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SECTION 1

INTRODUCTION AND SUMMARY

The NASA Lewis Research Center, in conjunction with DoE, has been exploring the

potential for storing thermal energy in the phase change of salts. Grumman recently com-

pleted a ten month study as part of this effort, specifically to investigate the feasibility of

storing excess thermal energy in the latent heat of salts during the off-peak hours of electric

utility plants which could then provide energy to meet peak requirements. To he competitive,

the total thermal energy storage (TES) system cost must be less than the cost of increasing

plant capacity. The physical characteristics and operating; thermodYnamics of five power

plants, representing contemporary utility designs were defined and locations for integrating

TES into each were assessed.

Alternate storage concepts were considered, including:

• tuba/shell (baseline)

• intermediate pumped metal loop

• heat pipe

• micro- and macro-encapsulated and hulk PC1%1.

It was concluded that tube/shell and intermediate pumped metal loop s y stems, used

either to augment feedwater heating or as an energy source for an auxil±aj % 1 , er cycle,

required the least development for utility applications. Even though the designs were not

optimized, we showed that a salt TES system could provide nearly 7 percent of the peak

power required by a typical 525 MW power plant (Ft. Martin, located in West Virginia) at a

lower cost than increasing plant capacity. Results of this study are thoroughly documented in

Reference 1.

This report presents analytic techniques for initial sizing of a tube/shell or pumped

metal loop TES system abstracted from Reference 1. It is assumed that the total quantity of

energy to be stored and supplied (KWH), and the usage and stirage temperature levels are

known.

Y	 _
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A general discussion of salt characteristics, properties and costs are presented so

that selection of a salt, or salts, can be made. Analytical methods for determining salt

quantities, tube spacing and TES module size are reviewed. A description of the baseline

tube/shell and pumped metal loop system provides sufficient material for the user to select

the appropriate concept for his application. Overall system considerations such as controls

are also discussed. Since economics will play a major role in any TES selection process, a

thorough discussion of system costs is presented to assure that the potential user does not

overlook significant parameters. The report concludes with an illustrative example taken

from Reference 1 describing the sizing procedure for an electric utility heating case,

demonstrating the step-by-step analyVcal procedure to be followed.

1-2



SECTION 2

BEQUIRED SYSTEM DATA

Before a designer can size a TES system he must initially define the overall system

requirements. This docurnent assumes that the user can specify certain required

system sizing data. This assumption allows the methods pres--nted here to apply to a range

of TES situations.

2.1 ENERGY STORAGE AND DUTY CYCLE REQUIREMENTS

The user must first define the total energy to be s tored and re-supplied (MV11), and

the storage and usage period (hours) for the specific appLeation. The energy storage (KWII)

determines the quantity of phase change material requ!rW. Extended storage periods have

a second order effect on salt quantity by increasnig the requirement due to heat loss from

the system. Duty cycles are important since they determine the heat storage and removal

rates which size the heat exchanger surface area and spacing in the salt.

2.2 SYSTEV PLUM CONDITIOi:S

In ge-ieral, a latent heat TES system will he comprised of a salt module, or modules,

which will store and re-supply energy to a fluid loop. For example, a TES system used to

provide par: of the feedwater heating requirements of a power plant can be charged by

steam directly from the boiler and can deliver this stored energy to the feedwater during;

usage periods. Available inlet temperature and pressure, as well as the outlet temperature

or range o. acceptable temperatures must be defined. The complexity and cost of a TES

design will increase with increasing temperature and pressure levels.

w- I
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ISECTION 3

1	 SALT SELECTION PROCEDURE

In general, thermal energy can be stored as either sensible or latent heat. Sensible

heat involves the storage of energy by raisins; the temperature of the storage media, thereby

increasing the internal energy of the substance (me 1) AT). Typically, solids (metals, salts,

etc. ) exhibit specific heats of about .2 BTU/lWF so that in order to store 100 BTU in a

pound of material, a temperature increase of 500°F would be required. Latent heat involves

the storage of energy due to a phase change (e.g. , from solid to liquid) of the storage

material. For pure salts and eutectic mixtures this transformation occurs at a constant

temperature. Salts t%l)ically exhibit a latent heat ( A 11 fs ) of 100 BTU/1h so that in order to

store 100 BTU. a pour ►• of PCM would also be required. A major advantage of latent heat

storage, however, IS chat the process can store and re-supply heat at nearly constant tem-

perature, which is necessary when storage and usage temperatures are similar. In this

case the amount of storage material required is significantly less with latent heat systems

than sensible storage concepts.

3.1 CANDIDATE SALTS

In our case, the total TES system cost was compared with the cost of adding additional

power plant capacity. A simplified economic evaluation indicated that the total TES system

cost must be less than $1. 00 per pound of salt required by the TES.

