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Introduction:
 

This report describes some tests performed to prove the critical
 

elements of the triaxial digital fluxgate magnetometer design described
 

in the interim report by McLeod, 1976 (reference 1).
 

The performance of the unittested was outstanding. The tempera­

ture stability of gain and zero offset were better than for any other
 

fluxgate magnetometer of which the writer is aware. A major reason
 

for this excellent performance is the use of an autocalibration
 

feature (or "chopper stabilization").
 

A novel method for improving the linearity of the analog to
 

digital converter portion of the instrument proved successful. This
 

feature is described in detail in the interim report (reference 1).
 

It involves adding a sawtooth waveform to the signal being measured
 

before the A/D conversion, and averaging the digital readings over
 

one cycle of the sawtooth. It is intended to reduce "bit error"
 

nonlinearities present in the A/D converter which could be expected
 

to be as much as 16 gamma if not reduced. No such nonlinearities
 

were detected in the output of the instrument which included
 

the feature designed to reduce these nonlinearities. However,
 

a small scale nonlinearity of + 2 gamma with a 64 gamma repetition
 

rate was observed in the unit tested. A design improvement intended
 

to eliminate this small scale nonlinearity is described in the body
 

of this report.
 

The analog magnetometer worked well. The use of a chopper stabilized
 

op amp to supply feedback current to the sensor proved successful. The
 

use of a separate reference ground brought out from the chopper op amp to the
 

multiplexer proved beneficial. This feature was intended to reduce problems
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with ground loops. Ifthe analog ground on the breadboard containing the chopper
 

op amp were used in place of the reference ground; a zero offset error of approxi­

mately 40 gamma would have been introduced.
 

A number of problems were isolated when the unit was first tested, and
 

circuit modifications were made to solve these problems. The problems and the
 

circuit modifications are described in the body of this report. Time limita­

tions precluded making the modification to eliminate the small scale non­

linearity discussed previously.
 

The unit tested meets most of the very stringent Magsat specifications;
 

however, noise was greater than specified. The writer believes that the modifi­

cation to eliminate the small scale nonlinearity would reduce this noise appreciably.
 

This modification and tests to verify its efficacy are highly recommended.
 

The interim report (reference 1) should be consulted for a detailed
 

description of the operation of the instrument and calculations of the performance
 

parameters that the instrument could be expected to meet. The writer believes
 

that with the recommended improvement the instrument would meet these calcu­

lated performance parameters.
 

Description of Test Program:
 

The test program consisted of the following steps:
 

1. Design of digital interface circuitry so that the magnetometer can be
 

controlled and the digital outputs processed by a Hewlett Packard HP21MX mini­

computer system. A microprocessor would be used in place of the minicomputer in
 

a completed design.
 

2. Completion of detailed design and parts layout of remaining circuitry.
 

3. Construction of breadboard prototype.
 

4. Debugging of prototype. Correction of wiring errors and omissions.
 

5. Programming minicomputer to operate the magnetometer.
 

6. Stability, offset, crosstalk, linearity, and temperature sensitivity
 

measurements.
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7. Identification of problems and tests to isolate source of problems.
 

Modifications of circuits to reduce the problems where possible.
 

8. Repetition of tests on modified circuitry.
 

9. Preparation of report with recommendations for improvements.
 

The magnetometer system design and some of the detailed circuitry used are
 

given inthe interim report by McLeod, 1976. The single axis magnetometer tested
 

consisted of four individual breadboard circuits which were plugged into an
 

interface connector box. Also connected to the interface box were the sensor
 

cable and a cable from the minicomputer together with power supply connections.
 

The four breadboard circuits were:
 

1. Drive circuit.
 

2. Second harmonic amplifier.
 

3. Output board, consisting of integrator lowpass filter, and current
 

feedback amplifier.
 

4. Digital board, consisting of a multiplexer, A/D converter and associated
 

parts, and the digital circuits required to interface with the minicdmputer.
 

The first two breadboards were modified versions of boards used in the
 

construction of other UCLA magnetometers. A schematic diagram for the third
 

board (the output board) is given inAppendix A, while a schematic diagram for the
 

digital board is given inAppendix B.
 

Summary of Test Results:
 

Several problems were isolated and the circuits modified from those given-in
 

the interim report as discussed below:
 

I. Itwas found that in addition to the second harmonic signal proportional
 

to the magnetic field component along the sensor magnetic axis present at the­
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sensor sense winding, there was also present a second harmonic component 900 out
 

of phase with this signal and proportional to the magnetic field component in a
 

direction normal to the magnetic axis and roughly in the plane of the ring core.
 

This second component was approximately one tenth of one percent of the first
 

component for the same size field component. In order that this second component,
 

which was not reduced nearly to zero at the second harmonic amplifier output like
 

the first component by the feedback, not cause "clipping" in the second harmonic
 

amplifier, itwas thought to be desirable to reduce the gain of this amplifier by
 

a factor of ten relative to the value originally chosen. This was accomplished
 

by changing the one megohm resistors associated with the integrator ano,shdwn in
 

Figure 5 of the interim report to lOOK, and choosing the feedback resistors shown
 

in Figure 4 of that report as "to be selected" to have the value 340K. This
 

change would result inan increase of the maximum slew rate to one million gamma
 

per second, and an increase.in the -offset'and offset drift due to the integrator
 

by a factor of ten. Since the resulting offset drift would still be only ten
 

percent of that due to the rest of the instrument, the instrument performance
 

would not be noticably impaired by this change.
 

Itshould be noted that the quadrature component mentioned would not be
 

present ifthe actual sensor had the perfect symmetry of the design. Therefore,
 

the size of this quadrature component can be expected to vary markedly from one
 

sensor to another.
 

2. Itwas found that digital signals were present on the reference analog
 

ground line shown in Figure 6 of the interim report and interfered with the
 

operation of the-chopper feedback amplifier, resulting in a field offset of
 

approximately fifteen gamma due to this effect. This offset was substantially
 

eliminated by connecting a 0.75 pF capacitor between the positive op amp input and
 

analog ground (capacitor C19 shown in Appendix A).
 

http:increase.in


3. Itwas found that a signal at the fundamental frequency and its harmonics
 

was present across the feedback winding. (Asimilar signal is present across the
 

sense winding). This signal interacted with-the chopper feedback amplifier in a
 

nonlinear fashion to produce second harmonic signal, which was applied to the
 

feedback winding, and which pr6duced an offset of about fifteen gamma. This
 

offset was reduced below 0.01 gamma by (a)inserting a resistor (R16 shown in
 

Appendix A) in series with capacitor C12 to.increase the input impedance to the
 

chopper op amp at the second harmonic frequency and thus reduce the amount of
 

second harmonic current applied to the feedback winding, and by (b)using a more
 

effective filter (shown in Appendix A) to filter second harmonic from the feedback
 

winding.
 

4. A nonlinearity was observed inthe composite A/D converter. Itwas found
 

that when a voltage corresponding to 40,000 gamma was applied to the multiplexer
 

input in place of the magnetometer signal, the digital output magnitude changed
 

by an amount corresponding to 35 gamma when the polarity of the applied voltage
 

was reversed. This nonlinearity was found to be due to a low (and nonlinear)
 

common mode rejection for the Burr Brown 3550K op amp used in the voltage follower.
 

This op amp and the one used in the adder were changed to Burr Brown 3506 J
 

op amps which have higher common mode rejection and a higher useful range of
 

common mode voltage. A lOOpF compensation capacitor was used with the voltage
 

follower op amp: This change reduced the previous 35 gamma difference in
 

readings when the input voltage polarity was reversed to less than one gamma.
 

Italso reduced the gain temperature sensitivity of the composite converter.
 

5. The D/A converter that is part of the composite A/D converter showed'a
 

malfunction. For a given digital input, the voltage out of the D/A converter
 

changed discontinuously by an amount corresponding to over 300 gamma at a
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temperature of slightly over 450C. The exact temperature at which the change
 

occurred varied during the course of the tests. Because of the use of auto-,
 

calibration or "chopper stabilization" for the complete converter, this change did
 

not adversely affect the performance of the composite converter. However, because
 

of this malfunction, some of the tests were not performed above 450C.
 

6. A small scale nonlinearity was observed in the composite A/D converter.
 

A linearity curve was made by plotting the converter digital output against the
 

magnetic field input, and a deviation from linearity curve was made by subtracting
 

the best straight line from the linearity curve. The deviation from linearity
 

curve showed a roughly sinusoidal variation of +2 gamma amplitude and 64 gamma
 

period. Sixty four gamma corresponds to one digital window of the component A/D
 

converter. This nonlinearity isapparently a second order effect. Ifthe component
 

A/D converter were perfectly linear, the 2S6 readings of the component A/D
 

converter that correspond to one cycle of the composite A/D converter would be
 

evenly distributed (with proper adjustment) throughout the digital window of the
 

converter, and no nonlinearity would result for the composite converter. A means
 

for eliminating this nonlinearity has been devised and isdiscussed in the following
 

section. The necessary changes to the converter were too extensive to make during
 

the time period covered by this report.
 

7. A crosstalk test was performed on the converter. The reference zener
 

diode was disconnected and a sinusoidal voltage of amplitude corresponding to
 

+64000 gamma and .001 Hz frequency was applied to the converter in place of the
 

reference voltage. The magnetometer was also disconnected and reference ground
 

was applied to the converter in its place. Thus Channel 1 of the converter was
 

connected to the +64000 gamma sinusoid while Channels 2 and 3 were connected to
 

reference ground. The difference inthe digital readings for Channels 2 and 3
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were converted to gamma. This difference varied from +0.32 gamma to -0.32 gamma.
 

The mechanism for the production of this crosstalk was not isolated.' This amount
 

of crosstalk is-small incomparison to the amount expected due to sensor
 

interaction.
 

Inthe following tables, results of some temperature tests are given.
 

The first three columns in the.tables are the digital outputs for channels
 

1, 2, and 3 of the domposite converter. Input for-channel.1 is the reference
 

voltage, for channel 2 the input is reference ground, while for channel
 

3, the input is the magnetometer output. Column 4 in the tables is the
 

difference between column 1 and column 2,while column 5 isthe difference
 

between column 3 and column 2, divided by column 4, and multiplied by a­

scale factor to convert the reading to gammas. Column 5 is thus the
 

magnetometer output expressed in gammas. Each of the readings is the average
 

of 256 readings from the composite converter, and each reading of the
 

composite converter is the averake of 256 readings of the component A/D
 

converter. Thus, each reading shown isthe average of 65, 536 readings
 

of the component A/D converter. Units for the first four columns are one
 

digital window of the component A/D converter, which corresponds to 64
 

gammas, approximately. The first table (table 1) is a zero offset temperature
 

test run on Feb. 25, 1977. All four breadboards and the interface box
 

were placed in a temperature test chamber for this test. The sensor, power
 

supply, and minicomputer were not inside the temperature test chamber. The
 

sensor was inside a mu-metal shield.
 

Table 1
 

Zero Offset Temperature Test
 

TEMP. CH. CH.2 CH.3 A FIELD 

300C 2776.266 2054.355 2054.376 721.911 1.33 
150C 
550C 

2776.323 
2781.344 

2054.390 
2060.246 

2054.420 
2060.299 

721.932 
721.099 

1.85 
3.31 

350C 2776.095 2054.153 2054.186 721.943 2.06 
45°C 2775.983 2054.032 2054.056 721.951 1.49 
500C 2775.906 2053.931 2053.960 721.976 1.84 
-5°C 2776.639 2054.651 2054.682 721.989 1.92 

-25°C 2776.956 2054.938 2054.957 722.019 1.20 
15C 
250C 

2776.356 
2776.161 

2054.432 
2054.224 

2054.469 
2054.245 

721.924 
721.937 

2.30 
1.34 
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The next table (table 2) isa zero offset temperature test for the
 

converter portion of the magnetometer only. Itwas run on March 1, 1977.
 

The magnetometer output was disconnected from the converter input (ch 3) and
 

channel 3 was connectedto reference ground, the same as channel 2. The
 

converter and interface box were inside the temperature test chamber.
 

Table 2 

Zero Offset Temperature Test - Converter Only 

TEMP. CH.I CH.2 CH.3 A FIELD 

.150C 2776.281 2054.340 2054.353 721.941 0.82 
55°C 2781.264 2060.124 2060.171 721.140 2.91 
45°C 
-250C 
150C 

2775.932 
2776.896 
2776.291 

2053.964 
2054.860 
2054.352 

2054.001 
2054.880 
2054.365 

721.969 
722.036 
721.940 

. 2.32 
1.24 
0.87 

Note the anomalous readings for channels 1, 2, and 3 at 550C for both
 

temperature tests. The source of these anomalous readings was isolated to
 

a malfunction in the D/A converter as discussed earlier. Since one unit for
 

these three channels corresponds to 64 gammas, the discontinuity corresponds
 

to over 300 gamma. However, due to the use of autocalibration (or "chopper
 

stabilization"), the final output, FIELD, only changes by about one gamma from
 

45% to 550C.
 

