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PREFACE 

The report consists of two partst Part I is a study of lumped parameter
 

models and their ability to predict the stiffness and damping characteristics
 

of gas film bearings and dampers. This effort was assisted by Shun-Lung Chao
 

and represents his Master of Science thesis. 
Part II is an experimental
 

investigation of the separation bubble near the inlet feeding region of
 

inherently compensated gas bearings. Contributions to this work include
 

Don Dye, a graduate student and Keith Logue, an undergraduate student in
 

Mechanical Engineering.
 



PART I:
 

A LUMPED PARAMETER MODEL FOR
 
GAS FILM BEARINGS
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ABSTRACT
 

A lumped parameter model is developed to determine the stiffness and
 

damping characteristics of inherently compensated gas film bearings. The
 

model relies on the average static pressure over a one-dimensional strip
 

bearing. Results of the model are compared with known computer solutions
 

for the distributed strip and a two-dimensional square bearing. The
 

results for the stiffness agree well with the computer solutions although
 

the model proved to be inadequate for predicting the film damping.
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NOMMNCLATURE
 

SYMBOL DESCRIPTION 

* Denotes actual variable 

o Denotes average value
 

Al Area of the central region
 

Ap Area of the bearing pad
 

C* Damping
 

Dimensionless ,damping
 

Orifice discharge coefficient
CD 


D d/dt*
 

go Gravitational acceleration
 

h* Film thickness
 

'ho* Average film thickness
 

h Dimensionless film thickness ( h/ ho*)­

k Ratio of Specific heats (Cp/CV )
 

Ks* Stiffness
 

Dimensionless Stiffness
Ks 


L* Bearing width
 

1 * Massflbw to the',central region
 

mII* Mass flow through sill region
 

Mr Mass flow through the inlett
 

mass flow into the bearing pad
Min* 


4out* Mass flow out of the bearing pad
 

mo* Average mass flow
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SYMBOL DESCRIPTION 

P* Pressure 

Pa* Ambient pressure 

P Dimensionless pressure (P*/P*) 

Pr Dimensionless pressure downstream of inlet 

Pro Dimensionless average pressure downstream of inlet 

PS Supply pressure 

PlI Average pressure across the sill region 
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T Gas temperature 

V, Film volume of the central region 
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W* Total bearing load capacity 
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' Average bearing load 
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Film density of thecentral region 
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Film density of the sill region 
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Restrictor coefficient 

of the central area 

Amplitude of disturbance 

to the bearing area (A/§) 



CHAPTER I 

INTRODUCTION ' 

The range of application for externally pressurized gas lubricated
 

bearings has been increasing 'steadily in recent years. The reason for
 

this trend is the many advantages of gas lubrication. Gas bearings
 

offer extremely low friction due to the low viscosity of the gas; so
 

mechanical efficiency is high, but heat generation is low, especially
 

in low or medium speed rotation. Because of the absence of metal-to­

metal contact which promises freedom from wear, the life of the bearing
 

is long. Also, gas bearings provide silent and vibrationless running
 

and are able to operate in extremely high or low temperature. In
 

addition, because of the distributing action of the gas film, gas
 

bearings can reduce the effect of local errors of geometry and produce
 

an accurate mode of motion. According to these advantages, gas
 

bearings have been successfully applied in increasing amounts in many
 

industrial applications over the past few years.
 

Although gas lubrication offered many advantages, two major
 

problems exist:,
 

(1), the existence of a self-excited film whirl instability [13*
 

in which machines can not be run in excess of the whirl onset
 
speed;
 

(2) the limitation of the bearing load capacity which usually
 
results in severe damage to the bearing surfaces by overload­
ing. 

*Numbers in brackets refer to REFERENCES.
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The response of gas bearings is affected by the dynamic
 

characteristics of the lubricating film. To study this problem, the
 

gas 	film can be approximated as a linear spring-dashpot system
 

subjected to a small amplitude, periodic load disturbance. Thus,
 

stiffness and damping are important parameters describing the dynamic
 

response of this system. In order to determine thedynamic bearing
 

load, the Reynolds' equation must be solved for the pressure distribu­

tion 	in the gas film. TheReynolds' equation is a nonlinear, time­

dependent,parabolic, partial differential equation; so it is difficult
 

to find exact solutions for this equation. For obtaining approximate
 

solutions, small-perturbation theory is often combined with finite­

difference methods. Limited use has been made 'of so cailed '! lumped 

parameter" methods, but their accuracy is not clearly understood. A 

review af the literature discussing the aboVe'methods will now be given. 

1.1 	Review of literature
 

RichardsonL2] analyzed the static and dynamic performance of gas
 

bearings based on lumped parameter methods. He derived the relation­

ships of the bearing parameters to be used for design information.
 

Licht and Elrod(3) studied the stability of externally presdurized gas
 

bearings,using distributed parameter methods. Their results when
 

compared with those obtained by Richardsonusing lumped parameter
 

methods showed a marked divergence among the limiting values of
 

parameters which affect the stability of the bearing. Stiffler (4)'
 

used distributed parameter methods to study an inherently compensated,
 

multiple-inlet, circular thrust bearing. In his analysis, the
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Reynolds' equation was solved by small-perturbation theory, and the
 

results were given for the bearing coefficients (stiffness and damping)
 

as functions of inlet location, excitation frequency, supply pressure,
 

and restrictor coefficient. Mullan and Richardson(5) used-lumped and
 

distributed parameter methods to develop the dynamic characteristics
 

of an inherently compensated gas journal bearing and compared the
 

analysis with experiment.
 

Lund (6] carried out a theoretical analysis of the load-carrying
 

capacity of the hydrostatic gas journal bearing with journal rotation
 

and vibration; Results were obtained from a first-order perturbation
 

solution by assuming small eccentricity ratio and small vibration
 

amplitude. Also' Lund (7 analyzed the tireshhol& of instability for 

a rigid rotor supported in pressurized gas journal bearing based on 

a first-order pertubation with respect to the eccentricity ratio and 

makes use of the "linearized Ph" methods. Numerical results are given
 

as a function of supply pressure ratio, feeding parameter, and eccen­

tricity ratio.
 

Stiffler and Smith [8) analyzed the dynamic characteristics of­

an inherently compensated, square gas film bearing using small pertur­

bations of the Reynolds' equation. They obtained the results by
 

finite-difference methods and presented the design curves for the load
 

capacity, mass flow, stiffness and damping as a function of squeeze
 

number, supply pressure, restrictor coefficient, and inlet location.
 

