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MOCELS FOR INTERRUPTED MONITORING GOF A STOCHASTIC PROCESS
by Everett FPalmer

Ames Resea2rch Centor ,NASA , Moff~tt Firld,C 041135

ABSTRACT

As computers are added to the cockpmit, the nilot's 4ob s
chanainy  from one of manually flying the aircr~ft, to 01,2 of =u-
parvising computere which are doing navination,quidance 2nd aner-
gy man2gement calculations 3s well as automaticallv flying the
vircraft. In this sunervisoriai role the rilot must 4ivide his
attention between monitoring the aiccraft'z nerformonce and aiv-
ing commands to tn2 computer, In this rap2r, norma2tive stra=-
teaies are developed for tasks where the pilot must interruot his
monitoring of a stochastic process in order to attond to othar
duties. Results are given as to how characteristics of the sto-
chastic procoss and the other tasks affect the ootimal stra-

tejies.

INTRODUCTION

"New York control, this is NASA 1 Aarriving on CARMEL 2 with
an expected arrival time at MERGE waypoint of 14:31:00," "NASA
1, you are cleared to arrive on CARMEL 1, with a mergs time of
14:32:10." This exchange hetween pilot and controller occur~d4 in
a rzcent Ames simulation study of 4D RNAV in the termin-l
area(l,2). The pilot was cleared for a different PNAV apbproach
route and arrival time. The pilot next entered this data into
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nic onboard navigation and quidance comnuter. Tn 4o0ina this he
n*1 to divide his attention between monitoring the 3jutonilot's
norformance with Y13 flight instruments »n?  satering data  into
ths comput>r through hiz multifunction Aisnlay »nd keyboard4, (b=~
gsarvations of how nilots dividad their attention hetwesn monitor-
ing and data entry tasks in this simulation study wers the
motivotion for the modeling of attancion sharing oresented in the

presant paper.

Tne environment in which the pilot interacts with his on-
norcd computer is quite differonc from otner jobs wnore » nerson
interacts with 3 computer. In 3 manag~oment information system,
t2l20n2rator control, or in most human inter~ction with 3 comput-
ot, tne computer is, or can 23sily be nalted to allow the person
time to think and plan his next input. Here the nerson and th»
computer work s2quentially. When an aircraft is being controlled
in real time by a computer it can not ' : stopped while the nilot
leisurely inputs his commands. 1In this environment both ~omputer
and man must work in parallel. The pilot must interrunt his mon-
itoring to interact with the computer. He must 21so interrunt
thnldiscrete tasks to monitor. Other ~haracteristics of Aiscrete
tacks and monitoring in the cockpit arec the following. The
discrete tasks are pres2nted at random. Theoy should bhe accom-
plisned by a certain time but usuilly plenty of time is available
to do the tasks. Attention must be diverted from monitoring for
fairly long blocks of tim2 (seconds) to do the Adiscreta tasks.
I'ne displays the pilot must monitor show the ~rror between his

v2hicle's state and the desired state. When the aircraft is con-
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trolled by an auvtopilot; these signals are relatively low
bandwidth 31ancls that should be monitored for out of tolaranece

readings.

The objective of this research is to deotermine how design
parameters of botn Adisplays and the computer interface affect
monitoring and data entry performance, 1In this paper, a task |is
joveloped which has many of the above characteristics but which
is simple enough so that the attention allocation nroblem has =n
optimal snlution. Tnhree models bas~d on the internal model con-
cept are developed for this task., 1In the first two,the pilot is
rewarded for diverting his attention from monitoring to 4o
discrete tasks. The third model treats the discrete tasks as 2
constraint and «c<hen uses a dynamir nrogramming formulation to
maximize monitoring performance subject to the constr2int of fin-

ishing all of tnhe discrete tasks on time.

SPECIFIC PROBLEM

Process Dynamics: The subject .s to monitor the output of 3

first order filter driven by white gausian noise. The display
(fig.l) is quantized in both time and position. The Adisplay is
uodated ecvery 2 seconds and is quantized into 11 cells, .57 o
wide. The display is defined ns being out of tolerance if it |is
in the outermost 2 cells (Ix| > 1.75 o¢ ). The process bandwidth
determines how predictable the signal is. The ratio of the toler-
ance to the output variance detcrmines how freauently the siqnal
will be out of tolerance.

