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PREFACE '
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The repoft'conéists of two parts: ,fart I is a study of lumped parameter
models and their ability to predict the stiffness and damping characteristics
of gas film bearings and dampers. This effort‘wgs assisted by Shun-Lung Chao
and represents his Master of Science thesis. Part II is an experimental
Investigation of the separation bpﬁble neat the inlet feeding region of
inherently compensated gas bearings. Contributions to this work include
Don Dye, a graduafe student and Keith Logue, an undergraduate student in

Mechanical Engineering.
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PART TI:

A LUMPED PARAMETER MODEL FOR
GAS FILM BEARINGS



JABSTRACT

A lumped parameter model is developed to detérmine the stiffness and
démping ;haracterisfics of inherently compensated gas film bearings. The
model relies on the average static pressure overAa oge—dimensiﬁnal strip
bearing. Results of the model are compared with known computer solutions
for the distributed strip and a two-dimensional square bearing. The
results for the stiffness agree well with the computer sclutions although

the model proved to be inadequate for predicting the f£ilm damping.

iv
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NOMENCLATURE

DESCRIPTION
Denotes actual variable
Denotes average value
Area of the central region
Area of the bearing pad
Damping
Dimensionless.damping

Orifice discharge coefficient

“d/dt®

Gravitational acceleration

Film thickness

Average film thickness

Dimensionless film thickness ( p*/ ho*).
Ratio of Specific heats (Cp/Cv)
Stiffness

Dimensionless Stiffness

Bearing width ‘

Masg;flgw ?o'?Fé;geptral ;egi?nij
Maés flow térough sill regibn
Mass flow through thé inlets

Mass flow into the bearing pad

Mass flow out of the bearing pad .

Average mass flow



NOMENCLATURE (continued)

SYMBOL . DESCRIPTION
P* Pressure .
Pa* Aﬁbient’pressura
P Dimensionless pressure ( P*/Pa*)
P Dimensionless pressure downstream of inlet
Pyo Dimensionless average pressure downstream of inlet
Py Supply pressure
Pry . Average pressure across the sill region
T Inlet span to total bearing span ratio
R Gas constant
sd® Dynamic stiffness ( - AW/ 4n%)
£ Time
t Dimensionless time ( t*S)*)
T Gas temperature
v Film volume of the central region
Vi Film volume of the sill region
w¥ Bearing width
W* Total bearing load capacity
18) Dimensionless bearing load
W Average bearing load
X*, Z* Cartesian coordinate
p* Gas density
%

f& Film density of the, central regioh
f
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NOMENCLATURE (continued)

DESCRIPTION

Film density of the sill region

Gas viscosity ‘

Squeeze Number

Excitation.frequency

Restrictor coefficient

Ratio of the central area to thé bearing area (AI/AP)

Amplitude of disturbance



CHAPTER 1

. INTRODUCTION - ™

3 i 4
4 ' i ! ST ‘.
¥ . . R ' s L i
. Fo» ]

) ?he range of aﬁblicgtiqn for eﬁéernall& pressurized gas 1dbrid§Fed
bearings has been increasing gfeéaily in réqéﬂt years. The reason for
this trend is the many advantages of gas lubrication. Gas bearings
offer extremely low friction due to the low viscosity of the gas; so
mechanical efficiency is high, but heat generation is low, especialiy
in low or medium speed rotation. Because of the absenée of metal-to-
metal contact which promises freedom from wear, the life of the bearing
is I&ng. Also, gas Bearings providg silent and vibrationless rumning
and are able to operate in extreﬁely high or low temperature. In
addition, because of the distributing action of thé gas film, gas
bearings can reduce the effect of local errofé of geométry and produce -
an accurate mode of motion. Accoxding to these advantages, gas
bearings have been successfully applied in increasing amounts in many
industrial applications over the past few years.

Although gas lubrication offered many advantages, two major
problems exist:

-

(1), the existence of a self-excited film whirl instability [l]*
in which machines can not De run in excess of the whirl onset
speed;

(2) the limitation of the bearing load capacity which usually
results in severe damage to the bearing surfaces by overload-
ing, - '

*Numbers in brackets refer to REFERENCES.



The response of gas bearings is affected by the dynamic
characteristics of the lubricating film. To study this problem, the
gas film can be approximated as a linear spring-dashpot system .
su?jected to a small amplitude, periodic load aisturbance. Thus,
stiffness and damping are important parameters describing the dynamic
response of this system. In order to determine the dynamic bearing
load, the Reynolds' equation must ée,solved for the pressure distribu-
tion in the gas film, fhe.Reynolds' equation is a nonlinear, time-
dependent,parabolic, partial differential equation; so it is difficult
to find exact solutions for this equation. For obtaining approximate
solutions, small-perturbation theory is often combined with finite-

t. . 1t _ ‘
difference méthodg:';Limited.uée bas beén made 'of so ‘called " lumped

¥ ! 1 *

parameter" methods, but their accuracy is not clearly understood. A

+ H

review of the literature discuséiﬁg the above methods will now be given.

1.1 Review of literature

Richardson[Z] analyzed the static and dynamic performance of gas
bearings based on lumped parameter methods. He derived the relation—‘
ships of the bearing parameters to be used for design information.
Licht and Elrod[é] studied the stability of extexnally pressurized gas
bearings, using &istributed.parameter methods., Thelr results when
compared w;tg those obtained by Richardson*using‘lumped parameter
methods showed a marked divergence among the Iimiting values of
parameters which affect the stability of the bearing. Stiffler [4]‘
used distributed parameter methods to study an inherently compensated,

multiple-inlet, circular thrust bearirg. In his analysis, the



Reynolds' equation was solved by small-perturbation theory, and the
results ﬁete given for the bearing coefficiétts (stiffness and.dampiné)
as functions of.inlet location, excitation frequency,'supply pressure,
and restrictor coefficient. Mullan and Richardson{5) used-lumped and
distributed patameter methods‘to develop the dynamic characteristics
of ar inherently compensated gas journal bearing and compared the
analysis with experiment.