Stiffler and Tapia (9) presented a theoretical analysis of the
 

amplitude effects on the dynamic characteristics of an inherently,
 

compensated, infinitively long strip, gas thrust bearing.
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Squeeze number (dimensionless frequency) is an important parameter
 

in understanding the dynamic response. Sadd and Stiffler (10)
 

analyzed gaseous squeeze film dampers at low squeeze numbers and
 

determned the effect of periodic disturbance amplitude on the
 

dynamic performance. The results are-useful in predicting the
 

behavior of externally pressurized gas bearings under certain
 

conditions. Earlier, working with circular squeeze films, Salbu (i)
 

presented computer solutions of the pressure distribution as a
 

function of the squeeze number. A superambient average film pressure
 

was introduced by coipressibility effects at high squeeze numbers, so
 

that a gas film can support a load while operating on squeeze effects
 

only. These results were supported by experiment.
 

1.2 Statement of the Problem
 

The general problem of obtaining the dynamic characteristics of
 

externally pressurized, inherently compensated, gas thrust bearings
 

is the solution of the Reynolds' equation, a non-linear partial
 

differential equation in space and time. Solutions of this equation
 

by finite-difference techniques have presented difficulties in the
 

past, particularly related to convergence time. Furthermore, the
 

multitude of parameters have limited the amount of information that
 

can be received from the computer and illustrated for the designer.
 

The purpose of this thesis is to develop a lumped parameter model for
 

these bearings in analytical form. Such a model can provide a quick,
 

though approximate solution for the designer as well as provide a
 

check on the more accurate finite-difference solution if it is so
 



desired. 

The following chapter on analytical methods contains two sections
 

(i) a finite-difference solution of the strip bearing, Figure 1, 

which has been condensed from REFERENCE [9)*; (2) a general lumped 

parameter model for all bearings. The solution of the strip is 

outlined here for several reasons: (1) parallels can be observed
 

between the two methods; (2) many of the basic equations are pertinent
 

to both methods, including-dimensionless parameters; (3) lumped
 

solutions of more complicated two-dimensional bearings can be inferred
 

from a model of the strip which includes aspects of the exact solution;
 

(4) comparisons between two solutions can give some insight into the
 

accuracy of the lumped model.
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FIGURE 1. Inherently Compensated, Long Strip, Thirust Bearing
 



CHAPTER II
 

ANALYSIS OF AN INHERENTLY COIbENSATED STRIP THRUST BEARING
 

2.1 	The Strip Bearing (Condensed from REFERENCE (9j)
 

To develop the theoretical analysis of the strip bearing, it is
 

divided into two different regions (Figure 1): the central region or
 

region I, and thesill region or regionll. In order to simplify
 

the problem, only one-half of the strip bearing is considered
 

because the geometry is symmetric about the centerline. Further­

more, the inlets are assumed to be sufficient in number so that
 

they may be considered as an inherently equivalent line source. It
 

is also assumed that the length of the strip bearing in the Z-axis
 

is infinite.
 

2.1.1. 	 Reynolds' Equation
 

Before solving for the bearing mass flow, bearing load
 

capacity, bearing stiffness, and bearing damping, the pressure
 

distribution across the bearing first has to be determined. The'
 

pressure distribution in the clearance of an externally pressurized
 

bearing is governed by the Reynolds' equation (12);
 

) t h - 12 -( h*) (2-1a)( h3 	QA 

6x* ox* z* z
 

where the starred symbols denote real variables. Since two sur­

faces of the bearing are parallel and rigid, the film thickness,
 

h*, is uniform across the bearing.
 

For the strip bearing, the pressure distribution is-described by
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the reduced Reynolds' equation:
 

** 

.Th( h*3 * 12A- (g*h*) (2-ib) 
(hIx* a
a 


In order to simplify the analysis, the film is assumed to behave as
 

an ideal gas with constant specific heats. It is also assumed that
 

the flow is isothermal with r*/p*=constant.
 

To solve equation (2-1a), the following nondimensional variables
 

are introduced­

x = X* / w* (2-2a) 

h = h*/ho (2-2b)
 

P = P*/Pa* (2-2c) 

Thus, equation (2-1b) can be written as 

,)2' 2'7 -- (Ph) 

;x2 h3 et (2-3) 

where the squeeze number, T, is defined as
 

121J f*lw, 
T- (2-4)


ho* 2 p*
 
0 a
 

and the subscript symbol,o, denotes average condition. The film
 

thickness, hi, is a function of time because it depends on the load
 

disturbance.
 

To solve equation (2-3), the boundary conditions must be known.
 

The average pressure downstream of inlets is given by Pro, and the
 

pressure at the edges of the sill region is ambient. Thus, the
 

boundary conditions, which are normalized by the ambient pressure
 



are 

P Pro at x- a (2-5a) 

P at x - (2-5b) 

Applying.equations (2-5a) and-(2-5b) to equation (2-3),-the
 

average pressure distribution through the bearing can be determined as
 

P = Pro 0 x4 a (2-6a) 

P =i+ (!-x). a4 xs4 (2-6b) 

where 'a' is the dimensionless distance from the centerline to the
 

inlets.
 

2.1.2. Mass Flow 51 

From the continuity condition at the inlets, the following rela­

tion has to be met:
 

1r + lie = MII* (2-7) 

where
 

Mr* = mass fl6w through the inlets
 

MI* = mass flow through the central region
 

[ii*= mass flow through the sill region
 

The mass flow across two parallel, long strips is given by
 

Constantinescu (12] as
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)x(L* 3 9 

*' -- - dz* (2-8) 

Since the'flow isisbthermal, equation (2-8) becomes
 

L*h* 3 P a
 2 !'(2-9) (e2) 

2.,MRTw* Ox 

Thus, the average mass flow through the central region and the
 

sill region can be determined from equation (2-9) by applying equations
 

(2-6a) and (2-6b) to obtain
 

= 0 (2-10) 

and
 

2L = L*h*3pa*2 (Pr 2 - I) (2-11)
(-1


- a)i~aRnw* (1 

The mass flow through the inlets [13) is described by
 

N CpL*h*PqP5 2s0k) (Lrfl21
r (RT) k-P5 1-4LIkl
 

k
 
2r k­

k (2-12)
 

or
 



/2% k2
M 2COt*h'--?Ps 

r (RT) k-1) tk-l!
 

