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AN ANALYTICAL STATE TRANSITION MATRIX FOR ORBITS
 

PERTURBED BY AN OBLATE SPHEROID
 

by
 

Alan Mueller
 

1.0 Introduction
 

Often in orbit determination or navigation algorithms
 

one must predict how small deviations from some nominal or­

bit will in time cause the actual orbital path to veer from
 

the nominal path. If the initial deviation is small, then a
 

linear approximation may be used to determine the deviation
 

at any given time. The linear approximation, a truncated
 

Taylor series expansion, requires the first partial deriva­

of the coordinates defining the position and velocity at a
 

given time, with respect to the coordinates defining the
 

position and velocity at the initial time.. This matrix of
 

partial derivatives is commonly called the state transition
 

matrix -


D is governed by the matrix differential equation given
 

by Battin (Reference 1).
 

( = G(.1) 

where G is the matrix of partial derivatives of the rate
 

of change of the position and velocity. Initially, 0 is
 

equal to the identity matrix. D may be determined by nu­

merically integrating the above differential equation. But
 

when one considers the fact that the transition matrix is
 

usually used in some iterative manner, the computational
 

costs required by the numerical integration of the matrix
 

differential equation becomes prohibitive.
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The alternative, of'course, is to determine the transi­

tion matrix by some analytical technique. If the final state
 

(position and velocity) xf is given as a function of the
 

initial state x and the final time tf
 

Xf = Nf(Xo(t0 ), tf) (1.2)
 

then 4 may be determined by taking partial derivatives of
 

this functional relation 

(tf,t) = 

axf 
-
ax 

0 

(Xo(to), tf) (1.3) 

Several analytical techniques (References 2, 3 and 4)
 

have determined expressions for the transition matrix under
 

the assumption that the satellite moves along a two-body or­

bit, all perturbations being neglected. But as Rice,(Ref­

erence 5) has pointed out, this assumption may result in non­

negligible errors if the perturbations are large.
 

For artificial satellites orbiting near the earth, the
 

J2 oblateness potential contributes a strong perturbation
 

which may not be neglected for accurate satellite orbit pre­

diction. A first order, canonical analytical theory by
 

Brouwer (Reference 6) and rewritten in non-singular elements
 

by Lyddane (Reference 7) does account for the oblateness per­

turbation. However, the complexity of the theory makes it
 

somewhat cumbersome to use as a basis for developing an ana­

lytical J2 transition matrix. However, significant advan­

tages are offered by a J2 satellite theory developed from
 

a new set of canonical elements proposed by Scheifele (Ref­

erence 8). The elements are in an extended phase space.in that
 

eight (instead of six) variables describe the state. They
 

also have, as their independent variable, a quantity related
 

to the true anomaly instead of time. The set is similar to
 

http:space.in
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the Poincare elements and are therefore named thePoincare-


Similar (PS) elements. The PS elements are non-singular
 

for bounded orbits.
 

Recently, the elements have been'applied to both numer­

ical and analytical orbit prediction. The expressions for
 

converting to and from the PS and Cartesian state and the
 

expressions for the equations of motion are given by Mueller
 

(Reference 9). The PS elements have proven to be a very
 

accurate and stable set for numerical integration (Reference
 

10). And as was said, the PS elements have been applied
 

very successfully to the analytical prediction .of orbits per­

turbed by oblateness in a theory by Bond and Scheifele
 

(Reference 11).
 

Two aspects of the PS elements allow for a very simple
 

but accurate satellite theory. Because one of the PS vari­

ables is associated with the true anomaly, the Hamiltdnian
 

of the zonal oblateness problem becomes a finite expression
 

in the elements. The result is a more concise satellite
 

theory. The other aspect is the appearance of the total en­

ergy (instead of the osculating two-body energy) -as-a canon­

ical variable which describes the mean motion. Since a
 

"second integration" or a different kind of higher order pre­

cision is unnecessary, the initialization procedure to find
 

the "mean elements" is straight forward and no iterative pro­

cedure is required. The result is a considerable improvement
 

in the accuracy.
 

Because of the simplicity and accuracy of the canonical
 

analytical solution based on PS elements, it becomes a log­

ical choice on which to base a new analytical state transition
 

matrix. The intention of this paper therefore, is to derive
 

a completely analytical singularity free form of the state
 

transition matrix for orbits perturbed by an oblate spheroid.
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2.0 The PS Element Formulation and.Satellite Theory
 

The derivation of the PS elements and their correspond­

ing J2 satellite theory have been described in detail in
 

(References 8, 9,and 11). A short description of the elements
 

and the satellite theory will be given here with all necessary
 

equations listed in Appendices A and B.
 

Expressions in Appendix A describe the relations between
 

the Cartesian state vector and time
 

x = (Xl, X22 , x 3, x4 = Cl' X5 = X2 , X 6 = x3 ) 

t = time
 

and the PS elements
 

a= (al 2' a3 ' 4' 5 = P, a6 = PIa 7 = P3 ' a8 = P4)
 

The relation between the time t and the new independent 

variable T is given by 

dt r 
- = - (2.1) 
dT q 

where r is the position magnitude and q is given by
 

q - 2 5 
= 2 c 2+p22-p 1- ) 

The hamiltonian describing the motion of a perturbed 

satellite is 

p 

F = p + c F (2.2) 

41 
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where r?
 

cF = - V (V = perturbing potential) 
q 

The canonical differential equations are expressed as
 

do. 3F dp. F 
I, - , (j=1,2,374) (2.3) 

dT 3p dT 3a.
 

and thus for unperturbed motion (V=O) the solution of these
 

equations is simply
 

1, T a 10 

(2.4)
T+
 

4 (2P40),# '40
 

All other elements are constants in the unperturbed case.
 

