
ACM Technical Report ACM-TR-108

(NASA-CR-151606) A'COPADATIVE STUDY OF THE N78-15157

UNIFIED SYSTEM FOR ORBIT COMPUTATION AND THE
FLIGHT DESIGN SYSTEM (Analytical :and
Computational Mathematiqs, Inc,) -'53 p Untlas
HC A04/MF A01 CSCL 22A G3/16 01820

A COMPARATIVE STUDY OF

THE UNIFIED SYSTEM FOR ORBIT

COMPUTATION AND

THE FLIGHT DESIGN SYSTEM

ANALYTICAL AND

C OMPUTATIONAL

MATHEMATICS1, INC.

A COMPARATIVE STUDY OF THE UNIFIED SYSTEM FOR ORBIT

COMPUTATION AND THE FLIGHT DESIGN SYSTEM

WERNER MAAG

ANALYTICAL AND COMPUTATIONAL MATHEMATICS, INC.

1275 SPACE PARK DRIVE, SUITE 114,

HOUSTON, TEXAS 77058

NOVEMBER 1977

This report was prepared for NASA/Johnson Space Center under

Contract NAS9-15171.

CONTENTS

Section 	 Page

1.0 INTRODUCTION 	 5

2.0 COMPARISON OF SCOPE AND PURPOSE 	 9

2.1. 	Mission Analysis and Feasibility Studies 9

2.2 	Mission Design and P]anning 10

2.3 Operations Planning .11

2,4 User Categories 12

3.0 SCOPE OF APPLICATIONS 	 15

3.1 	Application Functions of FDS System X 16

3.2 	Application Functions of USOC 18

4.0 COMPARISON OF SYSTEM STRUCTURES 	 21

4.1 	Structure of FDS (System X) 21

4.1.1 	Brief Description of FDS-X 21

4.1.2 	Functional Units 22

4.1.3 	Data Structures and Data Flow in FDS 23

4.1.4 	 Control and Management Functions

in FDS 25

4.2 	Structure of USOC 27

4.2 .1 	Brief Description of USOC 27

4.2.2 	Functional Units 28

4.2.3 	Data Structures and Data Flow in USOC 30

4.2.4 	Control and Management Functions

in USOC 32

4.2.5 	The Preprocessor of USOC 34

5.0 	 HARDWARE/SOFTWARE REQUIREMENTS TO HOST

COMPUTER SYSTEM 37

5.1 	Hardware Components 37

5.1,1 Flight Design System 37

5.1.2 	 USOC 37

5.2 	Host Operating System Software 38

Section Page

6.0 FLEXIBILITY CONSIDERATIONS 39

7.0 TRANSPORTABILITY CONSIDERATIONS 43

7.1 FDS Transportability 43

7.2 USOC Transportability 43

8.0 OTHER CONSIDERATIONS 45

8.1 Storage Requirements 45

8.2 Experiments on UNIVAC 1110 45

9.0 UNIQUE FEATURES OF EACH SYSTEM 47

9.1 Unique Features of FDS 47

9.2 Unique Features of USOC 48

10.0 CONCLUSIONS 51

REFERENCES 53

A COMPARATIVE STUDY OF THE UNIFIED SYSTEM FOR ORBIT

COMPUTATION AND THE FLIGHT DESIGN SYSTEM

by

Werner Maag

1.0 INTRODUCTION

The high flight rate anticipated for the Shuttle Trans­

portation System (STS) era beginning the 1980's is causing

the review of the mission design and analysis computer soft­

ware structures. The rather individual case-by-case planning

procedures and software products which were used for earlier

missions are no longer adequate when considering the projected

budgets for the STS operations. Standardized planning tools

are absolutely necessary in the environment of shuttle flight

design since many tasks are repetitive. Also, profit must be

taken from the experience gained with earlier missions and from

the advances made in the areas of flight design techniques

and computer hardware and software standards.

In this report, two recent software systems will be

described and compared. One is the Flight Design System

(FDS), currently being developed at MPAD of NASA/JSCt . The

other is the Unified System for Orbit Computation (USOC)

operational at MAD of ESA/ESOCtt

The FDS software consists of a set of functional and

utility processors, components of the data base structure and

tMission Planning and Analysis Division of NASA/Johnson

Space Center, Houston, Texas.

ttMission Analysis Division of the European Space Agency/

European Space Operations Centre, Darmstadt, Germany.

-6­

the executive logic. It is designed as an efficient produc­

tion tool for flight design and analysis tasks, to be accom­

plished for the support of operational shuttle missions and

orbital flight tests. It also comprises an interface with a

system for automated generation-of flight planning documents.

USOC has been used for the planning, analysis and design

of spacecraft missions, both earth orbital and interplanetary.

It makes use of an automated approach to the generation of

problem specific application programs from a library of func­

tional modules. A module selector program interfaces with

the user and selects the necessary modules for a particular

application. The USOC design expressly facilitates quick

modifcations by the analyst.

The FDS is a production oriented software product,

mainly designed to satisfy flight design needs of the class

of shuttle missions which are considered as standard missions

or deviations of such. It is not intended to satisfy the

total analysis needs of MPAD . One of the goals of-this

study is to evaluate the approach of USOC for the planning

and design of unique shuttle flight phases. It will be demon­

strated in this report that in fact, a software system having

USOC-like structure would be appropriate to compliment the

FDS The structural details, however, would need to-be re­

designed to meet She specific needs of MPAD

The comparisons that are made in this study are based on

published documentation of the general requirements for the

Flight Planning System (reference 1) , general FDS require­

ments (reference 2), documentation of FDS-1 (reference 3),

and lecture presentation material on FDS-X (reference 4).

The author relies also on extensive interviews with AIPAD per­

sonnel and acknowledges their assistance in this study. FDS-Y

could not be included in this study since no detailed documents

have been published. On the side of USOC , the comparisons are

based on its documentation (references 5 and 6) and on personal

-7­

information of the author on the current activities of the

further development of the USOC

NOT FILMEDRECEDING PAGE BLANK

2.0 COMPARISON OF SCOPE AND PURPOSE

It is immediately clear that the structure of a flight

planning support program system depends very much on the em­

phasis given to its various application functions. Three

main areas will be distinguished:

a) Mission analysis and feasibility studies

b) Mission design and planning

c) Operations planning

For USOC , the priorities have been defined in descending order

from a) through b) to c). For FDS, the priorities are set

in the opposite order.

2.1 Mission Analysis and Feasibility Studies

At the European Space Agency, feasibility studies are

typically initiated by a request to the Mission Analysis

Division, which owns and maifitains USOC and is partially re­

sponsible for such types of studies. USOC is therefore re­

quired to be able to give quick answers to questions arising

from new types of projects. These may comprise, for example,

payload requirements which were previously not known because

they result from a new idea on a new experiment. It is clear

that usually some ad-hoc software modifications are necessary

to give the answer.