Monitoring Task: Whenever the subjaect ohbserves the process as be-

=




ing out of tnlersnce h2 qots a roward of on? unit,

Dicceet > Task: At ecach time at which the display irs obsorved, the

cubject decides to either monitor next time or to divort his at-
t>ntion to th»> discrete tasks for one or more units of time, Two
nethods of r2warding the subject for doing discrot~ tasks wore
invastigated., in the first method, the subiect is aivean 2 rowarAd
of R units for >vory discret2 task done. If R is zero the subiject
would 2lways monitor =nd if R 18 qgreater than the stoady state
orobability that the signal is oul of tolerance the subject woulAd
“lwiys do discrete tisks. The obhjective w2s to maximize the to-
tal reward from monitoring and Aiscrete tasks, In th~ second
mothnd, the subject was constrained to Ao m discrete tasks in the
n>xt n time units. The objective was to maximize the reward for
monitoring subject to the constraint of finishing all of the
iiscrete tasks . The constraint formulation se»ms to he more ac-
curate description of the real sitaation. In addition , it hae
tne large advantage of not requiring the exocrimenter to specify
the relative worth of time spent on monitoring and Adiscrete
tasks. Unfortunately this formulation 1s computationally more

11fficult.

THEORY

A review of the literature in the fields of manual control,
human factors and psychology found a number of empirical studies
which required the operator to interrunt monitoring tasks to do
discrete tasks. Models have also been developed for either in-

strument monitoring or discrete tasks. No mpavers were found

i
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snich 11dress~d the vroblsm of what strategies operators uen,or
should us~, to time share their -“ttention betw:>n monitoring and
di1crote tisks., [Howevar, Smallwood's nmanor (3) on hum'n inestru=-
m>at monitoring proposes an ~pproich which ¢an b anplicd to the
presant oroblem, Thie oproach rakes th2 rrasonabls assynption
that th~ on r-tor has an internal moil-1l of the nrocess he ‘& mon-
itoring and of th» anviorrmental factors that affrct the procnse,
This intesnal mod21 can be used to oredi~t the future beohavior
oL tam pco~ras, Smallwood makes the following assumntions that
le~cibe how the noerator r~2acts to onviornmental innute,
Azsumption 1: The human oporator bases his state of infor-
mation ~bout his ~onviornuent upon an internal mod=2]l of this
savironment; the model 1s formed 28 3 result nf past morcen-
tions of his 2nvironment.,
Assumption 2: Th2 human opora‘’or behaveos optimally with
respect to his task nd nis correct state of information-
within his osycho-physical limitations.
The structure of this model is shown in figure 2. The «:y proh-
lems 1in wusing this aoproach are to discover the form of the
operators internal model and the optimal response., Tf the oprra-
tors model of the process 1is exact anil he has no nsycho-physical
limitations the resulting mod21 is normative. Introducing errors
in the internal model and psycho-physical limitations such 23s oh-
servation noise and errors in the operators internal model con-
vert the original normative model into 2 4discriptive model of hu-

man behavior.
In the following models, it ic assumed that the operators

sBa
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intornal model of the process and onviornmental disturhances s
axact, He knows the parameters of the process and can use this
knowledqge to predict the probability of beina in a particular
state given he was in a known state n seconis ago and hac not ob-
scrved the process since that time., For a first order process
with bandwidth uy, the distribution of the nosition of the
display after last observing the display t seconds ago a2t posi-

tion L is a gausian distribution with

mean m(t) = xee'wt

variance v(t) = Gg(l-e- 2w £y

Fiqgqure 3 plots the mean and variance of this Adistribution and
the probability that the signal will be out of tolerance in the

future for various values of Xy -

Myopic Model: "n this modesl a decision is mad~ at each stage

to either monitor or do a discrete task next timn depending on
which activity maximizes the immediate expected reward. 1In other

words find

z = max [(l-x) b P..(k) ¢ xR]
x=0,1 i out *J
if x=0 then monitor next time.
x=1 then do a discrete task next time.
where
Pij(k)- the probability that the process will be in state 1
next stage,given the process was 1in state i, k

= ¥
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stajes a9o.