Lund {6]) carried out a theoretical analysis of the load-carrying
capacity of the hydrostatic gas journai bearing with journal rotation
and vibration: ‘Résults were obtained from a first-order perturbation
solution by assuming small eccentricity ratio aqd small vibration
amplitude, Also, Lund [7] analyzed the thresﬁbold of 1nstab111ty for
a rigid rotor supported in pressurtzed gas journal bearing based oﬁ
a first-order pertubation with—respect to the ectentrlcity ratio and
makes use of the "linearized Ph" methods. Numerical results are given
as a function of supply pressure ratio, feeding parameter, and eccen-
tricity ratio.

Stiffler and Smith (8} analyzed the dynamic characteristics of-
an inherently compensated, square gas film bearing using small pertur-
bations of the Reynolds'“equation. They obtained the results by
finite-ditference met hods and presented the design curves for the load
capacity, mass flow, étiffness and damping as a function of squeeze
number, supply pressure, restrictor coefficient, and inlet location.
Stiffler and Tapia [9] presented a theoretical analysis of the
amplitude effects on the dynamic characteristics of an inherently,

compensated, infinitively long strip, gas thrust bearing.



Squeeze number (dimensionlegs frequency) is an important parameter
in understanding the dynamic response. Sadd and Stiffler (10}
analyzed gaseous squeeze film daﬁpers at low squeeze numbers and
determined the effect of periodic disturbanee amplitude on the
’dynamic performance. The results are -useful in predicting the
behavior of externally pressurized gas bearings under certain
conditions. Earlier, working with circular squeeze films, Salbu (11]
preseﬁted computer solutions of the pressﬁre distribution as a
function of the squeeze number. A superambient average film preséure.
was introduced by'coﬁpressibility effects at high squeeze numbers, so

that a gas film can support a load while operating on squeeze effects

only. These results were supported by experiment.
4 ' 1 v

N
¥ . ¢

1.2 Statement of the Problem

The general problem of obtéining the d&namic characteristics of
externally pressurized, inherently cémpensated, gas thrust bearings
is the solution of the Reynolds' equation, a nom-linear partial
differential equation in space and time. Solutions of this equation
by finite-difference techniques have presented difficulties in the
past, particularly related to convergence time. Furthermore, the
multitude of parameters have limited the amount of information that
can be received from the computer and illustrated for the designer.
The purpose of this thesis is to dévelop a lumped parameter model for
these bearings in analytical form. Such a model can provide a quick,
though approximate solution for the designer as well as provide a

check on the more accurate finite-difference solution 1f it is so



desired.

The following chapter on analytical methods contains tﬁo sections
t (1) a finite-~difference solution of the strip bearing, Figure 1,
which has been condensed from REFERENCE [9j-; (2) a generalvlumpéd
éarameter model for all bearings. The solution of the stri? is
outlined here for several reasons: (1) parallelé can be obserﬁed
between the two methods; (2) many of the basic equations are pertinent
to both methods, including dimensionless parameters; (3) lumped
solutions of more complicated two-dimensional bearings can be inferred .
from a model of the strip which includes aspects of the exact solution;
(4) comparisons between two solutions can give some insight into the

accuracy of the lumped model.
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CHAPTER IIX

ANALYSIS OF AN INHERENTLY COMPENSATED STRIP THRUST BEARING

2.1 The Strip Bearing (Condensed from REFERENCE [9))

To develop the theoretical analysis of the strip bearing, it is
divided into two different regions (figu¥e 1): the centxal region or
;égion I, and theisill region or region,II, In order to simplify%
the problem, on1y|oﬁ£4haifiof the striﬁ'bearing is éonsidere&‘ '
because the geometry is symmetric about:the centerline, Furthex—-
more, the inlets are assumed to be sufficient in number so that -
they may.be coﬁsidered as an inherently equivalent line source. It

is also assumed that the length of the strip bearing in the Z-axis

ts infinite.

2.1.1. Reynolds' Equation

Before solving for the bearing mass flow, bearing load
capacity, bearing stiffness, and bearing damping, the pressure
distribution across the bearing first has to be determined. The '
pressure distribution in the clearance of an externally pressurized

bearing is governed by the Reynolds' equation [12];

&3 4p” 3 aP""

= 12 —_“( h Y (2~la)
Gx* 3x az* /M f?

where the starred symbols denote real variables. 3Since two sur-
faces of the bearing are parallel and rigid, the film thickness,
h*, is uniform across the bearing.

Tor the strip bearing, the pressure distribution is described by



the reduced Reynolds' equation:
*

3 , 9P — .
3 *7 X = 124-3- (p* n* -
-<._. (h =) 12/“8:* (P" R . . ‘ _ (2-1b)

3" P g

In order to simplify the analysis, the film is assumeé éo behave as
an ideal gas with constant specific heats. It is élso assumed that
the flow is isothermal with P#*/p*=constant.

To solve equatign (2-1a), the following nondimensional variables

are introduced?

x = x* [ wk . . : - (2~zaf

ho=h/ha : ’ - : (2-2b)
| P = PX/Px : T (2-2¢)
:t = tAn¥,

¥ L]

i
" x )
Thus, equation (2-1b) can be written as

32 2, _ 20 &
~=— ( P7) =42 —_(Ph) :
Ix2 ha ot . (2-3)

where the squeeze number, g, is defined as

120" e ‘
T =2 (2-4)
x2 *
.lho Pa .. -
and the subscript symbol,o, denotes average condition. The f£ilm

thickness, h, 1s a function of time because it depends:on the load
disturbance.
To solve equation (2-3), the boundary conditions must be knowm.
The average pressure downstream of inlets is given by Pyp, and the
- pressure at the edges of the sill region is ambient. Thus,-the

boundary conditions, which are normalized by the ambient pressure



are
P =P, at x'= a ) ' . ' (2—5§)
P=l ' at x= 1. . {2-5b)

