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1. SCOPE
 

The contract work consisted of the design, fabrication, and
 

testing of a nosecone which included a radome for a NASA WB-57F
 

high altitude natural resources mapping aircraft. The plane
 

was fitted with a Motorola APQ-102A Side Looking Radar opera

ting at 9.6 GHz. The radar is directed normal to the direc

tion of the flight and downward by a qhangoalAe angle, and it
 

is assumed that the axis of the plane will not deviate from
 

this direction by more than t60. The radome is required to
 

subtend an angle of 1600 centered 300 below the left horizon.
 

The nosecone shape would be the same as one supplied by NASA
 

for a similar plane, except that it would be a complete surface
 

of revolution without protrusions for photographic equipment.
 

Its size would be 75.5" long and 48" in diameter at its attach
 

end. Operational altitude was up to 60,000 feet and a speed
 

up to 400 knots. The various components of the work are
 

reported in this final report, but not necessarily in the order
 

of performance.
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2. TECHNICAL CONTENT
 

The project consisted of the following separate parts, some of which 
were performed in parallel. 

a) Aerodynamic Analysis 

b) Microwave Design 

c) Structural Conception 

d) Structural Analysis 

e) Fabrication Technique Design 

f) Sample Fabrications 

g) RF and Mechanical Tests on Samples 

h) Mold Design and Fabrication 

i) Radome Fabrication 

j) Foam Machining Tools and Fabrication 

k) RF Test Tool Design and Fabrication 

I) RF Testing of Radome 

m) Back Portion Fabrication 

n) Design and Fabrication 

o) Integration of Two Halves 

p) Fabrication of Interface with Aircraft 

q) High Temperature Post Cure 

r) Installation of Auxilliary Equipment (GFE) 

s) Pressure Test 

t) Surface Clean-up and Sealing 

u) Crating and Shipping 

v) Monthly Reports, Final Report and Drawings 

2. 



3. BASIC DESIGN CONCEPTS
 

This discussion concerns both RF and mechanical aspects.
 

Several cross sectional configurations of radome were considered.
 

These are shown in Fig.. 1. and are discussed briefly below:
 

3.1 Quarterwave "A" Sandwich. This consits of 2 structural
 

skins, ideally having equal RF susceptances, separated
 

by means of low dielectric constant material such that the
 

two primary susceptances cancel each other over most of the
 

operating conditions. This spacing is usually approxi

mately .2 wavelengths, although it is commonly categorized
 

as one quarter wavelength. It is the lightest possible
 

radome structure in which any attempt is made to effect an
 

RF match. It has high resistance to bending per unit
 

weight. It does have the complication of being made of
 

three component parts. It will be treated as the reference
 

against which the other configuration will be compared.
 

3.2 The Three-quarter Wavelength Sandwich. This device is
 

similar to 3.1 above except that the low dielectric material
 

has a thickness of approximately .7 wavelengths. This
 

greatly increases the resistance to bending, has little
 

effect on the weight, but greatly reduces the effective
 

bandwidth of the radome to about 1/3 that of the quarter

wave sandwich. It is often appropriate for use at mm waves.
 

(Note that effective bandwidth takes into account both
 

actual frequency bandwidth and the effect of a range of
 

incidence angles.)
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3.3 The C-Type Sandwich. This consists of 3 layers of
 

high dielectric (and presumably high strength) material
 

and 2 sections of low dielectric material. It can be
 

considered as 2 "A"-Type structures up against each other.
 

Since the mean spacing between two such structures is
 

approximately quarter wavelength, any reflection from one
 

structure will be cancelled out by the equal and opposite
 

reflection from the other. This "C"-Type radome, therefore,
 

has a good match over a much wider effective bandwidth than
 

the simple quarterwave sandwich. It is of course also
 

more complex and has its strongest element, which is gen

erally 1.5 to 2 times as thick as the outer skins, buried
 

within the structure where it contributes nothing to the
 

bending strength and could cause a heat dissipation prob

lem under high power condition, because of the insulation
 

qualities of the low dielectric constant material.
 

3.4 Half-wavelength Solid Radome. This is the simplest
 

of the four structures considered, but also the heaviest
 

and most lossy. It has about the same overall thickness
 

as the A-Type radome and about half its effective bandwidth.
 

It is appreciably stronger with much higher heat transfer
 

properties.
 

4. CHOICE OF RADOME STRUCTURE
 

Due to the symmetry of the nosecone, high resistance to bending
 

is not especially important so that the solid half-wavelength
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and three-quarter sandwich configuration offer no appreciable
 

advantages and some considerable disadvantages. Although
 

the frequency of operation is fixed in the present application,
 

the effective bandwidth is approximately 30% due to the wide
 

range of angles of incidence of the radar antenna near-field
 

radiation with the radome. These angles have somewhat arbi

trarily been considered to range from 2<0<400. The effective
 

wavelength is given by secant 0 times the real wavelength,
 

which is 11.8 . in. Thus the effective wavelength varies
 
9.6 1.23in
 

between 1.23 and 1.60 giving a nominal mean quarter-wavelength
 

of .35 inches.
 

4.1 Considerations of C-Type Radome. This configuration
 

was seriously considered for this application, since it
 

would greatly reduce reflections at high incidence angles.
 

However, after discussion with personnel at Goodyear Co.
 

in Pheonix, builders of the APQ-102A radar, it became appa

rent that this configuration represented an unnecessary com

plication, since such reflections were not considered to be
 

a problem. In additton-if the same outer envelope were used
 

the inside volume would be decreased to a point where there
 

was a much higher risk of interference with the radar when
 

in its extreme positions. This configuration would also
 

have higher absorption loss (attenuation) and would offer
 

no significant mechanical advantages. It was therefore de

cided not to pursue this configuration and to concentrate
 

on the "A" type quarterwave sandwich.
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5. EXPERIMENTAL INVESTIGATION
 

Experience has shown that for an A sandwich radome a core thick

ness of somewhat less than .2 wavelengths is generally the opti

mum value. At the higher frequencies this is somewhat depen

dent on the exact method of fabrication, and consequent distri

bution of resin within the structure.
 

Several samples of flat radome panels were made, using the same
 

fabrication technique that would be used for the final radome.
 

From this work and subsequent RF measurements, it was determined
 

that thickness of .250 inches was most suitable for the parti

cular 4 lb/C.F. foam core to be used, considering angles of
 

incidence of up to 400.
 

RF transmission measurements were made on these flat samples
 

using the measurement set-up shown in Fig.2. Provision was made
 

to move the whole rotating pedestal by a quarter wavelength
 

(.32 in.) so as to average out the effects of mismatches of the
 

various components and other undesired radiation from the envir

onment.
 

5.1 Typical Results. Some samples of transmission recorded
 

as a function of angle of incidence for two of the samples
 

are shown in Figs. 3. through 6. Each measurement was
 

made twice to indicate the repeatability of the measurements.
 

This repeatability was only approximately .05dB, but other
 

variations were much larger. No attempt is made to explain
 

the exact reasons for all the characteristics of these
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recordings, except to note that the average transmission loss
 

is typically .2dB or less when the correct core thickness
 

is used, and it starts to increase at angles of±400,
 

especially where the E field is perpendicular to the angle
 

of incidence (parallel to the axis of rotation. The Brewster
 

angle effect reduces this effect in the orthogenal polari

zation case.) It can also be seen that there is apparentl

an8dB attenuation in Fig. 6 at plus 500 . This data is
 

not to be taken at face value, since RF energy is no doubt
 

being scattered by the edge of the sample. Also the region
 

of the particular sample geing illuminated consisted of
 

solid fiberglass rather than foam sandwich. The example is
 

useful in showing that spurious data will be obtained
 

near the edge of any device being measured. This effect
 

becomes much more apparent in the final RF tests on the
 

finished radome.
 

6. PRIMARY MOLD
 

6.1 Preparation of Old Nosecone. The old nosecone (GFE)
 

was prepared for use for a mold to make the molds from
 

which the final radome and nosecone would be fabricated.
 