P(out|1i,k) = gur Pij(k) = th> nrobability that the orocess
3111 b> out of tolerance next stage qgiven the nro-
cess w2s in state 1, k stages aqo.

R= the reoward for doina the discrete task for one

stago.

Another way to think of this strateqy 1s to find the maximum
v~luer nf k such that P(out]i,k)<R after each obs~rvation of the

state i and then Airect attention to discr~te t=2sks for % stages,

As a enecific example, consid:t th2 case where o, = 1.7 and
w= 0,2, Table 1 jives valuers of P(out|i,k). 1If the abovs Adeci-
sion rule is followed at each stajg2 the strateay in Table 2 will
be obsecved for different values of reward , R. For cxample if
R=0.748, tn+ subject snould continue to monitor whenaver the pro-
cess 1is observed 1in states 1 to 4 and divert attention to the

otner duties for three stages whenevar the process is ohserved

in state 5 or 6.

‘Fiqure 4 is a plot of two measures of 1 constant sampling
strateqy. They are the fraction of time spent doing other tacsks
or not monitoring the display,f(tasks), and the fraction of ob-
served out of tolerance siqgnals to the total out of tolerance
signals, f(hit)=p(hit)/p(out), for various values of Adiscrete
task reward and strategy. These values are calculated as fol-

lows:
f(tasks)sf d, ui/z @ + 1w

= =



P(hits) = 3 " (1 - f(tasks))
1 out
where
11- the number of stages devoted to discrete tasks after
the display is observad in state i,
m.= the steady state probability of the process being
observed in state 1 when the fixed time sharing
strateay specified by ji is followed. The elements
of the observed "single" step transition matrix are
pij(dj)'
I'n2 expected reward for following this fixed strateqy is,

E(R)=P(hit)+R*f(tasks).

Figure 4 shows that for a first order disnlay with »
baniwidth of .2, 85% of the out of tolerance siqgnals will be ob-
served even if only 59% of the time is spent monitoring and this
myopic strateqgy is followed. Figure 4 also shows the monitorinag
prrformance th2t would be expected if the pilot could make nper-
foct predictions and his expected performance if he could make n¢
predictions. As the bandwidth of the process decreases and th:
signal becomes more predictable performance aonroaches that pos

sible with perfect information.

This model has the advantage of being very simple and it cz
be easily extended to continuous state and continuous ti
processes. Unfortunately this model does not appear to maximiz

the long term expected reward for both monitoring and othe
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t:228, This model neglects the future valur of knowing what
state the process 18 in., The neyt three models use a3 Aynanic
programing formulation to exolicitly account for these futuro

values,

Dynamic Programing models with Rewards. The following dynam-

ic programing model maximizos the sum of the zxpected immediate
rewards anl tne future rewards.
Definc
fn(i,k)s the maximun expected return when the procescs was ob-
seeved in state i, k stages ago and there are n
stages left to go.
Jn(x,k)-x-ﬂ then monitor next time,
x=]1 then aiscrete task next time,
R= discrete task reward.

than

£ (i,k) = max J(l-x) ( 3 P, (k) + D3I P (k) £ _.(%,1))
5 x-o,ll I out 1! § 1 =

+ x (R+D § Pij(k) fn_l(j,k+1))]

fo(i,k) =0

The terms premultiplied by D are the future values. If D=1 , w~

have the optimum dynamic programing solutio.w., if D=7 this model

reduces to the myopic model.

In the next formulation a decision is made after each moni-
toring obsarvation of how many discrete tasks to 40 next. The

= Es



Jecision may be to do no discrete tasks in which case the opera-
tor continues to monitor. To make a decision involves using the
"internal model” of the process , the Pi‘(k\'s, to predict the
probability of being in each state in the future. This formula-
tion is 2auivalent to the above [nrmulation but because (it uses
one less state it is computationally more attractive,
Define
fn(i)- the maximum exvected return when the nrocess is ob-
norved in state | with n stages to qo.
dn(i)-q- the number of discrete *asks done bofore the noxt
monitorina nbservation when the process is obsrrv~A4
in state2 i with n stages to g0.

