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A COMPARATIVE STUDY OF THE UNIFIED SYSTEM FOR ORBIT
 

COMPUTATION AND THE FLIGHT DESIGN SYSTEM
 

by
 

Werner Maag
 

1.0 INTRODUCTION
 

The high flight rate anticipated for the Shuttle Trans­

portation System (STS) era beginning the 1980's is causing
 

the review of the mission design and analysis computer soft­

ware structures. The rather individual case-by-case planning
 

procedures and software products which were used for earlier
 

missions are no longer adequate when considering the projected
 

budgets for the STS operations. Standardized planning tools
 

are absolutely necessary in the environment of shuttle flight
 

design since many tasks are repetitive. Also, profit must be
 

taken from the experience gained with earlier missions and from
 

the advances made in the areas of flight design techniques
 

and computer hardware and software standards.
 

In this report, two recent software systems will be
 

described and compared. One is the Flight Design System
 

(FDS), currently being developed at MPAD of NASA/JSCt . The
 

other is the Unified System for Orbit Computation (USOC)
 

operational at MAD of ESA/ESOCtt
 

The FDS software consists of a set of functional and
 

utility processors, components of the data base structure and
 

tMission Planning and Analysis Division of NASA/Johnson
 

Space Center, Houston, Texas.
 

ttMission Analysis Division of the European Space Agency/
 

European Space Operations Centre, Darmstadt, Germany.
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the executive logic. It is designed as an efficient produc­

tion tool for flight design and analysis tasks, to be accom­

plished for the support of operational shuttle missions and
 

orbital flight tests. It also comprises an interface with a
 

system for automated generation-of flight planning documents.
 

USOC has been used for the planning, analysis and design
 

of spacecraft missions, both earth orbital and interplanetary.
 

It makes use of an automated approach to the generation of
 

problem specific application programs from a library of func­

tional modules. A module selector program interfaces with
 

the user and selects the necessary modules for a particular
 

application. The USOC design expressly facilitates quick
 

modifcations by the analyst.
 

The FDS is a production oriented software product,
 

mainly designed to satisfy flight design needs of the class
 

of shuttle missions which are considered as standard missions
 

or deviations of such. It is not intended to satisfy the
 

total analysis needs of MPAD . One of the goals of-this 

study is to evaluate the approach of USOC for the planning
 

and design of unique shuttle flight phases. It will be demon­

strated in this report that in fact, a software system having
 

USOC-like structure would be appropriate to compliment the
 

FDS The structural details, however, would need to-be re­

designed to meet She specific needs of MPAD
 

The comparisons that are made in this study are based on
 

published documentation of the general requirements for the
 

Flight Planning System (reference 1) , general FDS require­

ments (reference 2), documentation of FDS-1 (reference 3),
 

and lecture presentation material on FDS-X (reference 4).
 

The author relies also on extensive interviews with AIPAD per­

sonnel and acknowledges their assistance in this study. FDS-Y
 

could not be included in this study since no detailed documents
 

have been published. On the side of USOC , the comparisons are
 

based on its documentation (references 5 and 6) and on personal
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information of the author on the current activities of the
 

further development of the USOC
 



NOT FILMEDRECEDING PAGE BLANK 

2.0 COMPARISON OF SCOPE AND PURPOSE
 

It is immediately clear that the structure of a flight
 

planning support program system depends very much on the em­

phasis given to its various application functions. Three
 

main areas will be distinguished:
 

a) Mission analysis and feasibility studies
 

b) Mission design and planning
 

c) Operations planning 

For USOC , the priorities have been defined in descending order 

from a) through b) to c). For FDS, the priorities are set 

in the opposite order. 

2.1 Mission Analysis and Feasibility Studies
 

At the European Space Agency, feasibility studies are
 

typically initiated by a request to the Mission Analysis
 

Division, which owns and maifitains USOC and is partially re­

sponsible for such types of studies. USOC is therefore re­

quired to be able to give quick answers to questions arising
 

from new types of projects. These may comprise, for example,
 

payload requirements which were previously not known because
 

they result from a new idea on a new experiment. It is clear
 

that usually some ad-hoc software modifications are necessary
 

to give the answer.
 

The most fundamental requirement for USOC is, as a con­

sequence, adaptability. That is the property of allowing easy
 

modification. Practically, of course, the master version of
 

USOC will not be changed. The modifications are done on
 

copies of respective modules. Application of USOC for such
 

tasks is based on the fact that often only a very few modules
 

have to be changed, while the framework can still be used.
 

It is also desirable that USOC be able to support mission
 

analysis development tasks. Examples are the development of
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of new methods in the field of orbital mechanics and efficient
 

algorithms for the investigation of payload requirements.
 

Eventually, new methods are added to the system's standard
 

capabilities. The requirement that USOC be an analysis tool
 

results, too, in the basic requirement of adaptability.
 

In contrast to USOC , the FDS does not have a high 

priority requirement to be a tool for studies concerning the
 

feasibility of new types of projects. FDS might, in.certain
 

cases be useful for such tasks but this would be a welcome
 

side effect. Definitely, it is not a research tool, since
 

it is not designed to allow ad-hoc program modifications.
 

First, the code of the processors is not accessible to the
 

normal user and the executive system would not allow duplica­

tion of processors. Secondly, in a production environment,
 

user modifications would be very dangerous to the reliability
 

of the produced data and to the system as a whole. However,
 

modifications can easily be made in the FDS concept, but
 

only at the maintenance level, not by the user himself. Flex­

ibility must be implemented by foreseeing a sufficient number
 

of user accessible options and parameters within the processors.
 

Finding the optimal degree of freedom is certainly the crucial
 

task of processor design. It is mandatory that the experience
 

gained with applications of FDS be taken into account when
 

designing new processors.
 

2.2 Mission Design and Planning
 

Mission planning can be defined as the task of finding 

the detailed specifications of an approved mission. This 

includes orbital and payload aspects as well as questions 

arising from the operations of the mission. This area is 

common to USOC and FDS . The set of functional capabil­

ities, however, is limited in USOC compared to FDS . For 

example,,any type of calculations concerning manned flights, con­

sumables as well as launch and re-entry phases are not included 

in USOC . For details see Section 3.2.
 



Mission Planning includes, for example, parametric studies
 

for the optimal satisfaction of payload requirements, the. defi­

nition of the orbital parameters, and calculations concerning
 

launch opportunities. The accuracy requirements of output
 

data range from moderate to fairly precise. USOC offers
 

generally different levels of accuracy which can be selected
 

according to the actual precision needed and the tolerable
 

computational expense.
 

