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AN ATMOSPHERIC DENSITY MODEL FOR APPLICATION
-IN ANALYTICAL SATELLITE THEORIES
by

Alan C, Mueller

1.0 INTRODUCTION.

If a fully analytical satellite theory which includes
the drag perturbation is to be successful, it must possess
three important qualities. First, the theory should be based
on a canonic¢al formulism whereby one can use the powerful
tools provided by hamiltonian mechanics. Secondly, the model
used to describe the forces acting on the satellite must not
be so simplified that the theory becomes only a mathematical
exercise. Lastly, the resulting theory must be concise so
that the accuracy gained outweighs the extra computer costs

required to reach that accuracy.

Scheifele (reference 1) has developed an analytical sat-
ellite theory based on the regular, canonical Poincaré-Similar
(PS¢) elements. This is a very powerful set of elements which
are in an extended phase space and have an independent variable
which is similar to the true anomaly instead of time (refer-
ences 2, 3 and 4). A very accurate and concise satellite theory
has been developed to include the first order, short period
and secular perturbations of an oblate central body. The drag

theory has been built on top of the J2 theory.

The assumption in Scheifele's theory is that the drag force
is tangential to the orbit and proportional to the square of the
veloeity magnitude of the spacecraft. The constant of propor-
tionality, which is a product of 'the density of the atmosphere,

the ballistic number, and the drag coefficient, was not specified.
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Since the lifting force relative to the drag force and the
inertial velocity of the atmosphere relative to the satellite
velocity are small, the model used by Scheifele is adequate
for giving the dirgction of the retarding force due to the
atmosphere. Thus an important contribution to the analytical
solution was made. The report {(reference 1) is a concentrated
effort to canonically transform the forces into the PS¢ space
and also place them in a form suitable for solution. Therefore,
the direction of the PS¢ canonical forces has been determined
but their magnitude was not completely specified. Also, the
toocls of hamiltonian mechanics were employed to appropriately

transform the forces and reduce the size of the equations.

Numerical studies were conducted to confirm the accuracy
of the resulting satellite theory. In the tests, both analyt-
ical and numerical orbit predictors assumed that the density,
ballistic number (ﬁeight over projected area) and drag coef-
ficient were constants. Results showed that the analytical and
numerical solutions matched extremely well, verifying that the
transformation and quadrature solution were computed properly.
Due to the unique character of the PS¢ system, the equations
whicﬁ.describe the motion are relatively simple and thus sat-

isfy the first and third above mentioned qualities.

However, for most satellites there can be extremely large
changes in the density of the atmosphere along the orbit. Even
for small eccentricities (e = 0.02) the density can vary by

a factor of 100

A study has been made (see section 2.0) to determine the
errors that result from assuming an average constant density
as compared to a density model such as that developed by Jacchia
(reference 5). The comparisons point to the fact that the
constant density model is adequate only for orbits of very small
eccentricities. But in all the cases the analytical orbit pre-
diction using a constant denéity model was much closer to the I
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numerical prediction which used a constant density than the nu-
merical prediction obtained by employing the Jacchia model. ‘
This implies that it is the density model, not the analytical
solution method, which restricts the accuracy of the analytical
theory.

Therefore the intent of this report is to develop an
adequate density model and discuss the implications the model
will have on the analytical drag theory. As in Scheifele's
theory the ballistic number and coefficient of drag will be
assumed constant.
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PRECEDING PAGE BLANK NOT FITMED

2.0 INVESTIGATION OF CONSTANT DENSITY MODEL

If one assumes that thg density of the upper atmosphere
is a constant, then the drag theory and its cqrrespéndipg con-—
puter program described in reference 1 are essentiaily complete
and could be made available to the user. The question is wheth-
er or not this assumption results in solutions with acceptable
errors. To answer this question a series of numerical experi-
ments have been carried out.

Since the density is so strongly dependent on height,
several orbits over a wide range of eccentricities and semi-
major axes were chosen by which to test the assumptibn. Choos~
ing orbits over a wide range of the other orbital elements is

not a neccessity for testing the assumption.

Three numerically integrated solutions for the position
of a satellite after a given time were determined for each of
the orbit test cases. All solutions include the perturbation
due to the oblate mass of the earth, but the solutions differ
in their drag model. The reference solution uses an extremely
accurate but complex drag model by determining the density
above the oblate earth with the model developed by Jacchia.

A second numerical soluticon was found by assuming that the
density is a constant. The constant density chosen was deter-
mined by &sing the Jacchia model to dompute the density at the
coordinates of the semi-latus rectum point of the initial orbit.
Lastly, a solution was obtained by completely neglecting the
drag force. The '""NO DRAG" and "CONSTANT™ densitﬁ solutions
were then compared to the reference Jacchia sclution and the

results displayed in table I for each of the test cases. Since
drag so strongly perturbs the in-track position, the differ

ences in the solutions are given by out-of-track and in-track
position errors. Also note that the out-of-track error is

shown in meters while in-track error is given in kilometers.

By comparing the position differences resulting from the

constant density model to the differences obtained by neglecting



-14-

drag, one has a relative measure of the constant density model
assumption. For instance, in all the test cases with small
eccentricities the CONSTANT solution always results in smaller
errors than the NO DRAG solution. This is because the height

of the satellite does not vary a great deal in the orbit and
thus the vehicle does not observe a large change in the density.
However, the cases in which the eccentricity is somewhat larger,
the satellite sees very large variations in the density and the

CONSTANT solution is no better than neglecting drag completely.