It was discovered that this old nosecone did not fit the
 

dimensions supplied in the RFP in that the spherical portion
 

in the front of the nosecone had a somewhat larger radius
 

than 15 inches and the conical portion was not truly coni

cal. The nominal angle of the cone is somewhat smaller than
 

the figure shown on the sketches provided with the RFP.
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Because of the very rough surface of the existing nosecone
 

and the irregularities on it, considerably more time was
 

taken in preparing this nosecone as a mold than had been
 

anticipated. In retrospect, we now believe that it probably
 

would have been more expeditious to start from scratch and
 

make an entirely new mold. The discrepancies in the dimen

sions of the nosecone were only determined after the pro

cess of laying out coordinate lines on the the existing nose

cone. Due to the assymmetry of the nosecone, optical tool

ing techniques had to be used for making these layouts.
 

Further irregularities of this nosecone became apparent
 

when the two new nosecone halves had to be joined together.
 

6.2 Mold Fabrications. Since the GFE nosecone is not
 

completely circularly symmetric, only its upper portion
 

could be used as a mold. It was used to make the primary
 

mold which was exactly one half plus 6 inches all the way
 

around. This mold was made of polyester resin with a
 

black gelcoat surface and rolled steel pipe and other steel
 

reinforcing to help maintain shape. When set on the ground
 

(on its built-in steel legs) in a horizontal axis posi

tion this mold was convenient to work in for laying up the
 

nosecone components.
 

7. GENERAL FABRICATION CONSIDERATIONS
 

The decision to use fiberglass foam sandwich was made based on
 

previous experience in fabricating radomes using this combina

tion of materials rather than the more common honeycomb core.
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The primary differences between foam and honeycomb are that the
 

honeycomb is slightly stronger, especially in shear for the
 

same density, than the foam, but does not present as much area
 

for bonding to the skins. The foam, of course, bonds over its
 

full area, provided an adequate pressure of a few psi is applied
 

during resin curing. Very often closed mold autoclave tech

niques are the only ones feasible for fabricating honeycomb
 

radomes, and this is a very expensive procedure, especially so
 

when only one unit is required, becuase of the tooling costs.
 

Our procedure makes use of almost full atmospheric pressure
 

(approximately 13 psi) for a very good bond between the fiber

glass and the core material. So called "vacuum bagging" is
 

well known in the fiberglass industry, but the technique
 

which we used is quite different from the usual procedure in
 

which each layer (fiberglass, foam, fiberglass) would be bagged
 

separately. It is common practice to lay up and cure the outer
 

skin in the mold as a first step, using a vacuum bag which serves
 

the dual purpose of sqeezing all the fibers together into the
 

thinest possible laminate and also drawing off the excess resin
 

which is later discarded. The next step is to do the same thing
 

with the foam core, but this requires a suitable additional
 

bond material to bond the foam to the cured outer skin. This
 

bonding material, which is generally a resin-filler mixture,
 

.cEiot bc made negligible, so it wil ilmost certainly deteriorate
 

theRF match of the radome. It is not feasible to draw off
 

the excess resin in this operation, as is possible with the
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solid fiberglass laminates. The third bagging operation must
 

then be performed. This involves lay-up of the inner skin
 

which will, in general, have the same thickness as the outer
 

skin, using exactly the same procedure as for the first skin.
 

However, since some of the excess resin will be squeezed into
 

the foam this skin will have a higher resin content.
 

In the Hacking Lab's process no special bonding agent is em

ployed to bond the foam to either skin. The resin used for
 

this purpose is simply the same resin as is used to laminate the
 

respective skin. Care must be taken not to have any excess
 

resin in either laminate since the procedure used does not
 

permit the complete drawing off of any excess resin. It is,
 

therefore, very important to control the weight of resin used
 

per unit area of fiberglass. We have found by experience that
 

the weight of resin should be approximately 35% of the weight
 

of the wet laminate. This ratio also corresponds with the
 

optimum content of resin to provide the best strength to
 

weight of a fiberglass laminate using the particular fabric
 

chosen for the laminating (Type 181).
 

7.1 Specific Resin and Foam System. The resin chosen
 

for fabricating the radome (and most of the rest of the
 

nosecone) was Shell Epon 815 epoxy resin with Furane 9111
 

Hardener. This is a slow, room temperature cure system
 

which normally takes several days to reach its final strength
 

but can be accelerated by a post-cure of 2 to 4 hours at
 

1600F or above.
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The foam used as the core material was Upjohn Co.'s CPR
 

9006-4. Our first choice was the 9002 system, but this no
 

longer appears to be manufactured.
 

7.2 Specific Fabrication Technique. Using this company
 

fabrication method the whole sandwich is made in one opera

tion. It does require two conditions which are not needed
 

in most other methods. These are
 

a) The core material must be grooved in such a manner
 

that air passages are maintained over the whole surface
 

in order to extract air everywhere. This is necessary to
 

ensure that atmospheric pressure can be applied in a more
 

or less uniform manner over the complete laminate.
 

b) The combination of resin system and curing tempera

ture must be such that the whole laminating process can
 

be completed before set-up begins. This may require work

ing odd hours of the day in order to take,advantage of the
 

low ambient temperatures, since set-up time is very depen

dent on temperature. The alternative, of course, is to use
 

an air conditioned room, but this is generally undesirable,
 

because of the need for venting the resin gases which are
 

not very pleasant to work around and could be toxic if not
 

dispersed.
 

In the present case laminating 50% of the nosecone at one
 

time required an elapsed time of approximately 6 hours with
 

a work force of 5 or 6 people. This time does not include
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the time needed to prepare all the materials to be used.
 

The cloth and resin were all prepared in advance and were
 

readily available when needed. As already indicated it is
 

necessary to have quite accurate control of the resin to
 

fiberglass ratio, so the weight of each piece of glass had
 

to be known and the corresponding weight of resin prepared
 

to be used with that piece of glass. The minimum amount
 

of hardener was used consistent with a good strength
 

laminate (16%1, in order to delay the set-up time of the
 

resin as long as possible. Because the exact amount of har

dener had to be applied to each batch of resin for each
 

particular piece of glass, the quantities of hardener
 

are quite small and in order to maintain accurate control
 

they were dispensed with a hypodermic syringe. In a further
 

effort to extend set-up time to a maximum the resin/hardener
 

mixture was spread onto the glass fabric as soon as it was
 

vigorously mixed in order to permit the exothermal mixing
 

heat to dissipate as soon as possible.
 

7.3 Vacuum System. To assist in the evacuation process,
 

that is to implement the "bagging" operation, vacuum pump
 

suction points were fitted to the mold over its entire area.
 

These were then attached together in a vacuum manifold sys

tem. Although the foam was scored in a very systematic
 

manner so that there were no areas with grooves more than
 

one inch apart, it was still felt necessary to provide redun

dant air paths in case one or more of the grooves clog with
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resin during the evacuation process. Due to the low
 

pressures involved and the generally high viscosity of the
 

resin, which was purposely kept as cool as possible, move

ment of excessive resin through a long narrow passage
 

could cause loss of atmospheric pressure on the laminate
 

if any air leaks or outgassing occured. Since the resin
 

had been carefully weighed out to give the correct resin

to-glass ratio, it was assumed that there would be no excess
 

resin to draw off, so no provision was made for drawing the
 

resin to the plastic bagging surface as is usually done.
 

There will always be some excess resin, but we wanted this
 

to be drawn inward toward the foam so as to ensure a better
 

bond to the foam rather than to draw it to the outside
 

of the laminate to be absorbed in a material which would
 

later be discarded. By this method we were assured of
 

having equal quantities of resin in the front and back
 

skins of the sandwich, whus assuring equal RF susceptances
 

of the two skins and therefore the best possible RF match
 

for the incident radiation.
 

Several suction points were fitted to the mold and connected
 

together and to a vacuum pump during fabrication. This
 

resulted in small holes in the finished part, which had to
 

be repaired. This was done by fitting the holes with a
 

mixture of resin and very light filler (microballoons). The
 

resultant mixture has a specific gravity of approximately
 

.5 and a dielectric constant less than 2.0. It acts as
 

an effective weather seal, but is not insignificant when
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considering RF transmission.
 