The offset variation from -250C to +45°C just about meets the stated
 

goals for the Nagsat magnetometer,.although it is considerably larger than the
 

calculated values given in the interim report. Most of the offset variation
 

appears to be due to the converter. Itwould be considerably larger if
 

autocalibration were not used. The writer believes that a major portion of
 

this offset variation is due to the same cause as the small scale nonlinearity
 

discussed earlier, and that the offset variation would be considerably
 

reduced by the changes recommended in the following section.
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The next tablei(table 3) is a full scale temperature test for the
 

entire magnetometer. The op amps used in the converter had been changed
 

from Burr Brown 3550 K to Burr Brown 3506 J since the preceding tests were
 

run. The entire magnetometer except for the sensor, power supply, and mini­

computer were placed in a temperature test chamber. The sensor was placed
 

-inside a mu-metal shield, and a field applied to the sensor by means of a
 

coil arrangement and a regulated power supply. The test was run on
 

March 19, 1977.
 

Table 3
 

Full Scale Temperature Test
 

TEMP CH.l CH.2 CH.3 A FIELD 

-25°C 2778.748 2056.106 3029.612 722.642 60352.21 
-5°C 2778.553 2055.861 3029.455 722.692 60353.48 
150C 2778.344 2055.676 3029.226 722.668 60352.82 
35-C 2783.429 2061.600 3033.882 721.829 60344.24 
550C 2783.158 2061.233 3033.512 721.924 60336.06 
750C 2782.988 2060.968 3033.212 722.020 60325.92 
150C 2783.542 2061.702 3033.878 721.839 60336.77 
-50C 2778.504 2055.808 3029.160 722.696 60338.15 

The malfunction of the D/A converter occurred at a lower temperature
 

than previously, and occurred at a lower temperature when the temperature
 

was being lowered than when itwas being increased. Because of the use of
 

autocalibration, this malfunction did not cause a serious error. From the
 

readings at -25oC and +75°C, one can compute an average temperature coeffi­

cient of 0.27 gamma/0 C. This is-about four times greater than calculated and
 

slightly exceeds the goal for the Magsat mission. Since there was some
 

hysteresis in the measurements, possibly due to drift of the field applied
 

to the sensor, the above figure isconservative. Ifone uses the readings
 

for 750C and -5°C, he computes 0.15 gamma/0 C, which is within the goal for
 

the Magsat mission.
 

The next table (table 4) is a full-scale temperature test for the
 

converter only. Itwas run on March 18, 1977, and Burr Brown 3506 J op amps
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were used in the converter, the same as for the test of table 3. 

Table 4 

Full Scale Temperature Test - Converter Only 

TEMP. CH.1 CH.2 CH.3 A FIELD 

-250C 2778.660 2055.926 3031.505 722.674 60478.05 
-50C 2778.413 2055.692 3031.316 722.721 60476.93 
150C 2778.237 2055.551 3031.167 722.686 60479.36 
35°C 2778.030 2055.298 3030.952 722.732 60477.89 
450C 2777.923 2055.097 3030.848 722.825 60476.07 
550C 2783.123 2061.202 3035.773 721.921 60478.62 
750C ,2783.018 2060.921 3035.661 722.096 60474.38 
-45°C 2778.472 2055.767 3031.393 722.705 60478.44 

Comparing table 3 and table 4, it is apparent that much of the
 

temperature sensitivity for full scale signals is due to the analog portion
 

of the magnetometer. This temperature -sensitivity is greater than can be
 

attributed to the Vishay Corporation feedback resistor used in the analog
 

magnetometer. The precise source of this temperature sensitivity has not been
 

isolated; possibly it may be due to variations in the shunt resistance of
 

capacitors used in the fi'lter preceding the-feedback winding of the sensor.
 

The next table (table 5) is a full scale temperature test for-the
 

converter only, the same as table 4. The data were taken on March 2, 1977
 

before the op amps in the converter were changed to Burr Brown type 3506 J to
 

reduce a nonlinearity. Burr Brown type 3550 K op amps were used.
 

Table 5
 

Full Scale Temperature Test - Converter Only
 

(Data taken before linearity was improved-see text)
 

TEMP. CH.I1 CH.2 CH.3 A FIELD 

450C 2776.049 2054.003 2976.079 722.046 57211.00 
-25°C 2777.024 2054.874 2977.273 722.149 57222.85 
450C 2775.967 2053.920 2975.977 722.047 57209.79 

Comparing table 5 with table 4, it is apparent that the data of table 4
 

show much less temperature sensitivity. This is due to the change of op amps
 

made to improve linearity.
 



A noise test was run on the magnetometer on Feb. 22, 1977. One hundred
 

and eight readings were obtained for channels 1, 2, and 3 at a rate of three
 

readings per channel per second. The rate was limited by the computer print­

out capability, not the magnetometer. There was one reading per channel for
 

each cycle of the composite converter, thus each reading was an average of
 

256 outputs from the component A/D converter. The RMS variation in the
 

readings for-each of the channels corresponded to 1.1 gamma, thus the RMS
 

variation in the computed field value would be about 1.5 gamma. The distri­

bution of the readings appeared to be Gaussian. The RMS variation could of
 

course be reduced by averaging a number of readings together.- This noise
 

level is greater than estimated in the interim report, The writer believes
 

that it might be reduced by the changes recommended in the following section.
 

Recommendation for Further Work:
 

Although the magnetometer tested appears to be a suitable magnetometer
 

for the Magsat mission, it did not meet the goals for this mission in All
 

respects, nor did it match the calculated and estimated performance parameters
 

given in the interim report. In this section an improvement in design is
 

outlined that the writer believes will accomplish the following objectives:
 

-"a) Greatly reduce the small scale nonlinearity described in the
 

previous section.
 

b) Reduce instrument noise.
 

c) Reduce temperature sensitivity of the converter.
 

A system diagram for-:the instrument is shown in figure 1, and the behavior of
 

the instrument is described in the interim report. The A/D converter shown
 

on the diagram is a successive approximation type. Two important features
 

may be noted on the diagram:
 

a) Autocalibration (or "chopper stabilization"). This is
 

accomplished by including a reference voltage and reference
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ground as inputs to the multiplexer. This feature, real
 

time autocalibration, is described by Hewlett-Packard Corp.
 

as being perhaps of greatest significance to most users of
 

their Model 3455 A digital voltmeter (reference 2).
 

b) A D/A converter and adder used to produce a composite
 

converter more linear than the component A/D converter. A
 

description of how this is accomplished is given in
 

reference 1.
 

It is proposed here that a cyclic A/D converter be substituted for the
 

successive approximation A/D converter shown in Figure 1. This cyclic
 

converter is shown in block diagram form in figure 2. Its principle of
 

operation is similar to that of the cyclic converter used inthe John Fluke
 

Manufacturing Co. Model 8500 A digital voltmeter described in-reference 3.
 

The resulting converter would thus contain the best features of instruments
 

manufactured by two of the most respected producers of digital voltmeters,
 

and would, in addition, contain a feature designed to improve linearity.
 

Referring to figure 2j an analog input from a sample and hold amplifier
 

is applied through a multipiexer to a successive approximation A/D converter.
 

At the end of an A/D conversion, the digital output of the AID converter sets
 

the digital input to a D/A converter by way of a storage register. The
 

difference between the D/A output'and the analog input is amplified and
 

measured by the A/D converter through the multiplexer. The storage register
 

holds the D/A converter input constant while the A/D converter ismaking its
 

measurement. The two successive outputs of the A/D converter constitute the
 

output of the cyclic converter. As a specific example, suppose that the D/A
 

converter and A/D converter are 12 bit converters, and that only the eight
 

most significant bits of the D/A converter are used. The differential amplifier
 

should then have a gain of 128. The digital output would then be the sum of
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a) the digital number formed by the eight most significant
 

bits of the first A/D reading followed by eleven zeros, and
 

b) the digital number formed by the twelve bits of the
 

second A/D reading. The cyclic converter in this example
 

would thus be a 19 bit converter.
 

Note that the most critical element of this cyclic converter is the
 

D/A converter, as it determines the accuracy of the eight most significant
 

bits. Because of the use of the storage register, the amount of "bit switching"
 

for the D/A converter is much less than for the A/D converter. For a constant
 

analog input, the bits of the D/A converter will not switch at all.
 

In addition.to the design improvement to the magnetometer discussed
 

above, it is recommended that further tests (e.g. long term stability,
 

linearity) be performed.
 

Conclusions:
 

The magnetometer tested performed well and appears to be suitable for the
 

Magsat mission, although not all the goals for this mission were met. The
 

improvement described inthe body of this report is highly recommended. With
 

this improvement, the writer believes that the calculated performance para­

meters of the interim report (reference 1)would be met, and that the instrument
 

would be deserving of the appellation: "World's greatest triaxial digital
 

fluxgate magnetometer."
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Appendix A
 

Output Board
 

A schematic diagram of the output board is shown in figure lA. Inputs
 

1 and 2 are connected to 100 K resistors in the demodulator, while outputs 1
 

and 2 are connected to the two ends.of the sensor feedback winding. Outputs
 

V0 and REF. GND. go to the multiplexer.
 

This isthe same circuitry given in the interim report, except that:
 

a) The resistors connected to IN 1 and IN 2 (not shown, they
 

are located on the second harmonic amplifier board) are 100 K
 

instead of 1 M.
 

b) The +15 V supplies to the 490 chopper op amp are decoupled.
 

c) Capacitor C 19 was added to filter digital signals present
 

on the reference ground and thus prevent these signals from
 

-interfering with the operation of the chopper op amp.
 

d) A more effective filter (C16, C 20, C 21, R 3, R 15, R 17,
 

R 18) was used between the sensor feedback winding and the chopper
 

op amp. This filter reduces a signal present on the feedback
 

winding at the fundamental frequency and its harmonics which
 

interacts with the chopper amplifier and produces a signal at
 

the second harmonic frequency. This signal at the second
 

harmonic frequency is applied to the feedback winding and
 

produces offset in the magnetometer output. This second
 

harmonic signa] is also reduced by the filter.
 

e) A resistor R 16 is added to increase the source impedance
 

seen by the chopper op amp at the second harmonic frequency.
 

This reduces the amount of second harmonic produced by the
 

chopper op amp by the mechanism-described in (d) above.
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Critical elements inthis circuit are:
 

a) The feedback resistor R 10. This is a resistor manu­

factured by Vishay Corp.
 

b) Integrating capacitors C 1 and C 2. Shunt resistance
 

in these capacitors would reduce the ratio of open to closed
 

loop gain for the magnetometer. These capacitors are manu­

factured by Component Research Crop.
 

c) Capacitors C 11 and C 12. These capacitors shunt the
 

critical feedback resistor-R 10, thus they should have high
 

shunt resistance. Units manufactured by Component Research
 

were used here.
 

d) Capacitors C 16 and C 20. Since they shunt the feedback
 

coil, they should have high shunt resistance. Polycarbonate
 

capacitors were used here, as sufficient time was not available
 

to obtain Component Research Corp. capacitors. Possibly the
 

capacitors.used may have contributed to the temperature
 

sensitivity of the magnetometer.
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Appendix B
 

Digital Board
 

A schematic diagram of the digital board is shown in figure IB. It
 

contains the analog to digital conversion portion of the magnetometer as
 

well as the gating and control circuitry necessary to interface with the
 

Hewlett Packard HP21MX minicomputer. This circuitry isthe same as described
 

in the interim report with the exceptions that:
 

a) Burr Brown type 3506 J op amps were used inthe voltage
 

follower and adder inplace of Burr Brown type 3550 K. This
 

change was made to improve linearity and temperature
 

sensitivity.
 

b) A voltage output D/A converter was used instead of a
 

current output converter, thus a separate op amp was not
 

needed for use with the D/A converter.
 

c) Gating and control circuitry for interface with the
 

minicomputer has been added.
 

Some of the components are not shown on this diagram, such as the
 

resistors needed to convert the 4013 flip-flops to one shots, and the resistor
 

and capacitor used to set the frequency of the 4047 multivibrator. Power
 

supply and ground connections are not shown, neither are connections between
 

different pins of the same component.
 

The unit has two analog inputs from the analog magnetometer, the
 

magnetometer output Vo and reference ground. The other 5 analog inputs are
 

not used.
 

Inputs from the computer are:
 

a) Device command (DC). This signal must be sent by the
 

computer before-the computer is able to read digital data.
 

b) Four bits of data divided into two parts: 3 bits (M)
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elect the multiplexer channel and 1 bit (R)that serves as a
 

reset pulse.
 

Outputs to the computer are:
 

a) Device flag (DF). After the computer sends a signal to the
 

digital board, a device flag signal must be received by the
 

computer before it can send another signal. Ifthe signal
 

previously sent by the computer was a read data signal (DC),
 

then the computer.reads the data on receipt of the device flag
 

(DF) signal.
 

b) 12 bits of digital data from the A/D converter.-


A cycle of the conversion starts by the computer sending two identical
 

commands to set the MPX using 3 data out bits. The reset pulse R is normally
 

low, it goes high with the first command and low with the second. The reset
 

pulse sets the down counter U 23 and U 24 to all l's, sets the flip-flop
 

U 21-2, and the first reset pulsecauses a device flag pulse to be sent back
 

to the computer. The second reset pulse causes the converter to convert
 

and send a DF pulse to the computer at the end of the conversion. Thus the
 

computer receives DF pulses with each of the two reset commands, which are
 

required since the computer sends out DC pulses with each of these commands.
 

These two DC pulses do not reset the U 21-2 flip flop, since the flip flop
 

is being set at the same time by the reset pulses. This ismechanized by
 

the use of one shots U 12-1, U 12-2, and U 21-1. The pulses from the first
 

two one shots.overlap the pulse from the third.
 