The conclusion is that the constant density model results
in a reasonable solution only for very small eccentricities.
Even under these tight restrictions, the solutions are only
labeled ''reasonable", not accurate. Other factors such as the
diurnal variation of the density cause the constant density
assumption to be crude even for circular orbits. For ‘these
reasons, this report will concern itself with the goal of de-
veloping an accurate density model which may be inserted in

the analytical theory.
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TABLE I.- EVALUATION OF CONSTANT DENSITY MODEL
Position Differences
a e h Out of Track(m) / In Track(km)
(km) (kg)
NO DRAG CONST
6578 0.0 200 4891./172.8 710./12.0
0.0 300 411./ 16.32 11./ 0.8
0.001§ 293 417./ 16.48 36./ 1.6
6678
0.01 | 233 757.) 27.28 368./12.24
0.02 | 166 3815./129.28 1664./46.08
0.0 500 29./ 2.81 4./ 0.14
0.001} 493 29,/ 2.84 3./ 0.26
6978
0.01 | 431 43./ 3.88 10./ 1.35
0.02 | 363 92./ 7.68 54./ 4.72
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3.0 DENSITY MODELS £REUEDING PAGE BLANK NOT FILMED

In developing a density model for the analytical theory,
one is severely restricted by the fact that the model must be
in the form of a fourier series in the true longitude. As is
the case in most analytical theories, the perturbation must be
written in a fourier series to facilitate the solutibn of the
differential equations of motion. Usually, the solution is

obtained by quadrature.

£

Several density models have been developed to predict
accurately the density at any point in space and time. Examples
are the Jacchia model (reference 5) and the USSR model (refer-~
ence 6). But both models are extremely comﬁlicated and tob
unwieldly for analytical satellite theories. 1In the analytical
theory of Brouwer and Hori (reference 7), the density ﬁas
assumed to-be an exponential function of the position radius
of the satellite. The exponential must then be expanded in a
Poisson series so the guadrature can be performed. This model
has several difficulties. It first has a problem with conver-
gence, which Brouwer points out. Secondly, it is simply a poor
model for describing the dynamic atmosphere. The density is
extremely effected by such factors as the level of solar éctiv—
ity and whether it is summer or winter, day or night. Thus the

model in Brouwer, Hori theory is simply inadequate.

Recently an extremely simple density model (referred to
here as B-M) has been developed to match the Jacchia model to
a high degree of accuracy (reference 8). The variations in
the density due to changes in the height and changes in the
relationship of the vehicle and sun position (diurnal effect)
are included explicitly. Long period variations such as the
changes in the average solar activity and semi-annual vari-
ations are included implicitly in the coefficients of the model,
The value of the.coefficients are determined by a procedure
called ''ealibration'". The simple formu}ation allows the model

to be inverted, i.e. given the density at different points in



=-18-

space (as determined from Jacchia) one can compute the coeffi-
SRR ;-'. fe,, ?:1‘“” Pl v 178 P » . . . ..
cients ‘of tH&*BM model’”'' 8incé the coefficients are implicit
functions of long period effects, they can be considered

constants over a limited period of about a month.

Even this extremely simple model cannot be applied in
the analytical drag ,theory because it cannot be written in the
form of a fourier series. However the technique of the B-M

model does give important insight and direction to follow.

In all the models discussed, the representations of the
Hensity are considered to be global. In other words, given
any position in the atmosphere one can determine its density.
‘The approach, to be taken here, is to develop a model which
"expresses the density along a particular orbit. The coeffi-
cients in the model will be calibrated with the Jacchia model
in a manner similar to the B-M model. But in this case, the
coefficients in the model are not only implicit functions of
"the long period variations in the atmosphere but also fhe ‘
orbital elements which describe the orbit. The result is a
density model which can be written in a fourier series and
easily implemented into the drag theory. Since the orbital
elements_are perturbed by J2 and drag, the coefficients in

the model must be updated periodically or corrected in some
manner to reflect the changes. Since the perturbations are

small, the updating would be infrequent.

3.1 Development of the Model

In the B-M model, the variations in the density due to
the height and diurnal effect are modeled as

p = exp (T(h) + S(h) . * gm,(as’ﬁswav’dvﬂ ()

diurnal term
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where
p = density
T(h) = function of altitude (nighttime vertical profile)
S(h) = function of altitude (diurnal magnitude)
g(as,as,av,ﬁv) = function of right ascension and decli-

. nation of the sun and vehicle.

And similarly the USSR model is expressed as

'D
Il

1 * 1 #* mn X Py
exp (T'(h)) * (1 + 8'(h) * g (a,,8_,a,,5)) (2)
where
T'(h) = function of altitude (nighttime vertical profile)
S8'(h)
Both models point to the faect that the density may be expressed

function of altitude (diurnal magnitude).

in such a form as
= T* .« ol ’
p = T*(h) + S*(h) g (as,as,av,ﬁvl (3)

where T* and S¥* are functions of the height and g ‘is a
simple function of the angular coordinates of the sun and vehi-
cle. If the oblate figure of the earth is neglected, then T*
and -3*% may be assumed to be functions of the vehicle position
radius.

In the PS¢+ element system the radius is described as
follows

p

D
lte cos o J/ n?
14 Vi- — g
2

(4)

where p 1is approximately the semi-latus rectum and n is

proportional to the eccentricity, and Ty is given by

The PS¢ action variables are P1s Py p3, and their

Py
canonical conjugate variables are Ul, 02, 03, 04.
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\/2;;4

i

— - 7 2 -
£, = B(p2 cos 0, a, sin Gl) , B

The radius can be expanded about p 1if the eccentricity is

considered small, i.e.
n
i
r=7p 2. e;(n) ¢ (5)
i=o
where e; are functions of n

Since T* and 8S* are functions of the radius, this

suggests they too may be described in a similar manner

[]
™=
w
¥
M

T*(h)
i=0 (6)
n .