k
 

Pr (2\k- 1 

PS 4-k1ik+) (2-13) 

Since the average mass flow through the inlet and the sill are
 

the same, the average pressure downstream of the orifice, Pro' is
 

established by
 

(PA P)
 

k
 

2k-I
ro 


PS (k+1 2-4 

or
 

I
 
2~ k-i1
 

1 (k ) + )
ro 


k
 

k-I
P 1 2 k
 ro 


p k+l]

s (2-15) 
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wh&re the restictor coefficient,A , is defined by 

24C~ ilw(1-a) /2gokRT 

' PSPa*ho*2 k- (2-16) 

- The restrictor coefficient,A)is a nondimensional parameter which 

indicates the ratio of the resistance of the mass flow through the 

sill region to the mass flow resistance across the inlets. For
 

critical flow, Pro is obtained directly from equation (2-15). But
 

for subcritical flow, Pro is solved by the Newton-Raphson method.(see
 

APPENDIX for tables relating Pro toA) since equation (2-14) is
 

implicit for Pro. After Pro is known, the pressure distribution, 

equations (2-6a) and (2-6b), can be determined. 

2.1.3 	Bearing Load Capacity
 

The bearing load capacity is given by
 

W*	= (P* - Pa*) L*dx*
 

= 2w*L*Pa*(1 (P-I)dx
 
o 	 (2-17)
 

where the pressure P is-attained from the reduced Reynolds' equation
 

(2-3). Thus, the dimensionless load capacity is derived from
 

equation (2-17) as
 

W= 	 ( P - I ) dx 
2w*L*Pa* 
 o 	 (2-18)
 



13 

Substituting equations (2-6a) and (2-6b) into equation (2-18),
 

the average load capacity is obtained as
 

'= a(Pr - 1) + L 2 It) - 1 (1-a) (2-19) 

Thus, the average pressure across the sill region 
can be found
 

from equation (2-19) as
 
p 32 t "1 

Pr S3 (2-20) 

2.2 Lumped Parameter Model 

Since the gas film behaves as a simple, linear, first order
 

system for small disturbance amplitudes, the load changes, which are
 

usually periodic in nature, exhibit components in phase and ninety
 

degrees out of phase with displacement. Thus, a dynamic stiffness is
 

defined as
 

A W* 

Sd*
 

A h* 

AW* tPr ] 

APr* [Vh*i (2-21) 

The bearing load capacity is a function of the pressure down­

stream of the inlets only, so
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2w*L* dPr (2-22) 

where the bearing load capacity is given by equation (2-19). 

The conservation of mass flow requires that the net mass flow 

into the bearing pad is equal to the change of mass stored in the
 

bearing pad. Thus,
 

d
 
bintt.= - (mass)

in - 'ut* .dt* pad 

d d 
= - (*V) +)- (P*V) region 

dt*dt* central region 


DcO *V1 ) + D ii*Vd) (2-23)
 

where
 
d
 

D ­

-dt*
 

film density of the central region ?r*
 

=film volume of the central region
VI 


Pi*= film density of the 
sill region
 

VII = film volume of the sill region
 



Linearizing equation (2-23) for small changes from the steady­

state conditions, equation (2-23) becomes
 

n*-A? out*-[I* D(VI) + VI.D(p 1')J4II*D(V11 ) + V110D(p ] 

(2-24)
 

where the symbol, o,-denotes average condition. Also, the following
 

relations are introduced:
 

* * 
Pr Pro* +4P 
 (2-25a)
 

.-hoh +4h* 
 (2-25b)
 

A = AI/Ap (2-25c) 

where A, and Ap are the area of the central region and the total
 

bearing pad respectively.
 

Since the average.pressure across the sill region is found from
 

equation (2-20), the following relations are derived. 

73e* = (_a*)Pro (2-26a) 

10 ~ RT r 

D(V1) = A k D(4 h*) 
-(2-26b)
 

Vlo A Aph* 
 (2-26c)
 

DC(--) D (APr) (2-26d)
RT 
2 Pa* Pro3 -i
0 ( ) 2o (2-26e) 

3 RT pro -1 
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D(VII) = (I-) Ap D(4h*) (2-26f)
 

V = (1-I) Apho* (2-26g)
o 


2 1 Pro(Pro,3 3P rO + 2)1 
D (r 21 D (APr*) (2-26h) 

3 RT 

The mass flow into and out of the bearing pad is a function of 

film thickness and the pressure downstreamd of the inlets. Thus, the 

following relations can be found: 

(Min *a SMin * 

Ap a)
amPr* (r(2-f 


M 'lout +( AP (2-27b) 

Substituting equation (2-26) and (2-27) into equation (2-24), the,
 

following relation is obtained:
 

Pa2 
 ro-
 i out* 
 'Min*

1k411-) h*ah 

RT 3- Pro _h&Apr 

-A h (P +_1 +- lout-h-­
A(_k Lo3r 2 + ' = R 0 f proro :1 rE a( u* V ' 

(2-28)
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Equations (2-22) and (2-28) are introduced into equation (2-21),
 

then 
d k (TID + 1 

-(2-29)
d : °t,-2D +I 

where
 

" 9Mout PMin 

dkr aWut* 0Minm (2-30) 

-dPr GPr*i 

a pXro O(lp) 

V 3Vro o - 1t 2 
I= RT ,. ONn
 

(2-31)
Cm.ot * 
Qh* 00 : ,< 

p 
 p(, 1)2
ro( 
 3 3Pro+2,(ro _
RT I 3 t 


-?2 2 MoutI) -- Dl­

(2-32)

aPr* Pr* 


A linear approximation of the bearing motion is
 

AKW* -s* A h* C* D[4.h*] (2-33)
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- - -Thus, 

S* * *D (2-34)
d 

where Ks and C represent the stiffness-and-dampig of the bearing
 

respectively.
 

