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MOGEL`, Pi p IN • I'ERRUP'PED MON!':'ORTNG GF A STOCHASTIC Pk ,rr r' i

by Everett Pilmor

Nm(^s Res2 ,irch conter,NAS^,'1off-tt Fi^1d,CA	 04i35

A^STPAC'J'

As comput^rs ire --,dded to the coc k p it, th y? nilot' i inh is

^haniin -i from ono of minually flying the nir-r-ft, to o^.^ of -^u-

"r 3 i g in .j _onput^rs which aro loinq n -ivii.itlon,quidar  nn- •-n-r-

qy	 -nor	 t	 calculationr	 -is well as -+utomatical lv flvina th-

iircrift.	 In this	 suon rvirorini role th^ rilot. mu:=t - l ivid-	 his

,,ttrntion hetwr.r±n nonitorinq	 tho ?ir^rift'^ p%rform-nc^ an- ni•. ► -

in(i colimin-is to tn- ^ omoutnr.	 In	 this	 r.an^r,	 norm ,, tiJe	 q tr^

 -t ,ins -)ro iev.loped for tasks whore the p ilot mu 7,t interru p t his

monitoring of a stochastic oroc• ss in or:3er to 	 attl-•nd	 to ot`) - r

duties.	 Results are givi-•n ns to ` p ow characteristics of the sto-

chastic oroc , ss 3n-i the other	 tasks 2ff n ct	 the ontim .--1	 stra-

tot i,:!s.

I NTROoUc'I' ION

"N^w York control, this is NASA 1 arrivinq on C' k RMEL 7 with

an ex pected	 arrival time at MERGE waypoint of lA:^]:^l'!." "NAS ►

1, you aro cle•, red to arriv^ on EARMEL 1, with -i merq- 	 tim- of

14: 32:10."	 Phis exchange between p ilot -and contrail^c occur-d in

a recent Ames simulation stu.-ly of 40 RNAV in the terrin,l

area(1,2). The pilot was cleared for a different PNAV approach

route and arrival time. The pilot next entered this -lata into

-1-
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ni ,7 on`3o.ard nivi'l-ition ,nn9 guidance comnut r r.	 Tn doinn	 this	 h,-

,1>1	 to	 diviJ-	 his attention h(, tw r, (, n ronitorinq th,- autopilot's

n-rform-nc--^ with ' Il , flight instrum ents , n'	 -nt - rir.q	 .jat,	 into

th rnmout 'r thr:altgh iii- -ul t i funct ion 1isol iv n1 k-vbo-r i. 	 (.h-

s rv:itions of how )iIor -, divi32d their -attention hntw- - n nnnitnr-

inq an ,3	 9ntn entry tasks	 in this simulatinn stud y wa r- th-

motiv • tion for th^ mo'lelinq of att-nc ion sharinq nr ^sonted in th.-

p r P s-% nt paper.

Ttw environm-nt in which the pilot interarts with his or-

no rd computer is quito differcnc from other lobs wn^re - norson

inter,. is with 3 comput?r. 	 In i mn'n3 rj ^ment 	 inform-tion	 systn;r,

t-^l-, on r!rator control, or in most h 1 ar.3n intorrctton ,vith a co-nnut-

cr, tn^ co,rput^,r is, or cc.n --isily be n-^ltc-d to illow the person

time to think and ol3n his next in put. Here the n^rson and th,

cornoutcr work s? q uentially.	 'Then an airrr3ft is heing controlled

in re3i time by a com puter it ran not	 -,tnpp^d •ahil^ th- nilot

leisurely inputs his comm3nds.	 In this environm-nt both •-mmnut—

-ind m-in must work in o3rallnl.	 The p ilot -u-;t intnrruot his Tnrl-

itorinq to interact witn the comrutor. 	 He must 31so int^rrunt

th em liscrete tasks to monitor.	 Other r ^i3ract^ri^ric of 'Iisrr-t(-

tasks and monitor inq in the r-ock p it arc th , followinq.	 Th-

Jiscrete tasks 3rr , presented 3t random.	 rhay choulrl he accom-

plished by -a 	 time but usu311y plenty of time is available

t:) do the tasks.	 Attention must be diverted from monitoring for

fairly lonq blocks of tam^ (seconds) to do the discr-t- tasks.

I'ne displays tha pilot must monitor show the ^rror hetwn-n his

v3hicle's state :and the desired state. Wn^n the .3ircrPft is ron-

m	 i
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an	 auto p ilot,	 these	 iign-Is	 irn	 r^1-4 ti-oI Y	 low

b :n1wi ltn 3 i ntls that should b^ monitored for out nf tol^r'inee

rea:iinys.