After a few milliseconds the computer sends a DC pulse which resets
 

flip flop U 21-2 that startsi the astable multivibrator U 25. This causes
 

the S/H to hold and the A/D to convert, a status signal S from the A/D keeps
 

the S/H inhold until the end of conversion or the negative portion of the
 

multivibrator cycle, whichever comes later. At this time the one shot U 17-2
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is triggered and it sends a DF pulse to the computer signalling it to read
 

the A/D output. This is the first A/D output used by the computer. When the
 

multivibrator signal goes negative, it steps the counter down one count.
 

When the computer receives the OF pulse and after reading the A/D output, it
 

immediately (within a few microseconds) sends a DC signal and is prepared
 

to read the next A/D output. This will happen after the multivibrator goes
 

positive to initiate another A/D conversion. After the computer has read 256
 

A/D outputs, the cycle is complete and the computer will send no more DC 
 -

pulses. The MSB of the downcounter changes at this point, which sets the flip
 

flop U 21-2 and stops the multivibrator. The down counter will be set to all
 

l's at this point.
 

Next the computer sends a reset pulse and switches the MPX to another
 

channel. The computer switches the MPX to REF VOLTAGE, REF. GROUND, and
 

MAGNETOMETER OUTPUT in succession, accumulates 256 readings from each channel,
 

and then adds the 256 readings for each channel to produce a digital output
 

for the channel.
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A Proposed
 

Triaxial Digital Fluxgate Magnetometer for
 

NASA Applications Explorer Mission
 

A Design Study
 

1. Introduction:
 

This report describes a-triaxial digital fluxgate-magnetometer suitable
 

for use on the NASA Applications Explorer Mission (AEM) spacecraft, which
 

is known as Mag-Sat. The ultimate in performance is desirable for this
 

mission.
 

Inorder to carry out this design study and make calculations of the
 

relevant performance parameters, itwas necessary to explore the limitations
 

of presently existing space magnetometers and to consider how these might
 

be modified to achieve the goals of the proposed mission. No presently
 

existing space magnetometer was found capable of meeting these goals. It
 

was.found to be possible to make some modifications to previous magnetometers
 

developedat UCLA for use on the ISEE and Pioneer Venus missions and achieve
 

quite dramatic improvement in some of the basic performance parameters,
 

particularly linearity and zero offset and changes in these parameters with
 

time and temperature.
 

This report describes a triaxial digital fluxgate magnetometer believed
 

to be capable of meeting the goals of the proposed mission, at least to the
 

extent that the performance parameters are known from the study and analysis
 

carried out thus far. Specifications of the performance parameters that the
 

magnetometer could be expected to meet are given-in section 3.8. These
 

specifications are given in such a way as to show the effects that the
 

various elements of the magnetometer have on overall instrument performance.
 

They are a guide to expected performance and are not intended as specifi­

cations to a manufacturer.
 



It isworth mentioning that the specifications of many of the performance
 

parameters are much better than required by the goals of the-proposed mission.
 

2. Features of the Proposed System:
 

The basic system block diagram is shown in Figure 1. The magnetometer
 

contains a number of features inorder to achieve high accuracy and
 

excellent performance. They are:
 

(1) Signals from three analog fluxgate magnetometers measuring magnetic
 

field components along three orthogonal axes are applied to a.multiplexer
 

and then to an analog-to-digital converter. Analog ground and a reference
 

voltage are also applied to the multiplexer. This feature allows gain and
 

offset corrections to be made inthe digital outputs by a microprocessor.
 

The A/D converter istherefore "chopper stabilized," which reduces gain and
 

offset variations and low frequency noise. Thus a highly stable A/D converter
 

isnot required.
 

(2) A novel A/D converter is used which provides high linearity and
 

resolution (19 bits). This converter is described in Appendix A.
 

(3) Offset errors and noise due to operational amplifiers are nearly
 

el-iminated.
 

(4) The system isnearly independent of all resistors and other
 

passive components except for a single feedback resistor in each of the
 

three analog fluxgates. These three resistors are ultra ultra precision
 

resistors having very low time and temperature drifts.
 

(5) An ultra-ultra precision zener diode is used as a reference
 

voltage. This precision diode has very low time and temperature drift.
 

(6) A digital filter is included. This is superior to analog filters,­

since the transfer function is independent of components and the corner
 

frequency can easily be varied.
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(7) Fluxgaze sensors developed by NOL are used. These sensors have
 

good linearity because a special effort has been made inthe design of
 

the feedback coils to produce a uniform feedback magnetic field.
 

(8) An electrostatic shield is incorporated inthe sensor-between
 

primary and secondary windings-to reduce noise and offset.
 

(9) Current to the sensor feedback coils is provided through a
 

chopper stabilized amplifier. This procedure nearly eliminates effects of
 

coil resistance, contact resistance in connectors, resistance of connecting
 

cable, thermoelectric e.m.f.'s infeedback path.
 

(10) The analog magnetometers and analog-to-digital conversion are
 

functionally separate. This has advantages in development, manufacture, and
 

testing.
 

(11) A maximum slew rate of 100,000 gamma/sec is achieved. It could be
 

increased by a factor of nearly 100, if necessary, with some decrease in
 

magnetometer zero offset stability.
 

3. System Description (includingcalculations)
 

3.1 Overall System
 

The overall system block diagram shown in Figure 1 is the same as for
 

previous magnetometers developed at UCLA for use on the ISEE and Pioneer
 

Venus missions, with the exception that analog ground and a reference
 

voltage are supplied as signal inputs to the multiplexer in addition to signals
 

from the three analog fluxgates. The elements of the block.diagram, however.
 

are not the same. While maximum use has been made of previous designs, a
 

number of improvements and changes have been incorporated to improve
 

performance to the level required for this mission.- The analog-to-digital
 

converter shown is a composite featuring high linearity and resolution.
 

The gating and control circuitry (as proposed, but not yet designed),
 

includes a microprocessor which reduces the number of integrated circuit
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chips required and permits more data processing to be performed on the
 

spacecraft. Improvements have also been incorporated inthe analog fluxgate
 

magnetometers.
 

Referring to Figure 1, signals from the three analog fluxgates together
 

with a reference voltage and ground are applied to a multiplexer. The
 

multiplexer samples the three fluxgate signals in succession, then analog
 

ground, the three fluxgate signals again, and finally the reference voltage.
 

The three fluxgates are sampled at a 50 Hz rate, the other two voltages at a
 

25 Hz rate. Time duration of each sample is 5 milliseconds. Each of the
 

fluxgates contains a two section low pass filter with corner frequency at
 

25 Hz to reduce aliasing.
 

The detailed method of data processing by the microprocessor can
 

easily be modified to optimize performance as determined by experimental
 

methods. The simplest procedure is to subtract the digital reading correspond­

ing to the most recent measurement of analog ground from each of the three
 

digital readings corresponding to the measurement of the three components
 

of magnetic field and from the most recent measurement of the reference
 

voltage. Next, offset corrections are individually made to each of the three
 

field readings. The three zero-corrected field readings can then be divided bg
 

the zero-corrected reference voltage reading and multiplied by three indivi­

dual scale factors that convert the readings to convenient units and take
 

into account the slightly different sensitivities of the thiee analog
 

fluxgates. This procedure will-result inmeasurement of each of the three
 

field components, corrected for zero and gain drifts in the analog-to­

digital converter, at a 50 Hz rate. The microprocessor can also be used to
 

digitally filter these readings and supply digital samples of the three
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field components at a slower rate. A slight modification of the above
 

procedure would be to use digitally filtered versions of the ground and
 

reference voltages in the computations to correct for zero and gain
 

drifts. It is also possible to transmit digital signals corresponding to
 

the five measured quantities and do the data processing in a ground based
 

computer. Itwould thus be possible to eliminate the microprocessor,
 

however, more integrated circuit chips would be required, more telemetry
 

capacitywould be required, and testing of the -instrument would be­

less convenient. As previously mentioned, the gating and control
 

circuits have not yet been designed. Though their influence
 

on the quality of the instrument performance isminimal, a considerable
 

effort is required for the detailed design of these circuits. It is possible
 

that a microprocessor capable of carrying out the computations indicated
 

above at a 50 Hz rate may not be available.
 

3.2 Sensors
 

The sensors proposed are of the type produced by Naval Ordnance Laboratorie
 

(NOL) for use in the ISEE and Pioneer Venus magnetometers but with an electro­

static shield added to shield the sense winding from the drive winding.
 

Similar sensors are shown in the article by Gordon and Brown (1972).
 

The sensors are of the ring core type. Sensitivity of the sensors is
 

mainly determined by the feedback coil, it is 1 ma = 64,000 gamma. The
 

feedback winding for these sensors has been-especially designed to produce
 

a nearly uniform feedback field, this results in good linearity as-discussed
 

inAppendix B and also lessens dependence of sensitivity on temperature.
 

According to some tests conducted at UCLA, addition of an electrostatic
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shield isexpected to result in reduced noise, drift, and offset compared
 

to figures given below for the ISEE and Pioneer Venus sensors.
 

From data given in the article by Gordon and Brown (1972), the offset
 

temperature coefficient has a maximum value over the range -40% to +70'C
 

of about .003 gamma/°C. The short term offset stability is very good,
 

the offset changes less than + .05 gamma in 24 hours. Data on the long
 

term stability (weeks, months, or years) of offset, sensitivity, and
 

magnetic axis direction, or effects of temperature on sensitivity and
 

magnetic axis direction isnot presently available.
 

Noise and offset for these'sensors has been measured at UCLA, typical
 

values are:
 

(a) offset: .7 gamma
 

(b) noise: .1) white noise component: 10.4 gamma2/Hz to beyond 25 Hz
 

2) 1/f noise-component: 10 milligamma rms/decade
 

The two noise components are equal at about 0.5 Hz, below this frequency the
 

I/f component dominates.
 

3.3 Analog Fluxgate Magnetometer
 

Figure 2 shows-a system block diagram of a triaxial analog fluxgate 

magnetometer (the portion of the system preceding the multiplexer). Components 

for a single axis are shown. Portions of the sensor drive circuit are 

common to all three axes. Magnetometer sensitivity is lOv = 64,000 gamma. 

The sensor is a ring core type fluxgate with drive, sense and feedback
 

windings. The drive winding isdriven with a signal Dx of frequency fo 

= 7.25 KHz. The sense winding output isa signal at frequency 2fo = 14.5 KHz 

of amplitude proportional to the magnetic field component at the ring core 

in the direction of the magnetic axis-. This field component isequal to the 

difference between the ambient field component in the magnetic axis direction 
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and a feedback field component proportional to the current IFBX in the feedback
 

winding. The sense winding output is amplified and filtered by a passband
 

amplifier, then demodulated and integrated to produce a signal V,,. This
 

signal VSX is next applied to a combinationlow pass filter and V/I converter
 

which has two outputs, a current IFBX proportional to VSX and a voltage VX
 

which isa filtered version of VSX. Expressing the above relatiohs
 

mathematically, we have:
 

(1) El = A (Bx - H VSX) 

(2) VS
 
SX sT1 I
 

where E1 isthe voltage into the integrator, s is the Laplace transform
 

variable, and A, H, T1 are constants (independent of frequency). The
 

above equations are an idealization that assume an ideal integrator, neglect
 

the effects of the passband filter which would make A frequency dependent,
 

and treat the components of ambient field and feedback field inthe magnetic
 

axis direction as independent of the spatial variables. Eliminating El from
 

equations 	(1)and (2), we have:
 
BX 1
 

(3) VS-H 	 +sT
 

where T : TI/(AH). Note that the DC value of the transfer function depends
 

only on H,the feedback transfer function. It is independent of the forward
 

transfer function, A/(sTl).. This is a consequence of the use of an (ideal)
 

integrator in the forward path. The time constant T depends on the integrator
 

time constant Tl and also on A and H.
 

We can take account of the passband filters and- nonideal integrator by
 

replacing equations*(l) and (2)by:
 

(4) El = Ao F(s) [BX - H VSX
2
 sT2
) 


SX sTl I + sT2 1
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where F(s) is a transfer function dependent onthe passband filters transfer
 

function while the added term in (5) takes account of the fact that the
 

-integrator gain is finite at DC. -The main effect of F(s) is to introduce
 

phase shift, and we can approximate it by:
1 - sT3
(6) F(s)=-I + sT3
 

Using the expression (6)for F(s) and eliminating E1 from (4)and (5),
 

we find approximately:
 

(7) V + sT3
 

)SXH (1 +T) 1 s(T-T3) + sFT TB
 

where we have made the assumption that:­

(8) T2 >> T
 

and T Ti/(AoH). T/T2 is the ratio of closed loop.to open loop gain for the
 

magnetometer and should be made as small as possible for best gain stability.
 

-
It is shown in section 3.3.3 that this ratio isabout 108. Note that the
 

magnetometer will oscillate for T < T3.
 

The transfer function in (7) (neglecting F(s)) ismaximally-flat if T
 

is chosen so that:
 

(9) T= 4 T3
 

With this choice of T, which should give adequate margin of safety
 

against oscillation, the three decibel point is given by:
 

(10) f 1 El +65/2 = .0847/T3 

For the passband filters used, T3 isapproximately .25 x 10-3 secondt,
 

so the corner frequency given by (10) is 340 Hz.
 

