ion of char of char per unit' char	 k^nc

r distribution vol. of char

Level l Not Complete Not considered Uniform Uniform Uniform Uniform
specified* mixing

^_ 1•e	 h^ E,1W* single phase Not considered Axially Axially Uniform Axially
backflow distributed distributed distributed
cell ..odel

^_.^	 l	 _ ? 1',') 3. Two phase Two phase Axially Axially axially Axially
backflow backflow distributed distributed distributed distributed
cell model cell model

3

Ilostogeneous complete mixing model and plug flow model are used in calculation, but two phase
::ocei can be used in place of them.

L;u'able Assemblage Model

^d
a

r
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i

Of course, more realistic bust complicated treatment is possible in-

troducing additional parameters.

I

The combustion rate of one char particle for a given size is estimated by

2

rc	 do kc ^02	 [gmole/sec]	 (2-17)

where kc is the overall rate constant and is giver. by
,.	 1

kc = 1/(1/kcf + 1/kcu)	
(2-18)	 J

where the chemical reaction rate constant kc R is estimated by the

following correlation (Field et al. (1967)):

kcR = (T/1000) exp (17.9 	 35,700/RT)	 (2-19)

The gas film diffusion coefficient, k cf, is estimated assuming the

Sherwood Number is equal to 2. Avedesian and Davidson (1973) confirmed

by their experimental combustion of char in a fluidized bed of 7.6
I

cm in diameter that the Sherwood Number is 'constant (Sh = 1.42) regard-

less the particle size 'which was varied from 0.23 to 2.61 mm. The

i
assumed value, Sh = 2, in this model can be changed to other values

if necessary but the assumption of a constant Sherwood Number seems

reasonable.

3-2. Limestone - S0 2 reaction

The mean residence time of limestone in the bed is long and the

circulation rate of solids is rapid enough to assume that the limestone
_a

is completelymixed. The assumption of complete mixing is acceptable
s

if the temperature distribution is uniform enough so that there is no

dead burning of limestone and no serious effect of temperature history of

A
each particle on the reaction rate. in the present model the average

bed volume is used for calculating the rate of limestone - SO
2
 reaction.

i

^i
1

4.

r
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Section III

GENERAL MODEL FOR FBC

In this section a general model of FBC is derived.	 This model is

described
i

in -the following sequence:

3-1. Reactions

3- 2. Reaction rates

3-3. Overall carbon balance

3-4. Overall sulfur balance

3-5. Overall mass balance for gaseous species

3-6.
I

Gas phase model

3-7. Population balance for SO
2
 absorption

3-8. Population balance for char combustion, segregation and
elutriation

3-9. Heat balance

3-1. Reactions

It is assumed that the calcination of limestone and devolatil:zation

of coal are occurring instantaneously,. 	 The following reactions and their

reaction rates are considered.
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Reaction Rate

Per unit vol.	 Per one
No. Reaction-	 of emulsion	 particle

1 CaO + SO
2
 + 0.5	 OZ 	CaSO4 r1*	 rl

2 CaO + H 
2 
S = CaS + H 2O r2*	 r2

3 C + 0 2 = CO
2

r3*	 r3

4 C + 0.5 0 2 	 CO r4

	

r4

5 C + H 2O = CO + H2
r5*	 r5

6 S(char) + 02 = SOZ r6*	 r6

7 S(char) + H2 = H 2 r7	 r7

8 N2 (char) + anox x' 02 r8*	 r8
-	

2a	
NO . + (

1 -a	 ) Nnox.	 r,	 nox	 2 3-1
(	 )

Let M
g 
and Ms the vectors of chemical species and at the same time a

the vectors of molecular weights as follows:
j

Mg 	col	 (Mgi)	 _ col	 (MO	
MCO`2' MS0 2 ' MH20' MCO MH2S 	 MH2'

Z'

'	 )NOx	 N2

M	 - col (M)	 -col	 (M	 M 	 M	 MC)s	 si	 Ca0	 CaSO4 	CaS	 C
M	 M^)	 (3-2)
S	

-N)

By using Mg and MEquation (3-1) can be written in one matrix equations

as:

AMg , +BMs =0 (3-3)

ORIGINAL 
PAO ^^

OF POOR ;QT
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where A and B are

9
j=	 1 2 3	 4 5	 6 7 8

0 2 CO2 S02	 H2O CO	 H 
2 

S H2 NOx N2
a

i-(1)j
_0 5

0
0
0

-1	 0
0	 1

0	 0
0	 -1

0
0

p
0

0
0(2)

(3) -1 1 0,	 0 0	 p p p 0

(5)	 - 0 0 0	 -1 1	 0 1 0 0

(6)
_1 0 1	 0 0	 0 0 0 0

(7) 0 0 0	 0 0	 1	 -1 0 0
( 8) -a	 x 	 0r^x

0`	 0 0	
0 0

2anox 1 anox
OOF

_ {alb} (3-4)
b

I
S	 6j= 1 2 3	

4

CaO CaSO 4 C'aS	 C S	 N2

1 0-	 0 0	 0
(2) -1 0 1	 0 0	 0
(3) _,0 0 0	 _1 p	 0

B - (4) 0 0 0 -
ij 3-5

I.	 (S) 0 0 0,	 -1 0	 0
( 6 ) 0 0 0-	 0 -1	 0
(7) 0 0 0	 ,0 -1	 0
(8) 0 0 0	 0 0	 -1

Accordingly' the gas phase concentration vector C is de£ined , as follows:

C _ { C	 `,

1
C	 C	 C2	 3	 4 C, C

	 C
5	 6	 7 C	 C}8	 9 (3-6)

IC0 CCO	 Cso '	 CH O'' CCO' CH S' 
CH2' C

NOx ' CN2
2 2 2	 2 2 ,a

s

i

i

3

7
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3-2. 	 Reaction Rates

The reaction rate (positive for production rate) of i th reaction

is denoted by

*	 of

r	 Sec-CM-5   (emulsion)

Here emulsion refers to the dispersed solids." 	 The voidage is assumed

to be emf.

The formation rate of j th species due to the i th reaction is

given by

-
rgij	 ri a )	 gmol of (M.Q j or Msi) (3-7)	 y

sec-cm	 (emulsion)
r*.. 	 r* b.
sij	 z	 1)

The total formation rate of each species can, therefore, be obtained

as follows:
I a.

g	 i
R*	 = RB _ {Z	 rt bz ) }

r i
where R is defined by

1

The rate of reactions l and 2 can be expressed as

ri = pN2 ri	
(i = 1 and 2) (3-10)

where p NQ denotes the number of limestone (or dolomite) particles per unit

volume of emulsion and the reaction rage for single particle, r1,	 is

supposed to be written by the first order rate equation regarding the

reactant concentrationC3 (S02) or C 6 (H2S) as follows:

r

s

w
s

ORIGINAL PAGE IS
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ri	 -
3

6 — kvl (T,	 f^, dQ)	 C 3 (3-11)

3

rz _ 6Q	 kv2 (T,	 fQ, d Q) C6 (3-12)

where kvl and kv2 are the overall rate constants.

The rate equations for the reactions 3, 4 and 5 are assumed to be in the

following form:

ri =
PNc	 r^	 (i = 3,	 4 and ,5) (3-13)

where PNc denotes the number of char particles per unit volume of emulsion

and the reaction rates for a single char particle, r'	 (i _ 3, 4 and 5) are

defined as

r3 = d 2 k3_(T, dc)	 C l (3-14)	
9

c

r4 = 1T d^ 2 k4	 (T, dc)	 C 1 (3-15)

r5 = ff d 2 ks (T, aC )	 C 4 (3-16)

The rates of reactions 6, 7 and 8 are approximated by
9

r*' = a:	 (r* + r*
3	 4

+ r*)	 (i = 6,	 7 and 8)
5

(3-17)'
i

where the constants, 
ai =	 (i = 6, '7 and 3), are assumed to be

XSf XCfa
6

a
7	

(M	

)S / `( M C	 )
(3-18)

XN f X C f
C,

l
e

G

F

I
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3-3. Overall Carbon _ Balance

Figure 3 illustrates the factors contributing to the overall carbon

balance.

Let ^ denote the overall size distribution density function for char

particles. The function ^ is defined so that

(y) dy = number fraction of char particles whose, dimensionless
diameter ,lies in the region between';y and y + dy.	 (3-20)

f a ^ (y) dy = 1	 (3-21)
0

where y is defined as the ratio of char diameter, d c , to the maximum char

diameter in the feed, dcm' namely

y	 dc/dcm	 (3-22)

An average over the range y = 0-1 for an arbitrary variable A is

defined by	 1

< A > = f l	 (y ) A (y) dy	 (3-23)0

The mean volume of a single char particle in the bed- is then expressed

as follows

(mean volume of a char particle) = 6 dcm v

v - < y 3 '> _ <dc >/dcm

From Equations (3-14),(3-1S) or (3-16) the average reactivity of char 	 g

is written as

(average reactivity of char) _ it dim < y2 ki (T, y)> (i = 3-5)	 (3-24)

3

I s

e
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elutriation rate of char: 	 n
ce

size distribution of char:
e

•

• a

Z oxygen concentrate.nn

• CO2 - CO2.l

Lf '•'''. `'	 .•X	 ' •'• char size distribution,
•_.	 ;	 •	 .,

.^
total -number of char particles, N

c
cooling tubes ..	 ' •,•'	 '• bed temperature, T

//.^^•

LD

...	 0 . CO2 - CO2 0

coal feed rate	 ncf , v	 (1	 ,
^ 	 V -

I	 size distribution of •	 Imo/ •'.,	 M

coal,	 ^f
limestone feed rate, 	 nL

air

withdrawal rate of char, n
cw

withdrawal rate of limestone,	 n 1w - nif

Figure 3•	 Illustration of the population balance around afluidized bed
-combustor. (n:	 number of particles/sec)

3
N
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As to the first term of Equation (3- 26) the following relation can

be written:

3
wcf - 6	 dcm	 ^vf ncf P cf (3-27)

Substituting Equations (3-25) and (3-27) into Equation _(3-26)	 we get

(new^vw + nCe 1^ve) Xc Pchn= 1 - nc f ^'vf pcf Xcf
(3 -28) ,

1

The elutriation term n	 is estimated by using the specificce	 ve 3

elutriation constant K	 as follows (see Appendix V):

nCe I've - 
AtWNc	 < K* y3 > (3-2(VI)

9

b 4

By using Equations (3-28) and (3-29) we obtain the ratio of char particles'

withdrawal rate to feed rate as,

new 	 (1	 n c) ^vf	 XCf p cf (3-30)
n cf	 +- 0 At < K* y3 >	 XC	 pcli

Wb

where 0 denotes the mean residence time of limestone at the steady state,

-	 -
0 -	 N R, / nzf	 Nc/ncw (3-31) l

From the volume balance 0 is estimated, by (see Appendix 1) a,

-	 (1 - emf) Vmf
(3-32)

0

wQ f/P
kf	 +	

(TT/6)	 dcm '^'vw new +	 (n c w cf XAf/P ) ( 1 - Ae)

where the parameter Ae  denotes the ratio of the ash elutriation rate to the a

total ash formation rate. 	 The numerical value of Ae must be evaluated

based on ash elutriation rate constant.	 In this study, however,
Ae
 is

assumed to be 0.5.

I

e

l
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'	 3-4.	 Overall Sulfur Balance

The sulfur balance is derived as follows:

1.	 {total sulfur in wef XSf nc
feed gas and formation rate) MS *	 Fmf	 (YSo 2 	 y 112S, C^

r+

2.	 (total sulfur capture rate by ^'^xf xZCa
adsorbent)

.

MCa
fQ

where	 f	 is the average conversion of adsorbent (limestone or dolomite; 	 in

the bed and is defined as

f z
= f l	 Q (fQ )	 fQ	 dfQ

(3-33)	 u

p0 y
(fQ) is the density function of the distribution of adsorbent conversion

- and has the feature

fl	 (fQ)	 dfQ = 1
a

(3-34)	 ('
0,

In addition,
3

_	

d`

3.	 (total sulfur c;al)ture rate = N	 — > u	 (	 kvl C3	 + kv2 C6)

where'

xv1 C 3 = L	 f,f	 [ C^ f l " k vl
f	 O '

'i,	 df	 J	 dZ 1

p

kv2 C^
	

L	 fbf	
C6 f

l kv,£

0
dfR ] dZ

f	 O_

Defining the sul ft,r retention efficiency by 1
moles SO 2 in flue gas

nS	
=	 l	 -

moles sulfur input

P ^-^r
GIN AL	

,^

QU A^1Fp^pg

k

r
r:



We get the following overall relationships on sulfur retention and

adsorbent conversion;

[Ca] (3-35)
nS =	

[S]	 f 

N Q MCa {	 k	 C3	 +	 kv2	 Cb
r

f	 _ ( 3-36)
Q	

nkf	 p Qf	 XQ, Ca

where [Ca]/[s] is the molar ratio of calcium to sulfur.

If we can assume that the temperature profile is almost uniform in

the FBC Equation (3-36) can be simplified to the form

fQ = N
Q MCa { 

kvl	 (T,	 d Q ) C 3	 + kv2	 (T,	 d l^ ) 
C6

I
/ {nkf P Qf XQCa)	

(3 - 37)

3-5.	 Overall Mass Balance for Gas Phase Species
(I

Theoretical air flow rate required for complete combustion of coal

is given as follows:

F	 _	 (w, . X , /M	 y	 )/A 
2F	 C

_(3-3$)
m,th	 ^	 C,f ,	 02,f -

where

A2	 (XCf/M^)/	 (XCf/MC
)	 + 0.S	

(XHf/MH2 ) +	 (XSf/MS ) (XOf/MO2)]	
(3-39)

The excess air ratio,, EAR, is defined by

EAR = F	 /F	 - 1 (3-40)
mf	 m,th

Neglecting the CH 4 formation, the mole fraction of oxygen at the top

of the bed is obtained as follows:

1

t

f
ty
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yMC 	 02,f A2y	 _	 ^(1
02

+ EAR) y	 _	
{(2 _	

CO

N

02 , f	 xC f
2Mf nc
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Px	 x
]f

OF	 -

+	 (1
+	 (1 -	 H2S ) MSf	

_	 MOf }^
112^	

2

H2	 S	 02
1

/	 [ 1 +EAR +	
Al 

A2 MC y02,f + w kf	 xACa	 +
(

xkMg,1	 (3-41)
l^.	 ..:

xcf	 hmth	 MCag

where )a
_CO formation rate

CO carbon consumption rate

-
amount of H ? formed
amount of I-1	 and H 0 formed

(3-42)	 i

H2 2	 2

_ sulfur release rate in the form of H2S
^a

H2S total sulfur teed rate

Al - (xCf r1 G ECO/2MC )	 +(Xof/MO2 )	 +	 (1 +	 ^1.12)	 (xHf/2MH2)

+	 X	 ^t^
(__hf^MH2O)

(3-43)

i	 The outlet concentration of CO
2'
 CO, H 23 H2O, SO2, H2S and NOX can then

be given as follows:

1
YCO2	 Fm

IV
	 _ XCf	 x9. Ca

I	 NJ 	 (	 1	 N CO )	 n c	 + 1^^9,f	
MCa	

+
XQMg
MMg	 )+	

Rif	 (;0._', i }	
(3-44 )

i'

1 wcf XCf
Y	

=_
CO	 Fm

(	 n+ F	 y	 J
MC	 CO	 c	 mf	 CO,f

(3	 .I5)

i{

1
Y

xH f	
wcfxhf

[wcf
=

H2	 Fni +	 + F	 Y	 + F	 Ybi1l2	 M1120	 mf	 hf	 mf	 H 2
+ F	 Y	 (3-46)f	 mf`	 11.^S	 F

j {Fmf(YI-12S,f + YS0 2 f)	 +
wcfxSf

MS ,	 }	 ^11	 S J CII,
2

1 wcf	 we fX }1 f{f
3,1120	 F in r 	 +	 '	 0	 + Fmf Yhf + Fmf YI1 2 f +	 Fmf	 YI lI) S , F	 (1	 47)

2	 2

{Fmf(YII S	 f + DSO
ORIGINAL ; PAGE IS	 2	 _2 ,
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FIGURE 4	 SCHEMATIC ILLUSTRATION OF THE GAS PHASE MODEL
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1 - n	 w	 X
S	 cf	 Sf__

YS02	 Fm	 MS	 + Fmf.	 (YS02, f + Yki 2S, f)
(3-48)

l	 w
cf XSf

YH2S	
Fm	

MS	
+ Fmf (YH2S,f + YS02,f)^25

(3-49)

total molar flow rate, Fm, is written as: r

F	 =	 (1 + EAR) F	 + A	 w	 + w	 ( X QCa + X kM g 3-50(	 )
in	 m, th	 1	 cf	 Q,f	 PI

Ca
	MM	

)

g

3-6.	 Gas-Phase Model
I	

,

The basic arrangement of a compartment for the gas-phase material

balance is illustrated in Figure 4.	 The reaction rates in bubble-cloud

phase and emulsion phase are written in the form,

(reaction rate, in	
_ (E Ci-E	 .)AVi,efRgB, (3-.51)bubble- cloud wake

phase) A

(reaction rate in, i	 = *
(1-e	 )AV.	 R (3 - 52)

emulsion phase) ci	 Z ,ef	 gE,i

I ^
where sis the volume fraction of cloud including bubble. Using 'Hiii ray's

ci
I

4l4	 model	 (Norio and Wen,1975b).

R	
aB, i

-Bi a B,i	 -	
1 }	 s^

i

i aBi	
_	

c uifi'' l ^B, i	 mf
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The bubble fraction, e Bi , is given by

EB'i = {(uo - , umf)/uB }i (3-54)

and f'	 is the ratio of the volume of wake effectively contacting the

r	 bubble phase gas to the volume of the bubble.
f

In order to express the material balance it is convenient to introduce
t,'

the mole fraction vectors YBi and - YE,1 defined by

1
-9YBji	 { y Bj	 O	 )^ i }

(3-55)

t	 ,	 J,

there j indicates the name of the gaseous species as already define(( by Equation

{3-2).	 A material balance for bubble-cloud, phase and emulsion phase can

be written as:

r
FBm,i	 YB,i	 FBm,i YB,i-1	 (Eci Ebi)	 RgB,i 6Ui,ef (3- 56)

^

(bulk flow out - in) = (formation by reactions)

i

KmBE,i cg ,i'
AV

i,ef (Y B, -YE,i^	 FmBE,i YBE,i

-	 (gas exchange) -	 (net flow from bubble phase to emulsion phase)

Em,i	 Ej	 Em'i	 E,z-1	 cj.	 r,ef	 E,i

-	
KmBE,i cB,i ,dV1,ef (YE 	 i -YB,i )+FmBF, i yBE,i.j (3-57)

The last term of Equation (3-56) or (3-57) is defined as follows:

FmBE,i Y B,i	
if	 FmBE,i > 0

FmBE,i YBE,i (:i-5)

FmBE,i Y	
if	

FE,i	 mBE,i	 < 0

KmBE is the modified gas interchange coefficient and related to KB E by ;t 116
s

following equat ioit:'

mBE, i	 m' i	 i
a
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3-7.	 Population Balance for S0 2 Absorption

The assumption of complete mixing of'sorbent particles is appropriate

for SO 2 absorption process, since the rate of reaction is much slower than

the mean circulation cycle of particles. The distribution density function
r _.

of absorbent conversion, c^ k , introduced in section 3-4, therefore, }

satisfies the population balance equation (see Appendix II).

d(^k (dfk/d6) *)
Nk	

df	 nkf^kf	
- 

n kw
k

^k	
(3-60)

where it is assumed that the elutriation of the adsorbent particles is

negligible.	 Assuming no attrition or particle breakdown, we have

n
kf	 =	 nkw-

(3-61)

Substituting the rate equation (3-11) or (3-12)	 into Equation	 (3-60),

we have the dimensionless ,equation:
1

d(,
^k ^2)

dfQ	
= B Q	 ( k f - k ) ( ̂-G'.I

where relative reactivity of the adsorbent a	 is defined b
k	 Y

?L k	 ( T , dk fQ) 	 = kvl	 (T, dk , fk) /kvl	 (T, d , 0) (S02	 ri .i^ t i inn )

or (3-03)

X	 = k	 (T,d	 f )/ k 2	 ( T , d k ,0)I	 k	 v2	 k,	 k	 v (H25	 1•^tirei^lii)
,

and the parameter B k is defined as follows:

nkf pkf XkCa
(SO2 reaction)

Nk 1-1 Ca kvl	 (T , dz) o)	 C3

B Q	 =	 01' (	 -b pi) ty
7

nkf p Qf XkCa (11,S	 reaction)
INM

Ca kv2 (T' 
d V o) C6 r

t



The solution of Equation (3-62) for the case of fresh 'limestone

feed,, namely^Qf = 6(fQ), is given as follows 	 (see Appendix III):

BQ	 B
exp	 - 

ff
2	

BQ	
]dfQ (3-65)

B {
1 - exp	 - O

	
df

1.	 a.Q	 Q	 ]
Q

Therefore,

kvi (T, d Q ) -	 f l	 kvi (T, dz , fQ ) Q dfQ
0

-	 kvi	 (T ' dQ' 0)	 f 1	 XQ, $k df 2
0

_	 kVl	 (T dgjo)	 X 91

Using the parameter B
91

	 by Equation (3-64), the relation- (3-37)

can be written in a simple form
d

^

fQ =	
X91

(3-67)

where it is assumed that only one of the reactions 1 and 2 is taking place.

The reactivity of the adsorbent can be obtained as a function of fQ ;	 'I' and

dQ by the following technique:

1.	 Specify T and dQ

2.	 Specify BQ

3.	 Obtain"Q
	
(f

91
	 (3-65)	 and calculate XQ

4.	 Obtain f 	 from (3-67)

S.	 Specify another B
91
	 repeat 2-4

6.	 Specify another T ` and dQ and repeat 2-5

7.	 aQ =	 A^	 (fz) ^T,	 dQ (3-68)

i

!1

s
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i,

In order to 'consider the size distribution of the adsorbent, the distri-

bution density function 
Mks (d^) is introduced as

number fraction of absorbent a

particles which have the^Qs (d R ), d(d^)

diameter between dQ and dQ +

d (dQ)_

oamax $ 
ks (dQ) 

d(dR )	 1

Thus, the relationship between the average reactivity a R and the average

i
conversion of the limestone is obtained in the form

d max}
< aQ >	 f	

XQ (fV T, 
d^) Mks (d) ) d(dR)	 (3-69)

0
I,

3-8 Population balance for char combustion segregation and elutriation

I

	

	 For the combustion of fairly large particles, the rate of solids

mixing may become the dominant factor since the segregation of char particles

greatly affects the combustion. According to the obs-ervation by Avdesian

and Davidson (1973) a char particle whose initial- size was greater than
I

1.3 mm burned out in their FBC taking more than 160 seconds Their results

are shown in Figure S. The superficial gas velocity and the carbon fraction

were 38.3 cm/sec and 0 . 9% respectively. On the other hand, unless the bed

internals are present, the circulation cycle, 6 c , is obtained from Equation

(2-'9) for a bed of Lm f = 60 cm as 1.8 ,sec (fW = l is assumed) . Therefore,

solids in the 'bed `seem to undergo good circulation to disperse the char

particle over the bed.

However, for fine particles in a deep bed the rates of reaction--grid

{
circulation may be of comparable extent	 In this range of particle size

elutriatxon plays an important role in determining the combustion efficiency.	 r

ORIGINAL 1)A.GE IS
QUALITY
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0	 if	
vE,i > 0

	

> -0	 if	 vE
,i 

> 0
r

n	 =	 i = 2, I
u,z	 t

	

0	 if v	 j
E, i

where vE'i denotes the volumetric flow rate in the cloud-emulsion phase and 	 l

is positive for upward flow.

'From`the ;total -number balance of char particles, the initial conditions

for B,i and E ' i are derived as follows

NB,i ^B,i (0) (dy/de) B,i,y=0	nBE,i	 nE'B,i	 nB,i-1 + nB,i

	

I t )	 (3-74)

NE'i 1pE'i ( 0)(dy/ d 6) E ^ i ^y= O - 
nEB,i	 nBE,i	 nf,i	 nu,i-1

	

nd,i+1 + nu,i	 + nd,i + nw,i'

	

I t )	 (3-75)

'	 The functions^B,i and 
^E,i 

also must satisfy the normalization condition,

Ol `^B,i dy =	 OlE,i dy = 1	 (3-76)

The assumption of complete, mixing in each compartment is expressed by

N	 /AV	 = n	 /v	 = 11	 /v	 (3-77)
B,i	 sB,i	 B,i+1 B,i+1	 BE,i BE,i

N	 /AU	 = n /v	 = n	 /v	 = n	 /v	 n	 v	 (3-78)
'	 E,i	 sE,	 d,i d,i	 u,i+_1 u,i+1	 w,i w,i	 EB,i/ EB,i

where N is the number of char particles in a cell and n is the number flow

rate of char pa ►•ti Iles between c-ells. The vo1umr oI' Cell, AVs^ i

and 4VSE,1 
and the volumetric =flow rate of iarticles including ash and

I
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limestone particles, v, y	 v	 , v	 and v	 are defined as
B,i	 B.E,i	 EB,i	 u,i	 d,1

-

follows

AV	 AV AVi,ef eB,i fW (3-79)

OV= dV.	 {1 - e	 (1 + f^) )(1	 - e	 )
W

(3-80)
sE,i	 i, of	 B,i mf

vB,	 (uo - umf) i At, i fiV (l Emf) (3-81)
r

3

vEB,i	 KsBE,i AV
i,ef 

(1 _ EB'i) * (3-82)

-v	 = v	 +'v	 - v
BE,i	 EB,i	 B,i	 B,i+l

+ E	 f' DV.	 rcBi MC ( 1 /p -
Bi	 W	 i.,e	 cf

X	 /P	 )	 (3-83)
Af	 A

Cf

VU ' i _	 vE , l (if vE,i> 0) (3-84)
i=2,	 It

0	 (if vE i :5 0)

vd i	 vE	 (if vE,i< 0) (3-85)i 
= 2,	 It

0	 (if v	 0)_>
i,

E,1

From a volume balance for the i th level

vE,i = vnet,i	 vB,i,
(3-86)

The  overall volume balance for the i th compartment gives

=	 + v	 - v
v	 vnet,i+1	 net,i	 Bj	 B,i + v	 = v+1	 f,i	 w,i

AV1MC
-	

-Wi

XCf

*

W	 B,i	 cB,i	 W,i
x

B,i	 cE,i

X (1/p
cf

- XAf /p A) (3- 87)
a

In Equations	 (3-83)and (3-87) pA denotes the density of ash particles

formed after combustion, and r
cB i

and rcE i are defined as
,

r cB,	 r3B,i + r4B,i + rSB,i
(3-88)

rcE,i	
_ r3E ^ i

 + r4C,	
+ rSC,i

r^

3
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The particle exchange coefficient, KsBE,i 
in Equation (3-82)

is a parameter proportional to (1/D B) as reported by Kobayashi, Chiba

and Ihara (1971).

The following relations are the boundary conditions for the bottom
i

and top compartments.	
r

vul=vdlvB1=0	 (3-89)

vu,I t + 1 -_v
e 	(3-90)

vB,I t + 1 VM + 1 0

where ve is the total volumetric elutriation'Tate including ash particles.

The shrinking rate of a single char particle (dy/de) in Equations

(3-70) and (3-71) is givens
I

^	 1
2 M

C( dy/ de )	 _ -	 (k C + k C + k C)	 (3-91)B, i p 
ch 

XC ;dcm	 3 1	 4 1	 5 4 B, i

2 M
(dy/de)*	 =	

C	
(k C + k C + k C)	 (3-92)

E ' 1	 p ch; XC dcm	
3 1	 4 1	 5 4 E, i

i;	 These equations are adequate to determine the axial distribution of

size distribution functionand	 for the given temperature and gas
B	 E

'	 phase concentration.

The system described by the population balance equations (3-70) and

(3-71), <,overall number balance (3-;74) and (3-75) and the integral constraints

(3-76) also satifies the material balance as proven in Annendix IV.

However, it is convenient to `develop material balance equations, when we

need to device a steadily converging numerical algorithm. 	 j

For the weight fraction of carbon in the solids of the',i th cell

we have the following material balance equations:`

i	 1
I
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The two phase backflow cell model illustrated in Figure 2 is applied

to FBC to simulate the process of char combustion, circulation and

elutriation in Level III

The size distribution density function of char particles in bubble-

wake phase 
`
B i and in cloud-emulsion phase ^E i satisfies the following 	 ` `{

,

population balance equations (see Appendix II)	 1 °.

*
d N, i (dY/dO^W, i ] _

NB,i	 dy	 -	 - nEB,i E',i + nB',i-1 B,i-1	 (nBE,i + 
n
$,i ) B,i

(i	 2, I t	1)	 (3-70)

d E i (dy/de) CF , i]

	

n	
i

NE,i	 dy	 = nBE,i ^B,i - nEB,i^E,i	 f,i ^f,i

+ nu, i OE, i-l + nd, i+l ^E, i+1

- (n	 + n	 + n	 )^ i
u,i	 d,l _	 w,i E,i,

(i = 2, 1 t - 1)	 (3-71)

For i = I t (top compartment)

d [^	 (dy/d0) * BW,i ]
N
B,

i	 dy
B,z	 - n

EB,i ^E,i + nB,i-1 ^B,i-1	 (n BE,i +nB,i)oB,i

	

NEj	 droE,i (dy/dC) CE,i ]	 n	 - n	 + n

dy	 BE,i B,i	 FB,i E ,i	 f,i 
f,i	 (3-72)

+ nu, i-1 OE, i-1 -n e ^e	 (n d , i + ' n w, i ) OE, i

For i = 1, (bottom compartment)

N	
d 10B, 

i 
(dy/dQ) 

B1V i]	 n	 _ (n 	 } n	 )

	

B,i	 -dy	 EB,i E,i	 BE,i	 B,i	 B,i

f

d [^	 (dy/dQ) CE i]	

(3-73)

	

NE,i	 nBE,i OB, - nEB,i OE,i + n
£,i of,i

`	 + nd,i+l E,i+l - (nu,i + nwyiE,i

i
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`i

3-9 Heat Balance

Assuming that the temperature differences between gas and solids and

between the solids in cloud, in wake and in emulsion phases are negligible

the following equations are derived for axial temperature distribution:

cs {(Si	1} Wnet,	 + W	 Tmx,i } 	 i+1
r

(heat flow in from (i+l)th cell)
1

- [c{g , w	 +	 (S i	 - 1) w	 + w_s	 i	 netj	 -1	 net,i-1	 mix,,i

+ wmix,i-1 + Wwi} + c gm,i'
FgmJ Ti

(heat flow out from ith cell)

s	 i-1	 net,i.-1	 mix,i-1	 gm,-1	 gm	 i-1

(heat flow in from i-lth cell)
r

+ rciMCAV.	(ac/XCf)	 wkf 
ak AV	 (1

 (1 - EBi^/Vmf,ef

(heat generated by	 (heat 'consumed by calcination
combustion)	 of limestone)

+ wfi csfiTfi	 UiaHEiAVi	 (Ti,` T
wl) (3-96)

(sensible heat 	 (heat recovered by
accompanied by	 cooling tubes)
solids feed)

where

if wnet,
S.

	
=[Q

-97)(3
1	 1	 if w	 >	 p

net,i

4

a

y

4

j

..
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z

The reaction rate r
ci
	 in Equation (3-96) is defined by

rc , i	 = (ec, i 	 EB,i )	 rcB,i, + (1 - 
e c,i	 c tube,i ) 	rcE,i	

(3-98)

The net flow rate, 
wnet,i 

and the backflow rate, 
wmix' 

is calculated

by r	
1

wnet,i - wnet,i-1	 = wf
,i 	(1 - Xvf,i

)	
- ww,i - 

r C, ir Mc
AV1 	(3-99)

wmix - (uo - umf) At fWp s (1 - emf)	 (3-100)

For calculating reaction rates, the temperature of char particles, T , is treated
c

separately from bed temperature, T, assuming a temperature difference exists bet-

ween char particles and the surrounding gas and taking the following heat balance:

d

2X
^	 (Tc -T)	 + e'o (TC	 -T4 )

r 
	 (T c ) M

C
g c/XCf Trd 2p	 (3-101)

i	 c

where e'	 is the emissivity of particles,
a

h' is the thermal conductivity of

the gas surrounding char particles and a is the Stefan-Boltzman constant. 	 a

I
3
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Section IV

i

LEVEL I MODEL FOR FBC

The general model defined in Section 3 is simplified by imposing

the assumption of complete mixing for solids. {

In this case the size distribution of char particles withdrawn from

the bed is the same as that ofchar particles in the bed. Therefore,

^v
•

^w	 =

Instead of the equations introduced in 3-8 the following simple equation

can be used to obtain the size distribution of char:'

d^R	 _	 _
Nc	

dy	
+n ew 	ncf ^f	 nCe ^ e (4-1)	 ^a•

where

R* _ (dY/ de ) * , = -2MCrc(7Tdc dcm Pch Xc)

(4-2)

Er	 AV. /E AV.	 ° (N /V	 ) Trd 2 k	 X	 (Y)	 Crc	 ci.	 02i	 c•	 mf	 c	 c0	 c (4-3)

where X	 (y)	 is the relative reactivity of char.	 Neglecting reaction 5,

kc 0, a c (Y)	 = k3 k x (4-4)

The solution of the differential equation (4-1) under the constraint
j

f	 (Y)	 dY = 1

is obtained as follows: z`'

[C c - B c fZ f (Y)] (4-5)
c ^..._•

where
1 +	 (DAt /Wb ) K

Y (Y)	 exp	 [Bcw !Y	 d)`]
0

(4-6)
c

C
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i
L

Z f (Y) = fy ($ f/Y) dy (4-7)
0

C
c
 = 1 + 

Bc f fl	
[Y (Y) Z f(Y)/X 	]dY/fl 	(Y(Y)/ac(Y) ] dY	 (4-8)c (Y)

0 0

dcm P ch XCB	 = (4-9)
cw

2 M	 0 kC	
02coo

,
J'

ncf
-

B	 _cf	 Bcw n
(4-10)

cw

According to the definition of Bow , we'obtan the following relation

from Equations (3-26), 	 (3-27) and (3-31)

3 < a	 y2 >	 (1 - roc)c
B	 = (4-11)A

(Vw +	 W	
< K*y3 >) TI 	 t

b
`}

The gas phase model shown in Section 3-6 gives a solution for the
y

exit oxygen concentration in the form

CO2,1	 f 1 (Nc < ?L c Y2 > 7T dcm2 ' kc0'	 Lf'	 uo'	
um f,	 CO2 0	 ...)	 (4-12)

The form of the function, f, is dependent on the assumptions for the

-	 gas hydrodynamics in the FBC. 	 The first term enclosed in the parentheses

of Equation (4-12) is part of the coefficients in the reaction rate

equation and CO2	 represents the
,

concentration of oxygen above the

distributor plate:

On the other hand, the overall material balance for oxygen in the

gas phase is given by

F (Y	 - Y	 ) = N	 < am	 02,0	 02,1	 c
y2 > frd	 2 k	 C	 (4-13)

02
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'	 From Equations	 (3-25),	 (3-26) and (3-27) the outlet oxygen concentration 1

can be related to the combustion efficiency as follows:

wcf XCf_
y02,1	 y02,0	 MC	 Fm	 n	

(4-14 )c 

Using Equations	 (4-12),	 (4-13) and (4-14), we can obtain the following r

relationship between nc and 
k c0 CO2	

where the term N	 < a` y 2 > and 
COZ 1,

are already eliminated.'

f 2 (kc0 CO2'	 nc'	 Lf' uo'	 umf'	 CO2, 0 ...) = 0	 (4-15)

where f 2 is a function dependent on the assumptions fox fluidized bed

hydrodynamics.

If we can assume that the gas phase is completely mixed Equation (4-15)

can be simplified as

kc0 y02 = k c
O
 [ y02,f Fm

f/Fm - wcf XCf nc/MC Fmk	 (4-15)-
I

In the case of plug flow we obtain

—	 Wcf XCf nc ;	 1
__ 

kc0 y02 `	 kco	 MC Fm 	 Rn	
wcf XCf n c	 ]	

(4-15)

1	 -
MC Fmf, y02,f

9

For shallow fluidized bed combustors Equation (4-15) p is preferred compared"

with Equation (4-15) " .	 In such cases as in the gas phase model presented

in Section 3-6, it may be too complicated to obtain the term0c
analytically and numerical solution by iteration technique becomes necessary.

By an overall heat balance, the bed temperature T is obtained as

Cgmf Fmf Tgt + 
c
cf wcf 

Tc f + 
cQf w kf TQf

T
—

+ qc wcf (1	 nc)	 qk wkf + U AHE Tw
(4-16)

f

gm Fm + cch wcf (XCf + XAf) ( 1 - TIC)

+ cA 
wcf XAf 'nc + U AHE

?
i



53

START
A

ASSUME BED TEMPERATURE, T.
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ASSUME MEAN RESIDENCE TIME, o: CALCULATE Bcw

FROM EQUATION (4-9)

ASSUME  CHAR HOLD-UP, Nc.