S*(h) = Z b: ;:]_L (7)
i=o

where the coefficients ai and bi are implicit functions
of the eccentricity, semi-latus rectum p , and the character

of the atmosphere.

Neglecting small terms in the angular function

g(as,és,av,ﬁv) the USSR model gives

m
0 1+ cos P\ 2
g = | ——— (8)
2
where
cosy = % (z » sin §, ¥ cos & » (x - cos Yty - osin Y))
Y=o, * ¢
X,y,z = defines position of satellite
(e_,8_ ) = right ascension and declination of sun
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¢ = defines lag of the density bulge behind the
sun ($=37%).

The power of exponent m ranges near the value of 4.

If m = 4 1is chosen then gm(u) can be expressed as a fourier
series in the P8¢ elements

-_ y - .
dt = g*(a) = do + dl sin o, + d2 cos O

1 1
+ dy sin 20, + d, cos 301 (9)
where
dy = 773 dg = D°7
- E _ (DE-E?)
d; =3 dy 8
_D
d, = 3
(10)
D = d3B +.cos GS cos Y
E = - CBB + cos 68 gin Yy

_ 1 . I P / " ,
B = 36 |8tn 68 2(G+H) - cosg 55(03 cos. Y Py sIM Yﬂ

The coefficients di can be considered constants over a few

revolutions. But due to the fact that the position of the sun
changes and the orbital elements are perturbed, an infrequent
update will be required to reflect these changes.

Thus the total model for the density along the initial
orbit follows from equations (3), (8), (7) and (9)

n
= ‘ i 11
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where
= t ' = 1
a; = ag + dobi bi bi (12)
d =d' - 4@
o
The coefficients a; and b:_L can be determined by a cali-
bration with Jacchia. A linear system of 2(n+l) equations
with 2(n+1) unknowns must be solved to determine the coef-

. ficients.

3.2 Density Model Corrections

The density model proposed in section 3.1 reflects the
observed density variations due to the two-body changes in the
height and due to the varying. angle between the sun and the
satellite. Santora (reference 9) also consiéers two additional
" phenomena that effect the height of the satellite which in turn”
causes variations in the observed density. One effect is the
- changes in the height due to oblate figure of the earth. Far
instance, a satellite in a circular orbit about the equator
will see no changes in the height, but a satellite in a e¢cir-
cular, polar orbit will find that its height will change by
about 20 km. These changes in height translate to a substan-
tial variation in the observed density of about 50%

Secondly, changes in the height due to the ’Jz periodic

oscillations in the radius can also result in large variations

in the observed density.

Both of these effects may be modeled as corrections to
the model proposed in section 3.1:

p=0p_ e (13)

where Ah 1is the change in the height due to the above men-
tioned effects, o, is given by equation (11) and p is the
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corrected density. The constant o 1is an implicit function
of the character of the atmosphere and may be determined easily
by calibration with the Jacchia model. For small changes in
height, one can expand and truncate equation (13) which results

in

p = Cpo s C 1 + ahh (14)

The oblate figure of the earth can be described by
R = R"(1+6(5)2)‘% | (15)
e r

where R 1is the radius at an arbitrary point on the earth

Re is the mean radius at the equator

§ 1is the bulge parameter
(%) determine the latitude of the point.

Since 6 1is small (6= 0.67x107?) equation (15) can be ex-
panded and truncated to give

R =R (1—%6(%)2) (16)

‘The latitude term may be expressed in the PS¢ element as

—r
&
|

2 G+H )
) = 2 .
( (G + Py + 203p3 sin 201

. 2 3
4G S (17)
+ (03—p3) cos 201)

Thus if one defines the mean radius as observed by a satellite
in its orbit as Rm

(G+H) 2 2
R =R, 1 -8 - (c3+p3)] (18)
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Then the oscillation of the height about the mean radius

is given by

S (G+H) s o
AhR = Re _EE;_— 203p3 sin 201 + (03-p3) cos 201] (19)

Derivation of the change in height due to the J2 term

is somewhat more lengthy but can be simplified by neglecting
terms on the order of the eccentricity. Since the oscillations
in the height due to J, have a magnitude of about 5 km and

‘because the drag theory is restricted to e= 0.1 , neglecting
order O0(e) terms results in errors of at most 500 meters.
This results in a negligible error in the density compuﬁation.

The change in height due to J2 can be found by differ-

encing the radius computed from the mean elements r' from

the actual radius r
Ar = r -1’ (20)
where
p' P

r’ = —— r = <
1+Q'Zi 1+QZI

Primed variables are based on the primed (mean) PS¢ elements
(see reference 4). Neglecting O0(e) terms, the difference

‘becomes

Ar = p(1-QZ,) - p'(1-Q'Z;) (21)
IT one defines relations between primed and unprimed values as

p=p" + 4p
Q@ =Q" + AQ (22)

t
A Zl + AZl

1
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then Ap, AQ and AZI can be found from relations derived from

the generating function S1 used in eliminating short periodic

effects (reference 4).

From the relation for the semi-latus rectum p in terms of
-PS¢ elements,

1 _ u 2
p=— |- %(o5+p;) *+ (23)
2 72 fo 1
3! 2p4
one can lihearly approximate Ap as
A p 2
= - — + —_—
P N 02A02 pzl_\.p2 + ; Apé (24)

(294)?