7.4 Design of Component Parts of Ndsecohe. For several
 

reasons it was decided that the only feasible way to fabri

cate the nosecone was to make it in two halves'. Although
 

the radome only had to have a maximum angle of 1600, accord

ing to the requirements, the radome half of the nosecone had
 

to be made larger than the back half.in order to allow
 

for tapering of the foam and fiberglass. Each of these
 

tapers was two inches wide so that there is at least four
 

inches all the way around the edge of the radome half of
 

the nosecone (see Drawing 55131 D1056) which will not be
 

well matched. As it was built the taper extends two inches
 

on each side of the diametral plane. This means that the
 

well matched portion of the radome, at the smaller end,
 

subtends an angle of 164.5 degrees while at the larger end
 

this angle is 170.5 degrees. This also means that the join
 

line for the two halves is two inches on one side of the
 

diametral plane. There is still another four inches of
 

taper before the full thickness of fiberglass foam sand

wich configuration starts again in the back half of the
 

nosecone. Thus at any plane through the nosecone, perpendi

cular to the axis, the radome half had a 4 inch longer arc
 

length than the back portion. Although there was no require

ment that this back half be a radome, it was decided to
 

construct the back half in the same manner as the radome
 

was constructed, except that less care was taken in main

taining the accurate thickness of the foam. Also slightly
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More resin was used to permit easier distribution of the
 

resin into the cloth.
 

7.5 The Access Door. Largely to have the same coeffici

ent of expansion as fiberglass, the access door was made out
 

of a solid rolled sheet of stainless steel (Type 410) with
 

an external covering of fiberglass. This fiberglass is pri

marily for esthetic reasons, to give the outside of the
 

nosecone a uniform texture, but it also assists in our fab

rication method for bonding the door in place. The door
 

was screwed to a stainless steel frame (made of the same 14
 

guage stainless steel material) by means of 10-32 phillips
 

head counter sunk screws on 2 inch centers. Riveted lock

ing nut plates were attached to the back of the door frame.
 

Holes in the door were precision match-drilled in order to
 

provide integrity of structure. The door is appreciably
 

heavier, per unit area (4 Ibs/sq.ft.), than the rest of
 

the nosecone, which typically has a weight of less than
 

I lb./sq.ft. Because of the difficulty of making modi

fications to a sandwich type construction while still
 

maintaining the general sandwich configuration, it was decided
 

to make the rear side of the nosecone a solid laminate in
 

the region where the access door was to be located. Unfor

tunately, two successive errors were made in the location
 

of-this door. Initially, the door was placed exactly
 

opposite the center line of the radome and its location
 

was then moved to an offset position. The door was com

pletely fabricated and installed in the nosecone before it
 

was realized that the offset had been made in the wrong
 

direction. This error was due to a problem in visualizing
 

the negative configuration of the nosecone when performing
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the layout work in the mold. Although this error did cause
 

a delay of a few days in delivery, it also offered the oppor

tunity of examining the integrity of the sandwich structure.
 

The structure was found to be very sound with excellent
 

bond lines,between the foam and the laminates.
 

7.6 Joining the Two Halves Together. Although each half
 

of the nosecone was made as a foam fiberglass sandwich over
 

most of its respective area, the join region was made of
 

solid fiberglass. In some respects it would have been more
 

desirable to keep the construction homogeneous throughout
 

the nosecone (except in the access door region), but the
 

problems associated with doing this did not justify that
 

approach. In order to prevent high.stress regions at the
 

junction between the solid fiberglass and the sandwich regions,
 

long tapers were used as has already been stated. There
 

was two inches of foam taper (angle of 7 0) plus two inches
 

of fiberglass skin taper (angle of 2.3") on each half, giv

ing a total join width of 8 inches. It was felt that this
 

wide join width was more than adequate to prevent any high
 

or local stresses. The loads in the join material will be
 

higher than the loads in the skins of the sandwich material,
 

but since the thickness of fiberglass is appreciably higher
 

in these regions, the net stress of the fiberglass material
 

will be less. The total thickness of fiberglass in this re

gion was at least .16 inches, or approximately half that
 

of the total sandwich section and twice the total fiber

glass thickness in these regions.
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8. INTERFACE WITH THE NASA MOUNTING RING
 

It is obvious that an unmodified foam sandwich is not suitable
 

for attachment to the aircraft, since the foam does not have
 

adequate compressive strength. It was therefore necessary to
 

fabricate this portion of the nosecone from a more solid mater

ial. The material used in this case was almost pure and solid
 

fiberglass. Some small amount of filler material was added
 

simply to obtian the correct dimension. While this material
 

has somewhat lower strength than the fiberglass as far as tension
 

is concerned, its compressive strength is quite comparable. A
 

special tool had to be built to simulate the interface ring so
 

that the inner surface of the nosecone could be molded to the
 

correct shape to fit onto the process applied interface ring.
 

8.1 Design and Fabrication of Interface Simulation Tool.
 

It was decided to use a single triple purpose device for
 

forming the inside interface surface of the nosecone, for
 

providing for drilling the 40 interface bolt holes, and for
 

closing off the nosecone in order to run the pressure tests
 

to 11 psi. This device consisted of a fiberglass dome approx

imately 30 inches tall with a slightly flared skirt having
 

an angle just over 8 degrees so that it fitted inside
 

the nosecone without actually touching. The main structure
 

was built from an existing mold which was approximately 

the right size. In order to get it up to the correct size, 

the skirt of the part was cut every few degrees and splayed 

out to a diameter approaching that of the NASA interface 

ring. (Drawing #55131 D 1056 ). The slits were then patched 
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up with fiberglass and bearings were mounted at the top of
 

the dome and also in the plywood disc placed in the bottom
 

of the dome to spread the skirt out. These bearings were
 

also obtained from a stock of precision tooling designed
 

for our standard 3.250 inch "sweep shaft".
 

8.2 Generation of the Interface Surface. Using the exist

ing HL precision tooling, the dome was arranged so that
 

it could be rotated on the sweep shaft such that there was
 

no more than two or three thousands of an inch possible
 

freedom of motion for the dome except in the axial direc

tion (where there would not normally be any movement due to
 

the weight of the dome) and the freedom to rotate above
 

the vertical axis. This configuration is shown in Fig.37.
 

By rotating the dome about the precision 3.25 inch shaft
 

and using our "sweep" techniques, a surface equivalent to
 

the NASA interface ring was generated using a filled epoxy
 

material which left a hard surface. The surface generated
 

had the correct shape, but the diameter was .040 inches
 

larger than the NASA interface ring for reasons which will
 

be explained later. This mold surface could now be released
 

and used to mold the inside surface of the nosecone.
 

8.3 Molding of Interface on Nosecone. The interface
 

region of the nosecone was prepared by grinding away all
 

superfluous fiberglass material which built up during the
 

initial fabrication of the nosecone. This consisted of
 

lumps of resin and excess fiberglass coating where there
 

was overlapping in the joining of the two halves, etc.
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The problem here is to obtain a finished part which has a
 

finished surface on both the outside and inside surfaces.
 

In this case the inside molded surface is more important
 

since it has to interface with the aircraft (ring). This
 

region only extends in about 1.5 inches and the rest of
 

the inside of the nosecone will end up with a fiberglass
 

textured surface of undefined surface finish.
 

After placing the nosecone thus prepared onto the endcap
 

mold to ensure that there was no interference, an epoxy filled
 

material was spread onto the interface region and the whole
 

nosecone -put back on the endcap mold in order to mold the
 

interface surface. This mold material is an epoxy mixture
 

which has a strength womewhat less than fiberglass and is
 

therefore not entirely desirable as the actual interface
 

material, especially since it would be in compression at
 

the bolt holes when the nosecone was pressurized. Con

sequently, when this mold material had cured and the nosecone
 

was removed from its mold, additional mold material
 

was added together with three layers of fiberglass tape
 

(.030 inches thick) and the whole nosecone replaced on the
 

mold. The diameter will now obviously be smaller than the
 

mold by .06 inches, so that the nosecone will not fit all
 

the way. Since the mold was made with a .04 inch larger
 

diameter (as already stated) than the NASA made interface
 

ring, the nosecone will end up with a diameter of about .02
 

inches smaller - depending on the temperature. Since the
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slope of the interface surface is I in 7 (each side), the
 

nosecone will slide onto the interface surface to within .07
 

inches of the stop. If it is forced on so as to stretch
 

the fiberglass and compress the aluminum interface ring
 

slightly, a gap of approximately .05 inches will result
 

between the radial surface of the interface ring and the
 

end of the nosecone, which is the amount requested by NASA
 

personnel at a meeting at JSC, Houston, on 17 August 77.
 

9. AERONAUTICAL ANALYSIS
 

The complete analysis appears as Appendix "A" to this report.
 

Documents which were supplied by NASA relating to the flight
 

profile were used to determine the ultimate loading. These
 

were used in conjunction with MIL-S-S705 (USAF).as called out
 

in the NASA documents.. This data offered sufficient basis
 

upon which to establish a set of loading conditions for
 

design of a nosecone suitable and safe for the intended use.
 

