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Abstrack

A correlating equation relating the optimum
acoustic impedance for the wall lining of a circu-
lar duct to the acoustic mode cut-off ratio is pre-
sented and compared to exact caleculations. The op-
timum impedance was correlated with cut-off ratio
because the cut-off ratio appears to be the funda-
mental parameter governing the propagation of sound
in the duct. Modes with similar cut-off ratios re-
spond in a similar way to the acoustic liner. The
correlating equation is useful for the design of
suppressors for aircraft engine inlets having a
steady mean flow with a boundary layer and spinning
mode noise source excitation. The correlation is a
semi-empirical expression developed from an empiri-
cal modification of an equation originally derived
from sound propagation theory in a thin boundary
layer. Exact calculations of the optimum wall im-
pedance were made over a wide range oi £requency
parameters, boundary layer thicknesses and flow
Mach numbers to develop and verify the correlation.
This correlating equation represents a part of a
simplified liner design method, based upon modal
cut-off ratio, for multimodal noise propagation.

Introduction

Spinning modes must be considered!»2>3 in the
design of acoustic suppressors with wall treatment
only. With multimodal noise, as typically gener--
ated by a turbofan engine; the suppressor design
will depend on the acoustic power distribution
among the various modes. In some analyses assump-
tions of equal modal amplitude® and equal acoustic
power per models5 have been used. Experimental
measurement of the modal amplitudes and phases have
also been attempted for quite cimple modal struc-
tures in rectangular® and annular/ ducts. However,
it appears that if a large number of propagating
modes are possible, direct measurement of these
modes may be extremely difficult.”

In order to avoid the direct measurement of
modes a simplified method of liner design based
upon the ‘acoustic power distribution as a function
of mode cut-off ratio is under development. The
philosophy of this simplified design method has
been outlined in Ref. 8. It is based upon the fact
that modes with similar cut-off ratios behave simi-
larly in an acoustically lined duct. Similar maxi-
mum possible attenuations and similar optimum im-
pedances8:9 were observed for modes with a common
cut-off ratio.  The similarity of off-optimum per-
formance can also be inferred from the approximate
attenuation method of Ref. 10. ' A method for esti-
mating the acoustic power-cutoff ratio distribution
from far-field measurements has recently been re-
ported.

An essential ingredient in this simplified
liner design approach is a correlation of optimum
acoustic impedance as a function of mode cut-off
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ratio. A preliminary correlation based upon lim-
ited calculations was presented in Ref. 8. The pur-
pose of this paper is to provide an improved corre-
lation of optimum acoustic impedance based upon ex-
act calculations of sound propagation in an acous-
tically lined duct using a wjde range of the vari-
ables of frequency parameter, steady flow Mach num-
ber, and boundary layer thickness. Some of the
pertinent development of thée¢ correlating equation
is also included. A method for using this equation
to obtain single mode optimum impedance estimates
is also outlined.

Symbols

optimum resistance coefficient
optimum reactance coefficient

speed of sound, m/sec

duct diameter, m

refraction function, see equation (5)

frequency, Hz

[>T Y- T = R e T~
bsd

empirical function, see equations (4),
and (14)

L+M (34 17)

(13),

f=l

uniform steady flow Mach number in duct

3

spinning mode lobe number (circumferential
order)

amplitude of eigenvalue a

value of R at the optimum impedance

mm w

R with modal indices included
m, i m

[at

radial coordinate, m

circular duct radius, m

al

axial coordinate, m

complex radial eigenvalue (o = Relw)

(= 2

boundary layer thickness for 1/7th power
velocity profile, m

m

dimensionless boundary layer thickness,
6/t
o

4 optimum specific acoustic impedance with a
boundary layer

go optimum-specific acoustic impedance with
zero boundary layer thickness (slip flow)

n frequency parameter, f£D/c
Z] specifié acoustic resistance

2] optimum specific acoustic resistance
g 9m with boundary layer neglected

[ radial mode order

E mode cut-off ratio, see equation (1)
a

attenuation coefficient
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propagation coefficient

T angular coordinate, radians

v phase of eigenvalue, degrees

Yo phase of function G, see equation (l4),
degrees

EyG part of +_, see equations (1l5) and (16),
degrees

Qm phase of eigenvalue at optimum impedance,
degrees

w “ with modal indices included

m, K m

X specific acoustic reactance

Xm optimum specific acoustic reactance

Xmo Xm with boundary layer neglected

w circular frequency, rad/sec

Sound Propagation Model

The sound propagation theory used for the so-
called exact calculations was outlined in Ref. 9
and discussed in detail in Ref, 12. The exact cal-
culation is based on the geometry shown in Fig. L.
The duct is cylindrical with acoustic treatment on
the walls and the steady flow contains sheared flow
near the walls, The sheared flow profile is the
standard 1/7th power profile to a distance & from
the wall. A linear profile is pieced in near the
wall. Only inlet conditions (negative Mach number)
are considered with the sound propagation being
opposed by the steady flow, The shear layer is
uniform in the axial direction and no acoustic re-
flections are comnsidered. The calculation proce-
dure uses the classical plug flow Bessel function
solutions in the duct interior matched to a Runge-
Kutta. integration through the boundary layer.