Within FDS, System X is designed generally to be ready
 

to accomplish the mission planning tasks. However, iii cer­

tain cases, e.g. for missions involving deployment or re­

trieval of payloads, it may be necessary to apply methods
 

which are beyond the capabilities Of System X The corre­

sponding planning mechanism appears to be missing in the docu­

ments on Flight Planning (references I and 2). System Y will
 

probably satisfy the accuracy requirements but it is only
 

foreseen to use it at Level D planning, which is rather late
 

in the planning process. It might be possible that System Y
 

could be used at an earlier stage and that it have the neces­

sary flexibility. An alternative approach is to develop a
 

new system that has the necessary flexibility, plus a wide
 

range of accuracy capabilities.
 

2.3 Operations Planning
 

Finally, there is the level of operations design. This
 

task consists of the generation of detailed flight profiles
 

which includes the flight trajectory, maneuvering and attitude
 

control procedures, detailed observability and tracking con­

siderations and much more. Basically, little analysis is per­

formed since the necessary parameters have been determined at
 

the mission planning level. Additional parameters describing
 

the hardware configurationin detail enter the calculations.
 

However, all mission planning effort has to result in a plan
 

which uses a large, but a finite number of hardware resources,
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well defined activities and flight phases. These elements
 

will not change very much from flight to flight and the type
 

of parameters and the number of options is complicated, but
 

manageable. Therefore, this level of flight design is the
 

one which can be standardized best, at least for the shuttle
 

flight design requirements.
 

USOC does basically not deal with operations design
 

(since-this task is not assigned to Mission Analysis Division).
 

But it has happened several times that certain functions of
 

operations depign were requested from USOC in new or unique
 

situations where the effort to modify standardized software
 

would have been too large. This capability of USOC was not
 

a requirement, but is a welcome side product.
 

Many of the operations design functions can be performed
 

independently in relatively small segments. This is a strong
 

argument for the concept of independent processors that is
 

used in FDS As mentioned before, the nature of this task
 

allows its breakdown into a set of predefined planning ac­

tivities, in the case of standard missions. There will re­

main a residual of special cases which need software modifi­

cations. For operations design tasks, the current USOC con­

cept to generate one complete problem-specific application
 

program would not be efficient. The problem of merging all
 

the required functions into a large overlay structure would
 

probably be very difficult. The solution would be to allow
 

the generation of processor-like functional units. This, in
 

turn, could introduce the flexibility in the sense of adapt­

ability to unforeseen problems-on the operations design level.
 

2.4 User Categories
 

The FDS is explicitly required to support the utilization
 

of various skill levels of its users. There will actually be
 

a mix of skill levels which range from the technician to the
 

analyst, with the emphasis given to the technician level. An
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important consequence is that the system design and components
 

of the system must ensure a maximum degree of "foolproofness"
 

in order to guarantee the reliability of data products. It
 

can generally not be assumed that the user has sufficient
 

knowledge of the methods he applies and that he will always
 

make intelligent use of the system. Software development and
 

maintenance must assure the quality of produced data. This
 

is in practice a very hard requirement which can be satisfied
 

only by introducing rigorous checking procedures at the level
 

of the executive system and of the processors. The implied
 

overhead in system complexity and the manpower effort for the
 

realization of maximum foolproofness is only worthwhile if
 

the system can be stabilized to a high degree with respect to
 

the frequency and amount of modifications. This in turn, re­

quires that the spectrum of capabilities be large and the
 

branching into selectable cases be detailed. As a consequence,
 

the system becomes rather difficult to modify in order to deal
 

with cases which are not foreseen.
 

USOC, in contrast to FDS, is not specifically designed
 

to support repetitive tasks. The user category that is ad­

dressed is assumed to be the analysts. It is generally as­

sumed that the user is aware of possible limitations in the
 

methods and programs that are available in the system and that
 

he understands the concept of the system. It is attempted to
 

assure foolproofness on the level of modules. However, there
 

are no checks for validity of the combinations of modules or
 

compatibility of modules with particular data. Since the sy­

stem is designed to support modifications of individual mod­

ules, validity checks are necessarily limited and sometimes
 

even not desirable, since the user might like to make experi­

ments near some performance limits. Also, the requirement of
 

of simplicity in the sense of visibility of the structure of
 

the system does not allow too much checking. The general
 

guideline is that the modules and programs generated by the
 

preprocessor (if intelligent combinations of input are given)
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are safe. Pitfalls are avoided through clear documentation.
 

The rest is left to the user. The fact that individual mod­

ules can be modified (if actually necessary) helps consider­

ably to keep modules simple since the degree of branching into
 

various preprogrammed cases may be kept small. This, in turn,
 

improves greatly the overall reliability of the system.
 



3.0 SCOPE OF APPLICATIONS
 

The comparison of application capabilities of FDS and
 

USOC is complicated by various facts. The main obstacles
 

are the different method of development applied for the two
 

systems, together with the different status of maturity of
 

their development. Also, the basically different software
 

structure does not allow a one-to-one comparison.
 

The design of FDS has been based on experience gained
 

with several ancestors and the requirements can be expressed
 

on the background of capabilities of various existing programs.
 

The application functions of the system are concentrated on
 

the shuttle operations. It is possible and, in view of the
 

selected system organization, it is desirable to define the
 

scope of applications and the detailed capabilities more or
 

less precisely in advance.
 

The full concept of USOC, in contrast, has no prede­

cessors, at least in the field of space research. (The idea
 

of program generation has been used in the area of business
 

computer applications.) The software must be able to deal
 

with all types of orbits of space vehicles in the solar
 

system. The structure of the system is explicitly designed
 

to allow the easy extension of the range of capabilities of­

fered as standard options by the preprocessor and the library.
 

Extensions are therefore usually performed only as required
 

for the actual near future. The potential scope of applica­

tions is an open field-.
 

We can mention before going to a more detailed comparison
 

that USOC and FDS give different emphasis to the various
 

functions of flight design. USOC puts more emphasis on orbit
 

prediction sophistication while bffering a limited selection
 

of on-orbit operations analysis functions. The generation of
 

detailed operations planning products is left to another soft­

ware system. Launch and re-entry simulations are not required,
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since these are outside the scope of ESOC operations. FDS
 

assumes the exhaustive end-to-end operations analysis and the
 

generation of corresponding timelines as the main task. Com­

plex orbital problems are probably beyond the scope of appli­

cations.
 

The following more detailed comparative lists of applica­

tions are founded on that information (which is currently
 

available to the author) which contains sufficient technical
 

substantiation to allow a comparison. The functional require­

ments to the FDS System X are compared with the implemented
 

functions of USOC, followed by a brief indication of planned 

extensions of USOC . The structuring of the lists is de­

rived from reference 2, p.28. FDS is described mainly in 

terms of functional requirements of processors, as listed in 

reference 4, while taking into account documentation in refer­

ence 3, Vol.5. The list does not claim to be exhaustive; 

additional requirements are listed in a generic form in ref­

erence 1. The list on USOC is derived from references 4a­

d., and from the author's personal information. It gives
 

functional capabilities which may or may not coincide with
 

functional modules.,
 

3.1 	 Application Functions of FDS System X
 

Trajectory Generation 

* orbit generation methods 

- conics approximation 

- AEG (Analytical Ephemeris Generator), which 

includes certain perturbations 

( - numerical integration, in System Y .) 