The most fundamental requirement for USOC is, as a con­

sequence, adaptability. That is the property of allowing easy

modification. Practically, of course, the master version of

USOC will not be changed. The modifications are done on

copies of respective modules. Application of USOC for such

tasks is based on the fact that often only a very few modules

have to be changed, while the framework can still be used.

It is also desirable that USOC be able to support mission

analysis development tasks. Examples are the development of

-10­

of new methods in the field of orbital mechanics and efficient

algorithms for the investigation of payload requirements.

Eventually, new methods are added to the system's standard

capabilities. The requirement that USOC be an analysis tool

results, too, in the basic requirement of adaptability.

In contrast to USOC , the FDS does not have a high

priority requirement to be a tool for studies concerning the

feasibility of new types of projects. FDS might, in.certain

cases be useful for such tasks but this would be a welcome

side effect. Definitely, it is not a research tool, since

it is not designed to allow ad-hoc program modifications.

First, the code of the processors is not accessible to the

normal user and the executive system would not allow duplica­

tion of processors. Secondly, in a production environment,

user modifications would be very dangerous to the reliability

of the produced data and to the system as a whole. However,

modifications can easily be made in the FDS concept, but

only at the maintenance level, not by the user himself. Flex­

ibility must be implemented by foreseeing a sufficient number

of user accessible options and parameters within the processors.

Finding the optimal degree of freedom is certainly the crucial

task of processor design. It is mandatory that the experience

gained with applications of FDS be taken into account when

designing new processors.

2.2 Mission Design and Planning

Mission planning can be defined as the task of finding

the detailed specifications of an approved mission. This

includes orbital and payload aspects as well as questions

arising from the operations of the mission. This area is

common to USOC and FDS . The set of functional capabil­

ities, however, is limited in USOC compared to FDS . For

example,,any type of calculations concerning manned flights, con­

sumables as well as launch and re-entry phases are not included

in USOC . For details see Section 3.2.

Mission Planning includes, for example, parametric studies

for the optimal satisfaction of payload requirements, the. defi­

nition of the orbital parameters, and calculations concerning

launch opportunities. The accuracy requirements of output

data range from moderate to fairly precise. USOC offers

generally different levels of accuracy which can be selected

according to the actual precision needed and the tolerable

computational expense.

Within FDS, System X is designed generally to be ready

to accomplish the mission planning tasks. However, iii cer­

tain cases, e.g. for missions involving deployment or re­

trieval of payloads, it may be necessary to apply methods

which are beyond the capabilities Of System X The corre­

sponding planning mechanism appears to be missing in the docu­

ments on Flight Planning (references I and 2). System Y will

probably satisfy the accuracy requirements but it is only

foreseen to use it at Level D planning, which is rather late

in the planning process. It might be possible that System Y

could be used at an earlier stage and that it have the neces­

sary flexibility. An alternative approach is to develop a

new system that has the necessary flexibility, plus a wide

range of accuracy capabilities.

2.3 Operations Planning

Finally, there is the level of operations design. This

task consists of the generation of detailed flight profiles

which includes the flight trajectory, maneuvering and attitude

control procedures, detailed observability and tracking con­

siderations and much more. Basically, little analysis is per­

formed since the necessary parameters have been determined at

the mission planning level. Additional parameters describing

the hardware configurationin detail enter the calculations.

However, all mission planning effort has to result in a plan

which uses a large, but a finite number of hardware resources,

-12­

well defined activities and flight phases. These elements

will not change very much from flight to flight and the type

of parameters and the number of options is complicated, but

manageable. Therefore, this level of flight design is the

one which can be standardized best, at least for the shuttle

flight design requirements.

USOC does basically not deal with operations design

(since-this task is not assigned to Mission Analysis Division).

But it has happened several times that certain functions of

operations depign were requested from USOC in new or unique

situations where the effort to modify standardized software

would have been too large. This capability of USOC was not

a requirement, but is a welcome side product.

Many of the operations design functions can be performed

independently in relatively small segments. This is a strong

argument for the concept of independent processors that is

used in FDS As mentioned before, the nature of this task

allows its breakdown into a set of predefined planning ac­

tivities, in the case of standard missions. There will re­

main a residual of special cases which need software modifi­

cations. For operations design tasks, the current USOC con­

cept to generate one complete problem-specific application

program would not be efficient. The problem of merging all

the required functions into a large overlay structure would

probably be very difficult. The solution would be to allow

the generation of processor-like functional units. This, in

turn, could introduce the flexibility in the sense of adapt­

ability to unforeseen problems-on the operations design level.

2.4 User Categories

The FDS is explicitly required to support the utilization

of various skill levels of its users. There will actually be

a mix of skill levels which range from the technician to the

analyst, with the emphasis given to the technician level. An

-13­

important consequence is that the system design and components

of the system must ensure a maximum degree of "foolproofness"

in order to guarantee the reliability of data products. It

can generally not be assumed that the user has sufficient

knowledge of the methods he applies and that he will always

make intelligent use of the system. Software development and

maintenance must assure the quality of produced data. This

is in practice a very hard requirement which can be satisfied

only by introducing rigorous checking procedures at the level

of the executive system and of the processors. The implied

overhead in system complexity and the manpower effort for the

realization of maximum foolproofness is only worthwhile if

the system can be stabilized to a high degree with respect to

the frequency and amount of modifications. This in turn, re­

quires that the spectrum of capabilities be large and the

branching into selectable cases be detailed. As a consequence,

the system becomes rather difficult to modify in order to deal

with cases which are not foreseen.

USOC, in contrast to FDS, is not specifically designed

to support repetitive tasks. The user category that is ad­

dressed is assumed to be the analysts. It is generally as­

sumed that the user is aware of possible limitations in the

methods and programs that are available in the system and that

he understands the concept of the system. It is attempted to

assure foolproofness on the level of modules. However, there

are no checks for validity of the combinations of modules or

compatibility of modules with particular data. Since the sy­

stem is designed to support modifications of individual mod­

ules, validity checks are necessarily limited and sometimes

even not desirable, since the user might like to make experi­

ments near some performance limits. Also, the requirement of

of simplicity in the sense of visibility of the structure of

the system does not allow too much checking. The general

guideline is that the modules and programs generated by the

preprocessor (if intelligent combinations of input are given)

-14­

are safe. Pitfalls are avoided through clear documentation.

The rest is left to the user. The fact that individual mod­

ules can be modified (if actually necessary) helps consider­

ably to keep modules simple since the degree of branching into

various preprogrammed cases may be kept small. This, in turn,

improves greatly the overall reliability of the system.

3.0 SCOPE OF APPLICATIONS

The comparison of application capabilities of FDS and

USOC is complicated by various facts. The main obstacles

are the different method of development applied for the two

systems, together with the different status of maturity of

their development. Also, the basically different software

structure does not allow a one-to-one comparison.

The design of FDS has been based on experience gained

with several ancestors and the requirements can be expressed

on the background of capabilities of various existing programs.