The devigtions Acz, Apz and Ap4 can-be found directly from

the partials of Sl . But Ap is of the order 0(e)} since

0, and p, are eccentricity terms and Ap4 = 0 because of

the use of total energy elements. A similar argumen% can be

made for AQ . And thus Ar reduces to

br = pQAZ, + O(e) (25)

From the expression for Z

1
Z1 = p, cos 0, ~ O, sin 0, (26)
one can approximate AZl as
AZl = Ap2 cos 01 - Adz sin 0,
- Ao, (p2 sin 0, + 0, cos 01) (27)
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Neglecting terms of O(e)

AZl = Ap2 cos 0, = Acz sin U% (28)

By a rather lengthy but straight forward derivation one finds,

through use of the generating function Sl , that AZl can

be eXpressed as

w

(Gz— 3H2 + g sin 20, + ¢ cos 201) (29)

3G? 1

where € 1is the J, perturbing parameter defined in ref-

erence 4 and

_ _Q
V= Zpq
s = - (G+H) o,0
3P3 (30)
(p2-02)
c = (G+H) —3
2

If one defines the average radius r, as

EPQw
(G%-3H?) (31)

r =1r' +
a
3G?

then the oscillation in the height due to J2 is given by

—EpQW ( N ( s
Ah = G+H 20,p., gin 20, + (6Z~-p%) cos 20 . (32)

It is interesting to note the similarities in the equation
for the change in height due to the dynamics (eq.(32)) and the
geometry (eq.(19)). Both the oscillations will have two peaks
and two valleys, except their magnitudes are different and
are 90° out of phase. Also, both oscillations vanish when the
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inclination goes to zZero. Thus the model given by eguation

(14) can be expressed as

_ . 2_.2
p=p, [1 + K (263p3 sin 251 + (63 p3) cos 201)] (33)
where
(G+H) B 6 epQw
< = o e _ (34)
2G? 4 3

"The coefficients 1in 25 (equation (11)) are computed with the

pfimeﬁ PS¢ elements by a calibration to the Jacchia model,
as aescribed in Section 3.1. The height used to evaluate thg
Jacchia model is given by the difference between the average
radius T and the mean radius of the earth seen by the sat-

ellite
h=1r -~-R
a m
EpQw ; § (GHH)
h=r1r'+ (G*-3H2) - R |1- (o§+pg) (35)
3G2 € 8G% -

3.3 Model Verification

To verify that the proposed density model has an adequate
accuracy, a set of experiments havée been conducted to compare
the new model with the Jacchia model.

In all of the tests, the density as observed along dif-
ferent points of a J2 perturbed orbit about the oblate earth

is computed with the Jacchia model and then compared with the
new model. A value'of 4 was chosen for n (eq.(11)) so that

B has 10 coefficients to be determined by calibration. A

matrix inversion algorithm (reference 10) was used to solve for
the value of the coefficients.
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Several different orbits and sun conditions were chosen
by which to compare the new models. These cases have all been
labeled in Table II and will be referred to in the discussion

of the comparisons.

The first comparison of the two models is intended to
demonstrate that extremely large variations in the density

due to the solar activity level, FlO 7, can be accounted for

by the new model's technigue of calibration.

In figure 1(a), the density is plotted versus the true
longitude of the satellite.' Two graphs are shown, one as
determined from Jacchia, and the other as found from the new
model. The initial conditions are given by Case 1 in Table II.
The resulting differences between the two modeis are never
greater than three percent. Ig figure 1(b), another two
graphs are shown except with initial conditions given by
Case 2., Again the models are in good agreement. The only
difference between case 1 and 2 is their solar flux values;
but notice the large quantitative differences between the
density plots in figures 1(a) and 1(b). The new model is able
to account for these very imﬁortant differences.

The second comparison demonstrates the ability of the new
model to account for density variations due to the changing
position of the sun. Again in figure 2, the ﬁensity is plotted
versus the true longitude. There are four plots on figure 2
representing the two different models and two different initial
conditions given by case 3 and 4. The only difference between
these cases is the position of the sun. In case 3 the sun is
in the first day of summer while in case 4 the sun ig in the
first day of spring (vernal equinox). Here too one finds that
the new model is able to reflect the differences.

The four remaining comparisons are intended to show that
the proposed model simulates the Jacchia model for a variety
of orbits and to demonstrate the errﬁrs resulting from neglect-
ing the effects of the diurnal bulge, the oblate figure of the



TABLE II.- TEST CASES

~20._

10.7

Case Case Case Case Case Case Case
1 2 3 4 5 6 7

a (km) 6978 6978 6678 6678 6978 6678 6978

b, (km) 600 600 300 300 600 233 460

e 0.0 0.0 0.0 0.0 0.0 0.01 0.02

I g0° 90° 90° 90° 900 20° 90°

w 0° 0° 0° 0° 0° 0° 0°

Q 90° 90° 20° 900 90° 909 90°

M 200 20° 20° 20° 200 20" 20°
Sun Summer | Summer | Summer | Spring | Summer | Summer | Summer

F 75 250 180 180 180 180 180
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earth, or the J2 periodic oscillations in the radius. In

figures 3(a),4(a),5(a) and 6(a), the density as determined from
Jacchia is plotted versus the true longitude, corresponding

to the test cases 4 through 7. These peculiar and varied
graphs give a clear picture of the problem of developing the
density (vertical axis) as a fourier expansion of the true
longitude (horizontal axis). Be careful to note the changes

in the scale for the density axis for the four different plots.

In figures3(b)},4(b),5(b) and 6(b), the percentage difference
between the new model and Jacchia is plotted versus the true
longitude. In each figure there are four plots labeled A,

B, C and D. The D plot is the differences resulting from
the new model if the diurnal effect is neglected. Similarly
the C plot is from neglecting the oblate figure of the earth

and the B plot is from neglecting the J2 radius oscilla-

tions. Finally the A plot is the resulting differences if
the complete model is used.

Case 4 is a circular, polar orbit and thus the density
variafions seen in figure 3(a) are due entirely to the diurnal
effect and the changes in the height because of the oblate
figure and mass of the earth. The rather strange appearance
of the plot is a result of the cancellation and addition of
the different effects. From figure‘S(b) one finds large errors
result if diurnal or oblate figure effects are neglected.