Applying, equations (2~5a) and (2-5b) to equation (2—3),

average pressure distrlbution through the bearing can be determined as

P = P ) - 0< x4 a '-(2-5-'1) ‘

. 2 1 135
= 1+(_§.IQ:...) (1—-x)} agxzl {2-0b)
-1 .

vhere 'a' is the dimensionless distance from the centerline to the
inlets, '

I * ' -
4 . . 1} H

2,1.3, Mass Flow '~ -t . . o}

From the continuity condition at the inlets, the following rela~ -

tion has to be met:
Mp® + Mp* = Mypp¥ (2-7)

where

=
=
*
il

mass flow through the inlets

o
ol
B

mass flow through the central region

MII*= mass flow through the sill region

The mass flow across two parallel, long strips is glven by

Constantinescu (12} as



10

. (1% %3 . . . :
h . - . .
M* = - fg* —_— QP* dz” (2-8)
o 124 Ix .. ' .
. Since the flow; is ‘isothermal, equation (2-8) becomes
L*h*BP * .
4 " d a a 2. 2 I :
, MyE = - - 16200 BEI (2-9)
oL 2LURTw* . gx ‘ o

Thus, the average ‘mass flow through the central region and the -
sill region can be determined from equation (2-9) by applying equatioms

(2-6a) and (2-6b) to obtain

Mgk = 0 - (2-10)

and

3, .2 '
MII* = ZNX* = L¥h* Pa" (Prz - 1) (2""11)
lgaRTw*‘ (; - a) :

The mass flow through the inlets {13] is described by

ap 1 1 k=L
ux = ZCLhPPRRs (B0 Prgic [1—(%@ K ]“‘
(RT); s s
k
ey

or



11"

- =~ZCDL*11*?:PS- (2gok' 5 _2_)?-’111_
' @[&D)7* k-l) ' (k+1
' K
B2
P k+1 (2-13)

]

Since the average mass flow through the inlet and the sill are

the same, the average pressure downstream of the orifice; Pros is

established by

Y
k=1 .
P -ﬁf P.
_ A xo 9 ro
‘g = > ( p 2| 1-[—
@ro” - D\Pg Fa
X
1
—_— ) w——
Pg kel (2-14)
or
) " 1
"= 1+pP2 (_1"'_‘_}.) ( 2 )k‘l
k1) W+ 1
k

(2-15)
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whéere the restictor coefficient, A, is defined by

+ 3

' 24 wE(1-a) (ZgokRT v

AL .
k-1 ) o (2-16)

L. : % %2 KT
‘e T + PSPa h:,O . 3 '

' x e ‘
" The restrictor coefficient,A,is a nondimensional parameter which
indicates the ratio of the resistance of the mass flow through the
sill region-to the mass flow resistance across the inlets. For
' critical flow, P., is obtained dirgctly from equation (2~-15), But
* for suberitical flow, Py, is solved by the, Newton-Raphson method . (see
APPENDIX for tables relating P, toA) since equation (2-14) is

implicit for Ppo. After P., is known, the pressure distribution,

equations (2=~6a) and (2~6b), can be determined.

2.1.3 Bearing Load Capacity

The bearing load capacity is given by

W*
Wk = ZJ (P* =~ P,*) Lidx*
o

= ZW*L*éa* 1 (P-1)dx
o

(2-17)

where the pressure P is- attained from the reduced'Reynol&s’ equation
(2-3), Thus, the dimensionless load capacity is derived from

equation (2-17) as

W 1
W —_—— = (P ~-1) dx
ZuALFP * o (2-18)
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Substituting equations (2-6a) and (2~6b) into equation (2-18), -

the average load capacity is obtained as

B N 3 -
W= a(Py~1) + {3 (.EYTZ_E)- 1] (1 - a) (2-19)
: 3 \p? -1

Thus, the average pressure across the sgill region can be found

from equation (2-19) as

3

2 p .
r =1
Prp = — ( 2 )
3\ P,m -1 {2-20)

2.2 Lumped Parameter Model

Since the gas film behaves as a simple, linear, first order
-system for small disturbance amplitudes, the load changes, which are
usually periodic in nature, exhibit components in phase and ninety
degrees out of phase with displacement, Thus, a dynamic stiffness is

defined as

CAWR
Sd* = -
A h% N
AWk fap_k ' -
AP_* ARk (2-21)

The bearing load capacity is a function of the pressure down-
stream of the inlets only, so

}
1 .
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AY* aw -
=. K&
A Pr* 2w¥L

Py T (2-22)
where the bearing load capacity is given by equation (2-19}.
The conservation of mass flow requires that the net mass flow

into the bearing pad is equal to the change of mass stored in the

bearing pad. Thus,

d
M, #=M %= —- s :
in . vout . de* (m;ass)pad .
d - d
= — (p*V ) +— (p*V)
dt* P Central region  gex P s111 region
= D(O.*V.) + D *Y__) .
II
where
d
P = —
-dt*

£ilm density of the central reglon = /Or*

]

e
v

I film volume of the central region
PII*= film density of the sill region

Vir = film volume of the sill region
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L]

Linearizing equation (2723)'for small chanéeé from the steady-

state conditibns, equation (2-23) becomes

‘ * ® '
AMga® =81 =X DOV + vy Dy ) -i{ﬂl;"n(vn) + VHOD(/)I’I")]

(2-24)
where the symbol, o,-denotes average condition. Also, the following

relations are introduced: -

p¥ = p * +AP: . : (2-25a)
n* = ‘ny* +an® (2-25b)
A = ay/A, (2~25¢)

where Ay and Ap are the area of the central regiom and the total
bearing pad respectively.
Since the average.pressure across the sill region is found from

equation (2-20), the following relations are derived.

LR - .