Optimum Wall Impedance Definition

The liner optimum acoustic impedance for sin-
gle mode sound progagation is defined exactly as
presented in Ref. 9, Figure 2 illustrates the con-
cept of the optimum impedance for a single mode.
The attenuation coefficient (J) and the propagation
coefficient (1) are components of the complex axial
wave number where the acoustic pressure varies as
exp(®w/c(3 + iT)x). Note that contours of constant
damping (the solid curves) are closed curves in the
wall impedance plane. As the attenuation coeffi-
cient is increased in value these contours shrink
in size and ultimately converge to a point desig-
nated by a plus:-sign. Further increases in damping
produce curves which are not closed in the vicinity
of this point and in fact represent larger contours
associated with the next higher radial mode. This
limiting point in Fig. 2 thus represents the imped-
ance with maximum damping for the particular mode
under consideration, and this point is designated
as the optimum wall impedance for the mode. The
associated value of the attenuation coefficient is
not considered here but can be found in Refs. 2, 8,
and 12. Similar procedures for defining optimum
impedance have been publishedl3-16 in the litera-
ture.

Mode Cut-0ff Ratio

The definition of mode cut-off ratio is the
same as that used in Ref. 9. This can be expressed

as,
& = = L
R V (1 - Mi) cos 2%
where
w2 (2)

is the frequency parameter and the complex eigen-
value for the mode is given by,

% = Re™” 3)

For a hardwall duct equation (1) reduces to the
more familiar cut-off ratio expression of Ref, 17.
When a spinning mode is highly propagating (¢ large)
the acoustic wave motion is mainly in the axial
direction, while near cut-off (¢ -~ 1) the wave mo-
tion is mainly transverse or circumferential.

Correlation of Optimum Impedance

The starting point for the optimum impedance
correlation is an equation derived in Ref 12. This
equation in turn was derived from the thin boundary
layer theory of Ref. 18.. The expression is,

1+ 5):0

F o= iX = e———
Lt Py =TT iFGE_ )

where £ is the optimum wall impedance with the

boundary layer refraction considered, { is the
more simply calculated optimum impedance for plug
flow (no boundary layer), ¢ is the nondimensional
boundary layer thickness, and F in it's simpliest

form from Ref. 12 is,

TrE‘r,Mo
F=— )

The term G in the denominator of equation (1) was
not present in the equation from Ref. 12 and has

been inserted for additional empirical corrections
to be made in this study. A similar procedure was

‘used in Refs. 8 and 9 to provide an empirical cor-

rection to make equation (1) valid down to cut-off
(¢ = 1), but the term comparable to G was con-
sidered to be only a function of cut-off ratio.

We 'will find here that G must also be ‘a function
of Mach number (M), frequency parameter (y), and
boundary layer thickness (e€) when a broader parame~
ter range in the exact propagation solution is con=
sidered.

Optimum Impedance Without a Boundary Layer

The first step in developing the correlation
equation (4) is to generate an expression for the
optimum acoustic impedance for the slug flow case
which is a function of cut-off ratio. An expres-
sion  for this optimum impedance is available as,
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. . 2 ,
t =6+ 1Xmo = nQ (B9 - lBX) (6)

Q mo
where
1.15

B 7

S w4 0,78 m2/3,4

B, = —5*—'9;22_——575 (8)

w4 3,17 pm

and

1-M ’/1 - (1 - Mg)(a/wn)z
i 2

1 -M
o

Q=14+ iMO(O4<iT) =

&)

Equations (7) and (8) are correlations presented in
Ref. 10 and Qz is the usual impedance multiplier
occurring due to the continuity of displacement
boundary condition used at the wall with slip flow.

