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ORBITAL MOTION OF THE SOLAR POWER SATELLITE
by

Otis F. Graf, Jr.

1.0 Introduction

It has been proposed to put a series of large satellites
into geosynchronous orbit for the purpose of collecting solar
energy and redirecting it toward the earth via microwave radi-
ation. Preliminary studies are being carried out at JSC on
the feasibility of these Solar Power Satellites (SPS).

The large area of the collecting surface (approximately
144 square kilometers) means that solar radiation pressure
will cause significant perturbations on the SPS orbit. 1In
fact solar pressure will be as important as gravitational
perturbations. This report documents a study on the effects
of solar radiation pressure on the SPS orbit. It will be

shown that the eccent- “tv of the orbit can get rather large
(.08) even though i .sitially zero. This is the primary
difference between oPS ©rbit* and other geosynchronous

satellite orbits.

The SPS configuration being considered here is described
in a study report by the Johnson 9Spsce Center (Reference 1).
Others are discussed in References 2. 3 and elsewhere. How-
ever, the results in this report are applicable to anv geo-
synchronous satellite that resembles a flat surface that con-

tinually faces the sun.

The main purponse of this report is to investigate the
orbital evolution of the SPS over its expected thirty year
lifetime. As a first step. it is assumed that the satellite

is in free flight, i.e. ‘ere is no active orbit control.
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This will make evident the important orbital motions. One
of the goals of this study is to describe the motion with

analytical formulas. These could then be used as a basis

for developing an orbit control theory that will minimize

station Keeping costs.

The perturbing forces .cting on the satellite are dis-
cussed in the next section. To a first approximation, three
types of forces can be considered separately since they have
different effects on the orbit.

(1) Longitude dependent tesseral terms in the earth's
geopotential cause a slow drift of the satellite's
mean longitude.

(2) Sun and moon gravity cause a rotation of the
orbital plane.

(3) Solar radiation pressure will cause an increase
in the orbital eccentricity.

Variations in orbital eccentricity e are discussed in
Section 3. Analytical solution methods are used to develop
equations for the variation in eccentricity and argument of
perigee as a function of time. These equations are valid for
arbitrary initial values of eccentricity and inclination. It
is shown that e will have a periondic variation with an am-
plitude of .04 and period of one year. There is also a linear
increase so that e will grow to .08 within thirty years.

Earth-Sun-Moon gravity will cause long period variations
in e . These effects have been studied with numerical inte-
gration methods and are discussed in Sectinn 4. Evolution of
the orbital elements is shown for a variety of initial con-
ditions. The maximum value of e can be reduced by an ap-

propriate choice of initial conditions.

Implications of non-circular, non-equatorial geosynchro-
nous orbits for the SPS are discussed in Section 5. It is

shown that the daily variation in longitude is 2e radians.
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However, these orbits offer certain advantages for the SPS

and should be further evaluated for their impact on the energy

collection, transmitting aud receiving systemns.

2.0 Perturbing Forces

The perturbations due to sun-moon gravity and non-spher-
ical earth have beern extensively discussed in the literature
and only an overview will be given here. Acceleration due to
solar radiation pressure will be derived in this section, con-
sidering the expected physical dimensions of the SPS.

2.1 Non-sphericity of the Earth

This perturbation arises from the fact that the earth is
not symmetrical about its spin axis. A slice of the earth
perpendicular to its spin axis has an almost elliptical shape.
Since the earih rotates once a day and the satellite makes
one revolution in approximately one day, these gravitational
perturbations act in the same direction over a long period
of time. Bs a result there is a large, long period drift in
the geographic mean longitude of the satellite (Reference 4).
The other orbital elements are not sc severly affected. Ref-

erences 5 and 6 give a good description of this motion.

2.2 Luni-Solar Gravity

The luni-solar perturbations have a substantial eftect
upon the node h and inclination I of the orbit. Coupling
between the sun, moon and earth’'s oblateness (J2) can cau:.e
large, long period perturbations in I (Reference 7). Table
I shows some representative values of the inclination after
two and 26.5 years. If Io = 0 ., the inclination grows to
14.7° after 26.5 years. An important case is when IO = 7.3°

and h0 = 0. Then the inclination and node are almost constant.
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TABLE I.- VARIATION OF INCLINATION

I, h I (2 yrs.) fax. I. (26.5 yrs.)
0° undef . 1.73° 14.7°

1° 270° .74° 14.9°

10 90° 2.00° 15.0°
7.3° 180° 8.00° 29.4°
7.3° 0° 7.30° 7.3%° (const.)

2.3 Solar Radiation Pressure

on

The magnitude of the solar radiation pressure depends
The

most important effect is a rotation of the line of apsides

the weight and cross sectional area of the satellite.

and a periodic variation in the eccentricity with a period
To

the following assumptions are made:

of about one year. compute the perturbing acceleration,

(1) The SPS is a flat plate cf 10% reflectivity.
(Reference 1, Section IV.B.1).

(2) The flat plate maintains an inertial orientation
perpendicular to the satellite-sun line.

(3) Pressure from the microwave transmission can be
neglected.

(4) The earth's shadow can be neglecied.

The solar radiation on a flat plate in the vicinity of

the earth is (Reference 8):

9.02.107" N/m’ (100% reflecting body)

1.51.107" N/m?  (Blackbody)
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Thus, for a 10% reflecting body, the solar pressure is

6

4.96-10°° N/m?

Solar array area and weight ranges are given in Reference
1, Figures IV.A.5.2,

97 km? < area < 186 km?
48 - 10% kg < weight < 123 . 10°kg

For the analyses carried out in this report, the following
"'nominal'" values were taken:

143 km?

Area

Weight = 82.5 - 10° kg.

-
Let F be the force due to sular radiation pressure and

M the spacecraft weight. Then the perturbing acceleration is

= vy

where the magnitude A=|A| 1is constant. Let S be the sur-
face area in square meters, then

6

> 4.96-10" .
|F| = =———— a8 (2.1)
where ; 1is the acceleration of gravity .. the surface of
the earth (=9.807 m(sec)_P). If M 1is expressed in kilo-

grams, then

=

)

<
R77]

- = 5.06 - 10" (2.2)

.-
ey
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Note trat
area and weight,

w |

is unitless. Uzing the nominal values for

1.73 m? kg~' (2.3)

=i
"

and

6

.875 - 10~ 2.4)

Qs
[}

Taking into account the expected . nge in size and weight, g
can be in the interval

6

72-107° <2 < 1.16-10"° . (2.5)

wQ I>

One additional comment needs to be made cn assumption
(4). An equatorial geosynchronous satellite will pass
through the earth's shadow once a dayv during the eleven days
before and after the equinoxes. It will re.iain in the shadow
for a maximum of 75 minutes on the day of th quinox. The
amount of time in one year that the satelli.e is in the shad-
ow is small and will not be important in studving the long
term effects of solar radiation pressure.

3.0 Solar Radiation Pressure Effects on the Orbit

Variations in orbital eccentricity due to the perturbing
effects of solar radiation pressure are discussed in this sec

tion. The magnitude of the perturbing acceleration was dis-
cussed in Section 2.3. An approvimate solution is given for
the variation of e as a function of _ime. This solution is
valid for small eccentricities, i.e. e < .08 . Comparison
to numericai integration shows that the solution is valid for
about eight years. After that time. gravitational effects
(discussed in Section 4) become important aowever, this so-
lution shows the geuneral nature of the nerturbations in
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eccentricity and argument of perigee. Also, it could be use-
ful to compute station keeping maneuvers for orbit control
purposes.

Musen (Reference 9) did some early work on orbit per-
turbations due to solar radiation pressure. He was concerned
with the orbit of Vanguard I where the rotation of the line
of apsides (due to oblateness of the earth, J2) was nearly
commensurate with the motion of this sun. This caused large
perturbations in the height of perigee. Hori (Reference 10)
developed a canonical theory for this resonance problem.
Solar pressure was assumed by Musen and Hori to be order of
magnitude (Jz)z .