Pra” = Z; ) Pro (2-26a)
D(Vy) = A A, D(4 1Y) ~ {2-26b)
Vo = AAhy* | (2-26¢)
D@ = (”ﬁl") D (AP.*) (2-264)

*
2 P P,,3 -1
* a To

: = ) ) (2-26e)

(1o 3 Rr P 2-1 .
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DV = (1) A, Dlan®) | (2-26£)

Vio = (M) Ah o (2-26)
( *y 2 1 Pro(Pr<;3 ; 3Pro +‘2) * ( . ‘

DG ) = ~—(—) D (AP, ) 2-26h)
fix 3 RT @2 - D2 r

The mass flow into and out of the bearing pad is a function of
film thickness and the pressure downstream of the inlets. Thus, the

following relations can be ‘found:

& ’ *
AN, = 5 ¥ ah + paul -3

ap," } (2-272)
. 2 rLd!
2h ayr

Substituting equation (2-26) and (2-27) iato equation (2-24), the

following relation is obtained:

* 3 % ]
ApPa A 2 IPrO "'1 aI'IO.ut 6Min
. ARygt === |DH == - -
APy S S ! on on /
Ah:ﬁc e - %/

3 N ® *

Apho 9 Pro (Pyo =3Prpt2) Mowe  9Mig
- A+ (-2 ) D + - -
. 3 (Pro2~1) 9P gp.F

(2-28)
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Equations (2-22) and (2-28) are introduced into equation (2-21),

= ‘ D+ 1\ o : '
s;" = k*(rl ) , - (2-29)

then

where

% ®

Mout 2Min

s d * %
dPy | otpug oYy . (2-30)
- |

9p, ¥  Jp,F

— S ey

t iy ' . ' ;
% 3
Ath P..,(P - 3P + 2)
D 0 2 { O TO TO
A+ =(1-A)
RT 3 l 2 .1

(Pro

£ * PR
- 2¥ut IMyn

r—

" ar.” (2-32)

A linear approximation of the bearing motion is

aw* = -x*an® - ¢* plan”] (2-33)
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. L
Sd* = Ks* E+;C*"D B , ", (2-34)

Ja * B )
where Ks“ and C represent the $tgffness{and-dampiﬁg of the bearing
respectively.
For a periodic load disturbance, the D operator in equations

(2-29) and (2-34) can be replaced by j_(}foperator. Then,

Qe A (G -Ty) i
Sd* = k¥ 142 .
: 5 2 2 :
: 1+0% 7, (2-35) . .
sd = Rg '+ O 3L ‘ . (2-36)

'

From equations (2-35) and (2-36), the stiffness and damping can
be determined as
% *2 Cn
'KS = %2 Y
{1+ '{2 ) (2-37)

. k(T -

C = ’
1+ (2 7722 _ (2-38)

-

For certain conditions, equations(2~-37) and (2-38) reduce to
the following:-
® %
Kg = kg

P 1 % 1
when _Q_"<< T== and (L 4 — (2-39)
Q02 <y
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) %
e % = ?1 l’;'S
S TZ
h * 1 d R 1 (2—!0) )

wenQ‘>>]=?_——1—=?=_2r an Q>>?2— )

- * *

C ' = ks (Tl - 72)
when () <<——Ti—- | (2-41)
2 .

The nondimensional stiffness and daﬁping.are defined by [9J

* X
K = K, hg* ‘ i (2-42a)
2WRLAT % (B ~ 1) /

k_* b * ,
s o d

2wrLAP *(PL < 1) - - ! | - (2-42b)

® » ;
C . :

W 3 ) ‘
) 2--4
24L P ) (2-43a)

ksz'e(?g; _'(2)
2UL% (—‘-"};;—;)3 (2-43b)

From equations (2-10), (2-11), (2-13), and (2-19), the following

. relationé can be obtained:

] ) 3
dw s 2(1-a) (P, 2(e, 7 - 1)
. = 24°L" Ja + 2 3P, - —
dp. 1P 3 P Ui ®. - D
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. & :
oM g
.__(E.t_.. o= 3 (2-45) -
*oluk, e * : ‘ -
: o ! "ro

Pa* (P % - 1)} (2-46)
MRT w : (2-47)

12(1 - a) | ' “ (2-48)

and 2

an*|n,", » n* (2-49)

* 1 *
My 1 (PS + (k1) o om,

ol B 1t —%
92 * |ng®, Pro | Pro \ Pz ZPS.[l—(%LQ] k] kp* (2-50)

5

where

or

(2-51)
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. %
P M:,m .

I, * " sPro = 0 (2-52)

when )
P k

2 \.K_
ro < )k-
Py K+ 1

Substituting the above relations into equations (2-42) and (2-43),

the nondimensional stiffness and flamping can be fpund: ’

€ i

v te o l e B R "
) ‘, 11 - .J; i t' Co . ) K ;‘
2(1-}) /P ' a(p. 3 - 1) )
o ro
A+ ( — )31’;0 -
3 Pro> = 1 C(Brt - D)

- P 2 - 1
Pg - 1 N {Pro)T (k - 1)

T

(2-53)

-

(Pro = 3Pyo + 2))

2
2 ‘;\ + 3(1-A) Pro

(f_rz.__.)_i 1 _.’Ls_)‘l]&-“ (k- b

2 : Pro\k=L
2,2 -1 k|B\Py, 295[1 (__re) k]
PS
Yooy ko : (-
when P_ ( 2 )k—l (2-54)
—_— ) ——
Py \k+1
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_or
e 2 -\ 2% 1 [ - 2@i3- 1)
*ro )\ ro
SR = - + 384 - - (2-55)
Py -1/ |P., 3 (Ppp - 1) (Pro” - DY)
3 2
. 2 Pro - 1\ (%ro -1
- a2 1) A + 500 | R
o . . ro Yo
o
' (P 3~ 3P+ 2)
A+ 212 P, > 5
3 (Pro” - b ‘ ,
. ‘ . (2-56)
byt :
when d
Xk ( ,
Fro ( 2 )1::1 Co
P k+ 1

) Thus, after the inlet location, supply pressure, average pressure
downstream of the inlets are known, the dimensionless stiffness and

damping éan bé found from equations (2-53), (2-54), (2;55), and (2-56).