CALCULATE Bcf
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YES T^<a ^Y2>

and <K*y 3 >. ^^.
CALCULATE 0 FROM €QUATION (3-32),
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TEST FOR O CONVERGENCY.
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CALCULATE B	 FROM-EQUATION (4-11)`,

NO
TEST FOR 

Bcw 
CONVERGENCY.

YES

CALCULATE T BY ENERGY BALANCE (4-^16)1
ORIGINAL PAGE Iu

9

NO - - OF POOR QUALITY
TEST FOR T CONVERGENCY.

YES

t

STOP 9

FIGURE '6.	 FLOW DIAGRAM FOR THE COMPUTATION OF COMBUSTION EFFICIENCY.
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Section V

V. LEVEL II''WDEL FOR FBC

The major objective of the development of the Level II model

is to predict the effect of axial solids mixing on the temperature

profile and on the distribution of char particles along the bed axis. 	 J

The following assumptions are made:

(1) The density functions of char particle size distribution in

the bubble phase ^B >_ and in the emulsion phase ^E i (i 	 1-I t) are

approximately equal to each other and, therefore, the mean diameter a

of char is uniform throughout the 'bed.

(2). The difference between the weight fractions of charin the

bubble phase and the emulsion phase is negligible. However,; an axial

distribution of carbon exists which can be designated by the carbon'
3

-_weight fraction in the bed, x.

The equations introduced in Sections 3-1-7 and Section 5-9 may

still hold even the above assumptions are made. Because of the

assumption (1), equations for ^ derived in Section IV are used,
r

instead of equations for.-B,i and ^E i derived in Section 3-8.'

In place of Equations (3-93)-(3-95) the following equation is

obtained for the weight fraction of carbon, xi

{(Si
	 1)wnet,i	 + wmix,i } xi+1

{Si Wnet,i	
+ (S	 1) w 1) Wnet,i-1 + wmix,i + Wmix,i-1 + Wwi}xi

	

+(s,	 w	 +, w	 } x	 (5-1)i 1- neti-1	 mix..,i-1	 i-1'

	

*	 r
rci AVi,of 

MC wfixfi

ORIGINAL PAGE IS
OF POOR QUALITY
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The net flow rate, wnet,, can be obtained from Equation (3-99).
In the present programming of the Level II model further

simplifications are made. The additional assumptions are:

(3). In oxygen rich operation reactions 2 and 7_can be
r

neglected

(4) . In fuel rich operation reactions 1 and 6 can be neglected.

(5) Reactions 5 and 8 can be neglected.

(6) Oxygen consumption for reaction 1 i neglected. -Equations

(3-56) and (3-57) are used to solve oxygen and sulfur dioxide balances,

Letting Y	 denote the mole fraction of oxygen, equationsB or E,i
(3-56) and (3-57) become,

F	 Y	 - F	 Y	 + ( 1 	0.5	 ) r	 AV e
Bm,i Bi	 Bm,i-1 B,i-10	 cB,i i W,i

(5-2)	
;.

KBE,i (P/RTi)' OVi E B ^ i (YE,i-YB,i)

F Em,i Y E,i	 FEm,i-lYE,i-1 + (1	 0.5 ^0) reE,i AV i

x(1	
EW,i	 6B,i	 6tube,i)	 ( 5 - 3)

KBE,i(P/RTi) AVi E B
 
i (YBj YE, i)

Let Y	 designates either mole fraction of sulfur dioxideB or E,i
or hydrogen sulfide, depending on the case, We get`

FBm i YB i	 FBm i-1 YB -1 + AV

	

i 
EW i (rQB i	 Xsf rcB ),	 ,	 ,_	 Cf

(5-4)
KBE,i (P/RTi ) OVi EB,i (YE j - Y B i)

f

,;	 t

/?	 i
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'	 F	 Y	 F	 Y	 AV	 Cl	 E	 E	 E	 )
Em,i.	 Ei	 Em,i-1	 E,i-1	 i	 W,i.	 B,i	 tube,a

XSf
X (rQE,iX

C
f
	rcE,i)	 (5-5)

3

_ KBE,i(P/RTi)' AV 	 EB,i	 (YB'i - YE'i)

where the term (X	 /X	 1 -r	 denotes the generation rate of
Sf	 Cf 	 cB or E,i

so t or H2S. i

The equationsapplied for calculation are:

[Gas phase concentration]

Oxygen:	 Equations	 (5-2) * and (5-3) *
Sulfur dioxide or hydrogen sulfide: 	 Equations (5-4)* and (5-5)*

f	 - Other species:	 Equations	 (3-44)-(3-47)

[Axial distribution of char concentration]

I	 Equations	 (5-1)*,	 (3-99

[Axial distribution of temperature]

Equation (3=96)

[Reactivity of sulfur adsorbent]

Equations	 (3-35) ,	 (3-65)`,	 (3-67)	 and	 (3-68)
]

[Average ,reactivity of char]

!	 Equations	 (4-5)	 and (3-24)

where the equations markedby the symbol, *, have the following;
a

boundary conditions:
J

1).	 For Equations	 (S-2)	 and (5-3)

Y	 =
E,0	

Y 
B4O 

= y
02,f 

F
mf

/ F
m	 ORIGIN; ^.L P AGE Is j

OF POOR , QUALITZ
E	 ,

s

Y
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INPUT DATA

HYDRODYNAMIC CALCULATIONS

COMBUSTION	 N0	 LIMESTONE
NO	

PRINT	 STOP
FED

ELUTRIATION LOSS FIXED
CARBON FED =	 (1- ELLOSS YES YES
CARBON IN COAL

SO2 CAPTURE
-INITIAL VALUE
-ETCA, T, Ti	 = T

Ti ;OLD = Ti
BUBBLE HYDRODYNAMICS

X FROM COMPLETE MIXING MODEL
KINETICS CALCULATIONS

X } 	'=	 X PARTICLF ` TEMPERATURE
COMBUSTION RATE CONSTANT

j GAS PHASE MATERIAL BALANCE
02 IN - 02 OUTETCG —
THEOR. 02

SOLID PHASE CARBON BALANCE
SUBROUTINE- SUBROUTINE SIMQ ASSUMING CONSTANT
CRRECT COEFFICIENTS FOR EQ. 5-1 j

Xi

ETCC =	 I - CARBON WITHDRAWN

CARBON FED

NO	
ETCC=ETC

j

-- ENERGY BALANCE
T 	 I'i	 t

TNORM =	 E	 ITi	 old-Tili=1
OR

PAGE IS
I

i t 	t OF POOR QUALITY

TAV =jE 1 	 Ti

FIGURE 7	 FLOW DIAGRAM FOR LEVEL II MODEL
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0206 ETHMAX=THETM*0.0001
0297 WBED=THETM*WLS j
0208 WRITE(6*2001)	 WCOAL*WLS * CABS * EXATR * FMO•'UO *P . TK * DT * HLMF * AK * DPCR. f"
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C a
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s
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C
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1
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0231 GO TO	 (41e424nIMODEL
0232 41 CONTINUE
0233 COXAV=R(P,e—XINFD*Clc—ETC)+XINF)*COXO 	 CM
0234 GO TO 45
0235 42 CONTINUE
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0237 COXAV=COXAV*COXO
0238 45 CONTINUE
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0243 DSCI=100. r
C

` C ITERATION FOR SCI . UP TO "50 CONTINUE
C ^!

0244 DO 50	 IBCl=1,20
0245 BC 1 O=BC 1
0246 E6MAX=ABS(BC1)*0.00005 j
0247 CALL POP(BC.BCI.THET.L)
0248 A=(ALAMV+THET*EC)/((1.-ETC)*ALAMVF)
0249 EBCI=BC*A—BC1

C
C -CORRECTION OF BC 1 fC

0250 CALL CRRECT(IBC1oINDBC1cOWC1.BClloBC1298C1.ESC119EBC129ESCI.EBMAX)
0252 9F-('ING8Cl.E0.2)GO TO 5E .<
025 2 IF (I NOBC1oE0.1.ANDA ABS(HCI-BC10).LT'.EBMAX)GO TO 51
0253 50 CONTINUE
0254 WRITE(6 3010)BC*BCL,c7HETrCC.ALAMArALAMV.EC
0255 51 CONTINUE
0256 VCW=(I.—ETC)*VCF*AL!MV/(ALAMV+TI-ET*EC)
0257 THETA=THETM/( 1.4-VC4l/VLS+THl*ETC)
0258 WBED=(VCW*RHOP{-',f^_S*RHOL+TH1*VLS*ETC*RHOASH)*THET
0239 EE=THET-THETA
0260 THE=THE

• C CORRECTIONION OF THET
026A CALL CRPECT(ITHET9IND7H.DTH.THETI9THET2.THE.EE19EE29EE.ETHMAX)

^}

0262 XX=ABS(THET-THE)
0263 1F(XX.LE.ETHMAX)	 GO TO 210
0264 THET=THE

'	 0265 IF(INDTH.E0.2)	 GO TO 210
0266 200 CONTINUE
0267 201 CONTINUE
0268 WRITE(693000)
0269 210 CONTINUE
0270 BBC=O•
0271 1F(ETC.E0.19)	 GO TO 2 12
0272 13gC=( lo-ETC)*3.*ALAMA/((ALAMV+THET*EC)*ETC)
0273 212 E=?.BC-BBCi, s' g BC	 BBC) *2.i	 0274 E?^ u'_C==ETC

C
c' CORRECT1,9N OF ETC

0275 w CALL CRREC ;dTETC INDETC•DETC.ETCI.ETC'2.ETC .EI.E'2 '*E.EETCM)027$ !!6 3L ETC— ETCOLD)
0277 IFC.:);cL Eo0.lE-4) 	 GO	 TO 5i0
0278 IF XN.DETC..EO.2)	 GO TC 510
0279 E'_OSS=lc-^ETC—VCW/VCF
0280 XGG	 G (, j;.—ETC)*A2+EXAIR-)*Y+,GOO/( AI+EXAIR)
0281L HCHAR=THET*VCW*RHOP
0282 HCARBN=THET*VCW*RHOC*XCF
0283 HRC=HCARBN/WBED

i	 0284 500 CONTINUE
0285 501 CONTINUE i

0286 WRITE(693001)

0287 510 CONTINUE 7
0288 Al=AT/( W6ED*EC l
0269 YA1=0 -
0290' YB1=0.
0291 YC1=0. i
0292 PHIFW(1)=0.
0293 PHIW(1)=0.
0294 PHIEW(1)=0.
0295
0296

DO 520 1=2 . L	 ^^+ AL PAGE ISY,A2=YA1	 r! ..
POOR QUALITY1

-.	 ..

`	 - -
n vui"`	Ym v --Lod

r_

,wet!

' 	 Y	 _

r



I

I

j

j	 0297
0298 7'CF-a	 CPs
0295' ) AJ, =DPC E F *tT 3*PMIF6 E YYALAMVF
03400 `?EE=DRt fiFT3*PH%fiEll,(_^9M^C
0301 VC L=DFC fi r *4^3*A A*AKEC l T*PH l C I r
0302 PKU",CYt=CS:At—CY'A2D*DY"	 I1*0.5+PHIFW( I- 1E
0303 PXFWf r t=(Y'BR-E-dB2 r*DY'C I P*0.5+PHIW(I-1)
0304 PXEEWC E ?=(YCt+YC2t*DVCII*0.5+PHIEW(I-1)

j.	 0305 520 CONTINUE
0306 DO 530 I=201
030T PXZFWCED=PHYFWdl F17PHFFW(L)

- ,0308 PKEWC11	 =PHLWCIY	 /PHIW(L) t
0309 PHZEW! Er= PKUFWC 9 1/Pf<fEW(L)
0310 530 CONTINUE
0311 ELOSS=L ^-ETC—VCY3/VCF 10312 XGO=CCIo— ETCP *A2+EXAIR)* XGOO /( AI +EXAIR)
0313 HCHAR=THET*VCW*RHOP
0314 =HCARBN=THET*VCt*RHOC*XCF
0315 HRC=HCARBN/WeEO

C OUT PUT 5	 (RESULTS)'
_C

0316 WRITE ( 6,2000)	 NAMIsNAM2 9 XCF.XCVeXH,XS,XOsXN , XW9(DPF(I)sFRACT(I)sI=
11,N)

0317 WRITE(6.2004)IELUTR.BETA9IMODEL.CE9EB
0318 WRITE(692001)'WCOAL.WLS.CABS.EXAIR.FMOsUO,P.TK.DT,HLMF,AK.DPCR,-

1VCFsVLS , THETM.ALAMVF,ANDP , PASH , RHOA EH,EETCMsETHMAX
0319 WRITE(692002)	 ETC,XGC.THET.BC,BCi.VCW•VCF,VLS,HCHAR,WBED.HRC.EC .

iELOSS. ALAMVALAMA
0320 WRITE(692003 )( Y(II,DP( I ) , PHIF(I),PHI(I)9PHIFW(I)9PHIW(I).PHIEW(i)s-

IAKE(II.ALAM(I),I=1,L)
0321 WRITE(693005)
0322 790 CONTINUE
0323 800 CONTINUE
0324 GO TO 10
0325 LOGO FORMAT(2A4.7F8.0.14) I
0326 tOOl FORMATEIOF8.01' j..
0327 2C`00 FORMAT(1H1.///lOX.1FBC CALCULATION'//LOX. • EFFECT OF ELUTRIATION

LON COMBUSTTON EFFICIENCY'//. '1X .2A4.1X.•COMPOSITION OF COAL0.7F10.,4
2./(2E12.4))

0328 2001 FORMAT(/'	 WCOALoWLS.CABSsEXAIR,FMO.UO.P.TK.DT,HLMF'/10F_12.4//'	 AK.
1DPCR.VCF,VLSnTHETM•ALAMVF.NDP.PASH,RHOASH'/9E12.4//'	 EETCM.ETHMAX'
29(2E.12.4/)i

0329 2002 FORMAT(/,	 E7C9XGO.THET.BCs8Cl'/5E12.4//° 	 VCWsVCF,VLS.HCHAR.WBEDO
IHRCnEC.ELOSSvALAMV,ALAMA'/10E12.4/)

0330 2003 FORMA T (/ v	Y	 OP	 PHIF	 PHI	 PHIFW
1	 PHdW	 PHIEW	 AKE	 ALAM'/(9F12.4))

0331 2004 FORMAT('	 ELUTRIATICN CORRELATION	 :-NO.'.(2.'	 6ETA='9F10.5/
j l /°	 GAS PHASE MODEL	 .	 NO.'9129'	 DB.E8='9:F10*LsF10.5/)

0332 3000 FORMAT(/'	 THET HAS NOT CONVERGED,'/)
0333 3001 FORMAT(/'	 ETC HAS NOT CONVERGED.'/)
0334 3005 FORMAT(1H1) q

0335 3010 FORMAT(/'	 POP *****',2X97E11.3)
0336

s
I

END q
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0001 SUBROUTINE	 CRRECT(I.INDX.DX.X19X2.XNEW9Ei.E2.E.EMAX)
C I: NUMBER OF THIS TRIAL.	 1 FOR FIRST TRIAL
C INOX	 INDEX OF THE TRIAL LEVEL
C INDX=0: JUST PROCEEDING
C INOX-1: THE ROOT HAS BEEN CAUGHT BETWEEN X1 AND X2
C IINDX=2:	 THE	 ITERATION HAS CONVERGED

0002 IF	 (ADS(E).GT.EMAX) 	 GC TO 5	 I
0003 INDX=Z
0004 RETURN
0005 5 CONTINUE
0006 IF(INDX.EQ.1)	 GO	 TO	 L00
0007 X2=XNEW
0008 E2=E
0009 IF(,I.EQ.1)	 GO	 TO	 10
0010 IF(El*E2.LE.O.)INOX=1
0011 IF(INDX.EO.1)GO TO 150

to
0013 El-E2
0014 XN EW= XNE W+D X
0015 RETURN

-i 0016 100 CONTINUE
0017 IF(EI*E.LT.O.)	 GO TO	 110
0018 E1 =E
0019 X1 =XNEW
0020 GO TO 150
0021 110 E2=E
0022 X2=XNEW
0023 150 CONTINUE	 s
0024 XNEW=(X1— X2) *E2/(EG— E1)+X2
0025 RETURN
0026 END

9
;i

r

t

.

;

A

4

4

r_

E
ORIGINAL PAGE IS

ti OF POOR QUALITY

{

i

4



3

0001 SUBROUTINE POP(BCeBC19THET.L)
C
C THIS SUBROUTINE
C

— C CALCULATES THE SIZE DPSTRIBUTION DENSITY FUNCTION
C PHI	 CY)	 AND SECOND AND THIRD MOMENT'S AND AVERAGE VALUE_ OF
C (ELUTRIATION CONSTANT * PARTICLE VCLUME)
C FOR GIVEN BC.	 9C1 AND THET.

0002 COMMON	 Y1201).DY(200DaPHIF(201)*PHI(201).AKE(201).AKEI(201).YY(201 	 3
1)oZFQ20IDcCC.ALAMVeALAMAeEC.WBED.AT
2oALAW201D.ALAMI(2011	 i0003 ZFC+ i:,' =0^	 1

0004 SUM1 =0.
0005 SUM2=0.	 l0006 - X1=0.
0007 DO	 100	 I=1,L
0008 A=(ALAMI(F)+THET*AKEI(I)*AT/WB[D)*BC
0009 I F (A ^ LT. 0`. 1E-3 0) A=d^ 0
0010 YY(ID=€XP(A)
Doll X2=X1
0012 IF(I.EO.1)GO TO	 100
0013 ZF(I)= (1./YY(I)+1.'/YY(I-1))*0.5*PHLF(I)*DY(I)+ZF(I-1)
0014 X1=YY(I)*ZF(I)/ALAM(I)
0015 SUM1=(YY(I)/ALAM(I)+YY(1-1)/ALAM(I-1))*05*DY([)+SUML 	 ,.
0016 SUM2= (XL+X2)*0.5*DY(' I)+SUM2
0017 100 CONTINUE

*SUM2)/5UM1	 l
SUMLl0.BC10.019

0020 SUM2=0.
0021	 : SUMS=Oe	

y10022 A11=0.
0023 Ali=o.	 is0024 A31 =0.'
0-025 DO 200	 I=1. L	 }
0026 Al2=A(1
0027 A22=A21
0028 A32=A31
0029 PHI(I)=(-BCI*ZF(I)+CC)*YY(I)/ALAM(l)
0030 A11=PHI(I)*Y(I)* *2
0031 AZL=A11*Y(T)
0032 A31=A21*AKE( L)
0033 SUM1=(A1L+Al2) *O.S*DY(I)+SUM1
0034. SUMZ=4A2.1+A22)*O.5*DY(I)+SUM2 	 #r
0035 SUM3=(A3A+A32)*0.5*DY(I)+SUM3
0036 200 CONTINUE
0037 ALAMA=SUM1
0038 ALAMV=SUM2
0039 EC=SUM3*AT/WR)ED
0040 RETURN
0041

i
END	 3

F

a

a .
1

x, ^



0001 FUNCTION—ACTIV	 (Y.DCM•RHOG•VISC.D•rAK.UO)
C
C	 REACTIVITY OF CHAR
C	 AS A— FUNCTION OF PARTICLE SIZE•,
C	 GAS VELOCITY AND TEMPERATURE
C

0002 DP=Y*DCM
0003 IF(DP.LE.O. 00001 )DP=0.00001 f
0004 SC3=(VISC/(PHOG*D))**0.3333
0005 REP=UO*RHOG*DP/V ISC
0006 A1=0.1
0007 SHP=REP**1.2*A1*SC3

. 0008 SHP=2
--	 0009 AKF=SHP*D/DP

0010 ACTIV=1./(AK/AKF+l.)
0011 RETURN a
0012 END

t

{
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0001 FUNCTION FRr_EFVgDP9RHOP.RHOG.VISC) 	 r -
C
C	 CALCULATION OF TERMINAL 'VELOCITY LT
C	 FREE FALL VELOCITY	 i

0002 G=980.1	 !
0003 UT=(RHOP—RHDGD*G*DP*DP/ (18.*VISC)
0004 RET=UT*RHOG*OP/VISE
0005 IF(RET.LE..5.76)GO TO -40
0005 UT=(((RHOP—RHOG)*G)**2*4*/(225**RHOG*VISC)}**0.33333*DP
0007 RET=UT*RHOG*DP/VISE
0008 IF(RET.LEo540•)GO-TO 40
0009. UT-SORT((RHOP—RHOG)*3.1*G*DP/RHOG)
0010 40 FREEFV=UT
0011 RETURN
0012 END	 ^.

I
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C------------------------------------------------------ 1	 ----.---,------- L •
C ------------------------	 --------------------------	 --- - - - - - - - - - - -- 2.
C A G= NFPAL MODEL OF FL I IIDTZ [I CCMBUSTOR 3.
r 4.
C PROGPAMM.^D	 14 Y 5.
C 6.
C M• NORIO	 AND	 P.	 r FNGAPAJAN 7,C 8.

AT c m
C 10.
C WEST VIPGINIA	 UNIVERSITY	 (4UG.91976) 11.
C 12.
C 13.
C 14.

L5.

L REAL MC.MH29MS, MO2. MN29MH20,MS029MH?S,M•CCrMCO2.MCAC^3•MCAI.MCASO4 L7.
1 , MMGCO3. MMGD* MA IR . MGAS 19.

2 C-)MMMM ZHF(46).AHE(46)•PV(45)tPH(46).,ZF(46).FFC(46)9 IQ.
1F>-4D(46)•ZDTS(46).FD446)sAHFAV(101).ETUSE(101)•DB(46)oMFFF7.MDIS 20.

3 COMMON /HYMAIN/ UO(46)•UMF(46).H(46),AT(46).DT(46),T(IOt).X(46). 21.
LYF(46) •F u H( 46) . EPC(461-• DVBB(46) .DVBBEF(46) rDBAV(46) *1)9(45) .HLMF. 2?_.
ZHLF,V*A F.Fmn,F`AF,UF•PF•TF•RG p G MGRS •OPFIX.DPFLU•DPDT'S.DPP,RHOCAU, 23.
3EMF.YB(4-6) *O AV.HCPiAK6F(46).BEDVOL,EFFVOLoSOL.VOL.TFTU9E9lCP.-TF FIC 24.

4 C- 1MMON /G =t"/	 7.(101)•DVBEFF( 101).ZB( 46).ATH(46).PI9DZAV,MTR	 M T . ML.M 25.
c C,QMM"1N/LEMATN/=,N[).DNZL9DTHICK91FW 26o
h DIMFK191r',	 ALFA(46).HFTA(46)9G AMA (46).CEL T (46)•U HE( 101), 27_.-

1wMIX(46).'4n -T (46) tWFC(46) tWFAD( 46) .WD(46) .5(46).Tr(46) . ?9.
2D p ^ +F( 20) ,D['CF( 2O). FRACTA(ZO)•FRACTC( 20) .XGF(S).XGO(B).AG( H .2) . 2a'.
3YB(1(46).YFn(46) ,PSPFLB(46)@SRt	 E(4(5)rZAVG(46).TPB(46).TN f^(4o). 30.
4P p (46).PP9(46).R'RF(46)oTOLD(46).AAA(2116),BBB(46).F€M(46).FHM(4c,) 3L, j

NAM F L IST	 /	 1 0 CF /	 HLMF,VMF,HLF.PAV.TAV.TWAV.UFEAV.WCOAL.WAD,WCAD. :32.
*CABS,UF, TF . O F• F XAIt°.XGF.GZCFI.GZH25±GZH2,IGNITE94GAF,FMTH.FMF.FMCI ' 33.
SRHfJCeD, ^H. ^H 34..
*/ 13PCFL/	 I CE'. fF'IC'.HCF	 HL'-.HLMF.VMF,BEGVOL.EFFVOL.SDLVOL.T-T l , ^r , 35.
*HARGA.aTPA^IS.OVAL.t^APEA.WELT.CELU.CLCSS.WDIS 36.

F DATA	 MC•4H2 .MS.MC2. MN2.MH2O9MSn2.MH2S. MCO.MCO2,MCACO3.MCAin.MCA-;14 37. I+
L. MMGCO3.MMrO. MAIR 311.
1/12..2.,32..32..28•.LR..64..34..2e..44..Loo.1.E6.0a,L36 	 14.84.32 3)
2940.31.28.8/ 40.

P`AT4	 AAA.F3H'3/ 2 162*0./ 4t
10 EMF- =	 U • 42.
LL PG =	 92.0 = 43.
12 G	 =	 990.1 44.

`13 PI =	 3.141593 45.
14 DATA PHOC.PHnASH. r? HIAO/1.491.49?•4/ 46.
I w ET[JHF ( I ) =0. 47.

':QF-'tL1=0• Iicl.

1 n,-,A y I )=o. 5p.
1 Un(11=c . 51
?0 n VA R1(L) = o. 52.
21 AHFAV(l) =0. 53.
22 rATA	 HA 0 FA.r] T PANS9OV0(..9OAREA	 /4*0.0/ , 54. 1

55.
--=------------------	 --- ------------ - - - - - - -	 - see .

C L,fiL'ID OFNSITY	 G/CM**3 57.
C---- - - - - - - - - - - -	 --..,--'------------------------------------------- Sfi
C €'H.-C	 PHTIASH	 PHnAD 50.
C C-IAL	 ASH'	 r_1-IMF_STCNL_CR-DOLCMITF-- 60.-------	

-------
C RHC'CH	 PHOCAD r,>7
C CHAO	 CALCINED ADDITIVES (,3

C till
23 DATA CA0F.CCF.CGMF/ 0.198.0 .193.E'•7 n / 6F1.r------------------ ----------- -- ----`-`_- -------'----------------- 7

C HFA-	 C-I%t°AC:T T Y	 rF	 FEED	 M'ATFRTAL$	 A-	 23 DEG fib.
f CADS . CCF	 CAL/(	 G # CEG	 ) .	 CGMF,	 CAL/(	 MOL * DF i,) Fig.C-------------=--------------,^--_--°-	 ------------	 ---------	 - -- 70-.C

7L
24 CALL	 C ct>TGN 72.

73.
C MAIN	 007-3 11T_ 1	 (	 'CP.	 SUnP rIUTTNE DESIGN	 1 74. j

_==_-==___== 75

ORIGINAL PAGE la
OF POOR QUALITY



C 7 r^, •
r SIZE I:ISTPIRUTION OF LIMESTONE OP DOLOMITE PARTICLFS 77.

,i C 78.

C NDPAP	 TOTAL NUMBER OF SIZE INTERVALS 79.
C DPADF	 lInPER ROUND OF EACH SIZE INTERVAL 80.
C FRACTA	 W(-'(GHT FRACTION 41.
C 52.

-25 ),^FAI ( 5,1000)	 NORAD 93.,
26 R E AD	 5,1001)( nPADF( I ),I=L•NDPAD) 84.
2 , REAL'){ ,, 1001) ( f- RACTA(I) • I = I, NDPAD ) 85.
ZP SUM	 =	 FI ACIA(1)*?.0	 /	 r)rADF(1) fi.
c^^^ -OPADRFlt AC T A( L) *0. K *DPADF (1) 87,
30 00	 10	 I = 2. NDPAI? 8z3.
31 DPHAR	 (DOADF(T)	 +	 C'PADF( I-I ))	 *	 0.5 ;19.
32 SUM = FRAC'A(I)	 / DPBAR + SUM 90.-
33 DPADR = FRACTA(I)	 * OPBAR + DPADR	 - 91.
34 10' CONTINUE 92.
35 DPADH=1./SUM 93.	 r

C 94.
j C DPADH	 :	 SURFACE VOLUME MEAN DIAMETER FLIP HYDPnOYNAtAIC CALCULATI fIN 3'a.

C DPADR	 WEIGHT MEAN DIAMETER FOR RF.ACTIUN FATE_- CALCULATION 95.
C 97.

36 DPB=DPAPH Q60
C 99
C ORB :	 AVERAGE PARTICLE SIZE OF BED PARTICLES 100.

Lot.
Cl COMPOSITON OF ADDITIVES 102.
r 103-

37 READ(591010)NAMELL,NAMEL29XCACO39XMGCO3 104,.
c 105.
C COMPOSITION AND NET HEATING VALUE OF COAL 106.
t 107.

3I* READ(5, 1010)NAMFCI9NAMEC2•XCF•XCV•XH,XS,Xn,XN.XW.000AL 1011.
3V4 XC=XCF+XCV 109.
40 XA=1.-XC-XH-XS-XO-XN 110.
Al Or'OALC=000AL 1 1 1.
A ) 7.,TCP =O,-0 112.

r
1:13.

C -------- -------------'-------^---------------------------- 114.	
1

C XCF	 :	 FIXED CARBON Llb.
C XCV : VOLATILE CA RBON 115.	 I;.
C XH	 :	 HYDBOGFN : 117.
C X.'	 :	 SULPHUR 118.
C Xr,	 :	 OXYGEN 119-.' C XN	 :	 NITROGEN 120.
C XW	 :	 MOISTURE 12L.
C. -----------------	 DRY BASIS ----------------------- 122.
C OC''Al	 :	 CAL/GRAM 123.
C 1?4'.
C 125.
C "LZI	 0 I'TRIBU T ION OF COAL 12^.

127.
C 1 23,

u3 REAM F-.10001NDPC 129.
44 READ(	 L0011(DPCF(I)•I=19NDPC) 130,
4F REA )(-, 1001) (FRACTC(I! •I = 1 .NDPC-) t31.	 j
46 DP2=C,, L32•
47' SUM =	 n.^ 133.
4u DO 20	 I=1.NDPC 134.
ri a OP1=DP2` 135.
S O C)P2-DpC'- ( T ) 13 6.
51 SLIM	 FP.,'\C'-C(T)*2.0/(DPI+DP2)	 +SUM 137,	 J
52 _20 CONTINUE' 139.
53 DCF =	 1.0/.,!Ir 139.
^A DCAV	 (3.014.1))	 *	 DCF' i40`,

141.
DCF	 SURFACE V	 1 1 IME MEAN	 DIAM`=TEP OF C,)AL	 FEED 142.

C
C OPERATING CONDI	

I
- NS 1 (BED CONOITIOM) 144.	

1

L45.
C ;K READ(591020)HLMF,V7•,-.HLF•PAV•TAV,TWAV.UHEAV 14!x. 3

C OPERATING CONCITION 2 	 (SOLIDS AND GAS FFEIS) L4r3.C 149.
gy p, READ(59102L)WCOAL*WAn.CABS9OF,TF*PFvFXAIP*(XGF(T),I=L,7)9 150.

i
1GZC09_GZHZS,GZH2 L51`.

a

I
k



57 IF (TF .EO. 0.0) TF s 298.0
59 T(1) = TF

15^.
L5

C 154.
C XGF ( I)	 :	 FEED GAS COMPOSI T ION (MOLE_FRACTION) 155.
C------------------------ -,----------------------------------___A ,--_ 1 56.	 3

C 1	 1	 2	 3	 4	 5	 6	 7	 R '	 .7
C XGF =	 02	 CO2	 Sn2	 H2O	 CO	 H25	 H?,	 N2 V9
C-------------------T--- ------ -------------------------------------- 159.

L60.
C GZCCI9GZHZS•GZH2 --- USED ONLY FOR FUEL RICH CASE 161.
C GZCO	 (CO FORMATIONRATE)/(CAR90N COM?USTION RATE) 162.
C GZH2S	 (H2S FORMATION RATE)/(SULPHUP FEED PATE) 153.
C GZHZ	 (H2,FORMAT ION RATE FROM COAL) / (H2+HZn FROM COAL) L64.
C 165. 1C GCOALC	 HEAT OF COMPLETE COMBUSTICN 	 CAL/G	 (COAL) 156.
C 000AL	 HEAT OF INCOMPLETE COMBUSTION	 CAL/G(COAL) 167.
C 1 fi3.

59 OCOAL=OCOALC-67636.*GZCO*XC/MC 169,
60 RFAD(591000)IGN?Tr 170.hl IF(WCOAL.FQ.0.) IGNITE_=0 171.
62 TSF=298. L72.

C---------------------------.----------
C F.IGNIT	 0	 1 L74.
C NO COMBUSTION	 COMBUSTION 175.	 ..
C ------ -----------------^^_------------------ L76.

63 XGF(R)	 =	 I.-XG F (i)-XGF(2)-XGF(3)-XGF(4)-XGF(S)-XGF((,)-X(,F(7) 177.
64 MGAS =	 XGF(1)*MO2+XGF(2)*MCO2+XGF(3)*MS02+XGF(4)*MH2r1tXGF(5)*MCn 17R.

L	 +XGF ` (6)*MH25+XGF(7)*MH2+XGF(F3)*MN2 179.
65 A 2= 1 . /((XH* 0. 5/MH2+XS/M5-)(O /MO2) *MC /'XC+1 .) LRO .
66 FMTH=MC(lAL*XC/(:MC*XGF(1)*'A2)*(1 •-XW)
67 FMF=FMTH* (1_. +EXAIR) 1+32 .
68 IF(UF.GT.O. )F^AF=[.)F*ATB(1)*PF/(RG*TF) 183
6 0 IF	 (UF.EQ,(1.0)	 OF	 =	 FMF*RG *TF/(PP*ATH( 1) 1 1.71
7 0 F"XA IP=L.ES 1 15.
71 IF(FMTH.LE.O.00OL)GO TO 22 1-15.
72 _ EXAIR=FMF/FMTH-1,, 1 17.
73 22 CONTINUE_ 1 a
74 IF(.FMF.LT.0.0001)STOP

Al=( XC*GZCO*0.5/MC+XO/MC) 2+( 1,.+GZH2)*XH*0.5 /MH2)*( L.- XW)+XV! /'MH2 1 1•J0
76 FMO=FMF+A 1 * ,WCOAL 1 << 1	 .
77 AN = 2.9E-8 * EXAI_R	 **	 0.449

1',4.
C FMO	 AVERAGE FLOW RATE OF GAS	 IN	 THr P FD	 M._

1	 ^.
78 A 	 (1 • 1 ) =FMF*XGF(Li/F MC- ((1 .;- GZH2 I*XH*0 .	 M H 2 + ( 1.-GZH2S) *X;/MS-X'1/ P 6.	 {

1MO2)*WCOAL/FMO*(i.-XW) 1 77,
79 AG(1.2)=- (GZCO*XC*0o5/MC+(L-GZCO)*XC/MC)*WCOAL/FNC7 *(1. -XW) 1J4z.
80 AG(2.1)=FMF*XGF(2)/FMO Leo,
81 AG(2.2)=(1.-GZCO)*WCOAL*XC*'(1.-XW)/(NC*F?+t') 200'.
82 AG(3•L)=(WC13AL*(1.-XW)*XS/MS+FMF*(XGF(3)+XGF(E)))/FM'i 201.

I	 83 AG(4.1)=(WCOAL*(XH*(1.-XW)/MH2+XW/MH20)+FMS*(XGF(4)+XCr-(5)§-XGF(7)) 20?.
E-(FMF*(XGF(F))+XGF(3))+'WCOAL*( 1.- X W)*XS/MS)*GZH25) *(L.-.3ZH2) /FmrI 2.03•

84 AG(5.1 ) =FMF*XGF(5)/FMO 204.
BS AG(5. 2)=GZCO*WCOAL*XC*(1.-XW) /(MC*FMC) 205.
86 AG( 6. 1) = AG( 3.`1)*GZ#12S ?06.
8 7 AG(7.1)= Ar,(4.1) *GZH2/(Y.-GZH2 1 207.'

C RHOCH :	 DENSITY OF CHAR 200,
C RHOCAD	 DENSITY OF CALCINED ADDITIVE 2LO.SH RHOCH =_(1.-XH-XO)*RHOC 21I-•99 IF( IGNITE.EQe0)9HOCH=RHOC 2L2.90 RHOCAD = (XCACO3*'MCAO/MCA CO3+X M 0003*MMGO/MMGCC3 +1.. -XCACr)3- XMGCO3) 213.>

I*RHOAD 214.
91 IF ( IGNITF .E0.0)RH0CA0=RHOAD 215•92 IF(CABS.EO.O..AND*WAD.GT.O.) 216..

ICAB S=MAD * X C ACrl 3 /MCACn 3/(WCOAL*( L-.-XW);*XS/MS+(XGF`(3)+XGF(6))*FMF) 217.
93 IF('CABS.GT.O..AND.WAD.E0.0.) 21x3,

1 WAD-=CABS*( 11' CD4L*(1.-X W )*XS/MS+(XGF(3)+XGF(6))*FM K )/(XCACO3/MCACF13) 219.94 WCAD=WAD*RH'1CAi7/RHnAQ 220.
95 RHOGAS=PAV*MGAS/(R'G*TAV) 22196 VISC=3.72E-6*`(7AV**0.676) 222.

C MAIN OUTPUT ? 22u.	 IC --- ---- -------	 --------- 225.'	 j
97 WRITE	 (592000)	 NA '4FL 1 . NAM EL2+XCA C O3,X M G r 03.(DPADF(I).F O ACTA(I), 226.