2.1 The J2 Satellite Theory
 

A complete first order solution of the motion of a sat­

ellite perturbed by oblateness has been developed by Bond and
 

Scheifele (Reference 11). A brief outline of the solution
 

will be given here.
 

The hamiltonian for the J2 perturbed case now reads
 

2
 

F = p1 2/-4+ E F1 (2.5)
 

where
 

r r)31(2.6)
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s -
3 

J2 1 R 2 
and 


2
 

R = mean equatorial radius 

i, = Gravitational constant 

J = 	 oblateness coefficient. 

The differential equations are solved by a method of Von-


Zeipel. The elements undergo a canonical transformation thru
 

a determining function S1 so that the short periodic terms
 

are eliminated from the hamiltonian. The equations of motion
 

in the transformed system 0, may then be solved with an ac­

curacy of order s
 

The solution algorithm can be divided into three steps:
 

1. 	 Canonical transformation to eliminate short periodic
 

terms:
 

o = 	 a + Es (,po)kPko
 

k=1,2,3,4 (2.7) 

as 1 

ko ko -. s 
aoko 

(a 0 

2. 	 The analytical integration of the transformed equations
 

of motion:
 

a', = o0 + A't
 

a2 =o0 c (A2T) - 02o sin (AT)
 

03 =030 cos (A3T) - p sin (A3T)
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4 =40 A 4 

(2.8) 

0! = P1O 

P2 20 2) 20 (2T)
' = 'o cs (A2 ) + a' sin (A 

p; = P0 cos (A3) 3)+ 30 sin (3T)s' (A
 

4 40
 

3. The back transformation:
 

=
k ap-t ,.'
as-
Pk
 

(2.9)
 
±
+ as 1 (1',p) 

=kOkqPk aa''P. 

The partial derivatives of the determining function S
 

and the expressions for A1, A2, A3 and A4 may be found in
 

Appendix B.
 

The relation which gives the back transformation in
 

Step 3 is simply the inverse of the relation in Step 1, and
 

has an accuracy of order c
 

If one wishes to determine the state a as a function
 

of a specific time, then an iteration procedure is required
 

which is similar to the iteration to solve Keplers equation
 

in classical theory. A requla-falsi method or a tangent
 

method using equation (2.1) may be used to solve the non­

linear equation. The algorithm fox the entire procedure
 

is then
 



-16­

(2.7)

1. given a (T=0) - ' (-r=0) 

2. given a' (T=O) and T a (Ti)
 

(2.9)
3. given a' (T.) (T
 

(A.12)

4. given a (Ti) -- t. 

5. if Iti-tI < tol -- stop 

(2.1)

6. given t. -- -+ i l 

7. go to 2 

The number above the arrow indicates the equation by which
 

the calculation is made. Tol is the maximum error tolera­

ble in the iteration scheme.
 

3.0 The State Transition Matrix
 

Suppose that the final and initial states are defined
 

in the PS space as af and a 0 Then the PS transi­

tion matrix T is defined as
 

T (tf,to) = - (tflto0) (3.1)
 
30 

The Cartesian transition matrix D defined in equation (1.3)
 

may be determined from T by the chain rule
 

D (tf,t 0 ) = T Da2. (3.2)
@af x a 

The development of T is described fully in Section 3.1 while
 

the partial derivatives of the Cartesian and PS state are
 

derived in Section 3.2.
 



-17­

3.1 The PS State Transition Matrix
 

Since the PS variables have as their independent variable 

a quantity related to the ttue anomaly T , it is convenient 

to first develop a transition matrix which is a function of 

the initial and final values of the independent variable. 

(Tf'T)* = ('T°) (3.3)
 

0
 

However the matrix T* in no way equals the matrix T de­

fined by equation (3.1) for reasons to be made clear in
 

Section 3.2.
 

Like in the analytical solution which is obtained in
 

three steps, the matrix T* can be expressed asa product
 

of three matricies
 

T TI T T3 (3.4)
 

where
 

Da(- f)

T1 (3o((f))
 

'(T f)
 
3T'( f)

2 
 0 ,f) 35'(T ) 

T3 (o(TO)) 0 

aoF(T ) 

The values of 0 ' which are used in the corresponding
 

matricies may be obtained from the analytical solution.
 

Since the partial derivatives for the matrix elements of T,
 

T* and T are to be derived from the differentiation of

2 3
 

the analytical solution, it will be accurate up to terms of
 

order 0(C2 ) only. Therefore. it is adequate to evaluate
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the matricies with values obtained from the analytical solu­
tion and not a numerically computed nominal solution. However,
 
it is possible to insert either an analytically or numerically
 

integrated solution which includes other perturbations, such
 

as drag or higher harmonics. This may result in a more accu­
rate model and is a possible area for research.
 