The case where solar radiation pressure is large (such
as with the SPS) has been treated by Zee (Reference 11),
Bosch (Reference 12), Ahmad and Stuiver (Reference 13), and
Van der Ha and Modi (Reference 14). The analyses of Bosch
and Ahmad and Stuiver are restricted to motion in the ecliptic
plane with the sun assumed fixed. Their results are thus
valid for only a few revolutions of the satellite. Zee shows
that the eccentricity will have a period of one year, but he
considers only the case where e 1is initially zero, and
does not give any quantative results. Van der Ha and Modi
use the two variable expansion procedure to describe the
yearly motion of e for the case where the orbit lies in the
ecliptic plane. They use an area to weight ratio of 20, where-
as References 1, 2 and 3 indicate a value n2ar 2 or 3 (see
equation 2.3). These investigators did not consider the im-
portant secular increase in eccentricity or coupling between
radiation pressure and gravitational pertrubations.

3.1 T..e Solar Radiation Perturbing Function

Let r be the satellite's position vector referenced to
an earth-centered coordinate system whose x-axis is in the
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direction of the earth's north pole. The x- and y- axes
lie, therefore, in the equatorial plane.
The acceleration vector* of the satellite is
- 5 et
r=A-+—44— (3.1)
p or
* . tt =
where U is the gravitational force function . p is the
vector from the sun to the satellite (Figure 1).
Sun

Y

Earth ¢]

o

Satellite

FIGURE 1: Earth-Satellite-Sun Geomeiry

.'-

4« ()

Dots refer to derivatives with respect to time, i.e.

T1The sun, moon and earth gravitational effects egre included

in U* .
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Let ;6 be the vector from the earth to the sun. De-
fine the unit vector

<> 1 -
ﬁc%s--‘;(r@-r) . (3.2)

where

Also,
Ty = IEQ and r = |F| .

For a geosynchronous satellite in a nearly circular orbit,
r ~ 42,164 km.
The earth-sun distance is
o = 149.5-10° km.

r
Therefore, tke ratio — will be small, i.e.
®

r ~92.8.107" (3.3)
Te

The unit vector P can be expressed in powers of the
small parameter. From the law of cosines (see Figure 1):

2 _ .2 o
Pl =, v r - 2 r, T on Y ,
or
2 -3
1.2 e (& - 2(E) cos u]
) re Te r,

. . r
The above expression can be expanded in powers of . :
@

=1 7 (Iye P _(cos ¥)

1.1
) I, 0 Ty
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where Pn(E) is the Legendre polynomial with argument § .
The expression for § is then

A r, A )
p=- [r@ - ) {I @) Plocs ) . (3.0
From the above expression it is seen that the replacement

r
To

h-Xi-X1

involves an error of 2.8:10 & . The equations of motion
are then

->

- r *

F=_a-2,38 (3.6)
ro Or

The components of (3.6) in rectangular coordinates are

b4 U
X = - A-Jg + —_—
o ox
Yo aU*
§y=--A—+— (3.7)
To oy
z ou*
z-_A—o+—
To °zZ
Define the new force function
l\‘ X y Z‘
r, 59 rs

The differential equations of motion are then

ay 3y 2y
kegy . Vmy . Eemag (3.9)
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For perturbation problems, it is desirable to write the force
iunction in the form

v=%aw (3.10)

where
V= Vs + Vo +-v& + Vo (3.11)
is the '"perturbing function". u is the gravitational con-

stant for the earth (3.98601-10° km® sec” 2). vV, is the
contribution of solar radiation pressure and can be written

as
rf x y z
v8=A;|}-—Q+y—Q+zT°;| (3.12)
re !’o T,

A similar perturbing function was used by Hori (Reference 10).
V% represents the geopotential. V& and V, are the grav-
itational potential functions of the moon and sun, respectively

(Reference 7).

3 2 Order of Magnitude Considerations

This section considers the magnitudes of the various
terms in (3.11). It is shown in Reference 7 that for a geo-
synchronous satellite in a nearly circular orbit, the magni-
tudes of the gravitational terms are

Vgl = 2.5-107°

-5
|Vg| = 1.6-10 ,
Vgl = .75-107°
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From equation (3.13),
a’ 13
Vel =54, (3.13)

where a is the semi-major axis.

It »as shown in Section 2.3 that a typical value of A
is
A= .875-10"° ¢ .
Since

ga—

2
Re

where RG is the radius of the earth, the magnitude of Ve
can be written as

=42y
Ivs, g (R’ 14
or
|v,| = 8.84-107°

Therefore, solar radiation pressure has the order of magnitude
of the gravitational terms. !

Since WS' W&' “9 and Ve have nearly the same mag-
nitudes, it is allowed, for a first approximation, to consider
each effect separately in arriving at an analytical solution.
The_following section will, therefore, investigate the pertur-

~bqt';ions in the orbital elements due to solar radiation pressure.

3.3 Delaunay-Similar Elements

The solution will be developed through the use of canon-
ical element differential equations in an extended phase space.
Delaunay-Similar elements in the eccentric anomaly (DSu) have
been presented in References 15 and 16. The angular variables
are:



-2~

eccentric anomaly,
argument of perigee,

- - R —
]

argument of the ascending node,
2

The action variables are:

time element.

U = related to the two-body energy,

G = total angular momentum magnitude,
H = z-component of the angular momentum,
L = negative of the total energy.
Differential equations for these variables are+

do:i } oF i

dt 38i

dBi oF

—_— = - — , (i=1,2,3,4)

dr a

i

where the Hamiltonian function is

F=U_-L+LV
2L /2L

(3.14)

(3.15)

and V is the perturbing potential function. The time is

given in terms of DSu-elements by the equation

U

t=1 - 3T,

e sin u

In unperturbed motion,
u =T + constant ,

__U_372_ T + constant
(2L)

+The following element notation is used:

= a = a =1 a = L, = 1,
a u, , g, , ), B8

(3.16)

(3.17)
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and the remaining elements are constants.
The following abbreviations are used (Reference 16):

/ 2
e = 1-9—. anl

u? V2D
2
L=1-e00su .sinr-h--‘-*-; i (3.18)
G

F is numerically equal to zero, so thdt U is defined

“'ﬁ[l'v] . (3.19)

Therefore, since both U and L dependon V, e and a
are slightly different from the instantaneous eccentricity
and semi-major axis, respectively, in the case of perturbed
motion (V=0).

3.4 Development of F in Terms of Elements

Considering only perturbations due to solar radiation
pressure, the hamiltonian is

F=U--2t-+F

where .
B
s T e

Using (3.12),

A X y 2
an—rx-g+y—°+z—9 (3.20)
V2L Ty r
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The coordinates are given in terms of

3
4

l(eos u-e) + vi-e 62

'(cas u-e) + /I-e'cz

Z = a nl(cos u-e) + vl-e n2

where the following abbreviations

E = cos

r = ain

r = gin

n = s8in

3
"

cos8

The direction

l

h cos g - 8in

h cos g + cos

h gin g + cos

g 8in I s

g ein I ,

cosg

ecos

elements by

sin

gin

LE 1 LS

gin v

used:

g cos 1 ,

g coe 1 .

g cos 1 ,

g cos 1 R

(3.21)

(3.22)

cosines of the sun are (see Appendix A):

cos(lo+ go) - e

c sin(£0+g@) -

S szn(gg+go) -

©

cos

By o

ee 8in go ’

eo ain g@ s

(3.23)
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where the following notations are used:
¢ = cos(23%°27') ,
S = 8in(23%27') ’
R’@‘ ot * 9,00 ’
n, = 360°-(365.2422 days)” (3.24)
e, = .0167 ,
g, = 281"
8 =D t+ 2 +8

When expressions for x,y,z,r and equations (3.23) are
inserted into (3.20), F8 is given in terms of elements:

Aa? 3 1
F = — [(1+e2)cosu-§e-§eaoamﬂ-
D ¢

'EEl(cos 0 - e, cos go) + Nl(sine- €o 8in g@):l

1 (3.25)
+ (1-e?) |sin u - 5 € 8in 215]-

. [E;z(cas 0 - ey co8 ge) + Nz(sin 0 - e@ ain gO):I

where

N =C¢ +8n , N =C¢ +8n . (3.28)
1 1 1 2 2 2
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The variable 6 in (3.25) contains the time,
3'=n€9t+ft.m+g0 . (3.27)

Using the time equation (3.16), 6 can be considered an ab-

breviation involving DSu-elements:

P
n U
e=neﬂ.——§_‘—eainu+2@°+ge . (3.28)

Carrying 6ut the products in (3.25) ,

A

2

a
F = [(1"'82)6 - (1-e?) N;Jcos (6+u) +
2v/2T 1

+ | (1+e?) N + (1-e?) gz sin (0+u) +
L 1 e

+ P(1+e2) E;l + (1-e?) N2 cog (6-u) +

+ —(1+e2) N - (1-e?) EZ_ sin (0-u) -

-3e£1 cog 8 ~ 3e Nl 8in 6 +

+ E?.l' e(l-e?) N - % e chos (8+2u) -~ (3.29)
2

Nl + (1-e?) &;]sin (6+42u) -

1
0|
o

gl + (1-e2?) N;]cos (6=-2u) -

I
O] b
®

oo

> Nl - (1-e?) &Jsin (6-2u) -

e

1
D=
0]

e--2]=ec032€|-

i

-2 e@(g1 cos gy + Nx 8in gg)[(1+ez) cos u -

-2 e(a(g2 208 gg *+ N2 ain ge)(l—ez) gin u - -;— e gin 211]
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Since the interest is in long period motion, short pe-
riod terms (those periodic in u) will be eliminated from
F8 . This can be done at the same tim~ that the time equa-
tion (3.28) is inserted into Fs. The terms dependent on
time in (3.29) are

z;:(e +iu) , i=0,%1,2,
or '
8L g 4 XA sinu+ L.+ ge + iu), i=0,+1,:2
cos'\Bo gin oot 8o , 1=0,%1,22,
where Un e
A= - 2
2L

The following relations (Reference 17, p.2 .5) are used+

<400
gin(a + B 8in y) = I Jj (B) 8in(j v + o)
+W
cos(a + B cos Y) = I Jj (B) cos(j v + a)
Thus,
40
sin(n0 L + X gin u + leo + g +1 u) = z Jj(k) sin[{lG 2
js - 00

(3.30)
+ 290 + g *t (1+;j)u:|
The mean of a function f(u) with respect to u is defined as

2n
(G = & £(u) du

t J(8) , 3=0, 1, 2,:--, are the Bessel coefficients.
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Therefore, using (3.30) ,
<8‘;‘1(G + i u))u - J-i()‘) gin(ng & + Lgq + €,). (3.31)
Similarly,
{ere(® + 1 u), =J_ (X) coa(ng & + 45, + 8y).  (3.32)

Jsing (3.29), (3.31) and (3.32), the elimination of shor*
period terms results in

Aa? \

F, == l:(l-e )I )N -
- —;— e (3Jo + Jz) E,.‘] cos(ne L+ 2.00 + g@)
-El-ez) J () g+ (3.33)
+3e (33 () + JZ(A))N‘:] sin(ng & + 2., + 8g) *
+ -g— e e@(ilcos 8o * Nl 8in ga)

MNnte that several terms cancelled because of the identity

= (-1y
Jj(X) (-1) J_j(l)

The averaged hamiltonian is now

u
(F) =U_——+<F> ) (3.34)
u /Q‘E g u
Since u does not appear explicitly in <F>u . U will be
a constant. The remaining developnents will concern (3.34)
only. Therefore, the notation £ )u will no longer be needed.
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The hamiltonian in terms of elements is then

u
FobU-—D+F . (3.35)

where Fs is a function of g, h, &, U, G, H, L given by the
right side of (3.33).

A further simplifica*ion of F8 can be made. Consider
the Bessel coefficients appearing in (3.33). The argument A
has been defined as

A= —fPgo
2L

Since L 1is the negative of the total energy,

4oL i
L= ;§(1 - 2 T Vs) ) (3.36)

where g is the instantaneous osculating semi-major axis.
From (3.19), '

U=g01-V) ,

Inserting (3.36) into the above expression and expanding in
powers of V8+:

U= /u? [1 + o(v:)] . (3.37)
From (3.36) and (3.37) ,

2L v
a
—- S [1 + 0 vs)] . (3.38)

Vv
aS

t In the unperturbed case, U 1is equivalent to the classical

Delaunay variable L
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u
Since 0 =/ ~ is the osculating mean motion, it is seen that
a

Un
-2

2L

is approximately the ratio of the mean motion of the satellite
to mean motion of the sun, i.e.

Un 1 (3.39)
-2
2L 365
Therefovre,
IA]l = (2.8°107%) e ,
or

Al < 2.8-107°

for a geosynchronous satellite. Any term depending on )
will therefore be neglected.

The Bessel coefficients can be expressed as a power
series in the argument:

% A2 A

T (A) = [1_ + _]
n 2™n1 22-1-(n+1) 2°:1-2-(n+1)-(n+2)

Since all powers of A can be neglected., J:(A) and J2(1)
in Fs can be set to zero and Jo(A) can be set to one.
Thus, the expression for Fs becomes

Fs=_ch [:eﬁ‘(cos v—eocos g@)"'

+ e Ni(gin v - o 8in ga)] (3.40)

where
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e me cos gecce h-e gitn g sin h cos 1 ,

eN,-c[ecosgsinh-beaingaoshcosl]

(3.41)
+ Sesingeinl ’

\"nok"'zm*‘gg .

The small parameter ¢ 1is unitless. (Remember that A
has units of acceleration). g 1is the acceleration of gravity
at the surfcce of the earth and RO the radius of the earth.
Therefore,

A

&) —
€ = — —_—
s Be G/IC
But from

G =0U /1-e% ,
and (3.19) ,

G/AL = (1-v,) J1-e2

so that € can be expressed as
A, _
e = - (&) A-v)! -yt | (3.42)
g @ ®

Since € is already small, V_ and e® can be neglected

€ =

Q |»

(f}-)z ) (3.43)
®

Therefore, the small parameter ¢ 1is the order of magnitude
of IVBI (see section 3.2).



3.5 Element Differential Equations

Introduce the non-singular elements

Gz
p*v/{-—cos(gﬂx) » a=v1-
Ul
/ G
P=y/1 -—¢coagh ,
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;; sitn(g+h)

/ G
Q=~vV1l <« —3gin h .

(3.44)

These elements are defined for zero eccentricity and inclina-

tion.

The differential equations for p and q are given by

by the chain ryle:

dp 9p 4G

—— D wmm—— ——

dt 9G dr

with a similar equation

differential equations

dg

dt

dh

drt

Also, since F no longer depends on

oF

3G

3F

oH

op dg

P ——  — —  — —

g dr

dq

dt

for

dG

drt

dau

ar

oF
—_—=
3u

Make use of the canonical
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The necessary partial derivatives of p and q are:

ap n? 3q n?
— = - — co8(8+h) , — = - — gin(g+h) ,
oG Ge G
op aQq
— = - @ gtn(8+h) , — = @ cos(8+h) , (3.45)
g e
p 9q
— = - @ gsin(g+th) R — = @ cos(g+h) .
. oh sh

The differential equations for p and q are then

‘dp n? aF (3F 3P
- = =~ gog(gth) — - e gin(g+h) |— + — .
dt Ge og (3G oH|
(3.46)
dq n? oF [3F  3F)
-— = — goe(gth) — + e cos(gt+h) [— + — ’
dt Ge og |9G  9H|

where n = /1-e?