We therefore selected salts (based on prices quoted in the Chemical Marketing

Reporter) costing up to $3/lb which could be used either in the pure state or in eutectic mix-

tures. Economic constrictions also required that candidate PC11 1 s be compatible with low

carbon or stainless steels, since more corrosion resistant metals such as Hastelloy and

Inconel would price the system beyond acceptable levels.

This resulted in a compilation of 174 pure salts costing less than $3/lb. This list was

then farther screened to eliminate salts which are unacceptable due to corrosiveness,

potential decomposition, or other limitations that prevent a TES design life of 30 years. It

was concluded that salts within the chloride, carbonate, hydroxide and nitrate generic
1

families are acceptable. Eutectics of each of these salts were selected that are in the

desired price range, compatible with stainless steel alloys, and will not decompose over

1	 the life of the equipment.
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Each of these salts must, however, be purified beyond commercial standards in order

to exhibit desired corrosion characteristics. It was determined that moisture is the major

Impurity that must be eliminated, and it will probably be necessary to dry the salts in the

heat exchanger modules after fabrication using vacuum-freeze-thaw or similar process.

Pure chlorides are generally characterized by high melting points, low toxicity and no

significant vapor pressure up to —N00"C (1475"F). They are available in quantity aryl

generally inexpensive. Available thermo/physical/chemical data indicated that they have

good potential for PCNI applications and form eutectics that operate at a high temperature

range of 320"-540 ` C (600-1000°F).

Chloride eutectics in general exhibit thermal stability and long cycle life. The

eutectics cost approximately $. 05/1h. Although little corrosion data was obtained for long-

term exposure of metals in molten chloride environments, it was generally agreed that

purified molten chlorides can be contained in mild steel. If purification is to be performed

on-site, zone purification of the molten salt in a smaller separate holding chamber prior to

adding the PCAI to the TES vessel is recommended.

Of the inorganic hydroxides, sodium hydroxide is available in bulk quantities and is

relatively inexpensive ($.20/lb ► . It was identified as the major component of "I'hermkeep,"

the salt found in a commercially available moderate temperature storaga system (500-60CF).

The atmosph-ire above this salt must he inert, dry and free of CO..

Nitrates/nitrites exhibit low melting points and relatively low heats of fusion. A sys-

tem has been described (Reference 2) using potassium nitrate, sodium nitrate, and sodium

nitrite. By varying the percentages of all three, eute^• ' s in the 285-655'F range have been

obtained. Relatively complete thermal, } p hysical and chemical corrosion data has been ob-

tained and documented. These eutectics have a heat of fusion of about 35 BTU/11), negligible

corrosion on ordinary carbon steel at temperatures up to 1000"F, and are relativel y inex-

pensive ( $. 14/lb).

Virtually no breakdown or contamination should be expected if the molten salt is

operated in an inert, dry atmosphere. It is recommended that the nitrate/nit rite systems

be utilized in the moderate temperature range (300-600 0 F). Work performed by Kirst, et al

(Reference 3), showed that open hearth steel can be used with n:`rate/nitrites up to 950"F.

At temperatures from 850-1100 F, high chromium nickel steels and certain low chromium

alloys containing aluminum and silicon are recommended.

3-2
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3.2 CONTAINMENT. SAFETY AND HANDLING CONSIDERATIONS

'

	

	 Authorities generally agree that even If present in minute amounts, water can cause

excessive corrosion with chloride salts. Littlewood (References 9 and 5 1 , roger (Refer-

ence 6), Susskind (Reference 7) and DeVan (Reference k) support the hypothesis that molten

chlorides can he contained in mild steel if they are dry and pure. Susskind tested a eutectic

of N..CI/KCL/NlgC1 2 in 1020 mild steel for 1000 hours at 500"C (915'F) ar yl noted no inter-

granular or mass transfer corrosion. The penetration depth was .7 mils/yr. It should he

pointed out that extreme material preparation care was taken. A'1 apparatus in which salts

were prepared were thoroughly cleaned and leak tested. Inert atmospheres of helium or

argon were used and these were purified by passage over titanium chips at K50"C. The
eutectic was prepared by vacuum-melting an y! outgassing at 500 C to a pressure of Iess than

26p. Reagent grade saltK and anhydrous NIgC1 2 were used. Reference 9 reports success-

ful containment of chlorides afte c -emoval of water by using a gettering metal (aluminum or

magnesium). Obviously, if such strict purification standards must be met, it will materiallk

increase the PCM cost.

AIgCl 2 and CaC1 2 , when strongly heated, give off toxic fumes which can be a problem if

a Th:S unit. ruptures. Also, chlorides have a very large volume change on fusion; for example

for NaCl the volume change from solid to liquid is 25`'ly,, so that significant salt mo,/cment will

occur during cycling. CaCl 2 is a dessicant, so that an exothermic reaction will occur if it

contacts water. Chlorides should be operated under a dry N 2 atmosphere. Mg (011) 2 con-

tamination of IvigC1 2 results in the formation of oxichloride cement (RIgOCl), which can
V

a problem.