For a periQdic load disturbance, the D operator in equations
 

(2-29) and (2-34) can be replaced by jfloperator. Then,
 

Sd* = ks (+9g)! 2 72-- + (l - 2 ) J-( .'2(2-35)2I2 


Sd- =ks*
 

(2-36) 
Sd =KS + C jA(-3) 

From equations (2-35) and (2-36), the stiffness and damping can
 

be determined as
 

ks* ( I + fl2 r17i2) 
= 

I 2, (2-37)1 +e 2 2) 

= k,* ( 1 -- T2 ) 
C +,r 2 722 (2-38)
 

For certain conditions, equations(2-37) and (2-38) reduce to
 

the following.-


Ks =k* 

when F1eiC2T and ftc Z (2-39) 
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T
*
 rI ks 
s 2 

when j'a 1 7  and * 1 (2-40) 

C* = ks* (7'1 - "r 2 )
*1 

whenfi << 1 (2-41) 
-2 

The nondimensional stiffness and damping are defined' by [9) 

Ks s*h* (2-42a)
2 w*L*Pa*(Ps - 1) 

ks* ho*
 

2W*L*P'a*(2- (2-42w) 

C 
C ,w*(2-43 

ks*(C -T 
2 L* - 3 (2-43b) 

2A*kh 0 *)(24 ) 

From equations(2-10), (2-11), (2-13), and (2-19), the following
 

relations can be obtained:
 

dW a 2(1-a) 3P 2(Pr 3_-1)
Jo + __ - roT 

dPr P 3 r') P1 
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e.3 MO*~~r (2-45) 

Pr;ho Pro 

=~ut2 Promo* 
Pa*(Pro2 

1)2-46) 

where 

and 

M 

= 
*2 3 

L*Pa ho 
mART w* 

(Pro 1 ) 

( 
12(1 - a) 

1 = 

24 

' 

" 

(2-47) 

(2-48) 

a h*.Iho Pro he* (2-49) 

9Mjn* (i 

~Fr ihx,~ro~r 

Ps'\} 
Y~qJ 

(k-i 
2Psi( 9k'j 

rn0 

ka (2-SO) 

where 

Pro 

PS>1+ 

2 

or 

a hI ho*sPro ho* (2-51) 



--

in1
 

?Pr h* 	 (2-52) 
Slo 'ra 

0
 

when k' 

PS / 2 

Substituting the above relations into equations (2-42) and (2-43),
 

the nondimensional stiffness and damping can be found:'
 

+ 	 2 - ) Pro - (Pro 2 - 1).ro 1 3 
,23 	 -­s,.Pro2 / 

T Pro(2 ( kk I k-I) 

° Js(P -1) +2(I_) (Pr, 

2ro+Pro2 2 [ 

C= roo + 	 2-


Po - 2 k
+ LkPPri Pskl) 

(2-5)P 
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or 

( ---­2 - 2(P3- 1) 

\1s -i/ jA2(1)O r-roo - - 1)2 (2-55) 

ra3
3 


-ro
C= m Pro-


3 - (p 2
-'K+ ()ro Pro2 1) 

or
 

(A o )2 '(2-56)
 

when
 

P k 
ro 4 -1 

+ ik
 
Ps 

Thus, after the inlet location, supply pressure, average pressure
 

downstream of the inlets are known, the dimensionless stiffness and
 

damping qan be found from equations (2-53), (2-54), (2-55), and (2-56).
 



CHAPTER III
 

RESULTS AND MODEL COMPARISONS FOR THE STRIP BEARING
 

The stiffness and damping are obtained in this study as 
functions
 

of restrictor coefficient and the supply pressure with inlet location
 

(a=0.5 in this study) fixed. They are compared with computer solutions
 

by Stiffler and Tapia (93 
at low amplitude of disturbance (E=0.1) and
 

small squeeze number (6=0.1). -The amplitude effect on the stiffness
 

and,damping can be neglected at low amplitude of disturbance. The
 

stiffness and damping are insensitive to small squeeze numbers (C<'4),
 

but the stiffness increases and the damping decreases when the squeeze
 

number exceeds this value [9] .
 Design curves for the stiffness and
 

damping are discussed and compared below for the lumped parameter
 

approach and the computer solutions.
 

3.1 !Stiffness
 

The dimensionless stiffness is a function of the restrictor
 

coefficient, A, and supply pressure as shown in the Figures 2-6. 
 The
 

stiffness is very sensitive to thd restrictor coefficient. When the
 

restrictor coefficient becomes small, the stiffness approaches zero.
 

The stiffness reaches the maximum in the range 1.3<PN2.2 where the
 

mass flow through the inlets is critical. As the restrictor coeffi­

cient becomes large, the stiffness approaches zero again.
 

If the stiffness is compared with computer solutions by Stiffler
 

and Tapia [9) as shown in Figures2-6, it can be observed that the
 

results of the lumped model agree well with computer solutions.
 



0.5 	 Ps=l.5 
a =0.1 
a =0.5 

ComputIr Sol tiol 
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Figure 2. Strip Bearing-Dimensionless Stiffness versus Restrictor 	Coefficient
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Figure 3. Strip Bearing-Dimensionless Stiffness versus Restrictor Coefficient 
(Ps=2,G"-0.1, a=0.5) 
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Figure 4. Strip Bearing-Dimensionless Stiffness versus Restrictor Coefficient
 
(Ps=4,c"=0.i, a=0.5) 
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Figure 5. 	Strip Bearing-Dimensionless Stiffness versus Restrictor Coefficient 
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Figure 6. Strip Bearing-Dimensionless Stiffness versus Restrictor coefficient
 
(Ps=10,c-=0.1, a=0.5)
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3.2 - Damping 

The relationship between the dimensionless damping, C, and the
 

It can be obser­restrictor coefficient-,A, is shown in Figures 7-11. 


ved thdt the dimensionless damping is highly dependent on the
 

As the restrictor
restrictor coefficient and the supply pressure. -

As thecoefficient approaches zero, the damping approaches a constant. 


restrictor coefficient approaches infinity, the damping approaches a
 

smaller constant. These values represent the extremes for pure squeeze
 

films 110], i.e. no inlets (A=0) or inlets open to the ambient (A=oo).
 

Comparing the damping between computer solutions by Stiffler and
 

Tapia49) and lumped parameter approach by this study, it is observed
 

that the lumped model agrees well writh computer solutions for the range
 

of lower restrictor coefficients,A<I.0, but differences occur in the
 

range of larger restrictor coefficients. These results indicate that
 

a lumped model for the damping is not entirely adequate. Sadd and
 

Stiffler (10) have shown that pure squeeze films (A =0,oo) display quite
 

different damping depending on the geometry. However, the lumped
 

model would display no difference between a strip and a square, for
 

example, if their corresponding film volumes were identical.
 