By denoting an element of a matrix as
 

[Tj =ak (-r f) 

kj Da.(- ) 

then each element of the three may be deduced from equations
 
(2.7), (2.8) and (2.9), and expressed as
 

for n = 1,2,'28
 

D
 
= kn + T ]k 


k+4''
 

(k=1,2,3,4) (3.6)
 

k4 l[T] ~ .k+4,n1 

for j = 

[T3] = mj E
 

mj Cfm+4 Dj
 

(m=1,2,3,4) (3.7)
 

2S1[T3] m+4,j = T3+,*+ Mm4jo
 
m3C
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LT2 Aim- in,Im T 

1
t] = - O6 T A2 + 2m cos(A 2 T)
 
2m
 

- '6m sint (A 2 T) 

T 2 aTrA + I, cos(4 
] - 77= 3m 3m 3 T 

- J17m sin(A T)3 


[TJ = T4m (3.8) 

[T5] 5m = q)5m. 

[T2= =o2s(A2 tA +62 2 t) 

+ P2m sir(A2 T) 

T A + 7 oo(A 3 
T ) 

T 2] = a 

+ P3m s-(A3 T) 

[T2]8m '8m 

where qjkj is each element oi the identity matrix. The
 
partial derivatives Of 
 S I and A can be found in Appendix
 

1.m
C. 
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3.2 The PS Transition Matrix in Time
 

In most applications of the transition matrix, it is
 

preferable to deal with a matrix of the form
 

T(tf,t0) (3.9)
 

instead of
 

T* (Tf,T) (3.10)
 

The subsequent considerations are to be done for any analyt­

ical transition matrix whether perturbed or unperturbed or
 

whether time or some other variable is used as the independent
 

variable. The reason is that no satellite theory can be ex­

pressed as a closed form function of time. In classical
 

theory one must introduce the eccentric anomaly. Similarly,
 

a new independent variable, the true anomaly, is introduced
 

in the PS formulation.
 

From equations (2.7), (2.8) and (2.9) one may write
 

the solution in functional relations as
 

a' = a'(ao) 
0 00 

at = a'(aT) (3.11) 
0 

o = a(a') 

which are used to compute the PS transition matrix
 

aa aa Da' Da' 
T =- = -0 

aa aa' 3a' 3a 
0 0 0 

or 

T = TI'T2 "T3 (3.12) 

a a' are vectors 0kGI E V) 

OF POOR Q-UpCN 
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If T is to be of the form defined in (3.9) then T2
 

must be defined as follows
 

3o 3d' 3r' 3o'T2T2 - ac lIol ± I[ 

0 ~J0 

[11 +_ 

or
 

ICY 3r-
T=T T22
=* + - (3.13) 

0 

3I ' IT 

The additional term - - results from the property that 
IT Sc'0 

the end value of the independent variable T is now deter­

mined from the given value of the final time and initial PS 

vector c . However, there is no explicit function for r 

in terms of the variables a' Thus one must determine the 

ST 
values of the vector in a manner which is very similar
 

vO
 
0
 

to the method in which the partial derivatives of the eccentric
 

anomaly in classical theory are determined (Reference 2).
 

- Since now the final time is to be a given value, it is 

not determined by the initial conditions G Therofore, 
0
 

It at
 
- = 0 or - = 0 (3.14)
 
2o 35'
 

0 	 0 

By the chain rule
 

at at 3 tau') St So o' ST 
+ 
 = 0 

So' So Ia S3I' o' ST 30' 

from which one may deduce
 

ST It So Do' * t So SDo 1 
S S Ia S ST(3.15) 

0 	 0 
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According to the definition of the total derivative and 

since time is an implicit function of the independent vari­

able T, 

dt at aa ac' 
(3.16)
 

dT 3a 3c' 3T
 

Observing the definitions of T and T in equation (3.5)
1 2 one obtains a concise expression for the desired vector
 

aT at * dtL -I 
= -- T TT (3.17) 

Thus from equation (3.13) the expression for T2 is
 

ac', at dtl -- T T* - (3.18)T2 = 2 3T a 1T2 dT 

3cr
 

The expressions for may be found in Appendix C. While
 
aT
 

at
 
those for - can be found in Appendix D.
 

3c
 

To summarize, one can use expressions in equation (3.6),
 

(3.7), (3.8), (3.12) and (3.18) to compute the J2 state
 

transition matrix in the PS element system.
 

4.0 Cartesian Transition Matrix
 

From equation (3.2) one,knows that the Cartesian transi­

tion matrix (D may be determined from the PS matrix T by
 

xf 30
 ¢ =-T o
 

3 0f ax 

This leads to a delicate situation in which one must
 

transform an 8x8 matrix to the 6x6 Cartesian matrix. To
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ease the transformation, introduce an extended Cartesian
 

space y This state not only includes the six Cartesian
 

position and velocity coordinates, but also the time and­

the total energy.
 