Two contaminants which pose a corrosion problem in NaOH are 11 1 0 and CO 2# which

can he absorbed from the atmosphere. Use of a blanket atmosphere is essential and Refer-

ences 9 and 10 agree it should be 11 2 . Reference 9 notes that this introduces possible long-

term problems with hydrogen embrittlement of the alloys and weldments of the containment

unit. Noting the danger of explosion inherent in a pressurized H 2 atmosphere, Reference 10

suggests that satisfactory results might he obtained using a mixture of 10" ', If and 907 N,,,

which would reduce risk. Reference 11 questioned the seriousness of CO 2 contamination

and pointed out some contradictions in existing data regarding water contamination. Although

most authorities suggest using stainless steel, Comstock and Wescott use mild steel in their

"rhermkeep" system, apparently made possible by the use of a corrosion inhibitor. Corro-

sion problems may be expected to be worse for KOH than Na011 (Reference 11).

3-3



ilydroxides arc extren. -:y hydroecopic anal any contact .,'•>, water will cause a highly

exothermic reaction (possibly explosive in noture). In ad lition, hydroxides are caustic and

can be dangerous to personnel in the vicinity of a ruptured container. According to Refer-

ence 12, Na011 may give off toxic ' ► mes when strongly heated.

Nitrates/nitrites are superior to most salts investigated. They form a passivating

layer on steel y by the formation of surface oxide layers. Moreover, the presence of small

amounts of Hater does not appear to increase the corrosion rate significantly (Reference 8).

Nitrates do not pose some of the hazards associated with other halts; they evolve no

toxic gases nor are they caustic. They should, however, be kept out of contact with organic
matter ( fire hazard), cyanide Intl aluminum. At temperatures above 4WC (840"F), nitrites

continuously dei;rade (5 NaNO 2 3NaNO I + Na2O + N 2 ). This represents th- upper limit to

which these salts are useful and care should he taken to prevent nitrite containing TES units

from overheating. Baker Chemical lists the decomposition point of NaNO 3 as 380°C (715°F).

Compared to chlorides, nitrates present less problem from volume change on fusion; the

increase for NaN0 , 3 is 10. 7`%, that for KNO3 only :3. 3'ii, and that for NaNO2 less than 20%,

(Reference 13).

3.3 SELECTION MATRIX

Based on our evaluations, Figure 3-1 presents a list cf selected salts and salt

eutectics which cover the temperature range from 142 to 504 " C (287 to 939 0 F). In

addition to malting point data, the key thermal properties required for system sizing are

given; i. e. , the latent heat of fusion ( 0 H fs ), solid and liquid specific heat (cps and cpl),

thermal co : rductivity ( %, k  i and density ( P s and PI ). It should be noted, however, that

the property data listed is in many instances based on analytical techniques and are the only

data available for design purposes. Further experimental studies are required to accurately

define salt properties. This information is sufficiently accurate, however, for the prelim-

inary assessment of latent heat TES concepts. Fitnrre 3-2 gives a preliminary assessment

of salt costs, including purification.

3-4
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Fig. 3-1 The ► mophyslcal Property Data of Selected Salts

^- BULK PRICES
TOTAL COST INCLCHEMICAL

MARKETING MANUFACTURER'S QUANTITY COST S05/LB FOR WATER.
REPORT E R TRUCKLOAD CORRECTED I OR 02, AND SOLID IM

SALTS (7	 19	 76) 20,000 LB WATEP CONTENT PURI'i IES REMOVED
MyC12 6 H2O 1275 .0850 .250/.170 305
1 aC1 2	H2O 0275 .0440 03''j	 055 105
NaCI .02 0177 07

KCI .02 .0755 .1255
NaNO2 3095 3595
NdNO3 065 1095 1595
KNO3 .095 1825 2350
NaOH 25 I	 143 193
KOH .075 .22 27
BaC12 .155 - 205

Ca£ NO312 .1175 1675
U TEC TIC* .30 35

4 U TEC TIC' HITEC,HTS/PARTHERM
2349-0010	 Fig. 3-2 Cost Estimates Salts Recommended for TES Systems
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SECTION 4

ALTERNATE HEAT EXCHANGER CONCEPTS

A nurnber of alternate TES heat exchanger concepts may be considered, including:

standard tube/shell, intermediate pumped metal loop, heat pipe, rotating drum and riucro-

and micro-encapsulated PC111 designs. A preliminary review of these designs indicated that

the standard tube/shell ary l intermediate pumped metal loop designs offer the most potential

for near-term implementation.