* 	 basic orbit-related functions
 

- base time ephemeris parameter initialization
 

- coasting flight predictor
 

- search time, stopping at certain condition(s)
 

- coordinate transformation tasks
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* 	 orbital environment
 

- shuttle orbit
 

- some shuttle payload aspects
 

Launch Window Calculation and Launch Targeting
 

Launch Simulation
 

Maneuvering Functions
 

- general-purpose maneuvers
 

- rendezvous multiple impulse maneuvers
 

- two-impulse maneuvers
 

- V. targeting maneuvers
 

- special targeting
 

- IUS targeting maneuvers
 

- midcourse maneuvers
 

On-Orbit Operations Analysis
 

- vehicle-to-vehicle AOS/LOS
 

(Acquisition/Loss of signal)
 

- station tracking, AOS/LOS times
 

- orbital lighting conditions, sunrise/set,
 

% darkness 
- relative motion between shuttle and another 

vehicle (range, range-rate etc.)
 

- EREP sun elevation angle
 

- ground-track generation
 

- EREP site screening and pass
 

- moonrise and set
 

- glitter/glory
 

- ascending node counter
 

- beta angle
 

- attitude processing
 

- shuttle TDRSS viewing
 

De-Orbit/Entry Analysis
 

Consumable Analysis
 

- quick investigation of non-propulsive
 

consumables
 

- OMS/RCS propellant usage
 



Display Functions
 

* 	 listings
 

- flight planning table
 

- state information
 

- on-orbit operations analysis data
 

- scanning parameters
 

* 	 plots
 

- on-orbit operations analysis data
 

- world map
 

* documentation generation system interface
 

0 control functions
 

- parametric scans
 

- conditional and unconditional
 

branching in processor sequencing
 

3.2 	Application Functions of USOC
 

Trajectory Generation
 

* orbit generation methods
 

- conics; generalized method for all types
 

of orbits
 

- improved AEG-like orbit generator
 

- semi-analytical method (analytical with
 

numerical updating each revolution)
 

- numerical integration; all types of orbits,
 

various levels of force evaluation
 

- multirevolution method, superimposed on
 

semi-analytical or numerical orbit genera­

tion method.
 

a 	 basic orbit-related functions 

- base time ephemeris parameter initialization 

- coasting flight prediction 

- stopping functions, e.g. perigee passage, 

critical height
 

- coordinate system change
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a 	 orbital environment
 

- all types of orbits
 

- earth and planetary orbiters
 

- interplanetary probes
 

- lunar orbiters
 

- short and long-term predictions
 

Launch window calculations (scan for orbital stability only)
 

On-Orbit Operations Analysis
 

- station tracking, AOS/LOS times,
 

visibility of planetary orbiters from Earth.
 

- orbital lighting conditions, sunrise/set,
 

% darkness, earth and plahetary
 

- ground-track determination, earth and
 

planetary
 

- avoidance of radiation belts
 

- geomagnetic phenomena, scientific payload
 

planning: magneto pause, bowshock, neutral
 

sheet and neutral point
 

Display Functions
 

* 	 listings
 

- state information
 

- on-orbit operations analysis data
 

* 	 plots (stand-alone utility program using 

recorded information) 

- orbital elements versus time 

- on-orbit operations analysis data 

- world map with ground-track etc. 

* 	 control functions
 

- parametric scans
 

- cyclic execution of phases for any
 

iteration procedure.
 

Examples of project-oriented user adaptions implemented in
 

the past within USOC framework:
 

* operational maneuver software for ISEE
 

satellites (reference 7)
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* 	 handling of two satellites simultaneously
 

(reference 7)
 

0 
 precision ephemeris generation used in
 

conjunction with operational attitude
 

problems
 

* investigation of dynamics of tethered
 

satellites (reference 8)
 

Approved extension of scope of application:
 

* 	 general-purpose maneuver capabilities
 

0 	 interplanetary trajectory generation
 

- patched conics solution
 

- precision targeting method
 

- controlled flight (e.g. solar sailing)
 

-'optimal control algorithms (study)
 



4.0 COMPARISON OF SYSTEM STRUCTURES
 

Any software that is to be considered a system, must com­

prise the following logical elements:
 

- set of application functions,
 

- set of data structures, 

- control and management functions.
 

These elements may or may not be joined in corresponding phys­

ical blocks. In fact, their realizations in FDS and USOC
 

are quite different, as will be described in this section.
 

The units of application functions, physically implemented
 

as processors, modules, etc., are required to be compatible
 

units of work by means of which a complex task can be built up.
 

The data structures contain information which is globally as­

signed to the system (e.g. ephemerides of natural bodies or
 

physical constants), and they contain information which can be
 

specifically assigned by the user or is generated or modified
 

by the functional units. The data structures are standardized
 

such that they can jointly be accessed by compatible function­

al units. Finally, the control and-management functions have
 

the task to automate as much as possible the integral execu­

tion of the system and the data management. The purpose of
 

automation is to increase both the overall efficiency and the
 

practical reliability (reduction of user errors). The control
 

and management functions also provide the interface of the
 

user with the system.
 

4.1 Structure of FDS (System X)
 

4.1.1 Brief Description of FDS-X
 

The user always communicates interactively with the ex­

ecutive of the system in a dialogue that resembles a very high
 

level language. The basic statement calls a processor which
 

is a self-contained unit of work and associates an interface
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table with the processor, which defines input and output para­

meters. Various modes of operation exist: Manual (immediate
 

input of processor calling control statements and prompting
 

by system), Semi-automatic (execution of predefined sequence
 

of processors with optional manual interaction and prompting)
 

and Automatic (execution of fully predefined sequence of pro­

cessors with prompting). Finally, there exists the capability
 

to create batch jobs.
 

Sequences of processor calls can be coded on sequence
 

tables through an editor. Input and output data of processors
 

are specified on data tables (called interface tables). The
 

data interface tables are accessible through an editor program.
 

The user has no access to the interior of the processors, only
 

to the data. Interface of processors is established by means
 

of data elements which are referenced in the interface tables.
 

A high degree of automation and foolproofness is an im­

portant goal of the system design. No knowledge of computer
 

programming is necessary. The user has to be familiar with
 

the flight design functions and their interrelations in order
 

to be able to organize correctly the sequencing of processors
 

and their interfaces by means of data elements.
 

Besides the normal user, only the level of system main­

tenance exists. Ad-hoc user modifications are not possible.
 