It is necessary to develop the right sides of equations
(3.46) in terms of p,q,P,Q . This will be doue in the
following steps:

(1) Compute the deriva;ives of F with respect

to g, G, H . '
(2) Insert these derivatives imnto ‘he right sides of
equations (3.46).
(3) Use equations (3.44) to express the right sides
of (3.46) in terms of p,q,P,Q .
These three steps have been carried out in Appendix B. All
the necessary partial derivatives are given there. The re-
sulting nonsingular equations are:
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dp 3
—.Ee E\zpq-c-qQ(qP-l»Qp)](cosv-e@cos%)-

—E\’c (1-P?) + n? 5 P (2-(P2+@2))} -
- C qP (qP+Qp) +
+ 5 q (qP+Qu}(1-(Q2+P2)) (2—(P2+Q"))-ﬂ(sin v - egain g,:}

(3.4

213
‘

3
.;e E\’ (1-Q%) - p Q (qP+Qp)](coa V- eg cos g )+

-En* cPQ-n?sq(2-p+@)? 4+
+ ¢ p P (qP+Qp) -

- § p (qP+Qp) (1-(Q%+P?)) (2-(P2+Q2))-f](sin V - ggeo8 go)}

Notice that n is a function of p and gq
n = /1-(p?+q?)

The differential equations for P and Q are developed
in a similar manner as that done above. The details are car-
ried out in Appendix B and the equations are shown on the
following page:
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4apr 3

_;;., _z e{QE) (aQ-pP) + 2 p|(cos v - €4 COB8 80) +

+CPE> (aQ-pP) + 2 pj(ein v - egsin g,) +

+s[1 - (P‘+Q’):”:2 - (P’+Q’)]-*E’ (pP-qQ) -

- 2 pl(ein v ~ ey 8in SQ)]

(3.48)

,

dqQ
—_— = - <Q[Q (pP-qQ) + 2 q|(coe v - ey cos 80) +

+CP:2 (pP-qQ) + 2 ({](ain vV - e, 8in ge) +

_ -3
+s|1- (phq*)][z - (P’&*)] Ez (pP-qQ) +

+ 2 q](sin vV - ey ain 8@)}

The remaining differential equations come from the ca-
nonical equations

d%  3F d. 29F

dtr oL dt R

These are computed in a straightforward manner from (3.35),
(3.40) and (3.41):
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da m [ 9 I
__._____<1+—e[1-(p’+q2)] E)(l—Qz)-
ar (2L ¥? 2

.

-qQ gJ(cos vV - e, cos go +

+ [c (q-qP2-pPQ) +

+ 5 (@ap) 2-(@a? E|(ain v - eq cos g}

(3.49)

dL 3 3
— =-n e,[l - (p*+q2)—| E:(I—Q’) - qQP:] sin v -
dt 2 -

- [? (a-qP?-pPQ) +

+ 5 (qP+Qp)<2-<p2+Q2))f] cos v{ .
3.6 Orbits in the Ecliptic Plane

For orbits that lie in the ecliptic planef.

h=20 , 1 =€
Therefore,
P = Vl-cos ] , Q=20 R

and the differential equations are greatly simplified:

dp 3

—_ = - - ¢ [} - (p*+q?)| (8in v - €s sin go) . (3.50)

dr 2

€ is the angle between the equatorial and ecliptic planes,
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3
—_= ; € E. - (p2+q’)](cos vV - ey 008 gg) (3.51)
, (3.52)

’ (3.53)

as 1] )

— 1+-¢ []__(p2+q2) * .
dr (2L)$ 2
(3.54)

. E’(cos\'-e@"“ go)+q(sinv-e°sing@)]

a3 l 2 2I%| ?
-;r--é-n e |1 - (p°+q°©) p (8in - - e co8 'ge)-
(3.55)

- q (coe v - e, 8in g@)] .

Comments

(1) Equations (3.52) and (3.53) indicate that the orbital
plane ( i.e. inclination) will remain fixed, as expected.
This is because there are no out-of-plane perturbations
on the orbit.

(2) The equations no longer depend on e0s ¢

ein
(3) The equations for p and q contain secular terms that
are proportional to the eccentricity of the sun's orbit.
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3.7 Solution of the Linearized Equations

When the eccentricity and inclination of the satellite
are small, the element differential équations can be simpli-
fied by neglecting from equations (3.47), (3.48) and (3.49),
the second and higher degree terms in p,q,P,Q. The result-
ing equations are: '

dp 3
—--—EE'+S/§'P (einv—eesinge) .
dt 2
(3.56)

— = —~¢ lcos v - e_ cos
dt 2 © %o

+8/2Q (sin v - e 8in ga):l , (3.57)
dpP 3
— =- /25 ¢€p (sin v - g, 8in gg) , {3.58)
dt 4
aQ 3
— =-~V/25¢€q (8in v - e, 8in gg) , (3.59)
dt 4
dg u 9 :
_— 1+-—eE)(cosv-chosgo +
at  (2L)¥? 2 (3.60)

+Cq(sinv-eesin gQ)] s
dL 3
—=—n@e E)sinv-chos\] (3.61)
drt 2

These equations are not linear since v contains £ through

the equation
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Algso, € depends on L. However, notice that the perturba-
tion in total energy (equation (3.61)) will be small because
of the coefficient nge ", It is also periodic. It is
therefore allowed to let L' be a constant.

The perturbed part of the time element equation (3 60)
will be small because it is proportional.  to the eccentricity.
Therefore, let ‘ )

u

L= T
(2L)%

. (s5.62)

The derivatives of P and Q are also proportional to
e . In fact, the effect of solar radiation pressure on the
orbital plane is negligible when compared to the gravita-
tional effects. It is shown in Reference 7 that sun-moon-
earth gravity cause a motion of the orbital -plane that 13 de-
scribed by the following expressions : '

n
Psc[l-usin(m-be):l .

(3.63)
G n
Q =~ 0 cos (wt + 0) ,
Y
where
o= .0002 , y=1.015 , =5.170-10".

o and 3 are integration constants that depend on the initial
values of P and Q. The mean values are

P=oc |, Q=0 , (3.64)
and correspond to the equilibrium solution

I=17.31° , h=o0o .
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For most initial condition, P and Q will never be far away
from their equilibrium values. Therefore, insert (3.64)

into equations (3.56) and (3.57), giving approximate equations
. for the derivatives of p and q

dp 3
dt 2
(3.65)
dq 3
— = —¢ (¢cos O -e_cog g) ,
dt 9 (] (U]

where the additional abbreviations have been introduced:

B=Cc+sS0 /2 , oe=8T1+ 28, *g (3.66)
neu
§ = oLy (3.87)
(2L) %2
But since is the mean motion of the geosynchronous

v
satellite,

§ = (365.25)"}

(3.68)
Equations (3.65) are uncoupled and can therefore be
immediately solved:

p=¢B(cosO+16e®s'mg@)+Cl

(3.69)
qg=¢(sitn 0 -

~

) e, cos gy ) + C2

’

where

(3.70)

o |
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Cl and C2 are integration constants that depend on the
initial values of p ani q .

Comments on the Solution

1. The motion can be represented in a plane with p,q the
ractangular coordinates.

2. In all cases, p,q will describe an ellipse whose center
has a linear translation. The motion around the ellipse
has a period of one year.

3. The mean eccentricity will have a linear increase or
decreuase.

3.8 Numerical Results

-This section will discuss some quantitative and qualita-
tive results of the solution developed in Section 3.7. First,
the solution is verified by comparing it to a numerical inte-
gration. Then the solution is used to describe the general
behavior of orbital eccentricity and longitude of perigee.

3.8.1 Numerical Experiments

It is necessary to demonstrate that the analytical solu-
tion and its associated assumptions are valid. This has been
done by carrying out cumparisons with a numerical solutiomn
obtained from the STEPR multirevolution program (References
18 and 19). Since the purpose here is to check out the accu-
racy of equations (3.69). only solar radiation pressure was
included as a force model option in STEPR. The additional
effects of gravity will be discussed in Section 4. It will
also be shown there that equations (3.89) give a good approx-
imation to the complete problem over a period of a few years.