,
y = (yl=Xl, Y2=X2 Y3=x 3, y4 = time,
 

Y5=x4, Y6 =x5 , Y7=x 6, y8 = energy)
 

An 8x8 extended Cartesian matrix, U , can be determined 

by chain rule as 

U Yf T a (4.1)
 

auf 
 ay°
 

As stated before, the Cartesian state and time are given
 

as a function of the PS elements. In addition,.the canonical
 

transformation from y space to a space requires that
 

a8= Y8 (4.2)
 

If one defines the matrix
 

Dy
 

V =- (4.3) 

then W is a Jacobian of a canonical transformation and thus
 

is a symplectic matrix obeying the following inverse relation
 

-
W =-= JW J (4.4)

Dy
 

where ( )T means transpose and J satisfies the relation 

J2 - I
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Thus by using canonical elements one gains an advantage
 

in that only expressions for IV need be determined. It's
 

inverse may then be found by rearrangement of elements inside
 
ay
 

the matrix. The expressions for the matrix - can be found
 
3a
in Appendix D. 


Finally, if one observes the fact that the energy - y
 

can be expressed as a function of the .Cartesian state 
x
 

1 11 
8 - (x2+x 2+X 2) +- + V (x) (4.5)

2 456 r
 

where V is the perturbing J2 potential, then 0 may be
 

expressed in terms of the extended matrix U by the relations
 

for 	 n=1,2,3
 

m=1,2,3
 

n,m 	 n,m + n,8 ax 

nf,3 =[U] n, + ,8m+m+3m+ 1 m+4 , a58
(4.6)
 

SLUHY8
 

n+3,m n+4,m n+4,8 axm+
 

[n43,n+3 I 1 +
LJ+m Lf+43a
 

wY8 	 av
3 


where - - X. + ­
ax. r aax.1 	 1 

i=1,2,3
 

a3Y8
 

3
axi+ 3
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The inverse of P may be determined by observing that it too
 

is a Jacobian of a canonical transformation. Therefore
 

4-I =- jT . (4.7)
 

5.0 Numerical Experiments
 

Direct comparisons of the analytical transition matrix
 

have been made to a transition matrix which is obtained through
 

numerical integration of the matrix differential equations (1.1).
 

These equations include the J2 perturbation. To demonstrate
 

the accuracy advantages of the 2 transition matrix, the
 

simple conic matrixt is also compared to the J2 numerically
 

integrated matrix.
 

Accuracy of the analytical matrices is determined by 6
 

defined as
 

6 6
 
Z Z AKL - NKL ) 2 

K=I L=1 

6 6 
N2
E E 

KL
K=1 L=1 


where
 

AKL is the K,L -component of the analytical matrix
 

NKL is the K,L component of the numerical matrix
 

Both A and N matricies are in normalized units so that
 

the summation makes sense.
 

Three orbits have been chosen for test cases. The ini­

tial conditions of each orbit are listed in Table I. Figures
 

1 through 3 give the time history of 6 over about 3 revo­

lutions. On each figure appears two curves.
 

t Formulas for the conic transition matrix elements do not
 

contain oblateness (J2 ) effects.
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One curve is the time history of 6 using the J2
 

analytical matrix and the other is the time history of 
 6
 

using the simple conic matrix. Note that -log6 is plotted
 

with time and is representative of the,number of accurate
 

decimal digits. Curves which appear to the top are therefore
 

more accurate.
 

In all three cases the conic matrix degrades to less
 

than two digits of accuracy within two revolutions whereas
 

the J2 matrix maintains four to six digits of accuracy.
 

By comparing cases 1 and 2, one finds no degradation of ac­

curacy for circular and equatorial orbits.
 

TABLE I. (ORBIT TYPES)
 

a(km) e I Q ! W M 

Case 1 6677.7 0.015 300 00 00 200
 

Case 2 6677.7 0.0 00 00 00 20'
 

Case 3 13266.2 0.5 0,.00 0 00 200
 



CASE 1.
 
' ' 


I 

Ll 
3.Z 

-log6 "3. 

2.q 

I.S ID I 

Time (Minutes) 
Figure I 

MATRIX ACCURACY 



2, /CASE 

4.0 

-log6 3.E 

I 

'Z.E 

Conic 

2.9 

* N 
w m -. -. -N 

Time (Minutes)
Figure 2 

MATRIX ACCURACY 



CASE 3
 

-log6 3S 

1 

Cq "3.0 

3.S 

Conic 

aI IS I M Im 

I'-N 
NA m4 

I'I 
14 
1 

i 
1 

N /S
IAID 

1' IA1 

Time (Minutes) 
Figure 3 

MATRIX ACCURACY 
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6.0 Conclusions
 

An analytical state transition matrix and its inverse,
 

which include the short period and secular effects of the
 

second zonal harmonic, has been developed from the non­

singular PS satellite theory. The fact that the indepen­

dent variable in the PS theory is not the time is in no
 

respect disadvantageous, since any explicit analytical solu­

tion must be expressed in the true or eccentric anomaly.
 

This is even the case for the simple conic matrix. The PS
 

theory allows for a concise, accurate,and algorithmically
 

simple state transition matrix. The improvement over the
 

conic matrix range from 2 to 4 digits better accuracy.
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PRECEDING PAGE BLANK NOT FILM'N) 

APPENDIX A 

COTOPS 

Given x, ±, and time, transform to 

Evaluate the potential, V. 