Using these conditions and the theoretical methods described
 

briefly below, aerodynamic pressures, loadings, shear and bend

ing moments were tabulated. The schedule of pressurization was
 

used as the design conditions for the analysis of forces and
 

pressures from design conditions for the analysis of forces
 

and pressures from that source. Inertial loads, shears and mom

ents were formulated as a separate set of requirements.
 

Examination of flight conditions would indicate that the nosecone
 

Will not encounter temperatures in excess of those on the
 

ground on a hot day and that analysis of thermal loading in
 

flight is unnecessary, except for consideration of the thermal
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gradients present when flying at 60,000 feet (up to 130-1500F).
 

Structural pressures and loads were divided into categories.
 

They consist of those generated by the following:
 

a) The nosecone's shape 

b) Its inclination to the airstream 

c) Pressurization 

d) Inertial forces. 

The velocities and pressures about the basic shape were deter

mined with respect to free stream conditions using potential
 

flow theory. By means of distributed sources and sinks a body
 

of revolution very closely-approximating the shape of the nose

come was created and the potential flow about it calculated.
 

This part of the loads analysis can be completed rapidly when
 

the maximum free-stream dynamic pressure for the aircraft is
 

known.
 

The pressures, forces and moments arising from airstream inclina

tion were calculated for an arbitrary angle of attack using
 

an adaptation of the theory of the Reference.
 

This data was then used to perform a mechanical analysis.
 

10. MECHANICAL ANALYSIS
 

Data obtained from the aeronautical analysis and the RF design
 

of the radome were analyzed to ensure that all stresses and
 

loading were acceptable. The analysis is included as Appendix B.
 

In summary, the stresses in the fiberglass and foam are all
 

well within the allowable stresses to handle the anticipated loads.
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The analysis was done originally for the access door approxi

mately in the middle of the nosecone, but the stresses are so
 

low that moving the door to a location nearer the aircraft
 

does not materially effect the results of the analysis.
 

10.1 Low Temperature Tests. Structural failure tests
 

were performed on a number of samples of sandwich with
 

exactly the same configuration as was used in the nose

cone, except that the samples were flat. Tests were per

formed at room temperature and in contact with dry ice
 

which sublimes at -790C (-110 0F). These tests were pri

marily to check the resistance to shear of the foam. It
 

was found that the failure strength at the low temperature,
 

which is assumed to be -80 to -100OF just inside the sand

wich, was consistently 50% of that at room temperature.
 

However, both values were well above the loads to be en

countered in operation.
 

....
11. ANCILLARY FABRICATION EQUIPMENT 


Two pieces of special fabrication equipment were needed to mach

ine the foam core material. This was made in gores each equal
 

to 1/16 of the complete nosecone area. Thus each piece was 8.5'
 

long and 9.5" at its widest point. The outside edges of the
 

foam core of each half had to be tapered down to nothing over a
 

2 inch distance.
 

11.1 The Thfckness Planer. A piece of Hacking Lab's equip

ment was modified to allow the gores of foam, which had previous

ly been cut to a thickness of approximately .31", to be uniformly
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and accurately machined down to a thickness of .250"4 .005. The
 

best pieces were chosen for the radome and those with some irregu-'
 

larities were used for the back portion of the nosecone where
 

exact thickness was not so important. The plane used rotating
 

rollers fitted with appropriately fnesandpaper and motor driven.
 

11.2 The Edge Taper Cutter. This was a much smaller device opera

ting on the same principle, but with only one small roller-sander.
 

It could taper the foam down to a feather edge.
 

12. POST CURE
 

In order to ensure maximum strength and stability to the nosecone
 

it was "post cured" for several hours at a temperature of at
 

least 160 0F. A temporary insulated oven was built to accomo

date the complete nosecone (after all epoxy work was finished).
 

A circulating fan and thermostatic control was included. Due to
 

the vessel type configuration of the unit which tended to pre

vent the free flow of air, the temperature inside the nosecone
 

was no doubt appreciably higher than the control temperature
 

at the bottom of the oven, but this assured that every part
 

of the nosecone was soaked at a temperature of at least 160 0 F.
 

13. ADDED EQUIPMENT
 

Two items of GFE were mounted in the finished nosecone. These
 

were a glide slope antenna (GSA) and a total air temperature
 

sensor (TATS).
 

13.1 The GSA
 

This unit had a metal base 4.5 X 2 inches with 6 counter

sunk mounting holes and a type N(F) connector. A fiberglass
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bracket was designed and fabricated and was later bonded to
 

and integrated with the nosecone so that the GSA would be
 

near the top in the forward end and sloping down at an angle
 

of approximately 30 degrees. After curing, the GSA was
 

mounted in place. No tests were performed on this unit
 

except for physical inspection and a hand applied load to
 

ensure that there was no grossly poor bond.
 

13.2 The TATS
 

This unit was mounted approximately half way along the nose

cone in the middle of the join between the radome and back
 

section. An aluminum disc was mounted inside the nosecone
 

to help distribute the local loads which could be high if
 

the TATS were inadvertently banged. Placing it in this loca

tion ensured that no cutting or drilling into the relatively
 

delicate foam sandwich matrerial was necessary.
 

The TATS supplied for mounting was used as a mold to form a
 

loading eposy mounting surface. There is, therefore, an ex

tremely good fit between this particular TATS and the hole
 

in the nosecone.
 

14. RF TESTS
 

The purpose of these tests is to measure the transmission loss
 

through the radome as a function of position on the radome, angle
 

of incidence and polarization.
 

14.1 Test Fixture. A test fixture was built for measuring
 

the transmission through the radome before the radome was
 

bonded to the back half of the nosecme. The test fixture
 

is shown in Fig. 7 from which it can be seen that the radoie
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axis is vertical. The transmitting generator, which was
 

set at a fixed frequency of 9.6 GHz, was rigidly attached
 

to the transmitting horn through a precision attenuator
 

which was used for calibration of the chart recorder pen.
 

The transmitting generator acted as a counterweight to the
 

receiving horn and its support structure. This horn
 

maintained a constant relationship with the transmitting
 

horn, and the whole unit bould'be adapted to different ele

vation angles apart from the horizontal orientation shown
 

in Fig. 7. These angles of 60 represent the limits of
 

excursion of the side looking radar with respect to the
 

nosecone. Since the nosecone has a conical angle of 80
 

(to the axis of rotation) it can be seen that the transmitted
 

energy never has a direct path to the receiving horn which
 

is perpendicular to the radome. For all the tests the angle
 

of incidents was either 20, 80, or 140. The whole RF
 

measuring structure could be moved up and down in increments
 

of 4 inches and could also be moved sideways by up to 7"
 

from the diametral plane. Polarization could also be
 

rotated.
 

It should be noted that since the radius is the RF struc

ture pivot center to the radome is approximately 49", a 60
 

tilt represents a vertical rise of approximately 5.1" which
 

is not very different from .the vertical separation between
 

the various measurement heights. Thus approximately the
 

same region of the radome is illuminated as the RF structure
 

is moved up one increment and tilted down by one increment.
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14.2 Test Results. Because of the large area of the
 

radome and different angles of incidence, polarization
 

angle and offset from the diametral plane, a large amount
 

of data was gathered. Most of it is included in this re

port, but it by no means is a complete map of the whole
 

radome area and certainly does not cover all combinations
 

and permutations of the variables.
 

Some of the data is repeated, either intentionally or acci

dentally, but where this occurs it is useful in provid

ing a measure of the repeatability of the data.
 

Each figure generally contains data for angles of incidence
 

of 20 (labeled +60), 80(00) and 140 (-60) and it can be seen
 

that in general the "worst" data occurs at 20, and would pro

bably be even worse at normal incidence 00. This is to be
 

expected because in that case energy would be reflected
 

right back causing the most severe standing waves.and, there

fore, disturbances to the measured data.
 

In each case, at least two records are superimposed. The test
 

fixture was displaced by a quarter wavelength (.30") between
 

each such pair. The appropriate "correct" curve for each set
 

of data should be construed as the average of the two. It
 

whould be noted that the actual curves obtained are a func

tion of the exact distance of the test fixture antennas from
 

the radome. Because two curves track each other well, does
 

not necessarily mean that if the test fixture had been dis

placed 1/8 wavelength that the two curves would not be
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separated appreciably, and vice versa. The mean curve
 

should however be the same in both cases.
 