3.3 Squeeze Number
 

To introduce the .squeeze number,r, into equations (2-37),
 

(2-38), (2-42a), and (2-43a), the dimensionless stiffness and damping
 

can be expressed as follows:
 

when 
Pro 2 kk
 

Ps k~
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Figure 7. Strip Bearing-Dimensionless Stiffness versus Restrictor Coefficient 
(Ps=1. 5,-=0.1, a=0.5) 
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Figure 8. Strip Bearing-Dimensionless Stiffness versus Restrictor Coefficient
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Figure 9. Strip Bearing-Dimensionless Stiffness versus Restrictot Coefficient
 
(Ps=4, -=0. I, 1=0,5)
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Figure 10. 	Strip Bering-Dimensionless Stiffness versus Restrictor Coefficient
 
(Ps=6, C=0.1, a=0.5)
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Figure 12. Strip Bearing-Dimensionless Stiffness versus Squeaze Number (A=I, a0.5)
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Figure 14. Strip Bearing-Dimensionless Stiffness versus Squeeze Number (4=5. a=0.5)
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Figure 15. Strip-Dimensionless Damping versus Squeeze Number (A=1, a=0.5)
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Ks =ks 

I + I 

I + 

I 

-k (P s 

.'!i ks(e 
144[ 

o-22 

-1) 

( 1) -mg° 
0 

+ '1 
(Pro 

' j 

ix 

1A
l 

(3-1
(-1 

-

ks 

C= 

where 

.(P - 1)/MO Pro + (i -23 

1 + ks-(Ps I) T 

144 , 

r o 

a 

ks(P s - I) 

ks (~r 2P - I 1 + 2l_,) (Pro2 -2pro 

2~ 

3 

k-I 

ro 2 Qr0 32 

(k-) 

s 

- l 

J (3-3) 

or when 

Pros \kI 

k 

s4 14 

1 + 41 

-

s 
{ak- 11 

j (3-4) 
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k(P 1/ + kro
 

(ro 
144 (3-5) 

where 

2 Pr (Pro 3 

2­1 +3 (A( 2 3P 

2 1r [3 r 1 ro p 2 -2 

- r o 
 Pro'4kr (3-6) 

'The effect of squeeze numbers on the stiffness and damping is
 

shown in Figures 12-17. It is found that low squeeze number (T< !)has
 

little effect on the stiffness and damping. However, the stiffness
 

increases and the damping decreases for large squeeze numbers.
 

Computer solutions are available for Ps=10,A=1 and are presented
 

in Figures 12,13 also. The break frequency for the lumped parameter
 

damping in Figure 15 appears to be realistic in spite of the short­

comings reported in Section 3.2.
 



CHAPTER IV 

ANALYSIS OF THE SQUARE BEARING
 

4.1 The Square-Bearing (Condensed front REFEREtCE [81)
 

To Analyze the square bearing, it is also divided'into two
 

regions (Figure 18) as the previous strip bearing. From the symmetry
 

of the geometry, one-quarter-of the square bearing is considered here,
 

and an inherently equivalent line source is used to replace the
 

discrete inlets. - T -

The Reynolds'"equation, equation (2-), can be normalized kusing 

previous dimensionless variables by using the length L* in place of 

width w. 

Thus,
 

e 2 (p2)+ 2(2 2 (Ph) (4-1) 

h3
8z ?t 

where the squeeze number, a-, is defined as 
2 

12/if' L* 

h°*2 Pa (4-2) 

The average mass flow across the sill area is given by REFERENCE
 

(8as 
a Pa ho*3
 

(4-3) 

where (pro - 1)F 
o 3 (4-4) 

and F is given for the three different span ratio in the following
 

table:
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Figure 18. Inherently Cornpensat~d, Square, Thrust Bearing
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•r 	 F 

0.4 1.83
 

0.6, 3.48
 

0.8. 	 8.44 

From the flow continuity, equation (.2-7), for the average mass
 

flow across the bearing, Ithe average pressure downstream of the 

orifice, Pro, is determined by equations (2-14) and (2-15) except that 

now the coefficient, A, 'is 

6 C N A do 290[2RT' 
A Ps Pa * no 2 F k (4-5) 

The bearing load capacity is given by
 

W* (L*/2 (L*/2 * *
 
S ( P - Pa ) dx* dz*
0 0o 

=4L*2 Pa(P - 1)dx dz 	 (4-6) 

Thus, the dimensionless load capacity is
 

W 	 LWP* 4/oo P 1) dx dz" 

L*P* }o o a (47) 

In order to apply the lumped parameter model to the square
 

bearing, it is assumed that the average pressure on the',sill region
 

is closely approximated by the average sill pressure exhibited by the
 

strip. Then the average load- capacity is expressed by 
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j +-2p1 

where the area ratio, \, is given in terms of the span ratio, Figure 

18, as 

= r 2 (4-9) 

The previously developed equations for the strip can be used for
 

the square bearing providing one interprets the results in terms of 

equation (4-4), (4-5) and (4-9).
 



CHAPTER V 

RESULTS AND MODEL COMPARISONS FOR TffE SQUARE BEARING" 

The stiffness and damping are obtained in this study as functions 

of restrictor coefficient and supply pressure with inlet location 

( r = 0.6) fixed. They are compared with computer solutions by 

Stiffler and Smith (8] at small squeeze number (a-O.1) since the 

stiffness and damping are insensitive to small squeeze numbers. Design 

curves for the stiffness and dampling are discussed and compared below 

for the lumped parameter approach and the computer solutions. 

5.1 Stiffness
 

If the stiffness is compared wfth computer solutions by Stiffler
 

and Smith [8) as shown in Figures 19,20, it can be observed that the
 

results of the lumped model agree well with computer solutions.
 

However, the stiffness for Fs=2 is greater than it for Ps=6 in the
 

range 1.5<A< 5.5. This fact indicates that the lumped parameter model
 

can not exactly describe the performance of the square bearing, but
 

the agreement is s-ufftci&nt.fo- most engineering purposes.
 