Comparisons between the analytical solution snd STEPR
are shown in Tables II(a) and II(b). The area to weight ratio
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was assumed to be 1.73 m® kg~ !(see Section 2.). The initial
epoch was noon January 1, 1980. Eccentricity e based on

the analytical solution was first computed by evaluating Py
anq Q, from equations (3.69). The algorithm for computing

p; and a, is described in Appendix C. e, is then obtained

from
)%

e, = (pA +q, (3.71)

The 1lc ation of perigee is obtained from

n
ccs g, = — ,

(3.72)

where E is the longitude of perigee, defined by

g=g+h . (3.73)

The values from STEPR are denoted by ex

N
and By
TABLE I1I.- ANALYTIC SOLUTION VERSUS NUMERICAL SOLUTION

n
(a) e, = 0 R g, undefined

Percent Error

. 4]
Years a °n & By Y €a
9.6 .0481 .0485 132.7° 133.7° 0.8 0.7
19.5 .0610 .0620 148.8 149.6 1.8 0.5

30.1 .0511 0517 -173.8 -174.2 1.2 0.2




-d2-

TABLE II. - CONTINUED

v 0
(b) e, = .021 , €, 80.6
Percent Error
e, e E 3 e §
Years A N A N A A
9.6 .0328 .0337 153.7° 155.0° 2.6 0.9
19.5 .0502 .0519 167.4 168.3 3.3 0.5
30.1 .0548 .05653 -150.9 -151.9 0.9 0.7
Comments
1. The results in Table II show that the analytical solu-

" tion gives between 2 and 3 digits of accuracy c-er a

3.8.2

period of 30 years. This is sufficiently accurate to
describe the general behavior of the orbit.

The accuracy of equations (3.69) subs.antiates the as-
sumptions that were made in the course of their deriva-
tion. The same approach can be used to solve the com-
plete problem (including gravitational per.urhations).
The errors in e, and EA do not increase with time.
Therefore the analytical solution contains all long
period effects.

Plots of e versus time are shown in Figures 8 and 9,
respectively.

Qualitative Description of the Orbit

initi

The orbital behavior can be described for different
al conditions on eccentricity e, and longitude of

perigee Eo + Also, the motion will depend on the epoch

of in

time
about

itialization since the problem depends explicitly on
(i e. on the position of the sun in its imagined orbit
the earth). The example cases considered Lere are



shown in the table below. These cases were chosen so as to
demonstrate some of the essential features of the motion and
to illustrate some preferred crbits.

TABLE III.- INITIAL CONDITIONS FOR EXAMPLES

Case No. e, €, Initial Epoch
1 .0 undef’ned noon, 1 Jan. 1980
2 .0210 ~80.6° noon, 1 Jan. 1980
3 .0292 -34.8 noon, 1 Jan. 1980
4 0214 -67.4 noon, 1 Jan. 1980
S5 .0 undefined noon, 3 April 1980
6 .0 undefined noon, 1 Oct. 1980

For each case; the evolution of elements p, q and e
is considered over a period of ten years. This is the maxi-
mum t;me interval for which the analytical solution is valid
({see numerical comparisons in Section 4). The area to weight
rati. was taken to be 1.73 m?2 kg~! , as before. Equations
(3.69) were programmed on the Hewlett-Packard 9810 micro-
computer, using the algorithm described in Appendix C. The
HP9810 plotter was used to produce the plots shown in Figures

2 through 9.

Two figures illustrate the results for each case:

(a) p versus q: This shows the motion in p,q-space.
Also, e and E are the polar coordinates of the point that
traces out the curve (see equations (3.44)). The direction of
motion is indicated by arrows. When the curve passes through
the origin, :he limiting value of E will be the tangent to
the curve,
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t

(b) e versus time: This figure shows the variations

in e as a function of time in years.

Discussion of Results

Case 1 (Figures 2(a) and 2(b))

(1) The motion begins from the origin in the p,q-
plane and in a direction that is approximately
90° from the sun's initial mean longitude* 0, -
This can be seen from equations (3.69) with

g = 1

N

e cos g=¢an (6 ‘l‘+90) - cos eg ,
e sinE=¢Ein (6 T +0,) - sin eg .

Notice that e =0 for T =0 . Ther,

}
®
e
S
D

gin (8 T + 60)

4
tan g = .
cos (8 T +6,)

!
©
©
®
D

Using 1'Hopital's rule,

Limit N

T+ 0 tan ¢

= o o
ctn eo tan ( 90% + eo ) .

For this case, ncon on January first corresponds
to 0, = - 80.6° . Therefore g, = 9.4

The sun's initial mean longitude is eo 2@0+ge, where g

is measured from the vernal equinox (x-axis) in the eclip-
tic plane. See also Appendix C.



(2)

(3)

Case 2

The center of the ellip in the p,q- plane

is initially at (Cl,Cz) and moves toward the
lower left at the rate of Q= 27 per year.
Notice that this rate depends on the area to
weight ratio of the satellite by way of the small
parameter ¢ . The direction cosines of the
motion are (sin g, - cos g, ). Using ge=282.5°,
the direction cosines are (-.9763,-.2166).

The eccentricity is periodic and returns almost
to zero after one year. Its maximum in the first
year is approximately 2@ . The motion of the
ellipse in the p,q- plane is seen as a nearly
linear component in the variation of e .

(Figures 3(a) and 3(b))

(1)

(2)

The initial values of €, anc EO were chosen
so that constants Cl and Cz were both zero.
The ellipse is centered initially at the origin.
For a while, the eccentricity is nearly constant
at the value of @ . But as the ellipse moves
away from the origin, the oscillations in e
increase in amplitude. Just as the origin is no
longer inside the ellipse, the amplitude will be
2@ . After that, the amplitude stays the
same, but there is a linear component to the

variation of e . (See also Figure 9.)

As lorg as the origin lies inside the ellipse,

3 will circulate once a year. If the origin
is still inside the ellipse and the path passes

. . “ . .

near the ori<sin, g will change very rapidly.
When the origin no longer lies inside the ellipse,

¢ varies about the mean value of By - 90°
The amplitude of these variations decreases with

time.
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(Figures 4(a) and 4(b))

(1)

(2)

Case 4

The initial conditions for this case were chosen
so that the ellipse would initially pass through
the origin and its center would move directly
toward the origin.

The important result of this choice of initial
conditions is revealed by the behavior of e as
shown in Figure 4(b). iIn fact Figure 4(b) is a
mirror image of Figure 3(b).

(Figures 5(a) and 5(b))

(1)

(2)

Case 5

This case is similar to Case 3 in that the center
of the ellipse will pass through the origin.
However, the motion is such that the eccentricity
is nearly constant for a longer period of time.
For -~<ample the maximum value of eccentricity will
be chan .025 for four and a half years.

The :tude of perigee E will circuiate.

(Fijures 3(a) and 6(b))

Case 6

This case and the next one show the effect of the
epoch of initialization on the subsequent motion.
e, and EO are the same as in Case 1, but the
epoch is three months later. The ellipse is mov-
ing directly away from the origin and the linear
growth component of e 1is more severe. This case
is not desirable when large eccentricities are

to be avoided.

(Figur s 7(a) and 7(b))

Again, the eccentricity is initially zero, but the
epoch is six months later than Case 5 and nine

months later than Case 1. However, the motion is
very similar to Case 3. The center of the ellipse
in the p,q-plane moves directly toward the origin
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and the amplitude of oscillations in e decreases
to zero after ten years.

Figures 8 and 9 show ...e long term variations in e
for Cases 1 and 2, respectively. Of interest here are the
effects of the sun's orbital eccentricity e, over 30
years. In fact, this secular increase becomes the dominant
effect on the motion. However, the numerical studies that
are discussed in the next section show that gravitational
porturbations eventually become significant and can actual-

1y limit the secular growth in e due to €o°

4.0 long Period Variations in Eccentricity and Inclipation

The long periond changes in the shape and orientation

of the SPS geosynchronous orbit are discussed in this sec-
tion. Gravitational and solar radiation perturbations are
included in the analysis. An analytical solution does not
yet exist when the problem contains all perturbations simul-
taneously. Therefore, the results discussed in this section
are based on a numerical integration of the satellite equa-
tion of motion.