Figure 4-1 illustrates the rube/shell design. This unit closely reserrbles standard

heat exchanger units. As shown, the fluid to be heated or cooled flows through tubes which

are surrounded by the PCNI (salt) mass. The tubes will be placed on hexagonal centers for

tight paching. Since the salt will occupy greater volume in the liquid than solid Mate

(Pj < Ps ), during energy storage the hot fluid will enter the top of the unit and exit ^t the

bottom. Conversely, during energy usae , `he fluid to be heated will enter at the bottom of

the unit and exit at the top. This will assure that solidification will proceed from the bottom

up, avoiding the formation of voids. Salt quantity will be specified such that space for a dry

inert gas over-blanket will remain. Since the salt will possess relatively low vapor pres-

sure, shell thickness Neill not be excessive. The potentially high pressure working fluid will

be cont,ined within a small diameter tubes.

The intermediate pumped metal loop system shown in I'ikure 4-2 uses a similar heat

exchanger design, with the difference that the liquid metal such as sodium or NaK is used to

transport energy to or from the individual modules. Depending on design considerations,

individual mcxlules may be connected in sera: s, parallel and a parallel-series combination.

4-1
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Fig. 4-2 Intermediate Pumped Metal Loop Concept
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SECTION 5

HEAT EXCHANGER SIZING

5. 1 SALT QUANTITY REQUIREMENTS

To select a salt for a given application, a temperature level must be chosen for the

available energy. Salts must be chosen which allow sufficient temperature differences

t 0'T) between the fluid flow temperature and the salt melt temperature. The cheapest

salt for energy stored per unit cost should be chosen. The total energy percentage which

can he stored in each salt can be found directly from the salt melt temperature air,) given

fluid conditions.

For shell and tube designs, energy will be stored as both sensible and latent heat. To

estimate the total mass of salt needed, therefore, hoth sensible and latent heat contributions

must be taken into account. This requires an estimate of the salt temperature profile at the

end of the usage period and at the end of the storage period. A general procedure to deter-

mine.the mass of s-ilt required is summarized below:

(1) Select the salt or salts, and percentage of total energy stored l a each salt, using

inlet and outlet temperatures, and enthalpies.

(2) Determine the "average" salt temperature, accounting for gradients both parallel

and perpendicular to the fluid flow lines a. the end of the storage and usage

periods. At the end of the storage pPr: d, the average liquid temperature, Tp ,

of the salt may be approximated by:

T fi +Tfo	( A
T) 111in

2
	 (5-1)

'	 where ( AT) min = T f o Tm

and Tfi - fluid inlet temperature

Tfo = fluid outlet temperature

T  = salt melt temperature

5-1
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Similarl .v, at the end of the usage cycle, the average solid temperature, T
the salt may be approximated by

T O = T fi +	
J

T fo I + ( AT) min	 (5-2)T,	 2	 V

when ( AT) min = Tm - Tfo

(3) Calculate total available latent and sensible storage capacities for each salt
as follows:

Qavailable - all fa + cp, s (T m -Ts ) + cP1 (TI - T m )	 (5-3)

where
T m = salt melt temperature

T s average solid salt temperature at end of usage period

T, = average liquid salt temperature at end of storage period

cpt s , ep'e = solid and liquid salt specific heats

Jll fs = Salt Latent If--at of Fusion

(4) Using this expression and tre foregoing analytical procedure, the total mass of
salt (or salts) required can he determined. This will be clearly demonstrated in
the illustrative example discussed in Section A.

5-2
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5.2 TUBE QUANTITY AND SPACING

To calculate the length, spacing and required number of tubes, various factors must

be considered, including:

•	 Inside and outside tube diameter

• Maximum module diameter

•	 Fluid conditions

•	 Salt properties

In general, to determine tube requirements an iterative calculation procedure will he

necessary which considers both storage and usage phases.

Equations which describe heat flow in and out of a pipe surrounded by a salt are given

by several standard heat transfer expressions. Considering simple one-dimensional heat

transfer expressions, neglecting heat capacity of the salt, the freezing energy flux per unit

length of pipe may be written:

'irks

L _	 (T - T	 (5-4 ).,	 m) 
QnriZ /

where,

k  = solid state salt thermal conductivity, BTU/hr-FT-0F.

T w = pipe outside wall temperature, OF

T M = salt melting point, "F

ro - pipe outer radius, feet

R = salt melt radius, feet

t	 L = total required length of pipe, feet
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This nuts• also he expressed in terms of fluid Hide file. coefficient ind pipe gall

the-anal resistance as:

r	 i	 cI.f - Tw)	 ( 5 - 5)

	

L•	

(1	
ln(ro/ri ►

\hrl/	 k,,

%% he rt e ,

h	 fluid film coefficient, I3TI'/hr ft 2o h

r 	 pipe inner radius, feet

ro 	pipe outer radius, feet
k", - pipe will thermal conductivity, I ITAir ft o F
1 1, f	 I'lui(I hulk tempt-nature, *F