Each record is labelled with four pieces of information listed
 

below
 

a) The height of the pivot point above the base, in-inches. 

b) The angle of the waveguide to the horizontal. 

c) The polarization, either parallel ( j) or perpendicular 

(Jj to the nosecone axis. 

d) The amount that the horns are off-set, above or below 

the diametral plane (assuming the axis is horizontal). 

14.3 Calibration of Data. In each case the attenuation as
 

measured with a precision waveguide attenuator was adjusted
 

to a value of .2dB/inch with the zero level being set for
 

direct transmission with no radome in place. In all cases
 

the left hand region of the record corresponds to the upper
 

portion of the radome, and the scale is 22.5 0 /inch.
 

14.4 Restriction of Travel. Since the radome half subtended
 

an average angle of about 1900, and the size of the preci

sion attenuator created a dead angle of about 170, the maxi

mum angle through which the radome could be rotated was
 

(3600 - 1900)-170=1530 

This angle was even less when the antennas were offset
 

from the diaretral plane and in addition part of the scan
 

angle is taken up with scanning through the tapered edge of
 

the radome. This effect is quite dramatic on the recorded data.
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14.5 Transnfission Data. The strip chart recordings of
 

the transmitted signal are shown in Figs. 8 thru 36.
 

14.6 Specifi( Points of KIrfterest. Due to the size of the
 

radome it is not possible to get glass fabric big enough to
 

make it all in one piece so each of the 4 layers of each skin
 

had to be made in 2 pieces. The cloth width was 38" and a
 

2" wide overlap joint was used for each piece such that no
 

joints overlapped, but they were contiguous. Thus, the maxi

mum number of layers was five (on each laminate). The joint
 

region therefore extended from approximately 30 to 38" from
 

the open end of the nosecone. In addition, the method of dis

tributing the resin by hand tended to leave an accumulation
 

at the edges. Consequently in this region the laminates are
 

not only at least 25% thicker, but contain variable amounts
 

of excess resin. As a consequence, it is to be expected that
 

the transmission data obtained from this region will be some

what different from that obtained over most of the radome.
 

As a consequence, a relatively large amount of data was ob

tained relating to this region which includes 29", +60 and
 

41", -60, although the effects at this latter combination
 

are less noticable due to the high incidence angle and there

fore, reduced energy reflected back into the antennas.
 

Another region which is of particular interest is where a
 

narrow patch of glass fabric, one ply thick, and about 2-3
 

inches wide, giving a total of 5 plies for the outer skin,
 

had to be applied during fabrication. It has a very dramatic
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effect which is obvious in Figs. 33 and 36, about 2" from the
 

left of the records for 61", +60 and 65", 00.
 

It is especially apparent on the recorded data because the
 

patch is so narrow and therefore has a focusing effect, not
 

only producing an apparent increase in attenuation, but also
 

an apparently lower attenuation than anywhere else on the
 

respective record. This apparent effect is almost certainly
 

not real, but the ripples produced by this one extra ply of
 

fiberglass do give perspective to the other ripples occurring
 

on the records.
 

Creases on the inside fiberglass skin could also be identi

fied with ripples in the data. Care was taken not to remove
 

these creases to improve appearance, since this could com

promise the strength of the nosecone.
 

14.7 Effect of Moving Test Fixture by Quarter-Wavelength.
 

In Fig 20 for 33",00, the effect of moving the RF measuring
 

structure a quarter-wavelength to obtain an average trans

mission characteristic is dramatically demonstrated. In
 

this record, the structure was set in a third position
 

which was a half wavelength from the first, resulting in an
 

almost identical record (except for some slight anglular
 

displacement due to experimental error).
 

The fact that the quarterwavelength spaced curves cross over
 

(as they do in several'other records) is probably indicative
 

of the fact that although the radome was set up to rotate
 

about its own axis, it was not rigid enough, without the
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rest of the nosecone, to maintain a circular shape.
 

This results in the distance between horns and radome
 

changing as a function of rotation. This change need only
 

be a total of .3" to give the effect shown in Fig. 20 33", 00.
 

14.8 Summary of Data. In general the apparent transmission
 

loss varies between .1 and .3dB although it does appear to
 

go to nearly .SdB in some of the regions discussed above.
 

In the offset cases the attenuation appears to le over
 

1dB in some cases in the tapered region at the edge of the
 

radome. This measurement has little meaning, but what is
 

significant on most of these offset records is that beyond
 

the tapered region there is nothing between the two antennas
 

and the attenuation can be seen to be OdB, within the stabi

lity of the measuring equipment, approximately .02dB.
 

15. PRESSURE TEST
 

As is shown in the aeronautical analysis, the nosecone should
 

be designed to handle an ultimate pressure of 11 psi. A test
 

was performed to show that the finished nosecone (unpainted)
 

could survive, such a pressure without damage.
 

15.1 Test Configuration. Fig. 37 shows the test set-up.
 

The pressure guage was previously calibrated against a water
 

manometer with a 24 ft. head and found to be accurate to
 

within 2%.
 

Since the test personnel were located some distance from the
 

unit under test for safety reasons, a separate air line was
 

run from the vessel with only the pressure guage attached to
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it. This insured that the measured pressure in the vessel
 

was not a function of the leak rate.
 

The nosecone was bolted to the interface tool (end cap) with
 

standard aircraft-type .250 nuts and bolts which fitted
 

tightly in the 40 holes. A silicone sealer was used to seal
 

the interface.
 

The TATS was fitted to the nosecone for this test.
 

15.2 -Test Results. The pressure was increased gradually
 

and held at. 6-7 psi for about 15 mins. Some leaks in the
 

end closing had to be repaired. The pressure was then
 

slowly taken up to 11 psi. It was not held for more than two
 

minutes before there was a failure of the end cap which pro

duced a leak too large to maintain the air pressure. The
 

test was declared satisfactory.
 

Examination of the nosecone after the test showed no appar

ent change or damage. Since the nosecone had not been painted,
 

any fracture of the fiberglass or separation from the foam
 

would show up as a lighter coler since the fiberglass lami

nates are relatively transparent, except where air spaces
 

occur, such as at fractures.
 

16. FINISHING
 

Since it had been agreed that NASA would paint the nosecone, it
 

was merely wiped with a thin layer of epoxy resin to fill any small
 

voids-and sanded smooth, preparatory to packing and shipping.
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17. CONCLUSIONS AND SUMMARY
 

The nosecone was successfully designed, fabricated and.tested,
 

mechanically, to its ultimate design loading requirement in
 

accordance with certain USAF specifications. It was also tested
 

for RF transmission at the operating frequency of its intended
 

side looking radar (9.6 GHz) and found to have less than .SdB
 

attenuation (generally considerably less)-for a wide variety of
 

angles of incidence, polarization, offsets and positions in the
 

radome. There were no apparent weak points.
 

The weight, at approximately 100 lbs., was very low for such a
 

large structure.
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WB-57F X-BAND RADOME LOADS ANALYSIS
 

SUMMARY
 

In order to accomodate an X-band radar a radome duplicating
 
the WB-57F nose shape was needed. This report presents the
 
analysis of aerodynamic, inertial and pressurization loads
 
for the flight and ground envelope of conditions necessary
 
to insure that the structure will be safe and suitable.
 
Transverse loads are presented in terms of shears and bending
 
moments.
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I
 

INTRODUCTION
 

A.- Background and Objective
 

The National Aeronautics and Space Administration's Johnson
 
Space Center is conducting Earth resources research using the
 
WB-57F aircraft, Use of an X-band radar is desired, however
 
the standard nose cone and radome is unsuitable. A new radome
 
and nose cone unit was proposed which would retain the external
 
shape of the standard nose cone. Hacking Labs, under Contract
 
Number NAS 9-15189, will construct the new nose cone suitable
 
for the intended radar installation and capable of withstanding
 
the structural loadings and thermal conditions imposed through
out the anticipated ground and flight environment.
 

The objective of this report is to summarize the design
 
conditions from material supplied by the procuring agency.and
 
to furnish design and ultimate loadings in terms of pressures,

forces, shears and bending moments. These data will then serve
 
as the basis for design and analysis of the structure.
 

B.- Government Furnished Data
 

No special conditions were expected in the operation of the
 
WB-57F aircraft with the X-band radar installed. However the
 
documentation of the design information on the aircraft presented
 
a problem. The original producer of the aircraft, Glenn L.
 