4.1.2 	Functional Units
 

The functional unit of FDS-X is a processor. The pro­

cessor can be classified into application processors and uti­

lity processors. Application processors are designed to per­

form, usually, a complete sub-task of flight design. The com­

plexity of a single-application processor ranges from moder­

ately complex tasks (e.g. sunrise/sunset determination, given
 

the vehicle ephemeris, etc.) to quite complicated tasks (e.g.
 

deorbit/reentry targeting). Other examples are launch simu­

lation and design, launch window calculations, general purpose
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maneuvers, orbital maneuvers, IUS targeting, special target­

ing, coasting flight prediction, attitude and pointing, AOS/
 

LOS , etc.
 

Utility processors have simple tasks such as data initia­

lization, coordinate transformation and display functions.
 

They are mainly needed to link the application processors and
 

to display information to the user. A few utility processors
 

are (in principle) a user definable part of the control logic.
 

These are the processors needed to set up scanning loops over
 

a sequence of processors or for conditional or unconditional
 

branching within a sequence of processors. Conditional bran­

ching may depend on information stored in data elements.
 

Examples of the first group are physical dimension specifica­

tion, load state vector, print state vector, transform state
 

vector etc. Examples of the second group are SCAN/ENDSCAN
 

IF , GOTO processors. 

All processors are treated by the executive on the same
 

level, irrespective of their complexity. Complete flight
 

planning tasks are performed by chaining the necessary pro­

cessors together, either interactively or by a predefined
 

list of instructions (sequence table). Each processor can
 

be executed independently, provided the necessary input data
 

has been supplied by the user or by processors executed at
 

previous stages. The processors are stored on a disk-resident
 

library and are dynamically loaded and called by the control
 

and management function (executive system) which obeys the
 

immediate orders of the user or a list of directives. All
 

users share the same processors.
 

4.1.3 Data Structures and Data Flow in FDS
 

Each processor fetches the necessary input data and stores
 

produced data from and to, respectively, the processor asso­

ciated standardized data structure, called interface table.
 

Besides housekeeping the data, an interface table contains all
 

necessary information on the input/output parameters as e.g.
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storage class (disk or central memory), type of data (numer­

ical, literal), completion flags (indicating if the informa­

tion is complete or incomplete) and the data itself or a ref­

erence to a named location (data element) which contains the
 

data. Processors do not directly access the interface tables.
 

Information is transferred between processor and interface
 

table and/or data elements by a service function of the exec­

utive system. This allows the provision of standardized pro­

cedures which guarantee the overall integrity of produced data.
 

For example, a test on the completeness of input data can be
 

made. This is. very important since the processors can be ex­

ecuted independently. Eventually, the user will be prompted
 

for missing information or the execution is terminated. A
 

second source of input data, besides interface tables, are
 

global read-only data files as e.g. JPL ephemeris data.
 

Such information is read directly by the processors.
 

Interface tables are created and modified by the user by
 

means of the interface table editor of the executive system.
 

Default interface tables are stored in a library. The nec­

essary actions of the user are to specify values directly to
 

the parameters or to refer indirectly to the values stored in
 

data elements by specifying the (unique) data element names
 

instead of values.
 

Data elements are the vehicles to establish communica­

tion between the processors. These are named arrays stored
 

on files or in memory which contain numerical information.
 

Data which is the output of one processor and which is needed
 

as input by another processor must be stored in a data ele­

ment. A data element is created by the executive if the user
 

specifies a data element name for an output parameter, and
 

is referenced by another processor if the user specifies the
 

same name as input parameter to that processor. Clearly, data
 

element names must be unique in the user's active work area.
 

As a consequence of the described feature, the user is responsible
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for the organization of the data flow in a sequence.-of pro­

cessors,.
 

4.1.4. Control and Management Functions in FDS
 

In FDS-X the control and management functions are im­

pl*emented in a program package which is commonly referred to
 

as the FDS executive. This is an FDS-unique development
 

running under the host computer real-time executive (RTE)
 

operating system. The FDS executive generally controls the
 

execution of FDS processors and provides the communications
 

between the processors and between the user and the system.
 

It also manages the permanent and temporary FDS data sets.
 

The following list displays a nmber of subsystem func­

tions of the FDS executive. It is derived from more detailed
 

-documents on FDS-1 (reference 3, section 3 and 6) but the
 

listed functions appear to be fundamental to the FDS concept.-


The configuration management function links the user ter­

minal with its associated linkage tables in the FDS manager.
 

It provides the allocation of necessary computer system resources
 

at session initiation.
 

The FDS management provides the control functions to, run
 

-FDS under the host computer operating system. 'Besides the
 

attention function which-allows unsolicited user actions, e..g.
 

interruption of sequence table execution; it provides, among
 

others, the following functions:
 

- Schedule FDS executive and processor-tasks. 

- Control the communication of data structures between 

associated tasks. 

- Management of the memory and disk resident data sets.
 

This includes particularly the maintenance of a table
 

of contents and of tables of pointers to sequence
 

tables, i-nterface tables and data elements.
 

The executive director includes the following functions:
 

- Provides terminal communication, inclusive prompting
 



of the user and extended (explanatory) prompting.
 

- Interprets user directives and takes corresponding 

actions, e.g. by calling the FDS manager to perform 

data set manipulations as to delete, copy or list com­

plete data sets. Also, the sequence table and inter­

face table editors are called by the executive direc­

tor function. Other directives concern the mode of 

FDS operation, as manual, semi-automatic, automatic 

or batch mode. 

The execution controller monitors the execution of pro­

cessors through sequence tables by requesting the correspond­

ing task scheduling by the FDS manager. Also, the associ­

ated interface tables are checked for completeness and the
 

user is prompted for missing data.
 

Table editing is done by the sequence table editor
 

and interface table editor. The sequence table editor serves
 

to create and modify sequence tables which have a relatively
 

simple format. The interface table editor serves to create
 

and modify interface tables. This program has to store var­

ious classes of data into the relatively complicated struc­

ture. Also, some checking on the validity of user input is
 

performed. An interface table contains information as e.g.
 

overall size of the table, name of the associated processor,
 

completion flags, data element names, possibly the data
 

itself, and the size and dimension of data.
 

Processor services are used to transfer parameters and
 

attributes of parameters between processors and the physical
 

location of data in a standardized manner via reference to the
 

interface table. These tasks are quite complex since data of
 

various types may be stored in various ways on various places
 

and devices.
 

Finally, there is the necessary function of library main­
tenance which must be used to add or modify processors or
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default interface tables in the library. It will also record
 

version numbers on the library members to avoid the association
 

of incompatible versions of processors or interface table.
 

It will also maintain a log of all changes.
 

