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AN ANALYTICAL STATE TRANSITION MATRIX FOR ORBITS

PERTURBED BY AN OBLATE SPHEROID

by
Alan Mueller

1.0 Introduction

Often in orbit determination or navigation algorithms
one must predict how small deviations from some nominal or-—
bit will in time cause the actual orbital path to veer from
the nominal path. If the initial deviation is small, then a
linear approximation may be used to determine the deviation
at any given time. The linear approximation, a truncated
Tavlor series expansion, requires the first partial deriva-
of the coordinates defining the position and velocity at a
given time, with respect to the coordinates defining the
position and velocity at the initial time. This matrix of
partial derivatives is commonly called the state transition

matrix - @

® 1is governed by the matrix differential eguation given
by Battin (Reference 1),

o = G b (1.1)

where G is the matrix of partial derivatives of the rate
of change of the position and velocity. Initially, ¢ is
equal to the identity matrix. ¢ may be determined by nu-
merically integrating the above differential equation. But
when one considers the fact that the transition matrix is
usually used in some iterative manner, the computational
costs required by the numerical integration of the matrix

differential eguation becomes prohibitive.
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The alternative, of ‘course, is to determine the transi-
tion matrix by some analytical technigque. If the final state
(position and velocity) X, is given as a function of the

initial state x_ and the final time t

Xg = Ke(x (T ), tg) (1.2)

then @ may be determined by taking partial derivatives of

this functional relation

Bxf

4] (tf’to) = 3—'_ (XO(tO)’ tf) (1'3)
- X
o]

Several analytical techniques (References 2, 3 and 4)
have determined expressions for the transition matrix under
the assumption that the satellite moves along a two-body or-
bit, all perturbations being neglected. But as Rice, (Rei-
erence 5) has pointed out, this assumption may result in non-

negligible errors if the perturbations are large.

For artificial satellites orxrbiting near the earth, the
J2 oblateness poﬁential contributes a strong perturbation
which may not be neglected for accurate satellite orbit pre-
diction. A first order, canonical analytical theory by
Brouwer (Reference 6) and rewritten in non-singular elements
by Lyddane (Reference 7) does account for the oblateness per-
turbation. However, the complexity of the theory makes it
‘somewhat cumbersome to use as a basis for developing an ana-
lytical J2 transition matrix. However, significant advan-
tages are offered by a J2 satellite theory}developed from
a new set of canonical elements proposed by Scheifele (Ref- _
erence 8). The elements are in an extended phase space.in that
eight (instead of six) variables describe the state. They
also have, as their independent variable, a quantity related
to the true anomaly instead of time. The set is similar to


http:space.in
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the Poincare elements and are therefore named the Poincare-
Similar (PS) elements. The PS elements are non-singular
for bounded orbits.

Recently, the elements have been applied to both numer-
ical and analytical orbit prediction. The expressions for
converting to and from the PS _and Cartesian state and the
expressions for the equations of motion are given by Mueller
(Reference 9). The PSS elements have proven to be a very
accurate and stable set for numerical integration (Reference
10). And as was said, the PS elements have been applied
very successfully to the analytical prediction of orbits per-
turbed by oblateness in a theory by Bond and Scheifele
(Reference 11).

Two aspects of the PS elements allow for a very simple
but accurate satellite theory. Because one of the PS wvari-
ables is associated with the true anomaly, the Hamiltonian
of the zonal oblateness problem becomes a finite‘expression
in the elements. The result is a more concise satellite
theory. The other aspect is the appearance of the total en-
ergy (instead of the osculating two-body energy) -as-a canon-
ical variable which describes the mean motion. Since a
"second integration' or a different'kind of higher oxrder pre-
¢ision is unnecessary, the initialization procedure to find
the "mean elements" is straight forward and no iterative pro-
cedure is required. The result is a considerable improvement

in the accuracy.

Because of the simplicity and accuracy of the canonical
analytical solution based on PS elements, it becomes a log-
ical choice on which to base a new analytical state transition
matrix. The intention of this paper therefore, is to derive
a completely analytical singularity free form of the state

transition matrix for orbits perturbed by an oblate spheroid.
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2.0 The PS Element Formulation and .Satellite Theory

The derivation of the P8 elements and their correspond-
ing J2 satellite theory have been described in detail in
(References 8, 9,and 11). A short description of the elements
and the satellite theory will be given here with all necessary
equations listed in Appendices A and B.

Expressions in Appendix A describe the relations between
the Cartesian state vector and time

X = (Xl, X2’ X3, x4 = Xl, X5 = XZ, X6 = x3)
t = time
and the PS elements
o= (0,, 0,, 05, Oy, G5 =P, Og = Py, Oy = pg, Og = 0,)

The relation between the time t and the new independent

variable T is given by
_— = — (2.1)

where r is the position magnitude and gq 1is given by

1 W
q= -7 (03+05-p1- —=)

vap,

The hamiltonian describing the motion of a perturbed

satellite is

F = Py - + ¢ F (2.2)
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r
where r?