Smaller errors result from neglecting the J2 oscillations.

As expected, the oblate mass and oblate figure effects have
two peaks and valleys and are 90° out of phase. Also note
that the errors in plot C are always positive. The reason
for this behavior is because the earth's radius was assumed
to be a constant equatorial radius which is larger than at
the poles. The result is that a greater deunsity is predicted
for every point except when the satellite crosses the equator.
The residual errors from the total model are always less

than three percent.
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Case 5 is also a circular, polar orbit but has an. altitude
of about 300 km. greater than in case 4. The density plot of
this case is shown in figure 4(a) and the differences are plot-
ted in figure 4(b).

The neglecting of the diurnal effect results in the larg-
est errors. The differences between the magnitude of the errors
in plot € in figures 3(b) and 4(b) reflect the fact that the
diurnal effect becomes more prominent for higher altitudes.

The other pleots show the same pattern as in case 4 and again
the total model exhibits small errors.

Case 6 is a polar orbit with what appears to be a rela-
tively small eccentricity. Actually this small eccentricity
translates, to a very large density variation. In figure 5(a)
the major variation in the densiiy is due to the wvariation-in
height of the elliptical orbit. But by examination of the .

error plots in figure 5(b), one finds the other effects are

also very important - especially the diurnal effect.

Case 7 is also a polar orbit with an eccentricity which

results in density variations of 4.22 x 10718 to
6.03 x 1071 E% , a factor of over 100. Here the plot in
m

figure 6(a) begins to look more like an impulse where the
satellite experiences large densities only near its perigee
poiﬁt. The scale of the vertical axis in figure 6(b) has been
changed to show the very large errors resulting from neglect-
ing the diurnal effect. Plot B has not been shown bécause.
the scdle does not bring out the differences between plots

A and B

Errors in plot A become as large as ten per cent but
this is only when the satellite seces its smallest densities
at the apogee.

As the eccentricity of the orbit increases, the plot of

the density versus true longitude begins to loock more and more
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like an impulse. The result is that for eccentricities of
g > 0.03 the model begins to break down. The fourier series

cannot converge when modeling the impulse.

However, this is ‘not such a severe restriction. Most
near earth satellites have eccentricities well within the
e = 0.03 . For satellites with greater eccentricities one
may avert this problem in a manner similar to that described by
Watson {(referencel2). The density can be modeled only in the
region near the perigee point where it is largest. The ana-

lytical integration then proceeds in steps.
From these results, it is concluded that the proposed

model is quite suitable for applications in the analytical
theory. It matches the Jacchia model extremely well and is

easily written in the form of a fourier series.

3,% Second Order Corrections

Because the density is so strongly dependent on the height,
it is important that changes in the height are accounted for.
The proposed model accounts for the two-body and J2 changes

iﬁ height and also the changeé due to the oblate figure of the
earth. But the drag force itself causes a secular perturbation
in the height. For very high satellites, the perturbation is
small and can be neglected in the density considerations. But
for satellites which pass through the dense atmosphere, the
effect is much like a snowball growing as it falls down the
hill. The drag force causes the satellite to dip deeper in

the atmosphere where the more. dense air causes a stronger drag
force and so on. Once again this effect can be modeled as a

correction as in equation (13)

p = (1 + ath) - Py (36)
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If one assumes that the drag perturbs the radius of the satel-
lite orbit in a secular manner and neglects the terms on the order
of the. eccentricity, then the change in height can be related

to the perturbation in the semi-latus rectum, i.e.

Ah = Ap (37)
Since the p_ is given by

p= 2| B(ozee2) ¢ —
H (2p,)"

then the deviations due to drag can be written as

u

3
(20,) %

Ap = —( 0,80, * p,bp, * &p, (38)

= I
g™
WH

But neglecting eccentricity terms and assuming a secular drag

perturbation in the energy Py one finds
Ap 1 1 -Ap4
bp = [ —)t = [-(up)*® - Y T (39)
AT (20,) 2 AT
Apé
where —— 1is the rate of change in the energy due to drag.
AT
Ap4
Initially —— may be determined by neglecting the effect
At
of drag on the atmosphere density model. Once this guess is

made, one can re-evaluate the changes in the elements based

on the complefe model.
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3.5 Density Model Summary

‘From the theoretical developments in this section, the

complete proposed density model may be written as

where

. 2_ 2
sin 201 + (03 p3) cos 201]

Ap -1 up 694

AT 4p4 2p4 AT
G+H (R_6 epQw)
K = —
2G2 4 3

n
— i
Py = E (a; + db;) z3

d=4d, gin o. + d2 cos 01 + d3 sin 20, + d4 cos 20

1 1

E E
d = — ad =D « —
1 2 3 4
D (D2_E2)
d, = — d, =
2 5 4 4



—dl

= e -+ 3
B p3B cos GS sin Y
1
B=—|{gin § 2(G+tH) - cos & (o, cos v + p, sin Y)Y
2G =] S 3 . 3
‘Y = as -+ d)
LI 68 : right ascension and declination of sun

¢ . defines lag of diurnal bﬁlge behind sun
§ : measure of geometric oblateness of earth

g : perturbing J2 parameter

as bi ' model parameters found by calibration
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4.0 DENSITY MODEL IMPLICATIONS ON DRAG THEORY

The proposed density model requires a2 number of fourier
expansions in addition to those developed for the constant
density case in reference 1. The addition of the new density
model in the analytical theory does not, however, require any
new Taylor series expansions which were processed by the com-
puter logic described in that reference. Thus the discussion
here will be concerned with the new fourier expansions that

are needed.