4.2 Structure of USOC
 

The description of the structure of USOC in comparison
 

to FDS is complicated for several reasons. The functional
 

units are not all treated at the same level. Instead, there
 

exists a hierarchy of them which is in addition dependent on
 

the actual application. The data structures are organized in
 

a modular form as are the functional units (modules). The
 

control and management function is dispersed among the func­

tional modules and a large portion of it is left to the oper­

ating system (OS) of the host computer. Finally, there is
 

the feature of the preprocessor which does not contain but
 

reflects the control and management functions of the applica­

tion program which is to be generated.
 

4.2.1 Brief Description of USOC
 

The user starts USOC by answering mission analysis re­

lated questions to the interactive preprocessor. Accordingly,
 

the preprocessor generates a sequence of job-control-language
 

(JOCL) statements to be used for the building of a problem
 

specific absolute program from a library of relocatable sub­

programs. Also, it produces a series of input data groups to
 

the absolute program. The sequence of JCL statements is
 

transmitted to the standard host operating system service pro­

gram which builds up the absolute in remote batch mode. Fi­

nally, the absolute is executed in remote batch mode.
 

The most basic level of user needs only to answer the
 

questions of the preprocessor. He needs to be familiar with
 

the methods used in mission analysis and planning. Fool­

proofness is not the highest priority requirement. Interface
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of functional modules is established automatically. The user
 

does not need to organize it.
 

A second group of users, which is strictly on the level
 

of analysts, is able to perform problem dependent modifica­

tions by modifying individual subroutines on copies of the
 

master versions and to include them in the absolute program
 

in place of the standard versions. This feature allows a high
 

degree of flexibility concerning new and unique situations.
 

Obviously, the overall quality assurance of data produced on
 

this level is partially moved to the responsibility of the
 

analyst. Such a user also must have a good knowledge of
 

FORTRAN and the host computer system. In addition, he must
 

be familiar with the algorithms he wants to modify.
 

4.2.2 Functional Units
 

The fundamental unit of USOC is the functional module.
 

This is the logical building block of the absolute application
 

program, physically one or several subroutines. A functional
 

module (FM) is defined by its distinct subtask in terms of
 

performed work. A functional module may be made up of sev­

eral FMs appearing in different positions of the calling
 

hierarchy. A FM is identified by its highest entry name
 

in the hierarchy which gives the (only) entry point of the
 

whole module. Elementary FMs are usually physically repre­

sented by one subroutine (SUBROUTINE or FUNCTION type FORTRAN
 

program) or sometimes by a group of subroutines which are al­

ways used as a complete unit. In some cases different ver­

sions of the same elementary FM exist. Each performs the 

same work, but internally the code may be different. A dis­

tinct version of an elementary FM is the basic physical 

building unit and is called a library module (LM) . If 

several LMs exist, the different versions are called hom­

onymes,since they have the same FORTRAN entry point name,
 

but are not the same code. A LM is identified by the ele­

ment name (UNIVAC terminology) on which the module resides.
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Examples of FMs are given by functions:
 

- execute the whole program,
 

- execute a phase,
 

- initialize physical constants,
 

- propagate state vector from initial to
 

final state
 

- compute AOS/LOS
 

- take one step of numerical integration,
 

- compute atmosphere density,
 

- transform state vector,
 

- print orbital information,
 

- store information on graphics file, etc.
 

One can see that there is no correspondence between FDS pro­

cessors and USOC modules. In some cases a FM contains the
 

'functions of several FDS processors, in other cases the .
 

functions are similar. The elementary FMs are usually much
 

smaller than a FDS processor.
 

Examples of LMs are:
 

- computation of drag forces,
 

- initialization of Mars' gravitational potential 

coefficients,
 

- solve quartic equation., 

- drive one phase
 

- evaluate increments for scanning procedure.
 

Examples of homonymes are the modules for the initialization
 

of physical constants of planets. There exists a different
 

version for each central body.
 

According to the present application of USOC, the top­

most two levels of calling hierarchy are fixed. Each applica­

tion program is built up from a number of phases., which may
 

be executed in a cyclic manner. Each phase is broken down
 

into the same subphases. From there downwards the same func­

tional modules appearing in different phases may be built up
 

in different ways.
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Scanning and iterative procedures are implemented by us­

ing the cycling capability which means that a sequence of
 

phases are performed repetitively. Any desired data can be
 

iterated in this loop if corresponding user-modified LMs
 

are inserted. Conditional branching within the sequence of
 

phases has so far not been required, but could easily be im­

plemented.
 

The LMs reside on an indexed library. They are built
 

into the application program by specifying their inclusion in
 

standard job-control language to the standard linkage program
 

of the host computer (MAP-processor, linkage editor, composer,
 

etc.).
 

There exists a master version of all LMs which is the
 

default version for inclusion, but each user may copy it to
 

his own library, modify it and include it instead of the stan­

dard version.
 

4.2.3 Data Structures and Data Flow in USOC
 

The data base of a USOC application consists of user
 

input data, global read-only files, COMMON blocks, interface
 

files, print files and plot files. -All components are stan­

dard FORTRAN.
 

User input data are given by NAMELIST data groups which,
 

due to their literal form, are und6rstandable by the computer
 

and the user. They contain all run parameters except the ones
 

which are no longer free, in case a particular version of a hom­

onyme has been used or the input data selection has already
 

been made at preprocessing time.
 

Each phase may need several input NAMELIST data groups.
 

They are produced by the preprocessor on one file in the cor­

rect order. Due to their mnemonic names, they are easily
 

identified. NAMELISTS are read directly by the modules which
 

need the data.
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Global read-only data belong to the system as a whole
 

and are also used by other users working with differ~nt soft­

ware on the same computer. They are read directly by the mod­

ules which need the data and are managed by standard FORTRAN
 

library routines which are included automatically and work
 

without explicit USOC control (except REWIND, BACKSPACE,
 

etc.). Examples are sun, moon and planetary ephemerides, co­

ordinates of standard tracking stations, etc.
 

COMMON blocks (CBs) have basically the function of
 

establishing a data pool for the whole application program
 

execution. Two classes can be distinguished. First there
 

are "read-only data", e.g. physical and mathematical constants
 

and run parameters read from NAMELIST and stored in CBs
 

Global information such as physical and mathematical constants is
 

initialized by specific initialization library modules which
 

are by default included from the USOC master library by the
 

preprocessor. If a user wishes to use different values, he
 

has to supply his own versions of these modules. The second
 

class of CBs contain data which are possibly modified by
 

one module and used by another module. These CBs could be
 

called interface vehicles.
 

The set of CBs is structured in a modular way. The
 

individual blocks are relatively small and always contain data
 

which are logically related to each other. Examples are CBs
 

for the state vector, epoch information, control parameters
 

for force evaluation, temporary ephemeris information on
 

planets, etc. Each module which needs certain information has
 

simply the CB included which contains the desired informa­

tion. The preprocessor makes sure that a module is included
 
.which contains the same CB and which produces or initializes
 

the necessary data. Automatically, only those CBs are in­

cluded in the absolute application program which are actually
 

needed.
 