£ Fl = — V (V = perturbing potential)
g

The canonpical differential equations are expressed as

do, 9F dp . SF
A= = , (j=1,2,3,4) (2.3)
dr apj dt Boj

and thus for unperturbed motion (V=0) the solution of these

equations is simply

(2.4)
u
6, = — T + ¢

(20,,)% “0

A1l other elements are constants in the unperturbed case.

2.1 The J, Satellite Theory

2

A complete first order solution of the motion of a sat-
ellite perturbed by oblateness has been developed by Bond and
Scheifele (Reference 11). A brief outline of the solution

will be given here.

The hamiltonian for the J2 perturbed case now reads

u
F=p - + € F1 (2.5)

where

(2.6)

R Lﬁ
P
i
I
Wl r
| S —
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3 .
and e =—dyn R?
2
R = mean equatorial radius
1 = Gravitational constant
J2 = oblateness coefficient.

The differential equations are solved by a method of Von-
Zeipel. The elements undergo a canonical transformation thru
a determining function §; so that the short periodic terms
are eliminated from the hamiltonian. The eguations of motion
in the transformed system ©' may then be solved with an ac-

curacy of order €

"The solution algorithm can be divided into three steps:

1. Canonical transformation to eliminate short periodic
terms:
381
! =
0ko Gko toe 5 (Uo’po)
pko
k=1,2,3,4 (2.7)
381
i — —
pko pko ,8 3 (Go’po)
a
ko
2. The analytical integration of the transformed equations

of motion:

| J— ]
01 T10 + Al T
t = t _ t
02 G @08 (AZT) Prg Sim (AZT)
T = 1 ] *
03 UBObos (ABT) p3g Sin (ABT)
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R |
64 040 + A4 T
(2.8)
Pi = P1g
| SR .
Py Pyg €08 (A,T) + Uéo sin (AZT)
t = ! g
3 = P3g cos (AgT) + ay, sin (A7)
[ B |
P4 T Puo
3. The back transformation:
88,
C, = Op — € — (6',0")
apk
(2.9)
_ 38,
P = Pp e — (a",p")
k k .y .
%

The partial derivatives of the determining function S1
and the expressions for Al, Az’ A3 and A4 may be found in

Appendix B.

The relation which gives the back transformation in
Step 3 is simply the inverse of the relation in Step 1, and
has an accuracy of order ¢

If one wishes to determine the state g as a function
of a specific time, then an iteration procedure is required
which is similar to the iteration to solve Keplers equation
in classical theory. A regula-falsi method or a tangent
method using equation (2.1) may be used to solve the non-
linear equation. The algorithm for the entire procedure
is then



-18-~

(2.7)
1. given ¢ (t=0) g' (t=0)

2. given ¢' (1=0) and T, — g (Ti)

2.9)
3. given ¢ (Ti) —_—r g (ri)

(A.12)
4. given ¢ (Ti) — ti

5. if |ti~t| < tol - stop

(2.1)

6. given ti —r Tiqi

7. go to 2

The number above the arrow indicates the eguation by which
the calculation is made. Tol 1is the maximum error tolera-

bhle in the iteration scheme,

3.0 The State Transition Matrix

Suppose that the final and initial states are defined
£ and o, - Then the PS fransi-

tion matrix T is defined as

in the PS space as ¢

aof

o0
0

T (tg,t ) =

(tg,t,) (3.1)

f’

The Cartesian transition matrix & defined in equation (1.3)
may be determined from T by the chain rule

3Xf Boo
4] (tf,to) = —— T (3.2)

Bcf on

The development of T is described fully in Section 3.1 while
the partial derivatives of the Cartesian and PS state are

derived in Section 3.2.
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3.1 The PS State Transition Matrix

Since the PS variables have as their independent variable
a quantity related to the true anomaly T , it is convenient
to first develop a transition matrix which is a function of
the initial and final values of the independent variable.

' 2
(To,1,) = — (1,7,) (3.3)

1o
o

T

However the matrix T* in no way equals the matrix T de-
fined by equation (3.1) for reasons to be made clear in
Section 3.2.

Like in the analytical solution which is obtained in
three steps, the matrix T* can be expressed as a product
of three matricies

_ *
T = Tl-TZ-T3 (3.4)
where
Bc(Tf) |
T1 (G'(Tf))= _
ac'(Tf)
30'(Tf)*
T;‘ (o' (T ),T,) = ——— ¢3.5)
° 80'(TO)
80'(T0)
T3 (G(To)) =
30(10)

The values of g whicﬁ are used in the corresponding
matricies may be obtained from the analytical solution.
Since the partial derivatives for the matrix elements of Tl’
T; and T3 are to be derived from the differentiation of
the analytical solution. it will be accurate up to terms of

order 0(e?) only. Therefore. it 1is adequate to evaluate
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the matricies with values obtained from the analytical solu-
tion and not a numerically computed nominal solution. However,
it is possible to insert either an analytically or numerically
integrated solution which includes other perturbations, such
as drag or higher harmonics. This may result in a more accu-

rate model and is a possible area for research.