The application functions of the system are concentrated on

the shuttle operations. It is possible and, in view of the

selected system organization, it is desirable to define the

scope of applications and the detailed capabilities more or

less precisely in advance.

The full concept of USOC, in contrast, has no prede­

cessors, at least in the field of space research. (The idea

of program generation has been used in the area of business

computer applications.) The software must be able to deal

with all types of orbits of space vehicles in the solar

system. The structure of the system is explicitly designed

to allow the easy extension of the range of capabilities of­

fered as standard options by the preprocessor and the library.

Extensions are therefore usually performed only as required

for the actual near future. The potential scope of applica­

tions is an open field-.

We can mention before going to a more detailed comparison

that USOC and FDS give different emphasis to the various

functions of flight design. USOC puts more emphasis on orbit

prediction sophistication while bffering a limited selection

of on-orbit operations analysis functions. The generation of

detailed operations planning products is left to another soft­

ware system. Launch and re-entry simulations are not required,

-16­

since these are outside the scope of ESOC operations. FDS

assumes the exhaustive end-to-end operations analysis and the

generation of corresponding timelines as the main task. Com­

plex orbital problems are probably beyond the scope of appli­

cations.

The following more detailed comparative lists of applica­

tions are founded on that information (which is currently

available to the author) which contains sufficient technical

substantiation to allow a comparison. The functional require­

ments to the FDS System X are compared with the implemented

functions of USOC, followed by a brief indication of planned

extensions of USOC . The structuring of the lists is de­

rived from reference 2, p.28. FDS is described mainly in

terms of functional requirements of processors, as listed in

reference 4, while taking into account documentation in refer­

ence 3, Vol.5. The list does not claim to be exhaustive;

additional requirements are listed in a generic form in ref­

erence 1. The list on USOC is derived from references 4a­

d., and from the author's personal information. It gives

functional capabilities which may or may not coincide with

functional modules.,

3.1 	 Application Functions of FDS System X

Trajectory Generation

* orbit generation methods

- conics approximation

- AEG (Analytical Ephemeris Generator), which

includes certain perturbations

(- numerical integration, in System Y .)

* 	 basic orbit-related functions

- base time ephemeris parameter initialization

- coasting flight predictor

- search time, stopping at certain condition(s)

- coordinate transformation tasks

-17­

* 	 orbital environment

- shuttle orbit

- some shuttle payload aspects

Launch Window Calculation and Launch Targeting

Launch Simulation

Maneuvering Functions

- general-purpose maneuvers

- rendezvous multiple impulse maneuvers

- two-impulse maneuvers

- V. targeting maneuvers

- special targeting

- IUS targeting maneuvers

- midcourse maneuvers

On-Orbit Operations Analysis

- vehicle-to-vehicle AOS/LOS

(Acquisition/Loss of signal)

- station tracking, AOS/LOS times

- orbital lighting conditions, sunrise/set,

% darkness
- relative motion between shuttle and another

vehicle (range, range-rate etc.)

- EREP sun elevation angle

- ground-track generation

- EREP site screening and pass

- moonrise and set

- glitter/glory

- ascending node counter

- beta angle

- attitude processing

- shuttle TDRSS viewing

De-Orbit/Entry Analysis

Consumable Analysis

- quick investigation of non-propulsive

consumables

- OMS/RCS propellant usage

Display Functions

* 	 listings

- flight planning table

- state information

- on-orbit operations analysis data

- scanning parameters

* 	 plots

- on-orbit operations analysis data

- world map

* documentation generation system interface

0 control functions

- parametric scans

- conditional and unconditional

branching in processor sequencing

3.2 	Application Functions of USOC

Trajectory Generation

* orbit generation methods

- conics; generalized method for all types

of orbits

- improved AEG-like orbit generator

- semi-analytical method (analytical with

numerical updating each revolution)

- numerical integration; all types of orbits,

various levels of force evaluation

- multirevolution method, superimposed on

semi-analytical or numerical orbit genera­

tion method.

a 	 basic orbit-related functions

- base time ephemeris parameter initialization

- coasting flight prediction

- stopping functions, e.g. perigee passage,

critical height

- coordinate system change

-19­

a 	 orbital environment

- all types of orbits

- earth and planetary orbiters

- interplanetary probes

- lunar orbiters

- short and long-term predictions

Launch window calculations (scan for orbital stability only)

On-Orbit Operations Analysis

- station tracking, AOS/LOS times,

visibility of planetary orbiters from Earth.

- orbital lighting conditions, sunrise/set,

% darkness, earth and plahetary

- ground-track determination, earth and

planetary

- avoidance of radiation belts

- geomagnetic phenomena, scientific payload

planning: magneto pause, bowshock, neutral

sheet and neutral point

Display Functions

* 	 listings

- state information

- on-orbit operations analysis data

* 	 plots (stand-alone utility program using

recorded information)

- orbital elements versus time

- on-orbit operations analysis data

- world map with ground-track etc.

* 	 control functions

- parametric scans

- cyclic execution of phases for any

iteration procedure.

Examples of project-oriented user adaptions implemented in

the past within USOC framework:

* operational maneuver software for ISEE

satellites (reference 7)

-20­

* 	 handling of two satellites simultaneously

(reference 7)

0
 precision ephemeris generation used in

conjunction with operational attitude

problems

* investigation of dynamics of tethered

satellites (reference 8)

Approved extension of scope of application:

* 	 general-purpose maneuver capabilities

0 	 interplanetary trajectory generation

- patched conics solution

- precision targeting method

- controlled flight (e.g. solar sailing)

-'optimal control algorithms (study)

4.0 COMPARISON OF SYSTEM STRUCTURES

Any software that is to be considered a system, must com­

prise the following logical elements:

- set of application functions,

- set of data structures,

- control and management functions.

These elements may or may not be joined in corresponding phys­

ical blocks. In fact, their realizations in FDS and USOC

are quite different, as will be described in this section.

The units of application functions, physically implemented

as processors, modules, etc., are required to be compatible

units of work by means of which a complex task can be built up.

The data structures contain information which is globally as­

signed to the system (e.g. ephemerides of natural bodies or

physical constants), and they contain information which can be

specifically assigned by the user or is generated or modified

by the functional units. The data structures are standardized

such that they can jointly be accessed by compatible function­

al units. Finally, the control and-management functions have

the task to automate as much as possible the integral execu­

tion of the system and the data management. The purpose of

automation is to increase both the overall efficiency and the

practical reliability (reduction of user errors). The control

and management functions also provide the interface of the

user with the system.

4.1 Structure of FDS (System X)

4.1.1 Brief Description of FDS-X

The user always communicates interactively with the ex­

ecutive of the system in a dialogue that resembles a very high

level language. The basic statement calls a processor which

is a self-contained unit of work and associates an interface

-22­

table with the processor, which defines input and output para­

meters. Various modes of operation exist: Manual (immediate

input of processor calling control statements and prompting

by system), Semi-automatic (execution of predefined sequence

of processors with optional manual interaction and prompting)

and Automatic (execution of fully predefined sequence of pro­

cessors with prompting). Finally, there exists the capability

to create batch jobs.

