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PREFACE

This report describes part of a comprehensive and continuing pro-

gram of research in multispectral remote sensing of the environment

from-aircraft and satellites and the supporting effort of ground-based

researchers in recording, coordinating, and analyzing the data gathered

by these means. The basic objective of this program is to improve the

utility of remote sensi:R as a tool for providing decision makers with

timely and economical information from large geographical areas.

The feasibility of using remote sensing techniques to detect and

discriminate between objects or conditions at or near the surface of

the earth has been demonstrated. Applications in agriculture, urban

planning, water quality control, forest management, and other areas

have been developed. The thrust of this program is directed toward

the development and improvement of advanced remote sensing systems and

includes assisting in data collection, processing and analysis, and

ground truth verification.

The research covered in this report was performed under NASA Con-

tract NA59--14988. The program was directed by R. R. Legaul.t, Director

of ERIM`s Infrared and Optics Division and an Institute Vice-President,

Q. A Holmes, Head of the Information Systems and Analysis Department

and Project Director, and R. F. Nalepka, Head of the Multispectral

Analysis Section (MAS) and Principal Investigator. The Institute.

number for this report is 122700--32--F.

The author wishes to acknowledge the administrative direction pro-

vided by Mr. R. R. Legault, Dr. Q. A. Holmes, and Mr. R. F. Nalepka

and the technical assistance given by Mr. R. F. Nalepka, Dr. W. A.

AIalila, Mr. R. J. Kauth, Mr. J. F. Hemdal., Mr. J. K. More, and Dr. R. E.

Turner. Ms. D. Dickerson, E. Hugg, and M. Warren are thanked for their

secretarial assistance.
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1
SMtIARY

The general form of the transfer equation representing the recorded

MSS signal level in each spectral band for a given material indicates

that differences in recording conditions between a training scene and

a recognition scene cause multiplicative and additive changes in the 	 ­^A,

signal levels observed. Although the effects of bidirectional reflec-

tance can cause these multiplicative and additive changes to be unique

for each material., generalized multiplicative and additive data trans-

formations can be derived which provide significant compensation for

differences in recording conditions between training and recognition

scenes.

Previous investigations of signature extension techniques relying

t
	 on a dependable correlation between the statistical data distributions

for training and recognition areas (e.g., cluster matching algorithms.)

have indicated that su,~.h procedT.res are at present unreliable due to
the unpredictable frequent occurrence of . significant differences in

training and recognition scene composition. Subsequent signature

extension efforts at BRIM have attempted to circumvent this difficulty

principally by focusing attention on-preprocessing techni ques which	
x

compensate only for identifiable physical. effects (haze, viewing and
T

illumination geometry) and devising methods (multisegment or must_L-

temporal training) for extracting more completely representative train- 	 ^s
i

ing statistics. This report summarizes our progress in developing

preprocessing techniques to compensate Landsat MSS data for physical

effects without using ground.obsarvations.

Two signature extension preprocessing algorithms, XSTAR'and XBAR,

Have been developed. The XSTAR algorithm is an uncomplicated technique 	 {

which has been shown to provide significant and reliable compensation

for the effects of atmospheric haze and sun illumination angle in Landsat'

j
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agricultural MSS data. The XBAR algorithm, currently under develop-

menL as an improvement upon XSTAR, is a more sophisticated technique

designed to provide compensation for the effects of atmospheric haze,

sun illumination, view angle, and background albedo. The XBAR algo-

rithm is based on detailed use of the ERDT radiative transfer model.

A data screening step to identify and eliminate confusing informa-

tion within a scene, such as garbled data, clouds, snow, cloud shadows,

and water, is necessary prior to calculating the haze diagnostics

needed by the XSTAR and XBAR algorithms. A fully, automatic screening

procedure (called SCREEN) for Landsat MSS data has been developed for

this purpose. The output from SCREEN is generally accurate enough to

be used to edit- the input to a classifier, however better results can

be obtained through data analyst interaction with the SCREEN output.

Some analyses have been performed to estimate the effect of soil

color on Landsat signals from agricultural.areas, however these analyses .

have been hampered by a lack of adequate ground truth information during

portions of the growing season when soils are distinguishable. Through

signature modeling and analysis of the limited Landsat data W-1th ground
truth that is available, some of the variation caused by soils has been

characterized.

Current progress in preprocessing for signature extension indi-

cates that although some significant gains have been made with the

XSTAR and SCREEN algorithms, an additional reduction by a factor of 2

in the signnal differences between LandsaL- scenes should be possible 	 r

in the near future. Thera is also a need to begin developing similar

techniques for other sensors (e.g., the Thematic Mapper) and to test

the present techniques in non-agricultural applications. 	 F

i
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2

INTRODUCTION

Signature extension is a process intended to increase the spatial-

temporal range over which a set of training statistics can be used to

classify data without significant loss of recognition accuracy. The

training statistics which are required are extracted from multispectral

scanner (MSS) data with the aid of training information (ground truth)

obtained from localized surveys on the ground or from interpretation

of aerial photographs or MSS data images by trained analyst inter-

preters (AI's). Either of these procedures for acquiring ground truth

information becomes costly and time consuming .even for data processing

over land areas of moderate size.

The goal of signature extension is to minimize the requirements

for collecting ground truth and for extracting training statistics,

thus reducing the associated costs and time delays. Signature exten-

sion would then help to provide timely and cost-effective classifica-

tion over extensive land areas, including remote areas for which ground

truth information may not be readily available. ERI11's present sig-

nature extension effort has been primarily concerned with the problem

of performing large area agricultural surveys, using MSS data from the

Landsat satellites.

Previous investigations of signature extension techniques relying

an a dependable correlation between the statistical data distributions

for training and recognition areas (e.g. cluster matching algorithms i
[11) . have indicated that such procedures are at present unreliable due

to the unpredictable frequent occurrence of significant differences in

training and recognition scene composition. Subsequent signature

extension efforts at ERIM have attempted to circumvent this.difficulty

principally by focusing attention, on preprocessing techniques which

compensate only for .. identifiable physical. effects (haze, viewing and

3
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illumination geometry) and devising methods (multisegment or multi--

temporal training) for extracting more completely representative train-

ing statistics. This report summarizes our progress in developing pre-

processing techniques to compensate Landsat agricultural MSS data for

physical effects. without using. ground observations. Specific topics

which are discussed include:

1. The underlying theory For physical effects compensations

2. The SCREEN procedure for automatically detecting garbled

data, clouds, snow, cloud shadows, and water in Landsat

MSS data

3. The XSTAR signature extension preprocessing algorithm

4. The. XBAR signature extension preprocessing algorithm

5. Analyses of the effects of soil_ color or soil conditions

on agricultural Landsat data.

Current progress at BRMi in other related aspects of the signature

extension problem is reported in References 2, 3, and 4.

f
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3

THEORY

3.1 EXPECTATIONS

The general, form of the transfer equation representing the recorded .

MSS signal level in each spectral band for a given material indicates

that differences in recording conditions between a training scene and

a recognition scene cause multiplicative and additive changes in the

signal levels observed. Although the effects of bidirectional reflec-

tance can causethese multiplicative and additive changes to be unique

for each material, generalized multiplicative and additive data trans-

formations can be derived, based upon identifiable physical effects,

which provide significant compensation for differences in recording

conditions between trai:iing.and . .recognition scenes. This will be

demonstrated in the sections which follow.

Successful preprocessing techniques compensating for physical

effects in Landsat data can provide several benefits, for example:

1. Allow training statistics to be derived from more than one

region within a partition to provide more complete and repre-

sentatzve training in-formation

2. Remove the need for cluster matching algorithms., which are

prone to failure whenever the scenes compared are not nearly	 1

equivalent subsets of the data distribution to be expected

within a partition

3. Provide a stable data base from which to identify dist inct
crop growth trends to be used to .identify crop types in

unitemporal or multitemporal data.

The .development of such techniques starts with .a basic.understanding

of how physical factors affect the recorded signals from the scanner.
_	

1

5
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3.2 THE RADIATIVE TRANSFER EQUATION [5,6]

The radiance, L, at a given wavelength, observed by a satellite

while viewing a target with reflectance p t is represented by

ry	 p -T/11   .

1T	 P

with E- (T) representing the sum of the direct and diffuse irradiance

on the target, T representing the optical thickness of the atmosphere

	

(denoted by To in Reference 5),.p representing the cosine of the view-	 {

ing angle relative to nadir, and L  representing the path radiance due

to scattering in the atmosphere. According to ERIM's radiative transfer

model [5], Equation 1 may be expanded (and rearranged) as

p t 	 1 T	 /u 
L = A	 © 

[ 4pop 
^C 0 P+ 2 u e 

-T 
+C1 11+^e

+C2-e
-T / ]1 

+	 (2)
L .	 Il

with

E
A47T[lo0 + (1—n) •6]	 (3)

A . 1 + 2 (1-p } (1-TOT	 (4)

C  - 1 + 2(1_n)z	 (5)

-6

€	 6
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C 2 = [P o - (1-n)u] p(u'^'-uo,00) - [( 1-n)u] p (u4,11 0 1 1T + 0Q ) (7)

0.5 T  + 0.95 TA

Ti 	

^:c + rA

T = TR + TA	 (9)

Equations 2 through 9 approximate the effects of an atmosphere without

absorption. The appropriate equations for an atmosphere with absorp-

tion are given in Reference G, and can be arranged into an algebraic

fore analogous to Equations 2 through 9, however,for the present,atmos-

pheric absorption will not be treated in this discussion. All of the

variables in these equations are functions of wavelength with the excep-

tion of the geometric parameters u, ^, p o , and + o , which represent the

cosine of the viewing angle relative to nadir, the viewing azimuth,

the cosine of the solar zenith angle, and the solar azimuth, respec-

tively. The functions p(p,^,-ijo,00) and p(p,^,v , OT 4 0 ) represent

scattering phase functions. The anisotropy parameter, n, represents

the fraction of scattered radiation which is scattered into the forward

hemisphere, and is a weighted average of the anisotropy for Rayleigh

scattering and for aerosol scattering (Equation 8). The optical thick-

ness,-[(called T O in Reference 5), is the sum of the Rayleigh optical

thickness, T  (which is small and does not vary with changes in the

atmospheric state), and the aerosol optical thickness, T  
(which is

typically from three to twenty times larger than T R). The background

albedo, p, is the average reflectance of the scene surrounding the

target. The direct solar irradiance at the top of the atmosphere is

represented by Eo.

