
NASA CR- 132i05

(NASA-CR-132405) FEASIBILITY STUDY OF ANi - 78-1600 8 1
INTEGRATED PROGRAM FOR AEROSPACE-VEHICLE Ike A01
DESIGN (IPAD) SYSTEM. VOLUME 5: DESIGN OF 1 C ANI'/fA A ol
THE IPAD SYSTEM. PART 2: SYSTEM DESIGN. Inclash%3,: GENERAL (Genera Dynamics/Convair) G3/02 02562

FEASIBILITY STUDY OF AN

INTEGRATED PROGRAM FOR AEROSPACE-VEHICLE

DESIGN (IPAD) SYSTEM

by C. A. Garrocq, M. J. Hurley et al

VOLUME V

DESIGN OF THE IPAD SYSTEM

PART II - SYSTEM DESIGN

PART III - GENERAL PURPOSE UTILITIES

(PHASE I, TASK 2)

30 August 1973 -

Publicly Released

~ February 10, 1978

;6 N\%%\Prepared Under Contract No. NAS 1-11431 by

GENERAL DYNAMICS/CONVAIR AEROSPACE DMSION"
San Diego, Californma cm

for CO

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION &

FEASIBILITY STUDY OF AN
INTEGRATED PROGRAM FOR AEROSPACE-VEHICLE

DESIGN (IPAD) SYSTEM

VOLUME I - SUMMARY

VOLUME II - CHARACTERIZATION OF THE
(PHASE I, TASK 1)

IPAD SYSTEM

VOLUME III - ENGINEERING CREATIVE/EVALUATION PROCESSES
(PHASE I, TASK 1)

VOLUME IV - DESIGN OF THE IPAD SYSTEM
PART I - IPAD SYSTEM DESIGN REQUIREMENTS

(PHASE I, TASK 2)

VOLUME V - DESIGN OF THE IPAD SYSTEM
PART II - SYSTEM DESIGN
PART III - GENERAL PURPOSE UTILITIES

(PHASE I, TASK 2)

VOLUME VI - IMPLEMENTATION SCHEDULE
DEVELOPMENT COSTS
OPERATIONAL COSTS
BENEFIT ASSESSMENT
IMPACT ON COMPANY ORGANIZATION
SPIN-OFF ASSESSMENT

(PHASE II, TASKS S to 8)

FOREWORD

This investigation was conducted for the NASA Langley Research

Center by the Convair Aerospace Division of Gendal Dynamics Corpo

ration under Contract NAS 1-1143 1.

The NASA Technical Monitor was Dr. Robert E. Fulton, Head,

IPAD Technology Section, Design Technology Branch, Structures and

Dynamics Division, assisted by Dr. Jaroslaw Sobieszczanski and

Mrs. Susan J. Voigt. The Convair Project Leader was Mr. C. A.

Garrocq. This volume was prepared by M. J. Hurley, W. E. Jenkins,

R. R. Diaddigo, R. H. Schappelle, D. W. Peterson, J. M. Maughmer,

J. D. Neilson, G. M. Oing and J. M. Mallory, assisted by T. M.

Wooster, J. T. Gordon, M. J. Cronk and R. A. Westerwick.

The Control Data Corporation participated in the performance of

this study as a subcontractor to the General Dynamics Corporation. Also
indirectly assisting were personn el from UNIVAC Division of Sperry Rand

and International Business Machines.

The period of performance was from 15 March 1972 to 30 August 1973.

.oot

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

PART II - SYSTEM DESIGN

Section 	 Page

I INTRODUCTORY NOTES 	 1

2 THE EXECUTIVE 	 3

2.1 TCS Files 	 4

2. 1. 1 	 Simple form of a TCS file 4

2. 1. 2 	 General form of a TCS file 4

2.1.3 	 Examples of a TCS 4

2.2 TCS File Generation 	 6

2.2. 1 	 The TCSS Expander 6

2.2.2 	 The TCSS Writer 10

2.2.3 	 TCS Interceptor 11

2.3 User's Task Trajectory (UTT) Generation 	 12

2.4 EXEC Functions 	 14

2.4. 1 	 EXEC functions, control and data flow 14

2.4.2 	 EXEC functions, system support 14

2.4.3 	 Example of an IPAD task 15

2.5 IPAD EXEC - Implementation Considerations and Trades 17

2.5.1 	 IBMandUNIVAC 19

2.5.2 The CDC CYBER 70 and 6000 Series 20

2.5,3 Implementation of modifications 20

2.6 Alternate EXEC Design Approaches 	 20

2.6.1 	 Add EXEC to the time-sharing subsystem 21

3 INPUT/OUTPUT FORMATTING 	 23

3.1 Constraints and Guidelines for Developing the IOF 	 24

3.2 IOF Requirements 	 25

3.3 IOF Preliminary Design 	 26

3.3.1 	 Requirements of the IDEF and ODEF 27

3.3.2 	 Use of the IDEF and ODEF 29

3.3.3 	 Definition of the ISPONGE (OSPONGE) 34

3.3.4 	 Functional description of the IOF operation of

constructing an input file 35

3.3.5 	 Functional description of the IOF operation for

processing an output file 39

3.4 The Contributions of CODASYL's DBTG Recommendations 42

3.4.1 	 SCHEMA-SUBSCHEMA 49

V

TABLE OF CONTENTS, Contd

PART II - SYSTEM DESIGN

Section Page

3.4.2 DML 50

3.4.3 CODASYL and the OM interference problem 51

3.5 An Implementation of DBMS 51

3.5.1 CDC's DBMS 52

3.5.2 CDC's query update/2 54

3.5.3 First release capability of CDC's DBMS 55

3.5.4 Review of design constraints and guidelines 55

3.5.5 Review of IOF requirements 56

3.5.6 Review of the IOF conceptual design 57

3.6 IPAD's Query Processor 61

3.7 Extensions to the DBTG Recommendations 62

3.7. 1 Data handling for interactive graphics 62

3.7.2 CDC's data handler it 63

3.7.3 NSRDC's interactive data manager (IDM) 64

3.7.4 The DBMS approach 65

3.8 Conclusiions 66

4 DATA, BASE AND DATA BASE MANAGEMENT 69

4.1 Introduction 69

4.1.1 Project organization 70

4.1.2 Terminology ,72
4.1.3 Project level data bank, a functional description 75

4.1.4 Disciplinary-level data bases, a functional description 86

4.1.5 Command files, a functional description 94

4.1.6 Remaining project data bases 96

4.1.7 IPAD support system data bases 98

4.2 IPAD Data Base and Data Base Management 99

4.2.1 Data organization and management via DDL/DBMS/QP 101

4.2.2 Representative data base user operations 105

4.2.3 Representative data base operations via QP/DBMS 112

4.3 Role of the Data Base Administrator (DBA) 118

4.3.1 DDL/QPS design and usage 121

4.3.2 M1DB design and usage 123

4.3.3 General IPAD facilities for DBA assistance 124

4.3.4 DBA skill level 124

vi

TABLE OF CONTENTS, Contd

PART II - SYSTEM DESIGN

Section Page

4.4 Summary 125

5 LANGUAGE DEVELOPMENT 127

5.1 IPAD Control Language (ICL) 128

5. 1. 1 ICL associated with supporting software 128

5.1.2 IPAD EXEC commands 128

5.1.3 ICL constraints 129

5.2 Data Description Languages (DDLs) 130

5.2.1 SCHEMA DDL 131

5.2.2 SUBSCHEMA DDLs 131

5.3 Data Manipulation Language (DML) 131

5.4 Engineering Oriented Syntax for DDL and DML 133

5.5 Query Processor Language (QPL), 134

5.6 General Graphics Lilrary (GGL) 135

5.6.1 Current basic software packages 136

5.6.2 Elementary considerations in the design of a GGL 137

5.6.3 Complex considerations in the design of a GGL 141

5.6.4 Justification for a GGL 142

5.6.5 Summary 143

5.7 Conclusions 144

6 SYSTEM RECOVERY 145

6.1 Recovery Within IPAD-Specific Software 147

6.2 Recovery Within the QP/DBMS Subsystem 147

6.3 Recovery Within the Timesharing Subsystem 149

6.4 Recovery Within the Operating System 149

6.4.1 System failures 150

6.5 Recovery Within the Computer Operations Group 151

6.6 Recovery Features of Typical Hardware 151

6.7 Conclusions 152

7 SPECIAL PURPOSE UTILITIES (SPUs) 153

7.1 Human Factors Considerations: The Requirements for SPUs 153

7.2 Incorporation of Existing OMs Into IPAD 154

7.2.1 DML Insertion Preprocessor 156

7.2.2 SUBSCHEMA Assembler 157

7.2.3 Other supporting utilities 158

7.3 SCHEMA Assembler 159

vii

TABLE OF CONTENTS, Contd

PART II - SYSTEM DESIGN

Page
Section

8 RESTRICTIONS 	 163

8. 1 Restrictions on OMs 	 163

8.2 User Restrictions 	 163

8.3 Restriction on the Use of IPAD 	 164

9 TRANSFERABILITY, HOW IT IS OBTAINED 	 165

9.1 IPAD Non-Executable Code 	 166

9.2 IPAD Executable Code 	 167

9.2.1 	 Choice of an appropriate language 167

9.2.2 	 Candidate language comparison 168

9.2.3 	 Overview of functions to be performed 170

9.3 Conclusion 	 174

10 CONCLUDING REMARKS 	 177

10.1 The Conceptual Design Revisited 	 177

10. 1. 1 The objectives as they related to the host operating

system interface (Subsection 2.2. 2 of Part 1) 177

10. 1.2 	The user (Subsection 2.2. 3 of Part 1) 178

10.1.3 	The TCS, a command structure (Subsection 2.3. 3 of

Part 1) 178

10. 1. 4 Incorporation of the OMs (Subsection 2.3.4 of Part 1) 180

10. 1. 5 	IPAD system software (Subsection 2.3.5 of Part 1) 181

10. 1. 6 	The data bases (Subsection 2.3. 6 of Part 1) 182

10. 1.7 	Summary of features of the conceptual design 183

10.2 Dependence on Manufacturer - Supplied Software 183

11 REFERENCES 187

viii

TABLE OF CONTENTS

PART III - GENERAL PURPOSEUTILITIES

Section 	 Page

1 	 IPAD SYSTEM OVERVIEW, SYSTEM INTERACE AND OPERATING

PHILOSOPHY: AN INTRODUCTION TO GENERAL PURPOSE

UTILITIES (GPUs) 191

1.1 System Overview 	 192

1.2 Relationship of GPUs to the Overall System 	 193

1.2.1 	 Overview of DBMS 194

1.2.2 	 Incorporation of a GPU into IPAD 198

1.3 Process Integration 	 200

1.3.1 	 Design optimization, an example of process integration 202

1.4 GPU Programming Standards 	 207

1.4.1
 Standard source language 207
1.4.2
 Continuity 207
1.4.3
 Modularity 208
1.4.4
 Execution mode 209

1. 5 Conclusions 	 209

2 STATISTICAL UTILITY MODULE (STATUM), A GPU 	 211

2.1 STATUM User Interface 	 212

2.2 Statistical Programs Within STATUM 	 214

2.2.1 	 DASCR-Data screening 216

2.2.2 	 TOCI - tolerance intervals 217

2.2.3 REGRE -
 multiple linear regression 217
2.2.4 POLRG -
 polynomial regression 218
2.2.5 STEPR -
 stepwise multiple regression- 218
2.2.6 MCANO - canonical correlation 219

2.2.7 	 ALLTST - measurement of testing hypothesis' 219

2.2.8 	 KOLM - kolmogorov-snmirnov tests 220

2.2.9 	 HBFCD - histograms compared with classical

distributions 220

2.2.10 	 ANOVA - analysis of variance 220

2.2.11 	 RANCO - rank coefficients 221

2.2.12 	DISCR - discriminant analysis 221

2.3 Input/Output Requirements 	 222

2.4 STATUM Menus 	 223

2.4.1 	 STATUM subject menu 224

2.4.2 	 STATUM macro menus 225

2.4.3 	 STATUM micro menus 227

ix

TABLE OF CONTENTS, -Contd

PART III --GENERAL PURPOSE UTILITIES

Secti6n 	 Page

2.5 Output Quantity Menus 	 228

2.6 Operating Requirements for STATUM 	 229

2.6.1 	 Incore storage requirements for STATUM 229

2.6.2 	 Computing times for STATUM 1 231

2.6.3 	 Modification and creation of new subroutines for

STATUM 231

3 IPAD TEXT EDITING, A HOST UTILITY 	 233

3.1 Text Editing Concepts 	 233

3.2 A 	Review of Text Editing 234

3.2.1 	 File manipulation functions 236

3.2.2 	 Line manipulation functions 236

3.2.3 	 String manipulation functions 237

3.2.4 	 Formatting and general utility functions 237

3.3 A 	Comparison of Text Editors 238

3.4 IPAD's Text Editor 	 239

4 OPTIMIZER AND PARAMETERIZER MODULE (OPTUM), A GPU 241

4.1 Introduction 	 241

4.2 Optimization Methods 	 242

4.2.1 	 Gradient methods 244

4.2.2 	 One-dimensional search methods 248

4.2.3 	 List changing techniques 249

4.2.4 	 Random variation . 251

4.2.5 	 Methods for performing the one-dimensional searches

which are required by most of the preceeding
techniques 	 251

4.2.6 	 Linearizing the objective function and cqnstraints 253

4.2.7 	 Transformation of constrained problems to uncon
strained problems by way of penalty functions 253

4.3 Optimization Method Selection 	 255

4.3.1 Classification 255

4.3t 2 Diminishing returns 255

4.3.3 	 Applicability 256

4.3.4 	 Implementation approach 256

4.4 Operating Requirements for OPTUM 	 258

4.5 Conclusion 	 260

TABLE OF CONTENTS, Contd

PART III - GENERAL PURPOSE UTILITIES,,

Section 	 Page

5 GENERAL GRAPHICS PLOTTER (GGP), A GPU, 	 263

5.1 	 Conventional Graphical Output 263

5.1.1 Graphing 	 264

5.1.2 Contour plotting 	 268

5.1.3 Pictorial displaying 	 269

5.1.4 Configuration display 	 272

5.1.5 Coordinate system visualization 	 275

5.1.6 Clearance presentation 	 276

5.1.7 Packaging and routing 	 277

5.1.8 Animation 	 278

5. 1.9 Special applications 	 280

5.1.10 Requirements for a General Graphics Plotter 283

5.1.11 Concluding remhrks 	 285

5.2 	 Graphical Output With Topological Input 286

5.2.1 Fundamental requirements for RIM 	 286

5.2.2 Functional requirements 	 290

5.2.3 The analysis OM 	 291

5.3 	 Design Synthesis 292

5.3.1 Data base implications 	 293

5.3.2 Graphical display implications 	 296

5.3.3 Design implementation 	 297

5.4 	 Operating Requirements 298

6 	 GENERAL SURFACE (CURVE) FITTING, AN APPLICATION FOR

OPTUM AND GGP 303

6.1 	 The Data Analysis Process, Aki OVerview 303

6.1.1 Data manipulation 	 303

6.1.2 Drta fitting 	 304

6.1.3 'Evaluation 	 305

6.1.4 Conclusions 	 305

6.2 	 Summary 307

GENERAL DESIGN MODULE (GDM), A GPU 	 309

7.1 	 Introduction 309

7.1.1 IS&R subsystem 	 311

xi

TABLE OF'CONTENTS, Contd

,,, PART III,- GENERAL PURPOSE UTILITIES

Section Page

7.1.2 Geometric (3D) building blocks 311

7.1.3 Design analysis program library 311

7.1.4 The legacy to computdr aided manufacturing (CAM) 313

7.2 Construction Features 314

7.2.1 Working with the geometric building blocks 315

7.2.2 Semiautomatic dimensioning 318

7.2.3 Isometric and perspective views 319

7.2.4 Geometric mirroring and copying 319

7.2.5 Parts library (IS&R) system 320

7.2.6 Auxiliary views 320

7.2.7 Sectioning 320

7.2.8 Assemblies 321

7.2.9 Flat pattdrn development 321

7.2.10 Revisions 321

7.2.11 Desk calculator 322

7.3 Display Features 323

7:3.1 . Line styles 323

7.3.2 Text 324

7.3.3 Move, zoom, rotate and scissor 324

7.3.4 Grid 324

7.3.5 Distortions 324

7.3.6 Erase 325

7.3.7 Hard copy 325

7.4 Attributes 326

7.4.1 Volume and mass properties 326

7.4.2 Section properties 326

7.4.3 Data retrieval 327

7.5 Program Linking 328

7.6 Partitioning of Computing Functions 328

7.7 Conclusions 330

8 TUTORIAL AIDS SUPPORT (TAS), AN APPLICATION 337

9 COORDINATE/UNITS TRANSFORMATION, AN APPLICATION 339

9.1 Units 339

9.2 Coordinates 340

9.3 Implicit Transformation Functions 341

9.4 Conclusions 342

Xii

TABLE OF CONTENTS7 Contd

PART III - GENERAL PURPOSE UTILITIES

Section 	 Page

10 CONCLUDING REMARKS 	 343

10.1 	 Graphic Plotter/Pictorial Plotter/Movie Sequencer/

Topological Input Manipulator 344

10.2 	Text Editor/Report Writer 344

10.3 	Optimizer/Sensitivity Extractor/Parameterizer 344

10.4 	 Tutorial Aides 344

10.5 	File Manager 345

10.6 	Various Compilers 345

10.7 	 Statistical Package 345

10.8 	 Generalized Fitter 345

10.9 	 Drafting/Descriptive Geometry/Data Checker/Verifier 346

10. 10 Coordinate/Units Transformations 	 347

REFERENCES - PART In 	 349

Appendix

A 	 GLOSSARY OF IPAD ACRONYMS AND SELECTED TERMINOLOGY 351

B 	 INDUSTRY EXPERIENCE WITH INTERACTIVE GRAPHICS, A

LITERATURE SURVEY see Vol IV

C 	 REPORT TO SPARC FROM AD HOC COMMITTEE ON OPERATING

SYSTEM CONTROL LANGUAGE see Vol IV

D 	 AMERICAN NATIONAL STANDARDS INSTITUTE (ANS see Vol IV

E 	 CONFERENCE ON DATA SYSTEMS LANGUAGES (CODASYL) 367

F 	 DATA BASE AND DATA BASE MANAGEMENT, DETAILED

REQUIREMENTS 3173

xiii

LIST OF FIGURES

PART II - SYSTEM DESIGN

Figure Page

2-1 IPAD EXEC and Relationship with Other IPAD System Components 3

2-2 TCS Example with User Interaction (CDC Format) 5

2-3 TCSS and the Expansion Process 7

2-4 TCSS Writer Operation 10

2-5 TCS Interceptor/EXEC Operation
 12
2-6 User Task Trajectory (UTI) Generation 13