The offset voltage (unnulled) associated with the integrator is less than one
 

millivolt. Ifwe arbitrarily decide to make this offset correspond to one percent of 

the offset field associated with the sensor, we must choose Ao = 1.0 mv/.007 

gamma. For a sensitivity of 10 V equal to 64,000 gamma, we must have 
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H = 6400 gamma/volt. For a maximally flat response, T = 1 millisecond. Then 

from the definition T =-TI/(A0 H), we-find Ti = 0.9 seconds. We must choose 

this integrator time constant to have a value of 0.9 seconds or larger if 

we wish the offset associated with the integrator to be less than one percent of 

the offset associated with the sensor.- Now there is a maximum Voltage for El, 

the integrator input, which is on the order of 14V. This means that the 

maximum rate of change for VSX is 14V/0.9 seconds, dr interms of-magnetic 

field, 100;000 gamma/second. We see that the magnetometer is slew rate 

limited due to use of an integrator in the forward path. Ifwe wished to
 

reduce the offset field associated with the integrator below one percent of the
 

sensor offset field, we would have to further limit the slew rate or use an
 

op amp with less offset voltage in the integrator.
 

The lowpass filters preceding the magnetometer output have the transfer
 

function:
 

(I + S-TL)2 S
(11)()VX + 1 )
V= 1 2 
 -

where TL isthe time constant associated with the lowpass filters. To reduce
 

aliasing when the output is sampled at a 50 Hz rate, TL is chosen so that
 

1/(21rTL) = 25 Hz. Combining (11) and (7), and noting that the time constant
 

associated with (7) is much smaller than that associated with (11), we have
 

approximately:
 

(1)X (I+
(12) VX H s TL)2 Bx 

The electronic circuits making up the elements shown in Figure 2 are
 

basically the same as those given inthe report by Power (1973), however, a
 

number of changes have been made to improve performance. The greatest changes
 

are in the elements labeled "L.P. Filter and V/I Converter" and
 

"Sensor Drive Circuit." All of the electronic circuits are discussed in
 

the following subsections of this report.
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3.3.1 Sensor Drive Circuit
 

The purpose of the sensor drive circuit isto produce three sine wave
 

voltages having very low second harmonic distortion for driving each of the
 

three sensors through a series resistor. The sensor drive winding-represents
 

a nonlinear impedance to the drive voltage. Voltage and current waveforms (idealized
 

are shown in Figure 7 and are derived as follows: Assume no external magnetic
 

field. Current through the drive winding produces,a field H within the ring
 

core. When the core is not inthe saturation region, dB/dH is very large and
 

the impedance of the drive winding ismuch larger than the series resistor
 

R (which includes the ohmic resistance of the winding as well as an external
 

resistance). Thus the back e.m.f. produced by the drive winding isnearly
 

equal to the drive voltage, and the current I is nearly zero. Thus we have
 

approximately:
 
dB
 

(13) V K d
 

where the proportionality constant K depends on the number of turns and area
 

of the drive winding.
 

For an applied voltage
 

(14) V = A sin w t
 

and for a core saturation field BSAT' we get from (13) and (14), by integration:
 

(15) 2BsAT - [I - cos t TI]
 

where we have assumed that the current required for saturation is negligible
 

so that the core leaves saturation at t = 0. T1 is the time at
 

which the core again enters saturation. We can make TT1 = r/2 by
 

properly choosing the amplitude A of the drive voltage to satisfy
 

(15). For the NOL sensors proposed, this requires a drive
 

voltage of about 10 V peak-to-peak. When the .core is in saturation, the
 

current is determined by the series resistor R and the drive voltage. For
 



a 100 ma peak drive current, R (including sensor resistance) should then be
 

50 ohms. Exact values of the drive voltage and series resistor will vary
 

somewhat from one-sensor to another.
 

Operation of the flux gate for these waveforms is as described by 

Scouten (1972). For no external field, there is no net flux through the sense 

winding for either portion of the cycle (saturation or non-saturation), since 

the fluxes due to each half of the core are equal and opposite. If an 

external field component along the magnetic axis is present, there will be a 

net flux through the sense winding during each portion of the cycle, but the 

magnitude of the flux will be different for the saturation portion than for 

the non-saturation portion. The flux waveform will thus be a square wave at 

frequency 2fo = 14.5 KHz and of amplitude proportional to the field component 

along the magnetic axis. The voltage detected at the sense winding would 

ideally then be proportional to the derivative of a square wave, however, 

due to.capacitance across the winding,the higher frequencies are attenuated. 

Moreover, due to departures from the ideal, the fundamental frequency 

fo= 7.25 KHz and its harmonics are also present. 

The sensor drive circuit is shown in Figure 3. A 29 KHz signal from
 

the gating and control circuits is applied to a dual flip-flop to produce an
 

output signal at frequency f0 = 7.25 KHz. This signal is applied to a pair
 

of transistors to produce a low output impedance square wave, 15 V peak-to­

peak. Signals from the flip-flops are also sent through buffer amplifiers
 

to produce a 2f0o = 14.5 KHz square wave used in the demodulator and an
 

f = 7.25 HKz square wave used for synchronization purposes in testing the
 

instrument. The square wave output from the transistor pair is filtered
 

to produce a nearly pure sine wave output. Tests at UCLA have shown that
 

this sine wave has low second harmonic distortion for which the relative
 

amplitude is only 15 parts per million of the fundamental, due primarily to
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nonlinearities in the inductors that are elements of the filter. The sine
 

wave output from the filter is used as an input signal to three drive ampli­

fiers, one for the sensor associated with each axis. The drive amplifiers
 

must be capable of supplying the current and voltage waveforms shown in
 

Figure 7 to the sensor drive windings and should not introduce additional
 

harmonic distortion to the sine wave. An op amp inconjunction with a pair
 

of push-pull driver transistors supplies the required current and voltage
 

to the sensor drive winding through a series resistor. Feedback from the
 

push-pull output to the op amp input is used to minimize harmonic distortion.
 

The feedback resistor is selected to obtain the current waveform shape shown
 

in Figure 7 (50-50 duty cycle), while the resistor in series with the output
 

is selected to obtain the desired peak current amplitude (100 ma).
 

Approximate value for the feedback resistor is 50K, for the series resistor
 

50 ohms. An op amp with a high slew rate capability is used to minimize
 

harmonic distortion.
 

Tests conducted at UCLA have shown that a second harmonic at the drive
 

amplifier output of relative amplitude as low as 300 parts per million of
 

the fundamental is sufficient to produce an offset at the magnetometer output
 

corresponding to one gamma when using NOL sensors of the type proposed.
 

(These sensors did not have an electrostatic shield, however.) It is,
 

therefore, important to use considerable care in the physical arrangement
 

of components to avoid coupling second harmonic signal present in other
 

portions of the instrument into the drive circuit, either through capacity coupling
 

or through the power supply. A large amount of second harmonic signal
 

(tens of milliamperes) flows in each collector of the drive transistors
 

because of the push-pull arrangement, thus filtering is required to prevent
 

this second harmonic signal from flowinginto the power supply or circuit
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ground. The components attached to the op amp inputs should be physically
 

located as close as possible to these inputs to minimize the capacity to other
 

portions of the circuit. It has been found in tests conducted at UCLA that,
 

if these precautions are taken, no measurable second harmonic distortion
 

is introduced by the drive circuit beyond the 15 parts per million due to
 

nonlinearities in the passive filter. If these precautions are not taken,
 

second harmonic distortion may easily be two orders of magnitude greater and
 

produce offsets of 5 gamma or more. For the circuit shown and with the
 

precautions indicated, maximum offset introduced is 0.05 gamma.
 

3.3.2 Second Harmonic Amplifier
 

The second harmonic passband amplifier is shown in Figure 4 and is identical­

to second harmonic amplifiers used with previous fluxgate magnetometers designed at 

UCLA and described in the report by Power (1973), except that gain must be 

adjusted to provide the proper value of magnetometer time constant T as discussed 

in section 3.3 Analog Fluxgate Magnetometer. The input to this amplifier is the 

signal present on the sense winding of the sensor, while the output is an 

amplified version of the second harmonic component of this signal. Filters are 

included to remove the undesired harmonics which would cause "clipping" if not 

filtered out. It has been found empirically that the filters shown, each of 

which has three pole pairs and a bandwidth of + 7.5% of the 14.5 KHz center 

frequency, are adequate for this purpose. Just as with the.drive amplifiers 

discussed in the previous section, it'is important to avoid coupling second 

harmonic signal present in other portions of the instrument into this circuit, 

especially into the'first'stages. Thus components connected to the op amp 

inputs should be located physically close to these inputs and the power 

supply should be adequately filtered. Tests conducted at UCLA have shown 
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that the noise introduced by this amplifier and measured at the magnetometer
 

output is less than 10% of the noise due to the sensor. This was determined
 

by inserting an attenuator between the sensor and second harmonic amplifier
 

and increasing the attenuation until the noise at the magnetometer output
 

increased by a factor of /2.
 

3.3.3 Demodulator and Integrator
 

The first stage of this circuit is an all pass network used to adjust
 

the phase of the input signal from the second harmonic amplifier so that at
 

the output of the all pass network the second harmonic signal is either in
 

phase or 1800 out of phase with the square wave demodulator drive signal.
 

(Whether or not there should be zero or 1800 phase shift depends upon which
 

direction the feedback current flows through the sensor feedback winding, and whethe
 

2f0 or 2f isused as the demodulator drive.) Because of the use of feedback
 

in the analog fluxgate and the presence of an integrator in the forward path,
 

when the sensor is in a steady (non time-varying) magnetic field, any in phase
 

second harmonic signal at the input to the demodulator is reduced nearly to
 

zero. Thus any quadrature component that may be present due, for example,
 

to second harmonic inthe sensor drive signal, will dominate at the
 

demodulator input. It is convenient inadjusting the phase of the magnetic field
 

dependent second harmonic at the demodulator input to apply a 60 Hz magnetic
 

field to the sensor which will produce a second harmonic component amplitude
 

modulated at 60 Hz at the demodulator input. The phase shift of the all
 

pass network can then be adjusted so that the modulated second harmonic is
 

either in phase or 1800 out of phase with the square wave demodulator drive
 

signal.
 

The transfer function for the all pass network is
 

=(16) H(s) -1+s TA
 
I + s TA
 



where TA is the RC time constant of the 2000 pF capacitor and-the resistor
 

to be selected to adjust phase shift. As the resistor varies from zero
 

to infinity, the phase shift varies from + 1800 to 00. For a resistance of 5K,
 

the phase shift is approximately 900.
 

Demodulation is accomplished by alternately switching an operational
 

amplifier from an inverting to a non-inverting mode using a double pole / double
 

throw Mosfetswitch. The operational amplifier is connected as a differential
 

input integrator with time constant T1 chosen to be one second in accordance
 

with the discussion in section 3.3 Analog Fluxgate Magnetometer.
 

The LM1O8A op amp has a maximum offset voltage of .5mv with a temperature
 

coefficient of 5 vV/°C and a maximum offset current of 0.2 nA with a temperature
 

coefficient of 2.5 pA/°C. For the IMsource impedance used, this gives a maximum
 

total offset voltage (including that due to the offset current) of 0.7 mv with
 

a maximum temperature coefficient of 7.5 pV/0 C. Drift with time is not specified,
 

a reasonable estimate based on figures for Analog Devices AD504J-op amp which
 

=
has similar characteristics would be 50 pV/year. For Al mv/.007 gamma
 

as discussed in section 3.3 Analog Fluxgate Magnetometer, this means that the
 

integrator can produce a maximum offset of 0.005 gamma with a temperature
 

coefficient of .00005 gamma/0 C and time drift of .0003 gamma/year.
 

Since the voltage gain of the LM1O8A is greater than 105, T2 isgreater than
 

T1 by the same factor so T2 is greater than 105 seconds, where T1 and T2 are
 

defined insection 3.3 Analog Fluxgate Magnetometer. Thus the ratio T/T
2
 

appearing inequation (7)is less than 10-8 and equation (8)is satisfied.
 

The ratio T/T2 isalso the ratio of closed loop to open loop gain for the
 

magnetometer. Note: To obtain the high ratio of T2/T1 indicated, capacitors
 

with high insulation resistance should be used. Component Research Co., Type
 

05TA105 is a lpF Teflon capacitor with a shunt resistance greater than 105
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megohms from 250C to 85%, decreasing at 125 0C to 104 megohms, appears suitable,
 

and is made to NASA quality control specifications.
 

The circuit shown here is identical to that shpwn in the -report by
 

Power (1973) except that one op amp preceding the integrator has been
 

eliminated and the integrator time constant is different. The circuit given
 

here produces less offset and introduces less second harmonic into the power
 

supply.
 

3.3.4 Lowpass Filter and Voltage/Current Converter
 

The lowpass filter and voltage/current converter is shown in Figure 6.
 

This circuit performs two functions: (a) It filters the analog magnetometer
 

output in order to reduce aliasing when this output is the input to a sampled
 

data system and provides a low output-impedance to this system (b) It provides
 

a feedback current, proportional to the input signal VSX, to the feedback
 

winding of the sensor.
 