By denoting an element of a matrix as
[:I 30’ (T)
kj 90y (T )

then each element of the three may be deduced from equations
(2.7), (2.8) and (2.9), and expressed as

for n =1,2,---,8
azsl )
[%;] " e T 3a; , 30!
kn k+4" "n
(k=1,2,3,4) . (3.8)
[ 8231
T:] =P - g ———
! k+4,n k+4,n 80 Bc
for j=1,2,---,8
[ - 3281 )
T =¢ , - g —
o] -
mj - 80m+430j
(m=1,2,3,4) . (3.7)
[ 3281
T:] = Y .+ g ——
3 . m+a, 3




o OF POOR QuALITY
orm =12, - 8
* _—
EPJL = T A+ ¥y
- m
m¥ _
EJZ = -0 T A, + ¥, cos(h, T)
i
- ¢6 sin(AZ T)
[%;]3n = -6, 1 A3m + w3 cos(A3 T)
- w7 s¢n(A3 T)
- 0 ) |
T%J = T Aém + Yy,
4m ’ (3.8)
— )
55_ Sm = Vsn
— ) i )
Eé_Gm =0, T AZm + w6m cos(A2 T)
+ e
me st (A2 T)
LIRS
2 T 3 “3m l")7m COS(A3 ©)
+ w3m scﬂ(A3 T)
* — »
[%é]gm - ¢8m

where wkj

partial derivatives of
C.

5

1

and

is each element of the identity matrix.
A
om

The

can be found 1n Appendix
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3.2 The PS Transition Matrix in Time

In most applications of the transition matrix, it is
preferable to deal with a matrix of the form

t ) (3.9

instead of
sk
T (Tf,TO) (3.10)

The subsequent considerations are to be done for any analyt-
ical transition matrix whether perturbed or unperturbed or
whether time or some other variable is used as the independent
variable. The reason is that no satellite theory can be ex-
pressed as a closed form function of time. 1In classical
theory one must introduce the eccentric anomaly. Similarly,

a new independent variable, the true anomaly, is introduced

in the PS formulation.

From equations (2.7), (2.8) and (2.9) one may write

the solution in functional relations asT

Q
|

= 0;(00)

o' = 0'(0$,T) r (3.11)

g = og{c")

P

which are used to compute the PS transition matrix

ag a0 90' 3do!
T = = Q
30 doc' 3c' Jo
o o} o]}
or
T = Tl'T2 'T3 (3.12)
T 6 o' are vectors PAGE 15
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OF POOR QUALITY

If T is to be of the form defined in (3.9) then T
must be defined as follows

2

3o [80']* 3g' 3T
ac! tac J or gdo!
0
or
« 30" 3T
T, = T, + —— —— (3.13)
2 2 dT 90
00! a1
The additional term —— —— results from the property that
4T 90!
Q

the end value of the independent variable T is now deter-

mined from the given value of the final time and initial PS8

vector o, - However, there is no explicit function for
in terms of the wvariables Ué . Thus one must determine the
2T

values of the vector in a manner which is verv similar

3o’
[4]
to the method in which the partial derivatives of the eccentric

anomaly in classical theory are determined (Reference 2).

- - - t
Since now the final time is to be a given wvalue, 1t is

not determined by the initial conditions G - Thercofore,
3t ot
—— = (0 or — =90 (3.14)
do g’
o o)

By the chain rule

*

at 9t 80 {d0 ) 3t 3¢ o' 3t
—_— = e | 4 = 0
3! 9¢ Ad¢' |ada! 30 do' ¥1 3g’'
0 (o] [a]
from which one may deduce
1 ' . —1
5T st 30 {30')" {8t 80 oo

= — —_ —— (3.15)
3o’ do ag' 30; 90 3¢ 0oT
8]
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According to the definition of the total derivative and
since time is an implicit function of the independent vari-

able 1 ,

—_— = — — (3.16)
daTt 90 3o' 3T

Observing the definitions of TT and T2 in eguation (3.5)
one obtains a concise expression for the desired vector

5T 3t , aty "t

— =T, T [— (3.17)
80& 30 dt

Thus from equation (3.13) the expression for T2 is

-1

. 3g' ot N dt
T, =T, = — — T, T — (3.18)
22 5 90 P2 ar
do'
The expressions for —— may be found in Appendix C. While
oT
ot
those for -— can be found in Appendix D.
i1e)

To summarize, one can use expressions in equation (3.8),

(3.7), (3.8), (3.12) and (3.18) to compute the J2 state

transition matrix in the PS element system.