The objective of this reseirch is to d ^termine how rIesign

nar : cneters of botn disnl iys and the computer interf -.A •3ffor-t
F

monitoring and data i_-ntry perform3nca. In this n3oer, task is

Joveloped which has many of th.- -ibove characteristics but which

is simple enough so that the attention allocation nrobl^m his nn

o p timal	 snlut inn .	 Three modi-is h,-s-d on the internal model con-

cept arc devaloped for this task. 	 In th- first two,th^ nilot	 is

rew-irded	 for diverting his attention from monitorin g t^ ao

discrete tasks. Th^- thir^7 mod r̂ l tr , ts tha ,li c crett-	 tasks	 as

cons t.rairit	 and	 L  n uses	 a lyn .-mi^ orogranminq formul -tion to

maximize monitoring performan-e subject to the constraint of fin-

ishing 311 of	 tn r̂  discrete tasks on time.

SPECIFIC PROBLEM

Process Dynamics: Th:^ subject .s to monitor the out put of

first order	 filter driv n by white gausian noise. 	 T. e display

(fiq.l) is quantized in both time and position.	 The display	 is

u pdated -very 2 seconds and is quantized into 11 cells, .5P (T

wido. The dis play is defined beinq out of toleran,:A if it is

in the outermost 2 cells (Ixl > 1.75 a ). Th,, process bandwidth

determines how predictable th•^, signal is. Th y ratio of the toler-

ance to the out put vari,3nce aet , r.mines how frnouently thn signal

will be out of tolerance.

Moniturin3 Task: Whenever the subject observes the orocess as be-

-3-
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inn -iut of t1l c,r -.n.-^ h-^ q^t s a r^w:rI of one unit.

nir. . • rct , Task: At c !ch tim ,, at which th- IisoI -y it oho N r  	 ho

subj0%t	 j ,-ci le' to C-ith n r monitor next time or to 10.' rt. hi , at-

t ntion to th e discrets, t -isks E,)r (ine or mor n tin it-, of tim n .	 Two

r^.. hods	 4.)f	 r _^w3ruinI	 the subject for doing liscr n t , tai i -. w r-

i nv : t.tq-1t0d	 In th- first method, the suhi^,t in oi— n -+ r--w-irl

of N u.iits for Nv-ry _iiscrct-^ task done. if N ► r zo.ro tho suhl-ct

.mul.j ilw-) ,/s monitor -nd if R is greater than	 the s I 'idv state

orohabi I ity that tho signil is ou+ of tol ,̂ -ranr,n the suhiect woul-1

-I%.)ys Rio discrete tisk5.	 'fh , nhic-tiv:- w--^ to MIXimize the	 to-

I	 rewirI	 f ram muni for inq	 an y? discrete t inks.	 In th- sPrnn,l

T-triad, th- subj^ct w-in ,onstrnin n I to rlo m rliscrnte task; in th('

n , xt	 n time units.	 The obi-ctiv- wIs to 'naKimi? n th^ rewar A fnr

monitorino subj^ct to th ,n .onstrjint of	 finishing	 111	 of	 th n

-lis^rote t-isks . The con ,;t.raint formulation	 to ho more r-

cur-te description of th- real situlcion. 	 In 11.1itinI , it	 -1 C!

the largeadvantage of not requiring the exrioriment n r to soccifv

the rclativ p worth of time spent on monitorinq	 in,-1 disorntP

1%-4 sks.	 Unfortunately this	 formulation	 is com putationIIIv Tore

Difficult.

THEORY

A review of the literature in the fields of manuil 	 control,

human factors and psychology found a number of 	 studi^s

which required the onerator to interrunt monitorinq tasks to Ao

discrete tasks.	 Models h3v:3 also been develone'l for either in-

strument monitoring or discrete tasks. 	 No rn	 r 	 were found

-4-
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.4nicii iidre-,o-A tic orobl , m of whit strategies onr , rito r s t -,0-

s	 u1	 us	 to tlmn share their - tt^^ntion b-cw n moni^orinq an^l

d r	 ate task;.	 (loats var, SmaI Iwo , ) , l I s nan• r f31 )n huT n	 in C trii-

m • 1t coon t for inq ;)roposes are ?ppro ch wh i e-h c nn h ar,pl i , I to thn

pr^a'nt o; obi -m. :I) iF inoroac . 1	 Takes t;l-+	 r aso i-ohl ^	 -4S- u rnt ion

thit th- an-r-tor his an internal mo-'-1 of tn,- nrocs-s- h,- :s m or, -

itorinq 3n ,] or th , ^nviorrm--nt3l factors thit iffrct thn nrnrnse.