CHAPTER III

RESULTS AND MODEL COMPARISONS ¥OR THE STRIP BEARING

The stiffpess and damping are obtained in this stud& as-fungtions
of restrictor coefficient and the supply pressure with inlet location
(a=Q:5-in this study) fixéd. They are compared with computer solutions
by Stiffler and Tapia‘[9] at low ampiitudg of disturbance (£=0.1) ;nd
small squeeze number (@=0.1), '?he amplitude gffect‘og the stiffness

and, damping can be neglected at 1ow'ampli§ude of disturbance. The :
vt i I ' ' v

[ s

stiffness and damping‘are insensitive to small squeeze numbers (0<'.4),
4

LI

- 1';\;.‘ n .
but the stiffness increases and the damping decreases when the squeeze
number exceeds this value [9] . Design curves for the stiffness and
damping are discussed and compared below for the 1umped,pérameter

approach and the computer solutions.

3.1 ‘Stiffness

The dimensionless stiffness is a function of the restrictor
coefficient, A, and supply pressure as shown in the Figures 2-6. The
stiffness is very sensitive to the restrictor coefficient. When the
restrict;r coefficient becomes small, the stiffness approa§hes ZEero.
The stiffness reaches the maximum in the range 1.3<A<2.2 vhere the
mass flow through the inlets is critical, As the restrictor éoeffi-
cient becomes large, the stiffness approaches zero again.

If the stiffness is compared with computer solutions by Stiffler
and Tapia [9] as shown in Figures2-6, it can be observed that the

results of the lumped model agree well with computer solutions.
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3.2 . Damping

The relationship between the dimeﬁéioniess damping, C, and the‘
réstrictor coefficient, A, is shown in Figures 7-11. It can be obser-
ved thdt the dimensionless damping is highly dependent on the
restrictor coefficient and the supply pressu?e. - As the restrictor
coefficient approaches zero, the damping approaches a constant, As the
restrictor coefficient apgroaches infinity, the damping approaches a
 smaller comstant., These values represent the extremes for puge squeeze
films [10]' f.e. no inlets (A =0) or inlets open to the ambient (A=,

Comparing the damping between computer solutions by gtiffler and
Tapia1[9] and lumped parametér épproachkby this study, it is observed
that the lumped model agrees well with computer solutions for the range
of lower restrictor coefficients,A<l.0, but differences occur in the
range of larger restrictor coefficients. These resuits indicate that
a lumped model for the damping is not entirely adequate. Sadd and
stiffler [10) have shown that pure squeeze films (A =0,0) display quite
different damping depending on the geometry. However, the lumped
model would display no difference between a strip and a square, for

example, 1f their corresponding film volumes were identical.

f

3.3 Squeeze Number

To introduce the squeeze number,g, into equations (2-37),
(2-38), (2-42a), and (2-43a), the dimensionless stiffness and damping
can be expressed as follows:

when
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, 'The egfect o'f squeeze nutr;bexgs on the s}t:i.’ffnes‘s and damping is
shown in Figures 12-17. It is found that low squeeze-number (G< 1) has
little effect on the stiffness and damping. However, the stiffness
increases and the damping decreases for large squeeze numbers.

Computer solutions are avai]:able for Pg=10, A=1 and are presented ’
in Figures 12,13 also. The break freque;'lcy for the lumped parameter
damping in Figure 15 appears to be realistic in spite of the short-

comings reported in Sectiom 3.2.



CHAPTER IV

ANALYSIS OF THE SQUARE BEARING

.3

"4.,1 The Square Bearing (Condensed from REFEREACE [8])

To analyze the square bearing, it is also divided into two °
regions (Figure 18) as the previous strip bearing. From the symmetry
of the geomeéry, one-quarter.of the square bearing is consideréd here,
and an inherently equivalent line source is used to replace the

discrete inlets. \ iy , v o
. ' ar
tp . b 1,

, R ' . -~ o - F l:* i 1
The Reynolds' -equation, equatio% (2-1), can-be noxmalizéd ‘using

1
i

' previous dimensionless variables by using the length L* in place of

width w*.

Thus,
2% 2y 4 2’ ®%) =28 2 (pn) e
el 7 3z n3 B _

where the squeeze number, §-, is defined as

. ) 2
g ¥
Cr: *2 +*
- h,™ p ‘ (4-2)

a

) The‘average mass flow across the sill area is given by REFERENCE

[B]as
% . %3
* Pa hO
m, = m
° 2URT
(4-3)
2 ;
where (Pro - 1IYF
mo = N R
3 (4-4)

and F 1s given for the three different span ratic in the following

table:
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Figure 18. Inherently Compensatéd, Square, Thrust Bearing
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o ] T
0.4 1.83
0.6 3.48

0.8. . 8,44

From the flow continuity, equation (2-7), for the average mass

y
. ’ ¥ [ ' \ ’ V2

flow across the béaring,'the“%verage preésur; downstream of the
orifice, Prg, is determined by equations (2-14) and (2-15) excebt that

now the coefficient, A, is

6y N7 4" u CZgokRTSi

A - 7
Py Pp* b F \k -1 (4-5)
The bearing load capacity is éiven by
% %
.5f2 (L°]2 *
WE o= 4 S ( P* - P, ) dx* dz*
o o
e f ) 1
= . 4L %2 Pa"S'E {5 @ - 1) dx dz -
ola (4-6)
Thus, the dimensionless load capacity is
W K*i g
W o= =4 (P~1) dx d=z
L% p % o /o .
a (4-7)

In order to apply the lumped parameter model to the square
bearing, it is assumed that the average pressure on the'sill region
is closely approximated by the average sill pressure exhibited by the

strip. Then the average load capacity is expressed by
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_ o SN p3.-1 . _
W= X(e. - 1)+-<1-A) m———~)> G8)
SR 1 '3 P2 1./

r - ' - 1
! '
+ .

where the area ratio, A, is giﬁen in terms of the span ratie, Figure

18, as
) =1 (4-9)

The previously develobed equations for the strip can be used for
the équare bearing providing bne interprets the results in terms of

equation (4-4), (4-5) and (4-9).
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CHAPTER V

" RESULTS AND MODEL COMPARISONS FOR THE SQUARE BEARING

The séiffness and damping are obtained in this study as functions
of restrictor coefficient and supply pressure vith iniet location
" (r= 0.6) fixed. They are compared with compuﬁer solutions by
Stiffler and Smith [Bj at small éﬁpeeze numbe? (@ =-0.1) since the
stiffness and damping.are insensitive to éﬁ;11 ééuéeze numbers. Design
curves for the stiffness and dampling are discussed and compared below .

for the lumped parameter approach and the computer sclutions.