Then sequentially compute: 

a and p 

P4 L 
P 
- -­
r 

1 

2 
( 2 

1 
+ 2 

1 
+ 2 ) -V 

1 
(A.1) 

G 1 =x 2 x 3 -x 3 x 2 

G = x3 X -x I x3 

G3 11 x2 

/G= + 

=~ ±2 

x2 1l 

G2 

3, 

H = 3 

P= 

q= G 

= G 

1 

-­

2 

-

¢+ 

G2 - 2r 2 

i 

2 

V + - (A.2) 

P - G - + 



a3
 

=
R
 

r Cos a, 


r sin = 

017 = 

r-1
 

Z, 


1 ~2P HI 

- 2G I 
a1 

{2(G + H)12 

-3 2G2 ' 
x3 

{2(G + H)}" 

= 2G (A.3) 

(A. 4) 

{2(G + H)}22G(-) 

rR 

1 

r2oG1=*a 

x1I + R* 3 

x2+ r P3 

arc tan 
r Cos 

(A.5) 

x* x 

(I(-= 
Q 
I 
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z2 = 

2 

a2 = 

Ip 

Q(2q - G) 

Z2 Cos o1 - Z sin a1 (A.6) 

P2 = Z2 sin aI + Z1 CosfI (A.7) 

E - 2 arc tan{ 

( 1 + 

2* 

'-e e + Z Q) 

a 4 =t -- -i1/2E
(2P4 ) 

- - -
P 

Z2 Q A-2 (A.8) 

PSTOCO 

Given a, p, transform to 

Sequentially compute: 

x, x, t time. 

Z1 = 

ZZ = 

Q = 

p2 cos aI 

P2 sin ai 

1 

F 4 

L p4 

- a2 sin ai 

+ a2 cos a1 

~' 

-(CF + P2 

2 
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e cos 4 = Q 

e sin $ = Z2 Q 

= - (p2 + a) + 

1 + 

p 

e cos 

R = p3 sin 0I + 03 Cos I 

G = p 
I 

-- (CF
22 

+ p2 ) 

H = G ­

1 

- (p2 
2 

+ G2) 

R* 
rR 

2G 

x= - R* 03 + r cos a1 (A.9) 

x - R p3 + r sin 01 (A.10) 

x 3 =R /2(G+ H) (A.11) 

1e2 
= 
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E - = -2 arc tan 
i + 

esin 

+ e COS 

04 + (E4+(2P4 )7:'P - -

r 
- e sin 4)) (A.12) 

q = - a + P2 pi 

e sin 1 

R 

:2 

= 

= 

rR + Rr G 
= - (p 

2G r2 2 

- R 0 3 + r COB o 

- R P3 + i sin oI + 

Cos 1 -

G 

- sin o 
r 

- cos 0 

0 sin a) 

(A.13) 

(A.14) 

3 = R /2-(G+ H) (A.15) 
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If One defines 

as1 

then
 

1
 

2
5 lk (wky + wy k0 w3 k - ------ ) 

a 

where
 

A
•Q"

2pq 

1'
wk = Qk -Q(k. ~)
2
p 2q2 k + 

3 

t=-1 Ti + 
Y Z (6 t 

Yk = 3E (6 
,5= klg + k 3 • ",
 

1
G CF - ­
- (u2 +a2)

2 2 

Gk 0 for k=1,3,,4,7,8
 

0=-ao
 
2 
 2
 

G0 = 

6 6
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Here P'°,k' q, qk' Q' Qk' 6V 

6%k' Ytk are'display~ddc 

1 1 

p 2 +a2 

2-ay
P2 2 

tm, YP' 

2 

8 

p and 

P6 =-2 a06 

(2a5 3/ 

Pk 

q 

=0 

= -

for k=1,3,4,5,7 

1 

- (o2 + U 2 - a5)2 + 

q2 = - G2 

1 

2 1 

2) 2 

Q22 

a82 

Q27 2 62 

Q6 
2Qp2 

8 
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Q8 = 
2 

2QvI2 

Qk = 0 for k=1,3,4,5,7 

B 1
6i =- a6 -- (a c -a2s)

3 2 

s 06 1 
+ B
612 = - -- 2 - - ( 6c2 ar2s2 )

12 2 3 2 

B c 6 1
 

3 2 3 6 -- ( 6 c6 - 2 s6 ) 

6
 
6 = - Bk - - (a6 ck - G2Sk) for k=1,3,4,5,7,82k 3 k 


B 1
 
Yl - a 2 - (a6s + a 2c)
 

3 2
 

(B c' fG2
 
+ 
 (a6s2 + a,2c 2 )Y12= + 2 t B 2 ­

2t 

S 02 1
 

YI 6 = - + B 6 + - ((Y6 s 6 + a2 c 6 ) 
2 3 2
 

a 1
2 Bk + - (6s k + a2ck) k=1,3,4 ,5,7 ,8
 

lk 3 
 2
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C 

2Q
 

62k = A2 - 2Q Q 1k- cjd 

s 
Y2 = -

2Q
 

Y2k 
 - Qk 
- Sk
 

6 (F2 s 0r60C) 

632 6 (a2s + 02C2 + s) 

1 
636 = - - (02S +0606c6 c 

6 

1 
32 = - - (a2s2+ 20k k ,24 


66 

1 
Y32 = - a s26 2 c ) 

1 
Y3= - (o6 s6 - 26) s 

+
Y36 = (a2 - kc- s a 6 +c)6 

1 

6 

20k) k=1,3,4,5,7,8
3Sk = - (06 sk ­
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= in k a, 