Sequences of processor calls can be coded on sequence

tables through an editor. Input and output data of processors

are specified on data tables (called interface tables). The

data interface tables are accessible through an editor program.

The user has no access to the interior of the processors, only

to the data. Interface of processors is established by means

of data elements which are referenced in the interface tables.

A high degree of automation and foolproofness is an im­

portant goal of the system design. No knowledge of computer

programming is necessary. The user has to be familiar with

the flight design functions and their interrelations in order

to be able to organize correctly the sequencing of processors

and their interfaces by means of data elements.

Besides the normal user, only the level of system main­

tenance exists. Ad-hoc user modifications are not possible.

4.1.2 	Functional Units

The functional unit of FDS-X is a processor. The pro­

cessor can be classified into application processors and uti­

lity processors. Application processors are designed to per­

form, usually, a complete sub-task of flight design. The com­

plexity of a single-application processor ranges from moder­

ately complex tasks (e.g. sunrise/sunset determination, given

the vehicle ephemeris, etc.) to quite complicated tasks (e.g.

deorbit/reentry targeting). Other examples are launch simu­

lation and design, launch window calculations, general purpose

-23­

maneuvers, orbital maneuvers, IUS targeting, special target­

ing, coasting flight prediction, attitude and pointing, AOS/

LOS , etc.

Utility processors have simple tasks such as data initia­

lization, coordinate transformation and display functions.

They are mainly needed to link the application processors and

to display information to the user. A few utility processors

are (in principle) a user definable part of the control logic.

These are the processors needed to set up scanning loops over

a sequence of processors or for conditional or unconditional

branching within a sequence of processors. Conditional bran­

ching may depend on information stored in data elements.

Examples of the first group are physical dimension specifica­

tion, load state vector, print state vector, transform state

vector etc. Examples of the second group are SCAN/ENDSCAN

IF , GOTO processors.

All processors are treated by the executive on the same

level, irrespective of their complexity. Complete flight

planning tasks are performed by chaining the necessary pro­

cessors together, either interactively or by a predefined

list of instructions (sequence table). Each processor can

be executed independently, provided the necessary input data

has been supplied by the user or by processors executed at

previous stages. The processors are stored on a disk-resident

library and are dynamically loaded and called by the control

and management function (executive system) which obeys the

immediate orders of the user or a list of directives. All

users share the same processors.

4.1.3 Data Structures and Data Flow in FDS

Each processor fetches the necessary input data and stores

produced data from and to, respectively, the processor asso­

ciated standardized data structure, called interface table.

Besides housekeeping the data, an interface table contains all

necessary information on the input/output parameters as e.g.

-24­

storage class (disk or central memory), type of data (numer­

ical, literal), completion flags (indicating if the informa­

tion is complete or incomplete) and the data itself or a ref­

erence to a named location (data element) which contains the

data. Processors do not directly access the interface tables.

Information is transferred between processor and interface

table and/or data elements by a service function of the exec­

utive system. This allows the provision of standardized pro­

cedures which guarantee the overall integrity of produced data.

For example, a test on the completeness of input data can be

made. This is. very important since the processors can be ex­

ecuted independently. Eventually, the user will be prompted

for missing information or the execution is terminated. A

second source of input data, besides interface tables, are

global read-only data files as e.g. JPL ephemeris data.

Such information is read directly by the processors.

Interface tables are created and modified by the user by

means of the interface table editor of the executive system.

Default interface tables are stored in a library. The nec­

essary actions of the user are to specify values directly to

the parameters or to refer indirectly to the values stored in

data elements by specifying the (unique) data element names

instead of values.

Data elements are the vehicles to establish communica­

tion between the processors. These are named arrays stored

on files or in memory which contain numerical information.

Data which is the output of one processor and which is needed

as input by another processor must be stored in a data ele­

ment. A data element is created by the executive if the user

specifies a data element name for an output parameter, and

is referenced by another processor if the user specifies the

same name as input parameter to that processor. Clearly, data

element names must be unique in the user's active work area.

As a consequence of the described feature, the user is responsible

-25­

for the organization of the data flow in a sequence.-of pro­

cessors,.

4.1.4. Control and Management Functions in FDS

In FDS-X the control and management functions are im­

pl*emented in a program package which is commonly referred to

as the FDS executive. This is an FDS-unique development

running under the host computer real-time executive (RTE)

operating system. The FDS executive generally controls the

execution of FDS processors and provides the communications

between the processors and between the user and the system.

It also manages the permanent and temporary FDS data sets.

The following list displays a nmber of subsystem func­

tions of the FDS executive. It is derived from more detailed

-documents on FDS-1 (reference 3, section 3 and 6) but the

listed functions appear to be fundamental to the FDS concept.-

The configuration management function links the user ter­

minal with its associated linkage tables in the FDS manager.

It provides the allocation of necessary computer system resources

at session initiation.

The FDS management provides the control functions to, run

-FDS under the host computer operating system. 'Besides the

attention function which-allows unsolicited user actions, e..g.

interruption of sequence table execution; it provides, among

others, the following functions:

- Schedule FDS executive and processor-tasks.

- Control the communication of data structures between

associated tasks.

- Management of the memory and disk resident data sets.

This includes particularly the maintenance of a table

of contents and of tables of pointers to sequence

tables, i-nterface tables and data elements.

The executive director includes the following functions:

- Provides terminal communication, inclusive prompting

of the user and extended (explanatory) prompting.

- Interprets user directives and takes corresponding

actions, e.g. by calling the FDS manager to perform

data set manipulations as to delete, copy or list com­

plete data sets. Also, the sequence table and inter­

face table editors are called by the executive direc­

tor function. Other directives concern the mode of

FDS operation, as manual, semi-automatic, automatic

or batch mode.

The execution controller monitors the execution of pro­

cessors through sequence tables by requesting the correspond­

ing task scheduling by the FDS manager. Also, the associ­

ated interface tables are checked for completeness and the

user is prompted for missing data.

Table editing is done by the sequence table editor

and interface table editor. The sequence table editor serves

to create and modify sequence tables which have a relatively

simple format. The interface table editor serves to create

and modify interface tables. This program has to store var­

ious classes of data into the relatively complicated struc­

ture. Also, some checking on the validity of user input is

performed. An interface table contains information as e.g.

overall size of the table, name of the associated processor,

completion flags, data element names, possibly the data

itself, and the size and dimension of data.

Processor services are used to transfer parameters and

attributes of parameters between processors and the physical

location of data in a standardized manner via reference to the

interface table. These tasks are quite complex since data of

various types may be stored in various ways on various places

and devices.