5.1 Stiffness

If the stiffness is compared with computer solutions by Stiffler
and Smith [8] as shown in Figures-19,20, it can be observed that the .
results of the lumped model agree well with computer solutions.
However, the stiffness for P =2 is greater tham it for B =6 in’ the
" range 1,5<A< 5.5, This fact_indicates that the lumped parameter model
can not exactly describe the performance of the square bearing, but

the agreement is sufficient.foy most engineering purposes.
. N L

» ~
’

¢ 5.2 Damping

LN

-
B < '
‘ [

Comparing the damping bétween domputer solutions By Stiffler and
Smith [8 ] and the lumped parameter approach by this study, thé results
show that the lumped parameter model is not adequate enough to
describe the performance of the square bearing. Sadd and Stiffler
ﬂiﬂhave shown that the damping for the squeeze bearing is approxi-

mately one-half of the damping for the strip bearing in the case of
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pure squeeze film (A=0). So if the damping from the lumped parameter
approach.is'adjusted by the factor 1/2, the results are improved but

the agreement could not be deseribed as sufficiently accurate.

5.3 Squeeze Number

Comparlng with computer solutlons[S ]in Figures 23-26, it is
_observed that the break frequencies for the lunped parameter model
appear to agree well with the computer model in spite of the inadequacy
of the model as indicated in Section 3.2. According to this result and
opserving equation'(2-38), the term Z&, which indicates the compressi-
bility effect of the bearing film alone controls the break frequency.
Thus, the term'Zi which indicates thé volume effect of bearing film
would appear to be the target variable in attemps to improve the lumped

model for damping.
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CHAPTER VI

CONCLUSION

The éimensionless design paFameters,st}ffness_and &amping obtained
from the study of the strip bearing by lumped parameter methods are
comgared with those of Stiffler and Taﬁia [9] who used finite~
difference methods, It is observed that the ‘stiffness obtained from,
this study agrees well with computer solutions; howevef, ‘the damping
works well for the range of low restrictor c&efficients only, A%10,
In discussing the effect of squeeze numbers on tée stiffness and -
damping, the break frequencies for the lumped parameter damping appear
to be realistic in spite of the inadequacy of the model,

The stiffness and damping obtained from the study of the square
bearing by lumped parameter methods are comparéd with those of
Stiffler and Smith [8] who used finite-difference methods. The
gtiffness obtained from this study is adequate when compared with
computer solutions; however, the lumped model damping results offer
poor agreement. If the damping from lumped parameter solution is
adjusted according to Sadd and Stiffler's work on pure squeeze films
[10], the results are improved but remain insufficient for prédicting
performance. ©On the study of the effect of squeeze number on the
stiffness and damping, the break frequencies can be predicted well in
splite of the inadequacy of the lumped model.

Since the 1umpéd para#eter model is an approximate technique to
study the performance of the bearing, it is not surprising that the

results differ from the computer solution. The corresponding film
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‘volumes of the'strip and square bearing are comparable ia this study;

v

so thelumped modglldisplayé no difﬁerépce between a strip and a
’ . ! '

$ . h

équare; contrary to?knoﬁn resuits for pﬁré gqueeze films., This is
one of the reason why much difjerénce exists for the daméing of the
square bearing compared with computer solution. Because the predic-
tion of the break frequencies for the lumped damping aéreeé well with
computer sglufion, £t‘can be conéluded that the éompressibility effect
of the bearing film is .well described by the lumped model, but the
volume effect of ;he bearing £ilm directly affects the accuracy of the
Iﬁmpe& model, This suggests a starting po;nt in future attempts to
improve the lumped models for predicting bearing performance.
Regardless, the lumped model predicts the stiffness performances
of -both the strip and- square bearing. Stiffness remains the single

most important parameter in the design of rotor-bearing systems,

I3



APPENDIX

TABLES FOR DIMENSIONLESS AVERAGE PRESSURE
DOWNSTREAM OF INLET P., VERSUS RESTRICIOR

COEFFICIENT A
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TABLE 1

. Pioversus A for PS=1.5

A Pro A Pro Pro
30.0 1.49821271 3.0 1.39086568 1.1~ 1.22797903
25.0 1.49743451 2.9 1,38608333 1.0 1.21224958
20.0 1.49601475 2.8 1,38102095 0.9 1,19626465
15.0 1.49300268 2.7 1.37565945 0.8 1,17926772
13.0 " 1.49076996 2.6 1.36997833 0.7 1,16120100
10.0 1.48478685 2.5 1.36395567 0.6 1,14200700

9.5 - 1,48325201 2.4 1.35756799 0.5 1.13628988

9.0 1.48147882 2.3 1.35079020 0.4 1,11037100

8.5 1,47941673 2.2 1,34359550 0.3 . 1.08383246

8.0 1.47700148- 2.1 1.33595521 0.2 1,05662759

7.5 1.47415061 2.0 1.32783875 0.1 1,02870352

7.0 1.47075716 . 1.9 1.31921364 0.09 1.02586931

6.5 1.46668082 1.8 1.31004522 0.08 1.02302725

6.0 1.46173548 1.7 1.30029668 0.07 1.020L7727

5.5 1.45567120 1.6 1,28992908 0.06 © 1.01731330

5.0 1.44814827 1.5 1.27890107 0.05 1.01745329

4.5 1.43869943 1.4 1.26716911

4,0 1.42667468 1.3 1.25468729

3.5 1,41116081 1.2 1.24140742
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TABLE 2