= os Z 

Here c, s, ck ' Sk, B, B H and Hk are displayed
 

2 2 

)c= (G+H) (7 

2
 

H c 
03 - (G___ (G+H) 3 

(G+H) 

Hec
 
c7 ( + (G+H) 07
 

G+H)
 

k =k k c for k=-1,2,4,5,6,8
 
(G+H)
 

s = - (G+H) 03 07
 

H s
 

3 =G+H - (G+H) a7
 

Hus
 

7 - (G+H) u3 
G+H 

(Gk+Hk)
 
Sk = s for k=1,2,4,5,6,8


(G±H)
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G2 H2B = - 3 

Bk = 2 (G Gk - 3H Hk)
 

1 

H=G-- (2 + 2) 
2 

H = - r3 

H7 -
 7 

H = Gk for k=1,2,4,5,6,8 

Abbreviations used in the integration of the primed system
 

A I + j f4 (b - 2)
 

A f b 
3 2 2 

A E: (b - + f b + A2
2 2f Lf 3] 3 

A fl(b 2 +A
1 2 f 3) A2 
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1 

f ­ pq
 

f2 - f2 (p + 2q /pp)
 

4 

f2 

(p )3/2
(2P4 

(# p p + 2q /jp') 

b =1 --
H2 

Gz 

2 

2 

G 

H 2 

b3 2G HG 
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If it is defined
 )

(S 


= ­

3 
 Fa0 

then the expression for 
 lkj is as follows
 

3 lkj =- Q ,(l ~ + Sl Gk ) G± [ky +Wk y + 

G2
wyk+ w (Gkj + .G 

whreSk Wk
 

where S lk Gj, Wk, Yk' y, G, and w may be found in
 

Appendix B.
 

The expressions for ykj' -Wkj and Gkj are:
 

i( 6 k jykj z t + kj 'Idj- 2,3,.*.,8 

3 += Z (6jj s-- I6t) 

( I z - 0 -i 
2(5 r + y9 %)11 


Wk [ ____ 2Wk] 1 Fq k 
2
INkI -J (pJq + qjp) + [P 

2 2
%2p q


- Qj (Pqk + qPk) - Q (Piqk + Pqki 
+ qjPk + qPkj]
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=Gjk 0 	 j=12, .8 except j k 6 
k=1,2, G j= k =2 

G22 -1 , G =- 1 

where , , k' yj' s, YY, P, q Pk' 

found in Appendix B.

qk' Q, Qk are 


Expressions for 6Zkj and J.kj are as follows:
 

63jk 
 63kj
 

= 
a - 1(a s + '6 ckj) for k = 1,3,4,5,7,'83kj 2 kj 	 j= 1,'2,'-',k
 

6 1 	 1,2+32j 6 2 S2j '6 0 2 j + Sj
 

_ 1
 

6 1=--(a s +a c+ )
+
36j 6( 2 6j '6 C6 j + 'j
 

Y3jk = y3kj 

Y3kj = (6 Skj 	- 2 ckj) k = 1,3,4,5,7,8 

c -. j =1,2 
Y32j 606 s2j - 2 c2j j 

(a1 s	 jsj 1,2 . .
+
36j 	 6 
= 6 s6j - 02 bj s 	 6
 

- +i 6 Q k 1 	 ) k =1,2,---,8 
6 2kj 1 62k Qj + 62j Qk - 2(Q Qkj - Ckj k = 1,2,- ,8 
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1E 
 + 2_ k+( s 

Y2kj -- Q( 2 k Qj + 2 j 'k +(Q Qkj - Ski 

6ijk 
 l
1kj
 

Bk61kj 3 B j -2(O6 Ceki - '2kj2 sk) "k =1,.-,1,3,4,5,7,8 

G6 B ­

612j 3 2j (6 C2j - 02 82j -sj) 1,2 

6 . 10 


16j 3 B6 +B - -(26 6J - G2 s6j + cj) i =
 

=
Yljk 
 Ylkj
 

Tlkj 3 Bkj + 2(06 Ski + 02 Ckj) k = 1,3,4,5,7,8 

=,Y 1-i 1
 
= + S2j + '2 .2j + cj) = 1,2

12j §(G 2 B2j + B.) .(6 

+
YI6j = - B6j '(a6 s6j + 02 C6j + sj) j = 

c, c., s. and s.j may be found in Appendix B.where B, B., 


The expression for Skj, Cki, Bkj, qkj' Pkj' and kj
 

are listed here:
 

Sjk 
= Skj
 

SIi = s4j '8 =0 j= 1,2,--,8
 

1 
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=2 7 03s 2 2 

s23 2 a7 (r2 

s25 = 26 0 

s27 =2 a2 (3
 

s3 3  - 07(G3 + H 3 - 2 o3) 

s35 - 7(G5 + H5 )
 

36 0 7(G6 + H 6 ) 

s 7 - (G + H G 2) 07 (G7 + H)
37 3 7 7 7 

s55 = 56 =0 

57 2 3 

66 = 2 07 

s67 =2 3 6 

s 77 = - C3(07 + H7 - 2 a7) 
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ckj 

22 

= 

= 

0 

2 

3 

k =1,4,8 

-

7 

c23 =2 a3 02 

c25 0 

C26 0 

c27 

o3 
33 

=-2 

--

2 07 

2 27-3
(2 + G 

2 
+ H) 
H) 