T
w 

= pipe outer wall temperature, ° F

Energy stored in the salt is then:

	

f
dt	 tai.. P IT (it2 -- r2 )	 (5-6)

4,I,	 is s	 o

Integrating this expre ssion all ­ - Oil .-mting T  l ► sing 5-4 and 5-5 and substituting

for Q/L in 5 -6 in terms of T  and 'I ►► ^ g4vc.s:

It 
2	 li	 ll 2	 -k5	 1	 r i	 ro	 (

Tf - Tm)4 tk,
l Fn —	 — - 1	 i-	 pn —	 - I

r	 r	 r	 r,	 h	 I:	 r.	 DII — —r- 2
o/	 o^	 o)	 i	 w	 ► 	 P

	

^	 fs	 . o

(5-7)

which describes the relationship between active time, 1, ripe spacing, temperature difference

and film coefficient

. . 0
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Internal film coefficients i;or the working fluid may be calculated using standani heat trai ► s-

fer expressions. For the tube/shell designs Hrith steam or pressurized water as the energy

source or sink, the interna ► film coefficient may be calculated using the following expression

(Reference 13):

h = 0.0243 ( kf) ( p ̂  D}0. b
	 (Pr)0. 4 =X V 0. 8	 (5-8)

where:	 k  = fluid conductivity

Pf = fluid density	 0. - a

X1 = constant

Similarly, for the pumped metal loop system the Internal heat transfer coefficient may be
calculated (Reference 14) using:

h = (_k,)	 ^ e P ri/ [ 6. 7 + 0. 0041 	0.	 (e)793 	41. RP

	

r	 (5-9)

«-here Re = Reynolds number, Pr	 Prandt number anti the internal velocity is:

_ M	 1	 2V 	 l 2 = Ni^

pi
	 (5-10)

where	 '11	 fluid mass flow rate

P f = fluid density

N = number of pipes
X2 = constant

Note that the liquid density used in this comparison is somewhat conservative.. Calculation

of the liquid-solid interface movement is based on solid density (equation 5-7), but some

allowance must be made for lowering the level of PCM in the module as the solid fraction

increases, since this reduces the active length of the irxlividual pines, or: 	 ,.

N =	 Ms	 =	 X3
I.Py n(R 2 -r ?)	 L(B - - r 2)

(5-11)

where 111 = salt mass	 o	 0S

P, = salt liquid density

X 3 = constant

For the tube and shell case, equations 5-8 through 5-11 may be used to size the system once

the pipe and wall thickness has been determined from pressure containment and corrosion

considerations. Considering pipes on hexagonal centers (see I •'igure 5-1), a TES module

diameter can be estimated from the total cross-sectional area per pipe as follows:

I)m = ,, N (2H)2^ si t^f0 1
	 (5-12)
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Fig. 5-1 Hexagonal Arrangement of Heat Pipes in Cannister
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Next, considering the energy storage and usage we way develop an expression for pipe

spacing as a function of pipe OD arxi the number of pipes by combining expressions. During

energy storage the following expression must be solved:

,^	 2	 2	 . 8l n	 t̂ 	 Ẑ 	- 1	 - C 2 - C 3 	(5-13)
u	 u	 u	 I

	

r,l X1 
X20. 8
	 r•

%% , here:	 C 1 =	
2k

s

('2
	 2Kks	

^ n	 r

(T f - Tm) 4tk

,.	
s

s	 allfs s ru

A similar ex:pr•ession for the energy usage period may be written.

This leaves us with three equations (5-11, 5-12 and 5-13) and three unknowns (N, L

and R), permitting a separate solution for these parameters during energy storage and usage.

Obviously, the design should be based on worse-case results (i. e. , during usage or storage)

and the mininnrnj tube spacing should be used in sizing the TES modules.

5.3 :MODULE SIZING

The trade-off between number and size of individual TES modules must be based on

I	 space, handling and transportation considerations. In many applications, such as for our

power plant study, space will not be as important as the latter parameters. The TES

modules should be fabricated in a factory environment. Quality control must be maintained

at high level to produce a leak-tight structure. Helium leak checks, and X-ray photos should

be made of all welds; and records of inspections maintained on file. Each TES module should

be flushed with purified salt. The TES module is then backfilled with pressurized, dry inert

gas and the salt cleaned to remove impurities picked up in the flc Ching process.

5-7
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The prefabricated modulus are shipped to the site where the necess."I"y piping, valves
and controls are assembled to construct the total TES system. Based on standaid railroad

car shipping and handling considerations, a maximum TES module size of 15 feet diameter

by 40 feet long is recommended.	
r
2

5-S
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SECTION 6

CONTROLS

The controls necessary for the integration of the TES into a s y stem are divided into

two categories. First, controls necessarY fo r normal s}stem operation, and second, those

necessary for safety.