In the discussion of the power series expansion, one must
make a distinction between the expansions of the properties of
the orbit (such as the radius, time and velocity) and the ex-
pansion in the density model. Even though both sets are power
series expansions in the eccentricity, the density model does
not converge as rapidly as the orbit properties. Thus for
small eccentricities one may truncate at a very low order for
the orbit properties, but still be required to carry out the
density expansion to a higher order. 1In addition, it is not
clear, at this time, to what order one must carry out the prod-
uct of these two different expansions.

Postponing arguments on when and how to truncate,
one may still list all the fourier series that are needed for
a specific order m in the orbit properties expansion and n

in the density expansion. They include:
i i
¢ty ) cdzy

i : i
ccl cos 01 . cdci cos 01

c;i sin o, , cdg} sin o4 (40)

et 1z, : edz) g,
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i i
calcz cos 01 R cdglc2 cos 01
~
i . i .
Cclcz sin 0, , Cd§l§2 gin 01
for i=0 , 1...n+m where ¢ 1is the corrective term

H

given by equation (14) and d is the diurnal term (eq.(12)).
§2 is given by the relation

= , -+
Lo B (p2 sin o, G, ¢os 01)

If n and m are both set to 4 , then there are a
total of 108 expansions needed. This seems at first to be
a rather imposing number of expansions. But drag is locally
2 very small force and thus the periodic effects of drag may
be neglected. Therefore, only the average of these expansions

needs be known. The average of a fourier expansion is simply

the zercoth order term and thus only that term must be computed.
One exception to this rule is the evaluation of the mixed sec-

ular forms in the time element. In this case the full expan-
sions for cci and cdc} must be evaluated. Therefore, only
18 full expansions need be determined.

If the following notations are made

i+2

i i i . i
CLy = Xg * E :(x;L cos jo, * ‘JJ;' sin jcl)

j=1

(41)

cd;i = xg + E :(x; cos jol + ¢; sin jol)
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and if the mean of a function f(cl) with respect to 04

is defined by

o

1 2%
= _[ f(crl) do, (42)
2% o

then the average values of the expansions of eguation (40)

are given by

&

The average of
¢ and d , can be

x; with the capped

(43)

i

(o,¥]

9 2

i i

= — (py¥y + 0,X; + 20,X,)
_° i i i
(0,05 = PyXy + 20,X,)

the expansions involving the product of

found by replacing the uncapped w§
e ~§

i
values . .
tbj ) XJ
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4.1 Determination of Fourier Coefficients

The coefficients of the fourier series given by equa-
tion (41) must be evaluated in some manner to complete the
solution. There are several options one might take to dccom-
plish this task. This section will be devotfted to exploring

these different options.

Perhaps tﬁe simplest option is to truncate the expansions
on 2 small order of the eccentricity. This reduces the number
of fourier series to'betevaluated but also restricts somewhat
the‘generality and accuracy of the solution. However, one
should remember that most drag perturbed satellites QO in fact
have a very small eccentricity. Also a solution\with.a small
error is better than no solution at all. If one reduces the
equations by truncating the solution, then one may determine
the fourier coefficients by explicit eguations which are either
derived by manual-or computer manipulation. These explicit
equations could be program@ed without requiring an extremely

large storage allocation.

A second option is available whereby one can evaluate all
the fourier expansions without the loss of generality or accu-
racy. To eliminate the computer storage required of the ex-
plicit expressions, one can compute the coefficients of the
fourier series in a recursive manner. The root of this proce-~
dure is an algorithm which, given the numerical value of the
coefficients of two fourier series, can evaluate the coeffi-
cients for the product of the two series. Thg algorithm is
developed from several trignometric jdentities and is outlined
in Appendix I. With such an algorithm, all the coefficients
in equation (41) can then be found in a recursive manner. For
instance, the coefficients for ci can be found from the co-

3
1

uated from the coefficients of ;i and C; and so on.

efficients of Cl and the coefficients for ¢ can be eval-

This reduces much of the instruction computer storage required
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by explicit expressions. Besides the advantage of being com-
putationally simpler, this method also allows for easy updating
of the drag model to inelude terms which effect'only the magni-
tude of the perturbing force. Thus the density model can be
changed easily to an expansion of arbitrary order. : More im-
portantly, if modifications of the density model, ballistic
number, or coefficient of drag can be expressed as a fourier

series (din 01) , then the recursive algorithms allow for a

much simpler implementation of these changes. The laborious
manual derivation of these terms can be eliminated and thus a
typical problem of analytical theories ié partially avoided.
The disadvantage to this method is the fact that no explicit
equations are developed (which is ironic because this is what
the method was designed to avoid). The algorithm is numerical
in nature and like all numerical solutions one can find the
"ecorrect' solution but loses the insight gained from analytic,
explicit solutions. In addition, the mathematical solution
and the computer algorithm are so interwoven that they become

inseparabkle. This leads us to the third option.

A recursive solution for computétion of the fourier series
may be possible without. the loss of insight encountered with
option two, above. In ﬁueller (reference 11) the perturbing
geopotential is written in the form of a fourier series by the
use of recursive relations. By a similar approach, the per-
turbing drag canonical forces may be developed in a recursive
manner using literal expressions throughout. Thus the sclu-
tion would not have the "loss of insight" typical of numerical
methods and would not be tied to a computer algorithm. As an

illustration, a recursive expression for the powers of 2y

has been developed in Appendix II. Since the powers of Cl

are the major components of the fourier series given by egua-
tion (40), the expressions of Appendix II more clearly define

and justify the approach.
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The fourth option, and the one the author feels is most
viable, is an approach which is a careful blend of all the
options discussed. A "careful blend" would be one that brought
out the advantages of each of the options and minimizes the

disadvantages.

4.2 Qualitative Aspects of Drag Perturbation

By examining the canonical PS¢ forces in the light of
the new density model, one may asceriain a qualitative descrip-
tion of the effects of drag on the elements.