2-7 TCS Multi-OM Execution Example - First OM 16

2-8 TCS Multi-OM Execution - Second OM
 18

3-1 Typical Input Deck (Source) 28

3-2 Input Source- Input Tree
 30

3-3 Input Tree -+ IDEF
 30

3-4 Typical Output Listing (Source) 31

3-5 Output Source -+Output Tree
 32

3-6 Output Tree -4 ODEF
 32

3-7 /IDEF - ISPONGE 33

3-8 'ODEF- OSPONGE
 33

3-91 Input File Construction
 35
3-10 Output File Processing 40

3-11 Data Transformation Implementations, A General View 44

3-12 Data Base Structure as Viewed by Various Support System Software 49

3-13 Features of DDL and DML
 50
3-14 CDC's Implementation Plan for CODASYL's Data Base Management

52
System
3-15 CDC's Query Update Version 2.0 64

3-16 Typical Data Structures
 63
3-17 SET Representation of a Sequential Structure 65
3-18 SET Representation of a Tree Structure 65

3-19 SET Representation of a Network Structure
 66

4-1 Typical Project Organization for Aircraft Design 71

4-2 Project Arrangement for Aircraft Design Within IPAD,
 71

4-3 Data Bases Associated with the Project, an Overview 73

4-4 MDB General Data Organization 78

4-5 Accessing and Maintaining the MDB 79

4-6 Updating the MDB
 '79
4-7 Design Data Production Process 80

xiv

LIST OP PIGURES, Contd

PART II - SYSTEM DESIGN

Figur'e Page

4-8 Data Presentation File, General Form 81

4-9 M1B Data Update File 81

4-10 Project Review File, A Data Presentation File 82

4-11 Data Base Orgdnization, Communications Files 83

4-12 Communications File, General Relationships 85

4-13 Communications File, General Form 85

4-14 DBA Status/Action File 87

4-15 ERB/ERBC Status/Action File 87

4-16 ERB's TSA, Typical Display 88

4-17 DBA's TSA, Typical Display 89

4-18 Performance's TSA, Typical Display 89

4-19 Discipline Library/User Files 90

4-20 Disciplinary Library File (DLF) 90

4-21 Sequence of Interactive Operation Illustrating Menu Usage,

Structures Discipline 92

4-22 Selection of Data for Updating the MIB 93

4-23 OM Files, A General Arrangement 93

4-24 User File, General Arrangement 94

4-25 Data Base Organization, Commands Files (and Derivatives) 95

4-26 TCS/TCSS Files, General Form 95

,4-27 User Task Trajectory (UTT) File Structure 97

4-28 Executable Code Files 97

4-29 Utility File, General Form 98

4-30 IPAD Data Bases, Typical Arrangement in Terms of DDL 102

4-31 Design Data: DDL Expansion 103

4-32 PRF (MDBU) Entry: DDL Expansion 103

4-33 IPAD Data Bases Illustrating Typical QP Procedures 104

4-34 Design Data Production Cycle 105

4-35 Assignment of Design Activity via QP 107

4-36 Performance of the Design Activity 108

4-37 Preparation of Design Data for Evaluation and Review 109

4-38 Incorporation of Design Data into the MDB 110

4-39 Presentation of Design Data 111

4-40 Message Entrance, Details of 113

4-41 Interrogation of a TSA 114

xv

LIST OF FIGURES, Contd

PART II - SYSTEM DESIGN

Figure Page

4-42 Monitoring a UTT 116

4-43 Preparation 6f Data for Insertion into the MDBU 117

4-44 Updating the MDB 119

4-45 Displaying PRF Design' Data 120

6-1 IPAD System Overview 145

7-1 Initial OM Incorporation into IPAD 154

7-2 OM Interface Resolution Per Design Task Through Defirition of a

UF in the SCHEMA 161

xv1

LIST OF FIGURES

PART III - GENERAL PURPOSE UTILITIES

Figure Page

1-1 Initial OM Incorporation into IPAD 200

1-2 Interactively Preparing a Sequen9e of OMs for Optimization (User _

Not Shown)' 203

1-3 Cycling through an Optimization Loop with Optional Interactive'

Monitoring 206

2-1 Function Flow Diagram, STATUM 213

2-2 Simple Case: Data Screening 215

2-3 Typical Case: Performing a Multiple Linear Regression 215

2-4 Input Information Cross-Reference Matrix 222

2-5 Output Information Cross-Reference Matrix 224

2-6 STATUM Subject Menu 225

2-7 STATUM Macro Menu for Regression and Correlation Analyses 226

2-8 STATUM Micro Menu for Multiple Linear Regression (REGRE) 227

2-9 Estimated Operating Requirements for STATUM 230

4-1 Functional Flow Diagram of Optimizer Evolution 243

4-2 Functional Flowchart of Steepest Descent Method 245

4-3 Functional Flowchart of Davidon-Fletcher-Powell Meth6d 246

4-4 Functional Flowchart of Simplex Method 247

4-5 Functional Flowchart of the Method of Zoutendijk 248

4-6 Flowchart of Powefl' s Method 249

4-7 Flowchart of SuccessionofOne Dimensional Searches Along

Coordinate Axes 249

4-8 Second-Order Fit Approximate Modeling Technique Flowchart 250

4-9 Random Walk Flowchart 252

4-10 Flowchart of Random Ray Search 252

4-11 Functional Flow of Penalty Function Nonlinear Programming

Techniques 254

4-12 Proposed Tutorial Aids TCSS for Selecting OPTUM utilizing the

TCSS EXPANDER 259

5-1 Examples of Problem Formulation Schematics 287

5-2 GGP's Viewable Space 299

5-3 Functional Flowchart of GGP 30.0

5-4 Define Picture Region 302

5-5 Construct Picture 302

6-1 Data Analysis Process, Functional Flow 306

7-1 Design Process Flow Diagram 310

xvii

LIST OF FIGURES, Contd

PART III - GENEALPURPOSE UTILITIES

Figure Page

7-2 GDM Data Structure, Assembly Level 312
7-3 Partitioning of Computing Functions Between the Mini and Host-

(Maxi) Computers 331
7-4 Coordinate Transformation Functional Flow Diagram 332
7-5 Section Development Functional Flow Diagram 332
7-6 Parrallelepiped Development Functional Flow Diagram 333
7-7 Quadric Surface Development Functional Flow Diagram 333
7-8 Hard Copy Development Functional Flow Diagram 333

7-9 Arc Development Functional Flow Diagram 334
7-10 Spline Development Functional Flow Diagram 334,
7-11 Part Storage/Retrieval Functional Flow, Diagram 334
7-12 Desk Calculator Mode 315
10-1 Projected Usage of IPAD Interactive Utilities by Questionnaire

Respondents 343

LIST OF TABLES

PART II - SYSTEM DESIGN

Table Page

2-1 Operating System Capabilities of Interest to the IPAD EXEC '19
5-1 Some Graphic Support Packages in Use Today 138
9-1 Candidate Language, Comparisons 169

LIST OF TABLES

PART III - GENERAL PURPOSE UTILITIES

Table Page

3-1 Major Editing Functions and Command Comparisons 235

5-1 Data Base Support to TIM: Record Types 293
5-2 Data Base Support to TIM: Set Types 294

xviii

'SUMMARY

An IPAD system is defined herein as consisting of four major components, as shown in
Figure S-1: (1) A Management Engineering Capability represented by a battery of auto
mated Operational Modules for various management/design/engineering disciplines,
(2)' an IPAD Framework Software which supports and augments the Engineering Capa
bility, (3) an Operating System Software, which features a comprehensive Data Base
Management System, and (4) a Computer Complex Hardware, on which all the Engineer
ing, IPAD, and System software will be mounted and exercised. From this statement,
it can be inferred that the Management/Engineering Capability can and should be tailored
to thb specific needs of the management/design/engineering team (i.e., the battery of
Operational Modules for aircraft design would be different than that for missiles, or
navy vessels, or terrestrial vehicles, or civil engineering projects, although many
common elements could be identified). On the other hand, the iPAD Framework Soft
ware, the Operating System Software, and the Computer Complex Hardware could have
essefttially the same basic capabilities for all users, with freedom of choice in specific
software, and type and quality of equipment desired within each computer complex.

IPAD
SYSTEM

MANAGEMENT/, [PAD OPERATING COMPUTER
ENGINEERING FRAMEWORK SYSTEM COMPLEX
CAPABILITY SOFTWARE SOFTWARE HARDWARE

Figure S-1. Major IPAD System Components

The organization, engineering usage philosophy, and the accompanying IPAD
design concept developed in this study provide the flexibility required to satisfy the
project needs of any management/design/engineering team which will use and exploit
the IPAD system's capability in any way it sees fit.

IPAD Computer Software

The various elements of computer software associated with IPAD are illustrated
in Figure S-2.

I xix

OPERATINGA/GENAGRMENT 	 E, 1

OMJLRSEUNy"TM

NN IPAD PURPO$E pUpoE XEUTBL

EXCUALE

u E
 Tr COMmILERSUTILITIESODECDML XCOLE XCT UTILITIES URO CODEDIABL

EnAnoed L 	 Suo(or MaipitontnfuaeIOL

OM S;OURCE SUBSCHEMA IPAD CONTROL SrATUO, OML INSERTION TASK CONTROL ME FRAN • BAT"CH
G E 	

CO •IMMOM OBJECT INFUTJOUTPUT LANGUA OPTUM PREPROCESSOR SEQUENCES pROCESSOR L
_ ARING

VBMS COD9 DEFINITION INJTERCEPTOR GGP SUBSCHEMLA PROJECT PRFIVACY BAITEXT EDITOR

SEILOE TUTORiAlAID S F *pANOE GDPI ASVMBL EIR MCGO. ° GGL

SPPO T
R Q ER SCIEH EM A LO N. L

TASK CONTR L WRTROUR SEBELAPAT

R

Fiur 5-2 CoptrSftaeAscatd) 	 wit tA

•EPnatu d for Data Manilatlon Lan~lg" (OML)

•,Supprtng Dct av,n,n cmpdaers

Figure S-2. Computer Software Associated with IPAD

The three major classes of software are:

1. 	 Management/Engineering Capability Software. - The total automated capability
of the management/engineering/science community-is resident in a library of
automated operational modules consisting of both a public domain library, access
ible to all parties, and private libraries containing modules with limited or re
stricted availability due to the nature of its contents being private data, classified
information, or the like. From the total gamut of available modules a project
team will select those which are applicable to their specific project to assemble
a project library of automated operational modules that will be installed on the
IPAD Computer Complex. The contents of this library are dynamic in the sense
that programs are added or removed from it as the need arises,, and are resident
on disk or tape depending on their usage rate. All project related activities such
as management, marketing, economics, technical disciplines, and design/draft
ing will have their respective automated capabilities installed in the system. The
position of this software in relation to other computer software required for IPAD
is shown in the first two columns of Figure S-2.

2. 	 The IPAD framework software. - From the user's point of view, WPAD is a

framework which supports and augments the capabilities of his computerized

management, design/drafting, and analytical tools. From this viewpoint, the
framework is composed of a number of utilities and interfacing capabilities, as
shown in Figure S-2. The elements of this software are:

a. 	 The IPAD EXECutive, which is the principal contact that the IPAD user has
with the system. The EXEC is additionally supported by four utilities:

* 	 The Task Control Sequence Skeleton Writer, which is an interactive pro
gram to assist the user in writing a sequence of automated tasks.

xx

" 	 The Task Control Sequence Skeleton Expander, which is an interactive
(or batch) program to assist the user in tailoring a task sequence to his
specific application.

* 	 The Interceptor, which enables the user to maintain a record of his
transactions.

o 	 The User's Task Trajectory Recorder, which performs automatic re
cording of the sequence of transactions in which the user was actually
engaged.

b. 	 General Purpose Utilities, to provide an augmentation of the user's Opera
tional Modules. There are five general purpose utilities in the present de
sign of IPAD, some of which are highly modular and can be developed in
various release levels as discussed below.

* 	 The statistical utility module (STATUM), which provides the user with
a statistical package that can be used at an interactive terminal.

* 	 The general purpose optimizer (OPTUM), which provides the user with
an interactive collection of multivariable search techniques and tutorial
aids for optimization and parametric studies, fulfills one of the basic
needs of a project engineering team. Its modularity permits releases
at various levels of capability.

* The Query Processor, which is an interactive COBOL program that
enables the user to control and manipulate the contents and structure
of his data sub-bases.

* 	 The General Graphics Plotter, which addresses the need of producing
the geometrical, graphical and pictorial displays required by interactive
users in any design process, is a basic element of the new IPAD design
environment. It is highly modular and considerable design and imple
mentation is presently underway in industry at large. The impact of this
current development activity could substantially reduce the costs estimated
for this task.

* 	 The General Design Module, which augments the design function through
interactive-design/automated-drafting software and equipment, is the
cornerstone of board design activities in the new IPAD environment. It
is destined to be the largest, most system-demanding, and second most
frequently used IPAD utility (after the Query Processor). It is perhaps
the most modular utility and involves the development of large amounts
of new code. Due to the criticality of response time for the design
function, this module is to be supported mainly by a minicomputer with
proper interfaces to the host operating system. The basic elements of
this module are a comprehensive information storage and retrieval sys
tem, 3-D geometrical building blocks, and design and analysis program
libraries.

xxi

c. 	 The Special Purpose Utilities, to assist IPAD users in interfacing their com
puter programs with the Data Base Management System for which a great

deal of information is required. Without the support of the utilities this inter

facing would entail a prohibitive amount of time and labor. These utilities

are considered indispensable for all release capabilities of IPAD. They are:

* 	 The Data Manipulation Language Insertion Preprocessor, which is a
batch utility to replace conventional FORTRAN input/output coding with

logically equivalent Data Manipulation Language statements.

* 	 The SUBSCHEMA Assembler, which is an interactive utility to extract
data descriptors from the conventional input/output of a program and
generate Data Description Language statements to interface with the
data base.

* 	 The SCHEMA Assembler, which is an interactive utility to integrate
several computer programs into one execution sequence and resolve
conflicts with common and duplicated data items, data base structure,

and required transformations.

d. 	 Non-executable Code, to define the extensive data base organization related
to the selected aerospace-vehicle project activity, and to specify project
oriented task control sequences to be used during the design process.

3. 	 Operating system software. - IPAD is designedto fully exploit the host computer's

operating system software. In particular, the operating system must be upgraded

to contain a capable timesharing (also called conversational) subsystem and a

comprehensive Data Base Management System patterned after the language speci
fications of CODASYL's Data Base Task Group's recommendations. Two new

languages must be developed: (1) a Data Description Language, to describe the
data in the data base; and (2) a Data Manipulation Language, to cause the transfer
of data between programs and the data base. The functions of the Data Base
Management System are: (1) to control the input/output functions of the operating
system to satisfy Data-Manipulation-Language requests issued by programs in
execution; (2) to perform transformations to correlate SCHEMA and SUBSCHEMA
data descriptions; and (3) to provide means of enforcing and maintaining the data
integrity and logical structure detailed by the Data Base Administrator. The pro
posed implementation plan provides support to a FORTRAN Data Base Management
System via COBOL and subroutine CALLs.

Objectives of this Volume

The major objectives of this volume are to present viable designs of various
elements of the IPAD Framework Software, Data Base Management System, and re
quired new languages in relation to the capabilities of Operating Systems Software.

These objectives were pursued by a thorough evaluation of the basic systems func
tions to be provided by each software element, its requirements defined in the con
ceptual design, the operating systems features affecting its design, and the engineer
ing/design functions which it was intended to enhance. The various software elements
are discussed in more detail in Parts II and I1, and various Appendices that follow.

xxii

PHASE I - TASK 2

PART II - SYSTEM DESIGN

1 INTRODUCTORY NOTES

The best summary of the problem leading to the IPAD design concept is contained in
the IPAD Statement of Work (Volume IV, Section 1 of Part I), paraphrased as follows:

The design process involves an army of specialists with conflicting

requirements to be resolved via design decisions, and involves many

design iterations extending over a very long period of time. Each

iteration and each design decision involves the transfer of mountains

of related design data.