4.0 Cartesian Transition Matrix

From equation (3.2) one knows that the Cartesian transi-

tion matrix @ may be determined from the PS matrix T by

ax 30
p = —L 7 2

Bof axo

This leads to a delicate situation in which one must

transform an 8x8 matrix to the 6x6 Cartesian matrix. To



-93_

ease the transformation, introduce an extended Cartesian
space y . This state not only includes the six Cartesian
position and velocity coordinates, but also the time and
the total energy.

y = (Y1=X1, V=%, V37%q, V.= time,
V5=%, V=X Y,=X¢, Vg™ energy)
An 8x8 extended Cartesian matrix, U , can be determined

by chain rule as

Ug=—=r17 o (4.1)

As stated before, the Cartesian state and time are given
as a function of the PSS elements. In addition, -the canonical .

transformation from y space to o épace requires that

If one defines the matrix

oy
W= — (4.3)
Y]

then W 1is a Jacobian of a canoqicalltransformation and thus

is a symplectic matrix obeying the following inverse relation

_ e T
v'!'!=—=_Jgw J (4.4)
Jy

where ( )T means transpose and J satisfies the relation
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Thus by using canonical elements one gains an advantage
in that only expressions for W need be determined. It's

inverse may then be found by rearrangement of elements inside
Yy
the matrix. The expressions for the matrix — can be found

in Appendix D. 80

Finally, if one observes the fact that the energy - Vg
can be expressed as a function of the Cartesian state x
* 2202 H
Vo = — (R +x:+x.) + — + V (x) (4.5)
8 2 & 75 776 r
where V 1is the perturbing J2 potential, then & may be
expressed in terms of the extended matrix U by the relations

for =n=1,2,3

m=1,2,3
e - 1 - BYB
o] = 11 + [ﬁ] —
- “n,m - “n,m n,8 9x
m
N [ y 9y g
i = 10 + (U
- “n,mn+3 - “n,mt4 -“n,8 aXm+3
(4.8)
[~ 7 |~ ] ~ 7] ay8
(0] = |U ) + [U —_
~ =“n+3,m — “nt4,m “n+4,8 me
) oy
s ™ F o B, 2
n+3, m+3 n+é4 ,m+4 -—-nt+4,8 9x
m+3
BYB H oV
where —_— = - - x, o+ —
X, r * X,
i i
i=31,2,3
ays .
3% i+3

i+3
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The inverse of @ may be determined by observing that it too
is a Jacobian of a canoniecal transformation. Therefore

-1 T '

® = - J & J. (4.7)

5.0 Numerical Experiments

Dlrect comparlsons of the analytical transition matrlx
have been made to a transition matrix which is obtalned through
numerlcal integration of the matrix dlfferentlal_equatlons (1.1).
These equations include the J2 perturbation. To demonstrate
the accuracy advantages of the J2 transition matrix, the
simple conic matrix’ is also compared to the J2 numerically

integrated matrix.

Accuracy of the analytical matrices is determined by §
defined as )

6 6

T I (A, - N_ )2
R=1 =1 <L Kb

6 6
)X T N2
k=1 L=1 KB

§ =

where

AKL is the K,L -component of the analytical matrix

NKL is the K,L component of the numerical matrix

Both A and N matricies are in normalized units so that
the summation makes sense. “

Three orbits have been chosen for test cases. The ini-
tial conditions of each orbit are listed in Table I. Figures
1 through 3 give the time history of & over about 3 revo-
lutions. On each figure appears two curves.

T Formulas for the conic transition matrix elements do not
contain oblateness (Jz) effects.
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One curve is the time history of ¢ using the J2
analytical matrix and the other is the time history of 3§
using the simple conic matrix. Note that -~logd is ﬁlotted
with time and is representative of the. number of accurate
decimal digits. Curves which appear to the top are therefore

more accurate.

In all three cases the conic matrix degrades to less
than two digits of accuracy within two revolutions whereas
the J2 matrix maintains four to six digits of accuracy.
By comparing cases 1 and 2, one finds no degradation of ac-

curacy for circular and equatorial orbits.

TABLE I. (ORBIT TYPES)

a.(km) e T 2 | w M
Case 1 6677.7 0.015 | 30° 0° 0° 20°
Case 2 6677.7 0.0 0° 0° 0° 20°¢

Case 3 13266.2 0.5 0.0°9 0° 0° 20°
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6.0 Conclusions

An analytical state transition matrix and its inverse,
which include the short period and secular effects of the
second zonal harmoni¢, has been developed from the non-
singular PS satellite theory. The fact that the indepen-
dent variable in the PSS theory is not the time is in noc
respect disadvantageous, since any explicit analytical solu-
tion must be expressed in the true or eccentric anomaly.
This is even the case for the simple conic matrix. The PS
theory allows for a concise, accurate,and algorithmically
simple state transition matrix. The improvement over the

conic matrix range from 2 to 4 digits better accuracy..
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COTOPS

Given x, X, and time, transform to ¢ and
Evaluate the potential, V.