The P3¢ elements Py Py (the energy), Py and 03

{related to the inclination) are perturbed secularly by the
static density profile on an order of O(y) . The static den-
sity profile refers specifically to that part of the density
model which contains the a; coefficients (eq. (11)). vy is

the ratio of the magnitude of the drag force to the two-body

force magnitude. The eccentricity terms, o, and p, ., are

secularly perturbed on the order of O(ye) where e is eccen-

tricity. The diurnal terms (the part containing bi coeffi-

cients) cause additional secuylar perturbations of O(ye) in

all the elements (except o which is not effected at all by

1
the drag force+). Alsc, the static density and diurnal terms

(po in eqg. (11)), give rise to quadratic and mixed secular
terms of O(y) in the time element o, - It is important to
note that the neglection of the diurnal term results in errors

of O(ye) in all the elements except o, - The diurnal term

..}.

In reference 1 it is shown that the motion of 61 (related

to the true lomngitude)} 1s not affeected by drag perturbations.
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’ L - 3
does nefl average out in Lhe along track position error

The correction [or the static profile for the carth's

oblateness and J2 perturbaltions of the satellite's altitude

resull in sccular perturbations O(cyey) where ¢ is the
magnitude of Lthe correction (ch.S) . The reason {for the
square of the ccecentricity is the Tact that the correction is

a sinusoidal Tunetion of 201 . Bul what is interesting is

the coupling of Lhe corrceetion and the diurnal terms which
resulls in terms ol order O(cey) . Thus the corrcction does
L] 1
not vanish for vanishing cccentricities.
The correction of Lhe density model due to drag resulis
in quadratic and mixed sccular perturbations of order O(cey?)

in all the elemenis except 04 The mixed secular terms

may be neglected because of the size of the perturbation., In

the Lime element °, ., Lthe correction gives rise to cubic and

. . 3
mixed quadratic terms of order O(cy )} .
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5.0 NUMERICAL STUDIES

Most, but not all, of the density model developed in
section 3 has been implemented in a prototype program for the
analytical drag theory. This new program is a revision of the
program developed in reference 1 for the constant dénsity mod-
el. It resides on the UNIVAC 1110 and may be executed in
the interactive mode without the necessity of an overlay. The
second method described in section 4.1 and outlined in Appen-

dix I was used to generate all the necessary fourier coefficients.

Because time did not allow, the corrections in the density

model due to the earth's oblateness and J2 perturbations were

not included in this program. But to test the remaining parts
of the drag model, only eduatorial orbits were chosen for test
cases. For equatorial orbits, the neglected terms become very
small and thus the errors that are observed in the tests should
be realistic. As in the numerical studies of section 2, an
extremely accurate numerical solution was generated which in-

cludes the Jz oblateness and a precision drag perturbation.

The density used in computing the drag force was obtained from

the Jacchia model. The coefficient of drag was set to Cd=2.2

and the ballistic number is an average value for the shuttle
Bn = 100 1b/ft? This numerical reference solution was then

compared to three different analytical solutions, all of which

include the short period effects of J2 . One solution ne-

glected drag-comﬁletely, (NO DRAG) , while a second solution
included drag but considered the density as a constant (CONST)
The third solution was computed with the new program with the
proposed density model (TOTAL) . The results are tabulated
in tables III and 1IV. The size and shape of the different
orbit test cases are given by the semi-major axis d and the

eccentricity e (hp is the perigee altitude). The position

errors between the analytical and numerical solutions are
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displayed by the out of track error (given in meters) and
the in-track error (given in kilometers). The solutions were
compared about one half day or eight revolutions from the epoch

of initialization.

Results of satellite orbit prediction experiments are dis-
played in table III. The first case is a very low, circular
orbit where the drag force is extremely large and the diurnal
effect 1s small. Therefore the major difference between the
CONST and TOTAL solutions is the method in which the density
model 1is corrected to account for the drag's lowering of the
altitude. This correction does give a much hetter solution.
The next four cases, with initial semi-major axis of 6678 km
show that the TOTAL solution gives a general improvement
over the NO DRAG éolution of better than one digit in the
out of track position and almost two digits in the in-track
positiom. The improvement over the CONST model is substan-
tial for the in-track position but is not so great in the out
of track range. In fact, feor circular orbits the CONST so-
lution appears to be better than the TOTAL model. This in-
consistency is most prgbably due to two interacting effects.
First the constant density model results in out of track errors
which are on the order of the eccentricity. This explains wpy
the CONST and TOTAL errors are of the same order for small

eccentricities. The long period effects of J2 are also of

the same magnitude for this relatively high sateliite. These
long period effects have been neglected in thé analytical solu-
tions, and thus they corrupt the estimates of the errors in

the drag model. Tor satellites which have even higher alti-
tudes, the out ©of track error is due almost entirely to the

long period effects of J2 . For ihis reason, the test cases

with a larger semi-major axis are not displayed. One can infer
from these empirical results that the drag model has been re-

fined to such an accuracy that J2 long pericd effects should

be included to maintain a consistent accuracy.
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Another numerical test was carried out to demonstrate
that the diurnal effect is indeed modeled correctly. An orbit
with a semi-major axis of a = 6878 km and eccentricity of
e = 0.04 1is used as the test case. This represents an orbit
with a perigee height of 224 km and apogee height of 775 km,
‘The reld%ion of the orbit with respect to the sun is a strong
factor in determining how much the satellite will be perturbed.
Again three analytical solutions are compared to a reference
numerical solution. However, for these tests none of thexsom

lutions include the J, perturbation, so that the errors are

purely from the drag model. The results are shown in table IV.
The Jacchia model was used for the reference solution and
assumes that the sun is at the vernal equinox. Two TOTAL
solutions are computed; one with the sun at the vernal equinox
(SPRING) and another which assumes the sun is at the first

day of summexr (SUMMER) . As one can see the TOTAL (SPRING)
solution is certainly the most accurate. A large error is
incurred if the sun is assumed to be in summer when actually

it is spring; as seen from the results of TOTAL (SUMMER)