The quantities A, A, C o , C12 and C2 are all weak functions Of T

(and p), varying by at most ±5% for reasonable atmospheric conditions,

7
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except when the sun zenith angle is high (e.g., ' 1,70 0 ). In the latter

case A and C. may vary by up to +10% with changes in T. Thus, the

major dependence of the radiance, L, on the optical thickness, T, (and

the background albedo, p) is shown explicitly in Equation 2. Note,

however, that the quantity C 2 is a strong function of viewing angle,

varying by ±871 at a sun zenith angle of 300 , when the viewing angle

varies by +5.50 . This sensitivity of the path radiance to viewing

angle decreases for larger sun zenith angles, as shown in Figure 1 [7].

FIGURE 1. GENERAL TREND OF PATH RADIANCE AS A FUNCTION OF
SCATTERING ANGLE. Scattering-angle differences for a

simulated +b o change in view angle are indicated.
Vertical scale and detailed curve slope depend

on atmospheric condition and spectral band specifications,

8
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In order to simplify manipulations of Equation 2, the equation

may be written as follows

4U op	 p L

L = A	 A	 Ko P + K1 + K2	(10)

with

-T /u

K =
0	 0

C e	 (11}

-z/p	-rh
Kl = 2 e	 + C1 1 - C.1 +	 e	 (12)

1-

(	 -T/l'

Equation 10 still shows explicitly most of the dependence of the

radiance, L, on the background albedo, p, and the cosine of the sun

zenith angle, µo , however A and C 2 also are strong functions of uo'

as shown in Equations 3 and 7.	 }

The signal, x, recorded by a multispectral scanner, given an input

signal, L, can be represented by

x = GL + d	 (14)

with G representing the gain of the scanner and S representing an

additive signal offset. (Scanner noise may be considered to be a

time dependent perturbation in G and S, however the following dis-

cussion will assume that scanner noise is small enough to be safely

ignored.) Equation 14 represents a linear scanner response, however

the same functional form can be used to approximate portions of a non--

linear response, producing a piecewise linear representation. The

9

4



ERI
FOHMEHLY WILLOW RUN [.AUDRATORIES. THE UNIVERSITY OF MICHIGAN

quantities x, G, L, and d are all functions of wavelength or channel

number.

Denoting parameters corresponding to a standardized atmospheric

state and standardized measurement conditions with primes, and incor-

porating the ford of Equation 10 into Equation 14, one may write two

equations to describe the recorded signal levels from a scene before

and after standardization, respectively:

[ 4^iop	 P
x GA	 4 ^K0 P + KJ + K2 + 6	 (15)

^	 s

r
X I = GA T 	 ^,	 Ko ; + Kl ) + Kf +	 (16)

F

In Equations 15 and 16 scanner gain, G, and offset, S, have been

assumed to be stable. These two equations may then be combined to

obtain a relation between the original signal, x, and the standardized

signal, x', by first defining a quantity Q such that

,-
Pt

Q - - - p
,	

(17)
PL

The quantity Q is intended to represent the effect of bidirectional

reflectance, and is expected to be primarily a function of view angle.

Equating p'/p , to P t /p as indicated by Equation 17, solving Equation 15

for p t/P, and substituting for p'/p t in Equation 16, we obtain

A r p `20K'	 11;u' 20KI

AP
2A

r.KO	
Apo

Q ,K°..

u r2AK 1 	4u'2p.t	 K 
+ A r K2 - Q' 2 t o K2 G + A'	 °,	 Kl - 

Ko Kl G	 (] S)
K	 du	 °

o a
10
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Equation 18 is the basic starting point for the development of
i

both the XSTAR and XBAR signature extension preprocessing algorithms.

The development of the theory front this point which is pertinent to

each of these algorithms is discussed in Sections 5 and 6. Another

basic theoretical development pertinent to both these algorithms is

the evolution of a bate diagnostic procedure for estimating the optical

thickness for an arbitrary Landsat agricultural scene. This is dis-

cussed below.

3.3 DEVELOPING A HAZE DIAGNOSTIC

The parameters describing the illumination and viewing geometry

for a specified data acquisition can be easily calculated. However,

in order to devise a preprocessing technique to standardize physical

effects one needs to estimate the remaining factors in the radiative

transfer equation, as they appear in Equation 18. The major unknown

factors are optical thickness, background albedo, scanner calibration

(G and 6, which for a satellite usually change after launch), and

atmospheric absorption. Optical thickness is the most significant

of these factors. The other factors will be discussed in Sections 5

and 6.

In principal the optical thickness is a separate unknown quantity

in each spectral band of a scanner. However, to determine the optical

thickness for a single spectral band by analyzing the appearance of

the data only within that band usually produces a rather inaccurate 	 4

result unless the band is one in which all other useful information

is essentially nonexistent, or one for which some special scene charac-

ter sties are known. By treating the optical thickness as an inde--

pendent unknoxm quantity in each spectral band, one in effect is faced

With too-many unknown quantities. This problem can be tendered more

tractable by obtaining a relationship among the optical thicknesses

for the various bands. One possible relationship can be determined

by assuming that the optical thickness in each spectral band is a

11

1 I w
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linear function of the amount of haze in the atmosphere. If we denote

the amount of haze in the standardized condition by Y', and the amount

of haze in an observed condition by y' + y, then for a scene before

and after standardization, respectively, we may write

	

T	 ^R + a 	 + Y)	 (19)	
..

T` = T'R + ay'	 (20)

The parameters y' and y are scalar quantities (independent of wave-

length) characterizing the amount of haze in the atmosphere. In effect

y` and y are measures of the aerosol optical thickness at some standard

wavelength, for which a = 1. The parameter a is a function of wave-

length, having a unique value for each spectral band. For Landsat

data we have defined
}

1.2680

	

a ^
	 1.0445	

(21)	 i
.4142

.7734

The values chosen for a are based on the relative magnitude of the

aerosol optical thickness in each of the Landsat bands 4 through 7,

for an atmosphere with a horizontal visual range of 23 lun (a relatively

clear atmosphere). Remembering that TR = T' (Rayleigh optical thick--

ness is independent of atmospheric condition), we may write

	

T = r' + ay	 (22)

Using the relation defined by Equation 22 in Equation 18, and

after specifying the other factors of Equation 18, we obtain a defini-

tion of multiplicative ai-id additive changes to Landsat signals as a

12
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function of a single parameter, y, which is to be determined. After

finding some measurable change in Landsat signal values which is a

monotonic function of y, our haze diagnostic can then be specified,

since we need only determine the value of y which will change the

observed Landsat signals to correspond to the signal configuration

characterizing the standardized condition. This step has been accom-

plished, using our knowledge of the principal components of Landsat agri-

cultural data distributions, as described below.

It has been noted that Landsat agricultural data tends to occupy

a region of the signal space which has a form similar to a Tasselled

Cap [8]. This distribution is flattened so that the first two princi-

pal components of the data distribution define a hyperplane containing

most of the variance of the data. In the Tasselled Cap model, two

specially oriented axes lying within this hyperplane have been labeled

the soil brightness axis and the green development axis. The third

most significant principal axis has been labeled "yellow stuff y , while

the fourth has been called "non-such". The .labels for . the axes are

based on the features of the data which appear to be most highly corre-

lated with each axis. The axial directions characterizing the Tasselled

Cap description . -of Landsat I data have been found to differ by up to

five degrees from what would appear to be equivalent axial directions

} for Landsat II data. Since the great majority of the data available

for our analysis was Landsat II data, a more highly tuned Tasselled

Cap description for Landsat II was needed before atmospheric effects'

on the Tasselled Cap distribution could be readily determined.

The determination of the Tasselled Cap axes appropriate for Land--

sat II data was accomplished in two steps. The first step attempted

to define a pair of mutually orthogonal two dimensional subspaces such

that the first (or major) hyperplane contained as much of the variance

of the. Landsat 11 data as possible.,. while the second (or minor) hyper-

plane contained as little of the variance as possible. for this analysis

13
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0	 0

	

--1	 0

	

0	 1
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(24)
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signatures were calculated from the data distributions of 10 Landsat II

data sets, comprising 5 LACIE segments in Oklahoma, 3 in Kansas, 1 in

Texas, and 1 in Arizona, all recorded during the month of April 1975.