If the amount of data to be transferred between functional
 

modules is too large, e.g. whole satellite ephemeris' data,
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then the information is written to and read from an interface
 

file. An example is the generation of ephemeris data and sub­

sequent computation of sunrise/sunset information. The files
 

can be reused at a later run or be used by different software.
 

Produced results are edited by print library modules and
 

put to a printable file. Also, a plot information file is
 

produced which can be read and displayed optionally by a
 

stand alone program. Various levels of detailed output exist.
 

However, if the user wishes to print additional data or to use
 

a different format he is free to supply his own print modules.
 

The general rule is that a user produces all data and
 

any specialized library modules for each project under a sepa­

rate group of files identified on the USOC host computer
 

(ICL 4/72) by a group identifier specified as a normal termi­

nal directive. (The group identifier corresponds approximately
 

to the qualifier on UNIVAC EXEC 8.) In this way, he may own
 
several versions of USOC applications simultaneously with­

out confusion.
 

All data files are automatically catalogued by the host
 

operating system (OS) after the run of the application pro­

gram. They are fully at the disposal of the user for additional
 

runs or modifications. Any modifications to user input files,
 

to the job-control images which define the composition of the
 

absolute program and to the modification of modules, if neces­

sary, are performed by the standard text editor of the host OS
 

Interface between modules is established automatically
 

by the modular concept of COMMON blocks. No user actions are
 

necessary to ensure the correct data flow within the generated
 

program. This method, which is very convenient, could no longer
 

work if an independent phase-by-phase analysis would be desired.
 

4.2.4 Control and Management Functions in USOC
 

As mentioned before, many control and management functions
 

of USOC are delegated to the host OS (which includes standard
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FORTRAN features). The remaining part is dispersed among the
 

library modules. The general philosophy is that each control
 

operation is done at the lowest possible level in the hierarchy.
 

This allows maximum flexibility to replace different versions
 

of functional modules since Control and management actions are
 

only to be taken if actually required. This introduces the
 

idea of modularity to a certain degree even on this level.
 

No executive system in the proper sense is present. It
 

is nevertheless interesting to indicate where the control and
 

management functions identified for FDS are to be found in
 

USOC
 

Configuration Management. The user terminal is linked
 

to the computer system resources and to the USOC program
 

control by the standard terminal interface of the host OS
 

This includes the interactive execution of the preprocessor.
 

Execution and Data Management. The only available atten­

tion function is to "kill" a running job if it turns out to
 

produce nonsense. The program phases are linked by standard
 

job-control language (JCL) while the full flexibility of
 

overlay features is used. Data structures communicate auto­

matically through FORTRAN features. The management of memory
 

and disk-resident data is fully automatic by the host OS
 

Executive Director. Terminal communication, inclusive
 

of prompting is done by host OS and FORTRAN modules. User
 

directives to manage files are performed by normal terminal
 

command language. Editing is done by the terminal text editor.
 

Execution Controller. Linkage of FORTRAN modules is
 

trivial. For the correct phasing, the standard OS control
 

logic with associated control tables for overlay execution
 

control is extensively'used, but this is transparent to the
 

user.
 

Editing Programs. 'The corresponding information to the
 

sequence table of FDS is the sequence of JCL commands for
 

the inclusion of library modules in USOC This table may be
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edited by the terminal text editor. The same applies to the
 

input NAMELIST data files. Completeness checks, of course,
 

cannot be performed. Syntax errors lead to terminal, OS or
 

application program error messages. Error analysis may be
 

difficult, mainly for people who are not familiar with the
 

host computer.
 

Library Maintenance. Only library modules are to be up­

dated. This is done by modifying and testing modules as if
 

they would be a temporary user modification on his own library.
 

If the modification is approved, the new relocatable element
 

is put into the master library. Only one version of the same
 

library module can exist. If updates are incompatible, the
 

name of the library module must be changed and two versions
 

of the preprocessor must be used.
 

4.2.5 	 The Preprocessor of USOC 

The basic approach selected for USOC is "program 

generation". More specifically, in USOC a particular appli­

cation program is built up from a library of relocatable pro­

gram modules. Based on the guideline that the features of 

today's large computer operating systems should be used as 

much as possible, the linkage of the modules is not performed 

by a USOC system program but by the host OS . Consequently, 

the preprocessor generates a sequence of JCL-language items 

which is submitted to the OS collector program, which col­

lects the specified modules into an absolute code. In addi­

tion, the preprocessor must provide an input data file to the 

generated program. 

The whole logical structure of the system must therefore 

be mapped in a certain way into the logic of the preprocessor, 

such that a correct absolute code always results. The pre­

processor has to process all branching decisions and has to 

take actions in the form of generating the necessary JCL 

commands. This includes the generation of the appropriate
 

overlay structure.
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The preprocessor is an interactive program, fully pro­

grammed in FORTRAN. As it is executed, it displays a ques­

tion in terms of the mission analysis problem (not in terms
 

of modules or processors etc.) and lists the available options
 

that make sense, depending on previous answers. The user
 

gives the answer in the form of single numbers or arrays of
 

numbers (integer or real). These numbers are used first to
 

control further questions and later for the generation of the
 

output files. When all information is collected, it is pro­

cessed to finalize all decisions and, ?s the last step, the
 

JCL control cards and the input data file for the generated
 

program are written. This information is forwarded automat­

ically or manually to the next steps, which are collection
 

and execution.
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5.0 HARDWARE/SOFTWARE REQUIREMENTS
 

TO HOST COMPUTER SYSTEM
 

This section gives a brief discussion of the requirements
 
to the host computer. Due to the scope of the study, it is
 
necessarily limited to itemizing some components of the hard­
ware and software, as described in various documents.
 

5.1 Hardware Components
 

5.1.1 Flight Design System
 

The current development of the prototype system FDS-1
 
which contains a subset of the projected FDS-X application
 
functions, is being installed on a configuration in which a
 
Hewlett-Packard 21MX computer is the primary computer dedi­
cated to 
 FDS It has a link to the Daconics documentation
 

system, to a number of user terminals and to peripherals such
 
as printers, plotters, disk-drives and tape-drives. The user
 
terminal link also provides the capability to use tape cas­

settes.
 

In the planned final configuration the primary computer
 
will be a larger computer on which most of the FDS-X func­
tions are implemented. It will be linked to a large computer
 
(UNIVAC 1108) which contains System Y , and to the HP21MX
 
computer. It will support a number of user terminals. The
 
HP21MX computer provides the interface to the Davonics docu­
mentation system. All computers will have their own periph­
erals such as printers, plotters, disk-drives, tape-drives,
 

card-readers and microfilm units.
 