-

3 
±3GH 3 -a ) 

3) 

35 - _ 3 (G 5 + H 5 ) 

036 -- o3 (G 6 + H 6 ) 

037 = _3(07 + + H7 ) 

55 56 0 
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57 2 7 

2 2 

c6 6 =03 -07 

067 =-2 6 a7 

2 2 

077 -(U 2 + G + 9) + a07 (G 7 + H 7 - 07) 

B
jk =B ki 

Bk. = 0 for k = 1,4,8 

B = - 2a (Gj - 3H.) j = 3,4,--",72 


B22 - 2 02(G - 3H)- 2 (G - 3H) 

B = 6 a03 H.3 j =4,5,--,8
 

B33 = 6 °3 H3 + 6H
 

B5j = 2(G. - 3H.) j = 5,6,7,8 

B6j = - 2 a6(G J - 3Hj) j = 7,8 
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B66 - 2 a6(G 6 - 3H - 2 (G - 3H) 

B77 =6 a H7 + 6H
 

B78 =6 07 H7 

The expressions for H. and G. may be found in Appendix B. 

qkj = 0 for all k & j except 

q2 - 1 

q = - 1 

88 -

3q
8 

208 

Pkj = 0 for all k & j except, 

P2 2 

P26 

= - 2 

P62 

p+ ­
262p 

_P2P6 

= 2p 

P2P8
 
P28 P82 = 2p 

p 2 ( p & 2 

p =-2+ p66 2p
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p 6p 8 

P6 8 = P8 6  2p 

3p 8 P82 
P88 - + ­

88 a28 2p
 

= k & j except
Qki 0 for all 


Q2
a8 28Q2
-
Q22 
2QV' Q 

Q2 Q6 
= ­

= Q 6 2
Q 2 6 
 Q 

a88-Q
Q28 = Q82 = 


2Q- Q 

a 6 Q6Q8
Q68 = Q86 =­

2QP2 Q 

8 6
 
Q66 2
 

2QP2 Q
 

Q2
Q8P8 
 8--
Q88 = 


2p, Q
 

Akj is defined as follows
 

AA
k


Akj --.
 



Expressions for Akj are:
 

A4. =[24. (b-2) + f4 ( 2-)] j =1,2,--,7 

A4 8  [ 4 8 (b-g)+ f 4 3 "- 3/ 
(283 

A 3j A 2 f b3bb3 + +--+j 

( b fA]2j = 2j + f2 + A3 j = 1,2,-- , 

AIj 2L± 1 b- ) + lj + A2 j-

where
 

1 f lu gb
f. =- b. =-­
1 3o ] 3o 

j :1 
f.
 

lf 
f4j 3o.f2j 2 


3 3 3
 

3b 2 bbb2j 3 . 3b 3j go. 
2 3 3 

Expressions for f, fil f2' f4l b, b2 and b3 may be 

found in Appendix B.
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If the abbreviations are made 

z = 
1 

v p + 2 q (pp) 2 

1 
z. = p.( 

then the expressions for 

b3j are: 

± 

f., 

q 
p9 

'U 

b, 

+ 2 q. 

f j' 

(lp)2 

f2j' f4j' b2j' 

fi = - f2(p qi + q pj) 

flj = 2--

f 

+ 1%. 

f 2j f Pf21±j J j 

f Ct, Y 

f8 

S2.f4f 8 

f 

f2 

(28) N 

3f4 

2O. 

bj 

2H 

G-

H 

(d Gj H 

2j 2HG 3 (G) 3H 
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2
 
2-b 3 - (2 H G. - H.) 

G j 

d'
 
Expressions for are:
 

dT
 

dal
 

dT
 

da' 
= -aA 2
 

dT
 

dT 
- = G A2
 

da'
 

dT 
do'
 

= = 0
 

da'
 

di
 

da'
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if one defines
 

--Ykj
 

:3
 

then x r 3 -r Cos a G s n 0 )
 

a, ­ 3

I r i 


Yll 2G 

xar R 
= _-- 03 O2

Do22 
r 2 

6 3r
 
- - Cos al
2G
 

Y4 = 0 
0
Y14 


-pCsC Sinr rp 3 o3
x 2 

3 


- + r eCos F - 2G (P 3 -

Y21 r o I 

22
 
Y22 
 ... . " 

I 



-68­

-r 

'1.v23 '- P'3' 	 , I1 , 

-(v 0 

Y24 0
 

rx 3 
-a3 + ­inai)
r 	 - G s cos
(p 3 	 o = - - 2(0 + H) 313G 	 r 12G31 


+ 3rx 3 
= - o2 Y31Y32 

r 2 

XC1
-O03 


y3 - 2 Y31 2x 2( + H)'

+2G02(
Y33= 2 y31 

y 3 4 =0 

I-1(E- ) -r /iwr 3(e sin ) 

e2 e sin 
+ e sin 3 -e + r2 cos)	 e(e 

k=1,2,3
 

=
 Y44
 

3 R
y 1Y5 = -G
 

G 

x I1 r 	 R 

Y 16 = . - 3 P 2 ­
r @p 2 G
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-a r
 