The overall goal, then, is to level the mountains and collapse the iter
ation time to the point that aircraft may be properly designed, before
they are manufactured.

The Conceptual Design (see Volume IV, Section 2 of Part I) developed objectives

of a software system conceived to achieve this goal. The basic features of the Con
ceptual Design are:

1. 	 A central data base - the Multidisciplinary Data Bank (MDB).

2. 	 Communication and tutorial facilities to provide systematic

avenues for human'to-human interface in the design process.

3. 	 Computational capabilities provided through a user-oriented
command structure to facilitate the user-to-software interface.

4. 	 An I/O formatting capability to interface the independently de
veloped computational capabilities (viz., the OMs).

5. 	 Interactive capabilities to give the user direct contact with
the computer processes.

The intent of Part II is to present a viable system design consistent with the ob
jectives put forth in the Conceptual Design. Essentially all the objectives of the Con
ceptLal Design are met by improving the human interface and exploiting software de
veloped (or being developed) independently of IPAD.

The work of the Data Base Task Group (DBTG) of the Conference on Data System
Language (CODASYL) was indispensable in the development of the system design. The
impact first becomes apparent in Section 3 in conjunction with Input/Output Formatting,
then permeates succeeding sections. This in no way implies endorsement of the system

1

design by CODASYL; the 'xtedt t'ovhdh-C6I5ASYL 'is involVed is in framing a policy
wiih p4j&the DBTO report in 1he public domhain.

The contribution 6f-6hftrb Data Corporation (CDC)"as subcontractor is also
acknowledged, ,rincipally'fo 6inting' obit tiat the work of the DBTG was applicable to

the IPAD 'doncebtualdeig &adfor worlng documents lending visibility to their future

plans with kespect to th- PblTG recommendations. It' is emphasized here that the

material made available by CDC was in the nature of preliminary working documents

and were accompanied by the following disclaimer:

DISCLAVIER: This document is a
working paper only and does not
necessarily represent any official
intent on the part of Control Data
Corporation.

The figures of this volume generally adhere to the following symbolism for the
convenience of the reader:

LAny interactive console. Any IPAD user at an interactive console.

) Any file on disk.

1 Command or functional interface.

Data interface.

7 Interactive communications interface.

SAny functional block beig executed.

> Decision functional block.

ICard input. TGS being executed.

QAny display information (CRT,printout, or display file).

The reader is referred to Appendix A for a concise glossary of acronyms and

special terminology used throughout this report.

2

2 THE EXECUTIVE

The major function of the IPAD EXECutive is to drive a task through a sequence
of job steps as directed by a Task'Control Sequence (TCS). A job step consists of
the exebution of an-Operational Module (OM), an IPAD utility, a host operating system
utility, etc. In most cases the EXEC, once started on a particular task, completes
it Without iser intervention; but in some cases the user will wish to interact with the
task. The IPAD EXECutive (Figure 2-1), therefore, is operationally attached to one user
and, in general, one TCS per job step. There may be multiple users at any instant of
operation, hit they will deal with their own individual copies of the EXEC. (The copy,
in implementation, can either be physical copies or a single re-entrant version of the
EXEC.)

-Since if is likely that the IPAD EXEC will operate within an interactive environ
ment, such tiiaesharing facilities are assumed to be installation-dependent and not
part of the EXEC function. Also, the EXEC is dependent upon the host facility for
actual loading and execution of OMs/utilities required by the user. The EXEC deals with
its data base storage and operation requirements via a data base management system.

DATA BASE
MANAGEMENT - --

SYSTEM

I HOST

IPAD INTERACTIVE TERMINAL

EXECUTIVE ~ COMMUNICATIONS SUPPORT

USEROTHE '1LOADERS

OTHERDIPA
ANDSUBSYSTEMS MONITORS

Figure 2-t.FIPAD EXEC and Relationship with Other IPAD System Components

3

2.1 TCS Filhs

The overall EXEC design is based upon the use of TCS files. (ReasIons for tbis
choice are covered in Section 2.6.) A TCS-may 'cpnsist entirely of user-termina]! iput
(simple form),ormay contain labels and direct input flags (general form).

2. 1. 1 Simpleform of a-TCS file. - In its simplest form a TOS file consistp. of
exactly the input (commands, data-, control characters) that a user must type
at his terminal to run a particular task. This form is already available on-.many-ys
terns and is comnonly called a commands file; the name comes from the GENIE* sys
tem and is.something of,amisnomer because the file can contain,much niore than
com ands.

This form of TCS (or commands) file replaces all terminal input.' Whenever a
program requests input (e. g., because it has just executed 'aREAD statemeit'i~cted
to the interactive terminal),, or the operating system itself requests a command (e. g.,
because a program has terminated or ab6rted), the input is provided bynteading fron,
.the TCS. If the end-of-information occurs on the TCS file while that file is still active,
control reverts to the terminal.

2.1.2 General form of a TCS file. - In its general form a TOS file may also contaim
labels and direct'input flags. 3oth ar6 denoted by special characters td's6parate them
from the simulated terminal input making up the bulk.of the file. Labels are used to
mark specific locations in the file - very much like statement numbers are used in a
FORTRANprogram - so that the EXEC can reposition the file to these loctfions.
This allows conditional branching, looping, etc., witlhin the TC.

Dirgct fliput flags are used wher6'input is to be taken from the interactive termin
al instead of from" the TCS'. When a direct input flag is encountered on tie'TCS, the
normal connection tothe terminal (or to the iiput file in the batch "mode)is re-establish
ed, and all furtler input is taken from there until eithei a specified numbe of lines or
a specified termination code has been read.' The type of trmiatiodi used is deter
mined from the direct input flag itself.

2.1.3 Examples of a TCS. - A TCS may be *a mixture of the commands for the variety
of subsystems that support an IPAD task. Figire2r2 shows the TCS command structure
as it might look using CDC's interactive communicattion subsystem (INTERCOM 4.1

*GENIE is a timesharing system developed on an SDS 940 at the University of Califor
nia at Berkeley.

4

under SCOPE 3.4). On the left side of the figure is the actual TCS; on the right side is
the action as a consequence of the TCS.

1)

'2),

ATTACH (OLDATA,
PW = XYZ123)

XEQ, FIRSTOM (OL

P

DD

ERMFILENAME,

ATA, NEWFILE)

ATTACH INPUT FILE

EXECUTE FIRST OM

3) 150 DATA READ BY FIRST OM -

4)

5)

229568.41

(DIRECT INPUT FLAG)

(PAUSE)
2 LINES FROM TCS

2 LINES FROM TERMINAL

6) XEQ,SECNDOM. EXECUTE SECOND OM

7) 88
(PAUSE)

DATA READ BY SECOND OM

8) (DIRECT INPUT FLAG) USER TYPES CATALOG
COMMAND

9) XEQ, LOAD=IPADEX, EXECUTE, EOJ RELOAD IPAD EXEC &
RESTART AT END-OF-JOB

ENTRY POINT

Figure 2-2. TCS Example with User Interaction (CDC Format)

In this example, the user is to run two OMs using an existing permanent file.

The output of the first OM is used by the second OM; at the completion of the second OM,

the results are to be saved. The INTERCOM commands "ATTACH" and "XEQ" are

self-evident in their operations of notifying the host computer's operating system to

attach a permanent file and to execute particular programs as identified. At the third

and fourth lines of the TCS two pieces of data occur that will be requested by the OM

during execution. In this instance the data is read directly off the TCS file and supplied

to the OM. At the fifth line, a different situation occurs: the user has indicated that at

this point he wishes control returned to the terminal, where he may insert the required

data values. When this is done, possibly with clarifying comments to say what is expec

ted of him, he types in the lines of information; for ekample:

0., -1., -2., -3.;-4., 0.

33

The process then continues (without further action by the user) executing the second OM.

At the end of the second OM's execution, the user has left open the option
of what he wishes to do; again control is returned to the terminal for his direction. In

5

the example given, the user has decided that he wishes to save the output resulting
from his sequence of operation. He therefore issues the command f6r catio~guiiig:

CATALOG (OUTFILE,OUTFI LEPERMFILENAMETK=PASWRD)
Thereturn is then back to the IPAD EXEC for, further user action.

2.2 TCS File Generation.

There are several wayA a TCS file can be built. Undoubtedly the easiest is to
employ a utility called the TCS interceptor, which is part of the EXEC. When this
utility is brought into effect, by user command, everything the user types at his ter
minal will still haire its normal effect, but in addition almost everything (except for
commands directed to the interceptor itself) will also be written out on a file. Thus, a
user can proceed step-by-step through a task and produce a TCS file that can be used to
rerun the same task automatically later. Even if the user makes soma mistakes in the
initial run-through, he can go back and clean up the file afterwards with the sys
tem's interactive Text Editor. The Text Editor can also be used to modify a given TCS,
by putting in direct input flags in place of one or more lines of input. More compli
cated TCSs, however, such as those involving labels and calls to loop-generating or
condition-testing EXEC routines, will probably be written from scratch using the inter
active Text Editor, or even from regular card inpul.

An additional feature is provided to help engineers run complex IPAD tasks:
this is the Task Control Sequence Skeleton, or TCSS, and the TCSS Expander (see
below). In its simplest form a TCSS amounts to a TCS -withblanks to be filled in;
in its general form it may involve macro definitions and calls, symbolic parameters,
and conditional or multiple expansio..

2.2. 1 The TCSS Expander. - The TCSS Expander is intended to simplify and expedite
the production of complex character-oriented files,. Although it is designed particu
larly to aid IPAD users in setting up TCS files, it can be employed as a general-pur
pose macro expander to generate many types ofcharacter-oriented (as opposed to
binary) files.

°2. 2. 1. 1 Structure of a skeleton file: The left-hand side of Figure 2-3 illustrates sche
matically the structure of a skeleton file. A skeleton file , -which serves as input to the
Expander to produce the expanded file, is composed of TCS image text, control state
ments, dummy arguments and a tutorial prologue. The definitions of these compon
ents are as follows:

6

I

1. 	 TCS image text is the.invariant portion.of the TCS image data. In the
Expander operation, it is simply copied character-for-character from
the skeleton file to the expansion file, without modification.

2. 	 Control statements are used to control the operation of the Expander.
They create dummy arguments and parameters, initiate the conditional
expansion or skipping of parts of the skeleton file, define nested macros,
etc. Unlike the image text, control statements do not directly produce
output on the expansion file. '

3. 	 Dummy arguments are used to mark the place on the skeleton file where
,actual arguments are to be substituted. , They can be used alone, or
embedded in the image text or control statements. The substitution
process is the same in either case, because actual arguments are sub
stituted f6r all dummy arguments in each line even before that line is
scanned to determine whether it is to be written on the expansion file as
image text or interpreted as a control statement.

4. 	 Tutorial prologue is displayable data that explains to the users the func
tion of the TCSS and any other additional information the author may
consider important for the user's understanding.

SI4ELETON FILE

USER

DUMy ARGUMENT [DATA NAMES D - TERMINAL

DESCRIPTIONS
DESCRIPTIONDESCRIPTION

DUMMY AGUMEN J--...."

DUMMY ARGUMENT 	 DATUM

ARGEXPANDER..

ARGUMENT TCS IMAGE 	 F
FigureN 2.TCSad theExasioS rcs

DUMM JLE PAX~j7
D IPTTUTRa 	 PROLOGU

http:portion.of

2.2. 1.2 Operation of the Expander: Figure 2-3 also depicts the operation of the TCSS
Expander. A skeleton file will typically begin with a series of control statements that
define all the dummy argument names for which the user is to supply input. Each
dummy argument name is accompanied by a shprt explanatory writeup. When the
Expander encounters a dummy argument statement it asks the user for the argument
by name. If the user recognizes the name - and meaningful mnemonic names should
always be used for dummy arguments - he enters the appropriate argument. If the
user does not recognize the name or does not understand the type of data he is supposed
to provide, he can ask for help, and the Expander will print out the writeup for that
dummy argument and then ask for it again. Of course, whether or not the user is able
to provide it on the second try, depends on how good a job the author of the skeleton
file did on his writeups. Given good documentation, the Expander can lead an mexper
ienced user through highly complex file-setup procedures very easily.

Once actual arguments have been supplied for all dummy %rgumentd, the Expander
continues through the skeleton file and creates the expanded file. The original skele
ton file is not modified in any way; it can be enabled for multi-read access and many
users can expand it simultaneously, each producing a different 'expanded file tailored
to their specific needs.

The Expander is not limited to merely reading in data supplied by the user and
substituting it into predetermined slots in the skeleton. Some of its additional features
are described in the followin4 subsections.

2.2. 1.3 Parameters: A parameter is a dummy argument'whose actual argument is
supplied by the control statement defining it, instead of by user input. Thus the value
of a parameter can be changed only by changing the skeleton file, unless the actual
argument in the definition of the parameter itself involves a dummy argument (which
it legally can). A parameter argument is useful for a value that is likely to remain
fixed for some time but may be changed occasionally, as when a new configuration is
established; it can be changed simply by changing the parameter definition, thus
avoiding a search through the whole skeleton file to find every occurrence of that
parameter's value.

Parameters are also useful for internal symbols, counters, etc., in connection
with some of the other features described below. One type of parameter allows
redefinition, which makes it particularly good for counters since the new value can be
defined in terms of the old value; e.g., COUNTER=COUNTER+I.

2.2.1.4 Expression evaluation: Expressions are arithmetic or logical formulas that
reIult iiinumerfal values. They can bte used in both image text and control statements,,
Operands must be constants or dummy arguments whose actual arguments are con
stants. Operators will include as a minimum addition, subtraction, multipli6ation and

8

division; logical AND, OR and EXCLUSIVE OR; and some type-conversion functions;
The usual FORTRAN precedence rules are envisioned includhg parenthesization.

Expressions-aie first evaluated during expansion then replaced by their own
computed values. In effect, an expression is given two complete scans:

1. 	 Actual arguments are substituted for all dummy arguments.

2. 	 The expression is evaluated, and the result is converted to numeric form
according to some specified format and substituted for the entire expression.

2.2. 1,5 Conditional expansion: A conditional expansion control statement causes the
Expander to process a specified section of the skbleton file if and only if a prescribed
logical condition is true; if the condition is false, that section of the file is skipped
without being processed. Typical conditions might be whether or not a particular
argument is blank, a given expression evaluation is negative, or one dummy argument
is equal to another. Logical connectives can be used to combine two or more con
ditions; e. g., "Expand the following section if and only if this argument is four or
more characters long and that expression is greater than ten. " Conditional expansion
sections can be nested.

One obvious use for epnditional expansion is in generating different expansion
versions from the same skeleton file. For instance, a TCSS,could be set up to include
debugging statements in the TCS file if the user sets a dummy argument named DEBUG
nonzero. Other uses include error checking (conditionally generating an error mes
sage if the user's input is out of range) and default values (conditional generation of
a preset parameter statement if the user inputs a blank).

2.2.1.6 Multiple expansion: Multiple expansion provides a built-in looping capability.
These control statements cause a given section of the skeleton to be expanded
repetitively, either a specified number of times or until a specified condition is met.
The output generated may be only a series of identical copies of the original, or it
may be different for every repetition. Conditional expansion and redefinable parame
ters can change the results on each iteration. Multiple-expansion sections can also
be nested.

2.2.1.7 Macros: The macro facility makes it possible to define a commonly used
block of image text and/or control statements once, and then call it out for use any
number of places within the skeleton file. In many respects a macro definition
resembles a small skeleton file; however, the actual arguments for a macro's dummy
arguments are supplied by the call statement, rather than by initial user input.
Macros can make use of all control statements,, including macro calls (nesting of calls)
and macro definitions (nesting of definitions). A macro can even call itself (recursive

9

nesting), provided some means such as conditional expansion statement testing a

counter is used to prevent a loop.

2.2.1.8 Concordance mode: This mode is used to obtain a concordance lis'ting of the

skeleton file; it has no effect on the expansion file produced. A concordancd listing is

an alphabetical listing of all the dummy argument names and macro names used in the

skeleton, together with a list of all references to each name. A listing of this type is

useful for debugging a new skeleton file, and invaluable fot modifying an existing one.

2.2.2 The TCSS Writer. - The TOSS Writer is a utility that prepares the'preliminary

TCSS information for processing by the TCSS Expander. The relationship between the

TCSS Writer and other components of the system is depicted in Figure 2-4.

S TOp
TUTORIL

TCSS

INPUT DETUTORORAL

NTUTORIALEDIORTEMM

A user employs the Text Editor to generate an intermediate TOSS file. r In thb

process he incorporates into the intermediate file the following types of infohnation
(with identifiers for the TOSS Writer):

1. 	 TCS image - The user specifies the body of text that constitutes the TOS

image that will be processed by the Expander.

10

2. 	 Dummy argument - For each dummy argument, the user specifies the
character string within the TCS image that he wants treated as a dummy
argument and a suitable chosen name for the dummy argument. Optionally
the specified character string can constitute the name of the dummy argument.
The user also provides the description for the dummy argument that is to be
incorporated into the TCSS file.

3. 	 Tutorial prologue - The user identifies and generates the cnaracter string
that will constitute the tutorial prologue in the resultant TCS skeleton file.
Care must be taken to include sufficient detail to prevent a user from initiating
the expansion process prematurely. The user then invokes the TCSS Writer to
obtain the TCSS file for the TCSS Expander.