Finally, there is the necessary function of library main­
tenance which must be used to add or modify processors or

-27­

default interface tables in the library. It will also record

version numbers on the library members to avoid the association

of incompatible versions of processors or interface table.

It will also maintain a log of all changes.

4.2 Structure of USOC

The description of the structure of USOC in comparison

to FDS is complicated for several reasons. The functional

units are not all treated at the same level. Instead, there

exists a hierarchy of them which is in addition dependent on

the actual application. The data structures are organized in

a modular form as are the functional units (modules). The

control and management function is dispersed among the func­

tional modules and a large portion of it is left to the oper­

ating system (OS) of the host computer. Finally, there is

the feature of the preprocessor which does not contain but

reflects the control and management functions of the applica­

tion program which is to be generated.

4.2.1 Brief Description of USOC

The user starts USOC by answering mission analysis re­

lated questions to the interactive preprocessor. Accordingly,

the preprocessor generates a sequence of job-control-language

(JOCL) statements to be used for the building of a problem

specific absolute program from a library of relocatable sub­

programs. Also, it produces a series of input data groups to

the absolute program. The sequence of JCL statements is

transmitted to the standard host operating system service pro­

gram which builds up the absolute in remote batch mode. Fi­

nally, the absolute is executed in remote batch mode.

The most basic level of user needs only to answer the

questions of the preprocessor. He needs to be familiar with

the methods used in mission analysis and planning. Fool­

proofness is not the highest priority requirement. Interface

-28­

of functional modules is established automatically. The user

does not need to organize it.

A second group of users, which is strictly on the level

of analysts, is able to perform problem dependent modifica­

tions by modifying individual subroutines on copies of the

master versions and to include them in the absolute program

in place of the standard versions. This feature allows a high

degree of flexibility concerning new and unique situations.

Obviously, the overall quality assurance of data produced on

this level is partially moved to the responsibility of the

analyst. Such a user also must have a good knowledge of

FORTRAN and the host computer system. In addition, he must

be familiar with the algorithms he wants to modify.

4.2.2 Functional Units

The fundamental unit of USOC is the functional module.

This is the logical building block of the absolute application

program, physically one or several subroutines. A functional

module (FM) is defined by its distinct subtask in terms of

performed work. A functional module may be made up of sev­

eral FMs appearing in different positions of the calling

hierarchy. A FM is identified by its highest entry name

in the hierarchy which gives the (only) entry point of the

whole module. Elementary FMs are usually physically repre­

sented by one subroutine (SUBROUTINE or FUNCTION type FORTRAN

program) or sometimes by a group of subroutines which are al­

ways used as a complete unit. In some cases different ver­

sions of the same elementary FM exist. Each performs the

same work, but internally the code may be different. A dis­

tinct version of an elementary FM is the basic physical

building unit and is called a library module (LM) . If

several LMs exist, the different versions are called hom­

onymes,since they have the same FORTRAN entry point name,

but are not the same code. A LM is identified by the ele­

ment name (UNIVAC terminology) on which the module resides.

-29-

Examples of FMs are given by functions:

- execute the whole program,

- execute a phase,

- initialize physical constants,

- propagate state vector from initial to

final state

- compute AOS/LOS

- take one step of numerical integration,

- compute atmosphere density,

- transform state vector,

- print orbital information,

- store information on graphics file, etc.

One can see that there is no correspondence between FDS pro­

cessors and USOC modules. In some cases a FM contains the

'functions of several FDS processors, in other cases the .

functions are similar. The elementary FMs are usually much

smaller than a FDS processor.

Examples of LMs are:

- computation of drag forces,

- initialization of Mars' gravitational potential

coefficients,

- solve quartic equation.,

- drive one phase

- evaluate increments for scanning procedure.

Examples of homonymes are the modules for the initialization

of physical constants of planets. There exists a different

version for each central body.

According to the present application of USOC, the top­

most two levels of calling hierarchy are fixed. Each applica­

tion program is built up from a number of phases., which may

be executed in a cyclic manner. Each phase is broken down

into the same subphases. From there downwards the same func­

tional modules appearing in different phases may be built up

in different ways.

-30-

Scanning and iterative procedures are implemented by us­

ing the cycling capability which means that a sequence of

phases are performed repetitively. Any desired data can be

iterated in this loop if corresponding user-modified LMs

are inserted. Conditional branching within the sequence of

phases has so far not been required, but could easily be im­

plemented.

The LMs reside on an indexed library. They are built

into the application program by specifying their inclusion in

standard job-control language to the standard linkage program

of the host computer (MAP-processor, linkage editor, composer,

etc.).

There exists a master version of all LMs which is the

default version for inclusion, but each user may copy it to

his own library, modify it and include it instead of the stan­

dard version.

4.2.3 Data Structures and Data Flow in USOC

The data base of a USOC application consists of user

input data, global read-only files, COMMON blocks, interface

files, print files and plot files. -All components are stan­

dard FORTRAN.

User input data are given by NAMELIST data groups which,

due to their literal form, are und6rstandable by the computer

and the user. They contain all run parameters except the ones

which are no longer free, in case a particular version of a hom­

onyme has been used or the input data selection has already

been made at preprocessing time.

Each phase may need several input NAMELIST data groups.

They are produced by the preprocessor on one file in the cor­

rect order. Due to their mnemonic names, they are easily

identified. NAMELISTS are read directly by the modules which

need the data.

-31-

Global read-only data belong to the system as a whole

and are also used by other users working with differ~nt soft­

ware on the same computer. They are read directly by the mod­

ules which need the data and are managed by standard FORTRAN

library routines which are included automatically and work

without explicit USOC control (except REWIND, BACKSPACE,

etc.). Examples are sun, moon and planetary ephemerides, co­

ordinates of standard tracking stations, etc.

COMMON blocks (CBs) have basically the function of

establishing a data pool for the whole application program

execution. Two classes can be distinguished. First there

are "read-only data", e.g. physical and mathematical constants

and run parameters read from NAMELIST and stored in CBs

Global information such as physical and mathematical constants is

initialized by specific initialization library modules which

are by default included from the USOC master library by the

preprocessor. If a user wishes to use different values, he

has to supply his own versions of these modules. The second

class of CBs contain data which are possibly modified by

one module and used by another module. These CBs could be

called interface vehicles.

The set of CBs is structured in a modular way. The

individual blocks are relatively small and always contain data

which are logically related to each other. Examples are CBs

for the state vector, epoch information, control parameters

for force evaluation, temporary ephemeris information on

planets, etc. Each module which needs certain information has

simply the CB included which contains the desired informa­

tion. The preprocessor makes sure that a module is included

.which contains the same CB and which produces or initializes

the necessary data. Automatically, only those CBs are in­

cluded in the absolute application program which are actually

needed.

If the amount of data to be transferred between functional

modules is too large, e.g. whole satellite ephemeris' data,

-32­

then the information is written to and read from an interface

file. An example is the generation of ephemeris data and sub­

sequent computation of sunrise/sunset information. The files

can be reused at a later run or be used by different software.