Since our goal, for the present, was to devise a standardization to an

average atmospheric condition (rather than a perfectly clear atmospheric

condition), an average orientation of the major and minor hyperplanes

was sought. Hence, a procedure was devised for determining the average

orientation of the Major and minor hyperplanes from the eigenvectors
of the 10 data sets. This procedure began with an initial estimate

for the Tasselled Cap axes, designated as column vectors within the

rotation matrix RI (denoted by R in Reference 8), which has been used

for the Landsat I fixed linear Tasselled Cap transformation. Each of

the 10 sets of 4 eigenvectors, designated as column vectors within a

rotation matrix RR , could then he compared.with R I . To do this, first

a matrix T was calculated such that

T —=
 R^RI
	 (23)

Since the orientation of the first two eigenvectors within the major

hyperplan:e is quite variable, while the third and fourth eigenvectors

are usually consistently oriented, the expected farm for T would be

represented by

14
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Since the polarity of an eigenvector is an artifact of the routine

which calculates it, either the plus or the minus sign could be appro-

priate for the first row of the T matrix (Equation 24), while the

minus sign in the- third column and row of the matrix was found always

to be appropriate. The T matrix is a potation matrix which retains

the orientation of the major and minor hyperplanes of R. while changing

the orientation of the axes within the major hyperplane to correlate

optimally with the axes of RT. Thus, a Tasselled Cap rotation matrix

for Landsat IT data (RII ) could be estimated by replacing T in Rqua--

tion 23 with T and then multiplying both sides of the equation from

the left by RE , producing

RII —:= ET = RI	(25)

The correlation of the axes of RII with the axes of RI is obtained in

the least squares sense when 6 is defined such that

(1) if 
T1IT22 ' T12T21-

the plus signs in the first row of T are used, and

	

6 = arg (T12 - 
T21 )
 
[L2  - arg(Tll + T22 ) tan-1 

T11 - T22	 (26)
12	 21

(2) if 
T11T22 < T12T21'

the minus signs in the first row of T are used, and

_ T + T
6 = -arg(T12 + T21) -+ arg(T11 T22) tan	 T1

12

2 -T

2l

22
 (27)

15
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In this manner, estimates for RIT were obtained from each eigenvector

matrix, RR . Inspection of these results revealed that the eigenvector

matrices for two of the ten data sets indicated "yellow stuff" and

TT non-such" axes which differed significantly from the trend in the

remaining eight data sets. One of these two data sets (Segment 1239,

Noble Co., Oklahoma) had so little variance along the "yellow stuff"

axis that the eigenvector was ambiguous, while the other of the two 	 j

i.
data sets (Segment 1316, Yuma Co., Arizona) had abnormally high vari-

ance along the "non-such" axis, which appeared to be a rare instance

of useful information correlating vith. the "non-such" direction. (The
9

physical meaning of this "non-such" axis has not yet been determined.)

These two estimates forR1I were then set aside, and the remaining eight

estimates for 
RTI were averaged, component by component. This resulted

in an average estimate for RIZ whose components were no longer ortho-

normal. This average estimate for 
RTT was then orthonormalized using

the standard Gram-Schmidt procedure, beginning with the soil brightness

vector and them proceeding to the green development vector, followed

by the "yellow stuff" and "non-such" vectors.

The second step in determining the Tasselled Cap matrix, R TT , for

Landsat II data was to perform separate rotations within the major and 	 a

minor hyperplanes to optimize the within-plane orientation of the

Tasselled Cap axes. Angles 0 1 (-5 042') and 0 2 .(0046') were defined

for the two rotations such that the "green" and "non-such" components

of the special signal vector x'' (defined in Section 5) would be zero.

Letting R' denote the orthonormalized average of the R 	 aIT
rotation matrix T'

	

cos 3 1	 sin 0
1
	 0	 0

	

-sin 0 1	 cos 0 1	 0	 0

T'	 (28)
0	 0	 cos 0 2	 sin 0^

0	 0	 -sin 0 2	cos 02

16
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was defined which was used to calculate R II according to Equation 29.

ILII .r. 
11:[1	 (29.)

The resulting Landsat II Tasselled Cap transformation matrix is given

in Equation 30.

	

33231	 .28317	 -.89952	 -.0159+

	

.6031.E	 --.66006	 .42830	 .13068

RII	
(30)

	

.67581	 .57735	 .07592	 —.^a5187
.	

.i

	

.26278	 .38833	 -.0080	 .88232

This orientation of the Landsat II Tasselled Cap axes has been

found to be particularly suitable for determining and applying a haze

diagnostic procedure (as was intended). However, an analysis of the .

variability in Landsat II signals from bare soils in Kansas has deter-

mined that the first principal component of this soil variability,

which contains approximately 95% of the total observed variance, is

within 1 degree of alignment with the "brightness" direction defined

	

by Equation 30, after this soil principal component is projected onto 	 i

the "brightness-greenness" hyperplane. (This projection would remove

any rotation of the bare soil principal component out of the "brightness--
a

greenness" hyperplane which could have been caused by atmospheric haze.)
s

Hence, the correlation of the "brightness" and "green" directions with

soil brightness and green development appears to have been retained

in the RBI matrix (Equation 30).

Displaying Landsat II 'Tasselled Cap transformed data,distribiitions

in the coordinates "brightness" vs. "yellow", we have observed that

while the scatter of the data out of the hyperplane in the "yellow"

direction is usually very small, the hyperplane shifts and rotates in

a clearly discernible manner which is correlated with . the atmospheric

_..	
1.7

t
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AUTOMATIC SCREENING OF LAND SAT ASS DATA

Not all Landsat data lies within a well defined hyperplane as des 	 `

cribed in Section 3.3. In particular, garbled data or data from clouds,

localized dense haze.concentrations.(diffuse clouds).,.cloud shadows,

snow, or water can appear to be atypical and can lead to errors in

calculating the haze diagnosLi.c(s) required by a preprocessing algo-

rithm such as XSTAR or XBAR. Bence, it was necessary to develop a

data screening procedure to edit out confusing data before XSTAR or

XBAR could be most effectively applied. For this application of data.

screening, errors of commission in identifying confusing data are

acceptable, provided that enough data remains to characterize the

atmospheric condition with sufficient accuracy.

Data screening can also be used to edit the input to a classifier.

For this purpose errors of commission and errors o" omission .from the

screening process both need to be mi-[imized. Since there is a temp--

tatioa, if not an outright desire, to use data screening both for

obtaining a better haze diagnostic and for editing the input to .a

classifier, regardless of any initial limited intent for the screening

process, an attempt was made to develop a screening procedure (called

SCREEN) that would adequately suit both of these needs and yet could

be . appli:ed with . minimum supervision.

The SCREEN algorithm uses thresholds on linear combinations of

Landsat data values, after applying a cosine sun zenith angle correc-

tion, to separate regions of the data space which are of interest. To

determine the most appropriate screening thresholds, we needed to

develop an understanding . of the physical.interpFetation of.data within

typical Landsat data distributions. This insight was gained through

experience.with the Tasselled Cap data transformation [8] Hence,

the first step of the screening procedure is to transform the signal

19
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vector, x, for each Landsat lI pixel to obtain the corresponding sun

angle corrected Tasselled, Cap vector, z
J

o T	 (31)z=I	 -
0

with u0. and u0 representing the cosine of the sun zenith angle for

the data acquisition and for the standardized condition, respectively.

In this case we have chosen

11	 cos 39 0 	 (32)

which is typical for Landsat data acquired in April in Kansas. The

Landsat II Tasselled Cap rotation matrix, R II , is discussed in Section

3.3 and is defined in Equation 30.

The next step of the SCREEN procedure is to circumscrib e- the usual

Landsat data distribution, using several separate lip_ear..th?'esholds,.

and to label any pixels with outlying signal vectors as garbled data.

The remaining "good" data is then split up into separate, mutually

exclusive subregions to identify in: succession dense clouds (or snow),

diffuse clouds (or localized dense haze concentrations atypical of 	 ,

normal Landsat scenes), : water, and cloud shadows.. The location of

these screening thresholds has been determined by studying 13 LACIE

acquisitions from North Dakota and Montana and 19 LAC1E acquisitions

from Kansas;. carefully selected to be examples of particular screening
i

problems. A condensed, detailed programmer's description of the result-

ing.SCREEN . algori.thm is presented in Reference 9.

A few of the SCREEN thresholds are shown in Figures 2 and 3.

These figures display the screening thresholds in the Tasselled Cap

rotated data space without an offt	 died to the on	 asinp	s	 any .offset appliedPp	g	 (.

defined by Equation 31). The regions outside the enclosed areas in

i

20
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0	 32	 64	 96	 128	 160	 152	 224	 256	 288

BRIGHTNESS

FIGURE 2. SCREEN THRESHOLDS IN TASSELLED CAP ROTATED LANDSAT II
DATA SPACE. (Data standardized to 39 1 sun zenith angle.)

-31	 U	 32	 64	 96	 128	 160	 192	 224	 256

HHIGI[i11E55

FIGURE 3. SCREEN THRESHOLDS IN TASSELLED CAP ROTATED LANDSAT II
DATA SPACE. (Data standardized to 39 1 sun zenith angle.)
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the figures correspond to garbled data values. The SCREEN thresholds

were found to be rather sensitive. Striping effects in the Landsat

data were often sufficient, especially for low sun elevations, to cause

data values to cross the threshold boundaries. Better Landsat radio-

metric consistency, smaller digitization intervals (more significant

bits), and additional data channels (e.g., thermal data) all would

help to make this type of data screening procedure more effective.