1 is	 irtn. „-1	 mod -A can be used to ornl t -t th- (' utttre br• h^•,ior

of t V, n(	 -S.	 'm;llwoo i mik es : th-2 fallowing	 aSSu-notions	 this

I r^vibe ho-i tho Winer- for r-acts to n nviorrment3l innnt-.
i

I	
n- .o-rption 1 :	 The hu:r.n or) - r3tnr h3sos his statn of	 infor-

mation ma hout his -nviornxont upon an internal mo , '-1 of this

•nvironrnnt; the model is former ?s 3 rosult of Dist r)n rc^o-

t ions- of. n i	 in iirommnnt .

k3sumpt ion 2: Tha hum-,n nn - ra l.nr hehav -3 o p t itri l 1 y wi th

res pect to his task .nd nis correct state of information-

within his nsyc!io-physical limitations.

Th- structure of this model is shown in figure 2. The oroh-

lems in using this 3npronch ar^ to iisr-ov^r the form of the

operators internal model and the optimal responso. T f th- on^ra-

tors model of the process is exact ani h^ has no psycho-physical

limitations the resulting modal is normative. Introducina errors

in the internal model and p sycho- physical limitations Such as oh-

servation noise and errors in the o perators internal model con-

vart the original normativc model into a liscriptive mod-1 of hu-

m-in behavior.

In the following models, it is a^sum-1 th.3t the onerators

-5-
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int^rnil	 modr•1	 of	 thi process	 znj	 -nviorr.mont^l disturhane	 r,	 is

'b xa^t.	 Hc,	knows	 the p3rim(-tors	 of	 the prn-ess and can	 use	 this

knowlcOv to predict th^	 orobahility of beini	 in ,	 nirticular

st	 tc	 iven ne was	 i n known	 st ite	 n	 sec^^n is	 a q o •^n^l	 hir	 not	 oh-

served	 th,^	 proc-ss	 since thit	 time.	 For a	 first ores	 process
r

with	 hancl aidth	 -ut, the	 distribution of	 tho posit inn of	 thoJ

dis p lay	 after	 last	 observing the	 disuloy t	 secon-Is aqo	 it	 posi-

tion	 x (•)	 is	 a	 jausiAn distribution	 with

-
me 3n	 m(t) : Xa0% 

v.it

variance v(t) = (T2 -e -0

Figure 3 nlots tho mo•-,n .and varian . -^ of	 this	 distrihution	 )n-1

the nrob3bility	 that tho sign31 will h- out of tolerance in *h'-

futurn for various valu es of x I .

Myonic Model: 'n this mod-1 a -lecision i, ma-1- it - 7h -r-:q-

to either monitor or do a discrPto tisk next tim- d-nn ndinq on

which activity m-3ximiz,_-s the immP.Iiat m cxnected rew-4 rd.	 Tn oth-r

words find

Z =	 maK	 (1-x)	 I	 Pij(k) + x«
x =9,1	 i out

if	 x=O then monitor n-Kt time.

x=1 then do a discrete task noxt time.

where

P ii (k)= the orob-ibility that the nrocoss will he in state 	 i

next stage,given the process was	 in stats- i, k

t	 i	 i

F	 •.

9 .
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P(outll,k) _	 I	 Pi^(k)	 th, nroh-ihility	 that	 th-	 nrocpss
j oiit
will	 b	 out of tolerance n e xt stage givr% n th e nra-

cess was in state i, k stil'% s Aio.

R= tno r-ward for doin7 the+ dincrotr task	 for ono

Sta.p.

A notn , •r w,iv to think of thi.° strategy is to fin1 th- miximum

v - I Li^	 of	 k su^h that P(outli,k)<R after each ohs-rv ,ition of the

state i 1n1 then direct att e ntion to diner-te t,sks for k ntaq^s.

As a snecif is ox-imolo, tonsil . th-, craw whrro rt, = 1. 14 -in,]

w	 :'.2.	 Tablc 1 gives valuer, of P(outl i,k) . 	 If ttia ')ho-.;, 'inri-

:Aon rule is fol low(A it each stag y :h` str'% t e ,iy in T-hl p 9 wi I I

be	 obsc:ve ,s	 for diff-rent values of r^_, w,3rrl , R.	 For cxamnl ,^- if

R=0. 1148, tM  subioc • t snould continuo to monitor w oi e n ^ver the cro-

C I SS	 is obsarvad	 in states 1 to 4 -end divert attentinn to the

o gler duties for three stages whenev w r the process is observr-d

in state 5 or 5.

•	 Figure 4 is 3 p lot of two measures of a constant SAMnling

strategy. They are the fraction of time sr) e nt doing other tasks

or not monitoring the disnlay,f(tasks), and the fraction of oh-

served out of toleranc e signals to the total out of tolerance

signals, f(hit)=p(hit)/p(out), for 	 various valu e s of	 discrete

task reward anal strategy. These valuPs ire calculated is fol-

lows:

f(tasks) = 2 d i x i / i (d i + 1) ni

-7-
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V(hits) -	 1	
0  

(1 - f(tisks))
I out

wh#'r e

I

	

	 th-2 number of stages dev ,-)te] to riiscrnt p treks aftrr

th , dis p lay i s ohserved in state i.

n 1 = th^ st p i'ly state probability of the process h-ing

ot;--, rved	 in	 st :it r'	 i	 whon	 tho fixed time sharing

strat -iy spocified by d i is follo.scd.	 Thr, elem - nts

of the observed "single" :ter) transition matrix ire

Piz
(,Ai) .

me expected reward for following this fixed strategy is,

E(R)=F(n it) +R *f(tlsk!^).