The terms Bg, By, and Q must be converted
to functions of mode cut-off ratio. This will be
done by introducing the eigenvalue into the ex-
pressions for Bg and By such that cut-o0ff ratio
may be reinserted. The denominators of equations
(7) and (8) are roughly proportional to eigenvalue
and eigenvalue squared, respectively, as shown by
the curve fits in Fig. 3. Note that Fig. 3 is
plotted for M, = 0 in which case Q =1, and from
equation (6) Omo/n = By, and Xp,/n = -By. The
plotted points for m=1, 7, and 20 use p =1, 2,
5, and 10 while for wm= 0 and 50, only u = 1 was
available. By using the curve fits of Fig. 3 and
the cut-off ratio definition of equation (1), equa-
tion (6) can be written as,

g, ~ 5 Y1-1 [} . 39;§55 V- Mi] (10)

The quantity Q given by equation (9) must
now be expressed as a function of cut-off ratio.
Using equations (1) and (3), equation (9) can be
expressed as,

- .1 . sin 20
1 Mo ‘/1 52 (l + i P Zq))
Q= 5 an
1- M0

The quantity sin 20/cos 29 is still a function of
the particular mode under consideration, but it is
generally quite small compared to one. Rather than
discard this quantity completely an average value
based on many modes was calculated. Exact calcula-
tions of optimum impedance were compared toc equa-
tion (10) for modes near cut-off and the phase
angle of the second quantity in the radical of equa-
tion (l1) was estimated. Equation (10) was used
since it was anticipated that ¢ = 0 in equation
(4) for &=~ 1 and thus { = {,. This average
phase angle was found to be twelve degrees (thus

© = 6°) and equation (11) can be expressed as,

Q= 5 (12)

With this value of Q 1inserted into equation (10)
the optimum impedance correlation is scen to contain
modal information only in the form of mode cut-off
ratio.

Optimum Impedance With a Boundary Layer

With F, expressed in terms of cut-off ratio
alone the funmetion G in equation (4) can now be
correlated as a function of cut-off ratio. A multi-
tude of exact calculations of optimum impedance were
made using the calculation procedure as outlined in
a previous section (Sound Propagation Model). These
calculations included many modes from the first pro-
pagating spinning mode (m = 1, w = 1) to the highest
lobe number which would propagate, A wide range of
frequency parameters (n = 5 to 30), Mach numbers
(M, = -0.1 to -0.7), and boundary layer thickness
(¢ = 0,005 to N.1) were considered. The exact
values of optimum impedance were compared to equa-
tion (4) and the value of the function G was cal-
culated to obtain equality. The amplitude and phase
of G were then correlated with the input parame-
ters to obtain the following correlations. The am-
plitude of G can be expressed as,

3
<1 - M§>
11 754\

le} = > (13)
1L+1.5F
and the phase as
- 1¢ R
P G (14)
where for \Mb} <0.5
80
R R as)
e M jg
and for M | >0.5
o
640 10
Mg =~ (18)
n ek

Note that g -is expressed in degrees,

Near cut-off the exponential in equation (13) is
very small and G =0 and { = f,. Note that {g
(derived for plug flow) does not contain boundary
layer thickness, and thus near cut-off the optimum
impedance is not a function of boundary layer thick-
ness,

Summary of the Use of the Correlating Equations

The procedure for using the correlating equa-
tions will be summarized in this section. First the
method of c¢aleculation for generating the locus of
optimum impedange versus cut-off ratio is presented,
This procedure would be followed in an engine inlet
design if multimodal noise excitation is considered,
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The input parameters 7, My, and ¢ are de-
termined from the sound frequency, duct size,
steady flow rate, and an estimate of the boundary
layer thickness. A cut-off ratio is selected for
calculation and the complex impedance ¢, is cal-
culated using equations {10) and (12). The magni-
tude and phase of the function G are calculated
using equations (13), (14), and (5) along with
equation (15) or (16) depending upon the magnitude
of the Mach number. The two complex quantities
to and G are used in equation (4) (again using
equation (5)) to calculate the optimum acoustic im-
pedance components 8, (resistance) and Xp (veact-
ance). Another value of cut-off ratio is then se-
lected and the procedure is repeated.

If the optimum impedance of a single mode is
to be estimated, the cut-off ratio must be first
calculated from equation (1) using the mode eigen-
value at the optimum. The eigenvalue can be cal-
culated from correlations given in Ref. 10 which
are repeated here for convenience. The eigenvalue
amplitude is,

RO SR o+ (u-Dr+0.076m k-1 (7)

m, 1 m,
where
R o~m+ 2,247 w3 4 1521 m /3 (18)
m, 1
The eigenvalue phase is,
-u - 1)
. 2(VE + m/7)
Po,p ™ Pm,1 (19)
where
35.15
\pm,l -~ (20)

m + 2)0°8

Equation (18) is valid for m# 0. If m =0, use
R = 3.278. These correlations were derived from
exact calculations of the optimum eigenvalues for
m=1to 20 and K =1 to 10. After the cut-off
ratio is calculated the procedure in the first part
of this section is followed. - Some caution should
be exercised when using equation (4) for single
mode optimum impedances. As will be shown in a
later section, for large lobe numbers (m) and small
radial orders (i) equation (4) must be considered
as only an approximation to the exact optimum,

Comparison of Correlation with

Exact Calculations

Three input parameters will be varied to
illustrate the accuracy of the optimum impedance
correlation. These are the frequency parameter
(1), steady flow Mach number (M,) and the boundary
layer thickness (¢). A base case of 7 =15,

My = -0:4, and e = .0.05 will be used with one
parameter at a time being varied from this base.