Figure 4 shows a classification map generated from the output- of

the SCREEN algorithm. The symbols in the map are assigned as follows:

B for garbled ("bad") data, C for dense clouds, H for diffuse clouds

(dense haze), W for water, S for cloud shadows, and W for cloud shadow

over water. Note the clear definition of the river which runs from

top to bottom through the scene and the definition of the cloud and

cloud shadow areas. Cloud areas are to the right and slightly below

the corresponding shadow areas in the figure. The clouds are at

various altitudes, hence the displacement of clouds from their shadows

varies throughout the scene. Some areas of confusion between cloud

shadow and water are present in this scene, For instance, the areas

classified as cloud shadow near line 20, pixel 90, and near line 40,

pixel 116, are actually lakes. Similar misclassifications observed in

another scene for which ground truth was available indicated that such

lakes are actually shallow water with vegetation (e.g., grass) growing

up through the water. Such areas are indistinguishable from cloud

shadows, using Landsat spectral data alone. Near line 95, pixel. 53,

is an area of cloud shadow miscl_assified as water. Within the exten-

sive cloud shadow area around line 50, pixel 150, are several pixels

identified as cloud shadow over water. Note the every-sixth-line

structure of these latter misclassification areas. Better destriping

of the Landsat data would be a partial remedy for such problems.

22
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Figure 5 shows a screening classification map for a scene which

is so overcast that it ordinarily would not be processed. However,

this scene serves as a good example for how garbled (or "bad") data

can be detected. Repeated scan lines, fill data, and bit slips are

three of the normal causes for "bad" data in Landsat images, but in

this scene two other sources of garbled data were detected and noted.

The first cause was due to the band 4 value changing to zero for one

or two isolated pixels, while the signals in-the other bands (5-7)

remained similar to the surrounding signal values. The second cause

was due to the band 4 signal increasing by approximately 20 counts

(%40%), while the signals in the other bands again remained at typical

values. both problems appear to have come from a single band 4 detec-

tor or from its associated circuitry or 'ground processing. Neither

of these problems would have been easily spotted by examining usual:

film products for this scene, however the SCREEN algorithm-was able

to identify these problems routinely (and automatically).

The ERIM SCREEN procedure is somewhat more refined than a simpler

procedure recently developed by the Agricultural Research Service [10)

which uses only bands 5 and 7. Dense coverings of snow are classified

by the ERIM procedure as dense cloud, while separation of water from

other categories is about as accurate as the spectral data by itself

will permit. There is some tendency for false alarms to increase at

lower sun elevations, mostly due to the effects of striping in the

Landsat data. Some improvement in the separation of clouds from bright

fields could be obtained by allowing a few of the screening thresholds

to be adjusted separately for each scene by user interaction. However,

as it stands, the SCREED procedure is reasonably effective both for

removing confusing data from haze diagnostic calculations and for

editing the input to a classifier, without supervision. We do recom-

mend, nevertheless, that users monitor its performance visually.
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5

THE XSTAR SIGNATURE EXTENSION PREPROCESSING ALGORITHM

i

5.1 DERIVATION

The XSTAR signature extension preprocessing algorithm is the
E

result of a mixture of physical intuition, empirical observation, and
i

a greatly simplified formulation based on the ERIM radiative transfer

model. Mathematically, the XSTAR algorithm may be derived as follows.
In Section 3.2 we noted that the quantities A, A, Co , C1 , and C2

in the radiative transfer model (Equation 2) usually varied by no more

than.±5% with changes in T (optical thickness) and p (background albedo).

We may also note that the cosine of the viewing angle relative to nadir

(u or p t ) cannot vary by more than 0.6%, due to the limited scan angle

of the Landsat satellite (+60). Hence,. using Equation 22, and referring

to Equation 11, we may write.

K 
--0 = eay
K

0

If we further assume that µ o = P' (that changes in sun zenith angle

are small) and that Q 1 (that variations in bidirectional reflec-

tance are small), Equation 11, relating the standardized signal x'

to the observed signal x, may be simplified to the following form

x' = eOYx + (1 - e"Y)S

(33)



has no term involving (ay) 0 , Equation 34 may be rewritten as

x' = eayx + (1 - eay ) d + a1 (ay ) 1 + a2 (ay ) 2 + ...	 (35)

Approximating - (ay) 1 by (1 - eay ), and modifying the polynomial coeffi-

civ--+:s a2 , a .3 , etc., accordingly, Equation 35 may then be restated as

X1 = eayx + (l - e"') (6 - al) + P(ay)	 (36)

The quantity a1 is a function of the scanner gain, G, and of all the

radiative transfer equation variables (uQ, P t , T , etc.) characterizing

the standardized condition. The polynomial function P(ay) is a func-

tion of these same variables, with its first term proportional to

(ay) 2, and thus represents higher order effects of changes in optical

thickness.

The XSTAR . algorithm is based on the mathematical form of Equa-

tion 36, excluding the higher order terms represented by P(ay). To

define the algorithm one needs to estimate the value of (8 - al) for

each spectral band. This has been done empirically for a restricted

data set, as described below.

First note that Equation 36 describes a multiplicative and addi-

tive change applied to a single channel signal value, x, to obtain the

corresponding standardized signal, x'. The standard form of this

transformation is

x' = A x + B
	

(37)

with the scalar quantities A and B in Equation 37 representing multi-

plicative and additive factors, respectively.

For any such multiplicative and additive transformation with a

multiplicative factor not equal to unity, one can define a unique

T.
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signal value x* , in each channel by

x* = 
B

_ 1 
A	 (38)

where A, B, and x* are all functions of wavelength or channel number.

Note that the signal value x* is invariant under the given transfor-

mation. The standard transformation (Equation 37) may be rewritten as

x'	 A x + (1 - A)x*	 (39)

or as

x' - x* = A(x - x*)	 (40)

Equation 40 indicates that the value of x* in each data channel speci-

fies a point or origin in the signal space relative to which the remain-

der of the signal space expands or contracts according to the effect

of each multiplicative factor. Comparing Equation 36, excluding p(ay),

to Equation 39, it is apparent that x* can be equated to (S - a l) in

Equation 36. The form of the physical effects standardization then

becomes

x'	 eayx + (1 - eay )x*	 (41)

The existence of the special signal value, x * , has led to the name

:STAR for the resulting preprocessing algorithm. (Note that the sign

convention chosen for y is opposite to that chosen in previous docu-

mentation of the XSTAR algorithm [11]. This sign convention has been

changed in order to be consistent with the XBAR presentation in Sec-

tion 6 and to define y as a scalar parameter monotonically related to

the amount of haze present in the scene to be preprocessed.)

Two fortuitous circumstances with respect to Landsat data have
	

n

made the task of developing preprocessing algorithms to standardize

Fa
F
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physical effects less difficult than it might have been. The first is

the-occurrence of areas of overlap in the ground swath covered by Land-

sat on consecutive days. The second is the occurrence of "redundant"

information in the Landsat bands 4 through 7. This "redundant" infor-

mation causes the Landsat data to lie in a hyperplane and is what has

made a reliable haze diagnostic procedure possible. On the other hand,

consecutive day Landsat acquisitions for selected scenes have provided

the controlled observation conditions necessary for studying physical

effects on Landsat signals.

The value of x* in each Landsat band has been estimated by opti-

mizing the performance of the XSTAR algorithm on 10 consecutive day

data sets. These data sets are the same ones that were used to deter-

mine the Landsat II Tasselled Cap rotation matrix, R II , and are des-

cribed in Section 3.3. All 20 of these acquisitions had solar zenith

angles of 400 ±40 . At first Y was allowed to assume whatever value

was necessary to match the data from one day of each data set to the
other day. After a stable estimate for x * was obtained (partly by

trial and error), the final formulation of a haze diagnostic procedure

was possible.

5.2 THE XSTAR HAZE DIAGNOSTIC

As is commonly known, the effect of increasing haze on MSS signals

is to reduce the available signal contrast (dynamic range encompassed by

the data) and to offset most signals toward brighter levels. Objects

which are especially bright, however, may appear somewhat dimmer after a
haze increase. This qualitative observation is illustrated by Figures 6

and 7, which show distributions of cluster means from Landsat II MSS data

for two acquistions of a LACIE sample segment obtained on consecutive days.

These data distributions are displayed in the Tasselled Cap rotated coor-

dinates "green" vs. "brightness". Analyst interpreters, examining false

color film images generated from the MSS data for these scenes, des-

.	 cribed the atmospheric conditions as "clear" on the first day (Figure 6),

1
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FIGURE 7. CLUSTER 11EANS FROM A HAZY DAY (Tasselled Cap Green vs.
Brightness) LACIE Segment No. 1178, Bourbon Co., Kansas,

21 April . 75 (75111)
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and as "hazy, with some clouds" on the second day. Note that on the

second (hazy) day (Figure 7) the data distribution is more compact

and "brighter" than on the "clear" day (Figure 6). This same quali-

tative haze effect is predicted by the XSTAR algorithm, as illustrated

schematically in Figure 8. In this figure, the-standardized condition

is represented by a simulated "soil line" and "green arm", labeled by

the letter "B". Condition A then represents a data distribution for

a very clear atmospheric condition, while conditions C, B, and E repre-

sent progressively hazier conditions. The range of conditions simulated

s
-i2. N 	 46.00	 .00	 16.00	 32.00	 40.00	 6..00	 60.0o	 86.00	 112.00	 320.00	 1u,00	 loo-DO

BFU GHFNE55

FIGURE 8. EFFECT OF INCREASING HAZE PREDICTED BY XSTAR MODEL
(Tasselled Cap Green vs. Brightness)
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is slightly greater than is usually encountered in Landsat data.

According to the XSTAR model, increasingly hazy conditions would con-

tinue the trend of cases A through E, until the asymptotic limit "F"

was reached. This point "F" is the special signal value x	 In this

way one may think of the point x * as an apparent "point of all haze"

to which all data distributions would collapse once the haze became

dense enough to reduce the signal contrast to zero. Actually the

point x" is only an apparent "point of all haze", since the effect of

the neglected term P(ay) in Equation 36 is to shift the location of

the point x * toward brighter signal values as the haze increases.