Produced results are edited by print library modules and

put to a printable file. Also, a plot information file is

produced which can be read and displayed optionally by a

stand alone program. Various levels of detailed output exist.

However, if the user wishes to print additional data or to use

a different format he is free to supply his own print modules.

The general rule is that a user produces all data and

any specialized library modules for each project under a sepa­

rate group of files identified on the USOC host computer

(ICL 4/72) by a group identifier specified as a normal termi­

nal directive. (The group identifier corresponds approximately

to the qualifier on UNIVAC EXEC 8.) In this way, he may own

several versions of USOC applications simultaneously with­

out confusion.

All data files are automatically catalogued by the host

operating system (OS) after the run of the application pro­

gram. They are fully at the disposal of the user for additional

runs or modifications. Any modifications to user input files,

to the job-control images which define the composition of the

absolute program and to the modification of modules, if neces­

sary, are performed by the standard text editor of the host OS

Interface between modules is established automatically

by the modular concept of COMMON blocks. No user actions are

necessary to ensure the correct data flow within the generated

program. This method, which is very convenient, could no longer

work if an independent phase-by-phase analysis would be desired.

4.2.4 Control and Management Functions in USOC

As mentioned before, many control and management functions

of USOC are delegated to the host OS (which includes standard

-33-

FORTRAN features). The remaining part is dispersed among the

library modules. The general philosophy is that each control

operation is done at the lowest possible level in the hierarchy.

This allows maximum flexibility to replace different versions

of functional modules since Control and management actions are

only to be taken if actually required. This introduces the

idea of modularity to a certain degree even on this level.

No executive system in the proper sense is present. It

is nevertheless interesting to indicate where the control and

management functions identified for FDS are to be found in

USOC

Configuration Management. The user terminal is linked

to the computer system resources and to the USOC program

control by the standard terminal interface of the host OS

This includes the interactive execution of the preprocessor.

Execution and Data Management. The only available atten­

tion function is to "kill" a running job if it turns out to

produce nonsense. The program phases are linked by standard

job-control language (JCL) while the full flexibility of

overlay features is used. Data structures communicate auto­

matically through FORTRAN features. The management of memory

and disk-resident data is fully automatic by the host OS

Executive Director. Terminal communication, inclusive

of prompting is done by host OS and FORTRAN modules. User

directives to manage files are performed by normal terminal

command language. Editing is done by the terminal text editor.

Execution Controller. Linkage of FORTRAN modules is

trivial. For the correct phasing, the standard OS control

logic with associated control tables for overlay execution

control is extensively'used, but this is transparent to the

user.

Editing Programs. 'The corresponding information to the

sequence table of FDS is the sequence of JCL commands for

the inclusion of library modules in USOC This table may be

-34­

edited by the terminal text editor. The same applies to the

input NAMELIST data files. Completeness checks, of course,

cannot be performed. Syntax errors lead to terminal, OS or

application program error messages. Error analysis may be

difficult, mainly for people who are not familiar with the

host computer.

Library Maintenance. Only library modules are to be up­

dated. This is done by modifying and testing modules as if

they would be a temporary user modification on his own library.

If the modification is approved, the new relocatable element

is put into the master library. Only one version of the same

library module can exist. If updates are incompatible, the

name of the library module must be changed and two versions

of the preprocessor must be used.

4.2.5 	 The Preprocessor of USOC

The basic approach selected for USOC is "program

generation". More specifically, in USOC a particular appli­

cation program is built up from a library of relocatable pro­

gram modules. Based on the guideline that the features of

today's large computer operating systems should be used as

much as possible, the linkage of the modules is not performed

by a USOC system program but by the host OS . Consequently,

the preprocessor generates a sequence of JCL-language items

which is submitted to the OS collector program, which col­

lects the specified modules into an absolute code. In addi­

tion, the preprocessor must provide an input data file to the

generated program.

The whole logical structure of the system must therefore

be mapped in a certain way into the logic of the preprocessor,

such that a correct absolute code always results. The pre­

processor has to process all branching decisions and has to

take actions in the form of generating the necessary JCL

commands. This includes the generation of the appropriate

overlay structure.

-35-

The preprocessor is an interactive program, fully pro­

grammed in FORTRAN. As it is executed, it displays a ques­

tion in terms of the mission analysis problem (not in terms

of modules or processors etc.) and lists the available options

that make sense, depending on previous answers. The user

gives the answer in the form of single numbers or arrays of

numbers (integer or real). These numbers are used first to

control further questions and later for the generation of the

output files. When all information is collected, it is pro­

cessed to finalize all decisions and, ?s the last step, the

JCL control cards and the input data file for the generated

program are written. This information is forwarded automat­

ically or manually to the next steps, which are collection

and execution.

f CEODNG PAGE-BLANK NOT FILMgD

5.0 HARDWARE/SOFTWARE REQUIREMENTS

TO HOST COMPUTER SYSTEM

This section gives a brief discussion of the requirements

to the host computer. Due to the scope of the study, it is

necessarily limited to itemizing some components of the hard­
ware and software, as described in various documents.

5.1 Hardware Components

5.1.1 Flight Design System

The current development of the prototype system FDS-1

which contains a subset of the projected FDS-X application

functions, is being installed on a configuration in which a

Hewlett-Packard 21MX computer is the primary computer dedi­
cated to
 FDS It has a link to the Daconics documentation

system, to a number of user terminals and to peripherals such

as printers, plotters, disk-drives and tape-drives. The user

terminal link also provides the capability to use tape cas­

settes.

In the planned final configuration the primary computer

will be a larger computer on which most of the FDS-X func­
tions are implemented. It will be linked to a large computer

(UNIVAC 1108) which contains System Y , and to the HP21MX

computer. It will support a number of user terminals. The

HP21MX computer provides the interface to the Davonics docu­
mentation system. All computers will have their own periph­
erals such as printers, plotters, disk-drives, tape-drives,

card-readers and microfilm units.

5.1.2 USOC

The USOC system is fully implemented on one large com­
puter (ICL 4/72, similar to an IBM 360). The needed periph­
erals are the ones commonly installed in the environment of

-38­

general computer applications. These are printers, disk-drives,

tape-drives, card-readers, card-punchers, paper and microfilm

plotters, interactive graphics. A large number of user termi­

nals and telecommunication interfaces are linked to the computer.

5.2 	Host Operating System Software

For both systems,
FDS and USOC , the operating system

(OS) requires a time-sharing executive. This includes the op­

tion of running interactive application programs. The OS

must supply the common service and utility programs such as

compilers, a subroutine linkage program and data management

utilities, as needed for copying, creating, merging files, etc.

Both host operating systems must allow several users to work

simultaneously without interference, possibly on different

projects using the same software and parts of the same data

base. The main difference in the two systems is in the extent

of use of the OS The host OS is transparent to the FDS

user since he communicates only with the FDS executive, which

provides the linkage with the host executive. In contrast,

the USOC user communicates directly with the host executive,

except when he runs the preprocessor.