The feedback current IFB flows into a virtual ground produced by the op amp
 

in the lower portion of the figure, i.e. the negative input terminal of this op
 

amp may be treated as ground initially for the purpose of calculating IFB and
 

V . The circuit shown in the upper portion of the figure is a two pole low
 

pass filter with transfer function given earlier in equation (11) which is
 

repeated here:,
 

(11) 	 vx - VSx
 
(1+ s TL)
 

This lowpass filter is identical to the one described in the report by
 

Power (1973) except that different component values are used. The current
 

IFB is the 	sum of the two currents I and 2, where 1, is the current flowing
 

from VSX through the series RC while 12 is the current flowing from Vx through
 

the parallel RC. We have, since RC = TL:
 

1V IL
(17) Il =1 
s TL f Vs/Rsx/
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(18) 12= (1+sTL) Vx/R
 

combining (11), (17), and (18), we get:
 

(19) IFB = Vsx/R 

The reason for this somewhat complex method of generating the feedback current
 

IFB is so that the op amp associated with the lowpass filter will be inside
 

the magnetometer feedback loop for DC signals. Because of the large DC gain
 

of the preceding integrator circuit, the offset voltage associated with the
 

lowpass filter op amp will then produce negligible offset at the magnetometer
 

output, as itwill be a factor of 105 less than the offset due to -the
 

integrator. If the magnetometer feedback loop were closed before the lowpass
 

filter, the offset error associated with the filter op amp could be as much as
 

0.5 mv which-would correspond to 3.2 gamma and the temperature coefficient of the
 

offset could be as much as .032 gamma/0 C.
 

The feedback winding of the sensor isconnected between the output and
 

negative input terminal of a chopper stabilized op-amp, the current IFB flows
 

into the junction between the feedback winding and negative op amp input,
 

and the positive input terminal of the op amp is connected to ground through
 

substantially the same impedance as the source impedance from which IFB flows.
 

Because the input impedance to this op amp is typically 100 M and the feedback
 

winding resistance about 100 ohms, while the op amp gain-is over 108 at DC
 

and over 106 at 25 Hz, the current through the feedback winding is substantially
 

equal to IFB' differing by only about one part in 1014 for DC (not including
 

offset current). If-an op amp were not used here, the feedback current would
 

be dependent on the feedback winding resistance, resistance of the connecting
 

cable, contact resistance in the connectors, thermal e;m.f.'s generated
 

at the connectors, and changes in these quantities with temperature and time.­
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The use of an op amp eliminates these sources of error, however, the op amp
 

introduces errors due to offset voltages and currents, changes in these quan­

tities with time and temperature, and input voltage and current noise. A
 

chopper stabilized op amp is used here because the use of a chopper
 

minimizes the sources of error mentioned. The unit chosen is Datel's
 

AM-490-2C which is the only monolithic chopper stabilized op amp that the
 

writer has found. It is packaged in a TO-99 package, hermetically sealed,
 

the same package used by many ordinary op amps. Ithas an offset voltage
 

of 20 pV with a temperature coefficient of 0.1 pV/°C, an offset current of 50 pA
 

with a temperature coefficient of 1 pA/0 C. Voltage noise is.less than
 

900 nV/VHz in-the frequency range of interest (below 25 Hz) while current noise is
 

8 pA rms from .01 to 10 Hz. Offset voltage stability is 5 pV/year. For the
 

1OK source resistance used, the offset current, current noise, and current
 

temperature drift are negligible compared to the corresponding quantities
 

associated with offset voltage. At the magnetometer output, these quantities
 

produce an offset of 0.13 gamma with a temperature coefficient of .0006 gamma/°C
 

and a drift of .03 gamma/year. The white noise is less than .36 x 10-4 gamma2/Hz,
 

about one-third the white noise power associated with the sensor. There is no
 

1/f noise component. Ifan ordinary op amp such as the LM1O8A used in the
 

lowpass filter were used here, initial offset could be 3.2 gamma with a
 

temperature coefficient as much as .03 gamma/°G and possible drift of 0.3
 

gamma/year.
 

Because currents of tens of milliamperes flow in the circuit ground for the
 

magnetometer different points that are all supposedly at ground potential will
 

be at slightly different potentials. To provide a definite ground
 

reference for the multiplexer, a ground reference isbrought out from each
 

of the three analog fluxgates, and these three references are all connected
 



19
 

to the ground input to the multiplexer. To understand the reason for
 

the 100 ohm resistor shown in Figure 6, consider the following.
 

Resistance of #18 wire isabout .064 ohms/ft., a current of 10 ma through one foot
 

of this wire would create a potential difference of 0.64 mv. If we take
 

this as a possible potential difference between the analog grounds inthe
 

different fluxgates, we see that the current through the reference output shown in
 

Figure 6 can not be greater than ten microamperes because of the 100 ohm resistor.
 

If the wire resistance between the reference analog ground output and the
 

multiplexer is .064 ohms-corresponding to one foot of #18 wire, then the
 

reference ground at the chopper positive input might differ from the reference
 

ground at the multiplexerrby .6pV, producing an offset error in the
 

magnetometer output of .004 gamma. Ifthe 100 ohm resistor were not used as
 

indicated, we might have 10 ma or more flowing in the connecting wire producing
 

an offset error of over 4 gamma, which could reasonably be expected to be
 

subject to fairly large-time and temperature variations.
 

Because of the high ratio of open loop to closed loop gain of the magnetometer
 

for DC (about 108), the only component'in the entire analog fluxgate magnetometer
 

apart from the sensor that has any significant influence on the magnetometer
 

sensitivity at very low frequencies is the resistor marked with an asterisk
 

in Figure 6. The resistor type selected for this critical application isthe
 

best that the writer has found, an ultra precision hermetic sealed metal film
 

resistor from the HP202 series manufactured by Vishay Corp. These resistors
 

have temperature coefficients less than lppm/°C and drifts of less than 5 ppm/year.
 

For full scale signals of 64,000 gamma, this is .06 gamma/°C and 0.3 gamma/year.
 

The capacitor shown in parallel with the sensor feedback winding isto be
 

chosen to resonate with the feedback winding at 1500 Hz and thus filter higher
 

frequencies from the winding. The resistor in series with the winding is chosen
 

to provide critical damping for this filter.
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No provision ismade for trimming the precision feedback resistor or for
 

providing an offset current to the chopper stabilized op amp for the purpose of
 

adjusting the magnetometer gain or nulling the offset (primarily due'to the
 

sensor). Itseems best to simply measure'these quantities during calibration
 

and correct for them inthe microprocessor (or in the ground data processing if­

a microprocessor isnot used).
 

Let us 	now consider what is accomplished by using a chopper stabilized
 

op amp to supply the feedback current to the sensor as compared to the more
 

obvious alternative of connecting the sensor between ground and the junction
 

point forl1 and 12. Advantages of using the chopper stabilized op amp are:
 

(a) Effects.of resistance of the cable to the sensor are eliminated,
 

which means that the cable can be changed without-affecting the calibration.
 

Cable resistance of only one ohm would cause an error of 6.4 gamma for a full
 

scale signal of 64,000 gamma. Similarly, problems with connector contact
 

resistance are'elimirfated.
 

(b) Ground loop problems are avoided which could produce offsets of a
 

few gamma as discussed earlier.
 

(c) Thermal e.m.f.'s at connectors which would be on the order of
 

10 pV/°C are avoided, which would correspond to .06 gamma/0C and could be
 

expected to be time varying. These e.m.f.'s should be.compared to the 20 pV
 

offset, 	.1VV/°C Tempco, and 5 pV/yr. drift for the op amp.
 

d) Effects of feedback coil resistance temperature coefficient are 
 -

eliminated. Coil resistance isabout 100 ohms compared to the 10K feedback 

resistor. Since copper wire has a tempco of 40 ppm/°C, the tempco for the 

series combination of lOK plus 100 ohms would be 0.4 ppm/0 C(temperature 

measured at the sensor)compared to the 1 ppm/°C (temperature at precision 

resistor) due to the precision resistor. 0.4 ppm/°C corresponds to .025 

gamma/°C for a full scale signal of 64,000 gamma.
 

http:Effects.of
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3.4 Reference Voltage
 

The voltage reference for the multiplexer is tentatively planned to be
 

a National Semiconductor LM 199 temperature stabilized "buried" zener.
 

This reference zener is described in an article by Dobkin (1976). To
 

supply a reference voltage to the multiplexer, the LM 199 is connected as
 

shown in Figure 8. Current through the zener is about 0.5 ma. Two
 

connections are made from this circuit to the multiplexer, a reference
 

voltage connection and an analog ground connection. It is important that
 

the analog ground connection to the multiplexer be brought out from a point
 

physically close to the anode of the zener in orderto avoid introducing
 

errors that could arise from current flow in the analog ground circuit of
 

the magnetometer as discussed in section 3.3.4.
 

Temperature stability for the LM 199 is typically only 0.3 ppm/°C with
 

long term stability of 5 to 20 ppm/l00 hours. Assuming a random walk
 

type drift, this corresponds to 15 to 60 ppm/year, or 1 to -4-gamma/year
 

for a full scale signal of 64,000 gamma. Long term stability is not impaired
 

if the unit is switched on and off.
 

The + 15 V supply for the magnetometer has not yet been chosen. If we
 

assume a temperature coefficient for this supply of 0.05%/°C, it-will change
 

the temperature coefficient of the reference zener by only 0.02 ppm/°C, ­

which is negliginle compared to the 0.3 ppm/°C of the zener alone. 

Noise for this zener is much-less than for an ordinary zener because of 

the buried junction. Broad band noise (10 Hz to 10 KHz) is 7pV rms, which 
4-01 or 25x1-8 2

corresponds to 50,x.10 microvolts2/Hz or 25 x 10 gamma /Hz for a full
 

scale signal of 64,000 gamma. Peak-to-peak noise over 10 minutes from
 

.01 to 10 Hz is 1.5VV, which is about 0.4 1V rms. If we assume this is 1/f
 

noise, it corresponds to about 0.1 V rms/decade or one milligamma rms/decade
 

for a full scale signal of 64,000 gammas compared to ten milligamma rms/decade
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for the sensor (without electrostatic shield).
 

Note: A number of firms, including National Semiconductor, Motorola, and
 

Analog Devices currently offer, or are expected to offer, buried zener
 

references. The choice of zener reference indicated above should be
 

considered tentative, it is planned to pursue this topic further in hopes of
 

obtaining improved long term stability compared to the value indicated
 

above.
 

3.5 Multiplexer
 

The multiplexer proposed is the Siliconix Type DG508A. It is planned
 

that the multiplexer will be followed by a Burr Brown Type 3550 K op amp
 

voltage follower whi'ch is considered as part of the composite A/D converter.
 

Bias current of the op amp (100 p A at 250C) is much smaller than the
 

maximum drain leakage of the multiplexer (20 nA at 25°C), both leakage currents
 

double every 100C. Flowing through the maximum 400 ohm multiplexer channel
 

"on" resistance, the multiplexer drain leakage could cause an offset of 8 VV 

or .06 gamma at 25% and 0.35 gamma at 500C. Typical leakage current isover 

a factor of 30 smaller, therefore it is proposed to select a multiplexer 

with typical leakage or less. Maximum offset will then be .002 gamma at 

25% and 0.01 gammaat 50C. Drift of leakage current with time isnot 

specified. We can make an estimate by noting that National Semiconductor 

LH0042 FET op amp has typical leakage of 1 pA and drift of 0.1 pA/week. 

Assuming a random walk type drift, itseems reasonable to estimate that the 

leakage current for the multiplexer might drift by its initial value in the 

course of a year. Thus we estimate the offset drift for the multiplexer 

as 0.002 gamma/year. No noise figures are given for the multiplexer. Again, 

we can make an estimate by noting that the noise current for the. LH0042 

is less than 0.1 pA rms from 10 Hz to 10 KHz compared to leakage current of ­

1 pA. Using the same proportionality factor for the multiplexer, noise in 



the band 10 Hz to 10-KHz would be 0.2 milligamma rms, which corresponds to
 

4 x 1012 gamma2/Hz. This compares tolO-4 gamma2/Hz for the sensor, thus
 

we conclude-multiplexer noise is negligible.
 

3.6 Analog to Digital Converter (composite)
 

The composite analog-to-digital converter proposed is described in
 

Appendix A. It achieves very high linearity and resolution (19 bits).
 

The elements proposed for the composite converter are Burr Brown model
 

ADC85 analog-to-digital converter, Burr Brown model DAC 85 digital to
 

analog converter, Burr Brown model 3550 K op amps, and Burr Brown model SHC85
 

sample and hold.
 

Because the composite analog to digital converter is effectively "chopper
 

stabilized,'" it does not contribute to gain or offset errors of the complete
 

digital magnetometer. Sufficient data is not available to reliably predict
 

noise referred to the input. We can make a rough estimate by noting that
 

Intech's A-856-16-analog to digital converter has about 25 microvolts rms
 

noise referred to the input. If this converter were used in the composite
 

converter which averages 256 individual measurements of the successive
 

approximation converter, the rms noise for the composite converter would be
 

-(25 pV/16) x 2 = 3 pV rms (the factor of two arises because the summing
 

amplifier in the composite converter has a gain of 1/2) spread over the
 

x 10-4 
frequency band 0-25 Hz. This is 0.36 microvolts2/Hz or .16 gamma2/Hz,
 

about 1/6 of the white noise power associated with the sensor. This ­

estimate could well.:be too low. Digitization noise for a 19 bit converter
 

with 10 V full scale range is approximately (]OV/2vy/(2/1O6) or about 6 pV
 

-4
rms. This corresponds to about .64 x 10 gamma2/Hz, a little less than
 

the white noise power associated with the sensor.
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The converter should not contribute to the 1/f noise spectrum of the
 

magnetometer because of the use of "chopper stabilization."
 

3.7 Gating and Control
 

The gating and control circuits have not been designed. These
 

circuits have very little influence on the performance specifications for
 

the magnetometer. Nevertheless, a considerable design and development effort
 

is required for the detailed design of these circuits, and their design
 

is not contemplated under the present study contract.
 