For the XSTAR algorithm, however, a fixed location for the point x*

has been chosen which produces preprocessing results that are reason-

able for normal haze variations.

Figures 9 and 10 display the same distribution of cluster means

as Figures 6 and 7, respectively, but in the Ta::.^elled Cap rotated

coordinates "yellow" vs. "brightness". Note first of all how. little

scatter there is of the data about the brightness-greenness hyperplane.

This small amount of scatter is typical of Landsat agricultural data

distributions. In Figure 10, representing the hazier condition,

slightly more scatter is apparent about the plane than in Figure 9,

however this scatter is almost entirely due to variations in the haze

density within this scene. Note that the data distribution of Figure 10

is offset toward less "yellow" signal values, and is rotated slightly,

relative to the data for the "clear" scene in Figure 9. The corre-

sponding motion of the brightness-greenness hyperplane predicted by

the `STAR algorithm is shown schematically in Figure 11. In this case

condition B can be observed to correlate well with Figure 9, while

condition b, representing an increase in haze (and in y), correlates

well with Figure 10. Note that the slight rotation of the hyperplane

in Figure 10 is not predicted by the XSTAR algorithm. This rotation

of the hyperplane is not yet fully understood and is not predicted

-	
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FIGURE 11. EFFECT OF INCREASING HAZE PREDICTED BY XSTAR MODEL
(Tasselled Cap Yellow vs. Brightness)

even by more accurate radiative transfer models.	 We now suspect that n

this rotation of the Landsat data hyperplane may be related to non-

linear scanner performance- or to inconsistent calibration of the data a

(correlated, however, with ambient signal levels),, however other

possible causes are also conceivable. x

The X5TAR haze diagnostic procedures biased on the translational

movement of the Landsat brightnessfg-reenniess hyperplane in the Tasselled

Cap "yellow" direction. .	 Speci€icallly,.Y is estimated .such that the

-3

average "yellow" value for the acquisition to be preprocessed will be
a

transformed to. the average "yellow" value characterizing the standard-;.	 ,..
ized condition.	 The standardized "yellow" value (-11.2082 counts) has ..
been chosen to be typical of an average Landsat scene, and is represented

;y

a

....	 ...	 .......,.. ..S.IiiW.	 t. w_..	 . .'..ram	 .,e._..	 J..A _.....: y.w	 ... _
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by condition B in Figures 8 and 11. (The data distribution shown for

the clear day in Figures 6 and 9 is very close to this standardized

condition.) A condensed, detailed programmer's description of the

XSTAR signature extension preprocessing algorithm and of its haze

diagnostic procedure is presented in Reference 9.

5.3 TEST RESULTS FOR XSTAR PREPROCESSING

In order to evaluate the performance of XSTAR and of other pre-

processing algorithms in a manner which. is independent of subsequent

intended uses for the preprocessed data (uses which may confound the

residual preprocessing error with their own performance limitations),

we have measured preprocessing error as the residual error in matching

one day's Landsat data to the consecutive day's data, averaged over

all pixels in the scene, and have expressed it as a Euclidean distance

(root sum square error) in Landsat counts. This performance measure

is equivalent to the Euclidean distance error in matching the prepro-

cessed scene means for the two acquisitions. Data flagged by the

SCREEN algorithm (garbled data, clouds, snow, dense haze concentra-

tions, cloud shadows, and water) has been.excluded from these residual

error calculations. Some additional performance measures which eluci-

date other characteristics of the residual error in matching data from

consecutive days have also been examined and are discussed later in

this section.

A simple test was performed to estimate the relation between

residual Euclidean distance error in preprocessing and loss of recog-

nition accuracy from signature extension, excluding the usual loss of

accuracy caused by imperfect training data. For this test, training

signatures derived from the Finney Co.. Kansas, Intensive Test Site

for April 20, 1974, were modified by shifting their mean values in a

manner which simulated varyEng amounts of error in matching the signa-

tures to the data. The direction in which the signature mean, were

shifted was chosen to simulate typical shifts in Landsat signals caused

I,.
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•	 by increasing or decreasing haze as observed empirically in Landsat II

data. Since the data chosen for the test was Landsat I data, the direc-

tion of the shift applied to the signature means was adjusted to take

into account the calibration differences between Landsat I and Land-

sat II. The effect of the various simulated errors on the wheat propor-

tion estimate for this scene is plotted in Figure 12. In this figure

positive error refers to shifting the signature means in the direction

of positive correlation with the Tasselled Cap brightness axis (i.e.,

increasing haze). (Our experience with the XSTAR preprocessing algorithm

has indicated that "positive" and ".negative" preprocessing errors are

about equally probable.) From Figure 12 we .judge that up to three counts

Euclidean distance error may be tolerable, while errors in excess of

three counts may not be tolerable.

EUCLIDEAN DISTANCE ERROR IN MATCHING TRAINING STATISTICS TO DATA

(LANOSAT COUNTS)

FIGURE 12. ACCURACY OF WHEAT PROPORTION ESTIMATE VS. EUCLIDEAN
DISTANCE ERROR IN MATCHING TRAINING STATISTICS TO DATA.
Finney Co., Kansas, Intensive Test Site, 20 April 1974
(Threshold = 0.001). Simulated errors represent typical
effects of increasing and decreasing haze on training

statistics used for signature extension.
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To determine the amount of preprocessing error to be expected in

matching Landsat data from consecutive days, with and without using the

XSTAR algorithm, 58 winter wheat data sets and 33 spring wheat data

sets were prepared. Each data set consisted of an eight channel Land-

sat II LACIE sample segment (117 scan lines, with 196 pixels per line),

composed from a consecutive day pair of acquisitions. The data sets

were clustered in an unsupervised manner, producing up to 100 eight

channel clusters per data set. The cluster mean values and the number

of pixels used to generate each cluster were then used in lieu of the

individual pixel values for the subsequent processing. This greatly

reduced the time and costs involved in any tests using the data. The

SCREEN algorithm (Section 4 and Reference 9) was used to eliminate

clusters from the test which represented garbled data, clouds, snow,

dense haze concentrations, cloud shadows, or water in any acquisition.

The XSTAR preprocessing algorithm was tested on the 91 data sets

described above as follows. First, since the XSTAR algorithm was

derived for a fixed sun zenith angle 0,39o), and since the data sets

had sun zenith angles ranging from 31 0 to 680 , a cosine correction was

applied to each data set to simulate data acquired for a sun zenith

angle of 390 . The XSTAR haze diagnostic was then determined independ-

ently for each day's data for each consecutive day pair. The haze

diagnostic was calculated from the averages of the appropriate cluster

mean values, weighted by the number of pixels in each cluster, but

excluding those clusters flagged by the SCREEN algorithm on either day.

On the average, about 11% of the pixels were edited out from each

winter wheat data set by the SCREEN procedure, while for the spring
wheat data sets, on the average, 22% of the pixels were edited out.
However, the SCREEN procedure edited out all but three of the clusters

(containing a total of only 140 pixels) from one of the 33 spring wheat

data sets (shown, as it happens, in Figure 5). Since statistical

results from this data set would have been of dubious value, it was

excluded from the testing.

s
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The results from these tests for XSTAR preprocessed data and for

data with no preprocessing (except for a cosine sun zenith angle cor-

rection) were sorted in order of increasing magnitude of the Euclidean

distance error and are displayed in Figures 13 and 14. Remembering

that from interpreting Figure 12 we proposed that 3 counts Euclidean

distance error be considered an approximate upper bound for acceptable

preprocessing performance, note that for the data sets in Figure 13,

while only 16 of the cases with no preprocessing had less than 3 counts

error, 31 of the XSTAR preprocessed cases were within this limit. For

the spring wheat data sets in Figure 14, XSTAR preprocessing increased

the number of cases with less than three counts Euclidean distance

error from 10 to 20. Note that for the majority of the test results

0	 10	 20	 30	 40	 50	 K

NUMBER OF DATA SETS BELOH ERROR THRESHOLD

FIGURE 13. SCENE AVERAGE EUCLIDEAN DISTANCE ERROR FROM XSTAR TEST
ON 58 CONSECUTIVE DAY WINTER WHEAT DATA SETS

(After Cosine Correction for Sun Angle)
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FIGURE 14. SCENE AVERAGE EUCLIDEAN DISTANCE ERROR FROM XSTAR TEST
ON 32 CONSECUTIVE DAY SPRING WHEAT DATA SETS

(After Cosine Correction for Sun Angle)

shown in Figure 13 ., the amount of error decreased by app.roximatley

33% after preprocessing with XSTAR, while for the results shown in

Figure 14, the decrease in the error was usually between 33% and 5€%.

For those cases shown in which the XSTAR preprocessing was not as

effective as desired, XSTAR still produced significant improvement

compared to using no preprocessing. Those data sets for which XSTAR

did least well were those having varied haze within a single acquisi-

tion or those with more than 20°% of the scene covered by clouds, cloud

shadows, or snow. A more thorough screening procedure (e.g., biased

in favor of errors of commission) for avoiding the effects of clouds,

cloud shadows, and snow on the XSTAR haze diagnostic could possibly

improve the results for those cases.
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The seemingly better performance of .XSTAR on the spring wheat

data, relative to the winter wheat data, is presently suspected to be

due to the respective amounts of change in view angle. For consecu-

tive day data from Kansas, as in Figure 13, the change in view angle

is between 7 and 7.5 degrees, while for consecutive day data from

North Dakota and Montana, as in Figure 14, the change in view angle

is about 6 degrees. As yet XSTAR does not fully compensate for changes

in Landsat signals with view angle.