14 processing the intermediate TCSS file by the TCSS Writer:

1. 	 When a tutorial prologue is encountered, it is transferred to the TCSS file.

2. 	 When a dummy argument input is encountered:

a. 	 The name and description are transferred.

b. 	 The TCS image is scanned and the positions where the dummy character
string occurs in the image text are recorded.

c. 	 Control statements and position information are then made part of dummy
argument data and output to the TCSS File.

3. 	 The TCS image is made part of the TCSS file. The TCSS Writer thus forms
a bridge between:

a. 	 The user and his creation of TCSSs and

b. 	 The system form required for efficient processing.

2.2.3 TCS Interceptor. - The TCS Interceptor acquires the TOS employed by the
user via the terminal and constructs a TCS file. This enables the user to maintain
a record of his TCSs in sequence.

Figure 2-5 depicts the operational relationship between the TCS Interceptor
and the IPAD EXEC:

1. 	 In the first instance, the user must issue a command to the EXEC to activate
the TCS Interceptor.

11

2. 	 With the TCS Interceptor activated (lower part of the figure), the following
activity occurs:

a. 	 The TCS is issued by the user to the EXEC.

b. 	 The EXEC carries out/controls the activity designated by the TOS.

c. 	 Since the TCS Interceptor is activated, the TOS image is passed through
it to be recorded within a file via the IPAD data base management system.'

CI8..PA! SD

TTCS
INTERCEPTOR

IS ACTIVATED

TCS

IPAD +--TNTERPRETATION

ERACTIVE EXECUTIVEJ ' AND ACTIVITY

TCS 	 PERFORMED

IPAD DATA
TCS •MANAGEMENT
INTERCEPTOR] * RECORDING1OFr

TCS 	 4i

Figure 2-5. TCS Interceptor/EXEC, Operation

The user, during his interactive session, can turn off the Interceptor, recording
that portion of the TCS he desires. He now has a TCS image he can execute directly
or modify as required.

2.3 User's Task Trajectory (UTT) Generation

In addition to the preceding subsidiary functions, which are explicitly invoked or
used by the user for assistance or efficiency in performing hist task, the IPAD system
has a function associated with the EXEC that performs the automatic recording of the
sequence of operations in which the user has actually engaged. Figure 2-6 shows the
relationships between the User's Task Trajectory I(UTT) generation and the IPAD
EXEC olperation:

12

EPAC 	 IPAD'

READ TCS RECORDED EXEC
OR TERMINAL TCS COMPLETE IPAD
(CARD) INPUT I JO0B1TERMINATION

SI UTT RECORDER

U1T RECORD 	 -- READ RECORDING CONDITIONS
" 3CODE E CURRENT DBMS 	 PROCESS TCS-UTT-1 	 PER RECORDING CONDITIONS

NDELETE TCS STRINGS
RECORDED WHILE TCS

WAS INACTIVEINTERCEPTOR
NTRETRTASK

ACTIVETRAJECTORY

No 	 HOST OS

INTERPRETER 	 RECORDING CLOSE FILES

INSTRUCT ACTIVITY 	 CONDITIONS TERMINATE JOB
(THROUGH HOST OS)

|DICTATED BY JOB

ISTEP

HOST OSPEFR DICTATEDI

Figure 2-6. User Task Trajectory (UTT) Generation

The actual activation of the mechanism is determined, a priori, when a User
File (UP) is initialized 'into IPAD and needs for the UTT have been determined
by the project management. If this determination has not been made, the
mechanism remains inactive.

2. 	 In the operation of the EXEC, as each command is passed through the TCS
Interpreter portiQn of EXEC:

a. The TCS data is collected according to the recording conditions.
recording conditions, the type of information to collebt will be sp
Examples:

In the
ecified.

* Complete recording of the TCSs will be made.

* Only the QM-related portion of the TCS will be recorded; e.
OM used, data version used, etc.

g.,

b. Additional data is added, such as time of activity.

c. The data is rewritten onto the User Task Trajectory (UTT) file.

Sections 4. 1 'and 4.2 provide further detail of the requirements anduses of the UTT.

13

2.,4, EXEC lFunctions.

2.4.1 EXEC functions, control and data flow. - Most of the command and data flow
involved in rnning,an IPAD ta~kissues dir~iit-y from the TCS file- (illustrated inSub
section 2.4.3). In addition to these directly-TCS-driven functions, the EXEC.itself
performs the following functions:

1. 	 Accepts and interprets user commands; e. g., requests to run a particular
task or to start the TCS 'Interceptor..

2. 	 Maintains a directory of IPAD task names and the corresponding TCS or TCSS
file hamnesand passwords; This makes it,possible 'for a iser to run a task
file without having to know its passwords or even its name. The actalstor
age of the files fs controlled by the data management system. - The EXEC sets
up the equivalence between the IPAD task name and .the data base-name,. which
may refer to files local to the user, common to a project, or comnmnon to all
users of the IPAD system.

3. 	 Activates and deactivates TCS files.

4. 	 Directly (not via a TCS) controls the execution of certain utilities like the
TCSS. Expander.

5.-	 It can (if directed) maintain trajectories of tasks which therusers-have run
(UTTs).

Flow is also effected by the loop-controlling and condition-testing utility routines,
whichi reposftfoin the ToS. These utilities will interface with the data management
system to obtain the data on which to base their decisions.' For example, a typical
request might be, "If the value of word 7 of record iof file INTRMED is less than
1.0005, reposition the TCS to label LASTCASE."

2.4.2 EXEC functions, system support. - The IPAD EXEC,'por se; is esseritially
li~ffited to the above functions. For the IPAD EXEC to operate within a host facility

the host facility operating system must provide the following features.

1. 	 Time-sharing capability (such as CDC's INTERCOM 4.l).with which EXEC
will interface to obtain host facilities. - "

2. 	 Loaders for OMs and utilities.

14

2.4.3 Example of an IPAD task. - The following example (illustrated in Figures 2-7
and 2-8) does not necess-iffy purport to be a typical IPAD run; it is intended merely
to illustrate most of the system features. In this example two OMs will be run in
sequence with output from the first serving as input to the second.

2.4.3:1 First OM: This OM will be placbd'in execution and run without thd ihte'r
vention of the user (Figure 2-7)'

1. 	 The user logs in.

2. 	 The time-sharing monitor accepts a user command, telling it to load the
IPAD EXEC.

3. 	 -The IPAD EXEC accepts a user command, telling it to run a particular task.

4. 	 The XEC locates the corresponding file for the task (i.e., permanent file
name)via the IPAD data management system, which is explicitly shown in the
figures but is implicit in the following discussion for other operations involv
ing the IPAD data file.

5. 	 The EXEC discovers that the file is a TCSS, not a TCS. It calls the TCSS
Expander utility.

6. 	 The Expander provides the tutorial prologue to the user, which describes
the TCSS function for verification. It then reads the data names of the TCSS
anddetermines what inputs are needed to build a TCS (reference Figure 2-3).

7. 	 The Expander asks for an input data item, by name.

8. 	 The user types in a data item.

9. 	 Steps 7 and 8 are repeated until the user encounters a name he does not
recognize. He asks-the Expander for help.

10. 	 The Expander prints out a writeup, provided initially by the person who wrote
the TCSS, explaining what is needed.

11. 	 The user, having understood the writeup, types the data.

12. 	 Steps 7 and 8 are repeated until all data items have been entered.

13. 	 The Expander reads the rest of the TCSS and converts it to a TCS using the
inputs supplied by the user.

14. 	 The Expander returns to the EXEC.

15. 	 The EXEC activates the TCS file.

16. 	 The TCS attaches two data files.

17. 	 The TCS loads an Operational Module (OM) and puts it into execution.

15

USER LOG-IN

HOST HOST

OPERATING
SYSTEM
LOADS EXEC

j ~ n

DISPLAY OF TOSS
DESCRIPTION

ToIPAD EXEC
EXEC

TOSS EXAD

INTERPRETER

COMMANDS
TO ATTACH
FILES

EXEC
TS COMMAND
TO LOAD OM

HCST

- - 1 F L
PERMANENT
FILES

IPAD DATA

MANAGEMENT: /PM)
-DTLOCATE TCSS

I* BASES

1PAD DATA
MANAGEMENT I-

SIPAD DATA FILE
ANAGTMANAGEMENT

READ T
FILE

[I
_____ IPDDT

AT 1A/O0
MAAEMN FILEA
OPEN FILES L_ __-i

IPAD DATAII
MANAGEMENTH-

LOCATE OM Ir O I

EXECUTION _/AmHOST
OPERATING
SYSTEM
LOAD OM

Fe MlWIAD EXEC
JINTERPRETER ITERMINATES1 INPUJT ~

REQUIREMENT

Figure 2-7. TOS Multi-OM Execution Example

IFILB

L IAD DATA II
FILE

jWRITES

IPAD DAT
4

I~jMANAGEMENT

TCS READ

- First 0OM

16

18. 	 The OM requests several lines of terminal input. The requests are inter
cepted and*supplied-withjinput from the TCS.

19. 	 The OM terminates, o

2.4.3.2 Second 1u: -The -second-OM requires direct input .bytheuser during the
course of operation (Figure 2z8)..

20.%-The TCS loads ,the conditibn-testing utility and buts it into execution.

21.1 	The uility determines tiat the specified, condition has been met and accord
ingly spaces down the TCS-until it comes to a specified label, -bypassing
seve; il iltermediate steps on the TCS.

22. 	The utility terminates. .

23. 	,-The'TCS, repositioned but still adtive, loddi the second OM and puts it into
execution..

,24. 	 The OM requests a few lines of input. These requests are intercepted and
supplied [with input from the TCS.

-25. The OM requests more input. These requests are alsb intercepted but en
.couhter a dfrect input flag on-the TCS, and so,at'e passed on to the terminal.

26-	 The is6r types iirthe required input.

27. 	 'The OM terminates.

28. The TCS returns t6 the IPAD EXEC.

'29.",he EXEC deadtivates the,,TCS file.

'30.' 	 The EXEC accepta a user comnand that tells EXEC the user has completed
his job.

31. Tld EXE?. returni to the timesharing monitor.

32-. The user lbgs off-A
.

" • IPA EXEC - Implementation Cdnsideratiohs and Trades

Three families of computfng systbms, one of which-has two distinct sets of soft
ware, 'were considered-in the ahalysis of IPAD EXEC impleihefrtation, namely:

1. 	 CDC Family, CDC CtBER 70 or 6000:series withSCOPE 3.4, INTERCOM"
44-- and-GPGT/IGS.

17

EXEC IPAD DATA *

TOS MANAGEMENT:
INTERPRETER] READ TCS TOS

FILE FILE

CONDITION
TESTING

POSITION TCS
FILE TO LABEL
AS RESULT OF

MANAGEMENT

SEARCH AND
POSITION ON

4--- I
CONDITION -AE

EXE
TCS COMMAND

SAME AS
FIRST OM

II
TO LOAD LOAD (FIGURE 2-7) I I/

-- FILE A

OOMl-| MANAGEMENT - -

EXECUTES I/0 FILE, IREAD| . -,.- ...

4I

iEXEC IPAD DATA

C PIIPAD EXEC INPUT MANAGEMENT
CM NINPUT SOURCEEEEAD TCS FILE

TEXE>

SHAMEMONITRION IPU

Figure 2-8. TCS Multi-OM Execution - Second OM

18

2. IBM Family

a. IBM 360/67 with CP-67.

b. IBM 370/145, 158, or 168 with VM/370.

3. UNIVAC 	Family, 1106, 1108, or 1110 with EXEC S.

These families and the extent of required modifications are described in the follow
ing subsections for use with IPAD. Table 2-1 summarizes the capabilities of these re
spective systems.

TABLE 2-1. 	 OPERATING SYSTEM CAPABILITIES OF INTEREST
TO THE IPAD EXEC

CDC Cyber 70 or 6000 Series
with SCOPE 3.4, INTERCOM IBM 360/67
4. 1 and ... with CP-67,

CPGT/IGS UNIVAC 1106, IBM 370/145,
(Expected Fall 1108 or 1110 158 or 168

Capability .. IGS V. V 1973) with EXEC 8 with VM/370

Interactive graphics Yes Yes Yes Yes
(levil 3, 4, dr 5 CRT (to level 5) (to level 5) (to level 5) - (to level 5)
terminal)

Conversational inter- Yes Yes Yes Yes
active time-sharing

Time-sharing capability No Yes No No
from a graphics (level
3, 4, or 5) terminal

Batch job spinoff from Yes Yes Yes Yes
a time-shanng job

Commands files No No Yes Yes

Subsidiary processes No No Yes Yes

Programmed request to Yes Yes Yes Yes
load another program,
without terminating the
requesting program

Programmed request Yes Yes Yes Yes
to load an overlay

2.5. 1 IBM and UNIVAC. - EXEC 8 on the UNIVAC 1106, 1108, or 1110; CP-67 on the
IBM 360/67; and VM/370 on the IBM 370/145, 158, or 168 are all able to support an
IPAD EXEC without modification. (Some system modifications are needed for other
reasons, but not for the EXEC.) All these systems provide for the creation of multiple
subsidiary processes, where each process amounts to a complete virtual machine with
its own address space, registers, etc., much like the machine each user gets when he
logs in. These processes may be interconnected in various ways, or they may be almost
completely independent, except for the restriction that when one terminates, any other
process it has created must also terminate. Thus the IPAD EXEC can be deactivated

19

and 	even swapped out (but not terminated), until the job stepdoes something thattkhxe 0 .

EXEC has designated as: an activation event (for instance; a-requestfor the terminal,

I/O). At this.point, the EXEC-will be reactivated aid,given:a flag frelling.-whathas

happened in.jits subsidiary process. -The EXEC can then read theTCS, fileto determine

appropriate action; -

IBM and UNIVAC share a significant common deficiency which isthe inability, to per

timesharing tasks.' The graphics systems are separate.Trkomtheform-normal graphics
timesharing systems, which precludes interactive editing, -ompilation,,loadinV-and

execution from a graphics CRT. (Although this problem also currently exists in the CDC

family, the GPGT/IGS package will correct this deficiency.)

To solve the problem on the. IBM and-UNIVACr, modified communication'driver.s ,must

be added to the timesharing systems. Since the graphics packages contain similar ,.
drivers, modifications should not be too difficult.

2.5.2 The CDC CYBER 70 and 6000 Series. - This family of mi6hines -is trmajor

constraining factor for -he intended EXEC design because, as is, _it is isufficient to

fully support the EXEC as envisioned. INTERCOM mast be modified to provide enough

facilities to implement a complete EXEC'system. .The approach'%selected is to ektend

INTERCOM so it can accept command files directlyas do the-other system'sl(Table 2-1).

Once the capability to activate and deactivate TCS files under program control is made
available, creation of the EXEC will be a fairly straightforward prdgrammmg task:

(Much of itcould probably even be written in FORTRAN.)

2.5.3 Implementation of modifications. - The following considerationssliow tlie a&

vantages of having all the systems -modifiedby the manufacturers

1. 	 Since, in most cases, the host operating system code iscomplex and sparsely

documented, it can be most efficiently modified by the; group that originally
produced-it.

2. 	 Compatibility with current and planned versions of the system is assured.

3. 	 There would be less reluctance.by the manufacturertqs.upport the modifica-.
tions.

2.6 Alternate EXEC -Design.Approaches,

Two alternate approaches were considered for the EXEC design. The first was

to build the IPAD EXEC directly into the timesharing subsystem, and the second was

to design ali programs t6 always return to the EXEC.

20

http:reluctance.by

2.6.1 Add EXEC to the time-sharing subsystem. - To build the IPAD EXEC directly
into the timesharing subsystem; e. g., INTERCOM, would, ,ineffect extend INTERCOM's
command language to include such functions as "Run Task." The TCS would then con
sist of a table built into the EXEC instead of a file. This method has the advantage of
high power and efficiency, but the large amount of recording needed increases cost
and risk. Flexibility is also noor, because any modification to the EXEC is necessarily
a, modification to INTERCOM,which is in system code and not amenable to quick changes
as is a TOS file. Finally, the sheer bulk of the code added to INTERCOM could impact
tion-IPAD users by cutting into the total available field length.

2.6.2 Return to separate EXEC. - To design all new programs and modify all OMs
so that they always return to the EXEC upon completion was immediately abandoned
because of several major deficiencies:

1. 	 A great deal of reprogramming would be required (although none of it would
be to the timesharing subsystem).

2. 	 The IPAD system would be inflexible and difficult to modify.

3. 	 The EXEC would not, in general, be able to recover control if a program
terminated abnormally instead of normally.

Also, this method is essentially the hard-wired system previously.ruled out in the
IPAD conceptual design (see Volume IV, Part 1, Subsection 2.2.3. 1).

In view of the deficiency of the two approaches discussed above, the use of TCS
files emerges as the best approach. Sufficient power will be realized and efficiency
will be high, unless the system is misused. Efficiency will drop catastrophically if a
TCS is used to step through a large number of very small (atomic level) processes.
Great flexibility is allowed, both m terms of what can be done via TCS files and in
terms of the ease of building and modifying them; yet good protection against unauth
orized modification is provided by the operating system's password mechanism.

There will be an increase in system overhead for non-IPAD users, but it should be
quite small. To compensate for this factor, however, there are some advantages
available to non-IPAD users: handling TCS files will be a function of the timesharing
subsystem, not of IPAD itself; and while other users may have to call the files by a
different name, these users may well find them useful. With some extra work, even
the TCSS expansion facility could be made available to outside users.