*I	 =.	 L,NbPAD) 227.
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98- WRITE (6.2010) DPADH• OPADR 2^8.
99 WRITE(692020)	 NAMECI•NAMEC29XCF.XCVoXI-.XSrXO•XNoXA.XWo000AL•OCOALC 229.

100 WRITE - (6*2030)- (	 DPCF ( I).FRACTC ( I)•	 I	 =	 1	 ,	 NDPC	 ) 230.
101 WRITE	 (692040)	 DCF * DCAV 231.
102 WRITE	 (6.OPCF) 232.
103 DO 25	 I = 1.46 233.
104 TIN (I) =TWAV 234.
105 UHE(I)=UHFAV 235.
106 25 CONTINUE -236.
107 ZAVG(1) =	 0.0 237,
108 X (1)	 =	 0.0 238.
109 DATA	 RR(1).RRB(1)9RRE(1)/3*0.0/ 2399
110 DO '30	 1=29 MT 240 •
ill . T(I)=TAV 241. t,
112 30 CONTINUE 242, t

C, *#*************** *>«a **t************* 243.
C INITIAL BUBBLE HYDRODYNAMIC CALCULATION 244.

113 IF	 (HLF-.FO.	 0.0	 •AND.	 VMF	 .EO.	 090)	 VMF'= VI)LUME(HLMF) 245.
114 CALL HYDRO 246.
115 DO	 611	 I =2.M1 247.
116 ZAVG( I) 	 =	 (	 H(I)	 + M (I- 1)	 )	 *	 9 5 2480
117 611 CnNTINUE 249.

C 250.
118 IF(IGNITE.EO.1)GO TO Al 251.
119 ETC=O. 252.
120 YAV=XGF(1) 253. ;y
121 XAV=WCOAL*XC/(WCOAL+WAD)*(1.-XM) 2540
122 FMO=FMF 255.
123 IF	 (WAD.EQ.0.0	 .AND•	 IGNITE .Ed.	 0)	 GO TO 900 256.

C 25.7.
C" FOR CONDITIONS	 A	 L	 8 .	 NO COAL COMBUSTION.	 IGNITION IS ZERO 258.
C WHEN NO IGNITIONS TEMP ITERATION .ENERGY RALANCEsMASS BALANCE 259.
C CALCULATIONS	 SKIPPED. 260.
C *** *************** t * *s***;*>irw******#*********#*****#*********# 261.

124 YB(1)	 = YAV 262.
125 YE(1)	 = YB(1) 263.
126 FEM(l) = UMF(l)	 *	 AT(l)	 * PAV /	 (RG*T(2)) 264.
127 FHM(1) = FMO - FEMO.) 265.
128 DO 115 I = 2 .	 46 265.
129 PROM =0'.0 267.
130 RRE(I) =	 0.0 268.
131 YB(I)=YAV 2690
132 YE(I)=YAV 270.
133 X(I)=XAV 271.
134 IF	 (I	 .GT.- M1) 	GO TO	 115 272.
135 FFM(I)	 = UMF(I)*AT(I)*(1.0-ETUBE(I))*PAV < /	 (RG*T(I)) 273.
136 FBM(() = FMO •- FEM(Cl- ?_74.
137 IF (UOW	 .LE.	 UMF(I))	 FEM(I) =- 0.0 275.
138 115 CONTi"UE 276-.
139 IF	 ( IGNITE	 F09	 01 GO TO 630 277.
140 41 CONTINUE 278.

C 27c).
C OCLCN	 HEAT CONSUMED BY CALCINATION. 	 THIS, HEAT CDNSUMPTInN IS 280.
C DI`STRiTBUTED''UNIFORMLY TO EACH COMPT. 	 HAVING( TEMP.>900 KELVIN. 281.
C 01tJ	 SENCIRLF HEAT CARRIED	 IN BY THE FEED SOLIDS AND GAS. 282.
C

141 : OIN =	 (CADF*WAD+CCF*WCOAL)*(TSF- 273.) + CGMF*FMF*(TF- 273.) 284.
142 OCLCN=(42500. 0*XCACO3/MCAC33 + 23Bi G.0*X+rGCC3/MMGCO3) 	 * WAD 7.8-5. r
143 CGM=6.8+0*SE- 3 *(T AV- 273.) 296.
149' C 5=0.215 287.
145 ELLOSS = 0. 0-' 259.
146 IF'(IF3C	 .GT.	 n)	 ELLnSS =	 0.0 289.
147 - CELU = WCOAL * XC * ELLOSS*(l.-XW)- 2	 0.
148 MELT = CELU / 0.25 col.
149 TAV=1200. 2,-12.
150 A4 =	 WCOAL *XC *(1.-XW)*(1.-ELLC)SS)/(FMn*MC) 2%3.	 -
151 AMODF = 10. 0 	* RHOCAD *	 (1.0 -	 EMF)	 /	 (RHCI CH * DCF) 204.

C 295.
C PREPARATORY STATEMENTS FOR THE WHOLF 	 ITFRATION, 296.
C 297.

152 ETCA = '0.9975
153 YAV _ FMF*XGF(l)/FMO - A4*ETCH*(1.-0.5*GZC1) 299.
154 DO	 130	 1	 = 2.4e 300.
155 T(:I)	 =	 TAV 301.
156 YB(I)=YAV 302.
157 YE(I)=YAV 30.3 1



i

less 130 CCNTINUF 3-4.
305.C BOUDARY CONDITION OF OXYGE N CONCENTRATION

E 306.
l59 YB0(l ) =AG(l9l) + AG(1.2 ) *ETC.P 307•
160 YEO(1)=YBO( 1) 308.
161 YB(1)=YHO(1) 309.
162 YE(I)=YEC1(l) 310.
163 M IOLD = M1 3110

t 312.
C FROM HERE Tn THE STATEMENT NO.600 	 TEMPERATURE ITERATION LOOP 313.
C 314.

164 DO 600	 ITP IAL = 1.30- 315.
165 CALL HYDRO 316.
166 DO	 150	 1 = 19M1 317•
i67,`_ IF	 (I.EO .1) 	 FEM( I)=UMF ( I)*AT(L)	 *(1.0- ETU8F..(I))-*PAV/(RG *T(2)) 318:
166 IF	 (I.NE.I)	 FEM(2)	 =	 UMF(I) *AT(i)*(I . O-ETUBE ( I))*PAV/(RG*T(I)) 319.
169 IF (Un (I) .LI * UMF(i ) )	 FEM ( I)	 =-FMn 3.-20.
170 F B M ( I 1=FMF)-FEM(I) 321.

"	 171. 150 CONTINUE 322_•
17 2 IF (ITRIAL. Nc:i•AND .MI.EO . MIOLD )GO TC'	 170 323.
1T ui - : il=l 324.
174 DO 56	 I=2.M1 325.
175 w 'Fc(I)=G._ 326.
176

.
WFAD(I)=O. 327.

177 J2=J1 328.
178 IF(Jl.GT.MF =FD) GO TO 56 329.
179 DO 55 J=JI , MFEED 330.
180 IF(ZF(J).GT.H(1)1GO TO 55 331• s
le 1 WFC(I) =WCOAL*F=C (J) * (X A+( 1.0-ETCP) *XC) *( 1.- XW)+WFC (I) 33Z-
182 WFAD (I)=WFAO(I)+WOAD*FFAD(J) 333.
183 J2- J+ 1 334.,
184 55 CONTINUE 335.
L gS J1=J2 336.
19F) 56 C0 NTTNUE 337.'
1B7 IF(J1.GT•MFFFn)Gn,TO 58 339.
188 DO 57	 J=JI.MFEED 339.
189 WFC(M1)=WFC(M1)+WCOAL*FFC(J)*(XA+(1.0-ETCP)*XC) *(1.-XW) 340.
190 WFAD( M1)=WFAD(MI)+MCAD*FFAD(J) 341.
191 57 CONTI;NUE 342.
1P2 58 CONTINUJ- 343.
i n 3 17`0 CONTINU 344.
1-4 DO 133	 1=2,M1 345.
I Q5 TOLD(I)=T(I) 34-6 i
Lc?6 133 C0 NTINU 1= 347.

C- 348. -t
C' FROM THE 'STA7rMENT;NO.	 200 To 300 :	 ITERA T ION 9F MATERIAL HALAhCE 349.
C BASED' ON THE GIVEN TEMPEP'ATUPE PROFILE•	 GAUSS SEIDEL [METHnO 350. }3
C -351•

197 -200 CONTINUE 352.
198 INDEX = 0 353.
199 DETC = -0.05 - 354.
200 EETCM- = 0.01 355 .
201 00	 201 NT =	 1,30 356.
202 299 CONTINUE 357.
203 WNETI=WCAD+WCOAL*.(XA+XC*(1.0-ETCH) *(1.- F=LLOSS) ► *(1.-XW) 359.
204 XAVIC=WCOAL*XC*(I. -ETCA) *(1. -XW) *(1. -ELLOSS)/WNET1 359.

DO	 1	 I	 =	 I . MI -360. -
206 1- X(I)	 = XAVIC 361. 1

C GF NB ` AND GENE :	 GFNER AT I ON PATE OF OXYGEN 362o 
207 GENE=O. 363.
208 GENB=O• 3b4.
209 TC,RATE = 0.0 365.;
210 DO 235	 I =2. M1 366-
211 CALL	 AKK(AKB.T( I) .PAV.DCAV.TP0(I) •Y©(I) qRG) `` 3F,7.
212 TAVB= - (T(I)+TPB(I) )/2. 3611.
213 CALL 'AKK(AKE.T(I) .PAV.DCAV.TPE(I) •YE(I") .PG)
214 TAVE=(T(I)+TDF(I) )/2• 370.215 I1=1-1 371. j
216 AM=AMODF*X(I) 372.
717 CA	 L -GPHAS^	 (AKB, AKF.AM.PAV.PG . ETUF3E(I).FPH(I ).F_PC(I ). 3730

IA K	 E(-I).DVBA(I).FBMFII).FEM(I1).FRt'(I)•FEM(I).T(I).TAVB.TAVE•YE3(I1 3740
2)vYE(11)+YB(I)sYE(I):.GENB.GENF) 3750

218 Al = DVPB(I)*MC 375.
219 RRH(I`)	 = Al *AM*(PAV/RG)*(EPC('I )-EPP(I))*YB(-I)*AKA/TAVB 377. +
220 RRE(1)	 =	 Al*AM*(PAV/RG)*(1.-FPC(I)-F-URr"(1))*YE(I')*AKE/TAVE 376.
22,1 RR (I ` )= (PPR( I) +RRE (I))/X(I ) 37q.
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i

j 222 TCRATE = TCRATF_	 + RRB( I)	 + RPF(I) 3,60 .
C* WRITE	 ( 6,202)	 I.RRH ( I1.PRE(I),RR(I) , YB(I),YE ( I) 3111.
C*202 FORMAT	 (*0','	 I,RRB(T).RRE(I),RR(I),YB(Y),YE{I) 	 l*T50.1599X9 382.
C* 1	 1PSE12@4) 333.
C* WRITE	 (69203)	 TPB(I),TPE(I),T(I).X(I),ETCA 384.
C*203 FORMAT	 ( 6 0 9 **	 -TP9(I),TPEr (i).T(1),X(C)._C7TCA,= 	 9 9T6091P5E12.4) 385.	 -
C* WRITE	 (69204)	 WFC(I),WFAD ( I),AKB ,AKE 3116.
C*204 FORMAT('0*9'	 WFC(I),WFAD(I),AKB.AKE	 =	 ',T609,1P4E12.4) 387.

223 235 CONTINUE 3811,
224 ETCG=f=MF*XGF( 1)+ WCOAL *(1.- XW)*XO/MO2--FBM(I'1 )*YB(M1)-FEM(Ml)*YF(M1) 3`1^).
225 F,TCG = ETCG3 (FMTH*XGF(l.)*(1.-ELLCSS)) 390.

_ C* WRITE	 (69205)	 ETCGsTCRATF 391.
C*205 FORMAT	 ( 4 0 4 950X9 1I ETCG	 =	 1 .F6e 4.20X,'TCP A TC	 _	 '9F7.3./) 392.

226 IF	 (	 NT .NE.	 1)	 GO TO 215 393.'`
227 IF	 {	 ETCG .	 LT .	 ETCA .OR.	 ETCG .GE.	 1.0	 )	 GO TO 215 394.
228 ETCA = ETCG- 395.	

^.
22 c GO TO 199 396.
230 215 CONTINUE_; 397.

w
C ; 393.
C DEFENCE FOR CONTRADICTON RF.TWFEN GAS AND SOLID MATERIAL BALANCE 399.
C 400.

231 TCAR = WCOAL*(1.-XW)*XC*(l.-FLLOSS) 401.
232 IF	 (ECPATF	 .LE,	 TCAR)	 GO TO 241 402.
233 00	 212	 I	 = 2.M1 403,
234 RPO(I) = RR9CI) * TCAR / TCRATE 404,
235 RRE(I) = RRE(I)	 *	 TCAR / TCRATF 405.,
236 RR( I) :	 =	 (	 RRR( I)+RRE (_I)	 ) _'/	 X( 1) 406.
23 ? BB	 = - AKBF( I 1	 '*	 DVBH( I)	 *	 EP9(I)	 *	 PAV	 /	 (PG	 *	 T( L)) 407.-	 i
238 IF	 (BB.EQ,O.)	 YB(I)	 =	 0.0 409.
239 BBL	 =	 F E M ( I --1 )	 *	 YE( I - L)	 -	 R I'F( I)/MC 409.
240 3B2	 =	 BE31 *B9/(8B+FEM(I ))	 -PR8(I)/MC +	 FRM( 1-1)	 YB( I-1) 410.	 r
241 IF	 (86 .NE.	 0.0)	 YB(I)	 = 692	 /	 (	 FBM(I)+FEM(I)*BR/(BA+FFM(I))	 1 41L.
242 YE(T)	 =	 (-	 YB(T)*R8+BRJ,)/(BB+F_M(T)) 412.
243 212 CONTINUE 413.

C* WRITE	 (6,230) 414.
C *230 FORMAT	 ( *0'.T o .'I • , T24.` FP9(T )' .T46.'RRF(T)'.T68.*RP(T)'. 415.
C* 1T90,'YB(I:)'.T112.'YF(I)•./) 416.
C* WRITE	 (69240)	 (I.RRB(I),^PE(I),RR(I)•YB(I),YF(I)-,I=2.Ml) 417.- ''C*240 FORMAT (11091P5E22.4) 418.

244 ETCG=FMF*XGF(1)+'WCOAL*(1.-'XW)*XC/MOP-FEM(M -)*YFJ(M1)-F-EM(M1)*YE( M 1) 41'1.-
245 ETCG, = FTCG/(FMTH*XGF( IL -FLL0S9 	 1 420.
246 IF	 (E T CG	 .GT.	 1.0)	 ETCG _ 0`.999 4Z-L-

C* WPITF	 (69205)	 ETCG.TCAF 4?2.
7. 47 241 C	 TICnN	 Eu _ 423.
248 250 CONTINUE 4?4.
249 WMIX(:l)=0: 425.
250 WNFT(1)=0. 4,2.5.
251 WDIS=(XA +(l.- ETCG)*XC)*WCOAL*(1.-XW)+WCAD-'4ALT 4?7.
252 IF 	 (41DIS	 . `L''.0.0) :WDIS	 =	 0.0 +2--

253 JL=1, ,;?'
254 51	 I=2.M1 47U.
255 WD(I)=0. 4i1.
256 J2=J1 432.
2.57 IF( ,)L.GTMDIS)GO TO 61 433.
258 DO 60 J=JI,MDIS 434,.
259 IF(ZDIS(J)*GT.H(I))GO TO	 60 435.-
260 WD ( I) =WD ('T) +WDT S*FD(J) 4 3f
261 J2=J+1 437.'
262 60' CONTINUE 43-;,
2.63 J 1=J2 43,1
264 61 ''	 C'3NT INUF 440.
265 IF(J1.GT, MDIS )GO TO 63 441.
266 DID 62	 J= JI,MDTS 44;?.
267 WD(M1)=WD(M1)+WDIS*FD(J) 4c3.-
268 62 ::	 CONTINUE 4u4.
269 63 CONTINUE 44'o. 

C (+4)  .
I C WMIX	 : UP- AND DOWN -WARD SOLID	 M XING FLC'W,WHICH	 IS-Sl1PERP rJSFr) ON 447,

C FLOW OF SOLIDS.	 G/SEC' 4411.
C WNET ( I) : NET FLOW RATE OF SOLT) FRC N 'THE TOP OF I-TH COMPARTME=NT. 449.
C POSITIVE VALUE MEANS` TH E UPWARD FLOW. 490.

270 DO 255	 I=2.M1 431.
271 -WNETE F) = WNET( 1-1)+WFC(I)+WFAD(I)-:WO(T)-RP(I)*X(I`) 4 32.
272 S(I)=0. 453.
273 IF(WNET(I ).GT.O.) S(I)=1.` 454.

I
274.

f

WMIX(I1=AT(I)*(1.0-ETUBE(I))*( tin(I)-UMF(I1) *(1.-EMF)*RHOCAD*F'W
`

455.

tr



I

I

j 275 IF(WMIX(I).LT•09)WMIX(I)=0. 4,5^ •
276 255 CONTINUE 40'•
277 , WMIX(M1)=O._ 4580

C 459.
C,CARBON CONCENTRA T ION CALCULATION. 460.C 461.

278 MM=M*M 462.
279 DO 411 I=19MM 463.
280 411	 AAA(I) =0.' 464._
281 DO 412	 I=1.M 465.
282 412 BBB(I)=0• 465.
283 AAA(1)=-RR(2)-WMIX(2)-WNET(2) *S(2)-WD(2) _467.
P84 AAA(MI)=WMIX(2)+(5(2)-1.)*WNF_T(2) 4689	 1
285 AAA(MM)=-RR( M1)-WMIX(M)-S(M1)*WNET( M1) - ( S(M)- 1.) *WNET(M)-WD(MI) 469.:
X86' AAA(MM-M)=S(M)*WNET(M)+WMIX(M) 470.

- 297 Al=(1.0-ETCP)*XC/(XA+( 1.0-ETCP)*XC) 4719
28R DO	 413	 I=1._M 4712.
2"4 T1=I +1 473.
290: IF	 (WFC(I1)	 •NE.	 0.0	 .OR.	 WFAD( 11) 	 * NE *	 0.0) 474 9

. *BBB(I) =-WFC'(11) *A1/(WFC( 11) +W FA_D( T1)) 475 •
2 0 1 413	 CONTINUE 4769
2 9 2 40=M-1 477,203 DO 270 1=29M0 478.
294 II=(1-11*M+I 479.
795 L1=I+1 480.
2 1?6 AAA(I1)=-RR(11)-WMIX(I1)-WMIX(T)-S('11)*WNET(I.l)-(S(T)- l.) *WNF.T(I) 481.

1-WDt I l.) 4920
?97 AAA(II-M)=S(I)*WNET(I)+WMIX(I) 483.
298 AAA(TI+M)=(5( I1)-1•) *WNET(11)+WMIX(I1) 484•
299 270 CONTINUE 485•
300 CALL SIMQ(AAA 9 BBB * M * KS) 4B6.

' 301 SUM=O. 437.
302 SUM2=0. 488.

Dr	 280	 I =I.M 4139.
304 X(T +L)
	

=	 1489( I) 490.
305 SUM2='SUM2+X(I+1)- 471.
306 280 CONTINUE 492.

'	 r -307 XAV=SUM2/FLOAT(M) 4)3.
' 308 SUM=0. 494.
' 309 DO 285	 I =29Ml 491^.

310 SUM=WD(I)*X(I)+SUM 4Q6.
i 311' 285	 CONTINUE 4`17.
' 312 CLOSS = SUM	 CFLU 495

i 313 E7CC =	 1.0 -	 SUM> /	 WCOAC *	 XC	 *	 (1 .-XW)	 *(1 .-ELL(?SS)	 1 4C1r).
C*	 DO 220	 I	 = 29M1 500.
C*	 WRITE	 (69206)	 I.WO(I)•WNET(I).X(I).ETCC•XAV 901.
C*206 FORMAT (' Ot . •	 THIS	 IS AFTER	 MATERIAL BALANCE CALCULAT IONS' . /. 502.
C*	 1''	 I.WD( I") * wNET( I)•xt I>,ETC.C.XAV	 9T509I5,5X,11'5F12.4) 503.
C*220	 ('7NT INOE 904.

314 EE = _ETCC - ETCG 505.
315, CALL CRRECT (NT9INDFX•DFTC.ETC19ETC29ETCA.E1 * E29EF.F; TCM) :305.
31.6 IF	 (INDEX	 * FO * 2)	 GO TO 211 507.
317 201	 CONTINUE 508.
318 WRITE	 (693400) 509.
319 3400	 FORMAT ( 2 0 0 .10X•'	 ETLA HAS NOT CONVERGE09	 S.NO.	 =	 3400'9/) 510.
320 211	 CONTINUF 51,1.
321 SUM=O. 512.
322 ETC =	 1.	 -_CLOSS_1	 (_WCOAL *	 XC	 *	 (1.-XW,)) 513.
323 DO` 2G0 T' =2.M1 KL4.
324 SUM=RR(I)*X(I)+5UM 515.
325 290 CONTINUE ?15•

C 517.
C	 THE DEFINITION OF RPM	 IS CHANGED FOR TEMPERATURE CALCULATIONS. 518.
C - ' RR(I) =(HEAT' GENFRATT9N PATE,- HEAT ,CONSUMPTION RATE) 	 IN THE 51',.
C 'IT.H COMPARTMENT• 520.
C ?1.

326 IOC=O 522.
327 -	 DO	 291	 1=2.M1 523.
328 IF	 lT(I)-900.)	 291.2919292 524.
329 292 IOC=IOC+1 526•
330 291 CONTINUE 526.
331 DOCAL = 0.0 527.

332' IF (IOC	 .GT	 0) DOCAL = OCLCN/FLOAT(IOC)' 526-
333 DO Zq S 	 1 = 2. M1 529.
334 AOCAL =1• 530.
335 IF	 (T(T)•LE.900	 )	 AOCAL = O+ 531.
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336 RR(I)=RR(Il*X(I)/ SUM *000AL*WCOAL*FTC-DOCAL*AQCAL 53,'̂

ri

337 295 CONTINUE 53'3.
338 300 CONTINUE- 534.

C 535 0

G CALCULATION OF T EMPERATURE - 536.
C 537.

339 Al= CADF*WAD/WCAD 53x3.
340 A2 = CCF/(XA+(1.O-ETCP)*XC) 53c4.
341 A3=CGM*FMO 540.
342 ALFA(2)=('ANFT(2)*S(2)+WMIX(2)+WD(2)1*CS+A3+UHE(2)*AHEAV(2)*DVF3D(2) 541. P
343 BETA(2)=((S( 2)-l•) *WNET( 2)+WMIX (2))*CS 5420
344 GAMA(2)=0. 543•'
345 DELT(2)=RR(2)+CGMF*FMF*(TF-273•)+(AI*WFAD(2)+A2*WFC(2))*(TSF-273.) 544.

L+UHE(2)*AHF_AV(2)*DVSB(2-)*(TW(2)-273s) 545.
346 DO 310 I=39M 546 1;

_	 347 I1=I-1 547•
348 ALFA(I)=(WNET(I)*S(I)+(S(I1)- 1.)* WNET(T1)+WMIX(I)+WMIX(I.1)+W7(I)) 54?. 31*CS+A3+UHE(I)*AHEAV(I)*DVBB(I) 549.
349 BETA(I)=((S(Ifi-1.)*WNET(I)+WMIX(I-))*CS- 550.
350 GAMA(I)=(S(I1)*WNET( 11 )+WMIX( 11))*CS +A3 551.
351 DELT(T)=RR(I)+(A1*WFAD(-1)+A2*WFC(I))*(TSF-273.)+UHE(I)*AHEAV(I)* 552.

1DVB'B(T)*( TW(I'-Z73,) 953.
352 310 CONTINUE SS4.''
353 ALFA(M1)=((S(M)-1 •)* WNET-(M)+WMIX(M)+WC(M1))*CS+A3 555.

1+UHE( M1 )*AHEAV(M1)*DVBB(M1) 555.
354 BETA(Ml)=O. 5570 1355 GAMA(Ml)=(S(M)*WNET(00)+WMIX(M))*CS +A3 559.
356 DELT( M1) =RR(Ml)+(A1*WFAD(Ml)+A2*WFC(M1))*(TSF"-273.) ri59a

1+UHE( M1)* AHEAV(Ml)*DVBB(M1)*(TW(M1)-273.) 540.-
C 561.
C	 TEMPERATURE SOLUTION BY SIMO 562.

357 DO 501	 1=1.MM 563.
358 501 AAA(I)=0.	 _ 564. i
359 DO 502	 I=1,M SF,S.
360 50? 8BB(I)=DELT(I+1) 56^.361 AAA(I)=ALFA(2) 567. 1
362 AAA(M1)'= -BETA(2) 5G8.
363 AAA(MM)= ALFA(MI) 569.
364 AAA(MM-M)=-GAMA(M1) 570.
365 DO 503	 I =2.MO 571.
366 1I=(I-1)*M+I 572•

f	
367 -AAA(I I)=ALFA( I'+1) 573. j
368 AAA('I I- M)=-GAMA(1 +1) 574._
369 AAA(II+M)=-13ETA(L+1) 575.
370 503 CONTINUE 575.
371 CALL:' SIMQ(AAA.BBB.M•KS) '577.
372 TNORN=O. 578
373 TAV=O. 579.374 DO 504	 1=2,M1 590.375 T(I)=BB6(I- 1)+273• 53j.

C* -WRITE 	 (6x2.07)	 I.T(_il 98?.
C*207 FORMAT	 (*0'.'***	 AFTER ENERGY AALANCF	 ***0	 I. T (I)	 _	 19I559F12.2) 533. S376 TAV=TAV+T(I) 594.

377 TNORM=TNORM+A8S(T(L)-TOLD(I)) 585.378 504 CONTINUE 5	 .379 TAV=TAV/FLOAT (M) 587
67

 . 
380 TNORM=TNORM/F.LOAT(M) X88.
381 360 CONTINUE 589.-

l C* WRITE	 (69208)	 TNORM 590,
C*208 FORMAT	 ( 1 0 0 .	 SOX.'TNORM =	 49T609F5.1)- 5^t,

382 IF(TNORM•LT•Ov01*TAV)	 GO TO 610 592.
383 M1OLD = M1	 - 593.
384 600 CONTINUT 
385 WRITE	 16.	 3003)	 - 9Q5.
386 3003 FORMAT('0*•l0X•'GAUSS SEIDEL % TEMPERATURE	 TRIAL HAS N?3T CONVFR(3CF). S'+F.

I; S.NO.	 = 3003 0 ./) Sa7.
387 610 CONTINUE 598.
386 - DO 520	 I = 2.M1 5'39.
389 Al	 =	 AHEAV(I)	 * DV88(1) 600. a390 HAREA = HAREA + Al 501. 
391 OTRANS = UME(I)	 * Al,*	 (	 T('I)-TW(I)	 )	 + QTPANS 6020392 RP(I) = RRM / DVSBEF (I) 603 ..
393 ZAVG( 1.)	 -	 (	 H( 1-1 jr, + -H(2`!	 1	 #	 0.5 boa.
394 620 CCNTINUE 605.

S

395 OVOL = OTRANS/BEDVOL 506.
396 IF (HAREA * NE *' 0.0) OAFEA = QTRANS/HAREA 507.

j
S^



347 TPB(I)=T(1) AB.
398 TPE(1) =T(1) 	„. 609.
399 TAV=T AV-273. 610.
400. 00 612	 I =1.M1 6110
401 T (I,)=T (L)- 273. 512 .
402 TP8(I)=TP8(I)-273• 613.,
403 TPE(I)=TPE(I)-273. 514.
404 612 CONTINUE 615.

C ____--__=_=__ 616.
C MAIN OUTPUT 3 617.
c 618.

405 WRITE(692001)ETC.XAV*TAV.ITRIAL.(I.YB(I).YE(I).X(I).H(I).T(I) 5190
1	 •ZAVG(I).TPB(I)•TPE(I).WNET(I).RR(I)9I=1+M1) 620.

406 TAV=TAV+273. 621-
C 622.

407 630 CONTINUE 623.
C CALCULATION OF SO'2 REDUCTION 624.
C

IF	 (IGNLTE.E0.0)	 TCRATE =	 0.0 408626,,
409 DO 710	 I =2.M1 627.
4l'O YBO(I ) =YB(I) 6280
411 YEO(I)=YE(I) 629.
412 YB(I)=0. 630.
413 YE(I)=0.	 :: 631.
414 710 CONTINUE 632.
415 FTS=1. 633.
416 A1= WCOAL*XS/MS*FLOAT(IGNITE)*(1.-XW) 634•
4.17 DENOM=(XGF(3')+XGF(6))*FMF+A1 635.
418 IF	 (DENOM .	 LE.	 1.E-6)	 GO TO 910 636.419" CABSE=MAD*XCACO3/MCACO3/DENOM 637.

C 638.
C CABSE : EFFECTIVE RATIO OF CA TC S(ACTIVE) 	 IN THE FEEDS 639.
C - `54-0.

420 DO 711	 I=2,M1 64L.
421 SRELB(I)=0. o4?-.
422 SRELF(I)=O. 643.
423 IF A TCRATE .LE. O •)	 GO TO 711 644. !''
424 SRELB(L) = RRB(I)/TCRATE*Al 545.
425 SRELE(I)	 = RRF(I)/TCRATE*Al 545.
426 711 CONTINUE 647.
427 SRELB (l) =0. 649.
428 SRELE(1)=0. 649.
429 YB(1)=(XGF(3)+XGF(6))*FMF/FMO 550.
430 YE(1)=YB('.1) 651.<
431 ETS=1• 652.
432 DETS=-0.1 653.
433 EETSM=0.0005 654.
434 INDX=O. 555.'
435 A2=0. 656.'
436 IFfWAD.GT.0.)A2=1•- 657.
43,7 DO 300	 I TRY = 1. 30 F) c;
438 =FSETS/CAESE 659.

C
C FS :	 FRACTIONAL CONVERSION OF ADDITIVE 661.
C 662.

439 AKO=AKAD(FS.DPADRoTAV)*A2 663.
C 664.-
C IF THE	 RESIDENCE TIME OF SOLIDS AT THE TCP CCMPARTMENT 	 I:,'Tpn ':;MALL 5ri5.
C AND UO	 IS SMALLER THAN UMF IN THIS COMPARTMENT. 	 IT	 IS ASSU+4F1) 566.
C LIME	 IS INACTIVE FOR S02 ADSORPTION. F^r^7, :	 a
C.

440 A3=1. F)r59 a
441 IF(UO(M1).GT.UMF(M1))GO TO 730 C,70.
442 THET` = VMF *(1.--EMF)*RHOCAD/WOAD 571.
443 IF( VMF*(1.-EMF) *PHOCAD•GT. WNET.(M)*THFT*5. )A3=0. r+7`2.
444 730 CONTINUE r,	 -3,
445 DO	 740	 I =2.M) -574
446 11= I-1 67`x.
447 AK=AKO 676.
449 IF(I*EO.MI)AK=AKO*A3 677.
449 AM=(1.-EMF) 6780_
450 CALL	 GPHASE(AK,AK * AM.PAV.RC,FTU9E( I),FPB(1').EPC( I) s 679.

1 A K 9 E ( I ).DVBB( I ) .f^1M( I I) 9 F E M ( 11) ,F&M, 	 I ) ,FFM( I ) ,T( I) ,T( I) ,T( 1 1 . 	 - 5,1
I1)*YE(11)+Y(1( I).YE(I).SRELB(I).S gFLF(I)) 6$1.

451 740 CCNTINUF 6R2.
4 52 ETSC= l.-( FBM(ML)*YE(M1 )+FEM(M.1) A YF(t-1 1)) /DFNOM 5R3.'

1
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453 - EE-ETS-ETSC - 68^ .
5854:454 CALL CRRECT(ITRY.INDX,BETS•ETSI.GTS2,ETS.FL.E2.EE.EETSM)

455 IF(INDX.E0.2)GO TO 810 6860
456 800 CONTINUE 6f;'l.
457 WRITE(6.3500) 6913.
458 3500 -FOPMAT( 0 0 # ,1ox,'	 ETS-HAS NOT	 CONVERGED.	 S.NO.	 3500',/) 689.
459 810 CONTINUE 690.

C ------------- 59L.
C MAIN OUTPUT 4 602.
C _-=_=_=__=___ 593.

460 WRITE(692005)ETS.FS.CABS,CASSE 594.
1. (H(L) ,ZAVG (I) ,Y5(I) ,YE(I),SRELB(I),SRELF(I ).1=2,M 1) 6'-15.

-461 XGO(1)=(	 F8H(MI)*YBO(Mj)+FEM(Ml)*YEO(MI)	 )	 / FMO 696.
462 XGO(2)=AG(2,1)+AG(2.2)'ETC+WAD*(XCACO3/MCACO3+XMGCO3/MMGCO3) 697. r
463 XGO(3)=(	 F8M(M1)*YB(M1)+FEM(M1)*YF(Ml)	 )	 /	 FMO 698.
464 XGn(4)=AG(491) 699.

I-	 465 XGO(5)=AG(5.1)+AG(5.2)*ETC 700.

467 XGO(7)=AG(7.1) 702.
468 ANOX = AN ** WCnAL * (1.-ETC)	 * QCCAL / FMO 703.
469 WRITE(692006)	 (XG'1(I),p1= 1.7)oANOX 704.
470 900 CONTINUE 705.
471 IF	 (V,iF.E0.0.0)	 VMF	 =	 SOLVOL 706.
472 IF (HLMF	 .EQ.	 0.0)	 HLMF = HEIGHT(VMF) 707.
473 IF	 (HLF	 .EO.	 0901	 HLF = H(M1) 70%1.

C 709.
C PRESSURE. DR IP CALCULATION; 710.
c ; 7LL..
C***#******#***###*****#*#***#*#**#**#**#*# 712.
C- ALL T HE PRESSURE DROP GIVEN IN CM OF WATER 71.3.
C 714.
C 715.
C PRFSSUPE DROP CALCULA T IONS ACROSS THE GISTRI3UTOR 71r.y

j C 7L	 e
474 TEMP	 =	 (T(1) +T(2))	 *	 0.K 71..L
475 PHOFG = PF * MGAS / (PG*TEMP) 7`1q.
476 UOR =-FMF * RG * TEMP/ PF /(AND*0-.25*PI*DNZL* *2) 720. -?
477 DPDIS = ( UOR/0.6	 ) **2 * RHOFG /	 (2.0*G) 721.
478 - WRITE	 (6.2050)	 OPOIS 722.

C 723. 3

C PRESSURE DROP CALCULATIONS IN THE 'FLUCTZTFD RED SF C T I9tl 724s
C 72L).

474 WRITE	 (612051) 7 ?n.
480" N1	 = M1 727. 1
4R1 IF	 (IFBC	 .GT.	 0)	 NI	 =	 Yl -	 L 72h.
487 nn 92o -I	 =	 2,N1 7?_R.
4R3r DPFLU	 -	 (1.0-EMF)*(1.0- EPB(.I) ).*(H(l)-H(I-1))	 #	 PH13CAD 730.
4 ,84 WRITF	 (692052)	 I. -DPFLU 73L-
419 -920 CONT I NUE 732. 
4A6 IF	 (IF'HC _.'EQ.0)- GO TO	 930 7 33 .

c 734.
C PRESSURE DROP CALCULATIONS IN THE FIXt-C ,BED SECTION 735.
C

487 E1	 =	 (	 H(M1)	 -	 H(M1-1) 	)	 /	 G 737.
488 E2 =	 (	 1.0 - EMF	 )	 / EMF ** 3' 733.
499 DPFIX	 = E1	 *	 (	 150.0	 #	 (	 1.0 -	 EMF	 1	 *	 f7 2	 *	 VISC	 '1'3(Mj) 734.

1 / nPR ** '2 +	 L.75 * E2 * O HOGAS	 00(Ml)**2/nPR) 740.
4°0 930 CONTINUE 741.
4r) IF	 (	 IFBC	 .EQ.	 0	 )	 DPFIX	 = 0.0 742.
4 q 2 WRITE_ '(692053)	 DPFIX, 743.
493 WRITE	 '(69OPCF 1) ' 744. s
494 WRITE(692060) 745.
495 DO' 910	 1	 =	 2,M L 746. a
496 WRITF(6.207O)	 I	 H(I)*ZAVG(l),DBAV(I),t)B(I),EPE?(I).FPC(I),U")((). 747.M LUMF (_I) 740. .
497 910 CONTINUE 740.
498 1.000 FORMAT(110) 750.
499 1001 FORMAT(8F10.0) 751.
500 1010°"I00'ORMAT(2AA /(8F10.0)) 752.
501 1020 FORMAT(8F1'000)' -,753.	 -
502` 1021 FORMAT(8F10.0) 754.
503 2000 FORMAT	 (' O' . 1X ,2A4.10X,' XCACO3	 =	 ' , F6. 3. 1 OX,' XMGCO3 = -' . F6.'3/' 0 4' , 755.