The results presented above for XSTAR primarily test its ability

to Compensate for the effects of haze on an average signal. A second

order measure of performance would test the accuracy of the multiplica-

tive. factors predicted by XSTAR, which affect the correction of signals

relative to an average signal. Since the XSTAR multiplicative factors

are based on the atmospheric attenuation estimated by ERiM's radiative

transfer model, but do not include effects of changing view angle, a
test was performed to empirically verify this estimate. In this test

the multiplicative factors defined by a pixel by pixel regression (sim-

ulated by using cluster means weighted by the number of pixels in each

cluster) were analyzed for the 58 winter wheat consecutive day data sets

as follows. First, channel by channel averages of the logarithm of

each multiplicative factor were computed for data sets with an average

logarithm greater than zero and for data sets with an average loga-

rithm less than zero. These averages were then subtracted one from

the other to each channel to -nstly remove any systematic multiplica-

tive effect correlated with view angle. The four logarithms thus

obtainej were then resealed so that their average value (averaging

over the four Landsat bands) was unity. This procedure produced four

values, derived empirically, which could be compared, band by band,

with the u coefficients of the XSTAR algorithm (Equation 21). For a

data set requiring a multiplicative factor of 2 (representing a change

in optical thickness of In 2), Table 1 compares these empirically

._	
i



TABLE 1. ATTENUATION FACTORS IN LANDSAT II DATA DUE TO ATMOSPHERIC
TRANSMISSION. (Estimated from 58 Consecutive Day

Winter Wheat Data Sets -- Average Simulated
Attenuation 2.0)

XSTAR	 Empirical
Model	 Estimate	 Difference

Band 4 2.41 2.49 -3.5%

Band 5 2.06 1.96 5.1%

Band 6 1.88 1.88 0.4%

Band 7 1.71 1.74 -1.8%

estimated multiplicative factors to the XSTAR multiplicative factors.
x

Even for such an extreme case the agreement is quite close, although

the procedure used to derive the empirical estimate was at best only

approximate.

A second test was performed to determine, on an empirical basis,

whether there was any systematic multiplicative effect correlated with

view angle (i.e., to quantify those multiplicative effects which bad

been deliberately excluded in the comparison to the a coefficients of

XSTAR in Table 1). This test for systematic view angle effects was

f	 performed in two different ways. The first way was to combine the

multiplicative factors determined separately for each day's data by

the XSTAR algorithm and then to compare these to the multiplicative

i
factors (subject to the a. constraint) which matched the data for the

two days of each data set in a least squares sense. The average sys-

f

	

	 tematicc-multiplicative effect determined in this manner is shown in

Table 2 for both the winter wheat d aka sets and the spring wheat data

sets. Note that t,.e winter wheat data, with the larger change in view

f

	

	
angle, exhibits the larger effect. Although this systematic multipli-

cative effect is nearly an order of magnitude larger than had been

anticipated from signature: modeling results for winter wheat canopies

4$
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TABLE 2. AVERAGE CHANGE IN LANDSAT II SIGNAL CONTRAST
UNACCOUNTED FOR BY XSTAR, WHEN APPLIED TO

CONSECUTIVE DAY DATA.
(Day 1 to Day 2)

Winter Wheat Data Setts (.Kansas) 	 -16% + 2%

Spring Wheat Data Sets (N. Dakota and Montana) 	 --10% + 3%

which were reported in our first contract quarterly progress report [l2},

the total effect is not enough to be seriously detrimental to the per-
formance of XSTAR.

The second way a test for systematic multiplicative effects with
view angle was performed was to use the simulated pixel by pixel regres-

sion estimates for the multiplicative factors. The logarithms of these

factors were averaged band by band over the 58 winter wheat data sets.
Each average logarithm was then converted to a corresponding "average"
multiplicative factor by calculating its antilog. Since atmospheric

conditions should not be partial to either the first or second day of

a consecutive day acquisition, the atmospheric variations should cancel

each other in this average, leaving just the systematic multiplicative

effects. The results for each Landsat band are shown in Table 3. With

the possible exception of band 7, the effect is about the same in each
band and is similar in magnitude to the result shown for winter wheat
in Table 2.

TABLE 3. AVERAGE CHANGE IN LANDSAT II SIGNAL CONTRAST
FOR 58 CONSECUTIVE DAY WINTER WHEAT DATA SETS.

(Day l to Day 2)

Percent

Band 4
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Assuming that the systematic multiplicative effect is in fact

correlated with changes in view angle, the two most probable causes

for the effect are (1) changes in the Landsat MSS sensitivity with

view angle, or (2) bidirectional variations in the canopy reflectance

of average canopies (i.e., not necessarily wheat.). To test the first

hypothesis, solar calibration data for Landsat 11, which had been

obtained from personnel at the Goddard Space Flight Center, was ana-

lyzed. Since the sun is introduced into the field of view of the

Landsat satellite via one of four facets on a deflector mirror,

according to the seasonal and shorter term changes in the relative

position of the sun and the satellite, one might expect the sun's

image to be recorded at different view angles for different acquisi-

tions. indeed this happens, so that the mean value of the sun at each

view angle available can be used to estimate variations in the scanner

sensitivity for signal levels near that of the sun. Thus, the solar

calibration data (which included 22 acquisitions between 29 April 1975

and 3 August 1976, and provided samples for the entire Landsat field

of view) was examined to determine variations in the apparent mean

signal value for the sun as a function of view angle. The results of

this analysis are presented in Table 4. The data indicated that any

TABLE 4. RESULTS OF ANALYSIS OF 22 LANDSAT II SUN CALIBRATION
DATA ACQUISITIONS

Decompressed
Mean Signal. Level Standard

. (in Landsat Counts) Deviation

Band 4 75.1 3.8%

Band 5 88.2 3.8%

Band b 79.2 4.7%

Band 7 31.5 2.6%

NOTE: No significant change in signal level with view angle
was apparent in Bands 4-7.

rr 4



AmeW - 	 FORMERLY WILLOW RUN I.AHORATORIFS THE VNIVER`i ITY ,1 MICHIUAN

changes in the Landsat sensitivity with view angle were probably less

than 2%. The standard deviation figures in Table 4 indicate that if

variations in the Landsat sensitivity had been the cause of the sys-

tematic multiplicative changes observed on consecutive days, the solar

calibration results should have made this apparent. Hence, the most

probable cause for the systematic multiplicative changes is judged to

be bidirectional variations in the canopy reflectance of average

canopies.

In passing, we wish to remark that although the sun to earth

distance changes throughout the year so that the solar irradiance at

the top of the earths atmosphere varies seasonally by ±3.5%, the

solar calibration mean values are calculated using only pixels whose

instantaneous field of view (IFOV) falls within the solar disk. 	 an.ce,

one would not expect the changes in. the sun to earth distance to alter

the mean values calculated for the solar calibration procedure. This

assumption has been followed in generating the numbers listed in

Table 4. However, although the conclusions drawn above from Table 4

would not be affected, we have noted. that the solar calibration mean

values, when plotted vs. time, appear to exhibit a ±2% variation in

Bands 4, 5, and b, and a +1% variation in Band 7, which are strongly

correlated with the seasonal changes in solar irradiance. This apparent

effect could be caused by a rather blurred Landsat IFOV, when viewing

the sun (the sun cal optical path differs somewhat from that used when

viewing the earth), or by an interaction between the total brightness

of the sun, and the Landsat calibration procedures (e.g., stray light

affecting the signals from the calibration wedge), or by coincidence.

More needs to be known about the performance of the Landsat satellites.

5.4 CONCLUSIONS FROM TESTS OF XSTAR.PREPROCESSING

In Section 5.3 test results have been presented for XSTAR prepro-

cessing which measure the residual error in matching Landsat 11 data

from consecutive days over 91 separate scenes, representing a wide
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range of sun zenith angles, scene characteristics, and atmospheric con-

ditions. Although the XSTAR algorithm is based on a highly simplified

model which does not include the effects caused by changes in view angle
or background albedo (which are known to be significant), it has never-

theless been significantly effective in redwing the effects of atmos-
pherle haze in Landsat data.. Fcr the 91 test cases examined, XSTAR pre-

processing, compared to no preprocessing, doubled the number of con-

secutive day data sets that matched within 3 Landsat counts Euclidean

distance (an estimated upper bound on acceptable performance). In all,

one half to two thirds of the data sets were brought within 3 Landsat

counts of matching, after applying XSTAR, while the remaining data sets

(scenes more than 20% covered by clouds, cloud shadows, or snow) were

in general significantly improved by XSTAR. Additional experiments,

illustrating the effects of XSTAR preprocessing in improving the analy-
sis, interpretation, training value, or classification accuracy (using

signature extension) of Landsat data are reported in References 2, 3,

1
	 and 4. A condensed, detailed programmer's description of the XSTAR algo-

rithm and of its haze diagnostic procedure is presented La Reference 9.

An empirical analysis of the multiplicative factors appropriate

for signature extension preprocessing has revealed that although the

values of a (Equation 21) chosen to characterize atmospheric attenua-

tion may be reasonably accurate, a significant reduction in apparent

scene contrast occurs b,itween the first and second days of a consecu-

tive day Landsat acquisition This multiplicative effect appears to
be related . to view angle effects. in the bidirectional reflectance of
typical crop canopies. This observed effect is one of the reasons for

including the multiplicative factor Q (Equation 17) in Equation 18.