Figure 4 shows that for a first or-lor -lisrnl-iv with a

ban .''Awldttl of .2, 851, of the out of tolerance si g nals will be oh-

served even if only 59% of the time is s pent monitorin g and this

.nyoplc strategy is followed. Figure 4 also shows the monitorini

Performance th-t would be ex pected if the pilot could mak- oer-

f?ct predictions and his exoected performance if hA could mike n(

predictions. As the bandwidth of the process decreases and th,

signal h,,comes more predictable performance ionroaches that poq

sable with perfect information.

This model has the advantage of being very simol- and it ca

be easily extended to continuous state and continuous ti

p rocosses. Unfortunately this model does not ap pear to maximiz

the long term expected reward for both monitoring and oth,

-8-
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t . ,'s.	 1'hi^, vodel neglects the	 future v1lu^ of	 knnwing whit

st"it^	 th r,	 r)roce-.:3	 is	 in.	 The n , rt three mor9-Is u ,i- -i lvn-'nir'

Progr3-ninq formulation to ex p licitly account	 for	 thin- futur-

v^luos.

11nimic Pro2Lam ing mocl A IS with R n w-irds. The followinq (1vnim-

is programing model m-)ximiz,, s the sum of the .'xc) nct-i immrdiite

rew:jr,is an l tae future rewards.

D r, f. in.2

f n (i,k) = thn ma xim,:n expected return when the Proc A ss w?s ob-

s - rv,^A	 in state i, k stnges ago and there am n

st:g)s left to go.

_l n (i,k)	 =A than monitor next time.

x=1 thrin discrete task n e xt times.

R= discrete task rAward.

th--n

f n (i,k) =	 m:jx	 (1-x)	 1	 I	 Pil(k) + D I P ij (k) fn-1(1,11)
X='1, 1	 1 out	 i

+	 x ( R + D 2 P ii (k) fn-1(1,k+1))

7

f 0 (l,k) = 0

Thn terms premultiplied by D are tho future values. Tf 0=1 , w-

have the optimum dynamic programing solutio,, if D=1 this model

reduces to the myo p ic model.

In the next formulation a decision is made after each moni-

toring obs?rvation of how many discrete tasks to to n^xt. Thr,

-Q-
t
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]ccision may b- to do no disc rete tasks in whi.:h c-isn thou ooer i-

tor continu e s to monitor. To make a docision involves usanl th=

"internal nolel" of the oroc osr. , the Pii(k1';,	 to orcdict	 the

provability of heinq in nich state in the future. 'This formula-

tion is enuivilent to the above fnrmulAtion but because it u4As

ono less state it is computitionjlly more attractive.

O,^f.in^

	

f n (i) = the maximum Pxo-'-ctPI return when the nrncess is nh-	 `.

tairvo ei in stun i with n stag e s to qo.

d o (i) =q= th^ numher of A i scret,, isks eion^ b,, forn thA n^xt

.nonitorinn )bserv-ition when th e orocnss is obs-rv-a

in scat ,, i with	 stages to qo.

R = reward for doing one discrete task. 	 th^n

f n (i) =	 max	 R q +	 I	 Pula) ' I Pij(g) fn-n-l({
c-0,1,...n I	 j oul

fM(i)=M

Table 3 shows the steady state solution to this normative

mod--1 for tie same parameters used in th e myooi,- model, w = .2, m

= 1.9,T = 1.75 , for vArious v-ilu-s of R. 	 190 P that for a

discrete task rs w3rr1 of 9. 1 151 the stea-ly Zrat ,- I pcision for stitc,

6, the c-nter state, is to look away for two staq^s wher e 5s tho

myopic strategy is to look away for A stages. This differ-nc p in

strategies is because th e, valu e of knowing the p rocons is out of

tolerance is greater than the immediate reward for obs p rvinq th-

prows-- out of tolerance. For a given discrete task reward,P,

the stna-ly state decisions of the myopic model and th e lynimic

-ln-
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nrogr•aming no lel heco •ne more div^rq tit is t ti- nroc^s4 htn ]width

i -%,:f `as-r, -ind the sinnil hccomp s mor- nr o dicta!') +. ThPSr! r:te1Iv

state so Jutio	 w  r^ ahtiin „ d b y usinu value iter a tion an-1 A ^sum-

inq that th.? ste,a 1y state IiiI horn r^ached by 5t%iv p AP .	 rhoy can

al ,'-o he solvol by a modific.ition of	 Now-)rd l s noIir-v iteration

tt% chniou- (4) that allows for looking ahei l a+l stiq- q .