As indicated in Sections 1 and 2, the perturbing

effects can generally be separated as follows:

(1) Rotation of the orbital plane
The combined effects of sun and moon gravity and
the oblateness of the earth cause large, long
period changes in the inclination. If iniiially
zero, the inclination will increase at the rate
of .859 degrees per year. Solar radiation pres-
sure has a very small effect on the inclination.
(2) Varfation in the oviital eacentricity
The eccentricity can have large changes, primari-

ly due to solar radiation pressure. However,



gravitational perturbations due to luni-solar
gravity and earth's oblateness can be important
over a long period of time."

(3) Drift of the eatellite'’s mean longitude
This effect is caused primarily because the sat-
ellite's orbital revolutions are in resonance
with the daily rotation of the earth. Luni-solar
gravity has a small direct effect on the drift in
longitude. There is an indirect influence due to
solar radiation pressure ( e varies ) and luni-
solar gravity ( I varies ).

This section is concerned with the long period (30 years)
changes in e and I . Since these two motions are indep-
endent (so long as e and I are relatively small) they
will be considered separately for several types of orbits.

All numerical results discussed in this section were ob-
tained with the STEPR multirevolution integration program
(References 18 and 19). Gravitational perturbation included
geopotential terms up to order and degree of 6. The sun and
moon were treated as point masses. The model for solar rad-
iation pressure is described in Section 2.3.

4.1 Eccentricity Variations

The variations in e have been thoroughly discussed in
Section 3. However, as mentioned there, that analysis did
not take into account the coupling beo*ween solar radiation
pressure and gravity. This effect pruduces a long term
variation in e .

A Y

The accuracy of equation (3.69) compared to a numeri-
cally integrated solution containing gravity is shown in
Table IV. The orbits compared are the same as in Table II.
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e, and &A are the values obtained from the analyti-
cal solution. eg and Es are the numerical solutions
obtained from the STEPR program. This is a comparison
of the force model used in Section 3, not of the analyti-

cal solution method.

TABLE IV.-ANALYTICAL SOLUTION VERSUS STEPR SOLUTION

N
(a) €, = 0 , g, undefined

Percent Error

Years ®a s gA Es €a EA
0.5 .0418 .0431 97.3° 99.0° 3.0 1.6
1.4 .0391 .0392 86.0 9.9 0.3 5.3
2.6 .0405 .0435 129.2 137.2 7.9 5.8
4.6 .0422 .0460 136.9 i51.0 8.2 9.3
9.6 .0481 .0438 132.7 165.9 9.8 20.0

(b) e, = .0210 , g = -80.6°
Percent Error

Years €a s EA ES €a EA
0.5 .0209 .0222 95.2° 95.75 6.1 0.5
1.4 .0193 .0202 71.6 73.1 4.6 2.1
2.6 .0247 .0250 154.0 154.1 1.4 0.1
4.6 .0286 .0278 163.3 166.6 2.9 2.0

9.6 .0328 .0243 153.7 168.5 35.0 8.9
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Conments on Table IV

1. The analytical solution is accurate to within a few per-
cent within the first few years. Therefore, the figures
shown in Section 3 will be accurate to within a few per-
cent and describe the general character of the motion.

2. Long period effects due to gravity become important
after about eight or nine years.

3. The analytical solution could be useful for orbit pre-
diction and control over a few years.

Long term variations in e have been studied for the
casesshown in Table V. Figures 10 through 13 show e versus
time for 30 years. For each case, the inclination was approx-
imately 7.3°. However, the motion of e was essentially the
same as for the case when the inclination was initially zero.

TABLE V. -INITIAL CONDITIONS FOR EXAMPLES

Case No. ®o ;6 Initial Epoch
1 .0 undefined noon, 1 Jan. 1980
2 .0210 -80.6° noon, 1 Jan. 1980
3 .0214 -67.4 noon, 1 Jan. 1980
4 .0 undefined noon, 3 April 1980

The plots shown in Figures 10 through 13 were output from
the STEPR program, using the CALCOMP plotter hardware and
software that is available on the Johnson Space Tenter Univac
1110 computer system.
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Discussion of Results

The curve doesn't being exactly at e=0 since there
is no output from STEPR until after 44 revolutions.
This is because the extrapolation table needs to be
built before the first multirevolution step is taken.
The long term gravitational effects can be seen by
comparing Figure 10 with Figure 8. (Note that the
scales are different). Both curves have the same
general shape. The linear trend of Figure 8 has
been moderated in Figure 10.

Large values of e can occur for an uncorrected

SPS orbit. Such large values are probably unac-
ceptable to the spacecraft and ground systems.

This case can be compared with Figure 9. The al-
most linear incre 3« “‘n amplitude levels off after
about 20 years. wnowever, the curves are very simi-
lar for the first ten years.

Case 1 (Figure 10)
(1)
(2)
(3)
Case 2 (Figure 11)
Case 3 (Figure 12)

This cases corresponds to Case 4 (Figure 5(b)) in
S8ection 3 where the value of e is limited during

~ the first few years. Also, if Figure 12 is shifted

i]about an inch to the left along the time axis, it

is almost identical to Figure 11. This can be seen
by overlaying the two figures. Initial conditions
of ithe orbit can be manipulated so that the nearly
constant e phase occurs anywhere along the time
axis. This may be done to achieve certain desirable
results for station keeping purposes. It must be
remembered, however, that since the problem depends
on time, the epoch of initialization must also be
taken into account. (Compare Case, 1, 5 and 6 in
Section 3).
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Case 4 (Figure 13)

The initial conditions are the same as for Case 1
except that the epoch is three months later. (Com-
pare Case 1 and Case 5 in Section 3.) The linear
componeiit in e is evident over the first ten years.
However, the long period effects eventually cause a
decrease in eccentricity so that the maximum e

for this case is less than the maximum e for Case
1. This example shows the importance of the long
period gravitational terms.

4.2 Inclination Variations

The motion of the orbital plane has been thoroughly dis-
cussed in Reference 7. The discussion given here presents a
numerically integrated sol. ‘ion and some plois of inclination
as a function of time. Table VI shows the cases that are dis-

cussed here.

TABLE VI. -INITIAL CONDITIONS FOR EXAMPLES

Case No. Io ho Initial Epoch
1 o° undefined noon, 1 Jan. 1980
2 7.3° 0.° noon, 1 Jan. 1980
3 2.0 270.0 noon, 1 Jan. 1980

For each case, the eccentricity was small anc¢ had nc appre-
ciable effect on inclination or node.
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Case 1 (Figure 14)

If initially zero, the inclination increases to
about 15° after 26 years For the first few years,
the increase is almost linear at the rate of .859
degrees per year.

Case 2 (Figure 15)

The inclination is nearly constant. The long period
oscillation observed in this figure is caused by

the precession cf the moon's orbital plane on the
ecliptic. This motion has a period of 18.6 years
and depends on the epoch of initialization.

Case 3 (Figure 16)

When the node is initially near 270 degrees, the
inclination will decrease to almost zero and then
increase. With this approach, inclination can be
kept small over a longer period of time. The ad-
vantage is that out of plane station keeping ma-
neuvers will be reduced or eliminated. The effec-
tiveness of this procedure depends to some extent
on the orientation of the moon's orbit and there-
fore the epoch.

5.0 Daily Effects Due to Nonzero Eccentricity and Inclination

The changes in eccentricity and inclination that were
described in the previous sections will cause a daily motion
of the satellite, as observed from the rotating earth. It
will wander north and south of the equator as well as east
and west of the mean longitude. The ground track may be a
circle, ellipse, figure eight or some other shape depending
on the values of e and I . Usually there are restrictions
on the allowed latitude and longitude deviations of a geo-
synchronous satellite, because of requirements on satellite
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and ground systems. This section will show some typical ground
tracks for the case of small values of eccentricity and incli-
nation.