21/22

3 INPUT/OUTPUT FORMATTING

A major objective of IPAD is to provide a framework within which the IPAD user
can exercise individual OMs and sequences of OMs. The IPAD system is to include
software to solve the interface problems between OMs. That is, the user need only
concern himself with the engineering problem and its interface with other problems.
The IPAD system relieves him of the need to:

1. 	 Perform the clerical labor associated with interfacing OMs with each other
and with project data.

2. 	 Know and implement the details of data format and data storage.

The interface problem could be solved by any one of four basic approaches (or
mixtures and variations of these approaches):

1. 	 Data storage standards could be specified and all OMs written (or rewritten)
to conform to these standards.

2. 	 For each use of each OM, a special formatting program could be written
to produce inI3ut as reuired by that OM.

3. 	 The formatting program (above) could be generalized, providing one general
purpose utility to produce input for any use of any OM.

4. 	 A highly sophisticated formatter utility could be provided, all I/O requests
to be routed through the utility; the utility to determine the OM's Intent and
satisfy that intent.

The first two approaches were rejected on the grounds that they conflict with the oper
ating philosophy and intent of IPAD (see Volume IV Part I, Sections 1 and 2). The
third approach, that of a general purpose Input/Output Formatter (IOF) was determined

to be substantially simpler than the fourth approach and was adopted as a basis for a
preliminary design. Section 3.1 and 3.2 present the guidelines and requirements of
the IOF; Section 3.3 presents the 1OF's preliminary design.

During a Preliminary Design Review - after the design concepts had been
firmly established - it was uncovered that the developing cuncepts meshed with a de
velopment effort on the part of the business data processing community (represented
by CODASYL), basically using the fourth approach. Section 3.4 summarizes this
development; Section 3.5 shows the relationship between the two efforts. The remain'-
Ing 	sections illustrate why the IOF utility was dropped in favor of CODASYL's Data
Base Task Group's (DBTG's) recommendations.

23

3. 1 Constraints and Guidelines for Developing the IOF

A major IPAD design objective is to enable the user to incorporate existing OMs

into MAD essentially without changes, or with minor ones. Another objective is to

include human-factor features in the design of IPAD to facilitate user tasks. Both

objectives impose a number of constraints on the design of the Input/Output Formatter

(IOF) support function.

1. 	 No procedural requirements shall be imposed upon the user:

a. 	 The user is to define his own I/O procedures by actually manipulating data.

b. 	 Once defined, the user can reiterate the procedure without redefining it.

c. 	 Corollary: random access/update of any data associated with the OM's
I/O is to be permitted.

2. Incorporation of an OM into IPAD shall not require extensive modification of

the OM. In particular, no changes to program logic shall be required:

a. Input is to be provided in the form required by the existing OM.

-b. 	 Output as written by the OM is to be processable.

3. 	 OM input may be derived via the IOF from a variety of sources where the
format and organization do not coincide with that of the OM, such as

a. 	 The safeguarded, blessed project data base.

b. 	 Local User Files (UFs).

c. 	 Other OM output.

d. 	 User (keyboard) input.

4. 	 OM output may be routed to a variety of destinations where the format and
organization do not match that of the OM, such as:

a. 	 Data base update file (using an update procedure).

b. 	 User local files.

c. 	 Other OM input.

d. 	 Displays.

5. 	 The user is to be provided with tutorial assistance to, support:

a. 	 I/O requirements of OMs.

b. 	 Command options available.

c. 	 Error diagnostics and prompting.

24

6. The IOF must operate in both an interactive and batch mode.

3.2 IOF Requirements

The constraints and guidelines listed above and objectives relating to the user give
rise to the following set of requirements :

1. 	 Provide the user with random access/update capability. This requires
random access.files.

2. 	 Prohibit OM program logic changes. This requires that the random access
files be intermediate duplications of the OM files.

£
3. 	 Provide tutorial assistance. This requires that certain data be generated by

a person responsible for the OM, viz:

a.. 	 Glossary of data names and definitions.

b .	 Data names linked with engineering units.

c. 	 Coordinate systems for selected data names.

d. 	 User/program options, purpose and tutorial aids.

e. 	 I/O data impact of each option.

f. 	 Default/assumed values of inputs.

4. 	 Incorporate OMs without restrictions on their use or interface. This requires
that the person responsible for the OM provide a definition of the interface
(I/O) requiremmats, independent of the use of the OM:

a. 	 Definition language must be consistent and applicable to all OMs.

b. 	 Language must specify

* File attributes
* Technique for identifying data "records"

" Structure of data within "records"

* Sequence relationship of variables
* Characteristics of variables (type, etc.)
* Formats (padding, etc.)
* Difiensions.

5. 	 The definition of the interface requirements must be translatable or compilable
such that a compilation results in a directory or directories of files involved.

6. The functional requirements of an IOF.utility must include:

25

a. 	 Creating an IOF (intermediate) file given' the compiled directory. a

b. 	 Updating records in an IOF file:

* Inserting values.
* Modifying values.

a. 	 Extracting values from an IOF file.

d. 	 Mapping an IOF file onto an OM'(input) file.

e. 	 Mapping an OM (output) file into an IOF file.

f. 	 Desk-calculator level computations on data within an IOF file.

g. 	 Extracting data from the IPAD data base, user local files, etc. and:
inserting this into an IOF file.

h., 	 Creating or adding to the data-base-update file, user local filb,; etc.

i. 	 Accessing tutorial data associated with an OM and displaying this to
the user.

7. 	 A user-oriented command language (and interpretive processes) to accomplish
the above functions.

3.3 IOF Preliminary Design*

This section develops the concepts of:

1. 	 The purpose of the IOF utility.

2. 	 Information needed by the IOF utility and methods of producing that information.

3. 	 OM setup, i.e. processing the support information of 2. above.

4. The functional flow of input/output formatting.

The basic functional requirements of the IOF are:

1. 	 To construct input files for OMs and utilities.

2. 	 To read output files generated by OMs and utilities.

The requirements are to be accomplished through the use of the following inter
mediate IOF files:

1. 	 ISPONGE - a random access direct representation of an input file.

2. 	 OSPONGE - a random access direct-representation of that portion, of an
output file that the user wishes to access.

* It is suggested that the reader re-read Subsection 2.3.4 of Volume IV, Part I before
reading this section.

26

These intermediate files are constructed by the IOF from Input DEFinitions
(IDEFs) and Output DEFinitions (ODEFs) and from the user's response to options pre
sented to him by the IOF. The user's response may be either actual terminal input or
pre-recorded terminal input from a Task Control Sequence (TCS).

Data contents of input files are to be taken from:

1. 	 User input.

2. 	 The safeguarded, blessed project data base.

3. 	 Local User Files (UFs).

4. 	 OM output files.

3.3.1 Requirements of the IDEF and ODEF. - The I/ODEF is divided into two main
parts:

1. 	 User oriented data ignored by the IOF in I/O file processing, to be

displayed at the user's option to assist the user.

2. 	 IOF oriented data usually ignored by the user except where decisions are
necessary. The IOF prompts the decision by informing the user of options
available.

3.3. 1. 1 User oriented data: User oriented data is user reference material having no
functional use to the IOF.

3.3.1.2 IOF oriented data: The basic requirement of IOF oriented data is to
provide for each data name the corresponding location or locations within the file. The
approach taken to meet this requirement is to adopt a proven, consistent method of de
fining data format and data variables without specifying procedures to produce the file.

The COBOL language provides a means of defining small substructures within the
file (e.g. one logical record, its contents and format) and grouping these in outline
or hierarchical form. An extension of this grouping defines the entire file as a tree
structure of data groups. This extension is completed by specifying the following at
each branch of the structure where it applies:

I. 	 Name of the data or data group.

2. 	 Index or repetition specifications for the substructure (further branches).
This includes vector and matrix dimensioning.

3. 	 Identification of invariant or padding data. These fields may be used as
structures, or variable definitions when reading output files.

4. 	 Values of data for constants, or for default or assumed values.

27

5. Option identification used to allow the user to delete a branch and any sub

structure (IDEF especially).

6. 	 Conversion algorithm tp be used in external/internal conversions,

7. 	 Redefinition of a branch at the same level when branches are mutually

exclusive.

8. 	 Specification of fields which may be used as structure or data identification

(ODEF especially).

Figures 3-1, 3-2, and 3-3 illustrate the transition from a human oriented overview

of an input file to a formalized specification of its structure usable by the TOE.

Figure 3-1 illustrates a file composed of a particular sequence of major sections

where some sections have a detailed subsequence.

67 8 9 END OF FILE

. FNTBTS THRUST TABLE

FNZ ZETAFM TABLE

FN 	MASS CG INERTIA TABL

FREE FORMAT DATA 	 "I

*

TITLE CARD

/ 7 8 9 END OF RECORD

CONTROL CARDS

Figure 3-1. Typical Input Deck (Sourbe)

28

Figure 3-2 is an example of a more abstract way of conveying the same informatioi
a tree structure composed of a particular sequence of major branches. The substruc
ture of the last major'section fs shown here, as defined by program documentation
(Reference 1).

Figure 3-3 shows that the same structure can be represented in a formalized tabula
tioh, 'as needdd in the IDEF. This figure does not attempt to show detail specifications
required in the IDEF but only an overall structure.

From Reference 2, figures 3-4, 3-5, and 3-6 illustrate the transition from a
sample output page (Figure 3-4) to a formalized tabular description of the page
(Figure 3-6). (The figures do not give an accurate count of blank lines and spaces
but are intended to indicate that such'items are accounted for in the tabulation).

Figure 3-5 indicates the similarity between viewing me output page and computer

scanning '(reading from4eft to-right))

1. 	 The page is separated into two parts called HEADING and OUTPUT.

2. 	 A particular character string within the HEADING (indicated as HEADING ID)
is sufficient to identify the page. format shown on Figure 3-4.

3. 	 A particular character- string (OUTPUT ID) at a specitic place within the page
corresponds to a substructure definition. This is not important in the ex
ample but allows for variations in the kind of data produced under one heading.

4. 	 Once the page is identified'by ID fields, a' six-line template is provided to
associated data names with values.

Figure 3-6, like Figure 3-3, is simply a formalized tabulation of the hierarchical
(tree) structure in Figure 3-5.

3.3.2 Use of the IDEF and-ODEF. - The IOF, in an interactive mode, converts an
I/ODEF into an IOF file, a portion of which is a directory (see Figure 3-7). Thus the
IDEF becomes a directory to a random access version of a sequential input file. The
ODEF becomes a directory to a random access version of a sequential output file (see
Figure 3-8). In processing an IDEF, the IOF gives the user the name of each program/
user option when a branch definition specifies that options exist. The user chooses the
option, to include the branch. In processing an ODEF, the IOF gives the user the
option of skipping any data or groups of data in the output file which are of no interest
to his particular task. The output directory will contain no reference to these, conse
quently they will be by-passed.

29

01

CONTROL CARDS

EOR

TITLE CARD

FREE FORMAT DATA
DECK SETUP

FN MASS CG INERTIA TABLE

FNZ ZETAFM TABLE FNTBTS
ALT (I)

FNTBTS THRU ST TABLE COMMENTS
TB131)

EOF ALTTB(1)
I = 1, FNTBTS TB2(1)

Figure 3-2. Input Source - Input Tree

DECK -:SETUR BASICALLY COBOL EXCEPT
02 CONTROL-CARDS.

03... 9 COBOLTREE DEFINES RECORDS,
02 'EOR'. IDEF TREE DEFI NES AFULL FI LE
02 TITLE-CARD. * ADDITIONAL CLAUSES (NOT SHOWN)02 TITLE-CAD TO DEFINE PROGRAMIUSER OPTIONS

* DATA IDFIELDS WITHIN FORMAT MASKS
03...

02 FN-MASS-CG-I NERTIA-TABLE.
03...

02 FNZ-ZETAFM-TAB LE.
03...

02 FNTBTS-THRUST-TABLE.
03 FNTBTS.

03 COMMENTS.

03 ALTTB OCCURS FNTBTS TIMES.

02 'EOF'.

04
04
04
04

ALT.
TBI.
TB2.
TS.

Figure 3-3. Input Tree - IDEF

30

OUTPUT FOR LINE' 2 PANELS

AT CORNER I, U-FRI$E IS LOAD IN OIIECTION FROM I TO It, V-PRIVE IS IN DIRECTION FROM 1-i TO I

PANEL

STRESSES ARE SHEAR FLOWS f PANEL THICKNESS

CORNERS U-.RImE V-PRIME SIDE LENGTH SHEAR FLOW .TRESS

LOADING CONOITION' I

1.
4

16
15
3

1.39160E2O1
-1.49649E-03
2.09459Et03
-6.01999E+03

-1.1983E3E03
2.09463E+03
-7.52466E+03
1.391S57E03

4
16
15
3

16
15
3
4

10.000
20.706
i0.8o0
25..a2

3.48623E-02
-4.35779E+ 2 A
3.4ftJE+02
-2,7dd9E+&2

2;e3434E-Oo
3.542921 03
2.t3434E+0
-2.26747E+GS

2
5

1/
16

4

2.109eE+3
-b.55137E+03
3.14999E+03

-4.9482GE*03

-6.84149E03
3.14992E+03
-5.06074E03

2.10926E,03

5
17
16
4

17
16
4
5

lo.Obu
Zu.706
10.000
25.662

S.
2
99

2
5a02

-6.57406E+02
S.Z525+ 02

-4.20143E+02

2.E 9b2E.03
-3.37477E+03
2.b99dZE.03

-2.15S6E+03

3
1O
22
21
9

2.031831+03
-4.88235E203
3.22072E+03

-6.9TO49E 03

-3.90549e.03
3.22079E+03
-8.71262E+03
2.03179E203

10
22
21
9

22
21
9

10

10.000
20.706
10.000
25.882

5.25263E+02
-6.56579E+02
5.2522bE+2
-4.20210E+02

2.14568E+03
-2.6o 1VE+03
.I56oE+03

-1.71655E+03

4
6

18
17

5

-3.68773E ,1G
-6.27323E+03

1.96947E2
4.66717E+03

-5.01659E+03
1.96947E+02

5.85896E+03

-3.6773E+O

6
16

17

5

18

17

5
6

10.000

20.704
iO.00
25,080

1.GQiUEft01

-2.00091E+01

i.60073E+Oi
-1.2 08E+bl

9, 97+1

-. i..OOE+02
9.11'67E+01

-7.334382+01

7
19
18

6

-1.42125E.03
1.65824E03

-2.24503E+03
6.26510E+03

1.32632E+03
-2.24503E+03
7.83±032103
-1:421ZE+03

7
14
16

6

19
18
6
7

13.000
Z0.706
io.000
25.682

-3.66633E+02
4.5829iEt02
-3.66633E+02
Z.93306E+02

-2.36385E.oJ
2.54dlE+J3

-2.36385E03
lo91062E+OJ

8
2O
19
7

-1.48844E+03
7.54281E+03

-2.17881E+03
1.556870+03

6;03453E.03
- 17876E+03
1.94893E+03
-1,48847E+03

6
20
19
7

20
19
7
8

10.000
20.706
tQ,000
25.882

-3.6672E+02
.4.58410E#2 I
-3?.6 b72602
2.93383E+02

-2.b425E+03
3.55357E+03'
2.o4d5Et03
2.27428E+04

9 5.I734EE+03 4.604072+3
2± S.?SS09E+03 1.2863E+O
20 1.22863E+02 -6.15520E+03
8 -4.92416E03 3. ?346E+Oi

IDENTI FICATION FIELDS FOR MASKING

9
?1
20
b

2±
z0
8
9

10.000
2O.704
10.O00
25.dSu

1.54601E+01
-l.S3&E
1.5460E101
-1.236a1E+01

*.tb872E+O
1E+.1IGOS02
t.6472e2J1

-7*6 11E8+J

CO

Figure 3-4. Typical Output Listing (Source)

BLANKS DIMENSION- 5

• .. '-

BLANKS. 	 DIMENSION = 50

HEADING 	 HEADING ID 'OUTPUT FOR LINE'

LINE ID

BLANKS DIMENSION m75

SUBTITLES

PAGE BLANK LINES DIMENSION= 5

PANEL IDBLANK AREA

OUTPUT I D 'LOAD ING COND ITION' 	 FIELD I REDEF

OUTPUT 	 BLANK AREA PANEL DATA LINES, DIMENSION =4 CORNER

UPRIME

ANEL, DIMENS ION =7 VPRIME

BLANK LINE, DIMENS ION =2 SIDE, DIMENSION=2

LENGTH

SHEAR FLOW

STRESS

Figure 3-5. output Source Output Tree

06 	 PACE
07 	 HEADING

08 	 BLANK-LINES OCCURS 5 TIMES.
08 	 HEADING - ID.

09 FILLER PICTURE X (60) VALUE SPACES.
09 ID PICTURE X VALUE'OUTPUT FOR LINE'.
09 FILLER PICTURE X (58) VALUE SPACES.

08 LINE-ID...

08 BLANKS. . .

08 SUBTITLES...

08 	 BLANK-LINES-1OCCURS 5 TIMES.

07 	 OUTPUT

08 BLANK-AREA...

08 	 OUTPUT-ID...
08 	 BLANK-AREA-i...
08 	 PANEL OCCURS 5TIMES.

09 PANEL - DATA - LINES OCCURS 4 TIMES.
10 	 FIELD 1.

11 PANEL - ID...

11 	 FILLER REDEFINES PANEL - ID VALUE SPACE...

10 CORNER...
10 UPRIME...
10 VPRIME.,
10 	 SIDE OCCU RS 2 TIMES.. .
10 	 LENGTH...

10 	 SHEAR FLO ...
10 	 STRESS...

Figure 3-6. Output Tree - ODEF

32

DIRECTORY I DATA VALUES
I_ b

CNTROL CAR DS

I
TILE CARD Ix

EE FORMAT DATA

CG INERTIA TABLEA -- I' PMASS-ZZETAFM TABLE

TBTS THRUST TABLEI

IVALUESI ,
FNTBTS
! ;COMMENTS

R
I

Figure 3-7. IDEF - ISPONGE

DIRECTORY IDATA
IVALUES

IL1 LIN

-
IFIL: ER tF:SILE S

" ILAN LINES

-

OUTPUTID -

PLANKEL

PAEL-DATAPANELWILINES I

]-CORNLER

- OBPONGEFigre 3-8, ODEF

33

3.3. 3' Definition of the ISPONGE (OSPONGE). - A SPONGE is an intermediate working

storage version of an input (outputy file. Its data format is generally the same that of

the input (output) file (whiph typically is coded) and hasthe following characteristics:

of all the possible file1. 	 The,directory of'his file reflects a specific one

structures given in the IDEF(ODEF).