Y17 - sin a1
 
2G
 

x1,ar. 
r ap


4
 

P3R
 
Y 2 5 - GG 

Dr R
x2=Y26 -- P3 P2 r aP 2 G 

* P3 r
 

Y27 = -R - - sin al
 
2G
 

x2 r 

Y28 ...r ap 4 

H 
Y35 = - x3 -

G(G + H) 

xH x r
 
Y36 = P2 x3 
 +
 

G(G + H) r aP 2 

P3 X3 + 2 (G + HY37 

2G(G + H) 2G
 

x 3 9r 

Y38 

r 3P4 
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___ __ ___2___ sin ) 
4,k (2pQ-2 L apk P k
 

Y48 = 

a 1 - e 

+ e sin 4 DP k 

3. x 4 - a4 
N 2148 4 I4 

+ 

r 

P 

a(e cos 

3Pk 

4) 

1 - e sin 

k=5,6,7,8 

]­

for k = 1,2,3,4: 

Y5k = - - 03 

01 af 

r + eQS 

k 

3 

I­

in a 

0 

+ -

ra 

G 

s n 

r 

CY,G 
a 

sinQ 

r (Y -r 

do, 

o0 
l 

6k =-3 
k 

k-

+ sin 0 + r 

Dokk 

k 0 

- -­
r2 

Cos a I
1 

-
a 

+ 
r au k r 

0U 
[,0 
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'9(G + H) +2(+H]2af
Y7k ­

H)2
2(G + Th + 
3ok 

for k = 5,6,7,8: 

f Dr G r 
Y5k = -0 -+ Cos a +- sin ­@ak 31 r2 1rk
 

sin al G
 

r - U
k 

Y~ = -f 03 - + sin a I - o s a I -

Y 1
-kk "32 1
 

Cos G aoG 
+1
 

r Dak 

Y 3(G+H) +F2 +H) f 

Y7k 2(G + H) +k 0 k
 

The derivatives of thb energy are
 

9 8= 1 
 -- =0, (k=1,2,---,7)
 

O08 
 r 
 k
 

Other abbreviations required are:
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3r
 
- = 0 k=l and 3 

ap
 

Dr r 2 - r Q Cos aI ZlP4 P2 

aP 2 = P F2 /!P1- I 211a2Q P2}1 

Fr - 2q(2P4 )
 

p2-P 2 44 20P4 1p( 
 J4) 
317 
ar
 
- = 0 k=3 and 4 

2
a r r

-=- Z2 Q 

Dr I au 7p_P 1Pp P 
_ 

302 L2 - Q o1-2pQj 1Q Cos ap2Q2 vr2 - a2 

{(E- -r/p ((e sin 4) 

(1+( + T - e- + e cosvZ)o k 

- sin ­L/3(eco
 

- sin e -- + 
'L_Ok 30 k I 
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aE 

Sk 

-rp 

(1 + 

f3a(e 
'(1 + 1 - e + e 'cos 

sin 

a) k 

p) 

- e sin + ( cPkP] 

a(e sin ¢) 
-0, k=l and 3 

3(e sin 

P2 

@(e sin*) 

aP4 

- Q 

= 

s)sin a -

L Q 

2 

Z2P4P2 

2p2Q 

a(e sin 4) 

9ky 
0, -k=3 and 4 

3(e sin 

Do1 

4) 
- e cos 4 

9(e sin Q) 

Qos - 2 

P42 

2p2Q 

a(e cos 

@Pk 

= O, k=l and 3 
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3(e cos ,) Zlp 4 p 2
 
________ =Q cos a1 _ _ 

-9p2 1 2v'2Q 

(e cos 
 F)[Qz 
 -


aP4 - L2P4 2P4Q(2 pJ 

a(e cos ¢)
 0 , k=3 and 4 

@aek 

3(e cos 

= -e sin 4 
@a1
 

a(e cos Q) n a ZlP4 2] 
Da2 2p2Q
 

= 0, k=1,3 and 4 

aek 

2
a - e- -a2 =z- 2r24 

P
Do2 


-0, k=l and 3
 
@Pk
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_____-_ -p2
 
A - 2 - 1 

P4 2PP4. 2p4 

Other abbreviations required are: 

r a(e sin ) 2q - G] 

"3ar1 I P11 

3i 

ac2y 

3(e sin *) 

Do2 

[2q - GI 

p I 

-
.6 

,Do8 

= i+ 

.6 

ar(e sIn 4) 

Do8 

2q - G] 

p j 

( 6 2r 

1r 

(27,8 /2 

p e sin -

esi 

lpP 

ar 
-

ao 3 

-

dr 
-

ao 4 

=-

r 

Do5 
= 

r 
-

a07 
=.-0 

aoi 

-

r 2 

R - 2 

r DO 
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ft 

Do2 

ftt 
02 

G 

2ar 
- ­ -

r 302 

DR 
3 CF3 

- -

G 
-
r 2 

sin 0l 

-

9G4 

0 

3a5 G 

afR 
-

3o6 

=-
R 
- U6 

G 

2R Dr 

r Da6 

aft 
-

3cr 7 

G 
=-

r 2 
Cos a 1 

DR 

308 

2R 

r 

ar 

D08 

f 
rR + Sr 

2G 

k =1,2,-..,8: 

af 1 
-

3 0k 2G 

r-
D'3R 

aok 

+ R-

Duk 

R-
3 

k 

+ r 
3r 

k 

2f 
"DG 

k 