The numbers in parentheses are the errors when the TOTAL (3SUM-
MER) solution is compared to a reference solution where the

Jacechia also considers the sun to be in the summer.
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TABLE III.- NUMERICAL SOLUTION vs ANALYTICAL SOLUTION

Out of track (m) / In track (km)
a e h
(km) (klﬁ’]) NO DRAG CONST TOTAL
6578 0.0 200 4891, /172.8 710./12.0 15.2/0.3
0.0 300 411./ 16.32 11./0.83 40.6/0.39
6678 0.001 293 417,/ 16.48 36./1.83 40.5/0.29
0.01 233 757./ 27.28| 368./12.24 | 50.0/0.008
0.02 166 3815./129.28| 1664, /46.08 | 256./2.41
TABLE IV.- DIURNAL EFFECT
TOTAL
Position Error NO DRAG CONST
SPRING SUMMER
Out of Track 3279. 169. 15. 187. (11.)
(m)
In Track 59.76 25.12 2.32 13.8 (1.68)
(km)
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6,0 CONCLUSIONS

In the past-, the computation of the drag perturbations
by an analytical method has not been feasible for. two reasons.
First, the various element sets chosen to base the past drag
theories have never resulted in a tractable set of differential
equations. This is a reguirement in order to obtain:concise
expressions for the solution. Secondly, the analytical drag
theories have failed because of their inability to model the
nreal world" density as a fourier series. Both of these prép—
lems are elimingted through the development of the drag dif-
ferential equations in the PS¢ elements, and the subsequent
development of a new density model, which closely matches a
realistic density model. -

The new density model has several distinct advantages.
It has a rather subtle yet extremely important advantage in

that the model is a power expansion in i.e., the basic

1
expansion used in Scheifele's development of the differential
equations. The density model is much easier to implement in
Scheifele's theory than, for instance, a model developed in
power expansions of the radius*. That type of model would
require additional equations in order to be placed in the

basic form of the expansion in powers of -

Another advantage of the new density model is its ability
to simulate any density model. In this report the Jacchia
model was chosen for the simulations, but any other model
could have been used. If more accurate density models are
developed, they may also be chosen for simulation and thus
the analytical drag theory can reflect the accuracy of the

newly developed models.

_i..

The Brouwer-Hori model is based on power series expansions
in the satellite's radial distande from the center of the
earth. It was found that these expansions do not converge.
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Additional refinements in the drag force model should
also be considered. The present theory considers the coeffi-
cient of drag and ballistic number to be constants, but they
may also be allowed to vary. The frontal area of a space craft
in inertial hold or in a sun pointed orientation, could be

modeled as a fourier expansion in the true longitude..

Finally, it is concluded that the analytical satellite
theory need not be limited by a simplified drag model. With
the approaches developed in this report, it is feasible to
make the accuracy of the analytical theory competitive with
precision numerical methods, while retaining a concise formu-

lation and guickness of execution.
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If one defines the fourier series
n
A= 2, + zg: (aci cos 1¢ + asi sin 1id¢)
i=1
m
B="5b, + E: (bc, cos j¢ + bs, sin jo)
0 . J ]
j=1
h+m
C = cq + Ei; (cck ceos k¢ + bsk sin ko)
where
C = A*B and n>m
then the coefficients of C are given by
m
= [ ] .L [ [ ]
4 2 b0 + % 2;: (aci bci + as. bsi)
i=1
n m
Z 0 i+j#k
ce, = a *be, + b rac + % .
k 0 k 0 k i=1 j=1 ac,*bec.-as, *bs, | it+j=k
i 3 i j
0 |i-J [#k
+
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.o . . 0 i+j#k
cs = a_bs:~+ b -csk +

n m
i=1 j=1

ac,*bs, +as_ +be.| i+j=k
i 3 i |

0 |i-3]#k

(j-1i) . o
——E—w(aci-bcj—asi bcj) li-j|=x

Although the mathematical form of these equations appears
to be quite clumsy, the algorithm can be programmed in a very
concise and efficient manner. Therefore, the author has cho-

sen also to display the FORTRAN equivalent.
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APPENDIX II

As defined in reference 1

&, = BZI (II.1)
or rewriting

3 =-%QZI =%ecos p (1I1.2)
Therefore

¢y = (%)n e® cos? ¢ (II.3)

The powers of a cosine can be written in a fourier series with

coefficients BE found by recurrence relations.

n
cos™ o = :E: BE cos ko (II1.4)
k=0
or
n
e cos® ¢ = B MK K Lo ko (11.5)
k=0 X
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squationw(IEi5)5canshe mritten, as

n

el ool ¢ = E Bl; en-k(ck cos kol + ‘Sk sin kol) (1I1.6)
k=0
where
C K = t—:‘k cos k(g+h) = Ck—l Cl "‘Sk-l 51
, y o - (I1.7)
S = e sin k(g = C, 5 +C “Sk-l
and
| = e cos (g+h) = Qp,
(1I.8)
éfz = e sin (gt+h) = -Qo,

Therefore from equations (1I.6), (II.3) and the recursive
relations of (II.7) .one may write a complete expression for

the powers of ¢ in terms of a fourier expansion of the true

1
longitude ‘o

=

n .
n_ (B k n-k {(~ .
£y = (Q) B e ((;k cos k01.+ ;;? sin kdl) (I1.9)