3.8 Specifications
 

The performance parameters calculated and estimated in the previous
 

sections are summarized inthis section. 

Noise, white, 0-25 Hz, milligamma rms 

* (a) Sensor (w/o shield) 50 

(b) Feedback chopper op amp 30 

(c) Multiplexer (est) .01 

d) A/D converter (est) 20 

(e) Digitization 40 

(f).Zener reference (full scale input) 2.5 

(g) Second harmonic amplifier 5-

TOTAL 75 

Noise, 1/f, mill igamma rms/decade 

(a) Sensor (w/o shield) 10 

(b) Zener reference (full scale input) 1 

Offset (initial, can be nulled to zero by microprocessor) gamma (25°C)
 

(a) Sensor (w/o shield) 
 0.7
 

(b) Integrator 0.007
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(c) Drive circuit 
 0.05
 

(d) Feedback chopper op amp 
 0.13
 

(e) Multiplexer (selected) 
 0.002
 

Offset Temperature Coefficient, milligamma/°C
 

(a) Sensor (w/o'shield) 3
 

(b) Integrator 0.05
 

(c) Feedback chopper op amp 0.6
 

(d) Multiplexer (selected)(doubles every 100C) 2 at 500C
 

Sensitivity Temperature Coefficient ppm 0C
 
Note: 1 ppm/°C = .06 gamma/°C for full scale input
 

(a) Sensor unknown
 

(b) Feedback resistor 1
 

(c) Zener reference 0.3
 

Offset Drift with Time milligamma/year
 

(a) Sensor unknown
 

(b) Integrator 0.3
 

(c) Feedback chopper op amp 30
 

(d) Multiplexer (est) 2
 

Sensitivity Drift with Time ppm/year 
Note: 1 ppm/year = .06 gamma/year for full scale input 

(a) Sensor unknown
 

Cb) Feedback resistor 5
 

(c) Zener reference (see discussion next section) 
 15
 

Nonlinearity (excluding sensor)(deviation from best straight line)
 

(a) Initial value +0.1 gamma
 

(b) Drift with Time 0.1 gamma/year
 

(c) Temperature coefficient .001 gamma/°C
 

Sensor Nonlinearity unknown
 

(Tests at UCLA have shown it to be better than +6 gamma,
 
however, this isthe limitation of the measurement,
 
not the sensor)
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Slew rate, maximum (see discussion next section) I00,000 gamma/sec 

Magnetic Axes Stabi-lity with Time and Temperature unknown 

3.9 Discussion 

From a performance point of view, the magnetometer is described-(for
 

DC and very low frequencies) by its sensitivity, zero offset, nonlinearity,
 

noise, and changes inthese quantities with time and temperature. An attempt
 

has been made to keep the errors associated with each of these quantities
 

individually as small as seemed reasonably practical, even though, for
 

example, the possible error due to sensitivity drift with time is about
 

thirty times greater than the possible error due to zero offset drift with
 

time. Also, it has been considered worthwhile to make sensitivity changes
 

that affect the axes individually much smaller than the sensitivity changes
 

that occur simultaneously for all axes, such as the sensitivity changes due
 

to changes in the zener reference voltage with time. The reasons for the
 

above approach are:
 

(a) When harmonic analysis (either intime or space) is performed on
 

the data, the different types of error produce different effects. Nonlin­

earities could be particularly bothersome, as they produce frequencies that
 

weren't present in the magnetic field.
 

(b) Schemes for in flight calibration, such as by the use of a scalar
 

magnetometer or by spinning the spacecraft, are simplified if some of the
 

types of errors mentioned are negligible, for example, if itcan be assumed
 

that only sensitivity is unknown.
 

For the most part, the performance parameters specified in the previous
 

section meet or exceed all of the goals stated in the study contract.
 

However, at present we do not have data for all of the important parameters,
 

in particular, some of the parameters associated with the sensor. The white
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noise isabout 50% greater than the goal of 0.1 gamma zero-to-peak in a 25 Hz
 

bandwidth. Possibly-the white noise may be even greater, as the value listed
 

for the A/D converter is only a rough estimate. Below about 0.1 Hz, the I/f
 

noise will dominate the white noise.
 

To obtain a sensitivity drift with time as low as that listed in the last
 

section may require that the reference be selected. The question of best
 

choice of zener reference is still being considered, other zener references
 

that appear to have better stability are available but they are noisier.
 

To obtain the values listed for multiplexer offset, offset tempco, and
 

offset drift requires that the multiplexer be selected to have leakage
 

currents as low as those listed as typical by the manufacturer, since the
 

maximum leakage currents are about 30 times greater than typical. Even
 

without selection of the multiplexer, the magnetometer would still meet the
 

goals listed in the study contract (not including the parameters not presently
 

known).
 

Because of the very small temperature coefficients associated with the
 

sensitivity, offset, and linearity of the electronics portion of the magneto­

meter (excluding sensor), no ovens are required for the electronics portion
 

of the instrument to meet the design goals over the temperature range -10C
 

to +50°C.
 

The maximum slew rate for the magnetometer should be greater than the
 

the maximum field derivative expected. The maximum slew rate listed could
 

easily be increased at the expense of increased offset time and temperature
 

drift due to the integrator, since both of these quantities are proportional
 

to the maximum slew rate. The specifications of the previous section show
 

that slew rate could be increased by a factor of nearly 100 before offset
 

drift due to the integrator would be comparable to the offset drift for the
 

entire instrument, which is itself very small. However, unless an increased
 

slew rate is needed, there seems to be little point in introducing additional
 

errors.
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An additional source of offset error is thermoelectric effects at junctions
 

of dissimilar metals, such as junctions of the leads of circuit components
 

with the wiring of the printed circuit board. Typical thermocouple voltages
 

are about 10 pV/°C. Siliconix states that for their multiplexer in a
 

thermally stable environment, typical error developed across the switch is
 

3 VV, while in free air with room drafts it might be as much as 7 to 10 PV.
 

This would correspond to an offset error of about 0.1 gamma. This is perhaps
 

a reasonable estimate of how much the offset is likely to change in going
 

from the atmosphere to the vacuum of space, and illustrates the-need for
 

minimizing thermal gradients inthe environment.
 

Finally, since the use of a scalar magnetometer is being considered
 

for inflight calibration of the vector magnetometer, it should be mentioned
 

.that the fluxgate magnetometer will cause the reading of the scalar
 

magnetometer to be inerror. as a measure of magnitude of the ambient field
 

that would be present inthe absence of the fluxgate magnetometer. This is
 

true whether or not the fluxgate magnetometer is "on", "off", or partially
 

"on" (such as providing a drive signal but disconnecting the'feedback coils).
 

The error can be expected to depend upon the distance between the two magneto­

meters and upon the angular orientation of the vector between the two instru­

ments inthe coordinate system defined by the fluxgate magnetic axes. This
 

problem has not been considered indetail, however, some qualitative considera­

tions are noted here. Let-us assume the fluxgate magnetometer is "on".
 

The total field vector at the scalar magnetometer is obtained by multiplying
 

the ambient field vector by a matrix. The elements of the matrix depend on
 

the location of the scalar magnetometer in the coordinate system defined
 

by the fluxyate axes. If a unit matrix is subtracted from this matrix, the
 

elements of the difference matrix can be expected in general to decrease with
 

increasing distance between the magnetometers as 1r, where r is the distance,
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and r is assumed large relative to the dimensions of the fluxgate feedback
 

windings. If one desires a field magnitude error of less than 1 ppm at the
 

scalar magnetometer, one would expect, then, that the separation between the
 

two magnetometers should be on the order of 100 times the dimensions of the
 

feedback windings, or about 15 feet. Let us consider whether there is a
 

best angular position for the scalar magnetometer in the fluxgate coordinate
 

system. Symmetry considerations lead one to consider the following possibilities:
 

(a) A long one of the axes
 

(b) Inthe plane of two axes along the line bisecting the angle
 

between the axes
 

(c) Along a line making equal angles with all three axes
 

For possibility (c), symmetry considerations lead us to conclude that
 

the relation between the field vector at the scalar magnetometer and the
 

field vector for the ambient field must be of the form:
 

Bxs a b -b
 

BYS b a b By
 

Bz b b a z
 

This neglects the fact that sensors of finite dimensions cannot be arranged 

in such a way that their axes of symmetry intersect at a point halfway along 

each-sensor. The field magnitude at the scalar magnetometer is related to 

the ambient field magnitude by 

2 2-~ 
ts " BS (a22b ) B *B. + 4 ab (BxBY +ByBz BzBx)+ 


Since'cross terms are involved in the above equation, it is not possible to
 

correct the scalar magnetometer reading to allow-for.the presence of the
 

fluxgate by simply multiplying by a correction factor. Similar conclusions
 

apply for possibilities (a)and (b)above.
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By using the readings of the fluxgate magnetometer to correct the readings
 

of the scalar magnetometer, it is possible to use much smaller magnetometer
 

separation's than indicated above. The ambient field magnitude can be
 

determined from the equation:
 

2 2 2 2 22BA = BX +bbBy+ 2 +Bz d BxB Y + eByBZ + f BzBx
 

where BA is ambient field magnitude, BS is scalar magnetometer reading, BX,
 

By, Bz are fluxgate magnetometer readings; and the coefficients a through f
 

are parameters to be determined during calibration. In order that these
 

parameters be small compared to unity, say on the order of 10-3 , the magneto­

meter separation should be on the order of 1.5 feet or more. This subject
 

deserves a more quantitative treatment.
 

4. Other Systems Considered
 

A number of other possible systems for producing-a vector-magnetometer
 

were considered in addition to the system presented here.
 

The possibility of using a D/A converter inthe feedback path of an
 

analog fluxgate magnetometer to produce a "field offset" type magnetometer
 

as discussed inAppendix B was considered but rejected in favor of the system
 

presented here for the following reasons:
 

(al If a hybrid converter of the bipolar type were used, such as the
 

Burr Brown DAC85, both offset and gain stability would be limited by the
 

stability of the resistor network in the D/A converter. This is 100 ppm/year,
 

a much higher value than the offset stability of the system presented here.
 

(b) If the converter were used in a unipolar fashion by adding a DPDT
 

switch, offset errors due to the resistor network would be eliminated, but
 

offset errors due to switch leakage inthe converter would be 1 ppm/°C, or
 

about 0.1 gamma/CC. 'This isover thirty times greater than the value for the
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system presented here. An oven would be required to meet the design goals
 

of this mission.
 

(c) Slew rate would be severely limited.
 

(d) There isno apparent way to "chopper stabilize" the system.
 

(e) Linearity and linearity changes with time would be much worse
 

than achieved with the present system, in fact, the design goals could not
 

be met, unless a converter were built using more stable resistors.
 

(f) There are no apparent advantages to this-system compared to the
 

system presented here.
 

Another system considered was essentially the same as the one presented
 

here, but using a tracking converter as an element of the composite converter.
 

The tracking converter, in turn, would be built using a D/A converter. The
 

advantage of a tracking converter is that itcan make a conversion in a
 

shorter time than a successive approximation converter, also accuracy should
 

be better as there is less "bit switching" involved. However, a more
 

complicated gating and control circuit would be required to lock the converter
 

onto the signal following switching of the multiplexer from one channel to
 

another. Development of such a converter would require considerably more
 

time and funds than are available under the present study contract.
 

Use of a Helium magnetometer as a sensor was also considered. Data
 

obtained from Al Frandsen at JPL indicate that noise levels of 10-5 gamma2/Hz
 

can be obtained, which is an order of magnitude (inpower) better than the
 

fluxgate sensor proposed'here (without an electrostatic shield, we don't have
 

figures for the improvement that a shield may produce). There is no 1/f
 

noise (at least none has been measured), drift is 30 to 50 milligamma/year.
 

We don't have figures for the drift of the fluxgate sensor, a reasonable
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guess would be that the figures are comparable. The reason .that the possible
 

use of a Helium sensor has not been pursued further is the limited time and
 

funds available under the present study contract and the fact that we are more
 

familiar with fluxgate magnetometers. However, itshould be noted that the
 

problem of making a triaxial digital fluxgate magnetometer has much in common
 

with the problem of maki ng a--triaxial digital Helium magnetometer. Both
 

problems involve the accurate measurement of current through feedback coils
 

and conversion of the measurement to a digital number. Thus, much of the
 

system presented here would be applicable to the development of a triaxial
 

digital Helium magnetometer.
 

Finally, the use of a triaxial coil system for the feedback coils, with
 

all three sensors-inside a single set of coils, has been considered. There
 

issome reason to think that such a system may be better than the use of
 

independent feedback windings for the three sensors, since all three components
 

of the magnetic field at each sensor are nulled. Also, the magnetic axes
 

for the magnetometer are independent (within limits) of the sensor orientation,
 

they depend only on the feedback coils. JPL uses a triaxial coil system for
 

their vector helium magnetometer, -the frame is made from a single piece of
 

plastic so that ittends to expand equally in all directions with temperature
 

changes. Nearly all of the system presented in this report would be appli­

cable to a system using triaxial feedback coils.--If time permits under the
 

present study contract, such a system will be further explored.
 



33 

References
 

Gordon, D.I. and R.E. Brown, "Recent Advances in Fluxgate Magnetometry, IEEE
 
Trans. Magn.; vol. MAG-8, no. 1,March, 1972.
 

Scouten, D.C., "Sensor Noise in Low-Level Flux-Gate Magnetometers," IEEE
 
Trans. Magn., vol. MAG-8, no. 2, June, 1972.
 