Then sequentially compute:

w1 ) .
p, =L =— - — (%2 + %2 + x%2) -V
4 r 5 1 i 1 _
G1 = X, X3 - X, %,
Gy = X3 X - X; X4
G3 = Xl x2 - x2 Xl

1 2 3
H = G3
M
p1=@=G-JG2~2r2v+——
¥2L
1 I
q=G-—9% +
2 2/2L
1 TR
p:—G_(I)+___.

U V2L

hat

(A.1)

(A.2)
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1
ol

J’

- 2G1
Oq = N (A.3)
{2(G + H)}?
_ - ZGZ
pg— - . 1 (A.4)
(2(¢ + H)}?
X
3
267
R = -
i
{2(G + H)}®
: rR
Y = —
2G
=x +R%o
r cos O 1 5

. *
, — +
r sin 0, = X R P

r sin Ui
¢. = arc¢ tan|——— (A.5)

o
Ir cos 1

104
[ -

£ -1




2y
9
)
1-e?
E-¢
%y

Given o, o,

Sequentially

-37-

rp
Q(2q - G)
= 22 c?s 01 - Z1 sin Gl

= Z2 sSin 61

/2L

+
Zl cos Gl

Zz-Q

(1+ /1 e+ 2,°Q)

- 2 arc tan

U - r
=t-—-—‘———-——-—[E—¢-——ZZQJ1—e2'

(20,0 - p

PSTOCO

transform to x, x, t = time.

compute:

= p, ¢o08 0, — 0, 8in 0,

= 3 + o]
P, 8in 0, o, ¢os O,

(A.6)

(A.7)

(A.8)
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e e¢os ¢

{
e
[
o

e gin ¢ = ZZ'Q

1 1 2 2y H
p=—] ~=—(p; + 03) +
u 2P e

Y
r:
1+ e cos ¢
R = p3 Sih 61 + 03 cos 01
1 2 2
Gzpl-;(dz-i-pz)
1 2 2
2
rR
¥ = —
2G
= * A.9
x, = - R 04+ 1 cos o, (' )}
x. = - R p.+ T sin o (A.10)
2 3 1
*
Xq = R V2(G + H)' (A.11)
2L
1—82= - P
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)

- 2 arec tan

[
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e sin ¢

1+ V1 — €2 + e cos ¢

" r
o, + (E - ¢ -~ — V1 -~ e* e sin ¢)
4 (2p4)ﬂz p
1 ) 2 a
—_ g + p — p -— —e——
9 2 2 1 ‘[25?

P 2
R+BRr . G
, R=— (p, cos 0, = g, sin 0,)
9G r2 3 1 3 1
% , G
- R o, + r cos g, - — s8in ©
3 1 1
T
G

-k . ]
- B Py + r sin 0y + cos 04

rrr———a )

r* /3G ¥ )

(A.12)

(A.13)

(A.14)

(A.15)
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If one defines
s, <5
1k 5
%%
then
! 2wy G
Slk = — (ka + wy, - —ky
- k
G G
where
L9
W = e
2pg
l.
k 2p2q2 I kg
3 v
TS Gy vy, gy

=1
- |
e pr oy Tor %) k=2,3,... 4
1 ,
G = Oy ~ — (02+06)

k
G’2 = - 02
G5 =1
G '-= -
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Here B, Bp» @ QG @ 9y Sg0 My Vg

Soxr Yok

are ‘displayed-’ -

i

U

[\ I

i U —2
[} — (62 + o2) + ]
2 6 /205

for k=1,3,4,5,7

1 , u
~ (62 + 02’ - o) *
9 © 2 3 2/55
%y
U 1
2 (20.)7

3

1
8 20 1 =
- = @ o)

2 V208' 2
Tg99
2Qu?
0806

and



i2

16

8
1k

e | @ oo,

-l B e

D
% " 2Qu?
Q =0 for k=1,3,4,5,7
B 1
g Oe ™ ; (660 - 02s)
+ Eﬁ B, - E (6,.c, = 6,8,)
3 2 o 62 272
- E + EE~B - E (o,c, — O,.s,.)
9 36 2 6 6 276
o, 1
7; Bk - ; (OgCr ~ stk) for k=1,3,4,5,7,8
B 1
g o, * ; (ogs + 0,¢C)
E + E + z& B, + i (o,s., + o,¢,)
!3'2 32 9 6 2 272
E + EE B, + i (.8, + 0,c,.)
5 36 o 6 6 276
33 B, + E (o,s, + g.c. ) k=1,3,4,5,7.8
3k 2 6k 27k PT T e