5.1.2 USOC
 

The USOC system is fully implemented on one large com­
puter (ICL 4/72, similar to an IBM 360). The needed periph­
erals are the ones commonly installed in the environment of
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general computer applications. These are printers, disk-drives,
 

tape-drives, card-readers, card-punchers, paper and microfilm
 

plotters, interactive graphics. A large number of user termi­

nals and telecommunication interfaces are linked to the computer.
 

5.2 	Host Operating System Software
 

For both systems, 
FDS and USOC , the operating system 

(OS) requires a time-sharing executive. This includes the op­

tion of running interactive application programs. The OS 

must supply the common service and utility programs such as 

compilers, a subroutine linkage program and data management 

utilities, as needed for copying, creating, merging files, etc. 

Both host operating systems must allow several users to work 

simultaneously without interference, possibly on different 

projects using the same software and parts of the same data 

base. The main difference in the two systems is in the extent 

of use of the OS The host OS is transparent to the FDS 

user since he communicates only with the FDS executive, which 

provides the linkage with the host executive. In contrast, 

the USOC user communicates directly with the host executive, 

except when he runs the preprocessor. 



6.0 FLEXIBILITY CONSIDERATIONS
 

Flexibility is a dazzling term; everyone has his own
 

opinion as to its meaning. In fact every software system
 

claims to be flexible.
 

In an ideal sense, flexibility in a scftware product
 

means its readiness to treat "any possible" problem. This
 

leads in practice to attempts to implement an exhaustive bran­

ching into predefined cases and subcases. However, it always
 

happens that new problems occur which have not been foreseen.
 

In such a case the software must be modified by adding new.
 

capabilities. In other words, the system must be adapted to
 

a new requirement.
 

The design of FDS intends to offer the user a wide
 

scope of application processors. Within the processors a
 

large number of options will be available. This allows a
 

high degree of flexibility within the scope of standardized
 

capabilities. A result is that the executive and the pro­

cessors become rather complex. Another fundamental re­

quirement for FDS is that it must-be able to be used by
 

non-professionals. This requires detailed checking proce­

dures which again adds complexity to the executive and the
 

processors. If these requirements to FDS are satisfied,
 

it will certainly be a very efficient and safe flight plan­

ning tool.
 

From the FDS user's point of view. the given task must
 

be resolved into the offered capabilities. If this is impos­

sible then the task cannot be accomplished. The user must
 

request a modification or extension of the system at the sy­

stem maintenance level. Modifications will affect the pro­

cessors and the executive at various places; e.g. the format
 

of interface tables and the prompt tables are affected. Data
 

management functions must also be changed and the execution
 

control logic must be modified. If different versions of a
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processor are needed, the whole processor must be duplicated
 

and added to the system as if it were a new processor. Even
 

though adaptability is possible, it does not appear to be a
 

high priority goal of the FDS design.
 

USOC , too, tries to offer a relatively large number of
 

standard options that can readily be used through the prepro­

cessor. However, in order to keep the structures simple, the
 

variety of options does not require extensive branching into
 

possible subcases. This is possible since the user may modify
 

almost any module, if necessary. If, as in many cases, sev­

eral mutually exclusive options exist, then the preprocessor
 

selects only the appropriate modules for the generation of
 

the program. Very little unused code is included in a gen­

erated program. However, once the executable program is built,
 

the user has a limited set of options available. If he changes
 

his mind, he must rerun the preprocessor. In those cases
 

where it is likely that the user might wish to make experiments
 

with options, and if the overhead in required storage is small,
 

the possibility of switching options is retained in the modules.
 

Also some flags are available to switch off certain functions
 

in an executable program.
 

For the analyst who has to solve problems that have no
 

ready-made solution in USOC but which are near to the stan­

dard capabilities of the system, there exists the feature of
 

ad-hoc adaptability of the software. Starting with the iden­

tification of a functional module which would represent the
 

solution to his problem, he will copy the module (in source
 

code) which is closest to his requirement, to his own library
 

file. Then he will modify the module and compile it. He will
 

prepare a sequence of job-control images which specify the
 

composition of the executable program. This is done by exe­

cuting the preprocessor. Within the generated control images
 

that name the library modules to be included, be then replaces
 

the names of the standard modules by the names of his own
 

modules. Then he executes the subroutine linkage program.
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If additional or non-standard input data are required, he also
 

has to modify the generated input data file. No other modifi­

cations are required.
 

For USOC , the requirement of flexibility has first 
priority. "Foolproofness" can be achieved only with users 

that communicate exclusively through the preprocessor. 

Both systems include the feature of being extended con­
tinuously by addition of new capabilities. FDS is extended
 

by an addition to the library of processors, with updates
 

made to the executive at various places. USOC allows an ad­

dition to the library of modules and a corresponding update
 

to the preprocessor. Compatibility problems are present in
 

both systems.
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7.0 TRANSPORTABILITY CONSIDERATIONS
 

System transportability means a measure of the readiness
 
of the system to be transferred from one computer to another
 

computer of different make. There are two aspects of trans­
portability, one concerns the user's point of view, the other
 

concerns the system programmer's view.
 

7.1 FDS Transportability
 

The FDS user communicates with the system in a FDS­

unique language. The link to the host operating system is
 
provided by the FDS executive. Therefore, transportability
 
from the user's point of view is only a question how far the
 
FDS language can be implemented on the new computer,. Since
 
the processors are wrrtten in standard-FORTRAN, they should
 

be easily transportable, unless the word length-is reduced.
 

If all features can be fully implemented on the different
 
structure of the new computer system, then the transportabil­

ity from the user's point of view is perfect.
 

The FDS system programmer is in a much worse situation
 

since the implementation of many of the executive functions
 
are strongly machine dependent. This is mainly due to the
 
fact that almost all makes of computers use different modes
 

for storing alphanumerical information. Also, a portion of
 
the executive is programmed in assembler language, which is
 
extremely machine dependent. The structures of the executive
 
programs could stay nearly unchanged, but the detailed coding
 

would need considerable modification. The subroutines in the
 
executive of FDS-i have therefore been recorded in 
a struc­
ture describing program design language.
 

7;2 USOC Transportability
 

For USOC the situation is quite different. Since the
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module library and the preprocessor is coded in FORTRAN,
 

the USOC-unique parts of the system can be transported easily.
 

Some input/output details of the preprocessor would possibly
 

appear slightly different to the user. The user that wishes
 

to communicate with the system only through the preprocessor
 

would have to learn a small subset of job-control language in
 

order to be able to perform the basic steps of execution under
 

the new host operating system.
 

The user that wishes to take advantage of the feature of
 

adaptability, however, would need to have somewhat more know­

ledge of the new computer system. His ability should be on
 

the level of scientific or engineering programmer. This in­

cludes the knowledge of the terminal command language, the
 

job-control language and the.data management utility programs.
 