Martin Company, based their design of the B-57 on the English

Electric Canberra bomber. Then the B-57 was extensively
 
modified by the General Dynamics Corporation to yield the
 
WB-57F aircraft in 1963. The standard nose cone was one of the
 
modifications carried out by General Dynamics.
 

The procuring agency furnished data on the design of the
 
aircraftand the standard nose cone and on the operational
 
limitations for the aircraft based on the pilot's handbook.
 
Specifically these included the following:
 

1. Pages 6-8 and 6-9 of Technical Order lB-57(W)F-1
 
giving indicated airspeed and Mach number limitations
 
(red line) versus altitude plus information on
 
flutter and handling qualities at high speeds and
 
altitudes.
 

2. Page 4-5 from T.O. 1B-57(W)F-1 giving the cabin
 
pressurization schedule.
 

3. A three-view drawing of the aircraft.
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4. Page 3.1.0 of General Dynamics Report FZS-57-005
 
describing the standard radome structure, attach
ment and fairing.
 

5. 	 A listing of ultimate pressurization and inertial 
loads transcribed from General Dynamics Report 
FZS-67-005. 

6. A page from General Dynamics Report FZS-67-005
 
giving the above listing and describing the stan
dard radome design, materials, allowable stresses
 
and geometry.
 

7. Page iii of Report FZS-57-005 giving a list of
 
references.
 

8. Figures 3.1.1 and 3.1.2 of Report FZS-57-005
 
showing plots of limit nose radome running airloads
 
and the limit peripheral pressure for 15 degrees

sideslip and maximum dynamic pressure.
 

9. Page A8-3 of T.O. 1B-57(R)F-l-1 giving design
 
maneuver limits versus pressure alitude for the
 
RB-57F aircraft with red outlined values of gross

weight of 52,500 lb. and altitude of 60,000 feet.
 

10. Page 5-8, Figure 5-3 of T.O. 1B-57(W)F-1 giving

airspeed limitations versus altitude including
 
some values of true airspeed listed in red.
 

The material furnished presented a generally consistent
 
basis upon which to establish design and ultimate loading

conditions. It did require, however, that certain assumptions be
 
made. These assumptions will be noted in this report.
 

II
 

LOADING CONDITIONS
 

The flight handbook states, "Below 35,000 feet the aircraft
 
is restricted to 190 KIAS, which is the maximum allowable
 
airspeed based on flutter characte-istics. Above 35,000 feet
 
the maximum allowable airspeed is 175 KIAS or a Mach Number
 
of 	0.80, whichever is less". The airspeed limitations shown
 
on Figure 5-3 of T.O. 1B-57(W)F-1 give a more complex basis
 
of speed limits based on whether outboard tanks are full,
 
gross weight, spoilers open or closed, etc. Normal pracTice

is to design an aircraft to withstand airspeeds in excess
 
of those permitted the nilo. The WB-57F is severely limited
 
by flutter and handling qualities such that it is regarded


-
unlikely that -D-rcr g lijnt .s .;jI-l e 0-, successfu 
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by a large margin. Therefore the limits stated at the start
 
of this paragrph are felt to offer a simple and safe basis
 
upon which to eszimate the design airspeeds, which were not
 
expressly stated.
 

Operating limit speeds for civil aircraft are often estab
lished at 90 percent of design values. This basis of determi
nation will be used to arrive at design limit values.
 

Pilot's Limit Indicated Airspeed 

0 - 35,000 feet altitude 190 knots 

35,000 feet and up 175 knots 

Pilot's Limit Mach Number 0.80 

Design Limit Indicated Airspeed 

0 - 35,000 feet 211.11 knots 

35,000 feet and up 194.44 knots 

Design Limit Mach Number 0.888 

In examining the operational spectrum for conditions which
 
impose the most severe stresses on the structure it is neces
sary to consider various sources of loading and to determine
 
the extremes for each source. Combinations are then examined
 
to reduce the number of conditions to those resulting in the
 
highest total loads.
 

The nose cone is subject to loadings resulting from external
 
aerodynamic forces, internal pressurization and from inertial
 
forces. Examination of these sources and the aircraft data
 
furnished can provide guidance in arriving at a set of con
ditions.
 

Aerodynamic forces arise from the flow about the nose shape, 
at zero' angle of antack, and from the flow inclination at 
some angle of attack, sideslip or combination. These forces 
will, other variables remaining constant, be a maximum where 
the design indicated airspeed and Mach number are maximum. 
For a given indicated airspeed the Mach number increases with 
altitude. For the constant design indicated airspeed of 211.11 
knots the highest pressures would be expected to occur at the 
35,000 foot maximum altitude for that airspeed. Similarly 
for the 194.44 knot design indicated airspeed, pressures 
would be maximized at the 50,000 foot limit. Above 50,000 
feet the dynamic pressure, and consequently loads, decreases 
at a constant limit Mach number. 

Pressurization does not commence until 8000 feet altitude 
where it increases svch as to-maintain a constan" nternal 
pressure until au about 23,000 feec where a consmonz five 
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pounds-per-squire-inch differential is maintained with
 
increasing altitude. Because of increasing external airloads
 
with altitude, the largest crushing loads at any point on the
 
nose cone will occur at 8000 feet. The critical pressures

acting to explode the nose cone will have to be examined at
 
35,000 and 50,000 feet.
 

The loads arising from flow inclination are shown in Figure
 
3.1.1 (Paragraph lB8 above) to be largest in sideslip (9 = 15
 
-degrees). It is assumed that this represents a sudden engine
 
failure condition. The associated inertial loads are expected

to be neither large nor well defined. Further, inasmuch as the
 
limit normal load factor for the aircraft is only +2.25,
 
(Figure A8-2, Paragraph 1B9) and the weight of the nose cone
 
is estimated at 200 pounds or less, it is not expected that
 
inertial effects will significantly alter the loadings arising
 
from aerodynamic and pressurization forces and therefore will
 
not be included in establishing the design points on the flight
 
envelope. Separate conditions will be established for inertial
 
loadings.
 

Summary of Conditions for
 
Aerodynamic and Pressurization Loads
 

Condition Altituce Airspeed Mach Number Pressurization
 
feet (IA3), psi.


knots
 

a 8000 211.11 0
 

b 35,000 211.11 5 

c 50,000 194.4-4 5 

d 50,000 - .888 5
 

It is customary to use the ICAO Standard Atmosphere,
 
Reference 1, for airworthiness requirements. The following
 
are taken therefrom:
 

Altitude. feet 8000 35,000 50,000
 

Atmospheric pressure, psf. 1571.88 497.96 242.21
 

Speed of sound, cs, fps. 1085.7L 973.28 968.47
 

Density ratio, ?/e .78601 .30987 .15223
0 


(e/e)- =~ -1.1279 1.7964 2.5630 

The true airspeed, TAS, can be calculated from the indicated
 
airspeed, IAS.
 

4 Y 0 



x 6-3TAS = IAS 

Mach number, M, is derived from the speed of sound, cs
 -


TAS
N c 

s
 

Dynamic pressure, q, can be obtained from the Mach number,
 
atmospheric pressure, p, and specific heat ratio, *. This ratio
 
may be assumed to be equal to 1.40 for atmospheric conditions.
 

2
r 
q = 7 pM 

The above quantities have been calculated for Conditions a
 
through d and are listed below.
 

Condition Altitude, ft. IAS, fps. TAS, fps. M g
 

a 8000 .356.56 402.16 .370 150.63 

b 35,000 356.56 640.52 .658 150.92
 

c 50,000 328.41 841.71 .869 128.04
 

d 50,000 335.54 860.00 .888 133.70
 

Condition c is less severe than d as seen by comparison of
 
both Mach number and dynamic pressure so that it may be elimi
nated from further consideration. Additional analysis must be
 
made to select those critical from the three remaining.
 

The ultimate loadings specified by General Dynamics (Para
graph 135) do not refer to conditions. Therefore the conditions
 
of flight for the pressurization loads will be assumed to be
 
those listed for design. The inertia Loadings are assumed to
 
be incurred on the ground such as during taxiing over an
 
obstacle etc., and do not attend aerodynamic or pressurization
 
loads.
 