R = reward for doing one discrete task. then

£ (1) = max R a + 3 P, .10+ S0 i) ¢ (4s]
s q.ﬂ‘l'...n [ ] out 17 i lj n-a-1

foli)=0

Table 3 shows the steady state solution to this normative
model for tne same parameters used in the myopic model, w= .2, o
= 1.A,T7T=1,75 , for various values of R. Mote that for a
discrete task reward of 0,067 the steady state decision for state
6, the conter state, is to look away for two stages where 3s the
myopic strategy is to look away for 4 stages. This difference in
strategies is because the value of knowing the process is out of
tolerance 1is greater than the immediate reward for observing the
process out of tolerance. For a given discrete task reward,PR,
the steady state decisions of the myopic model 2and the dynamic

-10=-
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nrojraming noiel become more divergont ag th~r process hanlwidth
jecrerases and the sianal becomes more predictahl», Thage steady
state solutions wer~ obtained by using value iteration and assum=-
ing that the steady state had h2en r»~ached by stage A, They can
also be solved by a modification of Howard's nolicry iteration

techniau> (4) that allows for looking ahead o+4) staqes,

Figur * 5 plots the cxpected steady state reward per stago
for both monitoring and discrete tasks 28 a function of the
dieccets task reward, R, for 4 values of orocrss bandwidth, Whan
R=@ , the total reward is just A.P8 , the stealdy state nrobabili-
ty that tne process is out of tolerance., This 1is the axpected
reward per stage of always monitorina. Th» dAianonal line shows
the reward receivad for always doing Adiscrete tasks, The unner
di~gonal line 1s the maximum cr~ward with onrfrct knowledae of
what the siqgnal will bo in the future. The qraph shows that an
optimal time sharing stratogy results in a gairn above the two
lower bounds and below the upper bourd. As the process bandwidth
decrecases the gain becomes closer to that nossible with perfect
information. Note that the maximum advantage of an optimal stra-
tegy over a nonsampling strategy occurs for R=0,08 - ths steady

state probability that the process will br out of tolerance.

One disadvantage of this dynamic programing model is that it
tequires R, the reward for doing disccrete tasks, to be specified,
In any real task it would be very d4ifficult to determine an actu-
al numerical value for R. Even in a laboratory task in which the
sxperimentor tells the subject the valur of R and the subject
uses a time sharing strategy similiar to the model, it is doubt-

«ll=
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ful tnat the gubject's implicit value for 1doing diesce te tasks
would aqre>» with the cxplicitly specifiecd value of R, One solu-
tion to the problem of rewards is to use the reward only to qgen-
erate the samoling strategiz2s and then pick the strateqy that do-
vot>s the appropriate amount of time to discrote taske, Fiaure &
plots the fraction of hits, f(hits)=p(hit)/n(out), vs, the frac~-
tion of tim2 i»voted to discrete tasks,f(taskes), for both the
dynamic proarming strategies and the myoric etrateqies, As can
be seen , tn» curves are essentially id-ntical. The rewards for
a aiven stratzqy and the strategies are Aiffeorent but when moni-
toring performance is nlotted against f(tasks) instead of reward,
the graohs ar» essaontially identical. This voery is promissing
for modelins ~nitoring of multiple higher order nrocesses be-
causa th myopic strategy is only based on the probahility that
the signal will be out of tolerance in the future, not the probs-
bility of which specific state the process will be in as required

in the dyninic nrogramming formulations.

Figure 7 shows how the fraction of hits changes when a ob-
timal sampling strategy is followed for wvarious oprocess
bandwidths. As the bandwidth decreases the performance ap-

proiaches that possible with perfect information.