r
 ”, mots r.he expected steady state rew,-* rei nor staq -

t or  both monitor)nq and dincrote tasks 	 -s n function of tho

dir:'r -t - ta>k row irei, R, for 4 v3lu-s of oro,.: r, sc baniwiAth.	 Whin

P=O , the to of rew .ar:l is just 0.O q , the ste3Jy stat o nrobabili -

ty that tno p ro; ess is out of tol-ranc o .	 This	 is	 th,,	-, xno - t -d

reward	 per	 stage of always monitorin .a.	 Th y iia g nnal l in.- shown,

th(- reward received for always loinq Aiac • r-t e, tasks.	 The	 ur)nnr

di -IonaI	 lino is the maximum r-ward with o ., rf^^t knowl-doe of

what the signal will b  	 in th- futur-. The graph shows that an

optimal time sharinq stmt^qy results in a gain above the two

lower bounds and below the upper hou n d.	 As th- oror .-ss han,dwi-lth

l .,?creases the qain becomes closer to that r)ossible with p-rfect

information. Note that the maximum advantage of an o ptimal stra-

t^gy ov.r a nonsampling strategy occurs for R=0.19 - th- steady

state probability that the process will b- out of tolerinc

One disadvantagA of this dynamic progr3minq model is that it

requires R, the reward for doing discrete tasks, to he specifie,'.

in any real task it would be very difficult to determine an Actu-

al numerical value for R. 	 Even in 3 lahoratory task in which th-

exporimentor tells the subject the valu- of R and the cuhject

uses a time sharing strategy similiar to the model, it is doubt-

-11-
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t u I Mit tno L;uhIe , t I s imp licit viIue for	 ioin(i di--cr^t, , tasks

would aqr.- , with me - • xpl icitly speci f ii-I v-1 u- of N. On ce solu-

tion to the probl M of r(-wl y ds is to use th .- r-w ,rl only to qr n-

erate the s,,mol inq strateg y-1 and then pick thr, ztrat  C1y that I,

vots the apprnpriat ^ amount of time to discr , - t^ task ,-. Finur- K

p lots	 th- fraction of hits, f (hits) -n(hit) /n(not) , v,. thr % frac-

t.on of tim? 1^voted to di screte	 tasks, f(taske),	 for	 both th-

Jvnamtc	 nrogr 1 minq str,it#-gies in1 th( , m yon ir stmt - ii	 .	 lk s -in
	 4M.-

he seen , rn , curv es -ire ess e ntially i:i , ntic-ii .	 the r ^w-r-!s	 f n r

I niv-n strategy ani the stratogtes ir ,- a iffnrent but wh r•n moni-

for inq oerform.-4nce is p lotted agiinst f(tasks) inst —il of r-ward,

th -	 grinh;	 1%r• 1 	 e.ss , ntially identi^al.	 Phis v e ry i, nromi-sinl

for modelin r<	 -)nito. ing of multi p le highor order nroc ss e-s b,--

cau,^ t'-	 myopic :tritegy is only based on th ,, nrob-hility that

Eh,, si g nal will be out of tolerance in the future, not th., nroha-

bility of which specific ntate th%? process will h .- in 3s rpouire'l

in the dyna.mic orogrimminq formulations.

Fiqure 7 shows how the fraction of hits changes wh en q on-

timal	 s.^mplinq	 strategy	 is followed for various orocess

ban1widt 1is. As t;ie bandwidth decreases th - performance ID

proaches that possible with porfoct information.

	

In many discrete tasks there is the nauiv.alont of 	 set k n

cost each time the task is started or r^start-d after h,, inn in-

terrupted. For exam p le, in entering data into n keybo ly d, som-

time is lost while the pilot shifts his attention to the keyboard

and positions his hands. This type of sit up cost can hr , includnd

by introducing nonlinearities into the reward per discrete task

-12-



fOnction.	 in figure 9, C is the sot uo cost. 	 Vihen C= n w- h3vo

the norm.il cas•? considered above.

Figure g shows that as stet on cost incronses monitoring nor-

form.ince rapidly d-:tcreases to that possible with no predictive

information of the processes future state. Whon a sot ur N cost is

involved the formulas derived abovo for f(t,?sks) must be modified

as follows.

f(t-sks) =	 di R1 /	 (d i 
+ 1) 

Rt
i

wh , re

	

	C= the number of st3q-s wasted clue to the set on cost,

C.

c3	 = I	 - C	 if d. > C

_ .3	 if d. < Ci

f(t-► sks) is now the productive fraction of time soPnt on discrete

tasks. The fraction of time wasted because of tho set on cost is

given by;

f (waste) _	 (di - d i ) /	 (di + 1) Ri

The fractior. of time spent monitorinq is jur,t;

f (mon) = 1-f (tasks) -f (waste)

oynamic Programing model with Constrai , it. Like the list fo.--

mutation, a decision is made after each monitoring observation

of how many staqes to devote to discrete tasks. However instead

of rewarding the subject for doing discrete tasks, we will con-

-13-
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W	 --I1	 ► 	 1	 1	 i	 T

..t_ruin him to do cxi,-t ly m discret-^ tasks in thA	 n^xt	 n	 st17 ^s

(m<n) .