A particular requirement is the knowledge of the overlay
 

facility.
 

From the USOC system programmer's view, changes will
 

be necessary in the area of utilization of overlay features.
 

The library and the question/answer procedure of the prepro­

cessor could be left unchanged. There may be some small
 

changes required in FORTRAN programs. No changes in the
 

executive system would be necessary because no USOC execu­

tive exists. Also, no assembler language modules are present.
 

TIe part of the preprocessor dealing with the job-control lan­

guage image generation would have to be adapted to the new
 

language conventions.
 



8.0 OTHER CONSIDERATIONS
 

8.1 Storage Requirements
 

The numbers given on FDS are taken from reference 2
 

and are preliminary estimates. The numbers on USOC reflect
 

the actual experience. (One word assumed to have 36 bits.)
 

FDS 	 System X is estimated to need one million words
 

(4.5 M Bytes) and a executable code requirement of 40k words
 

(180k Bytes) per user. FDS System Y is estimated to be
 

four million words (18 M Bytes) of executable code.
 

The present USOC relocatable module library needs ap­

proximately 600k words (2.7 M Bytes). The corresponding
 

source module library requires approximately 670k words
 

(3 M Bytes). The core required per user varies between 25k
 

words (112k Bytes) and 34k words (153k Bytes). Common data
 

files, as e.g. JPL planetary ephemeris files are not includ­

ed in the numbers on the USOC library. These files are
 

shared by all users on-the ICL computer system.
 

8.2 	 Experiments on UNIVAC 1110
 

A few experiments on the UNIVAC 1110 computer under EXEC8
 

have been performed to evaluate the possibility of implement­

ing a USOC-like system structure. The first tests concerned
 

the correct building of the executable program by the MAP­

processor. An important 'problemwas how to handle the mul­

tiple appearance of the same entry-name for FORTRAN modules.
 

The MAP-processor does not operate in the same way as the
 

ICL 4/72 composer, but a convenient solution was found.
 

A second test was undertaken to check the correct allo­

cation af COMMON blocks by the MAP-processor. In this case,
 

the MAP-processor coincided with the ICL composer.
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A third group of experiments concerned the automatic
 

creation of job-control images and their submittal to the ex­

ecutive system. This is a key part of the preprocessor. Some
 

inconveniences were identified (e.g. conversion from files to
 

elements or vice versa), but no basic problems appeared.
 



9.0 UNIQUE FEATURES OF EACH SYSTEM
 

The purpose of this section is to identify, in a summa­

rized form, the main unique features of each system. Features
 

which are common to both systems are not listed. Listing a
 

certain feature means that it is not present in the other sys­

tem, or is present in a considerably reduced form. Some of
 

the features would be contradictory to the requirements or to
 

the structure of the other system. Also, some are simply not
 

implemented but could be implemented in the other system.
 

Some of the features to be discussed here are irrelevant to
 

the other system.
 

9.1 	Unique Features of FDS
 

- The concept of using self-contained processors allows
 

for a stage-by-stage building up of the whole required
 

mission design data base. Also, the analysis of indi­

vidual phases is facilitated by this concept.
 

Input/output data of processors are separated from the
 

processors in the data base established by interface
 

tables and data elements. Parts of the data base can
 

beaccessed independently of the processors.
 

Various modes of automation of the overall execution
 

exist (interactive, semi-automatic, automatic and
 

batch mode).
 

The system allows to have the man in the loop at execu­

tioA time to take some data-dependent decisions.
 

The system supports operation by personnel on the skill
 

level of technician. This is achieved by providing:
 

* 	 machine-independent FDS-unique conversation scheme.
 

This could be termed a type of high-level conversa­

tion and programming language.
 

prompting of the user for some classes of errors
 

and for missing data.
 

0 
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The scope of application processors in the planned final
 

version provides end-to-end flight design capabilities,
 

from launch to reentry, within a set of standardized
 

functions.
 

The standardization of processors and data structures is
 

intended to provide maximum efficiency for the design of
 

routine missions.
 

Flexibility of the system is achieved by providing a
 

large number of user-controllable parameters, in order
 

to cope with the variability of the flight design prob­

lems, without recoding the processors.
 

The system provides an interface to a semi-automated
 

documentation system (Daconics) in order to allow the
 

error-free and quick insertion of flight design results
 

into standardized documents.
 

9.2 Unique Features of USOC
 

- Particular application programs are generated automat­

ically or manually from a library of functional modules.
 

A relative hierarchy of functional modules exists in the
 

sense that a functional module may be built up from func­

tional modules of a lower level, etc.
 

The problem-dependent part of the data base is organized
 

in a modular way. It is established automatically by
 

the library modules by means of incorporated COMMON
 

blocks.
 

The automatic generation of a specific application.pro­

gram is made possible by the interactive preprocessor.
 

The conversation of the user with the preprocessor takes
 

place in terms of problem related questions/answers, not
 

in terms of modules or processors.
 

The interface of phases is established automatically;
 

no user actions are necessary.
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All levels of accuracy/execution speed are available
 

within the same framework.
 

The system is designed to allow the solution of complex
 

problems which need the interaction of phases. Feedback
 

of arbitrary data produced in one phase into an earlier
 

phase is possible. This feature is accomplished by ex­

ecuting a sequence of phases in a cyclic and iterative
 

manner. (This will usually need the problem specific
 

adaption of some modules).
 

Adaptability to new, unforeseen and unique problems has
 

high priority. The user can-easily insert his own ver­

sions of any module into the generated program.
 

Maximum advantage is taken of the available host com­

puter operating system. No explicit executive program
 

is present in USOC
 

Although a single program is generated for each appli­

cation, almost no additional storage is required for
 

complex multi-phase applications. The code for the dif­

ferent phases is never simultaneously in core.
 

Loading only the modules (code and data) actually needed
 

for the particular application of the phases allows the
 

minimization of overall memory storage requirements.
 

Output data can be stored on files and reused by another
 

program that is generated in a different manner, or even
 

by other software.
 

The program library allows generation of high level
 

functional units which act as processors for special­

ized mission planning tasks.
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10.0 CONCLUSIONS
 

Although there exists some overlapping of the scope of 

applications of USOC and FDS , the structures of these 

two systems are very different, according to their different
 

basic requirements. Their requirements are in fact, incom­

patible. While the FDS is designed to meet the requirements
 

of a standardized production tool, USOC is designed for
 

rapid generation of particular application programs. The main
 

emphasis in USOC is put on the adaptability to new types of
 

missions.
 

A software system having a USOC-like structure, adapted 

to the specific needs of MPAD , would be appropriate to 

support planning tasks in the area of unique STS missions. 

There appears to be a need for such an additional system 

within MPAD 
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