In many discrete tasks there is the eguivalent of a set wuo
cost each time the task is started or rostarted after being in-
terrupted. For example, in entering data into a keyboard, someo
time is lost while the pilot shifts his attention to the keyboard
and positions his hands. This type of set up cost can be included
by introducing nonlinearities intoc the reward per discrete task

s



fonction., In figure 9, C is the sct uo cost, When C=01 wo haye

the normal case considered above.

Figure 9 shows that as set up cost increases monitoring per-
formance rapidly docreases to that possible with no predictive
information of the processes future state. When a set up cost is
involved the formulas derived above for f(tasks) must be modified
as follows.

£ (t28ks) a' /
(t2sks f i 'i ? (di + 1) L

whore C= the number of stages wasted duc to the set un cost,

C.

*
d, =d, -C ifa >¢C

=0 i di ¢ C
f(tasks) is now the productive fraction of time spent on discrete
tasks. The fraction of time wasted because of the set up cost is

given by;

*
f(waste) = 3 (4, - d;) /3 (4, + 1) w,
i i

The fractior of time spent monitoring is just;
f(mon)= 1-f(tasks)-f (waste)

Dynamic Programing model with Constraint. Like the last fo:-

mulation, a decision is made after each monitoring observation
of how many stages to devote to discrete tasks. However instead
of rewarding the subject for doing discrete tasks, we will con-

=) %=



strain him to do oxactly m discret~ tasks in the next n stages
(m<n) .,
Dofinc
fn(m,i)z th> maximum expected roturn when the procrss is  ob-
served 1n state i1 with n stages to go and m discrote
tasks remain to be done.
dn(m,i)-q- the number of stages devoted to discrote tasks bhe-
fore the next monitoring obhservation when the nro-
cess is obsorved in stat2 i with n stages to Ao,
C= set up cost, the number of stages wasted when attan-
tion i35 shifted to discrete tasks,

q=q=-C if a-C29

= {) if a=-C<9
than
*
£ (m,i) = max b3 P..(q) + 3 P;afg) £ ___ . (Wm=q .ﬁ)]
9 Osqgm[ jout 1J ail % ] Reged
£.imyi) = 9 if nen

In this formulation, the frastion of the remaining time
which must be spent on discrete tasks is just, f(tasks)=m/n anAd

the fraction of hits is fn(m,i)/n at state (m,i) and staqge n,

Figure 1@ plots the fraction of hits vs the fraction of
time snent on discrete tasks for three different values of n, the
number of stages to go. Not~ that in this formulation the moni-
toring performance 1is slightly less than the other two formula-
tions and verformance degrades further as the number of stages,n,

el
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llowel to 40 th: tagks ie further r2duc2d4, This 18 as expected
bacaus the subiset ie zonstcrined to spen? oaxactly T out of the

naxt n stagss on disceote tasks whore as jn tha oarlier modesl the

suuject had no limit 23 to how Jona he ~ould oostnon~ the

discrotn tasks,

Figqures )1 and 12 sanow the effect of a liscrote tagk <t un

cost on s mnling stcat gy a4 monitoring merfarmance, As the sot

un coHst incr2arc s, tne host strateay is to look away for lonasr

ini longzc oeriods of tim» when the disnlay is obsrrved

near the

conter., Witn 2 set up cost of 2 , if tne disclay is observed in

the contor th2 best oolicy is to complete all of the
tagsks with no 1nt=2gcuntion., Thic is why the monitoring
mance shown in firaure 12 for a 3ct up cost of ? ie =0

th> performanc? tnat is nossible when no predictions ~rn

diecrete
oerfor-
close to

made,

Fiqure 13 shows tae sensitivity of monitorina nerformance tn

diecrote task chunk s12zo - the minimum number of stag~s which

must be son2nt on discrets tasks. Note that when the

minimum

chunk siz2> 1is 5 that tn- decrement in oerformance is onlyv larne

when less than 2bout 609% of thn2 time must be spont on

Aiecrote

taskss Tnis is becaus» above AA% the ontimum strateqy is to look

away for more than 5 stages so that chunk size is less o

f a con-

straint on oerformance. Finally fiquce 14 shows the sensitivity

of monitoring pecrformance to Adisplay t~lerance.