For TES use during normal system operation, major control categories can be divided

into flow control and unit monitoring. Flow control can be accomplished by various pressure,

flow and liquid level control valves. 'These control valves must have built-in logic so that

they operate automatically. Also, control should be incorporated so that operators will he

ar rle to override an y valve if a situation warrants.

Positive shut-off valves also provide for isolation of individual TES units or strings,

so that TES units can be removed from service. These operate on signal if the heat

exchangers become over-pressurized as in the event of a tube failure. These must also

have override control to isolate TES units.

Unit monitoring will be accomplished by integrating all valve signals into a micro-

processor and then tying this unit into the :rain control s} • stem. It will incorporate signals

to show normal operating and faulted conditions. Redundancy can be provided if the hazards

posed by a TES malfunction are considered great enough to warrant it.

Since the salt temperature will vary with time, it will he necessary to hYpass the

flow and/or use a recuperator to maintain the thermodynamic integration of TES with the

power conversion system. For example, a recuperator system (Figure 6-1) could be used

to compensate for the variation in heat exchanger effectiveness with time.

Me- r
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Fig. 6-1 TES Control System — Utility Application

6-2



1 1

SECTION 7

FOTAL rEs SYS'T'EM COSTS

In order to compare a latent heat TE:i design to other options, an economic evaluation

will be required. This analysis must be performed after alternate designs have at least

initiall. • been defined, so that all of the component costs can be included. Mane designers

discuss thermal energy storage costs by considering only the salt and its cannister.

Perip!u v ral items, however, such as lard, controk, piping and valving, ^nginecring, con-

struction Ices, etc. can easily result in a total system cost xhich is two or three times

higher than the "storage cost" taken by itself.

7. 1 SALT

The first cost item to be considered is that of the PC M material. Using the technique

discussed in Section 4, a salt or salts may be selected and the total required mass computed.

The total salt cost must include stn estimate of the added purification required and can be

calculated using the unit costs presented in Figure 3-9..

7.2 HEAT EXCHANGER

The heat excha-nger cost will be a direct function of the operational temperature and

pressure levels of the unit, as well as its design. Feedwater heaters whichnormally oper-

ate at relatively high pressures (up to 4000 psi) and low temperature levels (100 to 500° F)

cost in the range of $15/ft  of heat transfer area. TES applic^bons requiring higher

temperature levels (750 to 1000 F) and smaller tube density, will cost significantly more,,

however. 'I'he combination of higher pressure and temperature as well as salt corrosion

dictate the use of stainless steel for TES modules, further increasing construction costs.

For example, we estimate that a conventionally designed tulx/shell TES module for a

typical feedwater heating application (4300 psi, 1.000° F) %kill cost between $90 and 5120/ft 2 of

heat transfer area. Note that as part of our study (Reference 1), a stayed heat exchanger

design (Figure 7-1) was developed, lowering the module cost to about 550/ft
2 of heat transfer

area.

With the stayed design, a co.;t of `390,000 was estimated for one 12 ft. diameter by

40 ft. long st:, yed dome TES module operating at 43 1.0 psi and 10000 F, totally built of 321

stainless steel. As a first-cut, a designer may ratio this cost by the inverse of the diameter

squared (17 nn 2 ) in order to estimate a similar, but smaller diameter unit.
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Fig. 7 . 1 Stayed Configuration Tube anti shell Neat Exchanger
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7.3 CONTROLS AND PIPING COS'T'S

Integrating the TES nodules into an existing or new farility requires additional ccntrols

and piping costs. These costs are difficult to estimate and must be evaluated based on pre-

Ihninary system layouts ine.-rrorating the TES design. As a reference fo • a TF;S feedwater

heating applicition, --ontrols, piping and valving accounted for about 10`I0 of the total

system cost (see Sc -tion 8).

7.4 TOTAL INSTALLED COST

In addition to the above costs, the designer must con..ider peripheral costs, such as: 	 j

land, grading, roads and paving, foundations, interest during construction, and engineering

and construction fees. Based on various power plant installations, the following unit cost

data can be used for preliminary economic evaluations:

• varthwork and grading
	 $16,375/acre

• roads aml paving
	 $5.38/yd2

• land and lard rights
	 $100,000/acre

• foundations
	 $2.GG/yd3

Ty, )icallN, power plant designers add a contingency and interest cost of 15% during

con^truction and an engineering and construction management cost of 12`'/0 (see Section 8).

Although these factors may vary depending on the application, they are representative

figures for preli.-Anary evaluations.

Obviously, not all of the above costs may be incurred in a given application. However,

since they can significantly impact overall systeri trade-offs, it is importanr, that the de-

signer conipare the total expense of the TES system to the total expense of his alternativ^.