2. 	 The combination of directory and data content of the ISPONGK, reflects the

input requiredby,the OM. Default values are inserted (but flagged OFF) at

creation. Theinp'ut file is in fact a sequential'copy of the data content of the

ISPONGE.

3. 	 The combination of directory and data content of the OSPONGE reflects the

user's selection of the output generated by the OM. The data content is In

fact,selected from the OM output according to the directory content.

4. Data values may be -inserted or modified by the user in random order.

The 	ISPONGE is saved from run-to-run so the user can make modifications,5.

generate a new input file and rerun the OM efficiently.

The TSPONGE (OSPONGE) is distinguished from the input (output) file primarily

by characteristics 1 and 4. The directory allows user/OF communication about the

data contents on a data-name basis. The user need not be concerned with the location

of the data within the file. The ISPONGE (OSPONGE) is a random access file; the

input (output) file is typically sequential access.

The construction, updating and reading of the ISPONGE (OSPONGE) depend on

a data management function equivalent to the CDC Graphics Data Handler* (Reference

3). 	 It was decided to base the IOF design on software functionally similar to the Data

Handler. Features of this software package are:

1. 	 A list structuring technique known as PLEX.

2. 	 Data access at the character level.

3. 	 I/O support such that the IOF considers the entire ISPONGE (OSPONGE)

to be incore data.

4. 	 Efficient space management to give the effect of inplace updates.

* This is a software package installed to support the CDC Interactive Graphics

System

34

3.3.4 Functional description of the IOF operation of constructing an input file. Constructing an input file is a four phase operation whereby the user defines the input filerequirements and constructs the ISPONGE including default values; proceeds to fill theISPONGE with data values 'selected from the MDB and-other files; flushes the ISPONGEcreating the input file and subsequently executes the OM; and finally redefines or modifies the data as might be appropriate to subsequent use,of the saved ISPONGE.

Figure 3-9 illustrates the four distinct and sequentialIOF phases associated with OM
input:

INPUT
 DATA

DEFINITION JOBDEFINITION EXECUTIONPHASE PHASE PHASE

TCS TCU TCS
__ ////OM OUTPUT

. / FILE

'OP

/ I"" INCOMPLETE USER / *FORMAT MASKS BATCH
TES " COMPLETE SPINOFF

CS*UPDATED

OUTPUT
ANALYSES

DLF MOD USER
FILS

REDESFINITIONIM/OIFICATION

PHASE

Figure 3-9. ,Input File Construction

1. Input Definition Phase- According to user selected options, the IOF extracts
data specifications from theJEDEF and constructs an ISPONGE (random accessfile) corresponding to an OML input file. Contents of the ISPONGE are formatmasks (e.g. blank cards), default values where appropriate, templates for re
peating items (more blank cards) and at least a partial directory.

2. Data Definition Phase: The user identifies data sources and corresponding
locations in the SPONGE'and the IOF responds by mapping and converting
data values into the ISPONGE, maintaining the directory. Parameters are
inserted into the ISPONGE by conversion of keyboard input.

35

3. Job Execution Phase: The IOF maps the contents of the ISPONGE onto a file

acceptable to the operating system and the OM, and releases it as a batch
ITff(or interactive) job.

4. 	 Data Redefinition/Modification Phase. Two situations occur:

1. After analysis of output, the user accesses and updates the ISPONGE

via keyboard input and repeats the Job Execution Phase (e.g. para

meter modification).

2. 	 A previously completed task must be repeated due to update of the MDB.

In this case the user essentially repeats part of the'Data Definition Phase.

Details of these phases are presented below.

3.3.4.1 Input definition phase: Transform the IDEF into a directory for a random

access representation of the inputfile.

Inputs required:

1. 	 The IDEF contains the following structurespecifications whichare used to

construct the directory and are contained in the directory:

a. 	 Names of data or groups of data (branches).

b. 	Hierarchical level of the name.

c. 	 Indexing, dimensioning directives.

d. 	 Program/user options.

e. Redefinition of mutually exclusive branches.

The following is transferred from the IDEF to the data portion of the file.

f. 	 Format masks and constants.

g. 	 Conversion algorithm codes.

h. 	Default values.

i. 	 Engineering units.

2. 	 User Directives - interactive or commands file:

a. User responds to IOF interrogation on options identified by the IDEF.

Output resulting:

1. 	 An empty ISPONGE results. This is a rAndom access representation of a

sparse (i. e. no data except default values) card deck:

36

a. 	 The c'olumns to receive data values are defined.

b. 	 Internal/external conversion codes are specified.

c. 	 The space requirements for repeated cards or groups of cards is
known or can be calculated at execdfion timie.

Processing required:

1. 	 Decompose IDEF statements.

2. 	 Translate decomposed specifications to more processable form.

3, 	 Construct aset :of pointer tables to represent-the hierarchical structure
of the data:

a. 	 Each level of the hierarchy is a table associating group names with
pointers to the next level of tables, or data names with data locations.

b. 	 Match IDEF option specifications to user responses. If user elects not to
select an option at a given level, skip IDEF statements to the next branch
at the same level.

c. 	 Each table of the hierarchy is a separate entity,(record or bead) in a
random access file containing pointers to:

* Next higher level, table.
" Lower level table for each named group.
" Data - if there is no substructure.

d. 	 Each entry of each table contains (in addition to the name and pointer):

* Dimension parameters required for that level.
" User optionschosen at that level..

4. Transfer information from IDEF to data fields locatable by directory tables:

a. 	 Constants (to arrange space) and format masks.

b. 	 Internal/external conversion codes.

c. Default values.

Subprocessing required:

1. 	 IDEF file access.

2. 	 'Data management.

3.3.4.2 Data definition phase: Insert data values into the ISPONGE.

37

Inputs required:

1. User directives - interactive or commands file: .o,

a. Data 	values.

b. 	 Sourde identification.

" MDB/user files.

* Subsets, data names.

c. Structure, substructure, and data names in ISPONGE.- i

2. MDB/user file fetches:

a. Name/location correspondence,

b. Dimensions.

c. Classification (external/internal conversion code).-

Output resulting:

1. Data 	contents of the ISPONGE.

2. Updated ISPONGE directory for name/location correspondence.

Processing required:

1. Display data group names of ISPONGE directory, user picks.one:

2. Display source files available, user picks one at a time.

3. Map 	data items or data groups, at user specified level, from source to
ISPONGE.

4. Conversions:

a. Internal/externar-coded format:

b. Units.

c . Interface with utilities for complex conversion requirements (e.g.,
coordinate system transformations).

Subprocessing required:

1. Data 	management.

2. File 	management.

3. Operating system I/O support.

3.3.4.3 Job execution phase: Generate an Input File. Map data contents of ISPONGE
to sequential card image file.

38

Inputs required:

1. ISPONGE - Directory and data contents.

Output resulting:

1. Sequential, coded card images in format required by'the OM.

Processing required:

1. 	 Detect the condition that required data has hot been supplied by user and pre
sent options to user:

a. 	 Use default value.

b. 	 Write the file with no value (use blank, as when OM supplies default).

c. 	 User supplies data (refer back to Subsection 3.3.4.2).

2. Directory processes each-di-rectory table-n top to bottom sequence. When
a table entry points to a second table, mark the position in the current table,
process the lower level table, and resume with the current table.

3. 	 Indexing (repetition) of the processing of lower level tables as specified in
higher table entries.

Subprocessing required:

1. 	 Data management.

2. 	 File management.

3. 	 Operating system I/O support.

3.3.4.4 Data redefinition/modification phase: This is the same process as the Data
Definition Phase except that the ISPONGE is already filled. Frequently the user
supplies data values (e. g., as in a parameter study) so access to data source files
is often not required.

3.3.5 Functional description of the IOF operation for processing an output file. - Proc
essing an output file is a four phase operation by which the user selects portions of an
OM output and routes the data to IOF'intermediate files or to an edited sequential copy
of the output file.

Figure 3-10 illustrates the four phases of IOF operation, in which the user routes OM out
put to appropriate destinations:

1. Output Definition Phase: By matching ODEF specifications with user intentions
the IOF constructs an OSPONGE (random' access file) containing templates or
format masks to identify data which the user wishes to retrieve from an OM
butput file. This is a once per'design task operation.

39

OUTPUT
OUTPUT
OUTPUT
 PSTICLDEFINITION 	 ABSORBTION
PHASE (TYPICAL)
PHASEPHASE

TCS TCS 	 TCS
USER 	 USER USER

ODET

OUTPUT
ISPONGES FILE

OUTPUT (RELATED OMs) (REFORMATTED)
FILE

OUTPUT

DIRECT
DISTRIBUTION
PHASE

Figure 3-10. Output File Processing

2. Output Absorption Phase: The templates constructed during the definition
phase are matched with data read from the OM output file. Identifiable data

is copied into the random access file and a directory is established. This

occurs once per OM output file,, i. e., once per iterationof the OM in a design

task.

3. 	 Output Disposition Phase: This is envisioned as a non-contiguous process.

That is, the user is concentrating on assembling the input for a related OM and

the OSPONGE constructed by the absorption phase is a source for some of the

data required.

4. 	Output Direct Distribution Phase: As an alternative to the output absorption

and disposition phases, the user may have his task organized such that the
destination of data is known when it is identified in reading the OM output.
In this case there is no need for an intermediate copy in the OSPONGE.

Details of these phases are presented below.

3.3.5.1 Output definition phase: Transform the ODE F into a directory for a random

access representation of the output file, OSPONGE. This is essentially the same

40

process described in Subsection 3.3.4.1. For input, the IOF reviews program options

with the user and constructs the file required by the options; for output, the IOF re
views with the user the kinds of data which the output file may contain. The user speci
fies which options are usefl to accomplish his current task and which are to be by
passed. The data portion of the OSPONGE at completion of this phase contains format
masks and conversion specifications. Default values are not applicable to an output
file.
3.3.5.2 	 Output direct distribution phase: Map data from the OM output file into
SPONGE(s) of,Felated OMs and/or into an edited sequential OM output file.

Inputs required:
1. 	 User directives - interactive or commands file (specifies disposition of data

groups or data items).

2. 	 OSPONGE - directory to format masks and data identifiers.

3. 	 OM output file

a. 	 Typically, pages of output listings.

b. 	 Typically, data items not identified by the name given in ODEF.

c. 	 Typically, data items identified by a combination of an ID field (e.g. titles)
and position within the page.

Output resulting (according to user directives):

1. 	 Updated data content of related ISPONGE(s).

2. 	 Updated directories of related ISPONGE(s).

3. Sequential copy of OM output (report reformatting) if desired.

Processing required:

1. 	 Access OM output file.

2. 	 Access OSPONGE containing format masks.

3. 	 Transfer from output file to processor (to core) a unit of data specified by
the top level OSPONGE hierarchy (e.g. one page).

4. 	 Match top level ID fields (e.g. a portion of a title) to data contents.

5. 	 If no match exists, skip the page, transfer next page to core.

6. 	 If match does exist, match to next level ID fields and proceed.

7. 	 When the page structure has been identified, directory contains data names
per ODEF. Display hierarchy of names, user response identifies level or
item to map.

41

8. 	 Display hierarchy of available destination, file-data group, data subgroup,
data name; user choice at each level specifies destination. Map data from
core to destination file.

9. 	 Conversions:

a. 	 Required by differing external/internal conversion specifications.

b. 	 Engineering units.

c. 	 Interface with utilities for complex conversion requirements (e.g. co
ordinate system transformations).

Subprocessing required:

1. 	 Data management.

2. 	 File management.

3. 	 Operating system I/O support.

3.3.5.3 Output absorption phase: Map data from the OM output file into the corres
ponding OSPONGE. The OSPONGE is retained for later disposition in the Data Defin
ition Phases for individual related OMs (or Data Redefinition/Modification Phases).
Refer back to Figure 3-10.

This is the same process as that described in subsection 3.3.5.2 except for pro
cessing steps 7 through 9, which in this case are:

7. All data identified is mapped.

8-. Destination is OSPONGE.

9. 	 No conversion is required since the OPSONGE is a direct representation of

the OM's output file.

3.3. S.4 Output disposition phase: This is actually one step in the Input Data Defin
ition Phase of a related OM (refer back to subsection 3.3.4.2); the OSPONGE is one
source of data to fill the related ISPONGE.

3.4 	 The Contributions of CODASYL's

DBTG Recommendations

When the design requirements for the I/O Formatter Utility had been completed
and preliminary documentation of the IOF conceptual design prepared for review (Sec
tion 3. 3), a Preliminary Design Review (PDR) was held m conjunction with the Data
Base requirements stressing the interface played by the IOF in data acquisition from

42

the Data Base. Although feasibility had been demonstrated utilizing available, current
CDC system software with an eye towards roughly structuring the system and uncovering
potential design-approach problems, the PDR uncovered several critical development
and operational problems.

Concurrently with the PDR, a search was underway to uncover data systems that
addressed several of the many design requirements of the!Data Base (see Section 4).
During a review of the recommendations from the Data Base Task Group (DBTG) of the
Conference Of? DAta SYstem Languages (CODASYL), a recognizable parallel emerged
between their report (Reference 4) and the requirements of both the Data Base and the
IOF. Since it appeared that the CODASYL DBTG approach could do a substantial por
tion of the I/O Formatter's function and be highly transferable if the various computer
manufacturers implement the CODASYL DBTG recommendations (as it is indicated
they will), CDC's current intent to implement the DBTG recommendations and CDCts
future plans were investigated in detail.

A brief history of CODASYL's DBTG follows. For a more complete discussion
of CODASYL, the reader is referred to Appendix E.

CODASYL is an organization sponsored by computer users and manufacturers,
motivated by their common interest in data systems. It was first chartered in mid
1959 to develop a COmmon Business Oriented Language (COBOL), then rescoped for
various other purposes. In 1965 it formed the DBTG to study the problem which now
appears fundamental to IPAD: coordinated control of data and interfacing of non-co
ordinated OMs with the data. It should be noted that CODASYL does not design soft
ware but develops and specifies standard languages through which a software user ex
presses his demands. Software vendors and/or computer manufacturers then commit
themselves to support the intent of the CODASYL language specifications.

Figure 3-11 illustrates the I/O formatting (IOF) aspect of the DBTG recommendation.
OM produces data which must be subjected to a transformation T before OM2 can use
the data. The standard example of T in the business community is a SORT. Examples
of more interest to IPAD include:

1. Unit conversion.

2. Coordinate transformation.

3. File reorganization (e.g. sequential to random).

4. Selection of particular variables.

5. Arbitrary reordering of variables.

Figure 3-11a is the traditional approach. Read a file, transform the data, write a
file. Notice that:

43

Data flow is through some, form of supporting software. O1\%, OM2, and T do

not access external devic~s directly.

2. 	 Movement of data between internal storage and external devices is by far the
most time consuming operation performed by a computer.

a. TRADITIONAL APPROACH

b. 	 SUPPORTING SOFTWARE, PREPROCESSING

. SUPPORTING SOrTWARE, POSTPROCESSING

-d. 	 DBTG RECOMMENDATION

% ,

Figure 3-11. Data Transformation Implementations,
A General View

44

Figures 3-lb and c indicate the flow when T is provided by the supporting software.
The transformation may occur between generation by OM. and transfer to external
storage (Figure 3-11c), or between external storage and before use by OM 2 (Figure 3-11b).
Notice that:

1. 	 Multiple use of the same logical data is provided without requiring extra
storage space.

2. 	 Throughput of OM to OM is increased since two transfers of data between
external and internal storage are eliminated.

Figure 3-lid indicates the DBTG recommendation for the general problem.
Notice that:

I. 	 Output of any particular OM (OMi) is transformed to an optimum external
form.

2. 	 The optimum external form is transformed to satisfy the input requirement
of any other particular OM (OMj).

3. 	 The optimum external form is to be decided upon by a Data Base Administra
tor (DBA) applying his own criteria. The criteria would consider the follow
ing factors and trades:

a. 	 Maximize the number of unity transformations on any given data (i.e.
nio format change required).

b. 	 Providing redundant copies of frequently transformed data (to further
increase unity Ts).

c. 	 Physical localization of logically related data.