P

ro Versus A for P;=2.0

1,45790917

A Pro Pro Pro
0.0 1.99566531 3.0 1.75674842 L1 1.43055740
5.0 1.99378314 2.0 1.74677559 1.0 1.40156275
0.0 1.99075733 2.8 1.73626088 0.9 1.37082749
5.0 1.98312290 2.7 1.72516999 0.8 1.33825096
3.0 1.97778900 2.6 1.71346631 0.7 1.30373068
0.0 1.96361072 2.5 1.70111082 0.6 1.26716417
9.5 1.95999964 2.4 1.68806182 0.5 1.22845150
9.0 1.95584057 2.3 1.67427489 0.4 1.18915376
8.5 1.95102074 2.2 1.65970261 0.3 1.14479911
8.0 1.94539802 2.1 1.64429452 0.2 1,09865524
7.5 1.93879165 2.0, 1.62799679 - 0.1 1.05048639
7.0 1.93096961 1.9°  '1.61075221 0.09 1,04554746
6.5 1,92163123 1.8 1,59249983 0.08 1.04058509
6.0 1,91038294 . 1.7. 1.57317490 "0.07 1.03559894
5.5 1.89670441 1.6 1.55270870 0.06 1.03058867
5.0 . 1.87990072 1.5 1.53102834 0.05 1.02555392
4.5 1.85903477 1.4 1.50805668

4.0 1.83283118 1.3 1.48371223

3.5 1.79954054 1.2
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TABLE 3

B, versus A for E =4.0

-

Pro A Pro A Pro
30.0 3.98647532 3.0 3.28185204 1.1 2,34942020
25.0 "3.98061584 2.9, , 3.25340634 1.0 2.26446465
20.0 3.96997054 2.8 3.22344931, 0.9 2.17378415
15.0 3.94757229 2.7 3.19188359 0.8 2.07670230
13.0 3.93112689 2.6 3.15860465 0.7 1,97448896
10,0 , 3.88767972 2.5 3.12349993 0.6 1,86668690
9.5 3.87667309 2.4 ° 3.08644813 0.5 1,75226519
-9.0 3.86402442 2,3 3.04731832 0.4 1.62983025 |
8.5 3.84940305 2.2 3.00596910 0.3 1.49741777
8.0 3.83239442 2.1 2.96224735 0.2 1.35209960
7.5 3.81247442 2.0 2.91598718 0.1 1.18915376
7.0 3.78892463 1.9 2,86700832 0.09 1.17161342
6.5 3.76103487 1.8 2.81511469 0.08 1.15380645
6.0 3.727537719 7 1.1 2,76009242 0.07 1.13572033
3.3 3.68701732 1.6 2.70170777 0.06 1.11734149
5.0 3.63753356 1.5 2.63977452 0.05 1.09865524
4.5 3.57648709 1.4 2.57380115
4.0 2.50036569 1.3 2.50368741
3.5 3.40436783 1.2 2,42902044
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. - TABLE 4

P,, versus A for P 6.0

A Pro . A “ Pro A Pro
30.0 5.97818805 3.0 4,85050528 1.1 3.35083261
25.0 5,96874159 2.9 4,80510675 1.0 3,21184389
20,0  5,95158483 " 2.8 4,75729023 0.9 3.06353634
15.0 5.91550730 2.7 4,70689739 0.8 2.90750063
13.0. 5.,.88903580 2:6 4.65375768 0.7 2.74260186
10.0 5.81916754 ‘2.5 4,59768678 0.6 2.56713263

9.5 5.80148207 2.4 4,53848518 0.5 2,37875492
- 9,07, 5.78116498« 2.3 4.47593656 0.4 2.17411590
8.5, 5.75768803;, .+ 2.2 '4, 40980585 0.3 1.94809778
8.0" 5.73038937 2.1, 4,33983717 0.2 1.69215542
7.5 5.69843286 2.0 4,26575101 0.1 1.38985430
7.0 5.66075303 1.9 4.18724149 0.09 1.35592238
6.5 5.61597981 1.8 4.10397259 0.08 -1.82111922
6.0 5.56233483 1.7 4,01557400 0.07 1.28537407
5.5 5.49748709 1.6 3.92163593 0.06 1,24860602
5.0 5.41835022 1.5 '3.82170298 0.05 1.21072189
4.5 5.32079442 1.4 3.71526662
4,0 5.19923231 1.3 3.60175480
3.5 5.04601154 1,2 3.48052188
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TABLE 5

B., versus A for R, =10.0

Beo A Bo A %o

0.0 9.96230993 3.0 8.02071861 1.1 5.42728355
5.0 9.94598984 2.9 7.94762822 1.0 5.18463272
0.0 9.91635353 2,8 7.86036927 0.9 4,92872952
5.0 9.85405193 2.7 7.77366594 0.8 4,65879094
3.0 9.80835372 2.6 7.68222058 0.7 4,37221815
0.0 9.68779554 2.5 7.58571070 0.6 " 4,06549504
9.5 9.65729118 2.4 7.48378688 0.5 3.73365882
9.0 9.62225356 2.3 7.37606757 0.4 3.36929763
8.5 9,58177395 2.2 7.26213835 0.3 2.96042648
8.0 9.53471429 2.1 7.14154576 0.2 2.48517268
7.5 9.47963733 2.0 7.01379247 0.1 1.89421267
7.0 9.41471222 1.9 6.87833134 0.09 1.82461982
6.5 9.33758552 1.8 6.73455732 0.08 1.75226520
6.0 9.24520336 1.7 6.58180171 0.07 1.67679133
5.5 9.13356413 1.6 6,41931492 0.06 1.59775623
5.0 8.99736908 1.5 6.24625905 0.05 1.51460253
4.5 8.82952800 1.4 6.06168748

4.0 8.62044192 1.3 5.86452363

3.5 8.35694816 1.2 5.65353259
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PART I1:

VELOCITY PROFILES NEAR THE INLET OF THE
INHERENTLY COMPENSATED BEARING
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INTRODUCTION

One of the main difficulties in the use of analytical or computer solu-
tions of inherently compensated gas bearings to predict dynamic performance
is the apparent disagreement with experimental results [1][2]. In the
view of this writer the crux of the problem is that the solutions for
capacity, stiffness, and damping depend upon the discharge coefficient for
the inherent orifice as the flow enteré the bearing surface from the inlet
hole. Limited experimental values for the discharge coefficient can be
found [3], but they are not entirely satisfactory. Furthermore, there is
no knowledge of the dependence of discharge coefficients on the frequency
of the disturbance.