N

2k

2k

32

O3

36

3k

N T I N R T

| R

46—

+
(st 060)

(0252 + g,¢, + )

(0286 + o,¢c, + ¢)

676

(

+ g k=1,3,4,5,7,8

| = O O R &

925k 6%k

(063 - ozc)

(0682 - 0,C, - c)

(0gSg — 0,4 *8)

(065k - Uzck) k=1,3,4,5,7,8
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Ny sin & o,

£E = cog L O

Here ¢, s, C Sy B, Bk’ H and Hk are displayed

k’

c = (GHH) (——2)
2
HBC
¢y = - (GHH) o,
(G+H)
H7c
C7 = + (G“}'H) 07
(G+H)
G, +H
¢, = —= ¢ for k=1,2,4,5,6,8
{G+H)
s = - (G+H) 0, o,
HBS
Sy = = - (G+H) 0,
G+H
H7S
S, = —— - (G+H) 63
G+H
(G +H, )
S, = — —— 8 for k=1,2,4,5,6,8

(G+H)
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B=G2 - 3 H?

Bk =2 (G G, - 3H Hk)
1
H=G——2-'(U§+O'§)
Hy = - 0,4
H7 =-0,
H, = G for k=1,2,4,5,6,8

Abbreviations used in the integration of the primed system

- € _2
A, =1+ Z%(b 3)

4
- E
As T2 f b,
a, =< |¢ (b - g) + £ b, | + A
2 2 2 3 2 3

2
(b - 3) + 4,
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1
pq
fz
- —u— (up + 2q /up)
fz
2o )3/2 (2 wp + 2q Yup)
HZ
1 — —
G?.
N
G c
2
P (E)
G
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If it is defined

_ Gy
Slkj B 30, O
kj
thén the expression for Slkj is as follows
2 . 1
= - = + - — .+ i +
51k ¢ e & * 515 G G2 [%kya kg Y
. G,.G
Awy . ik
+ - + =
Wy WY G (ij g )
where 8., Gj’ W Yo Y, G, and w may be found in

Appendix B.

The expressions for and ij are:

3 . .
.= I (8, . + ) = 2,3, ,8
Vi T G2, COprs Mo * Yoy 59) ? _ 2% o
, .
3
E = b — ’ - 2 +
Vi1 = g1 Mgy &y m vguny) - A8y mg + v Ey)
B2 ) Q
w, ., = - p.4 + q.p + [%Q‘ s
kj op2q? pq J 3 2p2q? kj

- Q (pgy + qp, ) - Q (ijk T PGy T AP T qpkji]



G., = 0 =1
Jk J‘x H
k =1,
Gy -1 Ggg =
\"her_e ng, E,Q,’ Gﬂrk,
s Q, Qk are foun
Expressions for 6£kj
63jk - 53kj
1
= - = +
83k 5(0y Sy * O
1
= - = +
8325 6(0y S35 7 O
1
= - = +
8365 g(0y Sgy ¥ O
Y350 = Y3ky
1
Vi = 6% Sky " 92
1
= — s —_
Y425 = 6% S25 7 92
= 1 -
Y365 = 5% %63 ~ %2
1
= - = +
S2x; Ql}ﬂc % 70

)2, 8 except j=k =26
2, § j=k=2
- 1
YE 8o Yoo Py @ Dy
d in Appendix B.
and Yﬂkj are as follows:
C .) for k= 1:3:4:5a75
6 K j=1,2,-k
6 C6j + C-) J = 1’23 -:6
e, .) k = 1,3,4,5,7,
K 3=1,2,0 0k
I i = 1,2
23 cj) J
c .t s, i = 1,2,---,6
o T S3) J .
l.c
- (= - k =
25 % T 2 % iji] § =



Yox i

1jk

1k

12

163

Y13k

125

V163

wher

The expression for S

are

g.,.
:—-—-—E—B_
3 6]

e B, B.
J

listed here:

is _

l(0 c s, L) = 13,4,5,7,8
2'76 “kj kj _ 1l
Lo, ¢ s,. -~ s 3 =12
2°76 “24 23 3 !
+Bj)_' 06 “02 SGJ +Cj) J=1:2,“'36
%(06 Sy Ck') = 1,3,4;5,7,8

J d = 1,2, .,,k
+ Bj) + 2(06 S, T 0, ey ¥ cj) j=1,2
L5 s c,. +s.) 3 =1,2 6
2 76 63 6 3 e ’
c, Cj’ and sj be found in Appendix B.
=0 = 1,2,"



22

23

25

27

33

35

36

37

55

57

56—

- 0,(G, + Hy - 2 0,)
- 0,(Gg + Hg)
- 67(G6 + H6)
..(G+H—o§)—c;

7 (G, + Ho)



ik.