III
 

A2ROLYNTAMIC LOADS ANALYSIS 

A.- Pressures due to Nose Cone Shape
 

The nose cone at'zero inclination of its axis of symmetry
 
to the airstream does not cause transverse forces or moments,
 
but does result in local rressures of a nosiziv" ' comress io 
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nature on the forward face and of a negative or suction
 
nature on portions of the sides.
 

Pressures about semi-infinite bodies in incomoressible
 
flow can be calculated by classical hydrodynamic theory,

Reference 2. The body most nearly approximating the nose cone
 
is a three-dimensional source in a uniform stream, which
 
is curved with a nose shape almost hemisoherical. The equation
 
for the surface in polar coordinates (r,-e) is,
 

2
cos + 27U r sin 2 e =i,
m 

where U = free stream velocity 
and m = source strength. 

The pressures about this source located at the origin are
 
given by the expression,
 

m
(9M, 2~ 
lGIV2 r' U 2l r U 

where p = local pressure
 
and t = air mass density.
 

For scaling purposes the source strength will be assumed 
equal to 4II times the stream velocity, m = 4 ?1U. The pressures 
can be related to the dynamic pressure, e/2 U2 in coefficient 
form. 

Pressure coefficient, P
 

Making the appropriate substitutions,

" 2r2 

cos e + sin 2 = 1 

and 

-2 2P=3 

r _ 

On Figure 1 is shown the shape of the nose cone of the
 
WB-57F and the surface generated by a source. Also shown is 
the distribution of the pressure coefficient on the source
 
surface- The shape matches the nose cone well up to the loca
tion of the source, ten inches behind the nose. Thereafter the
 
source is at first too wide and then too narrow in comparison

with the nose co'le. A means of producing a shape more closely
 
representing the nose cone and predicting ths pressures over
 
it is required.
 

Von Kgrmn (Reference 3) uscd a system of d1stribu-ed 
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doublets to produce bodies of revolution. Similarly a system

of sources and sinks can be positioned along the- longitudinal

axis and, by suitable selection of strengths and locations,
 
can approximate arbitrary bodies. After a number of trials
 
the following arrangement produced a close approximation to
 
the nose cone:
 

x location, inches Device Relative strength 

10 Source 1.0 

20 Sink -0.3 

30 Source 0.1
 

65 Source. 1.0.
 

The resulting shape and pressure distribution are shown on 
Figure 1 as circles. The location of sources are shown by 
square symbols and the sink as a diamond. 

The maximum positive and-negative pressures on the nose
 
cone are practically identical to those for the single source,

The pressures over the conical portion of the nose cone become
 
positive whereas the downstream pressures for the single source
 
remain negative.
 

The pressure distribution so derived represents the solution
 
for incompressible flow (M=O). Corrections for compressibility

effects can be applied to the incompressible solution to arrive
 
at coefficients for subsonic Mach numbers using the three
dimensional Prandtl-Glauert rule (Reference 4t),
 

2
1 incomp.
Pcomp. 


The pressures generated by the nose cone shape are summarized
 
for various longitudinal stations in Table I.
 

B.- Pressures due to Flow inclination
 

Transverse forces on the nose cone can arise from oblique

flow about it either in the pitch or yaw planes or both. The
 
distribution of such forces would be virtually independent
 
of the direction and can thereby be considered as a single
 
loading condition referenced to the relative wind.
 

- The General Dynamic Figure 3.1.1 provides a chart of running
airload on the nose cone at maximum dynamic pressure and at 
15 degrees sideslip. it also uresents a curve for nir2ont -,e 
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to angle of attack. By scaling the curve, the magnitude of the
 
angle of attack was established at 6.5 degrees. No indications
 
of the method used to obtain the loads or the design conditions
 
were given and the perioheral pressures on Figure 3.1.2
 
contained a sudden discontinuity which was not understood.
 
Attempts to derive the 6.5 degree figure were not wholly
 
successful1 however it was apparent that the value would have
 
to be negative, i.e., the relative wind would be from above.
 
The 15 degree sideslip seemed realistic for a single-engine
 
failure mode and was used in combination with the -6.5 degrees
 
angle of attack, which, when added vectorially, results in a
 
16.35 degrees of flow inclination directed down and from either
 
side at a'23.4 degree angle from the horizontal in a wings
 
level maneuver.
 

In order to provide a rational method for loads analysis
 
the theory of Reference 5 was used. This theory furnishes
 
both longitudinal and perzpheral pressure distributions resul
ting from inclined flow except at the blunt end of the nose
 
cone, where the limits of flow deflection exceed those of the
 
theory. However the forces and moments produced are predicted
 
and experiments have shown that effects of blunting are gene
rally small except for drag increases- for very blunt bodies
 
(Reference 6). The data from Reference 5 indicate that the
 
theory is valid without a compressibility correction if the
 
cross-flow Mach number is small. For a free-stream Mach number
 
of 0.888 and an inclination of 16.35 degrees the cross-flow
 
Mach number, Mc, is,
 

me = M sin]? = 0.888 x 0.282 = 0.250.
 

This value is small and no corrections need be made.
 

The expression for pressure coefficient is based on Refer
ence 5 being,
 

sin 2 
P = (4 tan $ cos e)o + ( 1 - ) LA 

where tan -1 dR
 

E = azimuth from relative wind,
 
(= angle of flow inclination.
 
R = body radius at station x
 

and x = longitudinal ordinate (axial).
 

The pressures over the conical portion of the nose cone
 
form a conic so that their values can be tabulated for the
 
values of azimuth angle from the relative wind, e. Because
 
the dynamic nressure is the same at 8000 and 35,000 feet in
 
these calculations, those results are combined in Table TI.
 
Also as two conditions are rerresented, both right and left
 
sideslip, angles from the aircraft plane of symmetry have two
 
values.
 

The theory leads to infinite nressure coegficienrs over 

the hemistherical nose. In £ac' uhe nressures can be expected 
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to be very low and must be considered in an analysis even
 
though this Dart of the structure presents no particular
 
structural problem therefrom. To try to estimate these pres
sures an artifice will be used. The flow about the inclined
 
hemisphere may, at the extreme, be considered a portion of
 
the flow about a sphere. The flow about the sphere is repre-r
 
sented by a three-dimensional doublet (Reference 2). The
 
minimum pressure coefficient produced by the doublet in incom
pressible flow is -1.25. If the Prandtl-Glauert rule is
 
applied as before the pressure coefficients obtained at 8000,
 
-5,000 and 50,000 feet are -1.306, -1.483 and -1.99- respec
tively. Multiplying these bythe respective dynamic pressures
 
results in pressures of -1.37, -1.56 and -1.85 psi. But
 
because the atmospheric pressure at 50,000 feet is only 1.68
 
psi., the value obtained at that condition is impossible.
 
Therefore the value of -1.56 psi. found at 35,000 feet will
 
be used as a limiting negative pressure for design purposes.
 

IV
 

INERTIA AND PRESSURIZATION LOADS
 

General Dynamics stated inertia ultimate loads as seven,
 
three and 1.5 g's in the vertical down, horizontal drag and
 
horizontal side directions. Assuming the usual 50 percent
 
factor, design loads then would correspond to 4.67, 2.00 and
 
1.00 gts. A cursory inspection of aerodynamic and pressuri
zation loadings shows that the .horizontal inertia loads are
 
not criticalI.The vertical loading appears to be of the same
 
order as aerodynamic loads and therefore must be examined.
 

Design pressurization values were not furnished, however
 
operating pressures were stated to be five pounds per square

inch. Ultimate pressures are given as inflight loads plus

8.25 psi. or 11 ps.. acting alone. Specification MIL-S-5705 
(USAF), dated 14 December, 1954 (Reference 7) was referenced, 
so was reviewed. in Paragraph 4.2.3.2 the specification reads, 
"In order to prevent damage to the structure during ground 
pressurization tests, the design of all parts of the airplane 
affected by the pressure differential shall be based on a 
limit differential pressure 33.3 per cent in excess of the 
higest value soecified for the fl.jght operation of the par
ticular airnlane. When the parts are investigated for this 
requirement, only the 133.3 per cent pressure differential 
shall be applied and all supplementary flight and landing 
loads shall be ignored". The product of the 33.3 percent
pressurization and 50 percent limit-to-ultimate factors results 
in the ultimate pressurization being twice zhe operating 
value. This would, for the 11 psi. value ouoted above, result 
in the operating pressure bein 5.5 rather than C.0 nsi. 
,iven in the ThcL: ,cal Orders. To be conjistenL -nu conser
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vative then, the 5.5 psi. value will be assumed for design
 
purposes.
 