6.0 FLEXIBILITY CONSIDERATIONS

Flexibility is a dazzling term; everyone has his own

opinion as to its meaning. In fact every software system

claims to be flexible.

In an ideal sense, flexibility in a scftware product

means its readiness to treat "any possible" problem. This

leads in practice to attempts to implement an exhaustive bran­

ching into predefined cases and subcases. However, it always

happens that new problems occur which have not been foreseen.

In such a case the software must be modified by adding new.

capabilities. In other words, the system must be adapted to

a new requirement.

The design of FDS intends to offer the user a wide

scope of application processors. Within the processors a

large number of options will be available. This allows a

high degree of flexibility within the scope of standardized

capabilities. A result is that the executive and the pro­

cessors become rather complex. Another fundamental re­

quirement for FDS is that it must-be able to be used by

non-professionals. This requires detailed checking proce­

dures which again adds complexity to the executive and the

processors. If these requirements to FDS are satisfied,

it will certainly be a very efficient and safe flight plan­

ning tool.

From the FDS user's point of view. the given task must

be resolved into the offered capabilities. If this is impos­

sible then the task cannot be accomplished. The user must

request a modification or extension of the system at the sy­

stem maintenance level. Modifications will affect the pro­

cessors and the executive at various places; e.g. the format

of interface tables and the prompt tables are affected. Data

management functions must also be changed and the execution

control logic must be modified. If different versions of a

-40­

processor are needed, the whole processor must be duplicated

and added to the system as if it were a new processor. Even

though adaptability is possible, it does not appear to be a

high priority goal of the FDS design.

USOC , too, tries to offer a relatively large number of

standard options that can readily be used through the prepro­

cessor. However, in order to keep the structures simple, the

variety of options does not require extensive branching into

possible subcases. This is possible since the user may modify

almost any module, if necessary. If, as in many cases, sev­

eral mutually exclusive options exist, then the preprocessor

selects only the appropriate modules for the generation of

the program. Very little unused code is included in a gen­

erated program. However, once the executable program is built,

the user has a limited set of options available. If he changes

his mind, he must rerun the preprocessor. In those cases

where it is likely that the user might wish to make experiments

with options, and if the overhead in required storage is small,

the possibility of switching options is retained in the modules.

Also some flags are available to switch off certain functions

in an executable program.

For the analyst who has to solve problems that have no

ready-made solution in USOC but which are near to the stan­

dard capabilities of the system, there exists the feature of

ad-hoc adaptability of the software. Starting with the iden­

tification of a functional module which would represent the

solution to his problem, he will copy the module (in source

code) which is closest to his requirement, to his own library

file. Then he will modify the module and compile it. He will

prepare a sequence of job-control images which specify the

composition of the executable program. This is done by exe­

cuting the preprocessor. Within the generated control images

that name the library modules to be included, be then replaces

the names of the standard modules by the names of his own

modules. Then he executes the subroutine linkage program.

-41-

If additional or non-standard input data are required, he also

has to modify the generated input data file. No other modifi­

cations are required.

For USOC , the requirement of flexibility has first
priority. "Foolproofness" can be achieved only with users

that communicate exclusively through the preprocessor.

Both systems include the feature of being extended con­
tinuously by addition of new capabilities. FDS is extended

by an addition to the library of processors, with updates

made to the executive at various places. USOC allows an ad­

dition to the library of modules and a corresponding update

to the preprocessor. Compatibility problems are present in

both systems.

tPR1EDJG PAGE BLANK NOT TLUED

7.0 TRANSPORTABILITY CONSIDERATIONS

System transportability means a measure of the readiness

of the system to be transferred from one computer to another

computer of different make. There are two aspects of trans­
portability, one concerns the user's point of view, the other

concerns the system programmer's view.

7.1 FDS Transportability

The FDS user communicates with the system in a FDS­

unique language. The link to the host operating system is

provided by the FDS executive. Therefore, transportability

from the user's point of view is only a question how far the

FDS language can be implemented on the new computer,. Since

the processors are wrrtten in standard-FORTRAN, they should

be easily transportable, unless the word length-is reduced.

If all features can be fully implemented on the different

structure of the new computer system, then the transportabil­

ity from the user's point of view is perfect.

The FDS system programmer is in a much worse situation

since the implementation of many of the executive functions

are strongly machine dependent. This is mainly due to the

fact that almost all makes of computers use different modes

for storing alphanumerical information. Also, a portion of

the executive is programmed in assembler language, which is

extremely machine dependent. The structures of the executive

programs could stay nearly unchanged, but the detailed coding

would need considerable modification. The subroutines in the

executive of FDS-i have therefore been recorded in
a struc­
ture describing program design language.

7;2 USOC Transportability

For USOC the situation is quite different. Since the

-44­

module library and the preprocessor is coded in FORTRAN,

the USOC-unique parts of the system can be transported easily.

Some input/output details of the preprocessor would possibly

appear slightly different to the user. The user that wishes

to communicate with the system only through the preprocessor

would have to learn a small subset of job-control language in

order to be able to perform the basic steps of execution under

the new host operating system.

The user that wishes to take advantage of the feature of

adaptability, however, would need to have somewhat more know­

ledge of the new computer system. His ability should be on

the level of scientific or engineering programmer. This in­

cludes the knowledge of the terminal command language, the

job-control language and the.data management utility programs.

A particular requirement is the knowledge of the overlay

facility.

From the USOC system programmer's view, changes will

be necessary in the area of utilization of overlay features.

The library and the question/answer procedure of the prepro­

cessor could be left unchanged. There may be some small

changes required in FORTRAN programs. No changes in the

executive system would be necessary because no USOC execu­

tive exists. Also, no assembler language modules are present.

TIe part of the preprocessor dealing with the job-control lan­

guage image generation would have to be adapted to the new

language conventions.

8.0 OTHER CONSIDERATIONS

8.1 Storage Requirements

The numbers given on FDS are taken from reference 2

and are preliminary estimates. The numbers on USOC reflect

the actual experience. (One word assumed to have 36 bits.)

FDS 	 System X is estimated to need one million words

(4.5 M Bytes) and a executable code requirement of 40k words

(180k Bytes) per user. FDS System Y is estimated to be

four million words (18 M Bytes) of executable code.

The present USOC relocatable module library needs ap­

proximately 600k words (2.7 M Bytes). The corresponding

source module library requires approximately 670k words

(3 M Bytes). The core required per user varies between 25k

words (112k Bytes) and 34k words (153k Bytes). Common data

files, as e.g. JPL planetary ephemeris files are not includ­

ed in the numbers on the USOC library. These files are

shared by all users on-the ICL computer system.