Figures 4 and 5 compare the correlation with
exact calculations for the resistance and react-
ance, respectively, when boundary layer thickness
is varied. The correlation is shown by the curves
and the exact calculations are represented by the

various symbols with cach point being an individual
mode optimum calculation. Note that not all modes
are shown and that a roughly geometric progression
on lobe (m) and radial (}t) number was used to re-
duce computer time. For example, m= 1, 2, 3, 5,
9, 16, 30, and 56, and B =1, 2, 3, 4, 6, 9, 14,
and 22 were calculated.

From Figs. &4 and 5 it is apparent that the
correlation agrees very well with the exact optimum
impedance calculations over a wide range of bound-
ary layer thickness, A small error in the resis-
tance correlation occurs at high cut-off ratios ond
thick boundary layers. A small error is also appar-
ent in the reactance correlation for the thinnest
boundary layer. However, in the region of greatest
interest, near cut-off through moderate cut-off
ratios, the correlation provides excellent results.
Note that near cut-off (£ = 1) there is no effect
of the boundary layer thickness upon optimum re-
sistance and only a very small effect upon the
optimum reactance., This is physically reasonable
since at cut-off the wave travel is all circumfer-
ential and no velocity gradient occurs in this di-
rection to cause any refraction.

Figures 6 and 7 compare the resistance and re-
actance correlations with exact calculations for
variations of frequency parameter while Figs. 8 and
9 consider variations in Mach number. Again the
agreement is seen to be excellent. Some deviations
in the resistance correlation occurs at high cut-
off ratios and high Mach numbers (M; = -0.5 and -0.7
in Fig. 8). Note, however, that where these errors
occur the values of resistance are extremely small
and would probably not represent a realistic design
case.

It is interesting to note that the correlation
follows the exact calculation trends below cut-off
(£ < 1) even though the correlation was developed
by using exact calculations only down to about
£ = 1.1, The double inflections of the reactance
trends apparent in Figs. 5, 7, and 9 are even pre-
served by the approximate equation.

Timitations of the Optimum

impedance Correlation

As with any empirical correlation, there is
some danger in extrapolating beyond the data base
from which the correlation was derived. The base
case as previously mentioned used 7y = 15, M, =
-0.4, and € = 0.05 which were considered as typi-
cal values for a turbofan engine inlet. The corre-
lation was developed for a three variable grid of
points through this base point and the corxrelation
was shown to be reliable along these grid lines.,
Some calculations off of these grid lines were made
to check the correlation and these are shown in
Figs. 10 and 11 for the resistance and reactance
respectively. For g =5, My = -0,2, and € = 0.05
the correlation is seen to hold quite well. For
n =20, My = 0.7, and € = 0.1 the reactance corre-
lation is seen to be good (Fig. 1l) but the resis~
tance correlation (Fig. 10) is seen to be predicted
somewhat low. .This is a case of extreme refraction
in the boundary layer giving a rapid fall-off of
resistance above cut-off and the correlation some=
what over predicts this effect. For a low frequen-
cy, high Mach number, thick boundary layer case
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. concepts were reported in Ref. 11.

"

(n =35, My = -0.7, v = 0.10) both the resistance
and reactance correlations are seen to deviate sub-
stantially from the exact caleulations. The re-
sistance is over-predicted for moderate to high
cut-off ratios while the reactance is under-
predicted for low to moderate cut-off ratios.

It is thus suggested that extrapolations away
from the data base can be made for low Mach numbers,
but considerable error may occur for high Mach
numbers, especially for low frequencies.