7-3
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SECTION 8

ILLUSTRATIVE EXAMPLE

This section presents the sig rificant design calculations to size a TES system for a

h ynical application, i.e. , to auknient power plant feedwater heating. A more thorough

description of requirements (controls, valves, etc.) is presented in Reference 1. Relevant

system design data are presented in Figure 8-1.

As explained earlier, in order to choose salts, it is necessary to know at what tem-

perature energy is provided. Figure 8-2 shows the flow stream temperatures as a function

of percent of total enei gy for storage and usage temperatures. In the case of feedwater

heating, it can be seen that 33% of the total energy will be stored in the higher temperature

salt and 0% in the lower temperature salt. As shown in Figure 8-3, the total amount of

energy stored in each salt is then:

KC1 NaCl NlgC1 2	4.35 x 108 BTU

NaCl NaNO3	8.83 x 108 BTU

which will require t;,e following salt quantities:

KC'. NaCl MgC1 2	1. 68 x 108 lbs.

NaCI NaNO .1	5.32 x 106 lbs.

For the remainder of this example we shall confine ourselves to the high temperature

salt. since the procedure for the low temperature salt is identical.

Strictly as a first-cut assumption, we used 1" ID tubes in our design. For this tube

ID, it was determined from pressure considerations that a .18" wall thickness would be more

than, adequate and also provide allowance for corrosion, i.e.:

Thickness = Pr/Y. S. = 4323 psi x .5"/14,000  = .154"

P - Operating Steam Pressure

r = Tube Radius

Y.S. - Yield Stress

i
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FORT MARTIN PLANT

FEEDWATER HEATING

Storage (18 Hours)

Inlet Temperature, O F 1,000

Outlet Temperature, O F 705

Inlet Pressure, psi 3,500

Outlet Pressure, psi 3,200

Inlet Enthalpy, BTU/Ib 1,421.1

Outlet Enthalpy, BTU/Ib 875.5

Flow Rate, Ibm/hr 134,162

Inlet Temperature, O F 423.4

Outlet Temperature, OF 514.4

Inlet Pressure, psi 4,323

Outlet Pressure, psi 4,323

Inlet Enthalpy, BTU/Ib 4048

C!-,;'let Enthalpy, BTU/Ib 5040

Flow Pate, Ibm/hr 2,217,000

Total Energy Stored, BTU:	 1	 1,319,000,000

2349-0070

Figure 8 - 1, Fort Martin Feedwater Heating TES Application:
Fluid Conditions and Heat Balance Information

.w 1
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Fig. 8-2 Energy Storage and Usay , - vs. Temperature Ft. Martin Plant,
Feedwater Heating
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ORIGINAL, Pill;,.

OF P001i QUA1,;

Salts 1.	 NaCl KCI Mg C1 2	Melt Point	 725
2.	 NaCl NaNO 3	Melt Point:	 567

(AI	 Sturtge Mode

Steam in at 1000 F, 3500 psi, h • 1421 7 STU'lbm
Water out at 705' F. 3200 ps., h 	 875 5 STU'Ibm
Temperature range for qCh salt Chosen to provide sufficient IT for heat transfert

Salt 1	 1090	 0	 800 , 33% total eneryv Fluid Salt
2	 800 —► 105 . 67% total onergv T, "F T. "F

Inlet 1000 925
(a)	 High Temperature Sul

Salt 1	 AT - 800 ` -- 726" • 75"F 900 8625
Average Flow Temperature	 900'F Tall"
Average Final Salt Temperature, 	 T

900	 7512	 8625 E Khaust tf(xl /!5
to that average sensible
component is S - Cp .] T =
24 1862 5 — 7251 	 33 BTU/Ibm

Ihl	 Low Temperature Salt Fluid Sell
Salt 2	 AT	 705	 567	 138 T.	 F T	 ' F

Average Flow Temperature	 7525 Inlet 800 662
Average Final Salt Temperature

752.5 -- 13812	 6835 T2 5 4 683 5

Average Sensible Component s
S- 44(6835	 5671 - 51 3 BTU/Ibm

E Khaust 105 567

181	 Usage Mode

Water In at 423 F. h	 404 BTU It

Waler out at 514.4 F , h	 504 BTU Ibm
-.	 67% split at 48 r	 f

gal	 High Temperature San Fluid Salt
alt 1	 ;T	 725	 5144	 211	 F T, 'F T, 'F

Avers,	 i...v	 '.,, - erature	 501 	' Exhaust 5144 725
Average V	 ,,a l Sa'!t I	 rape,+r

500.5 • 211 . 2	 .	 I 500 b 606
Sensible Component is .24 1725	 6061

29,75 BTU/Ibm
Isla• 481 698

(b)	 Low Temperature Salt
Salt 2	 T _ 567	 487	 80 f Fluid Salt
Averar Flow Temperature 	 455 F T, °F T,	 f