The purpose of this initial study on inherently compensated discharge
coefficients is to determine experimentally the velocity profiles near
the feed region of the inlet. Eventually dynamic studies would contribute
the main effort. This work is only in the beginning stage, and a brief

outline of the progress to date follows.

EXPERIMENTAL PROCEDURE

The characteristic film thickness of gas bearings is at most a few
thousandths of an inch. Thus, flow visualization studies require a scaiing
based upon the Reynolds number [4]. A plexiglass model of the feed inlet
was constructed with a slot gap adjustable from 1/8 in. to 3/8 in. and a
‘width of 2 in., Figure 1. A water circulating system was built into the
set up with a pump capacity sufficient to achieve Reynolds numbers on the

order of 6000.
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Birefringence Effect

For many years photoelasticity has been a very useful method for
experimental stress analysis in solids. This method is based on the fact
that certain substances become temporarily doubly refracting when they
are stressed. An analogous phenomenon in liquids is known as flow birefrin-
gence. The photoviscous analysis of the birefringence patterns to determine
velocity distributions in steady, laminar flow is widely known [51.

When an aqueous solution of commercial orgénic dve, Milligg Yellow NG5,
is caused to flow through a transparent viewing channel and subjected to
polarized light, tﬁe fiuid becomes double refrécting and produces visible
interference patterns which are seen as alternating dark and light bands.
The dark bands, isochromatics, represent the loci of points where the
magnitude of the shearing stresses are the same. The velocity profiles
are then obtained from integration of the shear stress profiles.

The optical system used in the experiments was readily available in
the experimental stress lab at Mississippl State University. The basic
éystem consists of a sodium-vapor light source, two collimating lemses,

two polarizing plates, two quarter wave plates, and an optical bench.

Particulate Effect

An alternate source of flow visualization consisted of particles !
suspended in water. Motion of these particles was recorded in the following
manner. A collimateé light beam with a width of approximately 1/4 of an
inch was projected vertically through the flow from above, Figure 1. When
viewed from a horizontal position, the motion.of these particles was visible
in this plane of light. Photographic records of particle motion were made.

., Two particulates were used: (1) small hollow glass spheres approximately

! ’
'

. N . LI [N - . PO
£1.001 inch in %gze, {2) a certdin-dishwater detqrge?t which apparently has
. ’ P 1 [N . -



FIG.

1

Visualization of Flow Over a Corner.

0L
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suspended extremely small abrasives. Trial and error procedures lead to

the use of 1/100 gram per gallon of the former and 2 drops per gallon of

the latter.

Hot Wire Anemometer

In place of the aqueous solutions above a direct attack on the velocity
profiles can be obtained from hot wire measurements using air. This proce-
dure is so standard that no futher summary is given. The biggest drawback
to the use of a hot wire is the subsequent interference of the flow field

by the probe itself--an unknown effect.

RESULTS

Birefringence Effect

The ‘original plan was to,make use of a birefringent fluid since the
] ' t

flow field is unobstructed and‘the field can be obtained throughout with

one test run. Unfértunatély the litérature on birefringence was not explicit
in explaining several difficulties when working with Milling Yellow. This
approach was abandoned for the following reasons:

(1) Very little is known about the rheological properties of Milling
Yellow, particularly the relationship of birefringence with
the shear stress which is non-Newtonian; ’

(2) concentrations as narrow as 1 1/4 - 1 1/2 per cent are necessary
and these concentrations show a highly nonlinear relationship
with the amount of birefringence; -

(3) birefringence is very sensitive to temperature with as Jittle
as one degree variation introducing a sizable error. Pumping

losses can account for several degrees change in the solution

temperature;
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(4) the planned dynamic studies would undoubtably result in a
total effort to obtain the rheological properties of the
Milling Yellow and very little realizable data on the fluid

mechanics of the problem.

Particulate Effect

After a concerted effort with the particulate solution approach to
flow visualization this phase was abandoned for the following reasons:
(1) Although the flow patterns were observable to the naked eye,
it proved to be very difficult to photograph the patterns,
and professional photographers at thé Tniversity offered
little hope; '
(2) the experience also suggested that the photographs, if
obtainable, could be used for a qualitative picture of the

flow field but of marginal value determining the velocity

profiles.

Eot Wire Anemometer

The hot wire anemometer appears to be the only logical choice for
establishing the flow field accurately. A test run was conducted by simply
inserting a miniature probe into the slot opening and tracing the flow
field from the leading edge of the step. Pressure taps were placed at
several stations from the leading edge so that the discharge coefficient
could be found directly. Tenative results were compared with the analytical
work of Hagerup [4]. Some of the findings are as follows.

A well defined separation bubble exists and its length is approximately

'

two film thicknesses from the step edge, Figure 2.’ This value corresponds

e 4

to a theoretical Reynclds number of 500, Figure 3. The calculated value

i . -
for the test run was approximately 3600 based upon an average exit velocity.
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Hagérup [4] defines the loss coefficient as

which has a corresponding discharge coefficient

1

el

- L2
d I+k

C

The theoretical digcharge coefficient for R = 500 is cq = 0.88, The calculated
values from the experiment were cy = 0.88 for a Reynolds number range 2400-
4000.

Tﬁe results would agree with the theoretical calculations provided the
measured Reynolds number was smaller by a factor of 6-8. All velocity
measurements were referenced to a "Magnehelic" pressure gauge with a direct
read out in inches of water. There is insufficient data to draw meaningful
conclusions from the experiments. It is possible that the probe itself is
interferring with the flow pattern. Future experiment$ will be conducted

with a larger model of the inlet corner.
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