*T41.' DPADF' ,	 CM I ,T81 o l WT.FRAC T IC'N' , /,' 0' , ( T 41 .F8.4 . T 81,FB.4)) 756.
504 2001 FOPMAT(//LOX,'PESULTS 	 ALL TFMPERATURES	 IN CLNTIGZADE:'// 757•

j *•	 5TCIXAV.TAV91TRIAL ='•3E12.4.14// 7	 li
12X* 1 1'96Xs'YB'rlOX,'YE'•,LOX,'X',l'lX,'Z''e11X.'T' ,1OX,'7_AVG' 759.
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2s1OXs'TPB'sLOX.'TPE', 7Xs'WNET',9X,'RR'/(I491P10E12o4)) 7(^O
505 42005 FORMAT(//'	 (ETS9FSoCA8S9CABSE)=' /LOX,4E12. 4//7Xr'HTo'910X.'ZAVG', 761.

110X*°YB' 910X*' YE's10X,'SRELB',9X9'SRELE•/(1P6EI394)) 762. a
^.v506 2006 FORMAT(/'	 OUTLET GAS CONCENTRATION'' 	 .//5Xs'O2',IOX•'CO2'99X9'5O2'9 763.

19X9'H2O',9X,'CO'.IOX,'H2S'v9Xs'H2'910X.'NCX'//8E12o4//) 764. :'f
507 2010	 FORMAT	 ('O',5Xs'SURFACE VOLUME MEAN nIA.	 = DPADH =	 'sF10.493X,'CM' 765. }j

*.5Xv'WEIGHT MEAN DIA.	 = DPADR = I *FIO .4,3X,'CM'9/) 765.
508 2020	 FORMAT	 ('0's1Xs2A4s3Xs'XCF	 =	 'sF5.393X,'XCV' =	 '9F5.393X9'XH =	 's 7b7.

*F9.3s3X9'XS =	 '9F5o3..3,X9''XO	 =	 '*F5.3,3X.'XN	 =	 '9F5o393X9'XA	 =	 ', r33.
SF5a393Xs'XW =	 ' ,F5o3, /s11X9'000AL =	 ' 9F8.293Xs'CALS/GM' 910X, 7f `^. j
'QCOALC =	 'sF8.2s3Xs'CALS/GM'9/) 770.: 1

509 2030	 FORMAT	 ('D'9T419'DPCF	 s	 CM'sTBl9 , WT.FPACTION'/'0'9(T41,F9.4,T81, 771.
*F$.4)) 772.

510, 2040	 FORMAT( Q 0 l .T21, $ SURFACE VOL MEAN DIA rF CCAL FEED = DCF = '.FL0.4. 773. 1*3Xs'CM 8 o5X9'DCAV	 =	 •sF10949/) 774.
511 2050	 FORMAT ( 1 0 1 94OX9 9 PRESSURF DROP ACROSS THE DISTRIBUTOR = 	 ',1PF11.4) 775:
512 2051	 FORMAT ( 0 0' 92OXe'COMP.NO' 913X,'PRESSUPE DROP	 IN THE 13F_D' 9/) -776.
513 2052	 FORMAT (20X*I5,20Xs1PE11o4)	 - 777.
51 4 2053	 FORMAT ('O' 94OX,'PRESSURE DROP IN THE FIXED BED SECTION = 	 '.l w Fll. 779.

*4) 77`9.
515 2060	 -FORMAT	 ( l O'.3X ♦ 'I'93Xe'HETGHT'96X9'ZAVG'93X9'AV.BUBOLE	 DIA'96X, 780. _sa

P BUBBLE VFL.*,4X * ' 13UBBLE - FRACs' ,5X,' CLOUD FRAC.' 96X9' S(.)P.VELOCI TY' 781.
t- m5X9'MIN9FLU.VEL9 0 9/) 782. ,.

516 2070	 FORMAT	 (I59F8.392X9F8o3r£(3XYl P E12.492X)) 783.
517 10000' STOP 764.
918 END 785. a L"

519 SUBROUTINE	 AKK(AKRsT9P,DC9TP9YD2 * FG) 786o ry
C 787.
C	 THIS COMPUTES REACTION RATE AKR9 AND PAR T ICLE. TEMP.	 TP 7B^To `:	 4C

789.
520 EM=0,5 7^D.
521 SIGM=1.36P-1Z 701•
522 SHP=2, 7Q2.
523 INDX=o 7^>3.
524 DTS=100.

t^4.

925 _	 TP=T 7C;-5.
526 ET:SMAX=0.'05 795:
527 Do	 100	 I = 1,30 747, j
92a AKS=EXP( 17`.9-35.7/ (.001986*TP')) *TP/ 1000. 7 :>k
529 TAV=(T+TP)*.5 7GR. a
530 D=4926*(TAV/1800.)**1.75/0 ?n0,
531 COND=0.9659-04+1.07E-07*TAV
532 AKF=SHP*D/DG R-07_ .
533 AKR=L./11./AKS+I ./AKF) A03o
534 FTS=TP-T-AKA*P*Y02*7900./((2.0*COND/DC+(((TP+T)*TP K04.

*	 +T**2) *'T o + T **3) *EM*SIGM)*RG*TAV) 305
535 CALL CRRECT(I,TN n X,OTS, TPI,TP29T P ,E1,F2',ETS.ETSMAX) 906.
536 IF	 (INDX.FQ.2•)	 GO	 T rl	 110 $107.

{

537 loo CnNT INUE 30`?.
538 WRITE	 (6,	 4000) 509.
539 4000 FnPMAT ('0'.1OX9'TP CALCULATION HAS ^:FT CCNVERGED. 	 S N0.=4000'./) 'A Lo r
540 110_ CONTINUE 911. :-1
5+1 RETURN AL2.
542 END 813.

543 SUBROUTINF	 CRRFCT (I.INDX,DX,Xl9X29XNFW,''L.E2,E9EMAX) 314.
C	 I:	 NUMBER OF THIS TRIAL,	 1	 FOR FIF£,T T r-TAL 1a.
C `	 t	 I NDX	 INDEX OF THE TRIAL `_LF Vt: L a16.
C	 INOX=O: JUST PROCEEDING --317.
C	 INDX =L: THE ROOT HAS BEEN CAIIGHT BF"AFPN X) 	 AND X2 31	 ?. ;_
GI	 INDX=2: THE I TFRATION HAS CONVEPGFD ' La.

>	 544 IF	 (A8S(E).GT.'FMAX)' GO- TO	 S u?0•
545' I NDX=2 -121
546 RETURN uZZ. f'
547 5 CONTINUE X23•
548 IF(INDX.EQ.1)	 Cn	 TO	 100 824.
549 X2=XNEW 525.
550 E2-E 926.
551, 1F( I'oEQ.I ),	 r;'l	 TO	 10' 827.- r+

552 IF(E1*E2.LF.'). )1NDX=1 929.
=S3 IF( INDX.FQ. 1)6n 	TO, 1 15 0 92?. -
S54 10 )(1= X2 1330. I
555 E1=F2 931.

r
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556 XNEW=XNEW+DX 832 .
557 RETURN 83 .3
558 •100 CONTINUE 834.
559 IF(EL*E.LT.O.)	 GO TO	 110 835.
560 - 'E1 = F 936.
561, X1=XNEW 837.
56V GO TO 150 933.
563 110 E z aE x339.
564 XZ =XNFW '340.
565 150 CONTINUE 8410
566 XNEW=(XL-X2)*F2/(E2- E1)*X2 342.
567 RETURN X43.
566 END 844.	 r	 ^.

569 SUIBROUTINF SIMO(A * B * N*KS) 84.50
570 DIMENSION A(211.6)9N46)- 346.

J C 947.
C FORWARD SnLUTION 849.

949. <
571 T`1L=0.0 B50
572 KS=o - 85L.
973 J J =-'h3 8'52. 
574 00 '65	 J=1.N 953•
575 JY=J+1 954.
576 JJ=JJ+N+1 955.
577 RIGA= O. 8569
578 IT=JJ-J 857.
579 00 30 I=JsN 8580

C 559.
C SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN 860.,
C 8 ^i 1 .

590 IJ=IT+I 952.
581 IF(	 ABS(BIGA)	 - ABS(AfIJ')))2 0 9 30s 30 y^3.
9 F?2 20 RIGA=A(IJ) 3hh.
a93 IMAX=I Fih5.
S84 30 CONTINUE OFF,,

C
a3 r`, 7 .

' C TEST FOR PIVOT LESS THAN TOLERANCE t SINGULAR MATRIX ) 963.
C z59.

595 IF(	 A8S(SIGA)	 - TOL)	 35935.40 ';70.
5R6 35 KS= 1 '-37 L .

` i 5R7 WPITE(69 100) 	 KS 972.	 1i 568 100 :FORMAT(/ s 	NO	 SC]LUTION' •' 	 KS=' , I2) i	 R73.	 '
I 589_ STOP 174.C' R79.
1 C INTERCHANGE ROWS IF NECESSARY -1TF,.

C 977.
{ 590 40 11=J+N*(J-2) 873.

591' I T= I M AX- J 9 l'd .
f 992 DO 50 K=J.N 4RO.
I 593 I1=I1+N 881.	 d594' t2=I1+IT 982.I 595` SAVE=A(I1) a53.

596 A(I1)=A( 12) RF34.
597 A(12)=SAVE . 3

995
C 995 .
C DIVIDE EQUATION By LE&CING COEFFICIENT 9-97.i
C.598` -50 A(11)=A(11)/BIGA qH?

599 SAVE=B(IMAX) "o .
600' B(IMAX)=B(J)
601 B(J)=SAVE/BTGA +tZ
C.; 3C ELIMINATE NEXT VARIABLE 1A 	 14	 .

5602 IF( 	 J -	 N)	 55.70 9 55
603 55 I`QS-N*(J-1) 9Q7.
604 on 55	 IX=JY.N c3911
605 IXJ=IOS+IX 8c)9,
606 IT=J-IX 900.
607 Dn 60 JX=JY.N 901.608 IXJX=N*(JX-1)+IX 902.
609 JJX=IXJX+IT 903
610; 60 A(TXJX)=A(IXJX)-(A(1XJ)*A(JJX)) ()!04.
611 65 ©(IX)=B( IX) -»3(J) *A(IXJ)

-4
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906•f C	 BACK SOLUTION 907.
908.

612_ 70 NY=N-Z 909.

613 IT=N*N 9 10.
614 - DO	 9,0	 J=1, NY 911 •

615 IA=IT-J 912.
616 I B= N- J 913 .

617 I C=N 914 •

618 DO	 90	 K =1 . J 9150
619 B(IB)=8(IB)-A ( IA)*B(IC) 916.
620 IA= IA-N 917.

80 RE
	 1

918  • ^	 1s62.2 TURN 919.
623 END 920. s

624 SUBROUTINm GPHASF(AKR.AKE.AM ,PAV,RGvFTUREvEP89E P C.AKDE,D V '3R .F9 M O9 921.
*FEMO.FBM • FEM. T . TB sTE. YBO .YFO sYB1 ,Y EI . GENR, GENE) 922.

625 D1= ((I. -F-UPE-EPC)*AM*AKE/T F +AKBF*EPB/T)*PAV/'PG*DVBB+FFM 9230
626 ALF=AKBE*FPR*DVBB*PAV/(DL*RG*T)_ 924.
527 D2 = FBM+ALF*FFM+((EPC-EP9)*AKB/TB+ 4259

1ALF*(1.0-1=PC-ETUBE)*AKE/TF_)#DVB9*A M *PAV/ PG 925.
528 IF	 (D2	 .EO.	 0.0)	 YR1	 = 0.0 927.
629 IF	 (D2	 .NF.	 0.0)	 YBI =(FBMO*YBO+GErt3+ALF*FFMO*YEO)/D2 92g.

- 630 Yl- I= (YEO*FF40+GENE)/D1+ALF*YRl 5299
631 RFTURN 930.
632 END 931.

633 FUNCTION AKAD(FSDP.T) 932.
634 DIMENSION FR(13) vRR(13-).RB(13), RC ( 13 ) 933.
635 DATA	 FB/0.0,0.05.0.1.0.2.06390.490.5.0.6*0.7.0.990.990. g5.1.0/ 934•
636 DATA	 RG/1,0,0,22.0r075s0.0010`5.0.00O40.0.0 p 022.0.00015.-0 . 000 1L. `?35.

10.00007 9 0.0000490.00002.0.0000191.E-10/ 336.
637 DATA	 Re/1.0.0.6.0.39.0.165.O.C3.0.0071.0.0036.0.00225.0.0014 1, . 137.

11	 0.00089,0.00042.0.00017.1.0E-lo/ a3a.
638 DATA	 PC/1.090.7590.63,0.4590.3390.21 	 0.115.0.05.0.OL9.0.0072, ()3c•

1	 0.002e90.001291.OF-10/ 940.
_639 DPI=0.13 041. 3

640 DP2=0.025 'x17
641 DP3=0.0096 )t3.
642 IF(DP	 .GF.	 DP2	 )	 XXX=AL0G(DP/DP2)/ALCG(DPl/RP2)

I ' 643 IF(	 DP	 L . T.. 	 DP2)	 XXX=ALOG(DP/Dn3)/ALCG(DP2/F)P3)
644 ALI ME=O'.0 94
645 AKAD = 0.0 u47•

I	 646_ IF(	 FS _ GE.	 1*0)	 PETURN y4	 .
647 DO - 10	 1 =2, 13 34 d.
64.8 N= I Q50 
649 IF(	 FS	 .LF.	 FB(I)	 )	 GO	 TO 11 951•
650 10 CONTINUE 9SL•
651 11	 CONTINUE `)53
652 N1=N-1 9514.
653 A=(FS-FB(N1))/(FB(N)-FB(N1)) 9S5•
654 IF( 	 DP	 .LT.	 DP2)	 GO	 TO	 12 956.
655 R1=(PR(N)/RR(N1))**A*RP(N1) 057.
656 R2= (RR(N)/PR( NL) )**A*RF (N1) `^"•
657 GO TO 13 Q5g
658 12 CONTINUE

**R-
1)l'0•
961659

660
P1=(P0(N)/RB(N1.))*A8(N1)-
R2=(RC(`N)/RC(N1))**A*RC(N1)-

661 13 CONTINUE 7^3:
662 ALIME=(R1/R2)**XXX*P2 964.
663 IF(	 ALIME	 .GT.	 1.`0)	 ALIME=1.0
664 TSG =	 T` 1ati.
665 IF	 (T	 .LT.	 1100)	 TSG =	 1100.0 ^f v666 SG = -19'3.75*TSG + 2.75F05 96-3.
667 AKAD = '490.0*FXP( -17500.0/1.487/T)* SO	 ALIMF. 960.

C*	 WRITE	 (6v20)	 AKAD- 970.
C*20	 FORMAT	 (• 0 • •50X• v AKAD =	 v . 1P'= 12:,4) 971'.

668 RETURN 97N-+
669 END: n7J. v

67 0 SUBROUTINE DESIGN 074•
671

i

COMMON ZHE(46 ).AHE(45)vPV(46)vPH(46),ZF( lit). FF C(46), 075.
3
a

I
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j

! 1FFAD(46)?ZDIS(46)iiFI)'(46)•AHEAV(101).ETUBE(101)•DB(46).MFFED•MDIS 97/6.
672 COMMON /DEHYD/ OSED^^011•ABED(101)vDTUHF_I (101) • 9 79

I PHI( 101)vPVI(101 ) -. D,	 (101). 978.
21ARRNG(:101) 979.

673 - COMMON ./GEN/ Z(101)90VBEFF( IOI)• ZB(46),AT6(46),PI,DZA V ,M T 99M T o M l#M 980.
674 COMMON/DEMAIN/ANDoDNZLsDTHICKeFW 981.

!	 675 DIMENSION' DTUSE(46),IARR(46) 982.
j C 983.

C AXIAL VARIATION OF BED CROSS SECTION 984.
C 965.

'j	 676- READ	 (591000)	 Al.A2.A39A4 986•
j	 677 READ	 (5.1001)	 MTB,(ZB(J).ATBCJ),	 J =	 1.	 MTB) 987.C 988. r

C IARRNG	 1	 2	 3	 4 999.
C fl -----	 VERTICAL TRIANGULAR ARRANGEMENT 990.
C ---•--	 VERTICAL RECTANGULAR ARRANGEMENT 9910
C 3	 _---	 HORIZONTAL INLINV ARRANGEMENT 992.

C 4 -----	 HORIZONTAL STAGGFRFD ARRANGEMENT 993.
C 994•

{ C 995.
C HEAT EXCHANGE TUBES 996.

678 READ, 1 5s1002) MTHE*(ZHE(J+l)tAHE(J).DTUAE(J),PV(J)r0H(J)v 997•
RIARRiJ).	 J =_1,MTHE) 9980

C g99.
C LOCATION OF FEED AND DISCHA RGE	 '`1000. -

679 READ	 (591001)	 MFEED,`(ZF(J) sFFC(J) sFFAO(J) ► 	 J =	 1.MFFFFD) 10010
C 1002.

- 680 READ	 (5+1001)	 MDIS,(ZCIS(J),FD(J).	 J =	 I.MDIS) 1003`.
1004.

C DISTRIBUTOR 1005.
j C 1006.

681 READ	 (5#1003)	 AND	 a	 ONZL	 ,	 OTHICK 1007.
682 DO	 100 J '=	 1.	 MTHF 1009 .
683 IF	 (AHE(J)	 .GT.	 090)	 GO TG; 100 1009. )
684 IF (DTUBE(J)	 .ED,.	 090)	 GO TO 100 1010.

-685 AHE(J)	 = PI	 #	 DTUBE(J)	 /	 (PH(J)*PV(J)) LOLL.
^'686 00 CONTINUE 1012. 3

i 1013 .
C CONDITION FOR COMPUTING AVERAGE CELL SIZF LOL4.
C 1015.

687 READ	 (59 1003)	 DZAV.FW 10 16.
688 1017.
689

N 
_ B(MFLOATD (N) ) *IF	 (Z$(MTB)	 -	 DZAV .GT.	 0.1	 * DZAV1 N _ ") + 1 lo ln ,

11	 GO TO 25
i 691 WRITE	 (69 2020)	

N
1020-

692 2020 FORMAT	 (	 o	 .ZOX. ARRAY SIZE FOR -Z TOO SMALL.	 N >	 (101).	 T2aCE hZAV1021. a
1	 IN SUBROUTINE DESIGN *	MAKE SURE N <	 Z ARRAY SIZE.	 N = '9T5	 ) 1022-

693 STOP 1023.
694 2 95 CONTINUE 1024.
695 WRITE	 (b,2000)	 A1,A2,A39A4 10p5.
696 WRITE(69 ZOOI) 1026-i
697 WRITE	 (`6,?_002)	 (ZFl(J)•-ATB(J).	 J	 =	 1,MTE') 1027.
696 WRITE	 (69 2003) 1029.

699 WRITE	 `(692004)	 (ZHE(J+ 1)# AHE(J)DTURE(J).PV(J)•PH(J)9I;"R(J). 102?.
1	 1.MTHE 1 1030 .

700 WRITE	 ( 6 92005) 10 31.
701 WRITE(692006)	 (ZF(J).FFC(J),FFAD(J)s.	 J =	 1,MF`EED) 1032+
702 WRITE	 ( 6.2007) L033-
703 WRITE	 (6,200?)	 (ZDIS(J`),FD(J),	 J	 =	 I * PDTS) 1034.
704 WRITE	 (6#2009)	 AND.DNZL,DTHICK,DZAV,FW 10350-'

1036.
C SPECIFIC HEAT m XCHANGE AREA CALCULATION FOR EACH COMPARTM = NT 1037.
C 103x.

705 z(i)	 = ze(1l 1030.
706 ASED(1) 	 = ATB(1) L040- 3=707 DBED(1 )' = SORT(4.0 *	 ABED(1)	 /' PI) 1041.
708 DVB(l) ,=	 0,.0 1042.
709_ DvsEFFtl1	 0.0 1043•
Ito zHE C 1 1	 0.0" 1044.
7 11 IARRNG(l) = 0 1045.
712 00 10	 1 =	 1,N L046.
713 Z(1+1)	 =	 Z(I)	 +	 DZAV 1047. 1

714 IF	 (I	 •EO.	 N)	 Z(1+1)	 = ZB(MTB) L04--.
715 OO 20 J = 1.MTHE L049.
716 IF-(	 ZHE(J)	 .LEe	 Z(I)	 .AND.	 ZHE_(J+1)	 .GF.	 Z(1+1)	 1	 GO	 TO	 30 L0500
717

i
IF`(	 ZME(J)	 +LF.°;Z(I +1 )	 .AND.	 Z'H F (J +1) 	.LT.	 Z(I+1)	 )	 Go	 TO	 20



I	 ^

718, DENOM - Z(I+i)	 - Z(I) - 1052.
719 F1 =	 ( Z(1+1) - ZHE(J)	 }	 / DENOM 1053.
720 F2 =	 (	 ZHF(J)	 - Z(I)	 )	 / OENCM 1054.
72t AHEAV(I+1)	 = F1 * AHE(J)	 + F2 *	 AHE(J- 11 1055. 1
722 DTURFI(I+I)	 Ft	 # DTUBE(J)	 -t F2 * OTUSE(J- 1) 1056.
723 PVI(1+1)	 = Ft	 #	 PV(J)	 + F2 # PV(J-1) 1057.

T24 PHI(I +l) 	 = F1 *	 PH(J)	 + F2 # PH(J--1) 1058.
725 GO Tn 40 1Qgq,

726 30 AHEAV(1+1)	 = AHE(J) li"O.
727 DTUBEI(I +I) 	_	 DTUBF(J) 1041,
728 PVI(I +1) 	 = PV(J) 1062.
729 PHI(I+i)	 =	 PH(J) 1053. 1

730 40 IARRNG(I+1)	 =	 IARR(J) 1064.
731 GO TO 50 lOnS.
732 20 CONTINUE 1066. s

733 50 CONTINUE 1067
C 106s:
C CELL VOL CALCULATI nN 1069.
C 1 D70.'

734 CALL	 AREA	 (	 Z(I +1) e0BED( I+I ), AIIED( I+1)	 ) 107L.
735 DVB(I+Y)	 =	 0. 5	 *	 B:A8ED(I +1)+ • A8ED(I))	 *	 (Zt t +i) -Z(I)) 1072.

C 1073.
C r-FFF-CTIVF CELL VOLUME EXCLUDING THE VOLUME OCCUPIED BY THE 1074.
C HEAT EXCHANGE TUBES 1075.C 107A.

736 DVREFF( 1+1) 	= DV9(I+1)	 #	 (1.0 - Oe 25 *	 AHEAV(I+1)	 # DTU9°I(I+I)) 1077.
C lU'ts.
C TUHF: VnLUMF FZACTION 107').
C 1090. y?

-7 37 ETUBE(I+1)	 =	 1.0 - DVBEFF(I +I) 	1 DVB( I+1) 1091. 1
738 10 CONTINUE 1092.
739 WRITE	 ($'.20I0) I0A3.
740 Ml = N+l LD34,
741 MT = M1 1)P,S.	 I
742 DO 60	 1	 = 2	 ,	 M1 1 0 3,	 !
743 WRITE	 (5.2012)	 I,Z(I)•DVB(I) * DVBEFF(I) * FTUBF(T)*AHEAV(I), 1037.

IDTUBEI(1).PVY(l),PHY(1),IARRNG(I) 1059.
744 FAO CGNTINUF 103 9.
745 WRITE	 (6,2011) 10,40.
746 _DO 70	 I	 1,M1 1091.
747 WRITE	 (6.2013)	 I *Z(I) 90F3ED( 1) * ABED(T) 1092
748- 70 CONTINUE 1083.
749 1000` FORMAT (4A4) 1004..
750 1001 FORMAT	 (I10/(KF 10.0)) 10x5. j
751 1002 FORMAT _(TI0 /(_5F10.0, Tj0)) 10q-5.
752 1003 FORMAT (8F10.0) 1097.
753 2000' n '	 0X,4	 40//FORMAT- (	 i	 ,2_	 A	 ) IoP9 ,.'
754 2001 ,	 FORMAT	 (* O' ,T4 1, 'HT.ABOVF	 D I';TR 1 HU TnR ,CM' ,T ;11.' CRC)SS	 SFCTI I)I lIAL	 ' Low-). 1

1' AREA	 OF	 9':D,SO.';M.' ,/) 1140.
755 2002 FORMAT (T49,F8.4.T g6wF10.3) 1101.
756 2003 FORMAT	 ('O',T6,'H^-TGHT,t:M',T20,'SP.H;-A.T	 Tr^ANS .4R;`A,SO.CM/CC).(- M'. 1102 ,

LT989'OTA.OF	 TUi3FS.CM'.T713,'VFQ.PITCH,CM',T959 9 H')R.PITCH,: 149 ,	 -1103.
2Tll3,'TUHES ARRNGT*./)'1104.

757 2004 -.F6.3.T99.F,.3, T118#12)FORMAT (TR 9 F6. 29 T33,F8o4, T62 * F6.3 * Te2 	t 1109.
7 1;8 2005' FORMAT	 (' 0' ,T2_1 ,' SnLIDS' FEEL)	 LFVFL' , T51 , ' FP AC-r Tntd	 CnAL FED'. 1106.-

1T810FRACTION LIMESTONE FED',/) 1107.
759 2006. FORMAT (T27 * F6.2,Tn8,F6.4,TSAsF6.4) 1108. 1
760 2007- FORMAT	 ('0*9T21.'snLIDS ni'3CHARGF	 1.FVEL'9T519'FRACTI0N OISCHAPGED'1109.

1 * 1) 111n. 'i
761 200f3, FORMAT	 (T29.F6.2,T^-SvF6.4) 1LL1.
762 2009` FORMAT	 (*0 0 +	 T12v'Nn.OF C)ISTPIBUTOR	 HOLES	 ',T40,'='.T45.F7.1,/, 1112.

1 4 0'9Tl2,'W)tZLE	 DIAMETER	 '.T40# 1 	'9T459F7.493X,'C +a */'O',TL,'., 1113•
`2 9 DISTRIBUT01 THICKNFFS	 ',T40.'='.T45.F7.4,3X.'"CM'./,'0',T17. 1114.

3 1 AVERAGE	 CELL SIZE =	 PZAV	 ' ,'1"40'.'=' ,T45,F3.3,3X,' CM' ,/,' 0' . r l2 , III,
4*'FW* aT40e v=$ tT45sFEa3) 111F'. i

763 2010 FORMAT	 (_1 0*	 TS * 'NO.',TlO,'HFIGHT'.T20`,'CFLL	 VOLUME'	 T35v'CFLL	 FFF . 1117. 1
}VOLa',T50*'TUBE. 	 VOL * FP.* * T62. 'SP.HE.AREA'.T75,'TUB- , 0I4. 1 9 Tu7 ILLY.

O VER.PITCH',TI00,'-H('IR.PITCH',TL1 4 ,'TU RE	 APRNGT',/) 1119•
764 2012 40 BRMAT	 (T3.13`6 TlO.F6.2*TIS.IPEIZ `.4,T33,1PE12.49T5091PE10.39 T62, 1120.

*IPE10.3,T7591PE10.3,T87,IPEIO.3.7100.IPI= 10.3.T116. 1 3) 1121.	 t
765 2011 FORMAT	 1'0',TID,'GOMPT.NO.',T259"HFIGHT'9T42,'8ED	 DIA09T55 * 1L22.-

1 4 BED C/S AREA*./) 1123. a

766 2013 FOR'MAT	 ( T12,13,T259F6.2 ,T4091PEI0.3. T5591 PE1 0. 3) 1124.
767 RETURN, 1125.'
768 END 1126<
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769 SUBROUTINE HYDRO 1177.
770. REAL MGAS 1128.
771 COMMON ZHE(46)•AHE(46 ) sPV(46 )oPH(45 ).7F(46 ).FFC( 46), 1129,

1FFAD(46).ZDIS(46).FD(46)•AHEAV(101).ETUSE(101).DB(46)• MFEED.M DI S 1130.
772 COMMON` /DEHYD / DBFD ( 101)•ABED ( 101).DTUBFI ( 101)• 1131.

LPHI(101)9PVI( 101) * DV8( 101). 1132.
21ARRNG(101) L133.

773 COMMON/DEMAIN/ANDsDNZL.DTHTCKoFW 1134.`
774 COMMON /HYMAIN/	 UC1(46).UMF(46).H(46) •AT(46),0T(46) eT(.L01) oX(46) • 1LYto

1YE(46)•FPB(46)tFPC(46).DVFB(46).DVBOEF(46)•DBA V (46)9 U 9(46).HL M F. 1136.
2HLF, VMF• FMOoFMF•UF.PF g TF.RG,GvMGAS•DPFIX,CPFLU•D p nis•DP(3.RHOCAD. 1137.
3EMF,YB(46),PAV•HCR.AKBE(46) t8EEDVOL.EFFVOL.SOLVOLoTET(JBE, I! R.IFHC - 1138.

775 COMMON /GEN/ Z(10 .1)eDV9gFF(IO1)oZB ( 46).ATB ( 46'). PI.DZAV.MTB*MTOM1,Mi139. r
L140.

C CALCULATION OF BUBBLE HYDRODYNAMICS 1141.
C 1142,

776 I=0 1143•
777 SUM=0.0 1144.
778 SUMEFF=0.0' 11451
779- $EDVOL = 0.0 1146.
780 SUMV = 0.0 1147.
781" ICR	 0 1148.

- 782 HCR -_ '0, 0 1149.
783 IFBC= 0 1L90.
784 DTURF., I (L )_ =	 0.0	 _ 1151.
785 15 1 =	 I	+ l- 1152. ..
786 13 IF	 (I	 * LE *	M1)	 GO TO 5 1L53.
787' T(I) = T(Ml) 11 54.
788 - X(I)	

=789 -X Y9{ Ml)YR(I) 1156.
790- YE (T)	 -' YE (M1) 1157. 

L15 R .
C CALCULATION OF MINIMUM FLUIDIZING VFLOCITY 1199.
C

791 9 CONTINUE LL5L.
792 IF	 (IFRC	 .GT.	 0)	 GO TO	 11 LLh2•,.
793 H(I)-	 =	 Z(I) llfi3•
794 DT(I)	 _ DHFD(I) 1164.
795 AT( I )' _=	 AE3FD( L) 1165.
796 _ DVBB(T)	 _ DVB( I) lL66•
797 DVf3REF( I 1	 ° DVDFFF(I 1 lln7.
798 1`1 CONTINUE 1169.
799 TEMP	 = ,T(1) 11n.
900 IF=	 (I	 .FO.	 1)	 TrMP =	 T(2)	 - 1170• q
801 12 RHOGAS =  PAV * MGAS /"(RG*TEMP) 1171.
802 V ISC = 3.7?. _

E 
-6 * TFMP **0.676C

1173.
C UMF(I) -- MIN.FLUIDIZING VEL•	 AT THE H(I)	 LEVEL ABOVE THE 1174•
C D ISTP I9UTnR L 179.

803 Al	 =	 33.7**2	 + 0.040E	 *	 (D O B/VISC) 117F,.
1	 **2 * DPH	 * G *	 (RHOCAn - PHOGAS)	 * kH r'GA`x 1177.

804 - UMF(I)	 = VISC/(DPF3*RHrGA=)	 *	 (	 SORT(A1)	 - 33.7	 ) LL7A-
j	 805 IF	 (I	 .GT.	 1)	 GO	 Tn	 16 L17R. '

806 UO(1)	 = FMF * MGAS /RHCGAS3 AT(1) L1R0.
807 DB(l)	 =	 0.347	 (	 AT(1)	 *	 (Un(l)-lJf'F(l))/AtlD	 )	 **0.4 1191. 7
808 GO TO 15 1192.

C Lla3,
C`- Un(I)	 --- SUPERFICIAL"GAS VF.L-•	 AT H(I)	 LFVrL°Aa0VF ni5TPI9UTnR LIA4.

809 16 '° UO(I)	 -- FMO'*	 RG- *	 T(I)	 /	 (PAV*AT(I)*(1.o-FTUEF(I)-)) 11{5. z
810 II	 (IFHC	 .GT.	 0 • )	 GO TO	 125 L196.
811 IF	 (A6S(UO(I)-UMF(I))	 .LE-,	 0.01	 *	 UMF(I))	 GO	 T4	 18 LL87.
812 IF	 (UO(I)	 .LT.	 UMF(I))	 Gn ,Tn	 10 1111•+.
813 GO TO	 17 L 	 1 4 -

C 1L
C I CP --- INDICATOR FOR THE C9 I T I C AL HF I GHT WHERE UO = IJMF 1	 i	 r 1	 .
C 1L^Z•

814 18 IcR = l L1o3.
C 1194.
C BUBBLE SIZE,, CALCULATIONS 1L95.

815 17 DBMAX	 = 0.652 *	 ( AT( I)	 *( 1.0-ETURE( 11)	 * -ABS( UO( I )-UMF( I))) **0. 4 1196•
816 IF	 (DBMAX	 .L'T.	 PHI(())	 GO	 T r 	 8 L lg7.
817 IF	 (IARRNG(-I)	 .GT.	 2	 +Atg D.'	 PHI('T)	 .GF.	 0	 5*DB(I-1)`1	 DBMAX= PH-I(I)- 1199.
818, 8 09(I)	 =	 DBMAX --,(DBMAX--DB(I-1)) 	 *	 EXP(-0".3 	* '(H(l)-H(I'-1))/DT(I)) 1199• ?
819 DRAV(I)'	 =	 0.5	 *	 (	 DB('I)	 +	 DD(I-1)	 ) 1100.
820 AKBE(T)- =	 11 . 0	 /: DBAV(I)	 - 1201. a

C; 1202.i
i



x

e

C CALCULATIONS FOR UBR ---	 BUBBLE RISING VEL- AT MIN,FLUDIZATION, 12Q
C UBS	 BUBBLE VEta AT SLUG GING CONDITIONS. 1204•
C US'	 ---- ASS BUBBLE R C S ING V°:LOC ITY, - 1205.
C EPS	 BUBBLE FRATION. 1206-
C EFC ---- CLOUD FRACTION- 1?070
C 1205.

821 UBR = 0.711 * SORT (	 G * OBAV(I)	 ) 1209.
R22 URS =	 0.351i	 *	 SORT	 I	 G *	 (DT(I) +DT('1-'1))	 /	 2-.0	 ) 1?10.
823 IF	 0,198	 •GT.	 UBS)` URP = UBS !.211+
824 UOAV	 = 0.5	 *	 (	 UO(I)	 + Un(I-1) 	) 1212.
825 UMFAV =	 O.';i	 *	 (	 UMF( I)	 +	 UMF(1-1)	 ) 1 21 I.
926 L)H( I) = U!)AV - UMFAV + UBP 1214.
827 EPR(I)	 _	 (	 UOAV - UMFAV	 )	 / UB( I)*(1 > o- ETURF(I)) 1215.
828 ALFS = EMF * UR(I )- / UMFAV 1216.
829 EPC(I) = EPS(I)	 *	 ALF$ /	 (	 ALFB - 1.0	 ) 1217-
830 IF	 (EPES(I)	 aGT,	 0w7)	 FPS(I)	 =	 0,7 1218.
831 IF	 (FPC	 (I)	 ,GT.	 t0. Q9 -	 E:TURF(I))	 )	 EPC(T)	 =	 0.99	 - ;7TIJBF(I) 1219.

`832 BEDVUL = B DVOL + DVSH(T) L2ZO.	 1
933 SUMV = SUMV + DVRBEF(I'i 1271•
834 SOLVOL = DVBBEF(T) -- DVBB (I)	 * EPP. (T) L? 22.
835 "SUMEFF = SUMEFF + SOLVOL 12?3-
B36 SUM- =	 SUM + SOLVOL  / 	 (	 0.5	 (AT (I)+AT (I-1)) 	 ) 1224
937 IF (ICR	 *GT.	 0)	 GO TO 35 1225.
838- IF	 (HLF	 NF.	 0.0)	 GO TO .20 1225.

C 1?17,
C TES T rOP	 CnrIVFRG17*NCY
C 1219.

839 IF	 CAE3S(SUMFFF-VMF)	 ,LT.	 o.01*VMF)	 GO TC	 125 1231).
840 IF (SUMEFF ,LT. _VMF) GO TO 15 1231.
941 VOL =	 SUMV^(SUMFFF-VMF) 	 *	 (Lr O - ETUBE (I))	 /	 (1.0-FP9(I) -t=TU9E (I)) 1.232.
842 H(I)	 = HEIGHT(VOL) 12133.
843 ;GALL	 AREA	 (	 H(I)	 OT(I),	 AT(1)	 ) 1234..
F344 SUMV =' SUMV - DVRRFF (T) 1? 35.
845 SUMEFF '= SUMEFF - cnLVOL 1Z3r .
946 SUM = SUM - SOLVOL	 /	 (005*(AT(I)	 + AT(I-1)1) 1137.
947 26 DVBB( I)	 - 0.5	 *	 (	 AT 	 I )	 +	 AT( 1-1)	 )	 *	 (	 H( 1)	 -	 H( I - 1) 313.
%348 DVSBEF(i)	 _	 DV90(I)	 *	 (	 1. 0 -	 0.25	 *	 AHEAV(I)	 #	 nTUF3EI( 1)	 ) L23
849 GO TO 16 1240.
850 40 CONTINUE 1241.