5.1 Development of Equations

The frame of reference will be a rectangular coordinate
system with x- and y-axes in the equatorial plare and
z-axis toward the north pole. The x-axis is directed toward
the vernal equinox. Figures 17 and 18 define the symbols to
be used in this development. ¢0 is the angle between the
Greenwich meridian and the x-axis .

Equations will be developed here that give latitude @
and longitude A as a function of time. Begin with the ex-
pressions for rectangular coordinates in terms of elements,

X =7T (cos Qcos v - gin Q sin v cos I) ,
y=1r (8in Q sin v + cosg Q 8tn v cos 1) , (5.1)
zZ=1rg8in v gin 1 ,
where v=uw+If {(5.2)
z
Since — = gin Y \
r
gin Y = gin v sin 1 (5.3)

Note that ¢ is uniquely determined by (5.3).

Development of equations for the longitude A are some-
what more difficult. First, notice that expressions must be
f nd for both s<n X and e¢rs X . From Figure 17,

= gin ¢ , (5.4)

v} X%
]
0
)
1¥5)
©
v |«
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FIGURE 17: Polar Coordinate System
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80 that
r
gin ¢ = — (8in Q cos v + cos & gin v coe 1)

p
' (5.5)

cog ¢ = — (cos R cos VvV - 8in Q gin v ecos I)
)

The longitude can be expressed in terms of ¢ and ¢° by

k=¢-¢0 »

so that
gin A = gin ¢ cos ¢° - cos ¢ sin ¢° s

(5.6)
cos A = cos ¢ cos ¢° + sin ¢ 8in ¢e

Insert (5.5) into (5.6), collect terms and make use f trigo-
nometric identities. After introducing the small parameter
1

a=— (1 - cos 1) , (5.7)
2

the results are

r - —
gin A = — |(1 - a) gin (V + Q - ¢°) -a gin (v - Q + ¢.)
p - pu—
(5.8)
r -
cog A =— |(1 -~ a) cog (v + Q - ¢o) + a cos (v - Q + ¢°)
p h— el
r -4
where -~ = (1 - 8in? I gin? v) . (5.9)
o

The true anomaly f is given as a function of time by
the implicit equation

nt - lo = E - e gin E (5.10)
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and - /1 + é E
f = 2 tan tan — (5.11)

1 -e 2

The keplerian elements n (mean mction), €, I, w, 2, can be
assumed constant over a few days.

It is desirable to measure the longitude relative to
some "mean' value. Define the new variables

§ =1-290 (5.11)
and
e=zo+ﬂ-¢eo+w . (5.12)

The rotation of the earth is expressed as

¢$=w0t+¢00

For geosynchronous satellites,

so that

¢0=nt+¢00

Making use of the notation

)
n
=
[ad
+
Py
(o]

we have
b6 =2 + ¢ - 2 (5.13)

Inserting (5.13) into (5.8) and using (5.12),

r —
gin A = — [31-—a) gin (f - L+8) ~asgin (f + 2 + 20 - 0) ,
p -
(5.14)
r -
co8 A = ~ l:(l-(x) cos (f - 2+6) +acos (f + & + 2w - 8)
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Since |8| will be less than 90°, it can be defined by
ein § . Make use of

gin 6 = gin A co8 O - cos A sin 6 . (5.15)

Substitute (5.14) into (5.15) and collect terms. The result
is

r
sindt-[(l-a)sin(f-z)-
P
(5.16)

asin(f+2.+2w)]

Finally, equations (5.3), (5.9), (5.10), (5.11) and (5.16)
define the ground track as a function of time.

5.2 Small Eccentricity and Inclination

It is desirable to express latitude ¢ and longitude §
as explicit functions of time, i.e. as functions of 2
This can be done for small e and I by making use of power
series expansions. Assume that

e < .064 , 1<7.3°

Define
(5.17)

-3
"
(S
[+
o
3
=

then

Power series expansions will be carried out in terms of e
and b , keeping terms of order e?, b? and eb
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5.2.1 Longitude Equation

From equation (5.16), sin § 1is expressed in terms of
f and 2 . Consider

r - -3
-=El-8inzlsin2(f+m)] .
p

This expression can be rewritten in terms of b

r "&
_=[(1-2b2)+2b’cosz(f"'w)] .
p

Expanding the above expression with the aid of the binomial
theoremn,

r
~=(1~2b%) -Db?2 eos 2 (£ +w)+ Ob*)
p
Also,
1
a=—(1-cos I) =b%2+ Q")
2

Therefore, after truncating terms of order b" , the expres-
sion for sin & is

gin 8 = (1 - 3b?%) sin (f - L)

1
- = b? gin (£ + 2 + 2u)
2

1
- — b? gin (3f - L + 2w)
2
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Notice that 3b? can be dropped from the first term
since sin (£f-2) = Q(e). Also, f can be replaced by 12
in the last two terms, for similar reasons. Then,

gin 8§ = gin (f = L) - b2 sin 2 (2 + w).

Making use of the Equation of the Center,

5

f-0=2e3sint +—e?gin20 + --- ,

16

and the expansion for sine,

the e

5.2.2

1
gain 6 =0 - — 0% + ... ,
6
xplicit expression for longitude is
5
6§ = 2e gin & + — e? 3in 2%
16

-b% sin 2 (L + w) + Q(ed,b?)

Latitude Equation

The sine of latitude is

gin Y = 2b gin (f + w)

Using (5.19),

where

gin (f + w) = gin (L + w + ¥x)

5
X (e, &) = 2e gin L + — e? agin 28 +
16

(5.18)

(5.19)

(5.20)

(5.21)

.(5.22)
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Using the power series expansions for sine and cosine, and
the binomial theorem,

cos V=1 - c? + e2 coe 2 84 + -
5
gin ¢ = 2e gin L + — e? gin 20 + -
16
Then sin Yy can be written as

gin ¢ = 2b gin (L + w)

+ 2b e[sin (2% + ©) - sin({I d eee

The latitude is then
¥ = 2b ein (L + w)

(5.23)
+ 2b e[sin (22 + w) ~ 8in u] + 0O(e?,b?)

5.3 Ground T, ack

To an error of less than one half degrees, the second
degree terms can be neglected in equations (5.21) and (5.23),

o
]

2e sin ’ (5.24)

<
]

2b sin (L + w) (5.25)

An approximate equation for the ground track can be obtained
by eliminating £ from the above equations. From (5.25)

v

— = 8in L cos8 w = cog L 8in w
2b
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Squaring both sides,

vy
— ~ —8in % cog8 w + 8itn? 2 cce? w = cos? L sin? w
4% b
But
()
gin L = — ,
2e
so that

p? § ¢ cos w 52
- + = gin? w (5.26)
4b? 2b e 4e?

Equation (5.26) is an ellipse, so that, in general, the
ground track will be nearly an ellipse. Consider the sp-.ial
cases:

(1) w=90°

Then the ground track equation becomes

52 w2
— e ——
4e?  4b?
This is an ellipse whose axes lic¢ on the equator and a
meridian.
(2) e=bD , w= 90°

The ground track is a circle of radius e.
(3) w=20

The ground track is a straight line with slope

o |
[}
o | T
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Actual ground tracks are shown in Figures 19(a), 19(b),
20(a), 20(b) for different values of e and I . These were
produced on the Hewlett-Packard 9810 by using equations (5.3),
(5.9), (5.11) and (5.16). Thus, there are no approximations
made for small e and I . It is observed that the figures
resemble ellipses.

6.0 Conclusions

The analysis developed in this report shows that the or-
bital eccentricity of the SPS can get relatively lurge. How-
ever, for certain cases, the eccentricity can be reduced when
proper choices on i-iitial conditions are made,.

An analyt’ solution for the motion of eccentricity
and longitude u: perigee has been derived. This solution is
valic for eight to ten years. It could be used {for prediction
and control of the SPS orbit.