A sccond limitation of the optimum impedance
correlation occurs at the lower radial orders (low
u) of the high lobe number (m) modes. This problem
was apparent for the zero Mach number results of
Fig. 3 and was also pointed out in Ref, 9. This
limitation would have been evident in all of the
calculations made for generating Figs. 4 to 11 but
these cases were omitted to avoid obscuring the
points to be made in these figures. In order to
illustrate the error in the correlation for these
higher lobe number modes. All of the exact calcu-
lations are included in Figs. 12 and 13 for the
optimum resistance and reactance respectively.
Progressively higher radial modes, for a given lobe
number, can be identified by a decreasing cut-off
ratio. In Fig., 12 some deviation from the corre-
lation is seen for the first radial of the nine
lobed mode, while the second, third, and higher
radials are seen to be approaching the correlation.
As the lobe number is increased to 16 and 30 the
error in using the correlation for the first radial
mode is seen to increase. Again the higher radial
orders are seen to approach the correlation. The
same behavior holds for the optimum reactance shown

in Fig. 13. The error for the first radial mode is
significant for m = 16 and increases substantially
for m = 30. The errors can be interpreted as an

inaccurate representation of the low radial, high
lobe number modes by cut-off ratio alone. . It is
the author's opinion that these small errors for a
few modes will not significantly affect the results
in a multimodal situation. However, if this corre-
lation is used for single mode estimates of optimum
impedance one should be aware of the error for the
high lobe number modes.

Concluding Remarks

A semi-empirical correlation for the optimum
acoustic impedance for spinning modes in a circular
duct has been presented. An engine inlet flow
condition with a boundary layer at the wall and a
uniform velocity profile in the central core was
considered. The correlation is part of an acoustic
liner design method being developed for multimodal
sound propagstion from an aircraft engine through
the acoustically lined inlet duct and out into the
far-field, The philosophy of this approach was
summarized in Ref. 8 and the far-field radiation
The key to this
approach is the distribution of acoustic power as
a function of mode cut-off ratio. The elements yet
to be developed are the power distribution shifts
caused by modal scattering in the acoustic liner
and possibly at the duct termination.

The optimum. acoustic impedance equation pre-
sented here represents an improvement upon earlier
published forms. A wide range of input parameters
were considered here in constrast to that used for

the equation's sarlier form., The correlation can
be used to quickly estimate optimum impedance and
climinates the elaborate computer programs and con-
siderable computer running time needed for exact
calculations,

The use of the correlation for design estimates
requires some knowledge of the modal properties of
the noise source. Rough estimates of the gross
modal properties can be made., For cxample, in a
stationayy engine or fan test installation a con-
siderable amount of the acoustic power oceurs in
the modias near cut-off. An efficient liner might
be expected using a near cut-off liner design. For
a flight situation the noise often consists of mul-
tiple pure tones and blade passage frequency. The
dominant modes expected for the multiple pure tones
(shock noise) can be estimated perhaps from rotor
locked mode considerations. These modes will most
likely be closed to cut-off, The modes for blade
the passage frequency tones and their associated
cut-off ratios can be estimated from rotor-stator
interaction theory (Ref. 17).
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Figure 3. - Correlation of optimum resistance and re-
actance with mode eigenvalue.
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Figure 4, - Comparison of correlating equation with
exact calculations of optimum resistance for vari-
ations in boundary layer thickness.
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Figure 5. - Comparison of correlating equation with
exact calculations of optimum reactance for variations
in-boundary layer thickness.
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NORMALIZED OPTIMUM RESISTANCE, 6,
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Figure 6. - Comparison of correlating equation with
exact calculations of optimum resistance for vari-
ations of frequency parameter.
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Figure 9. - Comparison of correlating equation with
exact calculations of optimum reactance for vari-
ations in steady flow Mach number.
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Figure 10. - Comparison of exact calculations of optimum re- '
sistance with extrapolated correlating equation.
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NORMALIZED OPTIMUM REACTANCE, Xp/n

LOBE NUMBER,

N :"‘ m
- ] 2
06— A 3
B 5 ;
- 041 v ?
v 16
|~ A a 30
)
-. 02— ¥ FREQUENCY PARAMETER 7 =15
MACH NUMBER M, = -0.4
BOUNDARY LAYER THICKNESS € =0.05
L T l N N
3 4 .6 .8 1 2 4 6 8 10

CUT-OFF RATIO, §

Figure 13. - Deviation of high lobe number modes from the
acoustic reactance correlation.

NASA-Lewis~



	GeneralDisclaimer.pdf
	0014A02.pdf
	0014A03.pdf
	0014A03_.pdf
	0014A04.pdf
	0014A04_.pdf
	0014A05.pdf
	0014A05_.pdf
	0014A06.pdf
	0014A06_.pdf
	0014A07.pdf
	0014A07_.pdf
	0014A08.pdf
	0014A09.pdf
	0014A10.pdf
	0014A11.pdf
	0014A12.pdf
	0014A13.pdf
	0014A14.pdf
	0014B01.pdf
	0014B02.pdf
	0014B03.pdf
	0014B04.pdf