Do  in

f (m,i)= th - m 3xiinuni expect o -1 c.turn whin the nro--sn is oh-
n

s tirvod to state i with n stsq-s to '10 and T discr-to

tasks remain to he don

o n (m,0-q= the number of stacles ievotod to dis,^rntA t-isks hr,-

fore the n e xt monitorinq obsnrvntion when th o nro-

. • e:^s is obs^rv,,d in stzt? i with n stii - s to jo.

C= s ,--t uo cost, tho number of stages wnst-1 wh-n itt-^n-

t i )n is shift--i to dis , ret p r,s4s.

q= q-C if .I-CV

_ 0	 if a-C<9

to ?n

f (m, i)	 m.-:x	 P.	 (q) +	 2	 P.	 (q) f	 (m-n	 1
n	 1sq_m	 jout	

i7	
>11 j	

^j	 n -q-1

f n (m, i) _ 0	 if	 n=m

In this formulation, tho fra ,-tion of the rem.iinin q tim.-

which mu.,t be s pent on discrete tasks is just, f(tasks)=m/n an'i

the friction of hits is f n (m,i)/n at state (m,i) an y stale n.

Piqure 10 p lots the fr-ction of hits vs tho fr a ction of

time snent on discrete tasks for three diff n rent values of n, thc-

number of stages to qo. Not- that in this formulation the moni-

toring performance is slightly less thin the other two formula-

tions and oerformancc degrades further as the number of stages,n,

-14-

^	 1	 I

....



IFt }	 ^	 1

OR: ^rN tL Ac r: 
t5

OF ^+Uo. UU ALITY

, i	 I to 10 trl

11 'xt n ot ,';?:'s on

:;u.jj2ct	 hi -i	 rn

'. I scr ,''t^ tmz C^.

t 'sus it turt.her r^-Iu- i.	 Tni c; 03 ')s	 r'xDo t 01

•': in	 .r. -,t; , in 1 to -n,n l ^x-ict lv -r out of the,

rj 16:C ' t om t I.id:; wh' r °	 . In t', , 	 -, rl i e% r mo l - I 	 ♦1

I lm t	 1 3	 to,	 hnw	 I ona	 ne ^o,tl l oosrm,n	 th -

Fiqurc, s 1I -in1 12 snow th,' - ff - ct ()f A ?is^r'-rn trsk	 r	 1.1r

cost on q -molin3 strat'•ay	 id monitorini nerfor.m-% r ,- , .	 t^ q t h ^ sir

U	 )3t in::r''3 	 s	 t 	 `i 3t atratc •iv it to look	 ,' ly for	 1<1ni-r

^ ?	 l^rnq- r u r io n?:, • f ti	 when th^	 iy is ohs-.r•:?r,9 n,-'ar th-

nte.	 :vi.n .r ,ct u 	 cost of 2 , if tnc lisolay is nbscrv,?H	 in

, e^	 c: nt .: r	 t1>>	 best	 ooI icy i-1 to comnl et , II I of th - r?iscr - t- n

t-isks with no ir.t . .4 r)ti , n .	 Thic is wny	 th .- xonitorin g	ocrfor-

-in	 S!iown	 in	 f 1 "lur e 12 f -ir a set uo cont Of " iE -O r'lOS- to

th- p,.rformanc ,? tnat is o:)ssiol- wren no nrerlir-tions -r ,• ma rl - .

Fiqur.: 13 stows t,,,- sensitivity of monitorin g nerfor^^-i r`-n to

discr^te	 'Imsk	 cnunk	 s1z	 th- minim--im nurt,nnr of sta q, s which

must be sent r.n li	 r a t	 t),--k-,.	 N•;ro	 t>>t	 when	 th-	 minimum

cnLink	 siz e	ic-, 5 that tn- 1e, cr p -ncnt in o^rforman - is onl y 1 :rg-

wncn less th-in ?brut r)11% of ti)- tlmr must be	 sb• -̂nt	 on	 Ii-- r - ton

tasks -:	 Tnis is bcc-3xi  :in%v^ ti n % the r)ntimum srritnely is to look

-3w-:iy for m g r^ th-in 5	 so th a t chunk Sl z,? is 1-SS of ?	 Con-

strcin t 	on oerformanc r, .	 Finally fiqut e 14 show- th- s-nsitivity

of monitorinq perf o ^rman:r to r1isr:lav t^1,^rance.