,5.2 Damping
 

Compring the damping between domputer solutions by Stiffler and 

Smith (8) and the lumped parameter approach by this study, the results 

show that the lumped parameter model is not adequate enough to
 

describe the performance of the square bearing. Sadd and Stiffler
 

(10)have shown that the damping for the squeeze bearing is approxi­

mately one-half of the damping for the strip bearing in the case of
 

http:s-ufftci&nt.fo


0.6 	 . i j ­

',I I I ii I0i s=2 , -

I 	 .1111 . 1 
30 

-

SI I i 	 Computer Soltition
I 0 Lumped Model-: 

ISolution • 

1­

0.4
 

=-r
 
I ** 	 *I 

011~ 	 10 50 ' 

*RESTRICTOR COEFFICIENT
 
Figure 19. Square Bearing-Dimensionless Stiffness versus Restrietor Coefficient~
 

CPs=2,0"=0.1i, r=0. 6) 

http:CPs=2,0"=0.1i


0.6 I 

0.5 
Go. 1Ps=6 

0.4~~~g >a~itKo=0.I-I \/__ Ir =0.6 

I -Computer Slto 
I II I Lumped Madd1 

\ o. I | .0 Solution 

0.3 * --- *-.I.---

I lii. 

O.. i ...
 

0.1 0"F 

0.0 ._'
 

0.1 1 10 50 

RESTRICTOR COEFFICIENT
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pure squeeze film (A =0). So if the damping from the lumped parameter
 

approach is adjusted by the factor 1/2, the results are improved but
 

the agreement could not be described as sufficiently accurate.
 

5.3 Squeeze Number
 

Comparing with computer solutions[8 ) in Figures 23-26, it is 

observed that the break frequencies for the lumped parameter model 

appear to agree well with the computer model in spite of the inadequacy 

of the model as indicated in Section 3.2. According to this result and
 

observing equation (2-38), the term2, which indicates the compressi­

bility effect of the bearing film alone controls the break frequency.
 

Thus, the term which indicates the volume effect of bearing film
 

would appear to be the target variable in attemps to improve the lumped
 

model for damping.
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CHAPTER VI'
 

CONCLUSION
 

The dimensionless design parameters.stiffness and damping obtained
 

from the'study of the strip bearing by lumped parameter methods are
 

compared with those of Stiffler and Tapia [9] who used finite­

difference methods. It is observed that the stiffness obtained from.
 

this study agrees well with computer solutions; however, the damping
 

works well for the range of low restrictor coefficients only, AS10,
 

In discussing the effect of squeeze numbers on the stiffness and
 

damping, the break frequencies for the lumped parameter damping appear
 

to be realistic in spite of the inadequacy of the model.
 

The stiffness and damping obtained from the study of 'the square
 

bearing by lumped parameter methods are compared with those of
 

Stiffler and Smith [8) who used finite-difference methods. The
 

stiffness obtained from this study is adequate when compared with
 

computer solutions; however, the lumped model damping results offer
 

poor agreement. If the damping from lumped parameter solution is
 

adjusted according to Sadd and Stiffler's work on pure squeeze films
 

(10), the results are improved but remain insufficient for predicting
 

performance. 'On the study of the effect of squeeze number on the
 

stiffness and damping, tile break frequencies can be predicted well in
 

spite of the inadequacy of the lumped model.
 

Since the lumped parameter model is an approximate technique to
 

study the performance of the bearing, it is not surprising that the
 

results differ from the computer solution. The corresponding film
 



volumes of the strip and square bearing are comparable in this study; 

so the 'lumped model displays no difference between a strip and a 

square, contrary to known results for pure squeeze films. This is
 

one of thd reason why much difference exists for the damping of the
 

square bearing compared with computer solution. Because the predic­

tion of the break frequencies for the lumped damping agrees well with 

computer solution, it can be concluded that the compressibility effect 

of the bearing film is well described by the lumped model, but the 

volume effect of the bearing film directly affects the accuracy of the 

lumped model. This suggests a starting point in future attempts to 

improve the lumped models for predicting bearing performance.
 

Regardless, the lumped model predicts the stiffness performances
 

of-both -the strip and square bearing. Stiffness remains the single
 

most important parameter in the design of rotor-bearing systems.
 



APPENDIX 

TABLES FOR DIMENSIONLESS AVERAGE PRESSURE
 

DOWNSTREAM OF INLET Pro VERSUS RESTRICTOR
 

COEFFICIENT A 
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TABLE 1
 

P versus A for P =1.5 
ro s 

Pro A Pro A Pro 

30.0 1.49821271 3.0 1.39086568 1.1 1.22797903 
25.0 1.49743451 2.9 1.38608333 1.0 1.21224958 
20.0 1.49601475 2.8 1.38102095 0.9 1.19626465 
15.0 1.49300268 2.7 1.37565945 0.8 1.17926772 

13.0 1.49076996 2.6 1.36997833 0.7 1.16120100 
10.0 1.48478685 2.5 1.36395567 0.6 1.14200700 
9.5 1.48325201 2.4 1.35756799 0.5 1.13628988 
9.0 1.48147882 2.3 1.35079020. 0.4 1.11037100 

8.5 1.47941673 2.2 1.34359550 0.3 1.08383246 
8.0 1.47700148 2.1 1.33595521 0.2 1.05662759 
7.5 1.47415061 2.0 1.32783875 0.1 1.02870352 
7.0 1.47075716 1.9 1.31921364 0.09 1.02586931 
6.5 1.46668082 1.8 1.3t004522 0.08 1.02302725 
6.0 1.46173548 1.7 1.30029668 0.07 1.02017727 
5.5 1.45567120 1.6 1.28992908 0.06 1.01731930 

5.0 1.44814827 1.5 1.27890107 0.05 1.01745329 
4.5 1.4386Y943 1.4 1.26716911 
4.0 
3.5 

1.42667468 
1.41116081 

1.3 
1.2 

1.25468729 
1.24140742 
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TABLE 2 