kj

C
22

23

25

26

27

&
33

€35

36

37

55

- g

t

-~ O

56

S(G

30

5

7

+

+ G7 + H7)

+ G+ H) - 03(G5 + H3 - 03)

H

5)

03(G6 + Hﬁ)

~57 -
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(“-3"—+G+H)+U (G7+H7—07)

i

0 for k = 1,4,8

2¢. (G. - 3H. j = 3,4,--°,7
o (G 57 J

2 02(G2 - 3H2). - 2 (G, - 3H)

3 '3
2(G. - 3H,) j=25,6,7,8
J ]
- 20.(G. - 3H, j =
6 3 J) ji=17,8
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Byg = ~ 2 0,(G - 3H,) - 2 (G - 3H)
B77 = 6 67 H7 + BH
B,g =6 0, Hy

The expressions for Hj and Gj may be found in Appendix B.

qkj = 0 for all k & 3 excépt ,

Aoy = - 1
Qe = - 1

_ 2%
dgg 204

Py 5 = 0 for all k & J except ,

. L 2
g up? P2
Paa U 2p
p =p =p_2.E§.
26 62 2p
b = p.. = 2208
L p2
2
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DgPg

Pgg 2p
3p p2
.8 .8
2a 2p

for all k & J except

Og Q)
2qu? Q
Q9
Qg =~ —
Q
2
Q, = - & %
82 ZQUZ Q
_ % Q%
Qg =~ — 5 7
_2Qu Q
Og Qg
2qu®> Q
QgPy Qg
2p . Q
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Expressions for Akj are:
_E 2 _24] -
AAJ =35 f43 (b-—S) + f4 (b. 3{_ j 1,2,
£ 2 N2
A = =T (b-=)Y + £, (b-=)j-
48 = 2|48 3 4 78 3 (208)5/5
- £[% + f
B33 = 2|55 P3 b3j]
- £f; _2 A
Azj = 2Lf2j(b 3) + fz bj + fj b2 + f bzi} + A3j
A =Ll -2y + £ .| +a
1] 21713 3 1 73 2j
where
v of v ob
f‘ = ——— , = ———
d 90 | J 90
J 1
afl _ 3f2 af4
f = —= , fz‘ = — f4. = —
13 3¢ Y T
J J
Bb2 ob
b,., = — , b3. =
3 %0, ST
J J
Expressions for £, f f £ b, b and

found in Appendix

04

may be

1,2,
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If the abbreviatiocns are made

1 i
3 Hp *t2a (u)®

Z —_—
1 4 3
z; = wpy(g+ ——x) + 2 q; (up)
(up)®
hen th ' for f., b., f £
then e expressions for 52 bj, 15° 257 f&j’
b3j are:
N 2
., = - f .+ .
£ (p ; t a pj)
v
21, f, t2z
£, = i J
£ u
y
2f,F 2
_-T273 tf.1
fzj = ~ (3 v D + z,)
£
g
2f, 1, £2
£,. = 14 . j=1,2,""-,7
J f (20- )3’1‘2 J
8
v
2
21, £q f 3f,
Thg = * % %8 T o
T (208) 208
ny 2H
b, =— (E g -H)
3 G2 G 7]
b, =28 (g, -3



ol
o

Expressions for

— are:

-63-
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APPENDIX D

If one defines

e _
90. k3
3
then o.T
x, ar 3 - gin G,)
Y11 2G
T Bcl
*
Xl 8T R
= ——— — = Jd g -
g.xr
*k
= - R -~ —c¢0o5 O
Y13 2G !
Vi =0
rp .
X, 9T 3 — sin G,)
y.. = 2 4+ rocos G 7 (py €08 9y 3 !
21 r "}61 2G
.9 hy
= e b T a 'y
V12 2 72t



You

23,

—68—

-1
T P GOS0 (i
2? {3 l
0
T Xg or
— Y2(G + H) (p3 cos 0, = 04 sin 01) + = —
2G r 801
X, or
B 02 y31 ¥ :: o
2
~g X
-3 Yy, * L /3(G F 5
2 2G
0
u 3(E - @) r 3(e sin ¢)
3f2 - g - et
(20,) Bak p BUE———

+ e gin ¢

P r 3(e cos ¢) l
@_};__Ei + — 1 -e? e sin ¢ ]

Bok P aak [

k=1,2,3




Yog

1l

I

69—

-g,.1
sin o,
2G
% 3
r 304
%k
LENS
G
*
X2 ar R
. - p p
r apz G 3 "2
*  PaT
- R - — sin g,
2G
%27
r ap4
H
- XS.___“ﬂ_ﬂ_
G(G + H)
H X3 or
Py Xy ——— + = —

366+ H) 1 30,

0%, /2(G ¥ O)
T, e
2G(G + H) 2 26
x3.8r
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it (R - ¢) r .
y4 . - y& {_ o ﬁ__ ez’a(e sin &)
’ (20,)% | 23py p 30,