V 

SHEARS AND BENDING MOMENTS
 

The theory of Reference 5 provides a simple expression
 
for the lift on the nose cone or any portion which also
 
constitutes such a closed body. It is possible to estimate
 
the lift on the hemispherical portion, the entire nose and
 
the difference.
 

= 2 q So( 

where S = base area
 

At the tangent point the hemispherical portion has a radius
 
of 14.84 inches. The nose cone has a base radius of 24.00
 
inches. The corresponding base areas are then 692.07 square
 
inches and 1809.56 square inches. For an angle of attack of
 
16.34 degrees (0.2854 radians) at 8000 and 35,000 feet alti
tude with the dynamic pressure of 151 psf., the lift can be
 
calculated,
 

L =2 q SO0 
= 2 x 151 x 1809.56/144 x 0.2854 
= 1085 lb. 

At 	50,000 feet for the dynamic pressure of 134 psf. the lift
 
is 	961 lb.
 

Using the ratio of areas of the hemisphere to nose cone
 
gives the lift on the hemisphere at 8000 and 55,000 feet,
 

Lh 	= Sh/S x L 
= 692.07/1809.56 x 1083 
- 414 lb., 

and at 50,000 feet,
 

= 0.3825 x 961 
= 568 lb.
 

Over the hemispherical nose, which is 12.85 inches in
 
length, the loading will be assumed to be constant. The load
 
per unit length is then, 

h 414 
= 41.g- 32.28 lb./in. 
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at 8000 and 35,000 feet and,
 

L- 368 = 28..65 lb./in. at 50,000 feet. 

x 17-.3 

These values are well in excess of those of General Dynamics'
 
Figure 3.1.1 even when allowance is made for the difference in
 
angle of flow inclination.
 

The conical nature of the isobars over the conical portion
 
of the nose cone leads to a loading proportional to the plan
 
area. At the point of tangency the cone is 29.68 inches wide,
 
48.00 inches wide at the base and 62.67 inches long. This
 
trapezoid has an area of 2434.10 square inches. The loading
 
ordinates are then equal to the difference between the total
 
nose cone lift and that over the hemispherical portion divided
 
by the width of the trapezoid.
 

Altitude., Total lift, Lh) Difference Loading Loading 
feet lb. lb front, rear, 

lb./in. lb./in. 

8000 & 1085 4l14 669 8.16 13.19 
559000 

50,000 961 368 593 7.24 11.70 

The loading diagram so developed is shown on Figure 2.
 
The values of loading, shear and bending moment can all be
 
derived at 50,000 feet from the calculations for 8000 and
 
35,000 feet, given below, simply by means of the multiplication
 
of the values by the ratio of dynamic pressures for the two
 
conditions (134/151 = 0.8874). To obtain the shear the loading
 
is integrated. For the nose where the loading is uniform
 
(x = 0 to 12.83 in.),
 

Loading = 32.28 lb./in. 

Shear -f2.28 dx m 32.28 

Moment = fP2.28 x dx = 16.14 x2] 

From x = 12_83 to 75.50 this shear is a constant of 414 lb.
 
and the moment generated thereby is 414 (x - 12.85).
 

For the conical or trapezoidal portion the loading is linear 
(x = 12.83 to 75.50 in.), 

Loading = 8.16 + 0.0805 (x - 12.83).
 

Substituting y = x - 12.83, then dy dx, 

Loading 8.16 + O.0 

i!
 



0.0402 y2
Shear = 8.16 y + 

Moment = 4.08 y2 + 0.0134 y3 

The total shears are shown for the two conditions on Figure
 
3; the total moments are shown on Figure 4.
 

Inertia loads are dependent on the weight of the structure,
 
its center-of-gravity location, load factor and direction.
 
To allow flexibility in terms of weight and load factor at
 

\the design stage, unit values of 100 lb. for the weight and
 
one "g" for the vertical load factor will be used. Distribution
 
of mass will be assumed to be trapezoidal over the 75.5 inch
 
length with the ends being in the ratio of 15 to 24, which is
 
approximately proportioned to surface area. The mean unit
 
loading is 100 lb. divided by 75.5 inches or 1.324 lb./in.,

which is the loading at the mean ordinate of 19.5 inches. The
 
end ordinates are 1.019 and 1.630 lb./in.
 

1.630
1.019 


7505
 

The loading equation is, for x from zero to 75.50,
 

Loading a 1.019 + 0.008093 x, 

2
Shear 1.019 x + 0.0040i7 x and 

.
Moment 0.5095 j2 + 0;001349 A
 

VI 

SUMMARY OF PRESSURES 

The maximum positive and negative pressures occur on the
 
spherical portion of the nose cone. The positive maximum is
 
at the stagnation point on the forward face. The maximum,
 
negative pressure point is not defined, but should be assumed
 
to act anywhere on the side portions of the hemisphere. The
 
minimum pressures on the conical portion occur approximately
 
16 inches behind the nose or just aft of the tangent point
 
and at two angular pocsitions each for either right or left
 

.sideslip approximately 33 degrees from the aircraft plane of 
symmetry on top and 13 degrees on the o- om. Maximun o .. v. 
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pressures are facing the relative wind. On the conical portion

these are maximum at about 47 inches aft of the nose. The
 
design pressures are summarised below.
 

Altitude, 
feet 

Internal 
pressure, 

Stagnation 
pressure, 

Negative 
nose 

Positive 
pressure 

Negative 
pressure 

psi. psi. pressure, on cone, on cone, 
psi. psi. psi. 

0 7.33 0 0 0 0 

8000 0 1.096 -1.369 0.375 -.603 

35,000 5.50 1.244 -1.554 0.390 -.648 

50,000 5.50 1.483 -1.554 0.385 -.688
 

Thus the largest imploding pressure, taking into account
 
pressurization, is 1.096 psi. at 8000 feet and the largest

exploding pressure is 7.054 psi. at either 35,000 or 50,000

feet in flight or 7.33 psi. on the ground.
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I 

Distance 

from 

nose, 


x, inches 


0 


5 


10 


15 


20 


30 


40 


50 


60 


75 


Table I.- Pressures due to Nose Cone Shape
 

Incompressible Pressures, 
pressure psi. 

coefficient, --
Pincomp. Altitude 8000 feet 35,000 feet 

1.0000 1.096 1.244 

0.0378 0.042 0.047 

-.2611 -.286 -.325 

-.2989 -.327 -.372 

-.2079 - 228 -.259 

-.0685 -.076 -.085 

.0575 .063 .072 


.1043 .115 .130 


-.0015 -.002 -.002 


-.1663 -.183 -.206 


50,000 feet
 

1.1483 

0.056
 

-.387
 

-.443
 

-.308
 

-.101
 

.085
 

.154
 

-.002
 

-.247
 



Table II.- Pressures due to Flow Inclination
 

Angle from Pressure Pressures, psi. Angle from 
relative wind, coefficient -- plane of 

8, deg. Altitude 8000 & 50,000 feet symmetry, deg. 
35,000 feet 

0 0.2483 0.260 0.231 66.5?
 

10 0.2360 0.247 0.219 76.57 or 56.57
 

20 0.2002 0.210 0.186 86.57 or L16.5?
 

30 0'1446 0.151 0.135 96.57 or 36.57
 
40 0.0748 0.078 0.069 106.57 or 26.57
 

50 -.0024 -.003 -.002 116.57 or 16.57
 

60 -.0794 -.083 -.074 126.57 or 6.57
 

70 -.1491 -.156 -.139 136.57 or -3.43
 
80 -.2055 -.215 -.191 16.57 or -13.43
 

90 -.2'ia3 -.256 -.227 156.57 or -23.43
 

100 -.2635 -.276 -.245 166.57 or -33.43
 

10 -.2633 -.276 -.245 176.5? or 43.43
 

120 -.2464 -.258 -.229 -173.43 " -53.43
 
" 
130 -.2170 -.228 -.202 -163.43 -63.43
 
" 
140 -.1810 -.190 -.169 -153.43 -73.43
 

150 -.14lI6 -.151 -.135 -143.43 " -83.43
 
160 -.1136 -.119 -.106 -133.43 " -93.43 

170 -.0928 -.097 -.086 -123.43 t-103.43
 

180 -.0855 -.090 -.080 -113.4L3
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