Power, James J., "A Digital Offset Fluxgate Magnetometer for Use in Remote
 
Geomagnetic Observatories," Publ. No. 1247-37, Institute of Geophysics
 
and Planetary Physics, UCLA, Sept. 1973.
 

Dobkin, Robert C., "On Chip Heater Helps to Stabilize Monolithic Reference
 
Zener," Electronics, vol. 49, no. 19, Sept. 16, 1976.
 



-- 

X-Axis
 
Analog Fluxgate
 

Y-Axis 

Z-Axis 

Reference
Voltage 

AS Analog 

Ground
 

Analog fo 
o Multiplexer Digital - Digital Out to 

--
*-

> Converter Filters Telemetry 
_ _(Composite) . 

I 
Gating and Control Telemetry 

(Includes Microprocessor) Control 

FIGURE ,, 

System Diagram Tri-Axial Digital
 
Fluxgate Magnetometer
 



2 fo 	 Demodulator VSX L.P. Filter---- E S RPassband and --- and ------ lb 

BX Amplifier Integrator V/I Converter Vx 

DX 	 To Y and Z
 
Axes Sensors
'--	 " 2fo
 

C 'rct 	 To Y and Z Axes 
Sensor Drive Circuit 	 Demodulators 

FIGURE 2
 

System Block Diagram Tri-Axial
 
Fluxgate Magnetometer
 



+15 V14 r +5V1 100 K +tsv 

29 KHz 4612 

to 

/19 

1) 

5 
-. 

:121-f 

4 

2 f 

fo S/c 

0 Sync 

/00 PF 
00 PF 

2N2907A 

2N .121,F /0 K 

Pass Bond Filler 

7.35 K.t 
2 3 ""I2F 

8 f loo 

Dual F/F
RCA CO 4013A0 

Hex Buffers 
RCA 4049A 

+15V 

51K 520K 

lo22.72 

2 S ol1 

I 

--
IIYAxis 

Drive 
I Amplifier 

2.7~~.7 17n Il5IZ
10O---Pmpife 

-. 

XAxis Drive Amplifier
3FIGURE 

Sensor Drive 

3 

3 

Circuit 

2 

.1I'F Sel' 

If 

I 

Ilife 

I Drive 
TD 



r --­-. 100 K,-,--- Passband r Sel-,---ad Sel 

SenseSWinding 
l O 

Note: Compensation and power supply connectons not shown. 
-15V Power supply 

Feedback resistors chosen to adjust gain. 

IOK 1~~~0 45K O 0l 45K O 

I :I 1 
4 

4 . 5 K.C /0-K 

2fo 

FIGURE 4 
Passband Amplifier 

C 



-15 V +15V
 

IOK AHOO14D I/F. 

8-°

.11AF IOK2 ­

2000~~ ~~/0 aF 6_. u 

IN 7L-7-7'12 f 

pw
 

FIGURE 5
 

Demodulator and Integrator
 



39 

+15V 

VSX 0---
R 51c<, 

.1/#F C 

.13,7 
C 

51,a 

LMIO8A 

Bu 

-15V 

4 

. 

6 

0PF 

2R 

1 

30 

8 

PFs 

VX to Multiplexer 
*2GJ 

-

4 

" 

II 

2 

CCC 

*R !C 

I " 

- e 
-

=OK 2 L *r-

Noe'.•Ullro stable resistor 

Vx/Vsx=~Sr1-1, 

Where T= .RC 

11(2~ 

30BHz 

! 

.O015/LF 
2 8 

~+/l,15 

CA _L . 

7r RC --

B 

6 

Dotel.. 

CB 

# 
-

Feedback 

-15 V0 Ref Analog Ground 
*to Muliplexer only 

>>I02
 



At A-A 

VVR I 

Sensor 
Drive 
Winding A 

SIpEAK 
PA 

FIGURE 7 

Sensor Drive Winding Voltage and 
Current Waveforms
 



+1v 

-3 

15K 6.95 V 

To Multiplexer only 
Reference voltage 

LM199 
4 

-15V 

2 
v To Multiplexer only 

Reference ground 

FIGURE 8 

Reference Voltage 



At'LNUIA A 42
 

A High Linearity, High Resolution, Analog to Digital Converter-


M.G. McLeod.
 

Introduction:
 

This report describes a method for producing a very highly linear analog
 

to digital converter which also possesses high resolution. The converter
 

is a composite. One of its elements is a successive approximation type
 

analog-to-digital converter. The composite will be referred to as the McLeod
 

-converter.
 

-The McLeod converter achieves its high linearity and high resolution
 

at the expense of a slow conversion speed relative to the successive
 

approximation converter. It is intended to be used in conjunction
 

with a multiplexer for the conversion to digital form of slowly varying
 

analog signals. If analog ground and a reference voltage are two of the
 

multiplexer inputs, the digital outputs corresponding to these two inputs
 

can be used to correct the digital outputs corresponding to the remaining
 

multiplexer inputs for zero and gain variations of the McLeod converter.
 

The complete system will have good gain and zero-stability, since the McLeod
 

converter is effectively "chopper stabilized."
 

The linearity and-resolution of the McLeod converter depend upon the
 

linearity and resolution of the successive approximation converter used and
 

upon the conversion speed of both the successive approximation converter
 

and the composite McLeod converter. For example, if the successive approxi-.
 

mation converter is a 12 bit converter with a linearity of + 1/2 the least 

significant bit and a conversion time of 10 microseconds, and if the McLeod
 

converter has a conversion time 256 times greater than the successive
 

approximation converter (2:56 milliseconds) then the McLeod converter will
 

The undersigned have read and understand the invention disclosed herein.
 

Inventor's signature J ooJ-4 i Dc-Date GeJr 771 

Witness D Date
 

Witness Date
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be a 19 bit converter with a linearity of + 1/2 the least significant bit. 

Thus linearity and resolution will be better than + one part per million. 

Time and temperature variations of the linearity of the McLeod converter 

are also less than those of the successive approximation converter by the
 

same factor as the linearity itself is improved.
 

Description:
 

A schematic diagram of the McLeod converter isshown in Figure 1. A
 

basic element of this converter is a successive approximation type analog to
 

digital converter. (Other types of converters, such as a.tracking converter,
 

could also be used.) A sample and hold prevents the input to the successive
 

approximation converter from changing during its conversion time. The
 

analog input being measured is applied to a voltage follower (operational 

amplifier #I)whose output isone of the inputs to a summing amplifier
 

(operational amplifier #2). The other input to the summing amplifier is a
 

sawtooth voltage (more exactly, inthe embodiment shown, it is a staircase
 

voltage) whose period isthe conversion time of the McLeod converter. The
 

output of the summing amplifier is-a sawtooth voltage superimposed upon
 

the signal being measured. We shall assume the voltage being measured is
 

substantially constant during the conversion time of the McLeod converter.
 

The amplitude of the sawtooth voltage at the input to the successive approxi­

mation converter is adjusted to be just slightly greater than one-half of
 

full scale for the successive approximation converter. This is discussed
 

further in the next section. For illustrative purposes, we shall take the
 

successive approximation converter to be a 12 bit converter with 10 microsecond
 

The undersigned have read and understand the invention disclosed herein.
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conversion time and + 10 volt, full scale input range. The sawtooth (or 

staircase) is generated by a 12 bit digital to analog converter with a '+ 10 

volt full scale output when used in conjunction with operational amplifier 

#3. Only the eight most significant bits are used, the staircase lasts for 

256 conversion periods of the successive approximation converter. The 256 

outputs of the successive approximation converter during one conversion of 

the McLeod converter are summed by a digital filter, this sum is the digital 

output of the McLeod converter for a single conversion. 

Theory of Operation:-


The calibration curve for the successive approximation converter is a
 

plot of the digital output vs. the input voltage. Due to the inevitable
 

presence of noise, the digital output for a constant input will vary from
 

reading to reading, thus the average digital output is plotted, and the curve
 

is continuous. Inthe absence of noise, the plot would (ideally) be a stair­

case, due to noise the corners of the staircase are rounded off. One can
 

also make a plot of the deviation of the digital output from the best straight
 

line as a function of input voltage. For an ideal converter, this plot
 

would be a sawtooth waveform whose amplitude (peak-to-peak) is one least
 

significant bit of the converter and whose period isthe analog input voltage
 

corresponding to one least significant bit. For a 12 bit converter, there
 

will be 4096 cycles of the sawtooth over the full scale range of the input.
 

For a non-ideal converter, the edges of the sawtooth will be rounded because
 

of the presence of noise. Furthermore, there will in general be "bit error
 

nonlinearities." If the most significant bit is in error, there will be in
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addition a sawtooth of amplitude equal to the bit error and having two cycles
 

over the full scale range of the input voltage, ifthe next most significant
 

bit is in error the corresponding sawtooth will have four cycles over the
 

range of the input voltage, etc. Thus the plot of deviation from linearity
 

vs. input voltage will consist of the sum of a number of.sawtooth waveforms,
 

the number of cycles of each waveform over the input range will be a power
 

of two. This is the deviation from linearity due to "bit error nonlinearities."
 

These nonlinearities are the dominant nonlinearities for many successive
 

approximation converters. Let us now-consider the calibration curve for
 

the McLeod converter. -Initially, let-us suppose that the conversion time
 

for the successive approximation converter is infinitesimal, that there are
 

an infinite number of successive approximation conversion periods during one
 

McLeod converter conversion, and that the staircase output from the digital 

to analog converter is a ramp. Then the calibration curve for the McLeod 

converter is obtained from.the calibration curve of the successive approxi­

mation converter by averaging thiscalibation curve over an interval centered 

at the input voltage and of width equal to one-half of full scale. This 

averaging process is a filter, all of the sawtooth-waveforms of the deviation 

from linearity plot are filtered out by this filter which has notches at all 

the sawtooth frequencies. Only one-half of the input range of the successive 

approximation converter isavailable for the input signal since one-half 

of the range is used for the ramp. For this idealization, the McLeod 

converter is perfectly linear (neglecting second order effects). During 
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a single conversion of the McLeod converter, each of the bits in the successive
 

approximation converter is "on" one-half of the time except for the most
 

significant bit which is "on" for a duration linearly-related to the input
 

signal. The preceding discussion assumes that the ramp amplitude isexactly
 

one-half of the range of the successive approximation converter.
 

For an actual McLeod converter with a finite number of steps (inour
 

example, 256) to the ramp (or staircase) and a finite conversion time for
 

the successive approximation converter, the number of times the most signifi­

cant bit is "on" during a complete conversion will be an integer between 0 and.
 

255, thus the'maximum error due to errors in this bit will not be zero but will
 

be reduced by a factor of 256. Since full-scale is reduced by a factor of two,
 

the linearity is thus improved by a factor of 128 compared to the successive
 

approximation converter.
 

Finally, let us consider the resolution of the McLeod converter. If
 

the steps of the staircase at the input to the successive approximation
 

converter are an integral multiple of the step size for the successive
 

approximation converter, then the resolution of the McLeod converter is the
 

same as that of the successive approximation converter, since for a constant
 

analog input all of the inputs to the successive approximation converter
 

will occupy the same relative positions within the digital "windows." If,
 

however, the amplitude of the staircase is adjusted,to a value slightly
 

greater than one-half of full scale, so that 256 windows of the digital to
 

analog converter as measured at the input to the successive approximation
 

converter exceed the 2048 windows of the successive approximation converter
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corresponding to half of full scale by an odd number of windows (say 5),
 

then the input to the successive approximation converter will be evenly
 

distributed within its digital windows, and the resolution of the McLeod
 

converter will be 128 times greater than that of the successive approximation
 

converter. Itmight seem at first that the digitization noise is reduced
 

by a larger factor than is possible. For a random digitization error, the
 

digitization noise is only reduced by the square root of the number of
 

samples, in this case 16. However, the digitization error for each conversion
 

is not random but is evenly distributed throughout the window for a
 

complete conversion of the McLeod converter. Thus the McLeod converter
 

increases the resolution by a factor greater than 16. Ifthere isnoise
 

present inthe successive approximation converter in addition to the
 

digitization noise, this noise will be reduced by a factor of eight.
 

It is apparent from our discussion thus far that the averaging action
 

of the McLeod converter will also reduce other nonlinearities than those of
 

the "bit error" type, being most effective for nonlinearities that have
 

a high frequency on the plot of deviation from linearity vs. input voltage.
 

This includes nonlinearities that result from finite settling times of the
 

components'of the successive approximation converter.
 

Choice of Components:
 

At the present time (September, 1976) there are three types of successive
 

approximation converters that might be considered for use in the McLeod
 

converter. These ate monolithic, hybrid, and discrete component types.
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d19Invent& s-SignatJre .. AerZ& ;(ezJ DateJ 

Witness . "- - - Date 

Witness Yar,. Date i:6%14 



48 

(References 1 and 2). The best converters use discrete components, such as
 

Intech's A-856-16, which-is a 16 bit.converter with a 8 microsecond conversion
 

time. These are relatively expensive ($1,300) and are not commercially
 

available to military specifications. Itwould be possible to build one to
 

meet such specifications using the approach described in reference 3. Among
 

other things, extremely stable resistors are required. Monolithic converters
 

appear to offer no advantages over hybrid except for lower cost. Two chip
 

hybrid analog to- digital converters having 12 bits and 12 microsecond
 

conversion speeds should be obtainable for less than $20 by early 1978
 

,(reference 2)..
 