C
C TEST' FOR CCINVFRG1NCI 1243.

Fi ri1 IF	 (ABS(H(I)-HLF)	 .LE-- * 	I.OE-3*HLF)	 GC	 'r i-	 125 1?44.
3hZ IF	 (ABS(H(I) - HLF)	 .LE.	 0.25 *	 (H(I)-H(I - L)))	 GI	 T 	̂ 110 L2^'4
953 IF	 (H(T)	 .LT.	 HLF)	 GO TO	 15 PA6:	 #
854 50 H(L) = HLF 1?rc7
855 BEDVDL = BPDVOL - DV69(I)

144x^

85:6 SUMV = SUMV - OV09EF(I ) 1241)

R57 SUMEFF = SUMEFF - SOLVOL 12 ,z]
858 SUM =	 FUM -	 S gLVIL /	 (0.5*(AT(I)	 i	 AT('T-1)))
13 -CALL	 APEA	 (	 H(I),	 ')T(I)i	 AT(I)	 ) I	 5;2.
R60 nVRR( I)	 =	 0.17	 (	 AT( I)	 +	 AT( I - L)	 )	 *	 (	 H( I)	 -	 li(1-1)	 ) )_?53 .
F3h1 DVBF3FF(I)	 =	 DV IAR(1)	 (	 1.0 -	 0.25	 1°	 AH`AV(I)	 DTUH'' I ( I)	 ) 115+.
A62 GO TO 16 12 -)i.	

a

863 10 Ufl( L)	 -	 UMF (I') 12 ia.'
964 AT(I)-=	 FMO	 #	 RG	 *	 T(I)	 /	 (	 P4V	 *	 Ur	 (I)	 #	 CL.O	 FTtls^`(I'))	 ) 1Ze^7.
A65 CALL HFATI	 ('AT(I),	 DT(I).	 H(I)
R56 TCR =	 1 177.a,
867 DVRR( I)	 =	 0.5	 #	 (	 AT(I)	 +	 AT-( I-1)-)	 *	 (	 H( I`1	 -	 H( 1-1,)	 ) 12F0.	 a
M66 DVBHEF(I)	 = DVBB(1)	 #	 (	 1 .0 -	 0.25	 *	 AHr'4V(I)	 *	 DT IJHFI(1)	 ) 1?61.
BF19 Gr TO	 17 12	 2 ,
R70 35 CONTINUE '' 1263.
871 HCR =	 H(I) 1254.
€372 IF	 (ABS(H(I) - HLF)	 ai-.F,:	 I,.OE- 3*HLF)	 GCS 	TC;	 129 11^^.
873 IF	 (	 ABS(VMF-SUMEFF)	 sLF.	 0.01 * VMF	 )	 GO Tn	 125 Llr.c.
974 I	 =	 1 ,+	 l' 1	 '` T •
879 DBAV ( 1)	 F	 0.0 12-1
P76 UR(T)	 = 0.0 L26i^
977 AKBr (I )' -	 1000.0 - 1273._
R78 EPB(I)	 =	 000 1271.;
879 FPC(I)	 =	 0.0 1272•	 Y:

9%30 IF (VMF	 EQ *	0.0)	 GO TO 45 1273.
G 127 M1

C FIXED RED, CONDITIONS 1275,
C L27+^.

861 VL
SHETGHT(VOL)	 SU*OFF )	 ORYGIN	 PAGE ISY,(OI)	 =

1277.
892
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Ma li Is CONTINUE 12^^•
A94 IF	 I.VMF	 .FO.	 0.0)	 H(I)	 =	 HLF 1280.
993 CALL	 AREA	 (	 H1"4	 DT(XI•	 AT(I)	 ) 12A1.
R86 DVRBil)	 z 0.5*(AT1I)+AT(I-1)1*(H(I 1-H(I-1 1) 1232.
887 DVBBEFII)	 = Ov9W I)*(;.0	 -0.25*AHEAV(I)*DTU8EI(I)) 1283.
R99 BEOvnL = BEDVOL +	 DVHB(I) 12A40
899 SUMV	 = SUMV + DVBB EF(I) 1285.
890 SUMEFF = SUMEFF	 + DVPMEF( 1) 12Pl -
R91 SUM	 =	 SUM +	 nVRRCF(I)	 /	 (0.5*(AT(11+AT(I-1))) 12'
R92 IFRC	 =	 1 12'3	 .
993 GO TO 13 1211.
894 14213 M l	 =	 I 1291.
995 TETUBE = 1. 0 - SUMV/SEDVOL 1291.
896 EFFVOL = 3UMV 12'42.
09? SOL VOL = SUMEFF 1293.
999 M = M1 -	 1 1294.

C* WPITF (6920 0; ) 129ci.
C* On	 910	 1	 =	 29 M l 12966
C* WPI'E ( 6.20 •) 	T.H(I).D©AV(I).UB(I) • FPR(I) . FPC(I) • UO(I)•UMF ( I) 12')70
C*910 CONTINUP 1299.
C*206 FORMAT	 ('0'93X•'('.3X.'HFIGH T '•3X•'AV.BUBELF	 DIA'96X9'8UB6LE VEL.41299.
C* 1.4X•"A058LF FRAC.'.'SX•'CLOUC FRAC.'96X9 4 51)P.VELOCITY'.SX. 1300.
C* 2'MIN.FLU.V°L.4./) 1301.
C*207 FORMAT	 (15• r-a.3 * F(3X•1PE12.4.2X)) 1302.

8 ,3Q QETUQN 1303.
900 END 1304.

941 SUBPOUTINE	 A p FA	 (	 ZI.	 DTI • 	A T I	 ) 130-3•
902 COMMON /GEN/	 Z(101)•(1VEEFF(101).ZR(46)•ATR(46)•PI.OZAV•MT9*MT•M1.M1306.

C 1307.
C CALCULATION OF TH C CRGSS SECTIONAL	 AREA GIV P'N THE HEIGHT ABOVE 130H•
C THE DISTRIHUTn- 13090

C003 DO	 10	 J	 =	 1	 .	 MTr1 1311.
904 IF	 (	 ZI	 .(-vT.	 Z'i(J)	 )	 GO	 TC	 10 1312.
90 43 RJM1	 =	 SOR T (	 ATB(J- 1 )	 / PI	 ) 1313.
906 A.	 =	 (	 ZI	 -	 Z"(J-1)	 )	 /	 (	 ZB(J)	 -	 ZP.IJ-11	 ) 1314.
907 E3	 =	 SORT	 (	 ATR(J)	 /	 ATB(J-1)	 )	 -	 1.0 1315.
909 RI	 =	 (	 1.0	 4	 .	 *	 9	 )	 *	 RJM1 1316.
00Q OTT	 =	 2.0	 : r T 1317.
910 ATI	 =	 PI	 *	 U I 	 **	 ? 1319.
911 Go To 20 131Q.
912 10 CONT INIIF 1320.
913 20 CONTINUF 13210
Q 14 QE. TUPN 1322.
Q15 END 13T3.

916 SU9FrC)UTINE	 HFATI	 (	 ATI•	 O T (.	 ZI	 1 1324.
917 COMMO N	/GEN / 	Z(1011.OVREFF ( 101).ZP ( 46).ATH ( 46)9PI.C)ZAV•MTR • MT•Ml•M1325.

C 1326.
C CALCULATION nF THE HEIGH T GIV r-N THr CFOSS SECTIONAL	 APFA 1327.
C 1328.

91R RI	 SORT	 (	 ATT	 /	 PI	 ) 1329.
9 19 DTI	 =	 2.0 * PT 1330.
97.0 DC	 10	 J	 1	 .	 MTB 1331.
Q 21 IF	 (	 ATI	 .GT.	 ATB(J)	 )	 GC	 Tn	 10 1332.
Q22 A =	 SOPT	 (	 ATI	 /	 A TH(J-1)	 1	 -	 190 1333.
Q 23 R	 =	 SOFT	 (	 ATB(J)	 /	 AT6(J-1)	 1	 -	 1.0 1334.
924 C = ZR(J)	 - ZB( J-1 ) 13350
925 ZI	 =	 Z&(J- 1)	 +	 A	 * C / R 1336.
926 GO TO 20 1337.
Q 27 10 CCNT I NUF 1 131-4.
92R 20 CONTINUE 133'.
929 AIFTURN 1341.
930 END 1341.

931 RUNCTION HEIGHT	 (VV) 1342.
932 COMMON /GEN/	 Z(101).DVFFFF(101)•ZP(46)•ATR(46).PI.'')ZAVoMT3.MT.M1•M1343.

C 1344.
C CALCULATION OF THE HEIGHT 	 ;TV = N THE FFFFCTIV7 VOLUM = OF THC RED	 1345.
C (=XCLUDING THE	 VOLUME (DC(7')'3 1 _D	 DY	 THE	 TUDF5) 1346.
c 1347.

933 H = 0.0 13 4?•

L1
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934

_	 ..._.	 _..

SUM = 0.0 1349•
DO	 100	 I	 = ?	 .	 M T 13500

936 SUM = SUM ♦ DVREF ► 411 1351.
937 H = H ♦ (DZAV 13520
939 IF	 (	 SUM	 •LT.	 VV	 1	 GO TO	 100 1353•
Q39 H =	 (	 VV -	 SUM 1	 * DZAV /	 DVREFF(I)	 ♦ H 1354.
040 GO	 TO	 110 13559
Q4 00 CONTTNUE 1355•
114) lio CONTINUE 1357•
943 HEIGHT = H 135q.
944 RFTURN 1359•
945 ENO 136()•

946 FUNCTION VOLUME (ZZ) 1361•
947 COMMON /GFN/	 Z(101).DVFIFFF(101)•ZE(46)•AT©(46)901•DZAV.MT99MT.M1.M13620

C 1363*
C CALCULATON OF THE EFFECTIVF VOLU QF CF THE BED GIVEN THE HEIGH T 1364•
C 1365.

94f1 N	 =	 IFIX	 (ZZ/nZAV)+1 1366•
Q49 IF	 (	 ZZ - FLOAT(N-1)	 i DZAV .G T .	 0.01	 *	 OZAV	 1	 N	 = N ♦ 	 1 1367•
050 SUM = 0.0 13TH.
e4S 1 DO	 100	 I=	 2.	 N 1 36'';.
952 SUM = SUM + DVBEFF(I) 1370•
9 g 3 IF	 (	 I	 *LT*	 N	 1	 GQ	 Ti,	 100 1371•
Q54 A	 =	 1•0 -	 (	 ZZ - Z(N)	 1	 / DZAV 1372.
955 SUM = SUM - DV9EFF(I)	 * A 13730
956 100 CnNTINUE 1374•
957 VnLUMF = SUM 1375•
058 R°TURN 13760
959 END 1377.

SF4TRY 137FR•

l^

ovao AL ^U xls
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Section VII

MANUAL OF LEVEL I COMPUTER PROGRAM

7-1. Description of the Main Program

The FBC computation is initiated from the section between ISN

(i.e. internal statement number) 1 and 26. Elutriation correlation

and gas-phase mixing model are chosen following the rule,

IFLU'A"R = 1	 Correlation A

IELUTR = 2	 Correlation B

IMODEL = 1	 Homogeneous complete mixing

IMODEL = 2	 Homogeneous plug flow

The elutriation rate calculated from the correlations chosen above

is multiplied by adjusting parameter BETA before the use for calculation.

The statements from ISN 42 through 50 are for the input data of

coal properties, i.e. name, composition and particle size distribution.

In the section between ISN 36 and 50 the weight fraction is converted

into number fraction mainly by the statement at ISN 41. Than at ISN 45

the size distribution density function is obtained and substituted into

FRACT(I).

The operating conditions are fed to the program at ISN 51. The

basic parameters which are derived from the operating conditions are

calculated by the statements up to ISN 73.

From ISN 74 to ISN 82 the critical particle diameter DPCR is

calculated by solving the equation,

u  (DPCR) = u 

O^,LGIN 

AI , 
Y
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From ISN 84 to ISN 91 a new grid is introduced at the point d o = DPCR

and FRACT(I) vs DPF(I) relation is modified. Then from ISN 92 to

139 the value of size distribution density function for the coal particle

PHIF(L) corresponding to each interval of DP(L)- DP(L + 1) is found

from the FRACT(k) vs DPI(k) relationship. The value of DPO is defined

by the preceding data statement based on the Tyler standard mesh

opening. The series DP is almost the same as the series DPO except

that DP includes the critical diameter DPCR as one of the grids.

The reactivity of char, ALAM, elutriation rate constant, AKE,

and the dimensionless diameter of char particle, Y, are evaluated

from ISN 140 -ISN 176. Where AKE MAX is for the maximum allowable value

of elutriation rate constant.

The integrations

oyi (1/a c ) dy and fyi ( K* /X c) dy

are performed between ISN 177 and 182 and stored in ALAMI AND AKEI.

By the DO loop 32 the second and third moments of the feed size

distribution are calculated.

From ISN 210 the iteration to determine n  (= ETC), 0 (= THET)

and B cf (= BC1)is prepared. The iteration scheme is basically the same

as the one illustrated in Figure 	 . Instead of using N and n  for

iteration parameters 0 and B cf are used.

ETC iteration is started from

1	 if EXAIR > 0
ETC =

1+ E XAI R	 if EXAIR < 0
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The interval for changing ETC should, therefore, be negative.

DO loop 500 is for ETC iteration. DO loop 200 is for THET iteration.

The average oxygen concentration CO2 ( = COXA1) is calculated

by the specified model in the section ISN 231 - ISN 239 so that

the parameter Bcw ( = BC) can be calculated at ISN 240.

From ISN 242 to ISN 256 the calculation to determine B cf ( = BC1)

is performed. Subrontine CRRECT is called to correct the assumed value

of BC1. EBC1 is the difference between the two values of Bcf assumed

and calculated.

Then the new value of 0, THETA, is calculated at ISN 258 and the

difference of assumed values and calculated values, EE, is examined by

CRRECT subroutine.

The new value of B cw is obtained at ISN 273 and the difference, E,

of this value and the previous value of B cw is taken so that E is used

for the criterion for ETC iteration. The new assumption for ETC is

given again by the CRRECT subroutine.

The statements from ISN 289 -ISN 311 are devoted to the transformation

of number density functions PHIF, PHI and PHIE into the density functions

based on weight fraction, PHIFW, PHIW and PHIEW. Total elutriation loss,

ELOSS, oxygen mole fraction at the outlet, XGO, total amount of char in

the bed, HCHAR, total amount of carbon in the bed, HCARBN, and the

weight fraction of carbon in the bed, HRC, are calculated and printed out.

In this program the temperature iteration and bubble hydrodynamics

calculations have not been included, but combining with Level II program

all of the necessary information can be available.

The relationships between the main program and sub-programs are

shown in Figure 8.	
ORIGINAL PAGE 18
OF POOR QUALITY
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called at
ISN 143

MAIN PROGRAM
	

and 148
	

FUNCTION ACTIV

(LEVEL I)

called at ISN 151

called at ISN
251, 262 and

called at

	 276
	

FUNCTION FREEFV

ISN 248

SUBROUTINE POP
	

SUBROUTINE CRRECT

FIGURE 8. STRUCTURAL ILLUSTRATION OF LEVEL I PROGRAM

i,
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Column Variable Example Type

Card 1 1-4 NAM1 PITT Alphanumeric
4-8 NAM2 S Characters
9-16 SCF 0.504 REAL
17-24 XCV 0.222 REAL
25-32 XH 0.046 REAL
33-40 XS 0.027 REAL
41-48 XO 0.042 REAL
49-56 XN 0.014 REAL
57-64 XW 0.013 REAL
6S-68 N 9 INTEGER

Card 2 1-8 DPF(1) 0.002 REAL
9-16 DPF(2) 0.0045 REAL
17-24 DPF(3) 0.0066 REAL
25-32 DPF(4) 0.0125 REAL
33-40 DPF(S) 0.025 REAL
41-48 DPF(6) 0.05 REAL
49-56 DPF(7) 0.1 REAL
57-64 DPF(8) 0.168 REAL
65-72 DPF(9) 0.3175 REAI.

Card 3 1-8 FRACT(1) 0.0 REAI.
9-16 FRACT(2) 0.075 REAI.
17-24 FRACT(3) 0.031 REAL
25-32 FRACT(4) 0.088 REAI.
33-40 FRACT(S) 0.129 REAL
41-48 FRACT(6) 0.212 REAL.
49-56 FRACT(7) 0.344 REAL
57-64 FRACT(8) 0.119 REAL
65-72 FRACT(9) 0.002 REAL

Card 4 1-8 WCOAL 29.2 REAL
9-16 CABS 2.2 REAL
17-24 EMIR 0.13 REAL
25-32 UO 0.0 REAL
33-40 P 4.0 REAL
41-48 TK 1121.0 REAL
49-56 DT 73.0 REAL
57-64 HLMF 33.5 REAL
65-72 DPL 0.168 REAL
73-80 UMF 70.0 REAL

ORIGINAL PAGE ISOF POOR QUALITY
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7-2. Input to the Program

The input data of Level I program is shown in the following table.

The INTEGER variables are right justified. If the 4th card is a blank

card the execution returns to the 1st READ statement.

TABLE 6
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7-3. ()utput of the Pru,,ram

The output of a typical itin of Level I program is following.



F9r CALCULATInN

FFF « T nF ELUTc 1A T InN	 CN CCMBLSTICN EFFICIEKCY

0.0460	 0.0270	 0.0420	 0.0140	 0.0130P ITTS	 CON

0.2000c-02
0.4500F-02
0. 65000-02
0.1250F-01
0.2285E-01
0. 2500E-01
0.5000E-01
0.1003- OO
O.If'sOF 00
0.3175- on
-LUTPIATTON

POSITION OF COAL	 0.5040	 0.7220
0.0
0.1114°_ 03
0.IIooF 02
0. 2 1 82E 01
0.1095 E 00
0.1995E 00
0.2049E-Ot
0.2053E-02
0.9278E-04
0.1192=-06
CnQP F LATICN	 NO. 1 E' F TA=	 1.00000

GAS PHAIE V IDEL . NO. 1 7R.FR=	 10.0	 0.29962

MCOAI_.MLS.CABS.FXA I O * FMC.Ul. p . TK.OT.HLMF
0.2920F 02 0.2172 01 0.22000 OL 0.6000F- 01 0.1095F 02 0.6017E 02 0.4000E 01 0.1L21E 04 0.7300E 02 0.3350E 02

AK. DPCP.VCF . VL S• THE T04 9 AL -%MVF.NOP.PA5H.I.HCASH
0. 7 233E 01 o.22P5---01 0.2086F 02 0.23C9F OL 0.3036E 05 0.2131E-04 O.LOOOE OL 0.5000E 00 O.L400F 01

FETCM.FTHMAX O.1000F-04 0.3036E 01

=Tr'9XG0• TF4r'T9 8C9F3C1
0.92 0 1E 00 0.53320-07 0.1959E CS C.LCCSE OC 0.17C1 F 03

VCM.VC F '.VLSoHCHA' I'.w9FC. HQCgFC.£LOSS.ALAMV.ALAMA
0.4?ICE-01 0.-,66 02 0.2309E 01 0.1386E 04 0.7832E 05 0.1375E-01 0.1131E-06 0.6694E-01 0.1236E-03 0.7792E-03

Y C. 1: PHIF PI- I Pt- IFW PH IM PHIEW AKE ALAM
0.0 000 0.0 0.2C C66:'	 02 0.0 0.0 0.0 0.2709E 01 0.1000E 01
0. 629 c497 0.2003 E -02 3.3 0.9523E 02 0.0 0.6064E-03 0.9692E-01 0.2709E 01 0.9928E 00
0.13S4F -01 0.4100[-02 J.1114--	03 0.2391E 02 0.5154E-01 0.3044E-02 0.2901E 00 0.1121E 01 0.9947E 00
0.1417 9"-Ol 0.45CO r--02 0.111 4	03 0.1297E	 02 0.6115E-01 0.3289E-02 0.3044F 00 0.1064E 01 0.9840E 00
0.1 0 21" -01 0.6100c-02 0.1100-	 02 0.7717E	 01 0.1124E 00 0.5157E-02 0.3910E 00 0.7496E 00 0.9784E 00
0.2079E-OI 0.6600-02 0.1100 E	02 0.5399E	01 0.11956 00 0.5814E-02 0.4161E 00 0.6846E 00 0.9767E 00
0.2 7 72 = - 01 0.9900'_- -02 U.21R2F	 01 0945SEF	 OL 0.1454 E CO 0.9916E-02 0.5300E 00 0.4456E 00 0.9692E 00
0.3276E - 01 0.1040E - 01 0.2LR2E	 of 0 .3414E	OL O.lfl4F 00 0.1436E-OL 0.6192E 00 0.3262E 00 0.9638E 00
0.3 n 06r -01 0.1240E-Cl 0.2142F	 of 0.1397E	 Ol C.1949 F 00 0.1953E-01 0.6984E 00 0.2350E 00 099571F 00
0.391 7- - Ol 0.125JE - OL 0.2192°	 01 0.1285-	 OL O . LG7OF 00 0 . 1974E - 01 0.7009E 00 0.2315E 00 0.9567E 00
0.4630 -01 0.1470 0 -01 0.199SF	 00 0.1215F	 OL 0.2243F 00 0.2532E-01 0.7584E 00 0.1710E 00 0.9495E 00
0. 1; 512F-01 0.1750E-01 0.1 015E	 CC 0.10`L F	OL C.2363F 00 0.3589E-01 0.9384E 00 0.1235E 00 0.9405E 00
0.6551 0 -171 0.20ROE- 01 O.L Q75E	 00 0. 7 839E	 00 0.2602E 00 0.5255F-01 0.9306E 00 0.9950E-OL 0.9300E 00
0. 7 198E-01 0.22P 9c: -Ol O.I QQSF	 00 0.5884E 00 0.29196 00 0.6402E-01 0.9806E 00 0.7511E-01 0.9237E 00
0.7744E- 01 0.24f0r - OL O.L QQ 5F	 00 O.3SS1F	 00 C.3056E 00 0.7305E-01 0.1000E 01 0.0 0.9183E 00
0. 76174 E - 01 0.25noF- 01 n .1 Q9 50	 00 0.3`_32°	 00 0.3118E 00 0.7488E-01 O.1000F OL 0.0 0.9171E 00
O. Q 291 F -Ol 0.2950-01 0. ?049 0 - 171 0.3C520	00 0.3533E 00 0.9879E-01 0.1000E 01 0.0 0.9036E 00
0.1105E	 00 0.3'10°- 01 0. ?04 90 -01 0.2431E	 00 0.3 7 33E 00 0.1397E 00 0.1000E 01 0.0 0.9874F 00
0.1313E	 ['0 0.41 7 0 E - 01 3.2049F-01 0.1653E	 00 0.412QF 00 0.1988E 00 0.1000E 01 0.0 0.8690E 00
0.1559E	00 0.4950E -171 0.2049E -01 0.7005E-01 0.4813E 00 0.2623E 00 0.1000E 01 000 0.8482E 00
0.1575=	 00 0.S000C-OL O.?0490 -01 0.(-450--OL 0.4 1;77F 00 0.2657E 00 0.1000E 01 0.0 O.R469E 00
0.1955r	00 0.5990 r--01 0.2093 0 -02 0.5605[- 01 O. c f4 Q E 00 0.3350E 00 O.1000F Ol 0.0 0.8244E 00
0.27C o0	nC 0.7010E -01 0.20530 -02 0.4316E-01 0.5968'' 00 0.4523E 00 0.1000E 01 0.0 0.7977E 00
C.2624 0	00 0 * 0 330"'-ol 0.2053E -n2 0.? 7 42- -01 0.0'fCO r 00 0.6136F	 00 O.1000F 01 0.0 0.7685E 00
0.3121E	 00 0.9910E-01 J.?053F-02 0.4115E-02 0.7H74C 00 0.7385F 00 0.1000E 01 0.0 0.7362E 00
0931 5 ') E	00 0.1003E	00 0.2051--07 C. 4 1320 -J2 C.7 c S9F 00 0.7424E 00 0.1000E 01 0.0 0.73313E 00
0.36 7 9 8-	 00 O.IIEn F	00 0.92`80-04 0.4344E-02 C.P92` r 0 C.8192E	 00 0.1000E 01 0.0 0.7030E 00
0.4400=	 00 U•1307r	 OJ 0.9279E-04 0.23230 -J2 0.9157F 00 0.9360E 00 0.1000E 01 0.0 0.6643E 00
0.-200- 00 O.1RSl_	 On 0. 13 778 0 -04 0.0 O.SSPRE 00 0.1000E 01 O.L000E 01 0.0 0.6261E 00
0.5291E	 nC O-I li m O l-	 00 0.92 78E-04 0.0 O.S6°1F 00 0.(000£	 OL 0.1000E 01 0.0 0.6220E 00
0.673 0	 (% 0 0.1 4tl I = 	00 00119?F-06 0.0 00998?F 00 0.1000E	 O1 0.1000F 01 0.0 0.5826E 00
0.7439-	 Co 0.23	 .'.	 00 O.I1 g2F-06 0.0 O.Q4P9F 00 C.I000E	 OL 0.1000E 01 0.0 0.5393E 00
00 Q ROO=	00 0.2774 0	00 0.11 4 2 0 -06+ 0.0 309^54t 00 0.1000E	 01 0.1000E 01 0.0 0.4974F 00
0.1000 17	^1 0.31 70 -	 C) 0.I1 = 2E-06 0.0 O.I000F 31 0.1000E OL 0.1000E 01 0.0 0.4655E 00

Old
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FO RT RAN
symbol

AK

AKE

AKEI

AKE MA X

AKF

ALAM

ALAMA

ALAMI

ALAMV

ALAMAF

ALAMVF

ALFO, ALFI,
ALF2

AN DP

AT

BB

BBC, BC

BC1

Nomenclature for Level I Computer Program

Mathematical	 Unit	 Description
symbol

k	 cm/sec	 chemical reaction rate constant
R	

for char combustion

K	 specific elutriation rate constant

O
yK*/X 

dy

maximum value of elutriation rate
constant

k 
	 cm/sec	 mass transfer coefficient for

char combustion

X = k c/k R	-	 reactivity of char

^ a	 -	
= 01	

y 2 dy = d2/dcn ►

ty l/ X dy	 -

0

^v

^ of

^vf

A t cm`

B -
Cw

-B`f

= I l	 y3 dy = do/dc0	 m

= f l ^f y 2 dy
0

= I I m f y 3 dy
0

dummy parameters

number of sub-intervals in the in-
terval of DPO

cross sectional area

dimensionless parameters

dimensionless parameter

ad il„t ilig factor for elutriation rate
constant

ORIGINAL PAGE IS
OF POOR QUALIYY
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FORTRAN Mathematical Unit Description
symbol symbol

BETA - calcium to sulfur ratio in the total

CABS [Ca]/[S] - solids input

CC Cc - dimensionless parameter

COXAV CO2 gmol/cm3 average oxygen concentration

COX0
CO2,0

gmol/cm3 oxygen concentration at z=0

D D02 cm2/sec diffusivity of oxygen

DB
D 

cm average bubble diameter

DCM dcm cm maximum diameter of coal particles

DETC one - step size for combustion efficiency
iteration

DDP Ad cm interval size of do axis

DPAV cm average than particle si:t	 in a
size interval

DPCR cm critical	 diameter for eli ► triation
(char diameter whose ft•i-urinal
velocity equals gas velocity)

UPI cm diameter of inlet char

DPFO cm extra memory for DPF

UPL dR cm mean diameter of limestone particles

DT
D 

cm column diameter

DTH sec step size for 0 iteration

DY Ay - interval size of y

E - relative error for B 	 iteration
cw

E1,	 E2,	 EE1, - relative error of B 	 from the
EE2, ETC1, ETC2 previous iteration step

ETC n, - coal	 combustion efficiency

i y
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FORTRAN Mathematical Unit Description
symbol symbol

EB
E 

- volume fraction of bubbles

EBC1 - difference between the values of Bcf
assumed and calculated

EBMAX - tolerance limit for EBC1 	 -

EC (At/Wb)	 < K * y3>

EE sec difference betweem the values of
0 assumed and calculated

EETCM - tolerance limit for n 	 iteration

SLOBS - fraction of carbon elutriated

EMF - void fraction of bed at u = umfEmf

ETC
n 

- combustion efficiency

ETCOLD - value of ETC from the previous
iteration

ETHMAX 0 sec maximum value of 0
max

EXAIR EAR - excess air ratio

FMO Fm gmol/sec molar mass flow rate ol ' outlet gas

FKM
Fmth

gmol/sec the critical	 molar m,rl . ,	 flow rate
of air

FR F - Froude Number
r

FRACT - weight	 fraction of particles 	 in
the corresponding size	 interval

FRACTO - extra memory for FRACI'

FREEFV U 
cm/sec terminal velocity (or freefall

velocity)

G g cm/sect gravity acceleration

HCARBN g hold-up of carbon in the bed

HCHAR g hold-up of char in the bed

ORIGINAL PAGE IS
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FORTRAN	 Mathematical	 Unit
symbol	 symbol

IILMF	 Lmf	 cm

HRC	 -

IELUTR

1 MODEL -

INDBOI,	 INDETC, -
INDTH

INDX

MA I R g/ grno 1

MC M g/ gmo 1
c

MCA MCa g/gmol

,%1]2
H2 g/gmol

M[1 2O
1120

g/gmo l

MN.') MN2 g/gmol

DD 2
MO2

g/gmol

Nis MS g/ gmo 1

NAMI,NAM2

N DP

N

1) 	 atm

PASII	 -

PHI	 -

Description

bed height at u = umf

mass fraction of carbon in the bed

index for choosing elutriation
correlation

index for choosing gas phase model

index for Bcw, n c , and 0 iterations

index for defining grids of do

average molecular weight of air

atomic weight of C

atomic weight of Ca

molecular weight of II,

molecular weight of 11,0

molecular weight of N,

molecular weight of U`

atomic weight of r

name of coal (A-Type v:,ri:^l i^ s)

number of sub-interval in Ilic

interval of DPO (This valor
can be changed artificialk ).
N DP > 1

number of size distribution. i nput
(see READ (5,1001) statement)

pressure

fraction of ash elutriated

size distribution densit y function
for char particles, number
fraction basis

^I

WdW
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FORTRAN Mathematical Unit Description
symbol symbol

PHIFW mf - size distribution density function
for char fed to the bed, weight
fraction basis

PHIF ^f - size distribution density function
for char bed to the bed,
nombew fraction basis

PHITTL - sire distribution density function
for char, weight fraction basis

RE Rep - Particle Reynolds Number for DPCR

RET Rep - Particle Reynolds Number for
terminal velocity

W 1OAF.: P 
g/cm3 density of coal ash

RHOC pc g/cm3 density of coal

RHOG g/cm3 density of gas
P

WIOLCA g(Ca)/cm3 density of Ca in limestone
(limestone)

W10LS PZf Cm3 density of limestone

RHOP pch g/cm3 density of char

SC3 S - Schmidt Number
C

SHP Sh - Sherwood Number
P

THI,THE,THET, 0 sec mean residence time of limestone
THE,THETA

THETM 0 sec maximum value of 0
max

TK I' OK average bed temperature

UB
U 

cm/sec bubble rising velocity

VISC u g/cm-sec viscosity of gas

UO u 
cm/sec superficial gas velocity

UMF umf cm/sec minimum fluidizing velocity

ORIGINAL hr7E IS
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I:UIYIAAN Mathematical Unit Description
symbol symbol

US

UT
U 

cm/sec terminal	 velocity of char particle

UTF
U 

em/sec terminal	 velocity of char particle

UCF cm 
3
/sec volumetric	 flow rate of coal

VISC u viscosity

VLS cm3/sec volumetric feed rate of limestone

VMF Vnif cm bed volume at u = "111f

WBED
W 

g total bed weight

WCOAL w
coal, f

g/sec mass feed rate of coal

WLS wRf g/sec mass feed rate of limestone

XA
XAf

- mass fraction of ash 	 in coal
(dry basis)

XC
x 

- mass fraction of carbon in char
(dry basis)

XCF XCf - mass fraction of carbon in coal
(dry basis)

XCV XCV - mass	 fraction of volatile carbon
in coal	 (dry basis)

XINF - mole fraction of oxygen in the
gas outlet when combrrst ion is
completed

XLCA xZCa - mass fraction of Ca in	 limestone

XLS

XN
x

mass fraction of nitrogen 	 in coal
(dry basis)

XO
x

mass fraction of oxygen	 in coal
(dry basis)

XGO Y02 mole fraction of oxy l;en in the
outlet stream

I -M

1,

NILrL
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FORTRAN Mathematical Unit	 Description
symbol symbol

X000
y02.0 -	 mole fraction of oxygen in the feed

X11 XH mass fraction of hydrogen ,n coal
(dry basis)

XLCA
XCa,k

mass fraction of Ca in limt-,tone

XNEW corrected value of unknown 1'rom
su'arontine CRRECT

XS XS mass fraction of sulfur in coal
(dry basis)

XO X  mass fraction of oxygen in coal
(dry basis)

XW
XIf20 mass fraction of moisture in coal

(dry basis)

XX dummy parameter

Y	 (active) y -	 dimensionless char size

Y(pop) Y -	 dimensionless function

YA,	 YB,	 YC, dummy variables for integration
YA1,	 YBl,	 YCl

YY Y -	 dimensionless function

ZF
Z 

-	 dimensionless function

P 
AGE IS
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SECTION VIII

Manual of Level II Computer Program

8.1 Description of the Main Program

After introducing constants and assumed parameters, subroutine

DESIGN is called at ISN 24 to feed the data of design parameters into

the program. From subroutine DESIGN we have the first output listing.

The size distribution of adsorbent particles is then fed from

ISN 25 to ISN 27. The different mean diameters of adsorbent particles

are calculated in the section from ISN 28 to ISN 35. The mean size of

bed particles is assumed to be equal to that of adsorbent particles as

seen at ISN 36. The composition of adsorbent is fed at ISN 37.

Composition and heating value of coal are read at ISN 38. The

size distribution of coal particles is fed from ISN 43 to ISN 45.

Then the surface volume average diameter of coal particles, DCF, is

calculated. The mean diameter of char particles in the bed, DCAV, is

approximated by the statement at ISN 54.

DCAV = (3.0/5.0) DCF
	

(8-1 )

This relationship is derived based on the Following consider;itio ► i,

The average size of char particles is needed to calculate the specifiL

surface area of char particles per unit volume of emulsion, 
ac	 ^'cN 

d 
c 2

By the use of carbon mass fraction, x , a c can be written as

6p  (1-Cmf)x
	

(8-2)
ac	

dc,sv p cf Xcf

where 
dc,sv 

is the surface-volume mean diameter of coal or char particles

and is expressed as

dc,sv = dcm D v/ q)a (8-3)



107
.

where ^ = 
61 

y2 ^ dy and ^v = O ly30 
dy are the second and third moments

of size distribution. If the effect of elutriation can be neglected,

1pa and ^v 
can be written as (see Horio and Wen ( 1975a)):

ac (1-2/B
cw) + 2/Bcw2	

(SCR)(8-4d)

^ /^	 _
a of	

1 -exp(-B`w/2)I1exp ( Bcw y2/`)dy	 (FDC) ( 8-4b)
0

ac (1- B
	

+ ^)- g,^	 (SRC) ( 8-Sa)

	

cw	 cw	 cw

^V/^vf
B'	 B"

ac [1 - B' +R T- exp(- 
2w ) f l exp( 2w y2)dyl

	

cw	 cw	 0
(FDC) (8-5h)

where

1/(1-e -Bcw)	 (SRC)

ac	 1/(1-e-Bcw/2)	 (FDC)

2

B '	 _	 - ^c Xc 
dcm	

for FDC
cw

'MC 
0 D

02 CO2

and (SRC) and (FDC) represents Surface Reaction Control and Fi lm Diffusion

Control respectively.

In most of the cases the value of B cw is small enough to appr(,ximate

(1/3) 
oaf	

(SRC) (8-6a)

a

	

(2/3) oaf	
(FDCj (8-6b)

(1/4) ^vf	
(SRC) 18-7a)

IPV
	

1215) 
`wf	

(FDC) (B 71.)

I



Then,

d
(3/4) de,sv,f

=
c,sv

(3/5) d
c,sv,f

(SRC) ( 8 -hat

(FDC) (8-81)1
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In coal combustors the rate is mainly controlled by gas tiIm

diffusion. Therefore, we have Equation (8-1).