In oracr for the analytical solution to be valid for
longer periods of cime, the gravitational effects must be
inciuded. It has been shown by numerical integrations that
gravitational periurbations on the eccentricity become impor-
tanit for time intervals longer than ten years. The complete
analytical solution is feasible through wvwse 0f the methods
developed in this report.
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APPENDIX A
POSITION OF THE SUN IN EQUATORIAL COORDINATES

It will be assumed that the sun moves on an elliptical
orbit about the earth. Using the coordinate system described
in Section 3.1, the direction cosines of the sun are:

X

@ _
— = cos (f,+g,) .
Te
Yo .
- - C sin (f5+g,) (A1)
®
z
(o]
- = S 31:71 (f0+g9) )
by
[o]
where (¢ = cos € , S = gin € ,

and € is the angle between the equatorial plane and the
ecliptic plane (€= 23°27'). f_ and gg are the true anomaly
and argument of perigee, respectively, of the sun.

Equation (Al) needs to be expressed in terms of the sun's
mean anomaly. This will be done by using power series expan-
sions in the eccentricity e, of the sun's orbit. Since e4

is small (eG=.0167), only first degree terms are needed:

cos fe - e_ + cos 2@ + e

° cos 2£Q

®
(A2)

W

sin fo sin Qo + e_ sin 22G

(o)

Using (A2) in (Al):
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X
.._.9 = 208 (Q,G*'go) - e@ (41711 SQ + e@ cos (22‘Q+g0) ’
r
@

b/
2 = ¢ ain (Agtgy) - C eg 8in go + C ey sin (295%80)
Yo
Z

-2 = 5 ain (LotBe) - S €y 8In go *+ 5 P gin (2£°+go)

Yo

Terms that are periodic in &, with coefficient e, will
not be significant and can be neglected. The final expres-
sions are then

_@ = pos (2@+ge) - e0 co8 g@ R

To

YO .

-2 = ¢ gin (Lg*8p) - C €g 8in g5 (A4)
r

(o]

S ain (R,G-bg@) - S s gin Ee

ol
N
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APPENDIX B
NON-SINGULAR DIFFERENTIAL EQUATIONS

The differential equations (3.47) for p and q will
be derived from the chain rule (3.46) and the expression
(3.40) of F; as a function of the DSu variables. The fol~
lowing derivatives are needed:

oF 3 n?
—8 =_¢ [-—-(cos h coe g - ein h cog 1 gin g)
oG 2 e
- 8in h cos 1 e sin g|(208 VvV - e, coe gp)
n2
+ [? — (8in h cos g + cos h cos I sin g)
e
(B1)
n?
+ 5§ —ginl gin g
e
cos?l
+ C cog hcos 1 esging+ S e sin %] (ecs v -
gin 1
-~ €g €08 ga)
oF 3
—2 =~ ¢/ sin he ging (cos v - eg cos gg)
oH 2

cos 1 (B2)
e sin g| (sin v -

[% cos hecsging~-2S
gin 1

- €g 5in Bg)
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— 2 -G E [eeingcash-l-ecosgsinhcosl(cosv-

- e, cos ga) +

(B3)
+[(,‘(ecosgainh-ecosgaoshcosI)-

5 e cos g sin I| (8in v -~ ey 8in g,)

Inserting these derivatives into (3.46) and collecting terms,
the following expressions are obtained

dp 3
—_—= - E—nz cog h gin h (l-cos I)
dt 2

(cos 1-1) e? 8in g sin (g+h) sin h|(cos v -

+

e. o8 g.)
© ® (B4)

[c n? (l+coe h (cos 1-1)) + S n? sin I coe h -

e? gin (g+h) (cos I-1)(C cos h sin g -

cos 1

S

- )] (gin v - €y gin gQ)
gin I
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dq 3
— = —~ ¢ E}z (1 - (1l-cos I} gin? h) -
dt 2

elcos (g+h)(cos I-1) sin h gin g-,-l(cos v - €, CO8 go)
)

+

l:nz C 8tn h cos h (l-cos 1)
(BS)

~n- S ain 1 ein h

+ e? eos (gth)(cos 1-1)(C cos h sin g -

cos 1 -
~ 5 - sin g)_lt(sm vV - g, sin g\_>)
gin 1

T above equations can be expressed in terms of p,q,P,Q by

r....nng use of the following expressions:

p = e cos (g+h) qQ = e sin (g+h)
P = /1-cosl cos h ! Q = - /1-2031 sin h
p q

cos (g+h) = N , sin (g+h) = -=—=—x

Vp +q yp2+q2

)

P -Q

cos h = —m—— sin h = ——— ,
/P2+Q* P74 (86)

%

sin I cos h

p [:2 _ (p2+Q2):]%
- Q [: - (17’2"*?22):1l

(pP-qQ) Epuqz) (P?+Q°? )]‘

"

sin I sin h

coe g =
r "1~
sin g = (qb+pQ) L("2+“2) (P2+02)_] 2

The resulting expressions are pgiven in (3.47).
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The chain rule applied to the derivatives of P and Q
result in

dap cos h [OF oF] oF
—_— 2 e | = 208 I —| ~ 8in hv1l-coe _— s
dt 2G/I-¢cos 1 | oh og] oH

(B7)
0 -gin h [oF oF] oF
_— e————— | = @08 I —]| - c0og hvl-cos 1 —
dt 2G/I-coe I [9h o8| oH

The following additional partial derivative is needed:

BFB 3
-——=-eGEecosgsinh+esingcosIcosh(cosv-
oh 2

(B8)

eocosg0)+(,‘[93ingcoslsinh-

e cos g cos h](sin V ~ €, 8in g,)

Inserting (B2), (B3) and (B8) into (B7):

dp 3
— = —¢gl/1-cos T [(1+cos I) cosa h e cos g -
dr 4

- 2 gin h e 8in g]'[sin h (cosa v - €p ¢08 g@) -

C cos h (sin v - eg 8in g@)] +

+ S cos IE:os h /1I+coe I e cos g -

2 gin h .
- ———— e 8in g|(8in v -~ €g 8in g4) ’

Viteoe 1



-103~

dQ 3
—_—= = e{/l-cas i'[(1+cos 1) sin h e cos g (B9)
dt 4

.

+2coshesing:]

[(,' cos h (sin v - e, 8in gg) - sin h (cos v

ey coe g@)] - S cos IEin h Vitcoe I e cos g

2 cos h
+ ———— e gin g](sinv - gy 8in g,)
/1+cos T ®

The above equations can now be expressed in terems of p,q,
P,Q by the use of (B6). The resulting non-singular ex-
pressions are given in (3.48).
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APPENDIX C
COMPUTATIONAL ALGORITHM FOR THE ANALYTICAL SOLUTION

The approximate analytical solution for p and q was
derived in Section 3.7 and is written as

p= @8 (cox;0+'t(SegmlngQ)+Cl
(C1)
q=(b(sin6-16e@cos g@)+C2

The computationral sequence for evaluating p and q at any
time is shown below.

(1) Values of constants

5 e, sin g, (365.25)"" (0.01675) sin (281°.0)

(365.25)—1 (0.01675) ccs (281°.0)

) e, cos ge

0.9679 , § = (365.25) "

w
0

(2) Value of small parameter

S
(6.611)* — (5.06-10"7)
M

™
]

1//]
"

cross-sectional surface area in square meters

M

weight in kilograms

3
$= - (365.25) ¢
2
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(3) Compute Cl and C2
C, = e, cos Eo - QB cos (& + gs)
C2 = e gin 'éo - @sin ”‘@o + ge)
e = initial value of eccentricity
E = initial longitude of perigee
2 = 358°28'33" + 1295 96579" T ,
g = 281°13' 15" + 6189" T )

T = Julian centuries of 36525 ephemeris days ,
referenced to 1900 January 0.5 ,

(4) Compute p(t) and q(t) using equation (Cl), where
T = (27) (number of revolutions)
1

© = (365.25)"" T + & _ + g

It can be assumed that one revolution is equivalent to one day.