The best currently available hybrid analog to digital converter appears
 

to be Burr Brown model ADC 85. This is a 12 bit converter with a ten
 

microsecond conversion speed and sells for $225. It is faster than competitive
 

products. A suitable digital to analog converter is Burr Brown model DAC 85
 

which has 12 bits and a 300 nanosecond settling time. It sells for $89.
 

Suitable operational amplifiers are Burr Brown model 3550 K which have 600
 

-nanosecond maximum settling-times and sell for $27. A suitable sample and.
 

hold would be Burr Brown model SHC 85 which sells for $65. This would
 

increase the total conversion time somewhat (less than 50%). It is possible
 

that the sample and hold would not be necessary in some applications.
 

With the components indicated, the McLeod converter will be a 19 bit
 

converter with linearity of + 1/2 the least significant bit. By using a 

discrete component successive approximation converter and a longer conversion
 

time, it should be possible to improve its performance by as much as 6 bits.
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51 ,APPENDIX B. 


Limitations of Triaxial Digital Fluxgate Magnetometers
 

The limitations of digital fluxgate magnetometers can be subdivided into
 

two categories:
 

(a) The limitations of an analog output fluxgate magnetometer.
 

(b) The limitations of an analog to digital converter.
 

Analog fluxgate magnetometers can be subdivided into two categories:
 

(a) Elementary fluxgate magnetometers where a sensor detects a field
 

along its magnetic axis as an AC signal which is then amplified and detected
 

as a DC signal.
 

(b) Those using a feedback coil about the sensor. The coil is driven
 

by the output of an elementary fluxgate magnetometer to provide negative field­

feedback.
 

Triaxial analog fluxgate magnetometers using field feedback can be
 

further subdivided into two categories:
 

(a) Those for which the three orthogonal axes operate independently of
 

one another (ideally).
 

(b) Those for which all three sensors are within a single set of
 

orthogonal feedback coils, so that the -feedback mechanism operates to tend to
 

null all three components of the field at each sensor.
 

The use of field feedback tends to make the transfer function relating
 

magnetometer output to a magnetic field component independent of the sensor
 

and electronics gain and nonlinearities, and strongly dependent on the transfer
 

function of the feedback path, in particular the feedback coil and any resistor
 

that might be used to convert a magnetometer output voltage to a current through
 

the coil. For a single axis magnetometer, the magnetic axis direction is
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determined by the sensor orientation, and the orientation of the feedback
 

coil relative to the sensor is involved in the feedback transfer function. When
 

all three sensors'are within a single set of feedback coils, then it is the
 

coils that determine the magnetic axes of the magnetometer, largely independent
 

(within limits) of the sensors' orientations and gains.
 

Because the transfer function associated with a feedback coil ismore
 

.linear-and can be made much more stable with time and temperature then the
 

transfer function associated with the sensor and electronics, only fluxgate
 

magnetometers using the field feedback principle should be considered as
 

candidates for a highly stable fluxgate magnetometer.
 

Because the sensor output does not depend only on the field at a
 

mathematical point, but on the weighted average of the field over a volume in
 

space, and because the feedback coil does not produce a uniform field over all
 

space, any dependence of the sensor weighting function on magnetic field will
 

be reflected inthe feedback transfer function, and will produce nonlinearities
 

in the closed loop transfer function of the magnetometer. Moreover any dependence
 

of the sensor weighting function on time or temperature will also be reflected
 

in the feedback transfer function, and thus in the closed loop transfer
 

function of the instrument, even in the limit where the open loop gain becomes
 

infinite. These nonlinearities and time and temperature dependencies can be
 

reduced by the use of a sufficiently large feedback coil or one which produces
 

a sufficiently uniform field over a sufficiently large volume.
 

It is clear also that the feedback transfer function will reflect
 

variations in orientation, position, or size of the feedback coils due to time
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or temperature, and in the case of a single axis feedback system, orientation
 

of the sensor will also be involved.
 

An elementary fluxgate magnetometer (open loop) will also exhibit an
 

output that isnot determined by the ambient magnetic field. This output is
 

referred to as offset, drift, or noise according to whether it is DC, low
 

frequency, or higher frequency. No universal agreement exists concerning the
 

frequency boundaries. Perhaps frequencies above .001 Hz might be considered
 

as noise, and those below 1 cycle per year Might be considered offset. We
 

shall refer to them all as noise. It is important to realize that noise
 

(referred to the input, i.e., expressed inmagnetic field units) isnot
 

reduced by the use of field feedback. There are numerous sources of noise
 

in a fluxgate magnetometer. Since the sensor is driven at a drive frequency
 

f. and the second harmonic of this frequency 2 f. is detected as a measure
 

of the magnetic field, harmonic distortion due to nonlinearities inthe drive
 

circuit can produce noise. Since.the detected signal contains a large amount
 

of fundamental, nonlinearities in the amplifiers of the detection circuitry
 

can produce noise. Since the second harmonic frequency is also generated by
 

the instrument and used for phase sensitive demodulation of the detected second
 

harmonic, it also is possible for noise to be produced inthe detection
 

circuitry through power supply interactions or capacity coupling. Noise is
 

also produced in the sensor primarily due to departures of the geometry and
 

magnetic properties from an ideal model, and this noise can be both electro­

statically and electromagnetically coupled to the secondary and detected. The
 

amount of noise is dependent also on the drive waveform and amplitude. Any of
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these noise sources might be dominant in a particular fluxgate magnetometer,
 

depending on the care used in its design and construction. In general, some of
 

these noise sources may be field (or output) dependent, particularly in a
 

complete instrument including an analog to digital converter, so it is important
 

to measure noise not only in zero ambient field but also the largest field
 

expected to be encountered and various-field orientations.
 

Next, we shall look at the limitations of an analog to digital converter.
 

There are essentially three methods of analog to digital conversion, with
 

variations on these methods. The three methods are:
 

(a) Parallel converter
 

(b) Integrating converter
 

(c) Feedback systems using digital to analog converters
 

The parallel converter involves a resistor divider and a number of
 

level detectors to separate the input signal into a number of windows.
 

Usually, the number of windows is small (less than 16) since a large number
 

of components isrequired for a large number of windows. Each window can be
 

further subdivided by schemes involving switches and another parallel converter.
 

The main virtue of this method is that itcan be very fast, its chief limitation
 

is in the accuracy required of the level detectors and the resistor divider.
 

This method has not been used for high resolution converters.
 

The integrating type converter involves charging a capacitor with a
 

current proportional to the input (referred to ground) for a predetermined time,
 

then discharging itwith a current having the same proportionality to a
 

(negative) reference voltage until the capacitor reaches ground potential.
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The time required for discharge ismeasured, the ratio of the two times is
 

the ratio of the input voltage to the reference voltage. The main virtue of
 

this system is excellentdifferential linearity and the fact that the digital
 

output is independent of the resistor and capacitor used, provided the same
 

resistor is used for both charge and discharge. One limitation is that it is
 

relatively slow when high resolution is desired, since it is difficult with
 

present techniques to use clocks having higher frequency than about 10 MHz.
 

Some integrating type converters have an automatic zero correcting feature;
 

however, such a feature is not inherent in the conversion method and can be
 

incorporated into any conversion method. Another advantage of the integrating
 

converter is the noise filtering achieved by the integration. Since a major
 

effort in analog to digital conversion has been directed toward achievement
 

of high conversion speeds, the integrating type converter has probably not
 

been developed to its highest potential..
 

Finally, we come to methods involving the use of digital to analog
 

converters infeedback systems. There are two basic methods that can be used,
 

with variations upon them:
 

(a) Tracking converters
 

(b) Successive approximation converters
 

In the tracking converter, the difference between the output of the D/A
 

converter and the analog signal being measured isamplified and used to
 

operate a level detector. Periodically the output of the level detector is
 

examined, if positive the digital input to the D/Aiconverter is decreased one
 

unit, if negative the'digital input is increased one unit (or vice-versa, depending
 

on whether or not the amplifier isinverting). The digital output tracks the
 

analog input, but is slew rate limited, i.e. the digital output can not change
 

by more than one unit per sample period.
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The successive approximation converter also works by comparing the D/A
 

output with the signal being measured and using this information to change the
 

D/A digital input. The bits of the'D/A converter are turned on in succession
 

startifg'with the most significant bit, after each bit isturned on it is
 

left on if the D/A output is less than the analog input and it is turned off
 

if the contrary is true. Thus the final D/A digital output will be less than
 

one bit below the analog input. The advantages of the successive approximation
 

method is that it is not slew rate limited like the tracking converter, the
 

.disadvantage is that the analog input must remain constant within one bit during
 

a conversion period to avoid serious errors. This is usually accomplished by
 

the use of a sample and hold which measures the analog input during a short
 

time period and then provides a constant output (ideally) to the A/D converter
 

during the conversion cycle.
 

When used with a fluxgate magnetometer having field feedback, the
 

magnetometer can be used as the difference sensing element of.the-converter,
 

i.e., the D/A converter output can be applied to the feedback coil, the difference
 

between the ambient field and the feedback field sensed by the magnetometer, and
 

this difference used to vary the digital input to the D/A converter. This
 

scheme is not practical for a successive approximation type converter, as there
 

isno practical way to sample and hold the ambient magnetic field. This
 

scheme (or a variation of it)has been used with tracking type fluxgate magneto­

meters. At one time (during the 1960's) it.was the best way to build a highly
 

stable fluxgate magnetometer, fundamentally because a magnetic amplifier was
 

the best way (less noise and offset) to detect small currents. With the advent
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of FET op amps and switches having extremely low leakage currents, this is
 

no longer the case, and there is no longer any fundamental reason from a
 

performance point of view to put the D/A converter inthe feedback loop of
 

the fluxgate magnetometer. Since the response time of a fluxgate magnetometer
 

isconsiderably longer than what can easily be achieved with semiconductor
 

amplifiers, a faster slew rate can be achieved with the converter out of the loop.
 

Itshould be mentioned here that an analog fluxgate magnetometer using field
 

feedback and having an integrator in the forward section of the loop (the
 

best kind) is itself slew rate limited,- but putting the converter in the loop
 

can limit it further.
 

All of the analog to digital converters mentioned contain:
 

(a) A reference voltage
 

(b) Switches, difference amplifiers, and/or level detectors
 

(c).Aclock and/or a resistor network. (Conceptually, other components
 

could be used in place of resistors.)
 

Thus all of the analog to digital converters are subject to the limita­

tions ,of some or all of these devices.
 

-Only the use of a field feedback type fluxgate magnetometer in conjunction
 

with an A/D converter that utilizes a D/A converter with a feedback system have
 

been considered here as suitable candidates for a high-resolution high-stability
 

triaxial fluxgate magnetometer, although an integrating type A/D converter
 

could possibly be used.
 

Summarizing, some of the necessary limitations of the type system
 

considered here are the variations with time and temperature of:
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1. Sensor offset
 

2. System gain, due to variations of
 

(a) The reference voltage
 
(b) The resistor (or resistors) used to convert the reference
 

voltage to a current through the feedback coil
 
(c) Coil and/or sensor geometry

(d) Sensor weighting function
 

Another limitation isthe system linearity and its variations with
 

time and temperature. Nonlinearities are due to:
 

.1. Sensor, because of dependence of weighting function on magnetic
 

field.
 

2. The analog to digital conversion. These nonlinearities are mainly
 

due to limitations in the trimming and tracking of the resistors in the divider
 

networks associated with digital to analog converters.
 

Finally, offset and gain variations associated with the analog
 

electronics and analog to digital conversion can be important. Their importance
 

will depend upon the particular system and circuit design.
 

Numerical Values:
 

1. Sensor offset: For the NOL sensors it is about .7 gamma. Its Tempco
 

is 3 milligamma/°C. We do not have data for the time variations of-the offset.
 

Some experiments conducted at UCLA indicate that the offset (and noise) can probably
 

be reduced by an unknown amount by the use of an electrostatic shield between
 

the primary and secondary windings.
 

2. Reference voltage: Motorola reference diodes type MZ 605 have
 

stabilities better than 5 ppm/l000 hr. Assuming a random walk type drift,
 

this would correspond to 15 ppm/yr. Temperature stability can be adjusted
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to about 1 ppm/°C by adjusting the current through the diode. As these units
 

are listed in Motorola's 1968 Handbook, possibly better units may now be
 

available.
 

3. Resistors: The best resistors available (other than lab standards)
 

are ultra precision resistors manufactured by Vishay Corp. They.are stable
 

to 5 ppm/yr. and have temperature coefficients of 1 ppm/°C. Thin film
 

resistor networks such as are used inmany digital to analog converters
 

track to within I ppm/°C but have individual temperature coefficients of
 

about 25 ppm/°C. These networks track with time to about 100 ppm/yr.
 

4. Sensor gain: We do not have data on sensor gain variations due to
 

variations with time or temperature of coil and/or sensor geometry or sensor
 

weighting function.
 

5. Sensor linearity: Measurements made at UCLA indicate that the NOL
 

sensor linearity is better than 4 gamma out of 40,000. This figure represents
 

the limitation of the measurement, not the sensor. Measurements made on other
 

sensors haye shown nonlinearities as much as 100 gamma out of 64,000.
 

6. Analog to digital converter linearity: 12 bit hybrid types are 

available with linearities better than + 1/2 least significant bit. For full 

scale of + 64,000 gamma, this corresponds to + 8'gamma, or + 125 ppm of full 

scale. 