At ISN 55 operating conditions, such as bed height, average hi-d

pressure, average bed temperature expected and average cooling watt -1

temperature are fed. At the same time the value of overall ht-al

transfer coefficient, UHE,W, is fed. If the proper heat transfer

correlation is available, UHEAV should be calculated elsewhere from

the operating conditions. Among the input variables in this read

statement either WAD or CABS and either OF or EXAIR must be zero

If there is no coal feed (WCOAL = 0), OF has to be specified instead

of EXAII(.

T'ht parameter 'CO, ' H2 and ! H2S introduced by equation t , 12)

must be specified here.

At ISN 60 the actual heat of combustion, QCOAL, accounting jor

part i a l - ombustion is calculated from the heat of complete c0iiii-ii t i ui, .

QCOAI,t: and 6 (GZCO) .
The read statement at ISN 60 is for the parameter IGNITL 	 I(;NITE

is 0 for the case of no combustion and is 1 for combustion. I'hi

parameter is to control the computation. If IGNITE equals ze n), the

computation skips the combustion calculation - ISN 37 - 408.

The solids feed temperature, 'rSF, is specified by the statement of

ISN o2 as 298 °K. This statement can he changed depending on the

operating condition.

ORIGINAL PAGE IS
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From ISN 63 through ISN 87 the statements are used for the overall

gas phase material balance. The statements of ISN 78-87 define the

value of AG(I,J) which are the coefficients of Eqs. (3-41), (3-44) and

(3-49). Statements of ISN 88-93 are for calculating the density of

char and adsorbent particles and the calcium to sulfur ratio, C a/S, or

mass feed rate of adsorbents, WAD. WOAD at ISN 94 is the mass flow

rate of calcined adsorbents. Right after this calculation we have the

second group of output listing, giving the compositions of adsorhents

and coal, size distributions and average particle sizes.

The assumed temperature TAV is substituted into T(I) at ISN 108.

Then, subroutine HYDRO is called for calculating bed expansion,

bubble characteristics, gas interchange coefficient, etc.

In this program the compartments are numbered as shown in Figure 9.

The bottom compartment is numbered 2 and the inlet gas is numbered 1.

ISN 145 specifies the fractional loss of carbon due to elutriation,

ELLOSS. The amount of solids elutriated is defined at ISN 148. There

could be three steady state solutions for a combustion problem. Two of

them, upper and lower, are stable solutions but the middle solution is unstable.

The temperature iteration is needed because of the temperature dependent

coefficients of heat balance equations.

Before the combustion calculations are performed, initial temperature

and combustion efficiencies are assumed at ISN 149 and 152. High

temperature and high efficiency should be assumed to get the stable solution.

The DO loop 600 starting from ISN 164 is a large iteration loop for

temperature calculation. The gas flo g rates in both emulsion and bubble

phases are calculated in the DO loop 150. The parameter Ml in the statement

of ISN 174 is defined previously in subroutine HYDRO and denotes the top
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M
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FIGURE 9. ILLUSTRATION OF THE COMPARTMENTS
AND NIR18FRIV, IN LEVEL 11 PROGRAM
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compartment number. However, due to the change in the calculated

temperature the expansion of bed can be different from the previously

obtained value and so is the parameter Ml. Therefore, M1 newly obtained

from HYDRO is compared with the old value, M10LD, at ISN 172. If there

is no change in M1, the calculation in the section of ISN 193-192 is

skipped except in the first iteration.

The DO loops 55, 56, and 57 are provided for the arrangement of

solids feed to each compartment. The statement at ISN 189 is for the

calculation of char flow rate corresponding to the coal feed in each

compartment. The statement at ISN 190 is for the additive feed rate.

In these statements WEED, ZF (J), FFC (.I) and FFAD (J) are supplied

from subroutine DESIGN.

The DO loops 60, 61 and 62 give the distribution of solid discharge
	 r

rate from compartments. MDIS, ZDIS(J), and FD(J) are also defined in

subroutine DESIGN.

Calculation of gas phase material balance is performed in the

section, ISN 202-248. Combustion efficiency based on oxygen constimption,

ETCG is calculated. Net flow rate WNET(I) and the back mixing flow rate

WMIX(I) are, then, calculated in the section of ISN 272 and 276. The

coefficients of the solid phase carbon balance Eq. (S-1) are calculated

by the statements between ISN 285 to 308. Then, subroutine SIM(1 is

called. The results from the subroutine are substituted into the array

X(I) at ISN 306. It must be recalled that the compartments are ntimbered

starting from 2.

ORIGINAL PAGE IS
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The combustion efficiency, ETCC, based on carbon consumption is

calculated at ISN 315. ETCG and ETCC should agree with each other.

Should these differ largely, initial guess value for combustion efficit-ncy

is altered and the calculations are repeated. CRRECT subroutine is used

to achieve this agreement between ETCG and ETCC.

The temperature calculation is then performed based on Equation

(3-96). The coefficients are defined first and the subroutine SIM) is

called at ISN 373.

The average norm between the new temperature profile and the previmv,

profile is calculated finally at ISN 382 and checked for the tolerance

limit at ISN 384.

Results are printed out at ISN 406. The sulfur capture calculation,
r

are performed in the rest of the main program. Effective Ca to ti molar

ratio including the sulfur supply from inlet gas,CABSE, is defined at

ISN 420. If IGNITE is zero, the sulfur in the coal is not releast-d.

Therefore, effect of IGNITE is considered at ISN 417.

The sulfur release rate in each compartment is computed at ISN -121-427.

By the statements at ISN 430 and 431 the starting values of sulfur-

concentrations in both bubble and emulsion phases are set for the

calculation. The sulfur retention efficiency, ETS, is set as unir I'm

the initiation of the iteration. The statements from ISN 432 to P)N liS

are necessary for applying Regula Falsi method by using subroutine (:Ititl.l:T.

By the statement at ISN 439, the average conversion of adsorbent FS

is calculated from the overall balance. The rate constant is calcul.it-A	 1

at ISN 440 calling the function subprogram AKAD.



113

Then the same calculation scheme as that of combustion calculation

is applied, i.e. subroutine GPHASE is called to calculate YB(I+1) and

YE(I+1) from YB(I) and YE(I). The sulfur retention efficiency can be

obtained from YB(M1) and YE(M1) as stated at ISN 453. The error

between the assumed and calculated sulfur efficiency is fed to subroutine

CRRECT at ISN 45S. After the convergence of n  the results of sulfur

retention and the outlet gas concentration XG(1)"XG(7) are printed out.

In the final section the pressure drop calculation is performed.

To calculate the distributor pressure drop the average temporalm-e

is assumed to be

(average temperature at distributor) = (T(1)+T(2))/2	 r

By using the gas velocity at the distributor orifice, UOR, the pressitre

drop is calculated by

APdis	 (U
OR/0.6) 2 pg/2g

The pressure drop in the fluidized bed section is assumed to IW

equal to the weight of bed material per unit cross sectional area acid the

calculation is done at ISN 481.

The pressure drop of fixed bed section, if it exists, is calculated

by using Ergun's Equation. The index IFBC at ISN 484 is zero if Hicre is

no fixed bed section at the top of the bed. IFBC is defined in suhrmitine

HY DRO .

Finally the bubble hydrodynamic results are printed out at ISN l:14.

ORIGINAL PAv ►: -
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In this program, an empirical correlation to calculate the NO 

concentration in the outlet gas is incorporated (Ruth (1976)).

AN = 2.9 x 10-8(EXAIR)0.449

where

AN = gmol NO 2 emission/cals. fuel burned.

EXAIR = excess air, in fraction.
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8-2. Input to the Program

The input data for Level II program is read as shown in the following

table. All INTEGER variables are right justified.

TABLE 7

Columns Variable Example Type

Card 1 1-4 Al NCB Alphanumeric
5-8 A2 DATA Characters
9-12 A3 1.2
13-16 A4 1.3

Card 2 1-10 MTB 4 INTEGER
Card 3 1-10 ZB	 (1) 0.0 REAL

11-20 ATB	 (1) 4181.0 REAL
21-30 ZB	 (2) 50.0 REAI.
31-40 ATB	 (2) 4181.0 REAL.
41-SO ZB	 ( 3) 100.0 REAI.
51-60 ATB (3) 13415.5 REAI.
61-70 ZB	 (4) 200.0 REAI.
71-80 ATB	 (4) 13415.5 REAI.

Card 4 1-10 NITHE 3 INTEGER
Card 5 1-10 ZHE	 (2) 20.0 REAL

11-20 AHE	 (1) 0.0 REAI.
21-30 DTUBE	 (1) 0.0 REAL.
31-40 PV	 (1) 0.0 REAI.
41-50 PH	 (1) 0.0 REAL.
51-60 IARR	 (1) 0 INTEGER

Card 6 1-10 ZHE	 (3) 60.0 REAL
11-20 AHE (2) 0.145 REAL
21-30 DTUBE (2) 5.4 REAL
31-40 PV (2) 9.9 REAL
41-50 PH	 (2) 11.43 REAL
51-60 IARR	 (2) 4. INTEGER

Card 7 1-10 ZHE	 (4) 200.0 REAL
11-20 All  (3) 0.0 REAI.
21-30 [TUBE ( 3) 0.0 REAI.
31-40 PV (3) 0.0 REAI.
41-50 PH	 (3) 0.0 REAI.
51-60 IARR	 (3) 0 1 NTF C;
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Columns Variable Example Type

Card 8 1-10 WEED 1 INTEGER

Card 9 1-10 ZF(1) 12.7 REAL
11-20 FFC	 (1) 1.0 PEAL
21-30 FFAD (1) 1.0 REAL.

Card 10 1-10 MDIS 1 REAL

Card 11 1-10 ZDIS	 (1) 0.0 REAL
11-20 FD	 (1) 1.0 REAL

Card 12 1-10 AND 288.0 REAL
11-20 DNZL 0.3734 REAL
21-30 DTHICK 2.54 REAL

Card 13 1-10 DEAV 5.0 REAL
11-20 FW 0.15 REAL

Card 14 1-10 NDPAD 8 INTEGER

Card 15 1-10 DPADF (1) 0.0045 REAL
11-20 DPADF (2) 0.0066 REAL
21-30 DPADF (3) 0.0125 REAL
31-40 DPADF (4) 0.0250 REAL
41-50 DPADF (S) 0.0500 REAL
51-60 DPADF (6) 0.1003 REAL
61-70 DPADF (7) 0.1680 REAL
71-80 DPADF (8) 0.3175 REAL

Card 16 1-10 FRACTA (1) 0.1720 REAI,
11-20 FRACTA (2) 0.0500 REAL.
21-30 FRACTA (3) 0.1220 REAL
31-40 FRACTA (4) 0.2250 REAL
41-50 FRACTA (5) 0.2200 REAL
51-60 FRACTA (6) 0.1510 REAL
61-70 FRACTA (7) 0.0590 REAL_
71-80 FRACTA (8) 0.0010 REAL

Card 17 1-4 NAMELI LIME Alpha niw	 i-ic

I 5-8 NAMEL2 ST18 Characters

Card 18 1-10 XCACO3 0.820 REAL
11-20 XMGCO3 0.020 REAL.

Card 19 1-4 NAMECI PTGH Alpha...... ^: I
5-8 NAMEC2 COAL Characters
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Columns	 Variable	 Example	 Type

Card 20 1-10 XCF 0.504 REAL
11-20 XCV 0.222 REAL
21-30 XH 0.046 REAL
31-40 XS 0.027 REAL
41-50 XO 0.043 REAL
51-60 XN 0.014 REAL
61-70 XW 0.013 REAL
71-80 QCOAL 7900.0 REAL.

Card 21 1-10 NDPC 8 INTEGER

Card 22 1-10 DPCF (1) 0.0045 REAL
11-20 DPCF (2) 0.0066 REAL
21-30 DPCF (3) 0.0125 REAL
31-40 DPCF (4) 0.0250 REAL
41-50 DPCF (5) 0.0500 REAL
51-60 DPCF (6) 0.1003 REAL
61-70 DPCF (7) 0.1680 REAL
71-80 DPCF (8) 0.3175 REAL

Card 23 1-10 FRACTC (1) 0.0750 REAL
11-20 FRACTC (2) 0.0310 REAL
21-30 FRACTC (3) 0.0880 REAL
31-40 FRACTC (4) 0.1290 REAL
41-50 FRACTC (S) 0.2120 REAL
51-60 FRACTC (6) 0.3440 REAL
61-70 FRACTC (7) 0.1190 REAL
71-80 FRACTC (8) 0.0020 REAL.

Card 24 1-10 HLMF 0.0 REAI.
11-20 VMF 0.0 REAL
21-30 HLF 67.056 REAL
31-40 PAV 4.0 REAL
41-50 TAV 1083.0 REAL
51-60 TWAV 530.0 REAL
61-70 UHEAV 0.005832 REAI.

Card 25 1-10 WCOAL 14.679 REAL
11-20 WAD 0.0 REAI.
21-30 CABS 2.2 REAL.
31-40 OF 0.0 REAI.
41-50 TF 298.0 REAL
51-60 PF 4.1 REAI.
61-70 EXAIR 17.4 REAI.
71-80 XGF(1) 0.21 REAL

Card 26 1-10 XGF(2) 0.0 REAL
11-20 XGF(3) 0.0 REAL
21-30 XGF(4) A.0 REAL
31-40 XGF(5) 0.0 REAL
41-50 XGF(6) 0.0 REAL
51-60 XGF(7) 0.0 REAL
61-70 GZCO 0.0 REAL
71-80 GZH2S 0.0 REAL
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Columns	 Variable	 Example	 Tie

Card 27	 1-10	 GZH2	 0.0	 REAL

Card 28	 1-10	 IGNITE	 1	 INTEGER

8 -3. Output of the Program

The output of a typical run of Level II program is following.

 J



HEIGHT,CM SP.HEAT	 TRANS.AREA,SD.CM/CL.C ►+

20.00 0.0000
60.00 0.1450

300.00 0.0000

SOLICS	 FEED LEVEL

12.70

SOLIDS DISCHARGE LEVEL

66.00

DIA.OF TU8ESrCM

0.000
5.400
0.000

FRACTION COAL FED

1.0000

FRACTION DISCHARGED

1.0000

NO.0F	 CISTRIBUTOR HOLES	 = 288.0

NOZZLE CIA m ETER C.3734 CM

DISTRIBUTOR THICKNESS = 2.5400 i.M

AVERAGE CELL	 SIZE - DZAV	 = 5.000	 CM

FM 0.150

NO. HEIGHT CELL VOLUME CELL EFF.VCL. TUBE	 VOL.FR.SP.HE.AREA

2 5.00 2.09C3E 04 2.0903E 04 -C.000E-01 0.000E-01
3 10.00 2.0903E 04 2.0903E 04 -0.000E-0 0.000E-01
4 15.00 2.0903E 04 2.0903E 04 -0.000E-01 0.000E-01
5 20.00 2.09C3E 04 2.0903E C4 -C.000E-01 0.000E-01
6 25.00 2.09CH C4 1.6811E 04 1.S58E-01 1.450E-01
7 30.00 2.0903E 04 1.6811E 04 1.958E-01 1.450E-01
8 35.00 2.09	 3E 04 1.6811E C4 1.S58E-01 1.450E-01
9 40.00 2.0903E 04 1.6811E 04 1.958E-01 1.450E-01

10 45.00 2.0903E 04 1.6811E 04 1.958E-01 1.450E-01
11 50.00 2.0903E 04 1.6811E 04 1.S58E-01 1.450E-01`
12 55.00 2.2623E 04 1.8194E 04 1.958E-01 1.450E-01
13 60.00 2.6193E 04 2.1066E 04 1.957E-01 1.450E-01
14 65.00 3.0025E C4 3.CC25E C4 -G.000E-U1 O.000E-01
15 70.00 3.4119E 04 3.4119E C4 -0.000E-01 0.000E-01
16 75.00 3.8474E C4 3.8474E 04 -0.000E-01 0.000E-01
17 80.00 4.30S2E 04 4.3OS2E C4 -O.000E-01 0.000E-01
18 85.0C 4.7971E 04 4.7571E C4 -0.000E-01 0.000E-01
19 90.00 5.3112E 04 5.3112E 04 -0.000E-01 0.000E-01
Zu 95.00 5.8515E 04 5.E515E C4 -C.000E-01 0.000E-01
21 100.00 6.4180E 04 6.4180E 04 -0.000E-01 0.000E-01
22 105.00 6.7077E 04 6.7C77E 04 -0.000E-01 0.000E-01
23 110.00 6.7077E 04 6.7077E C4 -C.000E-01 0.000E-01
24 115.00 6.7077E 04 6.7077E C4 -0.000E-01 0.000E-01
25 120.00 6.7077E 04 6.7077E 04 -0.000E-01 0.000E-01
20 125.00 6.7077E 04 6.7077E C4 -C.000E-01 0.000E-01
27 130.00 6.7077E 04 6.7077E C4 -0.000E-01 0.000E-01
26 135.00 6.7077E C4 6.7C77E C4 -0.000E-01 0.000E-01
29 140.00 6.7077E 04 6.7C77E C4 -C.000E-01 0.000E-01
30 145.00 6.7077E 04 6.7077E C4 -0.000E-01 0.000E-01
31 150.00 6.7077E C4 6.7C77E 04 -0.000E-01 0.000E-01

COMPT.NC . EEIGFT BED	 CIA. BED C/S AREA

1 0.00 7.2SEE Cl	 4.181E 03

10.00 7.2S6E C1 4.181E 033
4 15.00 7.2SEE Cl	 4.181E 03
5 20.00 7.2SEE Cl	 4.181E C3
6 25.00 7.2S6E 01	 4.181E 03

NC8 CATA 1.2 1.3

HT.ABCVE DISTRIBUTOR,CM

50.8808
1CC.0000
150.0000

CROSS SECTIUNAL AREA OF BEO,SQ.CM.

44
 80.602
80.602

13415.500
13415.500

VER.PITCH,CM	 HOR.PITCHtCM	 TUBES ARRNGT

	

0.000	 0.000	 0

	

9.900	 11.430	 4

	

0.000	 0.000	 0

FRACTION LIMESTONE FED

TUBE DIA.

0.000E-01
0.000E-01
0.000E-01
0.000E-01
5.400E 00
5.400E 00
5.400E 00
5.400E 00
5.400E 00
5.400E 00
5.40CE 00
5.400E 00
O.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-C1
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01

VER.PITCH

0.000E-01
0.000E-01
0.000E-01
0.000E-01
9.900E 00
9.900E 00
9.900E 00
9.900E 00
9.900E 00
9.900E 00
9.900E 00
9.900E 00
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0 .0 OOE- O 1
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0 .000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01

0 
oxi

b ^

c: b

c^

1~O7

HOR.PITCH

0.000E-01
0.000E-01
0.000E-01
0.000E-01
1.143E C1
1.143E 01
1.143E 01
1.143E 01
1.143E 01
1.143E 01
1.143E 01
1.143E 01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-C1
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-01
0.000E-C1
0.000E-01
0.000E-01
0.000E-01

I-

1.0000

TUBE ARRNGT



7 30.00 7.29EE	 01 4.181E 03
8 35.00 7.296E	 01 4.181E 03
9 40.00 7.2StE	 Cl 4.181E 03

10 45.00 7.29tE	 01 4.181E 03
11 50.CO 7.296E	 01 4.181E 03
12 55.CC 7.873E	 Cl 4.868E 03
13 60.00 8.451E	 Cl 5.609E 03
14 65.00 9.028E	 01 6.401E 03
15 70.00 S.6C5E	 Cl 7.246E 03
16 75.00 1.018E	 02 8.143E 03
17 80.0C 1.C76E	 02 9.093E 03
18 85.00 1.134E	 C2 1.010E 04
19 90.00 1.191E	 02 1.115E 04
20 95.00 1.24SE	 C2 1.226E 04
21 1CO.00 1.3C7E	 02 1.342E 04
22 105.00 1.307E	 02 1.342E 04
23 110.00 1.3C7E	 C2 1.342E 04
24 115.00 1.3C7E	 02 1.342E 04
25 120.00 1.3C7E	 02 1.342E 04
26 125.00 1.307E	 C2 1.342E 04
27 130.00 1.307E	 02 1.342E 04
28 135.GC 1.3C7E	 02 1.342E 04
29 140.00 1.307E	 C2 1.342E 04
30 145.00 1.3C7E	 02 1.342E 04
31 150.00 1.307E	 02 1.342E 04

LIMEST18 XCACO3 =	 0.820 XMGCO3 = 0.020

CPACF	 ,	 CM MT.FRACTION

O.CC45 0.1720
O.0066 0,0500
O^C125 0.1220
O.C25C 0.2250
C.C`.00 0.2200
O.ICO3 0.}510
C.it@C 0.0590
C.3175 0.0010

SURFACE VOLUME	 MEAN CIA.	 = OPADH =	 C.0084 CM WEIGHT	 WEAK	 DIA. =	 GPADR	 =	 0.0338	 CM

PTGHCOAL	 XCF -	 0.504	 XCV	 =	 0.222 XF	 =	 0.046 XS = 0.027 XC = 0.043 XN	 =	 0.014	 XA =	 0.144	 XW	 = 0.013
QCOAL = 7900.00	 GALS/GM CCCALC =	 7900.00 CALS/GM

E

DPCF , CM
	

wT.FRACTION

O.GC45
	

0.0750
C.CC66
	

0.0310
C.C125
	

0.0880
0.0250
	

0.1290
C.C50C
	

0.2120
C.1CO3
	

0.3440
C.1E8C
	

0.1190
0.3175
	

0.0020

SURFACE VOL MEAN DIA OF COAL FEED - OCF
	

0.0151	 CM	 DCAV =	 0.0113

60PCF
HLMF=	 0.0000000E OO,VMF= 	 0.000OOCOE OC,hLF-	 C.6705600E 029FAV=
UHEAV=	 0.5832002E-02,WCOAL=	 0.1467900E 029wAU=	 0.3282995E 01,WC
TF=	 0.298000 SE 03 9 PF=	 C.4100000E Cl EXAIR= 	 0.1739S88E 00 XGF=

0.0000000E S0r	 0.000OOCOE 00,	 0.6000OCOE 00	 0.0000006E 00,
GZH2-	 0.0000000E OO,IGNITE=	 i,MGAS=	 6.2883998E 029FYTH=
P HCCAC=	 0.150S496E OI,RHOCH=	 0.127539SE C1,EEND

0.4000000E 01,TAV=	 0.1083000E C49TI,AV=	 0.5300000E 03,
4C=	 0.2064861E 01,CABS= 	 0.2200000E 01,UF= 	 0.8261148E 01,
0.210000CE 00	 0.0000000E 00	 0.00000COE 00,
0. 900000E O Ot GZCO=	 0.0000060E OC,GZH2s =	0.0000000E 00,
0.4932879E O1,FMF=	 0.5791199E 01,FMO= 	 0.5987882E 01,

RESULTS ALL TEMPERATURES IN CENTIGRADE

ETC,XAV,TAV,ITRIAL,= 0.9282E OC C.1547E-C1 C.7759E 03	 2

1	 Y8	 YE	 X	 Z	 T	 ZAVG	 TPB	 TPE	 WNET	 RR
1	 1.7649E-01 1.7649E-01 2.2Q11E-C1 C.0000E-01 2.59 nOE 01 0.0000E-01 2.5000E 01 2.5000E Cl 0.0000E-C1 0.0000E-•01
2 1.4254E-01 6.2926E-04 1.5489E-02 5.000CE OC 8.1018E 02 2.5000E 00 8.1994E 02 8.1349E 02 -2.4873E CO 1.3585E 00
3 1.2045E-01 3.4815E-C4 1.5498E-02 1.0000E 01 8.1177E C2 7.5000E 00 8.1962E 02 8.1426E 02 -4.0672E 00 8.6195E-01



5	 91 .4397_02 1.8e79E-04 1.5547E-02 2.0000E 8.0047E 02	 1.7500E 01	 8.0554E 02 6.0213E 02	 8.1384E 00	 4.2278E-01
6	 8.6908E-02 2.C36

3
6E-04 1.5485E-02 2.5000E 8

1
7.9027E	 02	 2.2500E 01	 7.9457E 02 7.9190E	 02	 8.2085E CO	 3.5593E-01

7.0#165E--02 92.5170E-04
pp

1

1 28 1.5466E-02 3.5000E 0 7.7246E 02	 3 2500E O1	 7.7566E 0 7.7391E 02	 7.2958E CO	 2.8565E-01
9	 6.8B

O
S1E-g2 2.6

6
140

6
E-04 1

1
.5459E- 002 4.0000E O1 7.6520E 02	 3.

2
7500E O1	 7.6793E 02 7.6650E	 02	 6.9153E 00	 2.5373E-01

2
2
:66101E-04 1.5449E-02 5.0000E 01 02	 6.2613E7.5569E 00	 2.0656E -011 01	 5.9i1

22
7t-02 7.54

1
88E 02	 4.

2
7500E 01	 7.5672E 02

7.5257E	 02	 5.9656E 00	 1.8104E -61

14	 4. 458E-02 1.2982E- 04 1.5440E-02 6.5000E 01

5OOmE 01	 7.5348E 02
7.5298E 02	 6.2500 0	 7.5315E 02 7.5236E	 02	 5.3711E 00	 1.1368E-01

15	 4.5989E-02 9.1061E-05 1.5440E-02 6.7C56E	 01 7.5357E 02	 6.6028E 01	 7.5352E 02 7.5277E	 02	 4.0499E 00	 8.3421E-02

(ETS,FS,CABS,CABSEI-
0.8287E CO	 0.3767E 00	 0.2200E Cl	 0.2200E 01

HT. ZAVG YB YE SRELB	 SRELE
5.0000E 00 2.5000E	 00 1.7521E-04 1.5273E-04 1.2371E-03	 1.99,60E-03
1.0000E 01 7.5000E 00 2.8519E-04 S.6245E- 05 8.8743E-04	 1.1662E-03
1.5000E	 01 1.2`500E	 0 3.5280E-04 6.7?16E-05 6.2775E-04	 7.8293E-04
2.0000E	 01 1.75COE	 O1 3.9330E-04 4.9834E-05 4.4650E- 04	 5.6564E-04h
2.5000E	 Oi 2.2500E	 01 4.1103E-04 4.7158E-05 2.7792E-04	 4.1C97E-04
3.0000E	 01 2.7500E 0 4.1817E-04 4.EE17E-05 2.2689E-04	 4.0yp2E-04
3.5000E	 01 3.2500E	 O1 4.1789E-04 4.5376E-05 1.8268E-04	 3.7271E-04
4.0000E 01 3.7500E 4.1250E-04 4.236CE-05 1.4985E-04	 3.4477E-04
4.5000E 01

0011
5.7500E	 O1

1.0812E-04
5.0000E 01 3.8102E-0a ?	 2 3C7E-05 -04	 2.83*9E-04
6.0000E	 01 S.T500E	 O

p
3.6864E-04 2.6217E-05 1.0015E-04	 2.7445E-04

6.500 1
O1

i
1

6.6028E	 OI3.5264E-04 1.2S94E-05 4.2837E-05	 9.4976E-05

OUTLET GAS CONCENTRATION

02 CO2 S02 H2O CO	 H2S	 H2	 NOX
O O

0.4560E-01	 0.1535E OC	 0.3500E-03	 0.5742E-01	 0.0000E 00	 0.0000E 00	 0.0000E 00	 0.1839E-04

b
''

PRESSURE ORCP ACROSS	 THE	 CISTRIBUTOR	 =	 1.1519E 01

COMP.NC PRESSURE ORCP IN THE	 SEC r
I

2 2.2891E 00 93 2.3895E 00 9

2.5522E O
6
5 C

1 2.6E
88

809 ^n

9 2.6951E 00
10 2.7C10E CC
11 2.7C6CE CO
12 2.7601E 00
13 2.86CCE CC
14 2.8334E CC
15 1.2331E CO

PRESSURE GRCP IN THE FIXEC	 SEC SECTION	 0.0000E-01
6OPCF1
ICA- O,IFBC- OIHCR= C.0000000E OO,HLF =	0.67C5600E 02,HLMF=	 0.4842171E	 02,VMF=	 0.1791724E 06,BEDVOL=

0.3013810E 06,EFFVOL- 0.2672749E	 06,SOLVOL=	 0.1791724E 06,TETUBE=	 0.1131662E OO,HAREA= 0.2526380E C5,QTF%ANS=
u.7488019E	 05,CVCL= 0.2464568E OO,CAREA =	3.2663532E C1,%ELT=	 0.2945155E	 O1,CELU= 0.7362888E	 CO,CLCSS=	 C.7550509E	 00,

•CIS=	 0.121515SE C1,6END

I	 HEIGHT ZAVG	 AV.BUBBLE CIA BLOBLE VEL.	 BUBBLE FRAC.	 CLCUC	 FRAC. SUP.VELOCITY MIh.FLU.VEL.

2	 5.000 2.500 4.6841E	 CC 7.9420E 01	 3.5342E-01	 3.9493E-01 3.1921E	 01 1.5135E-01
3	 10.000 7.500 6.0753E	 00 8.6646E 01	 3.6680E-01	 3.6808E-01 3.1944E	 01 1.5394E-01
4	 15.000 12.500 7.4372E	 CC S.2428E Cl	 3.4324E-01	 3.4437E-01 3.1809E	 Cl 1.5163E-01
5	 20.000 17.50C 8.768CE	 00 S.7457E 01	 3.2371jE-01	 3.2471E-01 3.1588E	 01 1.5217t'-01
6	 25.000 22.500 9.4458E	 CC 1.C350E 02	 2.7266E-01	 2.7348E-01 3.8902E	 Cl 1.5315E-01
7	 30.000 27.500 5.4862E	 00 1.C713E 02	 2.8959E-01	 2.9042E-01 3.8556E	 01 1.5423E-0:
8	 35.000 32.500 9.5258E	 CC I.CtSSE 02	 2.6762E-01	 2.8845E-01 3.8245E	 01 1.54SOE-CI



9 40.000 37.50C S.5645E CC 1.CE79E C2 2 85b^E-01 2.8666E-01 3.7'.r',E 01 1.5579E-01
10 45.000 42.500 9.6025E 00 1.0668E 02 2.8426E-01 2.8509E-01 3.7750E Cl 1.5641E-31
11 50.000 47.50C 9.6397E OC 1.0662E 02 2.8294E-01 2.8377E-01 3.7579E 01 1.5683E-01
12 55.000 52.5CO S.6748E 00 1.0395E 02 2.6860E-01 2.6942E-01 3.2172E 01 1.5710E-01
13 60.000 57.500 9.7068E 00 S.9224E 01 2.4214E-01 2.4291E-01 2.7891E 01 1.5731E-01
14 65.000 62.500 1.0229E 01 5.4817E 01 2.4917E-01 2.5000E-01 1.9675E 01 1.5759E-01
15 67.056 66.C28 1.0937E 01 S.2637E 01 2.0535E-01 2.0605E-01 1.8687E 01 1.5715E-01

CGRE USAGE OBJECT CODE=	 59536 BYTES.ARRAY AREA= 24484 BYTES•TCTAL AREA AVAILABLE = 131072	 BYTES

O[At,NOSTICS HUMBER OF ERRORS- Cr NUMBER OF WARNINGS-	 1, NUMBER CF EXTENSIONS= 0

COMPILE	 TIME = 7.04 SEC•EXECUTION TIME =	1C.18 SEC, 23.08.56	 FRIDAY 1 JUL 77	 WATFIV - JAN 1976 V1L5

:IBSYS 1407.

p
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Nomenclature of Level II Program

FORTRAN Mathematical
Symbol Symbol Unit Description

AAA - - matrix coefficients

AG - mole outlet gas composition (0,, CO 2 , 502,
fraction H2O, CO, H2S, H2 , N2)

AHE
'HE

cm2 /cm 3 specific heat transfer area

AHEAV cm2 /cm 3 specific heat transfer area in each
aHEJ

compartment

AKB k 
cm/sec overall surface reaction rate constant

for coal combustion in the bubble phase

AKBE
KBE,i

1/sec gas exchange coefficient 	 in the ith
compartment

AKE k 
cm/sec overall	 surface reaction r;ite constant

for coal combustion in the emulaion	 ^.
phase

AKO kVR 1/sec volumetric reaction rats , constant	 for
S02 reaction

ALFA - - temperature matrix coefficient

AND Nd - number of distributor holes

ANOX NO mole NO	 concentration in the efflu^•nt 	 gas
x fraction

x

AT cm cross sectional area of the bed atAt'i
each location

ATB - cm cross sectional area of the- !BC at
specified locations

BBB - - matrix coefficient

BEDVOL V cm total bed volume

BETA - - temperature matrix coeffic,ciit	 #

CABS [ Ca]/ [S] mole mole ratio of calcium to swi l m,
ratio in feed solids

CABSE [Ct;If/[S]f mole effective ratio of calcium to sulfur
ratio in the feed	 (gas and solids)

CADF Csf Cal/g°C heat capacity of additives	 fed
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FORTRAN Mathematical

Symbol Symbol Unit Description

CCF Ccf Cal/g°C heat capacity of coal fed

CELU We g/sec elutriation rate of unhurrit char

CGM Cgm Cal/gmol°K molar heat capacity of bas

CGMF Cal/gmol°K molar heat capacity of gas at feedCgmf
temperature

CLOSS - g/sec total carbon loss

CS Cs Cal/g°K heat capacity of solids

DB
D 

cm bubble diameter

DBAV
DB,av

cm average bubble size of each
compartment

DENOM - gmol/sec total sulfur fed into the bed

DCAV do cm average particle size

DELT - - temperature matrix coefficient

DNZL - cm diameter of distributor holes

DPADH - cm surface volume mean diameter of
additives (used in hydrodynamic

calculations)

DPADR d cm weight mean diameter of additives 
P (used for reaction calculations)

DPB
d 

cm particle diameter of additives

DPDIS - cm H 2O pressure drop across the distributor

DPFIX - cm H 2O pressure drop in the fixed bed

section

DPFLU - cm H 2O pressure drop in the fluidized
section

DT Dt'i cm diameter of the bed at each location

DTHICK - cm distributor plate thicknv^,s

DVBB AV cm volume of compartment

DVBBEF - cm; effective volume of compartment

eccluding tubes
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FORTRAN Mathematical
Symbol Symbol Unit Description

DZAV - cm average compartment size

EFFVOL - cm effective volume of bed occluding
tubes

ELLOSS - wt. elutriation loss
fraction

EMF Emf
- void fraction at minimum fluidization

ETC n - carbon combustion efficiency

ETCA - - assumed carbon combustion efficiency

ETCC - - combustion efficiency based on carbon
consumption

ETCG - - combustion efficiency based on oxygen
consumption

ETCP - - efficiency of pyrolysis

ETS - - efficiency of sulfur capture

ETUBE tube volume fraction in each
Etube,i

compartment

EXAIR EAR - excess air

FBM FBM gmol/sec molar flow rate of gas in hubble phase

FD - - fraction of total	 soli,is discharged
at each location

FEM FEM gmol/sec molar flow rate of gas	 iii emulsion

HAD - - fraction of total	 additives fed at
each location

FFC - - fraction of total coal 	 fed at each
location

FMF Fmf gmol/sec molar flow rate of inlet gas

FMO Fm gmol/sec total molar flow rate of gas in the
bed

FDft11
1:mth

gmol/sec. theoretical	 feed rate of inlet gas
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FORTRAN Mathematical

Symbol Symbol Unit Description

FS fR - fractional conversion of additives

FW f - volume fraction of wake to bubble
w

G g 980.1 cm/sec t acceleration due to gravity

GZCO
NCO

- ratio of CO formation rate to carbon

combustion rate

GZH2 CH - ratio of H 2 formation rate from coal

2 to sum of H 2 and H 2O formation rate

from coal

GZH2S
CH S - ratio of H S formation ::ate to sulfur

2 2feed rate 

H(I),H(I+l) hi cm height of the bottom and top of each
compartment above distributorh

i+1

HAREA - cm total heat transfer area

HCR - cm critical bed height

HLF
L 

cm height of the fluidized lexpanded) bed

HLMF Lmf cm height of minimum fluidization

ICR - - indicator for critical ht-d height

IFBC - - indicator for the fixed hed section

IGNITE - - index for combustion cAcu lation

(=	 1,	 combustion,	 = 0,	 ii„ combustion)

MAIR Mair 9/mole molecular weight of aii
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FORTRAN Mathematical
Symbolbol Symbol Unit Description

MC M g/g atm atomic weight of carbon
c

MCACO3
MCaCO3

g/g atm molecular weight of CaCO3

MCAO
MCaO g/g atm molecular weight of CaO

MCASO4
MCaSO

4
g/g atm molecular weight of USO4

MCO
MC0

g/g atm molecular weight of Co

MCO2 MCO g/g atm molecular weight of CO2
2

MDIS - - number of solids discharge locations

MFEED number of solids feed locations

MGAS Mg g/g mole molecular weight of feed gas

M{2 MH 
2

g/g mole molecular weight of hydrogen

h1120 bi d 0
^

g/g mole molecular weight of water

Mi2S ^t
H17S g/g mole molecular weight of H 

2 
S

MMGCO3
mMgC0

3
g/g mole molecular weight of MgCO3

MMGO MM 
g0

g/g mole molecular weight of MgO

MN2 MN g/g mole molecular weight of nitrogen
2

MO2 M0 g/g mole molecular weight of oxygen
2

NIS Ms g/g atm atomic weight of sulfur

NIS02
MS0

g/g mole molecular weight of S02
2

NIT - - total number of divisions of the
FBC + 1

NtI'B - number of specified locations

i
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Symbolbol Smbol Unit Description