Average Salt Temperature, T Exhaust 4111 561
455	 • 80/2 - 495 F

Sensible Component	 24 1561	 4951 455 495
31 BTU%Ibm t

Inlet 423 503

Total Available Energv Storage
Salt 1	 Latent • Sensible 	 197 • 33 r 29 75	 254 8 BTU/Ibm

Salt 2	 Latent • Sensible - 84 • 51 3 • 31	 166 3 BTU/Ibm

(CI	 Salt Masses

Total U	 1 319 x 109 BTU

33%	 4.35 x 108 BTU

67%	 8.83 x 108 BTU

Salt 1	 1,679.500 Ibm

Salt 2	 5,319,3001bm

2349.0090

Fig. 8-3 Salt Required for Shell/Tube and Heat Pipe Heat Exchanger Ft. Martin,
Feedwater Heating Concept

r• 1
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I	 4.

First, consider the storage side. As the steam flow will cool from 1000' F to 800° F,

p roperties are evaluated at 900° F as follows:

P f = 5.2 lbm/ft'3

Al = . 109 lbm/hr ft

k  = .04 BTU/hr ft* F

P - 2. 7r

1)= 1.36in=0. 113 ft

Total Flow Rate = 134, 162 Ibm/hr, so Equation 5-8 becomes h = .0495(V ' 8).

Equation 5-10 becomes V = 4, 730, 414/N.

On combining these expressions, we obtain h - 10, 827/N' 8

from Fig. 3-1, the following properties were used for the high temperature salt:

011fs = 197 BTU/lbm

Ps = 140 lhm/ft3

Pi. - 102 Ihm/ft3

k  = .9 BTU/hr ft° F

so that Equation 5-13 becomes,

22	 2	 .8
R	 P11

\ R /	
, 

[111\

i

	 __I]

	 .}25.G - .97	 (8-1)
1 0 )	 ` o /	 1 o/

66. 33

Equation 5-11 for this case is L = 5241. 2/N(R 2 -. 0032).

The above equation (8-1) uses the log mean average 0'1' across the heat exchanger for

(T f - Tnl).

In a similar manner the equivalent of Equation 8-1 for the usage case can be calculated

using water properties at 400° F:

Pf	 191hm/ft3

N = .26 lbm/hr ft

k 	 . 349 BTU/hr I't° F

1? = .87r

Flow Rate = 2, 217, 000 lbm/hr

8-5
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(8-2)

Equations 5-8 and 5-10 then become:	 h = .827 (V' 8)

V = 8,295,000/N
or h _ 283, 517/N' 8

Using this and tht , same salt properties as before we get:
N.8

(
1^l	

(I3	 2 i	
i;	

2	
- .97

\ ro 
1 p n \ ro)	 \ r 	 1	 6 563

	

54.63	 Ms.- I

The expression for the number of pipes (N, Equation 5-11) is the same for both cases.

Comparing Equation 8-1 and 8-2 it can be seen that since the term on the right of

Equation 8-2 is smaller than the same term in Equation 8-1 and since the denominator,

under the N' 8 term in larger, Equation 8-2 will give the smaller spacing. Therefore, the

usage case dominates.

Examining Equation 8-2 it is apparent that since the factor of 6563 under N' 8 is so

large, N may vary over a large range without affecting the value of It significantly. Taking

advantage of' this we can estimate the value of' R taking N = 0. For this case (lt/r o ) 2 = 24.2

and H = 3.345 inches.

From Equation 5-12 for a 12 foot diameter this would require 423 tubes (N). Inserting

this value. of N in Equation 8-2 gives a value of It = 3.336 inches. The total length of tubing

required, L, becomes L = 167.3 feet, which would make 5 modules having 33. 5 feet active

salt length leaving 6.5 feet for headers and vapor space.

A cost breakdown for this TES system is given in Figure 8-4 showing items of

significant cost. Note that on a first cut basis the cost of the TES system was slightly less

expensive than a comparable increase of plant capacity.
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Cost

^- I

Earthwork and Grading
	

5	 8,200

Roads and Paving
	

1,300

Land and Land Rights
	

50,000

Foundations
	

93,000

Piping and Valving
	

1,166,800

instrumentation and Control
	

50,000

Flash Tank
	

36,000

Recuperator
	

500,000

TES Units
	

7,800,000

TFS Salt
	

1,214,000

Subtotal
	

$10,924,300

Contingency & Int During Constr at 15%	 1,638,650

Engrg & Consti Mgmt at 12%	 1,310,920

Increm T G (37 36MW) & Elect Cost at $230 1K!,e 	 8,592,000

Total	 $22,465,860
System Breakeven = (37.36 MW) ($650iKW)	 524,284,000

Net Savings	 New Plant or Plant w/o Excess T G 	 5 1,818,140

— Retrofit, Plant with Excess T G	 510,410.140
2349-3100

Fig. 8 4 Total TES System Cost, Ft. Martin Feedwater Heating Case
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