Recent test results indicate that the performance of the XSTAR algo-

rithm may be improved by applying a small multiplicative "Q" correction
to the data together with the sun zenith angle cosine correction before
preprocessing with XSTAR. However, a more satisfactory result is likely

to be obtained using the XBAR approach discussed in Section 6.

I. 	 a
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THE XBAR SIGNATURE EXTENSION PREPROCESSING ALGORITHM.

6.1 DERIVATION

The XBAR signature extension preprocessing algorithm is currently

under development and is intended to compensate Landsat data not only

for the effects of atmospheric haze, but also for the effects of view

angle and background albedo (not attempted in the XSTAR approach) and

of sun zenith and azimuth angle (in a more precise manner than the

simple cosine correction mentioned in Sections 4 and 5). At present

the XBAR algorithm is not intended to compensate for the effects of

atmospheric absorption, however a mathematical formulation for such

a modification to XBAR (which will not be presented here) has been

defined.

The XBAR algorithm is based on the detailed form of the ERIM

radiative trwisfer model as expressed in Equations 2 through 9 (Sec-

tion 3.2.), but with a few more details added. First, since the direct

solar irradiance at the top of the atmosphere (Eo , Equation 3) is known

to vary seasonally by ±3.5% as the distance from the sun to the earth

changes, we have replaced E  in Equation 3 with the expression from

Equation 42, below,

F
Eo = -D 	(42)

with

(Julian date_ - 3)
D l - .035 cos 12rr	 365.25	 1	 {43}
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F
. the Julian date of the data acquisition to be preprocessed. 	 The closest

approach of the sun occurs around January 3, hence the square root of

D is proportional to the sun-earth distance.

Next, a detailed form has been defined for the factor Q (Equation

r 17), representing the multiplicative effect of bidirectional reflec-	 V.

tance for a typical scene component. 	 A proposed forth is

} Q =-I  + eQ 6	 (44)
6

s ^

with 6 representing the scanner view angle relative to nadir (going

from a negative value at the `+eginning of each scarf to a positive

value at the end of each scan), and with e Q representing a fixed

scalar parameter yet to be determined. 	 As a result of future analy-

ses, a more elaborate (and more accurate) formulation for the factor

Q may be. determined.

Finally, since the ERIM radiative transfer model is based on the

assumption of an infinitesimal target surrounded by a uniform back-

ground, we have defined a more detailed form for the background albedo,

p.	 Note that in practice the effective background albedo for a given

target is a spatially weighted average of the reflectances of sur-

rounding materials.	 This spatial weighting emphasizes the reflectance

' of nearby materials over that of more distant materials [13]. 	 Since

our goal (for the present) is to devise preprocessing techniques which

.y define a single set of multiplicative and additive factors to be

applied to a whole scene (usually the size of a LACTE sample segment,

containing about 20,000 Landsat pixels), a spatial weighting technique

for estimating background albedo is beyond the scope of our present

t efforts.	 However, since useful targets in.Landsat data are usually

larger than one pixel, we may obtain a crude approximation to a spa-

{ tial weighting technique by using a T-reighted average of target and

average background reflectance.	 Thus, for the present we define a

Y

w	 ,.



scalar weighting factor, ^ (yet to be determined), and let

P	 P + CP t 	(45).

with P representing the average background reflectance for the scene,

and 
pt 

representing the target reflectance. The scalar weighting

factor ^ would be expected to depend on the average field size and

on the optical thickness for each scene, however at present it is

included as a simple fixed parameter (yet to be determined) to allow

us to study the possible effects of a more precise representation of

the influence of the background albedo.

Using Equations 42 and 45, Equation 10 (the condensed form of

Equation. 2) takes the following form

E A 4027 p (
L = 

2-	
o	

K o t + K1 + .K2	 (46)o	 A

with

A = [^io + (l - n)T]
_1 	

(47)

1 + 2 (1 - p)(1	 n) -r	 (48)

K +	 K

'
0	 1Ko = (49)
1 _

;2{

and the remaining terms of Equations 46 through 48 defined in Equations

4 through 9 and 11 through 13 (Section 3.2.).

We also define

GE
o

G - 4^ ( 5C)



(54)

1	 n

,z
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hence Equation 15 becomes

A	
4u 

o p 
^ Ptx = G D

	
Ko p + K1 1 + K2 + d	 (51)

Calculating x, the average signal level for the scene, and noting that

P t = p and that A is a weak function of p (i.e., 0 = ^), we obtain

_	 4u2 p
x = G b
	

°	 (Ko + K 1 ) + K2 + S	 (52)a

or

2_ D(x- S) 
-K4uop	

G11	 2 (53)
Kp + Kl

s.	Equation 53 permits the calculation of the average background albedo,

P. from the average signal level, x, provided that the other quantities

in. the equation are known. This procedure for estimating the back-

ground albedo has led to the name XBAR for the resulting algorithm.

K:	 We will return to Equation 53 later.

F	 Equations 5.1 and 52 may be combined to produce
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4y'2 pr	 pr

x' - x'	 G A	
o'	

K 
f	 _t	 l

A	 0	 r -	 (55)

Using the definition of the factor Q (Equation 17), Equations 54 and

55 may then be combined, producing

N

r2

x' -UQ 

ua
2-

o

AK'
(x - ic) + X'

'K0
(56)

(The reader may note the appearance of an analogy between Equation 56

and Equation 40.)

The next step is to calculate X' from known quantities. Th.-'s is

accomplished by writing the equivalent of Equation 52 for the standard-

ized scene (adding primes to the appropriate variables) and by sub-

stituting for p' in this equation, using Equations 17 (the Q factor)

and 53. This produces

92^	 r	 r	 r r2^	 r	 r

	

'	

A 

u0 
0( o

+ 	 K 	
u

)	
A 0

..
o(K + K

	

X	 DQ 	)

o

^ . r ^.^_ .. ... x+	 i -n Q 	 bZ^.
	Au d (K + K1)	 A.u0A {K0 + K1)

12- -1
0 A (K + K^ )

+ A'	 K'
2 --
	 1A4 2^ ,	 l K	 G	 (57)

P0A (K0 + K1) 2

Finally Equations 56 and 51 may '.e combined to obtain
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t +2^^r	 r r2^	 +	 r

	

A	 !]Ko	 A. µo A (KQ + K1 )o 

x = DQ 2^ 1
	

(x - x) + DQ 2^r	 x

	

Auo Ko	 Au0A (Kb + Kl)

A r ua2^{Ko + K1)	
r	

2
r	

1a A(Ka + KI)

+ 1-DQ	 d+A K -DQ	 _	 K G

A^o^ + (Ko + Kl)	
^o^' (Ko -` .K1) 2

(58)

Equation 58 is the XBAR equivalent of Equation 18 (Section 3.2). The

XBAR algorithm also uses Equations 20 and 22 (or 19), which relate the
r

aerosol optical thickness to the scalar parameters y and y .

6.2 INPLEMENTATION OF THE XBAR ALGORITHM

At present the unknown quantities in Equation 58 are G, d, Y r
,
 Yr ,r

EQ , and ^. Although estimates for G and 5 (needed for each Landsat 	 '>i
spectral band) could be obtained from the Landsat prelaunch calibra-

tion, we would not expect these estimates to be sufficiently accurate

for this application, however the prelaunch values could serve later

as a check on our calculations. We do plan to calculate G and d by

performing a regression over selected consecutive. day Landsat data sets.

The form of Equation 58 makes such a regression straightforward, and

in fact the procedure has already been programmed and checked out on

a computer. The least squares estimates we have calculated so far for

G and d have exhibi.`ed a strong dependence on our trial values for y'

and Eq . The parameter C has so far been left set to zero.

Proper estimates for G and & also require the implementation of

a suitable haze diagnostic procedure, however in order to utilize a

haze diagnostic based upon the XBAR model, one must already hav^ esti-

mates for G and 6. For the interim the XSTAR haze diagnostic ha: been

used to estimate y so that with trial values for y' and c  we could



at least obtain some preliminary estimates for G and 6. Once we obtain

some dependable values from these preliminary estimates, an XBAR haze

diagnostic can then be used to estimate y, hopefully leading to still

better and more consistent estimates for G and 6.

Given trial values for G, d, y w , y, eQ , and ^, we can also calcu-

late the average background albedo, p, from Equation 53. Since the

realistic range of values for p is rather limited, this serves as a

very sensitive check on the performance of the XBAR algorithm. By

iterating through successive estimates for G and 6, which in turn

would lead to more accurate haze diagnostics from XBAR, and by monitor-

ing estimates for p, we expect to converge on an operational XBAR imple-

mentation in the near future.

6.3 COMMENTS ON THE XBAR ALGORITHM

Once sufficiently accurate estimates for G, 6, y } , E Q , and C have

been obtained, the application of the XBAR preprocessing algorithm to

Landsat data will he very similar to the present application of the

XSTAR algorithm, the significant difference being that the XBAR haze

diagnostic calculation and the calculation of the XBAR multiplicative

and additive correction factors would be more detailed than in the

XSTAR correction, and that the corresponding preprocessing would be

more accurate. The scattering phase functions (p(u, ^, -p o , ( 0 ) and
p(u, ^, u o , -a + ^o)) required by XBAR would be calculated by inter-

polating in a table stored in the computer. For this interpolation

the Landsat view angle relative to nadir, the latitude of the scene,

and the sun zenith and azimuth angles at the time of the data acquisi-

tion would have to be known. Since the XBAR calculations would only

be done once for each scene (ti2O,OOO pixels), the increase in cost

relative to the XSTAR algorithm would be small.