3/1 - e2 1 3(e cos )
- 1 - e? e sin ¢

+es1ln¢-—-——~—-—+—
9P, p 3P
k=5,6,7,8
e BT
48 48 2 0
4
for k = 1,2,3,4:
8 af 3 Si89)
y5k=—fl—0'3'-a';r—+008015—;——1' 0
0 k k 0o
G 3r  sinag, 3G Il %
+ - §in O, - - - 0
r Bdk T aok 0
Of 3 cos 0y
Ve = 7 Py —— * sin oy — 4T 8
aok Bck 0
(ain 01]
G A cos 0y 2G G 0
- — €08 01 + - — 0
r? o0 T a0 r 0
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. ‘ N
Tk %
2(G + H) Bck . aok
for k = 5,6,7,8:
3f ar G a1
v = -¢g, — + cos 6, — + — sin ¢, ——
5k 3 1 1
Bdk -a?k T ack
gin oy G
r Bdk
o 5f 31 G
yﬁk = — F 1l - p3 E__ + sin oy g;— —_;; eos O
0 x k
cos8 01 2.
+ r——— e e
r Bck
v 3(G + H) 1 9f
Y7 ~ +E?'(G+H):|2m
2(G + H) Bok aok

The derivatives of theé energy are

ays
—= =1 — =0, ° (k=1,2,"°°,7)

808 Bck

Other abbreviations required are:

or

3o
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ar
—_— =0 k=1 and 3
ap
o1 T /1? Z.p,
—— == |- 2 p, — - 1| Qecos oy - ‘ Py
3, P p 21%Q
3r r [ -2u ﬁ? Q Z

— - l
—_— = | — e Y/ -

(20,072 u L2 21Q(2p,) %
3p4 P 4 p4 H 94
or
— =0 k=3 and 4
ack
3r r?
—_—= 7. 0
301 P 2
ar _ f fi . //F 219402'
e 2 — — T |Q eos 0, -
80, P 1 2u?%Q
3(E - ¢) -r/p (e sin ¢)
= (1 + /; — e + e cos )
30y (1 + /1 - e?) 90

[?Vl - e? (e cos ¢)]
- e 8in ¢ +

aok aok
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IE - 9) ~r/p o7
- (1 + 1._e‘°‘+e‘008¢)
apk (1 + /1 - &%)
Ta/1 - e? (e ecos ¢)
- e sin ¢ ¥ '
3P, 90y
a(e sin ¢)
. = 0, k=1 and 3
apk
3(e sin o) Py P
= Q sin 0= 2 4 2
apz ZUZQ
o(e sin 9) .[: Q L ]
= Zz - .?,.:
a0, 2p, 2uQ(20,)
(e sin ¢) ;
= 0, k=3 and 4
30,
3(e sin ¢)
= e c¢os ¥
301
9(e sin ) PyS
= Qcos 6, - Z, "
2, 2u2%Q
2(e cos ¢) =‘0 k=1 and 3

Spk

(e sin ¢)

apk



T4

(e cos ¢) le4p2
= Q cos o T
.sz ~2u2Q
3(e cos o) Q 1 N
: = Z]_ I Lv|
0(e cos ¢)
= 0, k=3 and 4
Bok
3(e cos &)
= ~e sin ¢
861
3(e cos ¢) Z.p,0
30 21%Q
2
3/1 - e? |
—_— =0, k=1,3 and 4
aok
o/l - e* -0,
- /2o,
802 H
9v/1 - e |
_— =0, k=1 and 3
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3/l - e? -p,
= 1/2041_
3p, u

W1 - e? /P 1

Other abbreviations required are:

3t 3(e sin @) [Zq -G
og 90 —

1 ol p

3o 90

or (e sin ) [2q - G]
2 2 '

)

aY a(e sin ¢) {2q - G) , ,//E

= 5 + 06 2rvy — ~- e sin ¢
8¢ 89 L P "
ar 3(e sin ¢) [2q - G u [2f e sin ¢
T = .1+
, 3/2 . 4.
904 d0g - p ) (2oy) / uvp' P

5T sr - ar 5T

803 804 805 807

- 3R G. R ar
—— = - — R~ 2 —

30, T T agl
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3R R 2R 3r
—_— - =g — —_— —
30 G 2 r 00

2 2
3R G
_— - —;‘sin 0y
303 T
3R
— =0
804
R R
805 G
SR R 5R BT
e __0’.-.—..—___
3G G ° r 3¢

6 6
5R G
s —-2—00801
807 T
SR 2R o1
808 r 308

rR + Rr
f
2G

k=1,2, , 8
af 1 { 3R dr . 9r  dr ELe
-— = |y —+R—+R — 4+ 1 — - 2f ——
Bdk 2G s} 90 E1s) 90 30

k ko %k k K