NAMEC1 - - name of coal
NAMEC2 - -

NAMELI - - name of limestone
NAME L2 - -

NDPAD - cm size distribution of limestone
DPADF wt.	 fraction particles - number of size intervals	 !
FRACTA (NDPAD), upper bound of each size

interval	 (DPADF), weight fraction
(FRACTA)

NDPC cm size distribution of coal particles -
DPCF wt. fraction number of size intervals (NDPC), upper
FRACTC bound of each size interval 	 (DPCF),

weight fraction	 (FRACT(:)

PAV P atm average pressure of the IBC

PF - atm inlet gas pressure at the distributor

PH Ph cm horizontal pitch of the cooling coils	 1

PI Tr 3.141593 mathematical constant

PV
P 

cm vertical pitch of the cooling coils

QAREA - Cal/cm 2sec heat transfer rate per cm 	 heat
transfer area

QCLCN qZ Cal total heat of calcination of
limestone

QCOAL
q 

Cal/g heating value of coal 	 for incomplete
combustion

QCOALC - Cal/g heating value of coal 	 for complete
combustion

QIN - Cal/sec sensible heat carried in by feed
solids and gas

QTRANS - Cal/sec total heat transferred to the
coolant

QV01. - Cal/sec cm heat transfer rate per em' of bed

RG R cc-atm/gmol•K gas constant	 i

RHOAD PZf g/cm3 density of limestone
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M RTRAN Mathematical
Symbol Symbol unit Description

RHOASH PA g/cm3 density of ash

RHOC
pcf

g1cm3 density of coal

RHOCAD pR g/cm3 density of calcined additives

RHOCH pch g/cm3 density of char

RHOFG -
3

g/cm density of feed gas

RHOGAS
P 

g/cm3 density of gas in the bed

RR g/sec rate of combustion in each
compartment per unit carbon
concentration

RR (I) - Cal/sec heat generation rate minus heat
consumption rate in each compartment

RRB - g/sec rate of combustion of carbon in the
bubble phase in each compartment

RRE - g/sec rate of combustion of carbon in
the emulsion phase in each compart-
ment

S	 (I) - - index for net flow (-1, for
downward flow, +1,	 for upward flow)

SRELB -J ^ - gmol/sec sulfur release rate in the bubble
phase

SRELE - gmol/sec sulfur release rate in the emulsion
phase

I' T °K bed temperature

TAV - °K average bed temperature

TCAR - g/sec total carbon available for combustion

TCRATE - g/sec total carbon combustion rate

TETUBE - - total volume fraction of tubes

TF
T 

°K inlet gas temperature

THET 0 sec residence time in the top compartment
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Symbolbol Symbol Unit Description

TNORM - °K temperature for convergency criterion

TOLD - °K bed temperature in the previous
iteration

TPB - °K temperature of particles in the
bubble phase

TPE - °K temperature of particles in the
emulsion phase

TSF Tsf °K
i

temperature of feed solids

TW T °K temperature of coolant

TWAV - °K average coolant temperature

UB ub cm/sec bubble velocity

OF of cm/sec superficial gas velocity at the
distributor at the inlet temperature
and pressure

1kiE u Cal/cm 2sec°K overall heat transfer coefficient

UNEAV - Cal/cm 2 sec°K average overall heat transfer
coefficient

UMF umf cm/sec minimum fluidization velocity

110 uo cm/sec superficial gas velocity

VISC u g/cm sec viscosity of gas in the bed

VMF cm volume of bed at minimum fluidization

WAD g/sec total limestone feed ratewif

WCAD - g/sec total calcined additives feed rate

WCOAL wcf g/sec total coal feed rate

WELT - g/sec total solids elutriated

WFAD - g/sec feed rate of calcined additives at
each location

WFC - g/sec
1

feed rate of char at each -ocation

WMIX
wmix

g/sec upward and downward flow rate of
solids due to backflow

a
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FORTRAN	 Mathematical
Symbol	 Symbol	 Unit	 Description

WNET	 wnet	
g/sec	 net flow rate of solids

X	 x	 wt. fraction carbon concentration in the bed

XAV	 -	 wt.fraction	 average carbon concentration in the
SAVIC	 bed (IC denotes initial condition)

XC x 
wt. fraction total carbon content in the coal

XCACO3 xZCa wt.' fraction CaCO3 content in the limestone

XCAO - wt. fraction Ca0 content in the additives

XCF - wt. fraction weight fraction of fixed carbon in the
coal	 (d b)

XCV - wt. fraction weight fraction of volatiles in the
coal	 (d b)

XCF	 (I) yi mole fraction feed gas composition (0 2 , CO2 , 502 , H2O,
CO,	 H 2S, H2 ,	 N2)

XH - wt. fraction weight fraction of hydrogen in the
coal	 (d b)

XMGCO3 - wt. fraction MgCO3 content in limestone

XN - wt. fraction weight fraction of nitrogen in coal 	 (d b)

XO - wt. fraction weight fraction of oxygen in coal 	 (d b)

XS - wt. fraction weight fraction of sulfur in coal(d b)

YAV - mole fraction average oxygen concentration in the bed

YB yB mole fraction bubble phase concentration of oxygen in
combustion calculations or sulfur dioxide
in SO2 calculations

YBO - mole fraction bubble phase concentration of oxygen

YE
YE

mole fraction emulsion phase concentration of oxygen
in combustion calculations or sulfur
dioxide in SO2 calculations

YEO - mole fraction emulsion phase concentration of oxygen
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FORTRAN	 Mathematical
Symbol	 Symbol	 Unit	 Description

Z	 Z	 cm	 height above the distributor

ZAVG	 -	 cm	 average height of the compartment

ZB	 -	 cm	 specified location

ZDIS	
cm	 locations of discharge and feed

ZF

ZHE	 -	 cm	 locations of bottom and top of the
cooling coils



TABLE 8

LIST OF ORIGINAL COMPUTER SUB-PROGRAMS

Used in Functions

Level	 I Calculation of the reactivity of char
a c ,	 for given data of y, 	 dcm ,	 p	 u,

gX02 ,	 k co , uo.

Level	 II Calculation of the rate constant of sulfur
capturing reaction, k vz for given data of
f R ,	

d 
	 and T.

Level	 II Calculation of the combustion rate constant

k 
	 and the temperature of char particles T 

for given t, p, d o and y02

Level	 II Calculation of At for a given height above
distribution,	 z

Level	 I	 fi	 II Calculation of the value of an unknown
parameter assumed for the next trial of
Regula Falsi	 iteration

Level	 II Input subroutine for the design parameters
of the bed.	 Redistribution of the parameters
for each elemental volume

Level	 I Calculation of the free 	 fall velocity
(terminal velocity)	 of particle of given
property (d	 ,)	 in the gas of given

)property (cg,o 9

No.	 Title

1	 ACTIV

2	 AKAD

3	 AKK

4	 AREA

S	 CRRECT

6	 DESIGN

7	 FREEFV
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Section IX

MANUAL OF COMPUTER SUB-PROGRAMS

In this section the sub-programs used in the computer programs

(Level I and II) are explained in detail. Following Table 9 shows the list of

subroutines in alphabetical order. Except the subroutine SIMQ which is the

duplication of one of the subroutines in SSP supplied by IBM, explanation

is given for each sub-program.

^r
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(Table 9 Continued)

No.	 Title	 Used in Functions

8	 CPHASE	 Level	 II GPHASE given the value of gaseous species
concentrations in bubble and emulsion phases
of the ith compartment, ygi and yEi, from
a given hydrodynamic and kinetic informations
and the values of yB i-1 and YE, i-1•	 It
is assumed there that the reaction is first
order about the relevant species.

9	 HEIGHT	 Level	 II Calculation of the effective height
of the bed excluding the volume occupied
by tubes.

10	 HFATI	 Level	 IT Calculation of the bed height above the
distributor at any given corss-sectional
area of the bed.

11	 HYDRO	 Level	 II Calculation of the bubble hydrodynamics-
minimum fluidizing velocity, superficial
velocity, bubble size, bubble fraction,
cloud fraction, bubble velocity and
location of the fixed bed section above
the fluidized bed section, computation
of height at minimum fluidization or
height of fluidized bed.

12	 POP	 Level	 I Calculation of the size distribution
density function of char in the bed.

13	 VOLUME	 Level	 II Calculation of the effective volume of
the bed for the given height of the
fluidized bed.
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9-1. Function ACTIV

Reactivity of char, X c , is calculated in this sub-program based on

the equation:

X c = 1/(kcR/kcf + 1)

kcR must be fed as an input but kcf is calculated in the subprogram by

assuming Sh = 2. The value of Sherwood number can be changed as a

function of Reynolds number easily, since Reynolds number is also

computed in this sub-program although it is not used. Then the mass

transfer coefficient is given as

k  = Sh - D02/dc

where do
	 dcm * y

The inputs and outputs of this sub-program are,

Inputs to the sub-program: Y, DCM, RHOG, VISC, D, AK, UO

Output from the sub-program: ACTIV

Nomenclature Code
	

Model variable
	

Des criht i o i i	 Unit

AK

AKF

ACTIV

D

DCM

RHOG

UO

VISC

Y

k 
c R

chemical reaction	 rrnt(• cmistant cm/sec

k cf mass transfer coefficit-w cm/sec

a c reactivity of char -

D02 diffusivity of oxygen cm2/sec

dcm maximum diameter of chat-
particles cm

P gas density g/cm3
g

u 
gas superficial velocity cm/sec

P gas vescosity g/cm-sec

y dimensionless particle
diameter of char -
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9-2. Function AKAD

Mean overall rate constant for sulfur capturing reaction, kV9,

is computed by this function sub-program. The sub-program shown in

this report is for temporary use because of the lack of general kinetic

data. This function is designed based on the data by Borgwardt (1972)

for Type 4 limestone. The condition of Borgwardt is summarized as follows:

1) reaction: limestone - SO2

O

2) temperature: 1253 K

3) particle size: 0.0096-0.13 cm

Mean overall reaction rate constant is calculated by the equation,

kv9 = kvR S  a 
Z 

(fV d^)

where k' is defined as
vZ

k ' = 3.72 x 10-3 exp (- 17.5 x 103/RT)

This value of activation energy was obtained by Wen and Ishida (1973).

By using Borgwardt (1972)'s data the specific surface S  is correlated

with temperature (calcination temperature) as

S = - 193.75 T + 275,000 	 cm2/g	 T > 1100 K , For T < 1100 Y: 4
g	 9

From Borgwardt's experiment the relationships between 
A  

and f  are

obtained. The data are reformed using Equations (3-65) and (3-66)

and the function X  (f^) is calculated for each particle diameter.

The results are stored in the sub-program. Linear

interpolation on the semi-logarithmic space is applied to obtain the

value of 
X  

for the arbitrary input of f  and d 	 The equations

for the interpolation are:

`;	 3 r
g
110 K
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f - fl

a	 =	 ta2	
f2 - fl

	Za	 tal
tal

f - fl

	

( X tb2 ^ f2	 fl

	

tb	 tb 1
tb 1

Qn(dt/dtb)

tn(dta d tb^ ,.

	

_	 to

^t

	

	 xtb
x tb

To improve the validity of this function sub-program, kinetic data

covering wide temperature and particle size ranges are needed. The direct

combination of a kinetic model for one particle will not be effective due

to the computation time limitation. It is, therefore, recommended to

provide the value of kvt over the wide conditions such as

T = 950-1350	 °K

d t = 0.01-0.5	 cm

and apply the interpolation not only for f t and d Q but also T.
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The inputs and outputs of this sub - program are,

Inputs:	 FS, DP, T

Outputs: AKAD

Nomenclature Code Model variable Description

AKAD k^k mean overall reaction rate constant

ALIME x 
mean reactivity of adsorbent

DP d 
particle diameter of adsorbent

DP1,	 DP2,	 DP3 dka,dkb particle diameters of stored data

FB(I) fki mean conversion data grid

FS fk mean conversion

RR(I),	 RB ( I), mean reactivity data corresponding
RC(I) to the particle sizes of DP1, DP2,

and DP3 respectively.

R1	 a ka

R2	
kb

XXX	
kn (dk/dkb)

kn (d 9.a
kb)

9-3. Subroutine AKK

Combustion rate constant, k c , and the temperature of char particle

are calculated by this subroutine. At first, the char particle temperature

is assumed to be equal to the bed temperature. Applying Equation (3-101)

the following equation is used for the criterion equation for testing

the assumed value of char particle temperature:

7900 kcp )'02/RT'
Error=T - Tc	 -	 4	 4

2A'	 Tc-Ta	 T - 1

T' _ (Tc + T)/2
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where

a = 1. 36 X 10-12

e' = 0.5	
OkIGIIVAL PAGE IS

i ' = 0.56S9 X 10
-4
 + 1.07 X 10 - 7 T'	 OF POOR QUAI.M4

are used.

For calculating k  the following data are used:

kcR = (Tc/1000) exp (17.9 - 35.7/(0.001986 Tc))

Sh = 2

D = 4.26 (T'/1800)1.75
	 /P

Subroutine CRRE Cf is applied for correcting the assumed value of Tc.

The inputs and outputs of this sub-program are,

Inputs: T, P, DC, Y02, RG

Outputs: AKR, TP

Nomenclature Code	 Model variable	 Description
	

Unit

AKF	 kcf	 mass transfer coeeficient

AKR	 kcR	 chemical reaction constant

AKS	 k 
	 overall combustion rate constant

COND	 X'	 thermal conductivity of gas

D	 D	 diffusivity of oxygen	 cm`/sec

EM	 e'	 emissivity

ETS	 Error

ETSMAX	 max(Error)	 tolerance limit for iteration	 °K

SHP	 Sh	 Sherwood number	 -

SIGM	 Cr

T	 T	 bed temperature	 °K

TAV	 T'	 average temperature for gas film °K

TP	 T 	 char particle temperature	 °K
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9-4. Subroutine AREA

By using this subroutine the cross sectional area of the bed can

be calculated at any given height. Into subroutine DESIGN a set of

the data z  and Aj , j = 1-MTB is fed and stored in the common address

before subroutine AREA is called.

For a given height z, z j-1 and z  are searcheA so that

z	 < z < Z.
j-1 -	 3

Then, the cross sectional area A correspondint to z is obtained

by the following equation:

A = Trr2

z - zj
-1	 A	 112

J -1	 Aj-1

_

rj-1	
(A 

j-1
1/2

/n}

where it is assumed that the diameter in between z j _ 1 and z  is

proportional to the height. The diameter D  is also calculated.

The inputs and outputs of this sub-program are,

Inputs: ZJ

Other parameters supplied from common(GEN/:ZB(J), ATB(J), J = 1, MTB

Nomenclatures Code Model variable Description lhnit

ATB(J)
A 

bed cross section at	 z=z j Cm"

ATI At bed cross section at	 z=z cm`

DTI
D 

equivalent diameter of bed
at z= z Cm

RI n radius at z=z cm

ZB(J) zj height from the distributor
where the data for cross-
sectional area is given cm

zI z height from the distributor cm

I^
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9-5. Subroutine CRRECT

Subroutine CRRECT provides the assumed value for the unknown

variable to be used in the next iteration of Regula Falsi method and

also judges if the iteration has converged.

The regula Falsi iteration has two different periods,

Period 1: the root is nOt captured in the interval ( INDX = 0)

Period 2: the root is captured in :he interval (INDX = 1)
as illustrated in Figure 10.

The parameter INDX is an indicator of the periods and INN = 2

indicates that the iteration has converged. During period 1 the search

for the root is repeated by proceeding in one direction specified by the

sign of increment for X, DX. Once the root is captured in the interval,

Newton-Raphson scheme is applied.

To apply this subroutine the following statements must be prepared

in the program from where CRRECT is called.

1) Initial assumption for the unknown parameter, X

2) Value for differential increment, AX

3) Tolerance limit for ERROR: E

4) Initial value for INDX the error, INDX = 0

5) DO loop for iteration

6) A statement to get off from the DO loop when INDX = 2.

Therefore the program looks like

X=	 ......

DX = ....... (positive for the search by increaseing X and negative
for the search by decreasing X).

EMAX = ..... (must be always positive)
INDX = 0

^	
_ s
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V	 INDX = 0
f^	 -

I=	 1	 2	 3--------n	 n+l

Lal

INDX = 7^

FIGURE 10. ILLUSTRATION FOR REGULA FALSI METHOD
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DO 000 I = 1, AA (aA is for the maximum acceptable number of trials)

E = function F (X)

CALL CRRECT (I, INDX, DX, X1, X2, X, E1, E2, E, EMAX)

IF (INDX. EQ. 2) GO TO 	 XXX

000 CONTINUE

XXX CONTINUE i

The initial value of X and the sign of DX are very important factor 	 q

to get a successful result from the iteration. If there are multiple roots,

special consideration for choosing these values is needed.

In the ordinary case it is recommended to start from the maximum or

minimum possible value of the unknown X.

The inputs to the subroutine are, the number of trial (i.e. IX) loop

variable), I, INDX, increment DX, assumed value of X,error E and the

tolerance limit EMAX. The results of previous iterations, i.e. X1 and

X2 and the corresponding values E1 and E2 are additional inputs to the

subroutine. However, these values are always renewed by the subroutine.

The outputs from the subroutine are INDX, X1, X2, E1, E2 and the value

X for next assumption.

Subroutine CRRECT can be applied to the multi-dimensional search

problem. In this case, the unknowns are X 1 ..... Xm and, therefore, DXl

DXm , E l ..... Em and EMAX1 ..... EMAXm are needed. The main program

must have the following structure:

X1= ....
DX1 = .....
EMAX1 = .....
INDX1 = 0
DO	 m	 I1 = 1, AA

ORIGINAL PAGE IS
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X2 = ....
DX2 = ....
EMAX2 = .....
INDX2 = 0
DO	 m-1	 I2 = 1, AA

Xm = .....
DXm = .....
EMAXm = .....
INDXm = 0
DO	 1	 Im = 1, All

EM = Fm (X 1  .... Xm)

CALL CRRECT (Im, INDXm, DXm, Xml, Xm2, Xm, Eml, Em2, Em, EMAXm)

1 If (INDXm. EQ. 2) 00 TO Al

Al CONTINUE

E2 = F2 (XI ..... Xm)

CALL CRRECT (I2, INDX2, DX2, X21, X22, X2, E21, E22, E2, EMAX2)
(m-1)IF (INDX2. EQ.2) GO TO A(m-1) 	 I
A(m-1) CONTINUE

E1 = F1 (X1	... X )
CALL CRRECT (I1, INRI, DX1, X11, X12, X1, Ell, E12, E1, FMAXI)

M	 IF (INDX1. EQ.1) GO TO Am
Am CONTINUE

le
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9-6. Subroutine Design

All the design parameters are fed into the main program by calling

this subroutine. The axial variation of the bed cross-section with

respect to the bed height (A t vs. z), the locations of the heat transfer

tubes, the specifications of the tubes (specific heat transfer area,

tube diameter, vertical pitch, horizontal pitch, tubes arrangement),

solids feed locations and the fractions of feed through each nozzle,

solids discharge locations and the fractions of materials discharged

through each discharger nozzle and diameter of the distributor tubes

and thickness of the distributor plate are the bed design parameters

fed into the program.

Specific heat transfer area of the coil in a section of the bed

refers to the outside surface area of the coils available for heat transfer

per unit volume of the bed in that section. The tubes arrangement

is coded into four divisions, and in the program it is denoted as

IARR (I). If IARR (I) is(1) it refers to the vertical triangular

arrangement;(2) the vertical rectangular arrangement; (3) horizontal

in line arrangement, and (4) horizontal staggered arrangement.

If the specific heat transfer area is not given, but the tube

diameter is given, the former can be calculated from the expression

aHE = a d
o / (PH PV)

where aHE is the specific heat transfer area [cm 2 /cm 3 (bed)].

do is the outside diameter of cooling coils

PH is the horizontal pitch

P
V is the vertical pitch

ORIGLN AL P AGE IS

OF POOR Q QIJALr 'Y

I, - ___ -	 _.MMM1WA



r

146

)l do

P
V

PH

(a) triangular arrangement

PV

^-- PH

(b) rectangular arrangement

FIGURE 11 ILLUSTRATION FOR THE ARRANGEMENT OF

HORIZONTAL COOLING TUBES
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For the triangular arrangement as shown in the Figure 19,

_	 Total heat transfer area
aHE	 Total volume

(1) ( r do L )	 ,r do

(2) PH PV L	 PHPV

For the rectangular arrangement,

n d	 n d

aHE	 Pt1 pV L	 PHPV

The height of an elemental volume of bed corresponding to each

compartment is chosen. The height should be so chosen that the total

number of compartments is always less than the maximum dimensions

allowed by the program. After having chosen the elemental volume, the

specifications of the heat transfer tubes are computed for each compartment.

Also, the diameter and area for each location are calculated. The

differential volume of each compartment, and the effective volume excluding

the volume occupied by the heat transfer tubes are computed.

Volume occupied by tubes per unit volume of bed is given as follows:

(for rectangular arrangement):
7T	 2
 4 do	 L	 do
PH • PV • J.	 4F ahe

(for the triangular arrangement): 2 ( 4 do ) L _ do
1 PH PV	4	 'he
2
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Tube volume fraction is, then, equal to

e
tube - 1 - effective vol./total volume

For each compartment, the height, volume, effective volume, tube fraction

specific heat transfer area, tube outer diameter, vertical pitch,

horizontal pitch and tube arrangement are printed out in additions to

the diameter and cross-sectional-area of the bed for each location.

So, essentially, subroutine DESIGN takes care of the design

parameters and distributes them to each compartment.

Nomenclature

Code Model Variables Description Unit

Al,	 A2,	 A3, - ALPHANUMERIC CHARACTERS
A4

ABED At'i Area of the FBC at each location CHI 2

AHE
allE

Specific heat transfer area cm2 /Cm 3

AHEAV
aHE,i

Specific heat transfer area in cm2/cm3
each compartment

AND n 
Number of distributor holes -

ATB At'i Cross-sectional area of the IBC Cm 

DBED Dt'i Diameter of the FBC at each Cm
location

DEAV AZ Average cell or compartment cm
height

DNZL - Diameter of distributor holes rm

DTHICK - Distributor plate thickness cm

DTUBE d Heat transfer tubes outside Cm
0

diameter

DTUBEI do'i Tube outside diameter in each cm
compartment

a
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Nomenclature (Cont'd)

Code	 Model Variables Description Unit

DVB	 - Volume of each compartment cm 

DVBEFF	 - Effective volume of each cm 
compartment

Tube volume fractionETUBE	
etube

FD	 - Fraction of total solids dis-
charged at each location

FFC	 - Fraction of total coal fed at
each location

FFAD	 - Fraction of total additive fed
at each location

IARR	 - Tubes arrangement code -

IARRNG	 - Tubes arrangement code for -	 f
each compartment

MDIS - No. of solids discharge locations -

WEED - No. of solids feed locations -

MTB - No. of specified locations -

M'I'RE - No. of coil locations -

PH PH Horizontal pitch of the coils cm

PHI PH,i Horizontal pitch in each compartment	 cm

PI IT Pi 3.1415926

PV
P 

Vertical pitch of the coils cm

PVI PV,i Vertical pitch in each compartment cm

ZB,	 ZHE,	 ZF, Zi Height above the distributor cm
:DIS

:DIS
Zdis

Location of solids discharge cm	 I

ZHE - Locations of the bottom and top cm
of the heat transfer coils

Z(I),	 Z(I+1) Zi,	 Z i Locations of the bottom and top cm
+1

of the ith compartment above the
distributor

i
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9-7. Function FREEFV

This function gives the terminal velocity of single particle based

on the equation

(P p - P g) gd2/18 U	 R 
P < 

0.4

4 {(P p - P g)g} 2/ (225 p  u) 1/3 
d 
	 0.4 < Re < 500

{3.1 (P p - P g ) g dp/ P g } 1/2	500 < Rep < 200,000

where the particle is assumed to be spherical. The inputs to this

function sub-program are d p , Pp , P  and u.

Nomenclature Code Model variable Description Unit

DP
d 

particle diameter cm

FREEFV
u 

terminal velocity cm/sec

G g gravity acceleration cm/sect

RET Re Reynolds number for u * -

RHOG
P 

gas denisty g/cm's

RHOP particle density g/cm3Pp

UT
u 

terminal velocity cm/sec

VISC u viscosity g/cm•sec
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g-g, Subroutine GPHASE

This subroutine is designed for solving Equations (5-2) and (5-3)

or (5-4) and (5-S) simultaneously. The value of parameters in the equations

and the concentrations of gas coming into the ith compartment, YBO and YEO

must be fed to the subroutine. The outputs are the concentrations of gai

coming out from the ith compartment, YB1 and YE1.

Equations (5-2)-(5-5) are modified into the general form and are

solved and analytically to obtain YBl and YEl. The solutions are

_ FBm,i-1 YB,i-1 + al FEm,i-1 YE

Bm,i	

,i-1 + GENB

EYB ' 1	 F	 + a	
f:

	

1 F .	
im,i	 c,i

+ a	 AV	
cB,i

(k	 /TI
B + a 1 cE,i

k	 /T 
E 
)p/I,

YE,i	 (F Bm,i-1 YE,i-1 + GENE)/D1 + al YB,i

where

ot l - K 
BE, i 

(p/RT i ) AV  Ebi/D1

D1 - 
F Em, i + ((1 - Ec,i	 E tube,i ) ac,i kcE,i/IE

K BE, i e
b,i /Ti ) (p/R)AVi

iB _ (Ti + TcB,i)/2

T  - (Ti + TcE i)/2

where GENB and GENE are the generation rate of concerning species in thk

bubble phase and that in the emulsion phase. In the case of combivition

GENB and GENE are set as zero in the main program. While for S0,/II,S

calculation GENII and GENE represents the SO2 /H2S formation rate which

is assumed to be proportional to combustion rate.

The inputs and outputs of this subroutine are:

Inputs: AKB, AKE, AM, PAV, RG, ETUBE, EPB, EPC, AKBE, DVBB,
FBMO, FEMO, FBMO, FEMO, FBM, FEM, T, TB, TE, YBO,

YEO, GENB, GENE

Oi,tputs: YB1, YE1	

ORIGINAL PAGE IS
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Model Variable	 Description	 Unit

ac	specific surface area of char	 2	 3
particle in the bed	 cm /sec

kcB	 combustion rate constant
in the bubble phase

KBE	 gas interchange coefficient 	 1/sec

kcE	 combustion rate constant in
the emulsion phase

Nomenclature Code

AM

AKB

AKBE

AKE

particle diameter of char	 cm

volume of ith compartment 	 r111 3

volume fraction of bubbles

volume fraction of bubbles
and clouds

volume fraction of heat
exchange tubes

molar flow rates of gas in 	 gmole/sec
bubble phase

molar flow rates of gas in 	 gm-de/sec
emulsion phase

formation rate of the	 gmole/sec
concerning species by
other reactions

pressure	 atm

gas constant	 c3m •;,tm/p.moIe
'K

temperature of char particlt• °K
in bubble cloud phase

temperature of char particic "K
in emulsion phase

ALF

DC

DVBB

D1

EPB

EPC

ETUBE

FBM, FBMO

FEM, FEMO

GENB, GENE

P

RG

TB

TE

al

do

AVi

D1

E 

ec

Etube

FmB,i FmB,i-1

FmE,i FmE,i-1

P

R

TcB

TcE

YBO, YB1	 YB i-1' .'Bi	
mole fraction in bubble phis-,

YEO, YE1	 YE,i-1 YEi	
mole fraction in emulsion pli,,.e



153

ORIGISAL PAGE 1b
OF Pooh QUALITY

9-9. Subroutine HFATI

This subroutine calculates the height corresponding to the given
e

cross sectional area of the bed. The idea is basically the same as that

of subroutine AREA. The height, z, corresponding to the area, A t , is

calculated by the formula,

(At/Aj-1 1/2 	 1
Z = z

j-1 +

	

	 . ^17-2 —, - 	
(zj - zj-1)

(A./A J-1

The input to the subroutine is A i . The output will be the diameter

and height above the distributor corresponding to the given cross-sectional

area.

This subroutine is called from subroutine HYDRO to determine the

level of uo = umf . This situation does not occur at the cylindrical

section, but occurs at the tapered section. Therefore, we never have

the situation of At = A
i
 = Aj-1 , and the trouble of dividing by zero

is automatically avoided. The explanation of computer codes is the same

as that given in the subroutine DESIGN.

9-10. Function Height

This function sub-program calculates the height of the bed for the

given effective volume of the bed. Effective volume is the total volume

of the bed minus the volume occupied by the tubes. The input to the

subroutine is the effective volume, and the output is the bed height. The

explanation of computer codes is the same as that in the subroutine HYDRO.

9-11. Subroutine HYDRO

This subroutine essentially calculates the bubble hydrodynamics of

the bed. Following is the list of equatioiks used in this sub -program.

11



(Miwa's Equation)

(Mori-Wen Equation)
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umf 
= ( P P p ) {[33.7 2 + 0.0408 dig (P p - P g ) P g/u 2 ] 1/2 - 33.7)

g
(Wen-Yu Equation)

D	 = D	
e-0.30zi/Dt

Bi	 Bmax,i	 ( D
	 - D
Bmax,i	 B,i-1)	

i
'

DB,l = 0.347 [At,l (uo,i - umf,i)/nd]
0.4

DBmax,i = 0.652 [ At,i (uo,i _ umf,i)] 0.4

uB-, i = 0.711	 gDB, i

uBS,i = 0.355
	

gDt,i

uB,i = uB-,i + u
o'i - umf

e B,i = (uo,i - u
mf)/uB j

ec,i = EB,i + aB/(a6-1)

aB _ e
mf uB, i/umf

In this subroutine, the following method is used to determine the bed

height. The bubble hydrodynamics is calculated for each elemental volume

(chosen already in the SUBROUTINE DESIGN). The height of the bed is the

summation of the heights of each elemental volume accounted. When the

total height reaches the given expanded bed height the iteration is

stopped. In case the expanded bed height is not given, but the height

at the minimum fluidization is given, their the volume of bed correspondiiig

to the minimum fluidization height is calculated, and used as the criterion

for determining the expanded bed height.
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The program is also designed to take into consideration the formation

of a fixed bed section over the fluidized bed section.

First, the volume of bed at minimum fluidization is evaluated in the

case when bed height is not given. Subroutine HYDRO is called inside the

temperature iteration loop till the convergency is obtained. Depending upon

the temperature of the bed, the hydrodynamic parameters and the bed height

are determined. If more number of compartments are needed than for the

earlier iteration, then for the excess number of compartments the temperature,

carbon concentration, bubble and emulsion phase oxygen concentrations are taken

as those corresponding to the last compartment in the earlier iteration.

Knowing the temperature, the density and viscosity of the gas, minimum

fluidizing velocity and superficial velocity are calculated for each compartment

using the equations given earlier. The bubble diameter above the distributor

is calculated knowing the u mf , u  and number of distributor holes on the gird.

u  is compared with umf . Since the corss - sectional area of the bed increases

as the height increases, the superficial velocity decreases. If at any

instance, u  is less than or equal to u mf , it means the presence of a fixed

bed section. Then different calculations are to be performed for the fixed

bed section. Four different cases are analyzed:

1. Expanded bed height given, no fixed bed section:

For each compartment, the bubble hydrodynamics is calculated.

umf , uo and D  are calculated at the bottom and top of each compartment. ThL^

average value of these variables are used to compute the bubble size, bubble

fraction, and cloud fraction for each compartment. The iteration 414 performed

till the height of the last compartment reaches the expanded bed height. 	 I

ORIGIN R QUALITY
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2. Expanded bed height given, fixed bed section present:

the bubble hydrodynamics is calculated for each compartment.

As the height increases, u  is decreasing, and when it is smaller than

umf , cirtical height has been reached. The critical height corresponds to

the height of the bed above the distributor at which the fixed bed section

starts. At this location u  is equal to umf . Above this height, there

is no fluidization, and the bubble fraction is zero. The presence of

critical height and fixed bed are tagged by the symbols ICR and IFBC.

If they are greater than zero, critical height and fixed bed section

are present.

For each compartment the volume of solids and the effective height

of the solids are calculated. Sum of these heights would be the height

of the bed at minimum fluidization.

3. Height at minimum fluidization given, no fixed bed section:

Instead of basing the convergency criterion directly on the

minimum fluidization height, the volume of the bed at minimum fluidization

is used. This would help avoid any inaccuracy involved in the calculation

of the effective solids height in each compartment. Also, it would he

easy to determine the total bed height when the effective volume of solids

in the bed equals the volume at the minimum fluidization. The sums of

each compartment volume, effective volume of solids ( excluding the bubbles

and tubes) and the effective height of solids are computed. The iteration

continues till the effective solids volume equals to volume at minimum

fluidization. If it exceeds Vmf , the excess solid volume corrected for

the expansion and tube fraction is subtracted from the effective

.1	 WA
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(excluding tube volume) volume of the bed to give the correct volume of the

bed. From this effective volume of the bed, the expanded bed height is

calculated.

4. Height at minimum fluidization given. fixed bed section present:

As before, computations are performed till u  becomes smaller than

umf . In the fixed bed section, the bubble fraction i.s x^-ro. Fixed bed is

equivalent to the condition of minimum fluidization. Total. volume of the

bed is the sum of the effective volume of the fluidized bed section and the

difference in the minimum fluidization volume and the volume of solids in the

fluidized section. Total height of the bed is computed from the total volume

of the bed.

ORIGINAL PAGE I$
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Nomenclature
(SUBROUTINE HFAI, HYDRO, AND VOLUME)

Code Model Variables Description Unit

AHEAV ahe Specific heat transfer area for cm2 /Cm 3
each compartment

AND
n 

No. of distributor holes -

AT At,i Cross-sectional area of the bed cm 
at each location

DB UB Bubble diameter cm

DBAV p Average bubble size of each cm
B,av

compartment

DBED Dt,i Diameter of the FBC cm

DBMAX
%m

Maximum bubble size ern

DPB
d 

Average particle diameter in cm
the bed

DTUBE,	 DTUBEI do Diameter of heat transfer coils cm

DVB,	 DVBB LVi Volume of each compartment CIO 3

DVBBEF,	 DVBEFF - Effective volume of each com- CIO 3
partment	 (excluding tubes)

EMF Cmf Void fraction at minimum -

fluidizaticn

EPB
C 

Bubble fraction

EPC C Cloud fraction -
c

ETUBE
Ctube,i

Tube volume fraction in each coin- -
partment

FMF
Fmf Molar flow rate of inlet gas gnwl/svc

F:MO Fm Total molar flow rate of ga. -

G Acceleration due to gravity cm/see`
g

HCR - Critical	 bed height	 (uo = u r)
III

Cm

H(I),	 H(I+1) hi,	 hi
Height of the bottom and top of ^m

+l each compartment above the

distributor

HLF L 
Height of the fluidized bed rm

(expanded)

HLMF Lmf
Height of minimum fluidization .m

ICR - Indicator for critical bed height -

i



g/gmol

atm

cm

atm•cm3/gmol•K

g/ cm3

M

M1

MGAS

PAV

PHI

RG

RHOCAD

Code

IFBC

ITUBE, IARRNG

O F 
POOR QUALI'T'Y

OF	
Nomenclature (Cont.)

Model Variables	 Description

	

-	 Indicator for the fixed bed section

	

-	 Tube arrangement code for each
compartment

	

-	 Total number of compartments in
the expanded bed

	

-	 Total number of locations
compartment

Mg 	Molecular weight of gas

	

Pav	 Average pressure of the FBC

	

PHi 	Horizontal pitch of the coils
for each compartment

R	 Gas constant

p R 	Density of calcined additives

ORIGINAL PAGE IS
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P 
Density of fluidizing gas g/cm3

- Volume of bed, total
Cm 

- Height of solids alone (no bubble), cm 
total

- Volume of solids alone, total cm 

effective volume of the bed cm3

T Temperature of the bed °K

ub Bubble velocity cm/sec

ubr
Bubble rising velocity cm/sec

ub 
s

Slug velocity cm/sec

of Superficial gas velocity at the cm/sec
inlet pressure

uo Superficial gas velocity cm/suc

11111f
Minimum fluidization velocity cm/sec

- Volume of bed at minimum
Cm 

fluidization

x Carbon concentration wt,	 fraction

Bubble phase oxygen concentration mole	 fracti^)n

- I:mnlsion phase oxygen concent rat ion mule	 t'r,n	 i i-m

RHOGAS

SOLVOL

SUM

SUMEFF
S UMV

T

UB

UBR

UBS

OF

UO

UMF

VMI:

X

YB

YE

it

159
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9-12. Subroutine POP

The calculations of the size distribution density function m (yi),

second and third moments of 0 and the average value of elutriation

constant are performed in this subroutine by the use of Equations

(4-5) -(4-8) .