8.2 	 Experiments on UNIVAC 1110

A few experiments on the UNIVAC 1110 computer under EXEC8

have been performed to evaluate the possibility of implement­

ing a USOC-like system structure. The first tests concerned

the correct building of the executable program by the MAP­

processor. An important 'problemwas how to handle the mul­

tiple appearance of the same entry-name for FORTRAN modules.

The MAP-processor does not operate in the same way as the

ICL 4/72 composer, but a convenient solution was found.

A second test was undertaken to check the correct allo­

cation af COMMON blocks by the MAP-processor. In this case,

the MAP-processor coincided with the ICL composer.

-46-

A third group of experiments concerned the automatic

creation of job-control images and their submittal to the ex­

ecutive system. This is a key part of the preprocessor. Some

inconveniences were identified (e.g. conversion from files to

elements or vice versa), but no basic problems appeared.

9.0 UNIQUE FEATURES OF EACH SYSTEM

The purpose of this section is to identify, in a summa­

rized form, the main unique features of each system. Features

which are common to both systems are not listed. Listing a

certain feature means that it is not present in the other sys­

tem, or is present in a considerably reduced form. Some of

the features would be contradictory to the requirements or to

the structure of the other system. Also, some are simply not

implemented but could be implemented in the other system.

Some of the features to be discussed here are irrelevant to

the other system.

9.1 	Unique Features of FDS

- The concept of using self-contained processors allows

for a stage-by-stage building up of the whole required

mission design data base. Also, the analysis of indi­

vidual phases is facilitated by this concept.

Input/output data of processors are separated from the

processors in the data base established by interface

tables and data elements. Parts of the data base can

beaccessed independently of the processors.

Various modes of automation of the overall execution

exist (interactive, semi-automatic, automatic and

batch mode).

The system allows to have the man in the loop at execu­

tioA time to take some data-dependent decisions.

The system supports operation by personnel on the skill

level of technician. This is achieved by providing:

* 	 machine-independent FDS-unique conversation scheme.

This could be termed a type of high-level conversa­

tion and programming language.

prompting of the user for some classes of errors

and for missing data.

0

-48-

The scope of application processors in the planned final

version provides end-to-end flight design capabilities,

from launch to reentry, within a set of standardized

functions.

The standardization of processors and data structures is

intended to provide maximum efficiency for the design of

routine missions.

Flexibility of the system is achieved by providing a

large number of user-controllable parameters, in order

to cope with the variability of the flight design prob­

lems, without recoding the processors.

The system provides an interface to a semi-automated

documentation system (Daconics) in order to allow the

error-free and quick insertion of flight design results

into standardized documents.

9.2 Unique Features of USOC

- Particular application programs are generated automat­

ically or manually from a library of functional modules.

A relative hierarchy of functional modules exists in the

sense that a functional module may be built up from func­

tional modules of a lower level, etc.

The problem-dependent part of the data base is organized

in a modular way. It is established automatically by

the library modules by means of incorporated COMMON

blocks.

The automatic generation of a specific application.pro­

gram is made possible by the interactive preprocessor.

The conversation of the user with the preprocessor takes

place in terms of problem related questions/answers, not

in terms of modules or processors.

The interface of phases is established automatically;

no user actions are necessary.

-49-

All levels of accuracy/execution speed are available

within the same framework.

The system is designed to allow the solution of complex

problems which need the interaction of phases. Feedback

of arbitrary data produced in one phase into an earlier

phase is possible. This feature is accomplished by ex­

ecuting a sequence of phases in a cyclic and iterative

manner. (This will usually need the problem specific

adaption of some modules).

Adaptability to new, unforeseen and unique problems has

high priority. The user can-easily insert his own ver­

sions of any module into the generated program.

Maximum advantage is taken of the available host com­

puter operating system. No explicit executive program

is present in USOC

Although a single program is generated for each appli­

cation, almost no additional storage is required for

complex multi-phase applications. The code for the dif­

ferent phases is never simultaneously in core.

Loading only the modules (code and data) actually needed

for the particular application of the phases allows the

minimization of overall memory storage requirements.

Output data can be stored on files and reused by another

program that is generated in a different manner, or even

by other software.

The program library allows generation of high level

functional units which act as processors for special­

ized mission planning tasks.

-51­

10.0 CONCLUSIONS

Although there exists some overlapping of the scope of

applications of USOC and FDS , the structures of these

two systems are very different, according to their different

basic requirements. Their requirements are in fact, incom­

patible. While the FDS is designed to meet the requirements

of a standardized production tool, USOC is designed for

rapid generation of particular application programs. The main

emphasis in USOC is put on the adaptability to new types of

missions.

A software system having a USOC-like structure, adapted

to the specific needs of MPAD , would be appropriate to

support planning tasks in the area of unique STS missions.

There appears to be a need for such an additional system

within MPAD

PRECEDINO PAGE BLAPK NOT FILMED

-53-

REFERENCES

1. 	Davis, E.L.: "Proposed Goals and Concepts for STS Opera­
tions Flight Planning", JSC Internal Note No. 76-FM-10,

March 1976.

2. 	Folk, R.A. and Young, W.A.: "Flight Planning System II

Level A Requirements for Flight Design System",, JSC

Internal Note. No. 76-FM-71, August 1976.

3. 	"Flight Design System 1, System Design Document", JSC

Internal Note No. 77-FM-18.

a. 	Volume I: Section 1 - Introduction, Section 2 -
Overview, Section 3 - User Interface, April 1977.

b. 	Volume III: Section 5 - Application Processor

Library, February 1977.

c. 	Volume IV, rev.1: Section 6 - System Architecture

and Executive, July 1977.

d. 	Volume VI: Section 9 - Standards, May 1977.

e. 	Volume VII: Section 10 - Utility Support Software,

May 1977.

4. 	"Flight Design System (FDS) System X Design Concepts",

lecture presented by Bob Davis, NASA/JSC/FM6, June 1977.

5. 	"Unified System for Orbit Computation - USOC",

a. 	Maag, W. and Mueller, A.: Volume 1 - Software Orga­
nization, Orbit Generation Part, User's Guide, ACM

Report, July 1976.

b. 	Maag, W. and Starke, S.: Volume II - Orbits in the
Solar System, ACM Report, June 1977.

c. 	Starke, S. and Maag, W.: Volume III- Auxiliary

Calculations, ACM Report (to be published 1977).

d. 	Boissieres, J.: "Interplanetary Orbits in USOC",

ACM Working Paper, (in preparation).

6. 	Graf, 0. and Mueller, A.: "A New Approach to Software

Systems for Spacecraft Mission Planning and Analysis",

ACM Memorandum No. 158, February 1977.

7. 	Janin, G.: "Preliminary ISEE-B Orbit Maneuver Software

for the Routine Phase", ESA, MAD-Working Paper No. 27,

January 1977.

8. 	Maag, W. and Wehrli, R.: "Interim Report on Dynamics of

Tethered Satellites", ACM Report, August 1977.

raRtECDING PAGE BLA$,*- NOT FILM