CUNCLUDING REmARK^

In this roarer the ,: n^c-.l nrnblem of time sh?r. inq	 attention

-15-



h	 tw-,	 n	 monit-)rinq	 -tn , l	 oth^r	 Jtiti--s	 ', )s	 bet-ni i-scrihml	 sna	 on(-
i

myopic	 i n i	 three	 iyn.vric	 oCOgr ' m in'1	 moJ °ls h 'V:	 bion nrr.snnt-•1.

'to iol	 oerforman •	 wis	 pr^scntc]	 in	 ^ ^^rms	 of rh-	 friction	 of	 nut

of	 toler a nce	 strin -ils	 seen	 33	 A	 t unct ion
4

of	 thr,	a vnoun.t	 of	 t imrs

,^^	 nt	 on	 non-monitorin	 c;;	 i^.^.c	 1	 t	 ^^	 Thi`'	 way	 of vi^wing 	on rfnrn1nce

f
^Iinin1L-IC	 tno-	 lift icult	 orohl^m	 of	 specifying r^l^tiv^	 rnw^rls

for	 monitoring	 in]	 other	 Juti^s.	 Tt	 allows •-)n	 , onronrint-	 ^tr3-

tely	 to be	 chosen	 h , sel	 on	 the	 friction of time+	 that Test	 hn I—

'3 otn'1	 to	 other	 dut i 2-.s.	 The	 of f^ct	 of	 such	 n3ram n t -rs	 1s	 oro^mcs

ban -1 Wilth	 an 	 tolerance	 ,e nd	 (Iiscr4-to	 task sot	 iin	 cost	 -Ind	 ch11r,k

niz^	 on	 •nonitorin-;	 P,--rform.-ince	 an ,l	 norm,-3tiv^ ti'nr% 	 sh-irino	 str--

tegios	 wn!;	 shown.	 Futur-	 work	 wi i 1	 exten . 1 t li p sr+	 mo,i-1 s	 to	 mul -

tiol-	 r.,conJ	 or d-r	 o!oc .,3s_•s	 and	 incornorntn hu-nin	 limit-tione

such	 3s	 obs^rvation	 noise	 and	 intnrnil	 motel errors.
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OF POOR QUALITY
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OitIGINA] PAGr, 6
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I

-_^-QUt---- -(+•nf r	 -
't	 i = 1 2 3 4 C%

, 9;97 ,422 .l°2
1 ^r► '1 .291 .11.1 . 11 71
2 .	 12 214 . 1 1 .07P

.^•: .172 11^ ."1c1 ,n57 ,m5h

4 .IAR .142 .1,'S .nRA ,1r,r
5 .152 .121 .' 97 .0n(x .07n .1=;7

.	 1 ?%, . 109 .10)2 . (I 9'1 .'17 71

fib: :, 1. Valu e s	 of P(outli,k) th:, or)h -- biIit_v tn ,-	 n r o c	 -,	 will h,-?
g ut	 c 	 toll ,, r-ince n e xt staI -	 q i v -n th .^ nro . -:s;	 w. in
,t .c	 i,	 K sta 1_, :;	 310 for a	 first	 ord - r	 p ro : .iss	 wit i
c	 =1.0, zu =.1	 r-i.i/staq .^ ,nd	 T= 1."1r.

R i=1 to	 3 4 5 5

. %1: to ,^1)^ } '1 A t
to . 1 18 A ) l

.'^I n to .031 0 3 l ''

.131 to .13 2

.o3 1; to , G^17 .1 ? 1

.047 to . ' .0 9 (^ 4

.15 1 to . ;152 1 0 1 4

.052 to .''tin .1 1 4 d

.35^ to .A5 0 1 n r,

>.093 always	 Ilw3ys -Ilwav= lw-y^

hole 2. the nun bor of	 liscrete t -,:3k -, that	 oil l	 be don- qiv - n !h^
process	 is obs,2rved in	 state i	 for	 viriotis r^nq ^	 of r 
w-rd	 R	 if tn-	 myopic- ;trateav is	 follow-1 for	 i	 firm
ordor	 ococtss. (cr	 = 1.0, w =1.2 r^d/ --t-)i ,	 T=1.751

R	 Stritegy	 -	 dV1
q:i i n/staq•3

i=1 to 3	 4	 5
.32	 0	 0	 l	 1	 aRS
.34	 0	 3	 1	 2	 . 1 91
.C6	 0	 0	 2	 2
.08	 11	 1	 2	 3	 .1(19
.19	 0	 1	 3	 4	 .1 2.1
.12	 0	 1	 4	 5	 .134
.14	 0	 1	 A	 .147
.16	 0	 2	 q	 9
.18	 0	 29	 29	 29	 ,^QA

i'able 3. Ste,-3 .3y stato solution to thn	 lynamir	 pro eiri-. nn modr,l
with rewirds.
(Q - 1.(4, w = 0.2 rad/s;: age , T=1.75, P(nut) =A.AQ)
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x

Fiqui

F .