The major inputs to the subroutine are BC, BO, THET and L. 	 The

major outputs from the subroutine-are PHI	 (I),	 (I=1,	 L),	 ALAMA, ALAMV

and EC.	 Numerical integrations are performed by trapezoidal method.

Nomenclature Code Model Variable	 Description Unit

AKE	 (I) K*(yi)	 elutriation rate constant g•cm2/sec

AKEI(I) fyl	 (K */X c ) dy g-cm2/Sec
0

defined in the main program

ALAMA I1	 y2 dy -
0

ALAM(I) xC(yi)	 reactivity of coal for -

y	 yi

ALAMI(I) fyi	 ( 1 /x c (y )) dy -

calculated in the main
program

ALAMV Iv	
of 	

0 
y3 dy -

A,	 All,	 Al2,	 A21,	 A22, dummy variables cm 
A31, A32

AT bed cross section

BC Bcw	 defined by Eq.	 (4-9)	 -

BO Bcf	 defined by Eq.	 (4-10)	 -

CC Cc	 defined by Eq.	 (4-8)	 -

DY(i) increment of 
y;yi-yi-1

EC (At/Wb)< K 
*

y 3 >	 -

L total number of grids on	 -
y-coordinate
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(Cont.)

Nomenclature Code Model Variable Description	 Unit

PHIF(I) 0(yi) size distribution density 	 -
function

SUM1, SUM2, SUM3 dummy variables for	 -
integration

THET 0 mean residence time of
limestone	 sec

WBED
W 

total bed weight	 g

X1,	 X2 dummy variables

Y(I) yi dimensionless char size	 -

YY(I) Y(yi) defined by Eq.	 (4-6)	 -

ZF(I) Zf(yi) defined by Eq.	 (4-7)	 -

ORIGINAL PAGE IS
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9-13. Function Volume

This function sub-program calculates the effective volume of the

bed for the given height above the distributor.

The input to the subroutine is the height and the output is the

effective volume. Any division by a small number (zero) causing

exponential underflow or overflow is taken care of by the IF statement

preceding the DO loop.

If (ZZ - FLOAT(N-1)* DZAV • GT • 0.01 * DZAV) N = N+1. This

statement avoids the computation for infinitesmal difference in height

(ZZ - FLOAT(N) * DZAV) that would arise because of the hexadecimal

storage of numbers. The explanation of computer codes is the same as that

given in the subroutine HYDRO.	
r
f:

le
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SECTION X

COMPUTED RESULTS

The performance of the model (Level I and II) is examined for a set

of operating conditions based on the data reported by the National goal

Board, England. Combustion efficiency, axial bed temperature l)rofile,

carbon concentration in the bed, oxygen and SO 2 concentrations in the

bubble phase and emulsion phases, bubble diameter and sulfur dioxide

cpature efficiency are the key variables computed in the models to evaluate

the FBC performance. The effect of bed geometry, bed temperature, excess

air, molar ratio of calcium to sulfur in the feed and the preseiiee of

internals on these variables is examined. These results are presented

in Figures 12 and 18. The results depict the trends that can be expected

in the range of operating conditions selected for simulation. The accuracy

of the results cannot be quantitatively assessed at this point dire to lack

of experimental data on the performance parameters. However, from a mechanistic

point of view the models can simulate experimental performance of a FBC quite

closely taking into consideration the various physical and chemical phenomena

occurring in the bed.

Figure 12 presents the various profiles obtained using the Level II model

for a uniform (non-tapered) bed. The calculated combustion efficiency is about

93 percent while the remaining 7 percent accounts for carbon loss largely dice

to elutriation. The carbon loss in the solids withdrawn is negligible

(0.2 percent of carbon fad) since the carbon concentration in the bed and the

amount of solids withdrawn are small.

Table 9 shows the comparison of the calculated results with experimental data.

The agreement between predicted results and the experimental data are satisfartury.

PAGE IS
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TABLE 9 COMPARISON OF CALCULATED RESULTS WITH
EXPERIMENTAL DATA FROM NATIONAL COAL BOARD.

Variable	 NCB DATA	 COMPUTED RESULTS

Combustion Efficiency	 92.8%	 92.84%

Average Bed Temp.	 1470°F (799°C)	 1457°F (791.5°C)

Outlet gas concentration	
4.3 v	 4.6% v

Oxygen

Carbon dioxide	 13.9% v	 16.36% v

Sulfur dioxide	 400 ppm	 374 ppm

Sulfur capture efficiency	 83%	 81.699'

ORIGINAL PAGE IS
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Figure 13 shows the profiles of temperature for the tapered bed. The

combustion efficiency is 99+ percent. The high combustion efficiency

estimated is largely due to negligible elutriation loss from the bed because

of the presence of a fixed bed section above the fluidized bed section.

The large temperature gradient observed in Figure 13, is because of poor

solids mixing. In order to provide a fixed bed portion in the tapered bed

uo/umf is selected to be around 2.0 in the fluidized bed section which is

considerably less than the ratio in the non-tapered .bed.

Figure 14 shows the SO 2 concentration profile for the uniform bed. The

S0 2 concentration in the emulsion phase is lower than in the bubble phase due

to absorption of SO 2 by the calcined limestone in the emulsion phase. Bubble

phase SO 2 concentration increases because of higher combustion rate (higher 	 Ifr

S02 release rate) in the bubble phase. Concentration of carbon in the cloud-

wake phase of the bubble is higher than that in the emulsion phase, becuase

the fines char particles are preferentially carried by the bubbles. The SO2

capture efficiency is around 82 percent which compares favorably with 83%

reported by the National Coal Board.

Figure 15 shows an increase in the sulfur capture efficiency with increase

in [Ca/S] ratio in the feed. In order to obtain an environmentally acceptable

level of SO 2 in the flue gas, the molar ratio of calcium to sulfur should be

at least twice the stoichiometric amount. Test data reported by NCB for

similar operating conditions are shown in the Figure 15.

The effect of bed temperatures on the sulfur capture efficiency (n s ) is

shown in Figure 16. The decrease is n  at higher temperatures is due to	 j

decrease in the reactivity of the calcined limestone particles. The reactivity

is strongly dependent on the pore structure. At high temperatures, the
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LEVEL II

Ca	 MOLAR RATIO
S

FIGURE 15. EFFECT OF CALCIUM TO SULFUR RATIO IN FEED ON

SULFUR CAPTURE EFFICIENCY.
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porosity decreases due to formation of very dense sulfate layer resulting in

lower reactivity of the limestone particles. Although the trend observed in

Figure 16 indicates that lower temperatures are suited for higher sulfur

capture efficiency, from the standpoint of combustion efficiency it is not

economical to operate at low temperatures. Furthermore, the calcination of 	 j

limestone particles cannot occur at temperatures below 650°C.

In a bubbling fluidized bed model, the bubble diameter is one of the im-

portant parameters which affects the performance of the bed. It is well

known that the bubble size increases as the gas flow rate is increased and

also increases along the bed height above the distributor. Bubble diameter

is also affected by bed geometry and presence of coils in the bed. Figure 17

is a plot of bubble diameter versus bed height for a uniform bed with and

without coils. The coils hinder bubble growth and cause the large bubbles

to break resulting in smaller bubble diameters. This effect is observed in

beds with horizontal coils. In beds where vertical coils are present the

effect may not be quite the same.

The Level I r,,odel is used to calculate the combustion efficiency (n 
C )

as a function of excess air. The model calculates the elutriation loss from

experimental correlations. Figure 18 shows the combustion efficiency and

carbon conce;tration in the bed as a function of excess air. The initial

increase in n  is due to a higher oxygen concentration in the bed. However,

at higher values of excess air, the elutriation loss will become greater and

offset the increase an n  due to higher oxygen concentration. The combustion

efficiency at extremely large excess air ratio will be expected to drop.
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SECTION XI

CONCLUSIONS AND RECOMM-M)ATIONS

The general fluidized bed coal combustor (FBC) model developed in this

study is a valuable tool in predicting the performance of the combustor 1111der

various operating conditions and bed geometry. The simulation results

indicate that the model predicts the combustion efficiency, bed temperat<<te

profile, oxygen and sulfur dioxide concentration profiles and sulfur

retention efficiency within the range of observed data from pilot scale FBt:

units.

Due to the complexities of the various physical and chemical processes

occurring in the bed, the general FBC model is divided into various levels

with increasing degree of complexity in each level. This approach is

convenient both from the standpoint of conceptualization and ease of computation.

Two levels of the FBC model are described in this study.

In the Level I model, the char particle size distribution, shrinkage,

and the elutriation of char particles are considered in deriving they basic

FBC equations. the population balance approach is used to calci,latc the

particle size distribution in the bed. Solids in the bed are assumed to be

completely mixed. The gas phase model is formulated so that either plug

flow or	 complete mixing in the gas phase can be used. Temperature

variations, bubble hydrodvuamics and SO,,- 1ime- ;tone reactions are not considered

in Level I model. Elutriation of char 	 is, calculated using available

correlations in the literature for the e•lutri,ti„n rate constant.

In Level I  model, the single phase. baclilo, compartment model is used

to describe the -,lids mixing in the beA. For the gas phase, a modified

I
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version of the Bubble Assemblage Model is employed. Axial variations of

temperature, carbon concentration in the bed, combustion efficiency, oxygen

concentration in the bubble phase and emulsion phase are calculated in the

model. Also included in the model is the SO 2 -limestone reactions which are

used to calculate the sulfur retention efficiency and the S0 2 concentration

in the flue gas.

Level I model is derived for a uniform (non-tapered) bed whereas Level II

model is applicable for both tapered and non-tapered bed geometry. When used

in combination with Level I model, Level 11 model can cover a wide range of

FBC operating conditions.

The FBC models developed in this study have been demonstrated that they 	

t
are capable of predicting the performance of experimental FBC units within 	 ly

a reasonable level of accuracy. Ihiwever, the models are by no means complete

and efforts to seek furths;r improvEments are being undertaken. In the absence

of experimental data on the various parameters, the model has not been refined

sufficiently. The accuracy and sensitivity of the various parameters have

not been tested in depth. The user is therefore cautioned against interpreting

the results beyond the range of applicability specified in the model equations.

Several simplifying assumptions have been made at various stages of model

development to overcome computational difficulties. These assumptions should

be re-examined as more data from experimental units become available. Further-

more, the correlations available in the literature for estimating bubble

hydrodynamic quantities, elutriation rate constant, etc. need considerable

refinement. For example, the correlations available to estimate the bubble

diameter and bubble rising velocity do not take into consideration the presence

ORIGINAL UALI'I YOF POOR Q
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of cooling coils in the bed. Modifications of the empirical correlations 	 11

to extend the range of applicability to these operating conditions could

improve the validity of the model predictions. Extreme discrepencies

between prediction of the elutriation rate constant from available

correlations exist. It is not unusual for these correlations to give

predictions differing by several orders of magnitude. Improvements in

accuracy of experimental data is needed to extend the range of applicability

of the model.

Correlations of elutriation rates which take into account the effect

of shrinkage of char particles, presence of fine fly ash particles, fluidizing

gas velocity, temperature and other hydrodynamic variables, need to be inclined

in the model to accurately estimate the elutriation loss from the bed.

Correlations presently used in the model are not satisfactory.

The devolatilization of coal as it is fed into the bed has not been

considered in the computations. The devolatilized products can cause increase

in temperatures or form a reducing zone near the feed point. This effect

should be considered in detail.

A major effort is needed in refining the SO 2 -limestone reaction kinetics.

The reactivity of the calcined limestone depends on the temperature, particle

diameter and ^.he conversion in the bed. Presently available rate expressions

do not consider all these variables. These variables have to be analyzed in

detail to improve the rate expressions used in the model.

r
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NOMENCLATURE

(except Appendix II)

A matrix defined by Eq.	 (3-4) -

AHE
total heat exchange area cm`

At cross sectional area of bed cm 

'HE
specific heat transfer area based onspecific cm2 /cm 3(bed)

 area of tubes and volume of
bed minus internals i

8 matrix defined by Eq. 	 (3-5) -

Bcf Bcwncf/ncw

B cw dcmpchXC
/ ( 2MfC 0 

k coCO2 ) -

BZ constant defined by Eq.	 (3-64) -

Cc constant defined by Eq.	 (4-8) -

C 
concentration of gaseous species i mol/cm3

molar heat capacity of gas cal/gmol-°K	 ^.c gm

cgmf
molar heat capacity of gas at feed temperature cal/gmol-°K

c 
heat capacity of solid cal/g•°K

csf heat capacity of solid at feed temperature cal/g•°K

D 
bubble size cm

DBo
initial bubble size cm

DBm
maximum bubble size cm

D 
bed diameter

d 
ash particle size cm

do particle diameter of coal or char cm

dcm maximum diameter of coal particles cm

d R particle diameter of additives
(limestone or dolomite)

EAR excess air ratio -
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E 
axial dispersion constant of solids cm`/sec

FBm molar flow rate of gas through bubble phase gmol/sec

FEm molar flow rate of gas through emulsion gmol/sec
phase

F total molar flow rate of gas gmol/sec
m

Fmf
molar flow rate of inlet gas gmol/sec

Fmth
theoretical feed rate of inlet gas gmol/sec

F Froude number -
r

f 
conversion of limestone -

f 
volume fraction of wake to bubble proper -

fW volume fraction of wake to bubble proper
effective for reaction -

g acceleration due to gravity L,11/sec2

h
i

maximum height of jets above distributor cm

I t total number of cells -

K * specific elutriation rate constant g/cm`•sec

KBE,i
gas exchange coefficient in ith cell 1/sec

modified gas exchange coefficient (Eq.3-59) 1/sec•cm3
KmBE,i

solids exchange coefficient in ith cell 1/sec
KsBE,i

k overall surface reaction rate constant. cm/sec
c

for coal combustion

film diffusion coefficient cm/seckcf

kcR chemical reaction constant cm/sec

kco value of 
k 
	 for the maximum particle size cm/sec

k. overall surface reaction rate constant of Cm/sec
1 reaction i,	 (i=3,4 or 5)

kvi overall volume reaction rate constant of I/sec
reaction i,	 (i=1	 or 2)

L 
fluidized bed height cm

Lmf minimum fluidization height cm

i

le
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M 
atomic or molecular weight of species i g/mol

ND number of holes in distributor

NA number of ash particles held up in the bed -

NC number of char particles held up in the bed -

Nci number of char particles held up in ith cell -

N R number of adsorbent particles held up in the bed -

n number mass velocity vector of char particles
2

1/cm •sec

number of ash particle withdrawn per unit time 1/sec
nAw

nCe number of char particles elutriated per unit time 1/sec

ncf number of coal particles fed to the bed per unit 1/sec

new
number of coal particles withdrawn per unit time 1/sec

nd downward flow of particles 1/sec

nu upward flow of particles 1/sec

number of char particles transferred fromneW
emulsion phase to wake phase per unit time 1/sec

number rate of limestone particles fed to the bed 1/secn if

nkw
number rate of limestone particles withdrawn
from the bed 1/sec

nWh number of char particles transferred from
wake phase to emulsion phase in the ith cell
per unit time 1/sec

p average pressure in the bed atm

q lower heating value of coal on dry basis adjusted cal/g

for CO
q R heat of calcination of limestone cal/g

R gas constant	 82.05 cm 3 •atm/gmol/°K or 1.987 cal/gmol.*k

R*=(dy/de)'`; dimensionless shrinking rate of char 1/sec

R 
ratio of cloud sphere volume to bubble volume -

R =	 {ri *1 reaction rate vector for reactions 1-8 gmol/sec•:m3
(emulsion

R	 = R A total formation rate vector for gaseous species 3gmol/sec•cmg
(emu)sion)

Rs * = R B total	 formation rate vector for solid phase species gmol/sec•cm3
(einul lion)

R e terminal Reynold's number
t

I
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r*cBi' rcEi
reaction rates defined by Eqs.	 (3-88) gmol/sec•cm3

(emulsion)

ri rate of reaction i gmol/sec•cm3
(emulsion)

r iB , r 
iE

rates of reaction i in emulsion phase gmol/sec•cm3
and in bubble phase (emulsion)

r*	, r* formation rates of species M 	 or M	 by gmol/sec•cm3
gij sij

reaction i	 gJ	 sj (emulsion)

rRB , r^E rates of sulfur capture in	 bubble phase gmol/sec•cm3
and in emulsion phase (emulsion)

r rate of ith reaction for one particle gmol/sec

rc reaction rate per char particle gmol/sec

r reaction rate per limestone particle gmol/sec

Si internal surface area of calcined limestone cm2/g

T local bed temperature °K

Tgf temperature of feed gas °K

T i temperature of i th compartment °K

Tsf temperature of feed solids °K

T temperature of cooling water °K

U overall heat transfer coefficient of
2

cal/:m`	 sec.°K

cooling tubes based on outside tube diameter

u superficial gas velocity rm/tiec

bubble rising velocity cm/sec
U

umf minimum fluidization velocity cm/sec

u terminal velocity rm/Sec

V volume of bed (total	 including tubes) u113

Vef volume of bed excluding tubes Its

v volumetric flow rate of solids in bubble- cm3/-ec
wake phase excluding voids

v BE' vEB
volumetric solids exchange rates from cm .3
bubble-wake phase to emulsion phase
and from emulsion phase to bubble-wake
phase respectively

ISOR .A(, PAGE
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v 
volumetric down flow rate of solids in cm3/sec
emulsion phase excluding voids

v 
volumetric flow rate of solids in emulsion cm3/sec
phase excluding voids

v volumetric elutriation rate cm3/sec
e

o f volumetric feed rate excluding voids cm3/Sec

volumetric net flow rate excluding voids cm3/sec
vnet

vu volumetric upward flow rate of solids in cm3/sec
emulsion phase excluding voids

v volumetric withdrawal rate of solids excluding cm3/sec w
voids

W 
total weight of bed material g

solids mass flow rate in bubble-wake phase g/secw B

•	 w
BE, EB

solids mass exchange rates from bubble-wake g/sec
phase to emulsion phase and from emulsion
phase to bubble-wake phase

We	total weight of char in the bed	 g

coal feed rate, dry basis g/sec
wcf

w 
solids down flow rate in emulsion phase g/sec

w elutriation rate of unburned char g/sec
e

w 
solids mass flow rate in emulsion phase g/sec

w 
feed rate of solids g/sec

limestone feed rate, uncalcined basis g/sec
wRf

wmix
upward and downward flow rate due to backflow g/sec
of solids

net flow rate of solids g/sec
wnet

w 
solids upward flow rate in emulsion phase g/sec

w withdrawal rate of solids g/sec	 i
w

W mass flow rate of wake g/sec

X 
mass fraction of carbon in char -

Xh mass fraction of water in coal -
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Xif (i=A,C,H,N,O,S) mass fraction of ash, carbon, hydrogen, 	 -
nitrogen, oxygen, sulfur and in coal
(dry basis)

XRCa mass fraction of calcium in limestone	 -

Xvf
mass fraction of volatiles, dry basis	 -

X`,M mass fraction of volatiles dry ash free -
basis

X mass fraction of carbon in the bed	 -

xB mass fraction of carbon in bubble-wake	 -
phase

xE mass fraction of carbon in emulsion	 -
phase

xf mass fraction of carbon in solids 	 -
feed

Y(y) function defined by Eq. 	 (4-6)	 -

Y B ,YE mole fractions of oxygen in bubble and	 -
emulsion phases

y p, mole fractions of S0 2 or H 2O in bubble	 -	 1	 '

and emulsion phase

y = do/dcm dimensionless diameter of char particle -

y.
^' f

mole fraction of gaseous species j	 -
in the feed stream

yBj ,yEj mole fractions of gaseous species j
in bubble phase and in emulsion phase

Y B ,	 Y E mole fraction vectors of gases in 	 -
bubble phase and emulsion phase

Z height above distributor	 cm

Z f (y) function defined by Eq.	 (19)	 -
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sec

sec

sec

gm/cm-sec

g/cm3

g/cm3

g/cm3

g/ cm3

K/ cm
3

g/ cm

g/ cm

l
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Greek Symbols

6

e'

L)

e
C

mf

Etube

ew

nc

ns

e

0

e
c

a
C

a^

u

^Ae

^ CO' & H2' ^ 112S

0A

Pcf

Pch

P 

PR

PRf

PS

adjusting factor of elutriation rate
constant

emissivity

volume fraction of bubbles

volume fraction of clouds and bubbles

volume fraction of bed at uo umf

volume fraction of internal tubes

volume fraction of cloud and wake

combustion efficiency of coal

efficiency of sulfur capture

time

mean residence time of solids

mean circulation time of particles

= kc/kc0

reactivity of limestone defined by Eq.(e-63)

viscosity of gas

weight fraction ash particles elutriated
from bed

parameters defined by Eq. (3-42)

density of ash

density of coal

density of char

density of gas

density of lime or calcined dolomite

density of limestone or dolomite

density of solids
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PNc
number of char particles per unit volume of bed	 1/cm3

p NZ number of adsorbent particles per unit volume	 I/cm3
of bed

0 size distribution density function of char	 -
narticles

OBI	 OE
size distribution density functions of char	 -
in bubble -wake phase and in emulsion phase

size distribution density function of elutriated	 -
e char particles

Of size distribution density function of char	 -
particles fed to the bed

m R distribution density function of adsorbent	 -

conversion

Otf
conversion distribution density function of	 -
adsorbent	 fed to the bed

^w
size distribution density function of withdrawn 	 -	

^r
char particles

^v =!O1 0y 3 dy	 -

'eve
= f l ^e y3dy	 -

0

= fl ^w y 3dy	 -
Wvw

0

Subscripts

B bubble or bubble phase

b bulk density or bed

C carbon

C coal,	 char, cloud or circulation

ch char

d downward flow	 =

\, 1
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E emulsion phase

of effective (excluding the tubes)

f feed

g gas

HE heat exchange

R lime or limestone

mf minimum fluidization

s solid

u upward flow

W wake

w withdrawal or cooling water

Z axial

0 Z = 0

1 Z=Lf
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APPENDIX I

Mean Residence Time of Absorbent Particles. 0

The number of absorbent particles, char particles and ash

particles are indicated by N Q , N  and N A . The total volume in the

bed occupied by solids is (1 - e
mf mf

)V	 and is calculated from the

following equation:

(1 - ` mf)Vmf	 6 Nk d

-3
 + 6 cm 

Nc ^,vw + 6 dA NA	 (I-1)

Substituting the definition of 0, namely

0 = N k /nkf = N c/ncw - NA/nAw	
(3-31)

we get

0

(1 - 
emf) Vmf	 (I-2)

=

6 (nkf d  + new dcm ^vw + nAw d  )

By the use of the relations,

TT	 3
6	 nRf dR - wQf/pkf

n 
n 

d3	
= 
0 	 c) wcf _- n 3

6	 cw cm ^vw	 pc f	 6 d cm n ce I've

and

Tr	 n	 d3 = n c w cf XAf (1 - EAe)

6	 Aw A	 p
A

we have

0 =

	 (1 - emf) Vmf
	

(3- 32)

Trk 

	 + ( 6	 cm) d	 vw r^cw + 

ncwcfXAf
p

^.f	 PA	 (1	 ^Ae)
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APPENDIX II

Derivation of Population Balance Equations

Consider a m-dimensional state space of the state variable

x = (X i s X2 .... Xm)

The state variables can be particle size, density, conversion,

temperature, etc. Population balance is made around a small segment

of state space, dV,

dV = dX 1 dX2 .... dXm 	(II-1)

The kinetic equations relating the change of the state on one

particle at a given condition are assumed to be known. The equation

can be given as:

dX.

( do l
 ) = R  ( x )	 (i = l-m)	 (II-2)

As the result of a change in the state variable described in Equation

(II-2), particles in the subspace dv enter into the subspace lv continu-

ously.
dXl	 dX2

dV = (dX2	 3dX	 . * 	 m d6 dX (	 + 4X 1 	 3• dX . ..	 m dX ( d6—)* + I do

E	
1	 dXi	 *	 m	 R 1 (x)	

(II-3)

i=1	 dXi ( de ) x=xdv ^ = i=1 d Xi dude

Also, the particles in the subspace dV are continuously leaving the

neighbouring subspace dV'(see Figure II-1),

R.

1 

(x + dx)
dV"	

i=1	 dX.	
dVd6	 (li-4)

i

ORIGINAL PAGE IS
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1, 2 = Input and output due to change in state of the particles.

3, 4 = Direct input and direct output.

5 = Accumulation.

V = State space.

FIGURE II-1 ILLUSTRATION OF THE POPULATION BALANCE.
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Furthermore there are direct input and output of particles

due to the feed, withdrawal, coalescence, agglomeration, breaking up,

splitting or attrition.

R. (x)

input = N ( X ) E ^X
	

dVd6	 1
i	 1

+ nin din dvde	
........................... 3	 (II -S)

output = N E^ (Xj = Xj , Xi = Xi + dXi)

J = 1 -m , J # i

X	

i	 i	 i	 i	
dvde ............ 2

 dXi

	+ nout	 Oout	
dVde	 ..................... 4	 (II-6)

accumulation = d (N m (X)) dV

Since the term 2 can be rewritten as follows:

R. (X. = X. + dX 
i )

i ¢ (Xj = Xj Xi = Xi + dXi)	
t i X i	

Me
i

j = 1-m, j ^ i

	

R. (X)	 a ^ R.
E	 (^ (X)	 l dX.	 + a x. 1 ) dvde	 (II-7)
1	 1	 1

We obtain the final expression of the population balance as

aNe - - N E 
ax 	 + nin d in	 nout ^o+it	

(II-8)
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Mass balance

The relation between 0 (density function for number fraction)

and 0* (density function for weight fraction) is given by

N 
6 

dP pp m dV = w m* dV	 (II-9)

because

mdV: fraction of the number of particles which have the state

x - x + d x

O*dV: weight fraction of particles which have the state

x - x + d x

Therefore,

= n 6Nwp d *	 (II-10)

P P
I

The average mass of one particle m  is calculated by

Ir
6 ft (x) p d3 dV

IV _ 6 x	 P P	 (II-11)

mp N	 f ^* (x) dV
x

Then each term in the equation (II-8) can be written in terms of m*.

*
a" =	 6	 awl—	 (II-12)
ae	 n pp dP ae

where the fact that (pp dP) is not dependent on 0, but only dependent

on x is used.

34Ri 	 6w	 3[(O*R^4 ppd3
N ax i 	- n	 axi

(1I-13)

614	 1	 ao*R i*R1	 a (ppdp)
n[ pp 

P 
a Xi - (pp- d,)2 a xl	l	 i

J
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• in O in	
nX m X	 0*	 _ w X	X

(	 or	 ) - •X 0 X	 ,r- 6 X	 (P d3) n/6 (P d	
(II-14)

•out Oout	 p p	 p p

aW^ * 	 a O * R.	 0	
3

	

* R	 a(p d )

	

i	 —gyp
ae	 = - IV i [	

a X.	
-	 i

PPP V
	 a Xi ]

(II -15)

+ win Oin	 wont Oout

A Simp le Case

pp= constant	 and	 XI = d11/dp 
III

aWm * 	 a ¢ Ri
	 3 W ^*Ri

ae	 - W 
i [
	 a Xi 	XI	 + w in^in * 	 wout0outA

(II-16)

W m*R1
3	

X	
loss of mass due to shrinkage volume balance

1	 ^

(P p = constant X I = dp/dp m)

aVo * 	a ^ * Ri 	3 m*R1

ae	 V [ i a Xi 	XI	 + vin din * 	 vout bout*

(II-17)

if Pp is constant the Equation (11-11) becomes

mp = 6 pp

	

	 f ^ dp 3 dV = 6 dim P p ^(II-18)
x

^v -	
3	

- III .... f 0 X 1 3 dX I dX2 —' dXmIfff .... f dV
,r d	 N	 x

6 Pm	 (II-19)

Total Number Balance

The disappearance of particle occurs only when d  becomes ^ 	 1

dX l *
dX I 	+ ( de )	 de = - R 1 (x)X 

-►0 
de	 R1 < 0	 ( 1 1 - 20)

X I -►O	 1
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II-6

Then total number of particles disappeared during d6 is given by:

I

N f f f	 (XI = 0) dVdXI d6

X2 ...Xm	dX1
(II-21)

Therefore,

dN	
n	

X2 Xm
- n	 + N .f...! m (X = 0, x)R (X =O,x)dX ...dXdA	 in	 out	 1	 m

(II-21)

SUMMARY

49i
N i aX i	+ nin in pout out

aQ*R.*R 
i	

a (P d3)
- W E[ a x i i
	 P P	 +

i 	 Pp P	 ax.

W	
m*
	Win in	 out out

aN
basic equation: ae

awl*
or	

a6

(II-8)

(1I-12)

where R  = (d Xi/d6)

Total number balance

dN
d	 nin	 nout + N t...!	

(x) R I (x) dX2....dXm
X2...Xm

(II-19)
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Nomenclature for Appendix II

dp : particle diameter

dpm : maximum particle diameter

dV: small volume in the state space

n: particle flow rate (number/time)

nin : flow rate of direct input

nout 	
flow rate of direct output

N: total number of particles in the system

m: dimension of state space

m p : average mass of one particle

W: total mass of particles in the system

0: time

^: distribution density function of x based on the number of particles

distribution density function of x based on the mass of particles

PP apparent density of particle
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APPENDIX III

Solution of the Population Balance
Equation for Sulfur Capture Reaction

The population balance equation for sulfur capture reaction can

be given by

•	 dY

t	 Yzdi	 + B1 ^ 
k 

= 82 
Okf	

(III-11

where

Y t	 ^ R x k

Integrating this equation by assuming initial value Y(0) and the

integration constraint, 
Il mzf 

df = 1, we obtain
0

B2 + Y (0-)
y  (f) =

	

	 f	 —	 (III- 2)
exp [ f (B 1 /X ^)df]

Therefore,

B2 + Y (0-)

m^{ f) _	
(III-3)

a
R 

exp[ff(B1/A9)df]

The function 0z must satisfy the constraint

I1 ̂(f)df = {B2 + Y
z
(0-) } f l	 df B

	

00	 aQ exp(0 ' df)
R

1
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Then,

B 2 + Y R (0-) =	 I

f l 	 df
B

0	 exp(If—^`— df)
R	 0 a^

(III-4)

f1Substitute Equation (III-4) into Equation (III-3) and use the relation

t 1	exp ( !f	df]df = - B [exp(- f	 df) - 1O	 j
0	 t	 R	 R	 0 t

then we have
B

A t) exp [	 pf -L dk)	 (3-65)

1 - exp [ - P	 df]
R
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APPENDIX IV

Relation between Population Balance and Material Balance

Consider a reaction system of shrinking particles as illustrated

in Figure IV-1. The system can be divided into a small complete mixing

cell. The process in a single cell is described by the population

balance as follows:

1) differential population 	 N d ^ R	 = r	 * n	 (IV-1)
balance:	 dy	 f ^f	 o^

2) boundary conditions for
particle shrinking system	 0 (1+) = 0	 (IV-2)
(i.e. no particles beyond
y = 1) .

3) integral constraint: 	 Il	 dy = 0	 (IV-3)
0

where

R	 (dy/d9) = f(y,	 ..)
i1v-4)

y = dp/dpm

On the other hand, from the material balance

w f	 wo - 4 n dpm N pp< y 2 R >	 (IV-S ►

(input) (output)

where

4
wo = 3 n pp dpm ^v no

^l	 Y 3dY/I0 1	dy
v

< Y 2 R*> = f 1 -t Y 2 R*dY/ Il 0 dy
0	 0
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IV-2

ACTIVE PARTICLES

HOLD-UP = N PARTICLES
SIZE DISTRIBUTION OF

ACTIVE PARTICLES = ^

A

	f	
ACTIVE PARTICLES	

000
 	 •	 p

	

O f 	
• O

	

f	
p •	 •

•
• • • O °O •

•	 O	 • •

v i INERT PARTICLES	 O •	 • `^ . •	 O

ACTIVE PARTICLES	 no

• • •	 m

INERT PARTICLES vi

INERT PARTICLE VOLUME
HOLD-UP: Vi:

FIGURE IV-1 ILLUSTRATION FOR THE POPULATION BALA!irc
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(IV-5)'

A

IV-3

Equation (IV-5) can be rearranged into the form

w  = a [iyv no - 3 N< y2 R > ]

where

a- 3
n ppdpm

The problem is stated as follows:

Is Equation (IV-5)' dependent on the system described by

population balance?

The answer is shown below.

1) Equation (IV-5)' is dependent on Equations (IV-1)-(IV-3)

Multiplying y 3 on both sides of Equation (IV-1) and integrate it

from y = 0 to y = 1, we obtain

I0 1 [ left hand side of Equation (IV-1)]• y 3 dy

= N [y3 m 
R*I O 

- 3 f 1y2 	 ^ R* dy ]	 (IV-6)

t l [ right hand side of Equation (IV-1)]- y3 dy
0

= of ^vf - no ^ f m dy
	 (IV-7)

After substituting Equations (IV-2) and (IV-3), we have the form

o f 
^vf=n4)v- 3 N < y 2 R*>

By multiplying by 3 
n dim pp , Equation (IV-5) ' is obtained.

2) Condition (IV-3) is derived from Equations (IV-1), (IV-2) and IV-5)

In this case Equation (IV-6) remains in the following form:

Equation (IV-6) _ - 3 N < y 2 R
*
 > f  m dy	 (IV-6)-

0



! 1	dy=
0

11f ^vf

n0 V,v - 3N<y2R*>

w 

a[n0 ^v - 3 N < y 2 R*>]

IV-4

Equating Equation (IV-6) with Equation (IV-7), we obtain the value of

integration of 0,

Therefore, from Equation (IV-5)'

I0 1 ^dy= 1

3) The overall number balance can replace Equation (IV-4)

The overall number balance equation for this system is given by

of - no = - N R ( 0 ) 0(0)	 (IV-8)

This equation can also be derived from Equations (IV-1), (IV-2) and

(IV-3) .

Consider a case in which constraint (IV-3) can be ignored.

Integrating Equation (IV-1) over the interval y = 0-1 and applying

Equation (IV-2), we have

- N m (0) R * (0) = o
f
 - no f1 ^ dy

By using Equation (IV-8),

I	 o f + N^ (0) R (0)

i	 'P dy=	 -
0

1
n

0

11 --- -- -	 WMdA
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Conclusion

Equations (IV-1), (IV-2) and (V-3) are necessary and sufficient

equations to describe the system. Material balance equation is no

longer an independent equation when the system is expressed by these

three equations. Therefore, there are four combinations of equations

to formulate the performance equations of the system. For instance,

if we use the material balance equation with the population balance

equation and solve them simultaneously, it is not necessary to consider

the integral constraint (IV-3). The selection of equations for

constructing th y: numerical iteration scheme must be decided from the

view point of numerical stability and rapidness of convergence.

0

I' - --	 WWA
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Nomenclature for ADDendix IV

d 
diameter of active particle

`	 dpm maximum diameter of active particles

n number flow rate of active particles

N number hold-up of active particles

.	 R* shrinking rate of a single particle

vi volume flow rate of inert particles

V i volume hold-up of inert particles

V 
total volume of solids in the cell

W mass flow rate of active particles

y=d /dpm dimensionless particle sizep

size distribution density function

density of particlespp

^v 
= f1 

0 y3
/ o 1 

m dy

Subscripts

f feed or input

0 outlet

cm

cm

1/sec

1/sec

cm3/sec

3
cm

3
cm

g/sec

g/cm3
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APPENDIX V

Elutriation Rate

Let w denote the total elutriation rate of coal or char
e

•
[g/sec]. By using me , the size distribution of elutriated particles

on weight fraction basis, and fie , the size distribution of elutriated

particles on number fraction basis, we have,

*	 y3 ^e
dwe = we ^e dy = we	dy	 (V-1)

ve

On the other hand, the elutriation rate is given by the specific

elutriation rate constant, K 	 in the form

dwe

A	 = K ^b dy	 (V-2)
t

where ^b is the density function of size distribution of the char

particles in the bed based on the total weight of bed. is the

size distribution density function based on the total weight of char

particles in the bed and is related to 0b by

I 

t
We	dy = W  mb dy

Substituting (V-2) and (V-3) into (V-1), we obtain

dwe = w e 0 *
e	

W
m	 dy = AtWc K * ^* dy

^	 b

[

or by using 0 and 0 ,e

we Oe 3	
A t We	

0 dydwe = 
I've y dy	 W  "v	 K

where

1
I've = !

1 ^e y 3 dy , ^v = f 0 y3 dy
0	 0

(V-3)

(V-4)

(V-5)
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Now since the number of particles elutriated per unit time, ne,

and the total number of coal particles in the bed, N c , are given by

n	 3
ne - we/(^ve 6 dcm pch)

Nc 
W /(

^v 6 dcm P ch )c

We obtain the final form

K At

n  Oe =	 W	 N 
	 (V-6)

b

I,- ---	 044