Pro versus A for P,=2.0 

A Pro A Pro A Pro 

30.0 1.99566531 3.0 1.75674842 1.1 1.43055740 
25.0 1.99378314 2.0 1.74677559 1.0 1.40156275 
20.0 1.99075733 2.8 1.73626088 0.9 1.37082749 
15.0 1.98312290 2.7 1.72516999 0.8 1.33825096 
13.0 1.97778900 2.6 1.71346631 0.7 1.30373068 
10.0 1.96361072 2.5 1.70111082 0.6 1.26716417 
9.5 1.95999964 2.4 1.68806182 0.5 1.22845150 
9.0 1.95584057 2.3 1.67427489 0.4 1.18915376 
8.5 1.95102074 2.2 1.65970261 0.3 1.14479911 
8.0 1.94539802 2.1 1.64429452 0.2 1.09865524 
7.5 1.93879165 2.0, 1.62799679 0.1 1.05048639 
7.0 1.9309696i 1.9 1.61075221 0.09 1.04554746 
6.5 1.92163123 1.8 1.59249983 0.08 1.04058509 
6.0 1.91038294 1.7, 1.57317490 0.07 1.03559894 
5.5 1.89670441 1.6 1.55270870 0.06 1.03058867 
5.0 1.87990072 1.5 1.53102834 0.05 1.02555392 
4.5 1.85903477 1.4 1.50805668 
4.0 1.83283118 1.3 1.48371223 
3.5 1.79954054 1.2 1.45790917 
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TABLE 3
 

Pro versus A for P =4.0 

A P ro A Pro A Pro 

30.0 3.98647532 3.0 3.28185204 1.1 2.34942020 
25.0 3.98061584 2.9, 3.25340634 1.0 2.26446465 
20.0 3.96997054 2.8 3.22344931, 0.9 2.17378415 
15.0 3.94757229 2.7 3.19188359 0.8 2.07670250 
13.0 3.93112689 2.6 3.15860465 0.7 1.97448896 
10.0 ,3.88767972 2.5 3.12349993 0.6 1.86668690 
9.5 3.87667309 2.4 3.08644813 0.5 1.75226519 
9.0 3.86402442 2.3 3.04731832 0.4 1.62983025 
8.5 3.84940305 2.2 3.00596910 0.3 1.49741777 
8.0 3.83239442 2.1 2.96224735 0.2 1.35209960 

7.5 3.81247442 2.0 2.91598718 0.1 1.18915376 
7.0 3.78892463 1.9 2.86700832 0.09 1.17161342 
6.5 3.76103487 1.8 2.81511469 0.08 1.15380645 
6.0 3.72753779 1.7 2.76009242 0.07 1.13572033 

5.5 3.68701782 1.6 2.70170777 0.06 1.11734149 
5.0 3.63753356 1.5 2.63977452 0.05 1.09865524 
4.5 3.57648709 1.4 2.57380115 
4.0 2.50036569 1.3 2.50368741 

* 3.5 3.40436783 1.2 2.42902044 
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TABLE 4 

Pro versus A for Ps=6.0 

A Pro A Pro A Pro 

30.0 5.97818805 3.0 4.85050528 1.1 3.35083261 
25.0 5.96874159 2.9 4.80510675 1.0 3.21184389, 

' 20.0 5.95158483 2.8 4.75729023 0.9 3.06353634 
15.0 5.91550730 2.7 4.70689739 0.8 2.90750063 
13.0 5,88903580 2 6 4.65375768 0.7 2.74260186 
10.0 5'.81916754 p2.5 4.59768678 0.6 2.56713263 
9.5 5.80148207 2.4 4.53848518 0.5 2.37875492 
9,0 5.78116498' ,' 2'3 4.47593656 0.4 2.17411590 
8.5!, 5.75768803 2.2 4.46980585 0.3 1.94809778 
8.0 ' 5.73038937 2.1, 4.33983717 0.2 1.69215542 
7.5 5.69843286 2.0 4.26575101 0.1 1.38985430 
7.0 5.66075303 1.9 4.18724149 0.09 1.35592238 
6.5 5.61597981 1.8 4.10397259 0.08 -32111922 
.6.0 5.56233483 1.7 4.01557400 0.07 128537407 
5.5 5.49748709 1.6 3.92163593 0.06 1.24860602 
5.0 5.41835022 1.5 3.82170298 ­ 0.05 1.21072189 
4.5 5.32079442 1.4 3.71526662 
4.0 5.19923231 1.3 3.60175480 
3.5 5.04601154 1.2 3.48052188 
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TABLE 5
 

Pro versus A for P1.=110.0 

A Pro A Pro A Pro 

30.0 9.96230993 3.0 8.02071861 1.1 5.42728355 
25.0 9.94598984 2.9 7.94762822 1.0 5.18463272 
20.0 9.91635353 2.8 7.86036927 0.9 4.92872952 
15.0 9.85405193 2.7 7.77366594 0.8 4.65879094 
13.0 9.80835372 2.6 7.68222058 0.7 4.37221815 
10.0 9.68779554 2.5 7.58571070 0.6 4.06549504 
9.5 9.65729118 2.4 7.48378688 0.5 3.73365882 
9.0 9.62225356 2.3 7.37606757 0.4 3.36929763 
8.5 9.58177395 2.2 7.26213835 0.3 2.96042648 
8.0 9.53471429 2.1 7.14154576 0.2 2.48517268 
7.5 9.47963733 2.0 7.01379247 0.1 1.89421267 
7.0 9.41471222 1.9 6.87833134 0.09 1.82461982 
6.5 9.33758552 1.8 6.73455792 0.08 1.75226520 
6.0 9.24520336 1.7 6.58180171 0.07 1.67679133 
5.5 9.13356413 1.6 6.41931492 0.06 1.59775623 
5.0 8.99736908 1.5 6.24625905 0.05 1.51460253 
4.5 8.82952800 1.4 6.06168748 
4.0 8.62044192 1.3 5.86452363 
3.5 8.35694816 1.2 5.65353259 
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PART II: 

VELOCITY PROFILES NEAR THE INLET OF THE
 
INHERENTLY COMPENSATED BEARING 
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INTRODUCTION
 

One of the main difficulties in the use of analytical or computer solu­

tions of inherently compensated gas bearings to predict dynamic performance
 

is the apparent disagreement with experimental results [1][2]. In the
 

view of this writer the crux of the problem is that the solutions for
 

capacity, stiffness, and damping depend upon the discharge coefficient for
 

the inherent orifice as the flow enters the bearing surface from the inlet
 

hole. Limited experimental values for the discharge coefficient can be
 

found [3], but they are not entirely satisfactory. Furthermore, there is
 

no knowledge of the dependence of discharge coefficients on the frequency
 

of the disturbance.
 

The purpose of this initial study on inherently compensated discharge
 

coefficients is to determine experimentally the velocity profiles near
 

the feed region of the inlet. Eventually dynamic studies would contribute
 

the main effort. This work is only in the beginning stage, and a brief
 

outline of the progress to date follows.
 