CONCLUDING REMARKS

In this narer the g2neral problem of %ime sharing

) S
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b twron monitoaring and othor dutias has heen described and  one
myopic aAn1  theee dynamic programing models hayve heen presented,
1ouael pecrformance wag presented in terms of the fraction of out
of tolerance sianals seen as a function of the amount of time
spant on non=monitorin) duties., This way of viewina oerformance
2liminates the difficult nroblem of specifying relative rewarAds
for monitoring and other dutirs, 1Tt allows an ~oprobriate stra=-
tejgy to be chosen brsed on the fraction of time that must be Ae-
voted to otnor duties, The offect of such parametears as ororess
bandwiath and tolerance and discrete task set up cost and churk
3122 on monitoring pecformance and normative time sharina stra-
teqirs was shown., Future work will extend these models tn mul-
tinle s2cond order pbrocesscs and incormorate human limitations

such as observation noise and internal model errors.
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K\ 1= 1 2 3 4 5 q
a .597 »422 «192 .A57 Ne 82
1 461 s a9l « 189 073 AR +A18
2 « 326 218 «138% .N7P A7 . B35
2 o { b 118 .30 157 .N51
A . 188 B Y 7 105 .N80 . A6¢ A50
5 i 2 SR .97 .N80 070 0”7
4 128 .108 ,N92 .739 +172 +27)
rabins 1. Valu2s of P(outli,k) the nrobability tho proc~38 will bhn

out of tollerance noxt stajgs given the nrocess wir in
state 1, kK stajgas ago for a first order procass with
o =1.0, wm=,2 rad/stags nd T=1,7%,

R i=]l to 3 4 5 )
08 to ,782 9 n f 7
.12 to 014 A 1 n 1
010 to .018 fn g ] ]
AN1% to .A31] a J ) 2
«331 to .938 2 1 2 2
.036 to ,047 A 4 2 3
+H87 -6 059 n 0 3 4
251 to ,052 1 0 3 4
.A52 to .760 a 1 a a
.0580 to .65 0 1 a 5

>.082 always 2lways 1lways 2lways

Table 2. The number of discrete tazks that will be done qiven tho
process is obscerved in state i for various rang~=s of ro-
ward R if the myopic strateay is followed for a firrct
order process. (oc=1,0, 1=0,2 rad/stag>, T=1,75)

; R Strateqgy - d4q(i)
gain/stage '
i=]l to 3 4 5 45
.02 (4} ] 1 1 .A85
.04 0 ) ] 2 . 991
.06 6} 0 2 2 107
.78 0 1 2 3 .109
.19 4} 1 3 4 18
N D 9 1 4 5 =E L
sa B [} 1 3 A =T
.16 0 2 8 9 L1672
.18 0 29 29 29 180

rable 3. Steady state solution to the Adynamic proaramina model
with rewards.
(o=1.0,w= 0,2 rad/stage, T=1.75, P(out)=n,AQ2)
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NUMBER OF STAGES, n,
LEFT TO FINISH
DISCRETE TASKS

32 16 + + 0 + 4+
31 15

20 14

29 14 + + + +
28 14 + +
27 14 + + - 0O + +
26 13

25/}; + + )? CRE

NUMBER OF DISCRETE "~ DISPLAY INDICATOR
TASKS, m, LEFT
TO0 DO
Figure 1. Drawing of the quantized monitorina disolay. A new

line was added eovery 2 seconds.
tized into 11 cells - .50 o wide.

of tolerance if it was in the outermost 2
cated with the + signs. At stages 32 and 27 this sub-
from the display to do
discrete tasks for 2 and 1 stages respectively.

ject decided to look away

TASK , INTERNAL MODEL
OF ENVIRONMENT

SENSORY

The display was auan-
The display was out
cells indi-

ENVIRONMENT

SYSTEM

OPTIMAL

DECISION

Y ACTION

Figure 2. A block diacram of the human
(3)).

LT

monitor (from
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Figure 4. The fraction of observed out of tolerance signals vs.
the fraction of time spent doing discrete tasks for
the myopic sampling strateqgy.
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