The DBTG report (Reference 4) specifies three languages through which the
supporting software is informed of

1. 	 What tranformations to make:

a. 	 A Data Description Language (DDL) to describe the data as it exists (or
will exist) in external storage (SCHEMA DDL)*.

b. 	 A Data Description Language to describe the data tequired and/or
generated by each OM in the system (SUBSCHEIVA DDL).

2. 	 When to make the transformations:

a. 	 A Data Manipulation Language (DML) to permit OM control of the
supporting software.

* Functionally replaces and includes conventional I/O imperatives.
* Contains references to SUBSCHEMA DDL declaratives.

* 	Throughout this report, the special terminology of CODASYL's DBTG appears in

caps (e.g., SCHEMA and DDL),

45

The DBTG envisioned an environment such as an IPAD project in which some
large volume of logically related data is to be managed and controlled. The report
(Reference 4) summarizes the Data Base Task Group's analysis of requirements as

follows: "A point has now been reached where in designing systems capable of

handling our current demands, it is essential to develop databases that are avail

able to and suitable for processing by multiple applications and that can be interfaced
by multiple languages." (Ibid, p 6).

The 	DBTG iecognized the requirements of three classes of system -users.

1. 	 The Data Base Administrator (DBA), envisioned as a:techfiically
oriented (i.e. familiar with data processing techniques) person
or persons charged with responsibility for the overall construction

and maintenance of the project oriented database.

2. 	 Programmers, envisioned as technica ly oriented and responsible

for detailed procedural use and production of data within the database.

3. 	The non-programmer, characterized as the IPAD user, who needs
a language "aimed at performing a specific set of database functions
in a way which obviates conventional programming." (Ibid, p 7).

The DBTG recommendations provide the SCHEMA DDL by which the DBA speci
fies the logical structure of the database. The functional requirements of maintain
ance and physical structuring of the database are left to implementors.

In considering the needs of programmers versus non-programmers, the DBTG
concluded that the needs of the programmer were more basic and decided to defer the
specification of a self contained language (Query Processor Language in IPAD dis
cussions, see Section 3.6), but to provide "a solid foundation for such self-contained
capabilities." (Ibid, p 8).

The languages specified in the report are appropriate for a COBOL environment.
The COBOL DML in particular is'an enhancement of COBOL. CODASYL recognizes
the need for further iterations in view of other languages and the need for experience
to be gained by implementation. The following quote is taken from the foreword of
the DBTG report (Reference 4).

"With this report as the base, CODASYL has now established a new
standing committee, the Data Description Language Committee, independent
of and equal to the Planning, Systems and Programming Language Committees.
It is envisioned that from the base already established by the DBTG report

this new committee will finalize the specifications for a common data
description language, independent of but common to many other higher
level programming languages. Simultaneously, the Programming Language

46

Committee will develop COBOL extensions based on Section 4 (COBOL
Sub-schema) and Section 5 (COBOL Data Manipulation Language). It is
hoped that organizations responsible for other programming languages
will develop the appropriate sub-schema and data manipulation. language'
features for their language.

While this report is not classified as a final CODASYL specification
of a common language, it does represent many years of work and the best
thinking of many recognized experts. Therefore we believe it is practical
and appropriate for implementations to be made based on these specifica
tions so that a foundation of experience may bd established from which to
further evolve and refine theL specifications of a common data description
language. [End Quote.]

The following definitions are quoted from the Major Concepts section of the DBTG
report. (Ibid p-13, 14).

The DDLs are the languages used for describing a database, or that part of a database
known to a program. These descriptions are in terms of the names and characteris
tics of the DATA-ITEMs, DATA-AGGREGATEs, RECORDs, AREA, and SETs in
cluded in the database, and the relationships that exist and must be maintained be
tween occurrences of those elemehts in the database.

A DATA-ITEM is the smallest unit of named data. An occurrence of a DATA-ITEM
is a representation of a value.

I

A DATA-AGGREGATE is a named collection of DATA-ITEMs within a RECORD. There
are two types: vectors and repeating groups. A vector is a one-dimensional, ordered
collection of DATA-ITEM s, all of which have identical characteristics. A repeating
group is a collection of data that occurs an arbitrary number of times within a RECORD
occurrence. The collection may consist of DATA-ITEMs, vectors, and repeating groups.

A RECORDis a named collection of zero, one, or more DATA-ITEMs or DATA-
AGGREGATEs. There may be an arbitrary nfinber of occurrences in the database of
each RECORD type specified in the SCHEMA for that database. For example, there
would be one occurrence of the RECORD type PAYROLL-RECORD for each employee.
This distinction between the actual occurrence of a RECORD and'the type of the RECORD
is an important one.

A SET is a named collection of RECORD types. As much, it establishes the character
istics of an arbitrary number of occurrences of the named SET. Each SET type speci
fied in the SCHEMA must have one RECORD type declared as its OWNER and one or

47

more RECORD types declared as its MEMBER RECORDs. Each occurrence of a SET
must contain one occurrence of its OWNER RECORD and may contain an arbitrary

number of occurrences of each of its MEMBER RECORD types.

An AREA is a named sub-division of the addressable storage space inthe database
and may contain occurrences of RECORDs and SETs or parts of SETs of various
types. AREAs may be opened by a run-unit with usage modes which permit, or do
not permit, concurrent run-units' to open the same AREA. AnAREA may be~declared
in the SCHEMA to be a TEMPORARY AREA. The effect of this is to provide a differ
ent occurrence of the TEMPORARY AREA to each run-unit opening it and at the ter
mination of the run-unit, the storage space involved becomes available for re-use.

The concept of AREA allows the Data Base Administrator to ubdivide a data
base rather than considering the database as a single-unit. The use of AREA allows
the Data Base Administrator or the Data Base Management Systein (DBMS) to control
placement of an entire AREA to provide efficient storage and retrieval. The opening
of AREAs by run-units also gives implementors an opportunity to optimize access to
the data base since the run-unit has narrowed the range of interest in the data base to
a relatively small number of subdivisions of the entire data base. AREAs are conveni
ent units for recovery, as duplication or backup can be carried out selectively. AREAs
also provide a convenient natural subdivision for allowing certain unused portions of
the database to be saved in archival storage while the remainder of the database is
actively accessed.

A database consists of all the RE CORD occurrences, SET occurrences and AREAs
which are controlled by a specific SCHEMA.. If an installation has multiple databases,
there must be a separate SCHEMA for each database. Furthermore, the content of
different databases is assumed to be disjoint.

A SCHEMA consists of DDL entries and is a complete description of a database. It
includes the names and descriptions of all of the AREAs, SET occurrences, RECORD
occurrences and associated DATA-ITEMs and DATA-AGGREGATEs as they exist
in the database.

A SUBSCHEMA also consists of DDL entries. It, however, need not descibe the.
entire database but only those-AREAs, SETs, RECORDs, DATA ITEMs and DATA-
AGGREGATEs which are known to one or more specific programs. Further, it des
cribes them in the form in which they are known to those specific programs and it
may also rename them.

The DATA MANIPULATION LANGUAGE (DML) is the language which the programmer
uses to cause data to be transferred between his program and the database. The DML

48

is not a complete language by itself. It relies on a host language to provide a frame
work for it and to provide the procedural capabilties required to manipulate data.
[End Quote.] I..

3.4.1 SCHEMA-SUBSCHEM-A. - Figure '3-12 illustrates the relationship of the SCHEMA
to a StBSCHEMA:

1. 	 An operating system level I/O support module looks at I/O devices and

files.
r

2. 	 The contents of the I/O files are described fohrdiny specific u~e through a
SCHEMA, hence the collection of files is labeled DATA BA'St.

3. 	 A mapping of a portion of the SCHEMA through a SUBSCHEMA is ,indicated
with the Data Base Management System (DBMS)yiewing both descriptions
as well as the mapping paths..

4. 	 The individual O sees only the SUBSCHEMA representation and has the
illusion that the database as -described by the OM's creator actually exists.

OPERATING SYSTEM

4o SUPPORT~6RMIClO

DBMS

INDIVIDUALOM 	 ,.
DATA BASE

SCHEMA

Figure 3-12. 	 Data Base Structure as Viewed by
Various Support System Software

49

The overview presented in this figure glossly simplifies the functional support
details of DBMS, viz:

1. 	 Mapping. As illustrated, the OM is provided with the illusion of physical
entities envisioned by the programmer. However:

a. 	 An OM "file" may be mapped into many database files.

b. 	 All the OM "files" may be mapped into one database file.

c. 	 One OM "record" may be composed of many database RECORDs.

d. 	 One OM "record" may consist of selected parts of one database RECORD.

2. 	 Data Item Transformations. Two additional kinds of conversion may be
implied by corresponding data item descriptions:

a. 	 Data as seen by the OM may be the result of a functional calculation
such as unit conversion; DDL may specify the function to be called by
DBMS, but does not contain the function (or procedure) itself.

b. 	 Reformatting and/or reordering of items.

3. 	 The SUBSCHEMA may describe the data as it actually exists (i.e. SUBSCHEMA
DDL matches SCHEMA DDL). In this case no mapping or transformation pro
cedure occurs.

3.4.2 DML. Figure 3-13 illustrates the features of DDL and DML:

'DATA DESCRIPTION LANGUAGE (DDL)
0 SCHEMA S SUBSCHEMA

DEFINES DB RELATIONSHIPS INDEPENDENT OF CONTENT DEFINES
* 	PORTION OFSCHEMA

KNOWN TO OM/UTILITY
SAREASR-OSPACE

" RECORDS-STRUCTURES 	 KNOWNK TO CM/UTtLITYWITHIN AREAS RELATIONSHIPS
" SETS - OWNER/MEMBER - RELATIONSHIP OF RECORDS

* 	REFORMATTING

REQUIREMENTS

'DATA MANIPULATION LANGUAGE (DML)

OPEN

FIND
GET

1 RETRIEVE
DATA CONTENT

STORE

DELETE

1 - CHANGE

DATA CONTENT

OF RECORDS KNOWN TOOM

INSERT) CHANGE DATA

REMOVEJ RELATIONSHIP

CLOSE
Figure 3-13. Features of DDL and DML

50

1. 	 Through DML directives, the OM expresses intentions of accessing,

creating and/or updating records as described in the SUBSCHEMA.

2. . The DBMS has access to both the (object) SCHEMA and SUBSCHEMA and:

a. 	 Performs any transformation implied by the two descriptions.

b. 	 Translates the I/O intention into operating-system level I/O action.

3.4.3 CODASYL and the OM Interface Problem. - Interfacing OMs in a DBMS
environment requires, as a preliminary condition, that data corresponding to the
OM requirements exist in a database (i.e. the data must be described in SCHEMA DDL).

A pair of OMs view the same data through SUBSCHEMAs.

OM incorporation consists of:

1. 	 Analyzing the I/O requirements of the OM and expressing them in DDL
for a SUBSCHEMA.

2. 	 Analyzing the intent of the OM's I/O activity and converting to DML

directives related to a SUBSCHEMA.

3. 	 Specifying in the SUBSCHEMA DDL the relationship between SCHEMA and
SUBSCHEMA.

Conceptually, all interface problems can be resolved (in a variety of ways) by appro
priate DDL specification in conjunction with primitive Data Base Procedures.

The 	role of the IOF as such has been replaced by DBMS!!!

IPAD's IOF objectives still require a Query Processor (QP) function to give the
user access to the data but this requirement is now distinct from the IOF problem.
The DBTG report deferred development of a QP language but indicated that a QP
function should access data in the same manner as the application programs (i. e., the
OMs),

3.5 An Implementation of DBMS

Preliminary documentation from UNIVAC (References 5 and 6) and CDC (Refer
ences 7 through 10), and discussions with a CDC-sponsored member of the CODASYL
DBTGindicate that major computer manufacturers are committed to the development
of software incorporating, and supporting the intent of the DDLs and DML of the DBTG
report (Reference 4).

The IOF task was realigned to avoid developing an PAD lOF utility in parallel
with a similar effort on the part of the computer manufacturers. The revised approach

51

consisted of three tasks:

1. 	 Plan to exploit the capabilities of a DBMS.

2. 	 Analyze CDC's planned* first release capability of the DBMS as applied to
IPAD requirements.

3. 	 Recommend modifications to or extensions of the DBMS capabilities to
support IPAD requirements.

3.5.1 CDC's DBMS. - Figure 3-14 represents the relationship of the database and
software components as related to a possible CDC implementation of the CODASYL
recommendations,

D0

MDB
QUERY UPDATEI2 AREA

REPORT WRITER D NFL
*CNRLACSe PRIVACY ACS AREA
0 SET PROCESSOR METHODS

USEROM* DMIL 	 -B RM :SEQ _-0 AREA1
OROM

0 INDEXED

SEGL USER

SYSTEM 9 ETC. AREA 2
USER WORK 	 REFORMATTED BUFFERS

AREA 	 DATA

* FORTRAN

COBOL

ALGOL

JOVIAL

Figure 3-14. 	 CDC's Implementation Plan for CODASYL's
Data Base Management System

The database is composed of a number of files distributed over a number of I/O
devices of various kinds. All software accesses the database through CIO (Circular
I/O, a peripheral processor support system subprogram) which arranges transfer of
data between external storage and core storage. This is the level of software which
provides I/O device independence to higher levels. CIO is existing code.

* Any discussion concerning CDC's planned or intended implementation of DBMS

must be stated in qualified terms: such implementation may or may not occur
and the DBMS design and features to be included are subject to constant re
appraisal.

52

±he nex ievei or soitware, (HtV1 (We Integrated Record Manager), provides
detail support for various data access methods. This provides the interface between
a logical organization of data and its physical organization. This (6RM) is the level of
software that permits higher levels to use standard access methods independent of
their physical implementation. The 6RM module is existing code (Reference 11).-

The DBMS level of software provides access to dataindependent of the access
methods by which the data is logically organized. The DBMS Control modules estab
lishes and maintains tables and pointers denoting logical relationships of data. The
Set Processor modules (Reference 10) translate these into parameters required by
6RM in managing data organization (files). The privacy, modules of DBMS insure data
integrity with respect to secrecy specifications and with respect to concurrent users.

The utility library contains functions necessary for the maintenance of the data
base by the DBA, e.g. statistical gathering and analysis functions, dump and edit
functions, etc.

.Query Update/2 (QU/2) is CDC's implementation of a "self contained' capability"'
mentioned m the DBTG report (Reference 4, page 7).- QU/2-(References 8 and 9)
provides access to the'database without conventional programming. Its Report Writer
feature provides th6 capability of listing portions otthe data base in user-specified
formats. Query Update/1 (Referencei12) is CDC's existing interim version of QU
which uses a speciaLtDDL called QUIDDL (Query Update Interim Data Description
Language). QUIDDL's features are documented in Reference 13.

The total DBMS system is envisioned to support OMs, written in several languages,
providing cdntrol of DBMS to the dMs through DML commands. DBMS delivers to
and accepts data from a user's work area associated with the executing OM, perform
ing any required transformations between the user's work area and its own buffer area.
Data in the system buffer area is as delivered to or accepted from 611M.

It should be noted that:

1. 	 'The syntax of the OM's source language shall be enhanced by DML and the
s'ource code of the OM nodified to replace conventional I/O techniques with
DML.

2. 	 DML object code route's all I/O requests through DBMS modules which
analyze SCHEMA/SUBSCHEMA specifications and:

a. 	 Reformat and restructure data as required.

b. 	 Make conventional I/O requests of the operating system software
to achieve the specified result.

53

3. Quer-y-Update/2 (References 8, and 9 ,) operates on a;-level parallel, with the
OM (i.e. making I/Q request of the DBMS modules) to give the IPAD user
interactive access 'to the database.

3.5.2 CDC's Query Update/2. Figure 3-15 highlights the f~atures of QU/2:

RE
E X

QUERY P T

UPDATE 0 R

R A
T C

QUERY UPDATE

* 	 USES DDL DIRECTORIES

* 	 INTERACTIVE AND BATCH WITH NO CHANGE
OF CAPABILITY Io

* 	 POWERFUL ARITHMETIC, BOOLEAN DIRECTIVES

* 	 CATALOG PROCEDURES

* 	 EASY TO USE

* 	 RECOVERY + RESTORATION COMMANDS

* 	 AUDIT TRAILS

REPORT EXTRACTOR

* 	CATALOG REPORTS

* 	 ON-LINE PREVIEW

* 	 TABULAR FORM

* 	 CAPABILITY

Figure 3-15. CDC's Query Update Version 2.0

54

I. 	 'Database areas (files) are described by CODASYL standard DDL which
allows QU/2 to access data produced by (or produce data for input to)
OMs written in FORTRAN, COBOL, ALGOL or JOVIAL.:

2. 	 Extracts,,or updates existing data or creates new data according to user
directives either interactively or in batch mode.

3. 	 Provides a desk-calculator level of arithmetic directives and complex
Boolean expressions for conditional directives.

4. 	 Provides facilities for retaining (cataloging) a series of directives ,(a session)
for subsequent reexecution (similar to IPAD's TCS).

5. 	 Provides a verbose, COBOL-like directive language which is easy to read,
but potentially cumbersome to an IPAD user.

6. 	 Provides two special purpose commands,

a. 	 RECOVERY - to reset data sets to a previous condition.
(e.g. condition lost due to system error).

b. 	 RESTORE - to undo the effects of the current session.

7. 	 Provides report extractor directives which allow the user to specify the
format and content of any output listings to be generated.