EXPERIMENTAL PROCEDURE
 

The characteristic film thickness of gas bearings is at most a few
 

thousandths of an inch. Thus, flow visualization studies require a scaling
 

based upon the Reynolds number [4]. A plexiglass model of the feed inlet
 

was constructed with a slot gap adjustable from 1/8 in. to 3/8 in. and a
 

width of 2 in., Figure 1. A water circulating system was built into the
 

set up with a pump capacity sufficient to achieve Reynolds numbers on the
 

order of 6000.
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Birefringence Effect
 

For many years photoelasticity has been a.very useful method for
 

experimental stress analysis in solids. This method is based on the fact
 

that certain substances become temporarily doubly refracting when they
 

are stressed. An analogous phenomenon in liquids is known as flow birefrinA
 

gence. The photoviscous analysis of the birefringence patterns to determine
 

velocity distributions in steady, laminar flow is widely known [5].
 

When an aqueous solution of commercial organic dye, Milling Yellow NG,
 

is caused to flow through a transparent viewing channel and subjected to
 

polarized light, the fluid becomes double refracting and produces visible
 

interference'patterns which are seen as alternating dark and light bands.
 

The dark bands, isochromatics, represent the loci of points where the
 

The velocity profiles
magnitude of the shearing stresses are the same. 


are then obtained from integration of the shear stress profiles.
 

The optical system used in the experiments was readily available in
 

The basic
the experimental stress lab at Mississippi State University. 


system consists of a sodium-vapor light source, two collimating lenses,
 

two polarizing plates, two quarter wave plates, and an optical bench.
 

Particulate Effect
 

An alternate source of flow visualization consisted of particles
 

suspended in waier. Motion of these particles was recorded in the following
 

A collimated light beam with a width of approximately 1/4 of an
 manner. 


When
inch was projected vertically through the flow from above, Figure 1. 


viewed from a horizontal position, the motion,of these particles was visible
 

in this plane of light. Photographic records of particle motion were made.
 

(1) small hollow glass spheres approximately
Two particulates were used: 


t.001 inch in sze, '2) a ertdin-dishwater detergent which apparently has
 



FIG. 1. Visualization of Flow Over a Corner.
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suspended extremely small abrasives. Trial and error procedures lead to
 

the use of 1/100 gram per gallon of the former and 2 drops per gallon of
 

the latter.
 

Hot 	Wire Anemometer
 

In place of the aqueous solutions above a direct attack on the velocity
 

profiles can be obtained from hot wire measurements using air. This proce­

dure is so standard that no futher summary is given. The biggest drawback
 

to the use of a hot wire is the subsequent interference of the flow field
 

by the probe itself--an unknown effect.
 

RESULTS
 

Birefringence Effect
 

The 	'original plan was tomake use of a birefringent fluid since the
 

flow 	field is unobstructed and the field can be obtained throughout with
 

one 	test run. Unfortunately the literature on birefringence was not explicit
 

in explaining several difficulties when working with Milling Yellow. This
 

approach was abandoned for the following reasons:
 

(1) Very little is known about the rheological properties of Milling
 

Yellow, particularly the relationship of birefringence with
 

the shear stress which is non-Newtonian;
 

(2) 	concentrations as narrow as 1 1/4 - 1 1/2 per cent are necessary
 

and these concentrations show a highly nonlinear relationship
 

with the amount of birefringence;
 

(3) 	birefringence is very sensitive to temperature with as little
 

as one degree variation introducing a sizable error. Pumping
 

losses can account for several degrees change in the solution
 

temperature;
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(4) 	the planned dynamic studies would undoubtably result in a
 

total effort to obtain the rheological properties of the
 

Milling Yellow and very little realizable data on the fluid
 

mechanics of the problem.
 

Particulate Effect
 

After a concerted effort with the particulate solution approach to
 

flow visualization this phase was abandoned for the following reasons:
 

(1) Although the flow patterns were observable to the naked eye,
 

it proved to be very difficult to photograph the patterns,
 

and professional photographers at the University offered
 

little hope;
 

(2) 	the experience also suggested that the photographs, if
 

obtainable, could be used for a qualitative picture of the
 

flow field but of marginal value determining the velocity
 

profiles.
 

Hot 	Wire Anemometer
 

The hot wire anemometer appears to be the only logical choice for
 

establishing the flow field accurately. A test run was conducted by simply
 

inserting a miniature probe into the slot opening and tracing the flow
 

field from the leading edge of the step. Pressure taps were placed at
 

several stations from the leading edge so that the discharge coefficient
 

could be found directly. Tenative results were compared with the analytical
 

work of Hagerup [4]. Some of the findings are as follows.
 

A well defined separation bubble exists and its length is approximately
 

two 	film thicknessgs from the step edge, Figure 2.' This value corresponds
 

to a 	theoretical Reynolds number of 500, Figure 3. The calculated value
 

for 	the test run was approximately 3600 based upon an average exit velocity.
 



12.4 16.2 17.0 17.7 17.3 16.7 15.1 15.5 

124 16.5 17.1 17.6 17.3 16.4 15.8 14.4 

12.6 16.9 17.4 17.6 17.6 16.4 15.8 15.4 

13.2 17.6 17.7 18. 16.7 15.5 15.4 15.4 

13:9 12.8 16.7 17.5 17.9 16.1 15.3 14.5 

14.6 0.8 13.3 15.2 15.8 15.4 15.2 14.2 

15.7 0.68 0.74 1.4 6.9 8.4 13.2 14.3 

H 2H1 3H1 

R 3600 

SOURCE FIG. 2. Velocity Field Near a Corner in Slot Flow (FT/SEC) 
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Hagerup [4] defines the loss coefficient as
 

= 4 kpU 2 Ap 


which has a corresponding discharge coefficient
 

= 1 ]1/2

cd [ 

The theoretical discharge coefficient for R = 500 is cd = 0.88. The calculated 

values from the experiment were cd = 0.88 for a Reynolds number range 2400­

4000. 

The results would agree with the theoretical calculations provided the 

measured Reynolds number was smaller by a factor of 6-8. All velocity 

'measurements were referenced to a "Magehelic" pressure gauge with a direct 

read out in inches of water. There is insufficient data to draw meaningful
 

conclusions from the experiments. It is possible that the probe itself is
 

interferring with the flow pattern. Future experimentg will be conducted
 

with a larger model of the inlet corner.
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