The XBAR preprocessing algorithm would provide: one substantial

benefit in addition to the preprocessing of Landsat data -- the defini-

tion of a close correspondence between Landsat MSS data and a detailed
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radiative transfer model. This would allow a more complete utiliza-

tion of ground measurements in remote sensing experiments. It would

also provide a powerful technique for monitoring the performance of

the Landsat MSS system.

I
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PRELIMINARY ANALYSES OF SOIL COLOR EFFECTS IN LANDSAT
AGRICULTURAL DATA

In addition to the effects of changing atmospheric haze, changes

in soil color or soil condition can also significantly affect Landsat

signals not only between scenes, but from field to field as well [14].

Some studies have been underway at ERIM to determine the effect of

soil color or soil condition on Landsat agricultural data and to try

to develop preprocessing techniques for removing or reducing the con-

fusing effects of soils in a way that would improve signature extension

performance. A prerequisite for these studies, however, has been the

development of a reliable preprocessing technique for removing the

effects of atmospheric haze from Landsat data. For the present the

XSTAR signature extension preprocessing algorithm satisfies this

requirement.

Some basic insights regarding the effect of soil color on Landsat

data have been obtained from signature modeling. H. R. Condit reported

measurements of spectral reflectances for a wide variety of soils

sampled throughout the continental U.S., and found that more than 93%

of the variance of these s:-il reflectances in the range of wavelengths

from 0.32 to 1.0 microns could be represented by a linear combination

of a reflectance mean vector and a single displacement vector [15].

Using this linear combination to simulate a dark, a medium, and a

bright soil, we have used the Suits canopy model [16,17,18] to simu-

late the effect of these soils on the Landsat in-band reflectance of

emergent wheat canopies, with various canopy densities and leaf orienta-

tions [4]. The result is shown in Figure 15, with the four Landsat in-
band reflectance coordinates rotated to simulate a plot of green vs.

brightness from the Tasselled Cap [8,4]. Note that the line segments

r	 in the figure, simulating the effect of changing soil brightness, all

t.
seem to paint toward a single location in the reflectance data space,

x

1
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FIGURE 15. SIMULATED EFFECT OF SOIL BRIGHTNESS ON LANDSAT
IN-BAND EMERGENT WHEAT CANOPY REFLECTANCE

near zero reflectance. This suggests that a ratio of Tasselled. Cap

greenness to brightness or of Landsa:t band 7 to 5 may eliminate much

of the variability due to soil brightness. We also suspect that the

amount of important information about wheat canopies which is confounded

with these soil brightness variations is relatively small compared to

the information contained in either of these ratios. (An experiment is

planned to test the effectiveness of these signal ratios as a signature

extension preprocessing technique.)

Another possible approach to minimizing the effects of soil varia-

bility in Landsat data is to characteri y, the temporal development of

vegetation on soil with sufficient accuracy or detail so that a data

acquisition early in the growing season may be used to estimate the

soil brightness or color for each field of interest and so that the
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future effects of the soil on the Landsat signal from each field can

then be reliably predicted. This would in effect be a preprocessing

technique to remove or to reduce the effects of soil brightness or

soil color in Landsat data, which would require a calibration step to

be performed early in the growing season. We are presently analyzing

Landsat data and the available supporting ground observations to

explore this approach to soil brightness preprocessing. Other simpler 	 r

approaches to this preprocessing problem are expected to come to light

as by-products of this line of research.

Our analyses of soil effects in Landsat data have been concen-

trated on data from the LACIE intensive test sites (ITS's), since this

is virtually the only available data with supporting ground observa-

tions in any sufficient detail. These ground observations were planned

to correspond reasonably well with the times of the Landsat overpasses,

however observations during the fall of the year, when soil effects on	 k

emerging winter wheat can best be studied, exist only for a very few of

the ITS's. Of these, only one (Finney Co. ITS, Kansas, 1975-76 crop

year) has a sufficient number of acquisitions to be significantly
useful. Hence, our analyses have been hampered by the limited amount
of ground information available to support this particular study. In
spite of these difficulties, however, some useful insights are emerging.

First, using XSTAR preprocessed Landsat data from four of the
ITS's (Finney and Saline Co.'s, Kansas, Randall Co., Texas, and Whit-
man Co. (2), Washington), we have examined data from fields (mostly

fallow) confirmed by ground observations to be bare with minimal weed

growth. Pooling this data together, we have found that more than 90%

of the variance observed correlates with a single axial direction in
the Landsat data space. This axial direction is angled slightly from

the standardized orientation of the Tasselled Cap greenness-brightness

hyperplane (Section 3.3), presumably due to the rotational effects of

haze on the Landsat data distribution (Section 5.2). However, when

y

t	

I
I
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this principal axis of soil variation is projected on to the greenness-

brightness plane, the deviation from the Tasselled Cap brightness direc-

tion is less than l o . This indicates that the Landsat II Tasselled Cap

axes, which were specially oriented to aid our haze correction efforts,

are probably well oriented to suit the phenological interpretations of

the Tasselled Cap as well. An analysis of the supporting ground obser-

vations for the bare fields, however, indicates that the first principal

axis of the soil variability correlates not so much with soil reflec-

tance or surface moisture (which were observed to have mostly random

effects) as with field operations (e.g., whether the field had been

disked or plowed, and whether stubble was present). For instance, we

have found that for dry bare ground in our sample (mean brightness

X87 counts, a n, 7 counts), disking or plowing decreased the brightness

by about 13 counts and increased a to about 11 counts. Fields with

standing stubble, on the other hand, (similar in appearance to disked

or plowed bare fields), increased in brightness to around 88 counts

with a large a ( ,^19 counts) when they were disked. Plowed stubble,

however, appeared similar to worked bare soil. Two burned fields were

45 counts darker than bare unworked soil. Hence, it appears that the

major driving factors affecting soil brightness in this data are field

operations which affect the texture of the soil surface and the amount

of stubble present.

Analyses are now underway to characterize the stability through

the early growing season of the soil appearance for typical winter

wheat fields. These analyses have established that a threshold of

zero in Tasselled Cap greenness is approximately the minimum detectable

level for emergent wheat. However, more significant results are ex-

pected in the near future.



8

CONCLUSIONS AND RECOMMENDATIONS

The preceding sections summarize our recent progress in developing

preprocessing techniques to compensate Landsat MSS data for physical

effects without using ground observations. We believe that some sig-

nificant gains have been achieved in.haze compensation with the XST'AR

and SCREEN algorithms. However, still more improvement is desirable,

and in fact is expected in the near future (perhaps a further reduction

in preprocessing error by a factor of 2) from our development of the

XBAR algorithm.

Signature extension preprocessing algorithms which are based on

our understanding of physical effects in MSS data provide many obvious

benefits, for example they

1. Allow training statistics to be derived from more than one

region within a partition to provide more complete and repre-

sentative training information

2. Enable those statistics to be applied usefully over more

extensive areas

3. Remove the need for cluster matching algorithms, which are

prone to failure whenever the scenes compared are not nearly

equivalent subsets of the data distribution to be expected'

within a partition

4. Provide a stable data base for studying and developing more

advanced uses or interpretations of 1fSS data.

A sufficiently precise preprocessing algorithm (such as XBAR), however,

can provide some additional valuable benefits:

5. Establish a calibration for the MSS data such that predictions

from theoretical models may be directly compared with empirical

r	 observations, not only qualitatively, but quantitatively

a

R
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6. Provide a means to more closely monitor the performance of

an MSS system.

To aid these developments, more detailed information is needed about

the performance of the Landsat satellites (to help explain the rota--

tion of the Landsat data hyperplane (Section 5.2), to understand the

unexpected influence of the changing sun-earth distance on the solar

calibration. data (Section 5.3), and more generally to estimate the

suability of the calibration of Landsat data).

The development of the XSTAR, XBAR, and SCREEN algorithms has

required the extensive use of empirical data (acquired by the Landsat

satellites). Some of this development effort will need to be repeated.

before these techniques can be applied. to Thematic Mapper data or even

Landsat C data (or other scanner data). Some of the future signature

t
extension research effort, therefore, should be devoted to generalizing

and streamlining the adjustment techniques for these algorithms, so

that they may be adapted expeditiously to other uses.

Two fortuitous circumstances with respect to Landsat data have

made the task of developing preprocessing techniques to standardize

physical effects less difficult than it might have been.. The.most

important of these is the occurrence of areas of overlap in the ground

swath c-3vered by Landsat , on consecutive days. This has allowed con-

secutive day data acquisitions to be used for adjusting and testing

our algorithms. The second important circumstance is the occurrence

a	 of "redundant" information in the Landsat bands 4 through T. Having

only four spectral bands to worst with, we have found the existence of

this apparent redundancy to be crucial to the development of our haze

diagnostic procedures. With a greater number of spectral bands, par-

ticularly in the visible portion of the spectrum, this "redundancy"

may'not be as necessary. This needs to be investigated.. Planners
f..

and designers of future satellite remote sensing systems should-be

aware of the importance of the above considerations.

^.1

^Tr
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on the other hand, our research into the effects of soil color or

soil condition on Landsat data has been hampered by a poverty of detailed

ground observations, correlated with Landsat overpasses, during the por-

tion of the winter wheat growing season when soils are most distinguish-

able. Future field measurement programs should attempt to alleviate

this deficiency.

Although we have been significantly successful in compensating

Landsat agricultural data for the effects of atmospheric haze, we can-

not guarantee that these same preprocessing techniques, without adjust-

ments, will work as effectively in non-agricultural applications. We

therefore recommend that these algorithms be tested on non-agricultural

Landsat data.

t

r
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