NUMBER OF STAGES, n,
L EFT TO FINISH

DISCRETE TASKS

32	 16 + +	 p +	 +

31	 15

20	 14

29	 14 + +	 C +	 +

28	 14 + q +	 +

27	 14 + +	 p +	 +

26	 13

25	 13 + +	 p +	 +

NUMBER OF DISCRETE DISPLAY INDICATOR
TASKS, m, LEFT

TO DO

Fiqure	 1.	 Drawinq	 of	 the	 quantized monitorinci disnlly.	 4 no-w

lin-	 was added every 2 so-onds.	 The dis p lay	 wis nuln-
tized	 into	 11	 cells	 - .50 o wide.	 The disnlay was out

of	 tolerance	 if	 it was in	 the outermost I	 cells inli-

cated with	 the	 +	 signs. At	 stages	 32 an(I	 27	 this suh-

ject	 decide,	 t,o	 look away	 from the	 display to do

discrete	 tasks	 for	 2 and I	 stages	 respectively.
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Figure 3. The state of intormation of a perfect monitor aftPr
lookinq away from the output of 3 first order filter
with bandwidth 0.2 rad/stage driven by white noise.
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Fiqure 4. The fraction of observed out of tolPranc- signals vs.
the fraction of time spent doinq discrete tasks for
the myopic sampling strategy.
( -w = 0.2 rad /stage,	 Q =1.0, T=1.75, P(out)=0. 091 )

a,&- 1

3

w

cn Q .2^ N
Qcr-
ww

o^
w

`uX .08a 
Xw
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--- w = .2 RAWSTAGE

— — w - .3 RAD/STAGE
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0
	

04	 .08	 .12	 .16	 .20
DISCRETE TASK REWARD, r

Figure 5. The expected steady state rAward per staqe for both
monitoring and discrete tasks when an o p timal sampling
policy is followed for a first order system.

	

(w =0.2 rad/stage,	 o' = 1.0,T=1.75, P out)=0.0AA )

-21-



I

1.0

.9

N .8

_ .7

.6
O

z .5
O_

.4
U
Q .3Cr
LL .2

1

0	 .1	 .2 .3 .4 .5 .6 .7 .8 .9 1.0

FRACTION OF TIME SPENT
ON DISCRETE TASKS
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 ON REWARD IN STATE i,d POINT ON REWARD IN STATE diPOINT
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a .000 0000 1 .000 0000
b .002 000  1
C .018 0 0 1 1 2 .020 0 0 1 1
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f .047 0023 5 .080 0123
9 .050 0033 6 .100 0134
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k .074 0277
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Figure 6. Comparisom of the monitorinq performance of the myopic
and dynamic programing samplinq strategies when perfor-
mance is plotted against the fraction of time devoted
to discrete tasks.
( -.L =0.2 rad/stage,	 Q =1.0,T=1.75 and P(out)=0.lRP )
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e 9. The effect of	 1 ncCnt^ tisk sot of r 'st on moni tnr in-i
n-rforminc  .
( w =''.2 r -it/stiq . 	Cr	 7+1.75,1)(out)=I.na1 )
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FRA'T',ON OF TIME
ON DISCRETE TASKS

ciqure 10. Th p effect of the numher of stales to qo (n) on moni-

	

tor inq porforman^e	 for	 thn lynimic nrogrimina rro'i-1
with liscretc tisk con7traint.

	

( w = 0 .2 rad/ct:igo,	 rr	 T=1.71,, P(nut)= 1 .7 r-
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	ciquro ll. The effect of a discrete task set up cost (C)	 on th(,
optimal time sharinq stratt- g y for states 4, 1, and 6.

In states 1,2 and 3 the ontim31 decision is A unrA l
the fraction of time which must ht- dovoted to discrete
tasks is very high.
(n-20 it.ages, w =(1.2 rad/stage, 1'=1.75,P(out)=A.AAn1
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k'igure 12. The effect of a discrete task set u p cost on monitor-
ing performanc- for the dynamic programinq model with
a discrete task constraint.
(n=39 stages, w =0.2 rad/stage,	 T=1.75,	 o •1.91,
P(out)=0.080)
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Figure 13. Cho effect of di	 rer	 r-tvk chunk size	 on	 ^nniInrinn
per form-incc.
( 111 =0.7	 r3i/ota,t(',	 n=40	 st	 r	 Q sl ^ ^a) '^' ►
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Figure 1 4.	 The effect of disr)liy toler-ince on nonitorin(i norfor-
n.,nc 1 .
( -ui =0.2 rad/sta-l e,	 =1.0 ► n=4 1 stages 1
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