3.5.3 First Release Capability of CDC's DBMS. - No documentation of this system
was available for review, however, extrapolating from the QU/2 and DDL-V1 pre
liminary documentation (References 7, 8 and 9), it would appear that:

1. 	 The first release DBMS implements DDL and DML essentially verbatum
from CODASYL's DBTG report with a COBOL syntax and (perhaps) some
COBOL oriented restrictions:

2. 	 The raw functional capability to support a FORTRAN environment will
be provided but with no FORTRAN syntax for DDL, no DML enhanced
FORTRAN compiler, and with DBMS functions possibly limited by COBOL
restrictions on the SCHEMA DDL.

Unofficial reports indicate that CDC is studying FORTRAN syntax but has no current
effort going to include FORTRAN support in DBMS.

3.5.4 Review of Design Constraints and Guidelines. - (Refer to Section 3.1).

1. 	 Procedural requirements imposed on the user and the range of choices
open to the user are fixed by the SCHEMA/SUBSCHEMA DDLs:

a. 	 QU/2 allows the user to manipulate data described in a SUBSCHEMA
as he chooses, subject to limitations specified in the SCHEMA (e. g.
PRIVACY limitations and/or concurrent user limitations).

55

b. 	 QU/2 provides a user option to retain a series of directives (a "session")
for reexecution (similar to IPAD's TCS).

c. 	 All data accessible through the SUBSCHEMA is conceptually random

access. The actual organization as described in the SCHEMA could
degrade response time so as to prohibit random access. Such limit
ations derive from project administration rather than QU/2 or DBMS.

2. Modificatioi of OMs is required to route I/O requests through the DBMS.
These are not logic changes in that the DML should express the'same in

tent as the conventional I/O requests. The extent (difficulty) of the changes

depends on the development of the DML and/or a DML insertion preprocessor.

3. 	 Input to an OM may be derived from a variety of sources in dither of two

ways, depending on decisions reflected in the DDLs:

a. The user can direct QU/2 to extract data from any source provided

in the SUBSCHEMA and collect it in a SUBSCHEMA defined destination
for input to the OM.

b. 	 The SUBSCHEMA invoked by the OM's DML may refer directly to
the various sources rather than one localized source.1

4. 	 Output of the OM may be distributed in the same manner as the input is

collected.

5. 	 Tutorial assistance can be designed and provided as specified by the

installation, the project, a, particular design task, or an individual OM.
Two methods, using QU/2, are possible:

a. 	 Tutorial data can be provided in the data base to be displayed to the
user according to user directives.

b. 	 Predefined tutorial "sessions" nay becataloged to achieve a MACRO/
MICRO Menu effect.

3.5.5 Review of IOF Requirements. -(Refer to Section 3.2 on a paragraph basis).

1. 	 Random access/update capability is provided with the DBMS approach
for all data, subject to limitations imposed'by database administration.

2. 	 The DBMS approach circumvents the requirement for intermediate files
as well as the requirement that all files be random access:

a. 	 QU/2 and the OMs can access the same data. !

b. 	 The "file" as seen by the OM may map into several files in the
database.

56

b 	 Decisions rffay be reflected in the SCHEMA to localize thosec. 	 DDL

portions of the data that the user will access via QU/2 providing
efficient random access to that data and no access to the rest.

3,. 	 Tutorial'assistance data can be stored in the database; made available to
QU-/2 through.a SUBSCHEMA and displayed by the us6r. Such-data could
include that listed in Section 3.2 and can be extended as desired by project
administration. In addition, the user has facilities to generate tutorial
notes as he pleases for his own future reference.

4,. 	 DDL'provides for describing all I/O data of the OM independent of the use

of the OM as required. Inaddition, it provides facilities far beyond this
basic requirement which can:

a. 	 Specify interface techniques to relate the OM's requirements to
other data descriptions.

b. 	 Share available data storage with other OMs.

c. 	 Insure integrity of shared data.

5. 	 DDL compiles into an "object table" which serves the purpose of a "file
directory" within DBMS.

6. 	 Integration of interface requirements through DDL circumvents many of
the functional requirements of the IOF utility approach. The remaining
functional requirements are met by QU/2:

a. 	 Intermediate IOF files are not necessary.

b. 	 QU/2 updates RECORDs that the OMs access.

c. 	 QU/2 extracts data from RECORDs accessible to OMs.

d., e. Mapping is accomplished implicitly (in accordance with DDL
specifications) during execution of DML directives in the OMs or
explicitly as the user directs QU/2.

f. 	 QU/2 provides desk-calculator level arithmetic directives.

g., 	 h. The, DBMS approach makes these function equivalent to mapping
as described above.

i. 	 Tutorial data is accessible by the same QU/2 directives as I/0 data.

7. QU/2, as previously discussed, provides; a user's command language.

3.5.6 Review of he IOF Conceptual Design. - (Reier to Section 3.3). Under a
CODASYL DBMS, it is possible to express the solution of OM-OM interface problems
in the SCHEMA/SUBSCHEMA DDLs. Inthis case the DBVS modules and primitive

57

Data Base Procedures would effect the solution to the interface problem during ex
ecution of the OMs. No data manipulation between execution of linked OMs would be
required and the OMs would access and update the database directly. This approach
was functionally depicted in Figure 3---1-.

At the opposite extreme, the DDLs could express interface requirements between
themselves and the database only, with no solution to the OM-OM interface problem.
This would result in redundant copies of all common data involved and would require
additional mapping procedures between execution of any successive pair-of OMs.
Functionally, this approach would be the same as that depicted in Figures 3-9 and 3-10.
Because this approach is optional with the user (although less efficient computer
wise), this section will relate the concepts of the IOF utility (Section 3.3) to the
equivalent CODASYL capabilities.

These two solutions to the OM-OM interface problem are contrasted in the Venn
diagram below as it relates to data common between OMs.

0M lop OM2
Oe.LOM

CODASYL DBMS 	 IOF UTILITY

3.5.6.1 I/O FLEES and I/O SPONGES: In a DBMS environment, the emphasis
shifts from construction and disposition of files to construction and disposition of
RECORDs. A file, as visualized in Section 3. 3, is a particular relationship of
RECORDs. Since DBMS deals with the OM on a RECORD by RECORD basis, there is
no logical requirement for any particular physical organization of theECORDs. In
the CODASYL approach the OMs are presented with the illusion of files through the
functions of:

1. 	 Constructing input RECORDs, as described in the DDL, in response to
DML commands executed by the OM.

2. 	 Disposition of output RECORDs, as described in DDL, in-response to DML
commands executed by the OM.

The concept of ISPONGE and OSPONGE, as randomly accessible representations
of data requirements, applies to all data to be processed by DBMS. However, there
is no need to consider intermediate representations nor arbitrary file structures.

58

Through DML commands the OMs can access the ISPONGEs and OSPONGEs. Further
more, all the data associated with an OM (or a particular-linkage of OMs) can be con
sidered as one I/OSPONGE from which DBMS selects data to construct input RECORDs
and into which it distributes data given in output RECORDs.

3.5.6.2 The IDEF and ODEF: The two parts of the I/ODEF described in Section 3.3
correspond (within CODASYLt's DBMS) to:

1. 	 Tutorial data residing in the database, described in the DDL for the SCHEMA
and accessible by QU/2 through a SUBSCHEMA. This data describes the I/O
requirements of the OM from a user's viewpoint (man readable).

2. 	 SUBSCHEMA DDL describing the I/O requirements of the OM to the DBMS
(compiler and man readable). This is partial SUBSCEMA DDL. It des
cribes RECORD structures required by the OM. The SUBSCHEMA is to be
completed for use by the OM by relating these structures to SCHEMA DDL.
Provisions of DDL include the list of Subsection 3.3. 1.2 except that RECORD
structures are defined rather than file structures.

8.5.6.3 Use of the IDEF and ODEF: The tutorial section of the I/ODEFs have exactly
the same purpose as in the [OF conceptual design. This is user oriented information
to be displayed as the user requests. However, the use of DDL (item 2 above) for this
purpose is substantially different:

1. 	 The DDL in the I/ODEF converts to a SUBSCHEMA rather than a directory
or directories. The SUBSCHEMA:

a. 	 Describes the data names, RECORD structures and RECORD relation
ships required by the OM.

b. 	 Relates these descriptions to a SCHEMA, a similar description of the
data as it exists or will exist.

2. 	 In the IOF conceptual design, processing of the I/ODEF included editing
and deleting data descriptions on the basis of the user's intent regarding
program options. In the CODASYL approach, the SUBSCHEMA can provide
the full range of OM capabilities rather than only one consistent choice of
options.

3.5.6.4 CODASYL's DBMS functional relationship to IOF preliminary-design:- The
IPAD objective that the user shall-be in control and the user defines his procedure by
accomplishing a tagk, requires that the CODASYL approach provide for the functional
steps presented in the IOF preliminary design:

1. 	 .Input (output) definition.

59

2. 	 Dfata (input data) definition.

3. 	 OM execution - ge'neration of output data.

4. 	 Output processing:

a. 	 irect 'distribution.
6. Item by item distribution.

5. 	 Data (input) redefinition/modification for re-execution of the OM.
I-

Input (Output) Definition. This operation converts the 1/ODEF (DDL portion) into a
SUBSCHEMA. For this discussion it is assumed that logibally equivalent, i.e.
mappable, data descriptions exist in the SCHEMA. Preparation of the SCHEMA is
discussed in Section 7.

The 	I/ODEF DDL contains:

1. 	 An AREA description for logically distinct data (e.g., an A-REA for an
input file and a different AREA for an output file).

2. 	 Descriptions (identification) of RECORDs and possibly SETs of RECORDs
within the AREAs.

3. Descriptions of the structure of RECORDs in terms of DATA NAMES.

4. 	 Attributes of DATA NAMEs.

The user mast provide renaming and mapping specifications to relate the above
to the SCHEMA. The DDL compiler produces an object SUBSCHEMA through which
DBMS can map data occurrences from OM internal storage to the database and vice
versa.

Data Definition. For this phase, the user will interact with QU/2 which will have
access to a SUBSCHEMA (which is equivalent to a copy of the SCHEMA).

Through QU/2 directives he will:

1. Define variables in QU/2 temporary storage.

2. Access blessed data AREAs (MDB) and/or other OM output.

3. Extract data Values into temporary storage.

4. Access OM input AREAs.

5. Insert values from temporary storage.

6. Insert values via keyboard.

60

OM Execution. The user interacts with the IPAD EXEC and TCSS Expander to accomp.
lish OM execution. The OM interacts with DBMS through DML commands to retrieve
its input data and generate its output data.

Output Processing. No special step is necessary for the usual situation in which the
OM output is to be mapped to other OM input. The output is available to Data Defin
ition and/or Data Redefinition steps without intermediate processing:

I I
1. 	 Direct distribution can be achieved either by DBMS through DDL

specifications or through a Query Update Session.

2. 	 Single DATA-ITEM disposition is a step in Data Definition or Redefinition
Phase for related OMs.

Data Redefinition/Modification. This is a subphase of the Data Definition phase.
Using the same QU/2 setup, the user will usually:

1. 	 Access the OM input AREA.

2. 	 Modify data values as required.

3.6 IPAD's Query Processor

The DBTG report recognized the need for data base operations by two classes
of (DBMS) users, the technically oriented programmer and the non-programmer. The
needs of the programmer were seen as the more pressing, consequently the needs of
the non-programmer were deferred. In discussing this decision, it was noted that the
needs of the non-programmer were essentially undefined; that a range of possibilities
existed from simple predefined operations to a full "self contained capability" (Refer
ence 4, page 8). The needs of the IPAD user as relates to the IOF capability require
the latter. The name'Query Processor (QP) was chosen to signify a "self contained
[interactive] capability" following the lead of UNIVAC (Reference 6) and NSRDC's
COMRADE (Reference 14).

The scope of CDC 's QU/2 envisions conversational inquiry and updating of infor
mation. The need for this capability is seen to arise from the large gap between
available special purpose interactive software (for application oriented users) and the
general purpose interactive software (oriented toward knowledgeable programmers).
The extent of capabilities provided through the QU/2 language place QU/2 in the QP
family. The primary difference between QU/2 and IPAD's QP is the difference of
language (see Section 5.5). Like the DBTG specifications, the language specifications
of QU/2 are closely related to COBOL. The typical IPAD user could not be induced
to express his needs in this language.

61

The concept of a prefabricated TCS (see Subsection 2.3.3 of Volume IV, Part I)
and tutorial assistance in expanding TCSSs (Subsection 2.2.1 of this Pat) cani alleviate
the problem of an appropriate.QP Language (QPL) to some degree, but not altogether.
A feature of QP is the ability to identify and save the contents of a QP Session(QPS)

and 	the ability to execute a previously saved (or prefabricated) QPS. Consequently,
the QPS is an extension of the TCS concept, with the QPS to'be accessed and executed
by QP rather than by the IPAD EXEC. Just as a TCS may be derived by substituting
task dependent parameters in a TOS Skeleton (TOSS of Subsection 2.2.1), a QPS may
be derived by substituting task dependent information in a .QPS Skeleton (QPSS). .The
TOSS Expander capability associated with the EXEC will expand either skeletonofile.
In further discussions, QPSs are considered as subsets of TCSs and Q4SSs as sub-,
sets 	of TCSSs.

3.7 Extensions to the DBTG Recomniendations

The IPAD design must account for three problem areas which were beyond the
scope of the DBTG work:

1. 	 Engineering oriented language development. This requirement is
the subject of Section 5.

2. 	 Special Purpose Utilities (SPUs) to assist in constructing the DBMS
interface (DDL/DML) for:

a. 	 Incorporating existing OMs into IPAD (a programming function).

b. 	 Integrating a group of incorporated OMs into a task-oriented
entity (a design/engineering function).

3. 	 The special data handling requirements of interactive graphics applications.
This problem is discussed in the following subsections.

3.7.1 Data handling for interactive graphics. - Early experience with interactive
graphlcs applications have demonstrated that the standard data access methods are
inadequate to cope with the problems of interactive computing. Efficient use of con
ventional techniques requires orderly procedures devised by skillful programmers
who are aware of the advantages and limitations of the access methods they use. In
the interactive graphics environment, a terminal user controls the sequence of data
access, the volume of data handled, and the handling procedure itself. This situation
resulted in the development of special software capabilities which must be maintained
in the transition to a general purpose DBMS. The special capabilities consist of:

1. 	 Support of arbitrary data structures. 'This is provided for

in the DBTG recommendations as will be illustrated.

62

http:appropriate.QP

2. 	 Functional techniques consistent with acceptable response time.
This is a DBMS implementation consideration and the DBTG did
not attempt to specify implementation techniques.

The 	following subsections identify two existing implementations of the required cap
ability. Advantages associated with providing the capability within DBMS instead
of retaining existing implementations follow.

3.7.2 CDC's Data Handler. - CDC implemented the Data Handler (Reference 3) to
meet the mass storage quick-access demands of interactive graphics. The Data
Handler is a set of FORTRAN callable COMPASS subroutines that optimize access
to mass storage and perform incore list processing. The programmer can create
and manipulate data structures much more efficiently than with conventional tech
niques because the Data Handler provides (as data) the addressing parameter of each
substructure. With this parameter, the programmer can devise'very efficient search
strategies. Figure 3-16 illustrates possible data structures; each arrow indicates a
direct record-to-record search strategy. (The record concept is signified by the
word "bead" in this context.) Also, the programmer can make effective use of sec
ondary storage space by defining the substructure of data words.

BEAD

BEAD ADORESS_)0 --

A SINOLE BEAD

A STRING OF BEADS 	 A RING SRUCTUREOFBEADS

ACOMBINATION STRUCTURE OFBEADS

Figure 3-16. Typical Data Structures

Behind the scenes, the Data Handler improves response time and storage re
quirements through several techniques:

1. 	 Copies of a number of "most used" data structures are maintained in core.

63

2'. 	 Structures read but not modified are not rewritten.

3. 	Dead space accummulated by deleting data is immediately available

for reuse. , .

3.7.3 NSRDC's Interactive Data Manager (IDM). - The NSRDC Interactive Data

Manager (Reference 15) is an improved version of CDC's Scope 3.3 Data Handler

(Reference 3) and is written in FORTRAN except for a few COMPASS primitives.

It additionally features:

J. 	 Easy-to-use (for programmer) mechanism for handling pointer (addressing)

data.

2. 	 Separation of programming functions of data description from data manipu

lation.

3. 	 Increased portability.

4. 	 Reduction of core requirements and core-to-core transfers of data.

' 5. 	 Elimination of program abort conditions".,

6. 	 Increase in efficiency due to improved data management algorithms.

7. 	 Standard file formats to increase portability.

It however had several significant disadvantages which detract from its applica

bility as a general purpose IPAD software module, namely:

I. 	It presumes CDC's 6000-Series 60-bit words.

2. 	 It accomplishes functions with FORTRAN that can be accomplished much

'more efficiently in assembly language (e.g. bit manipulation).

3. 	 It duplicates certain operating system function (e.g. file management)

thus circumventing host computer software which either is or is trending

towards highly efficient, reentrant code.

4. 	 The structure, type and contents of an IDM file are not available; much of

this is embedded within the using program. This is contrary to the IPAD

requirement (see Volume IV, Part I, ,Section 2) that every file:

a. 	 Shall contain its own (arbitrary) file structure.

b. 	 Shall contain its own (arbitrary) file contents/directory.

c. 	 Have provisions for a definition and units/coordinate system for

every file variable (as applicable).

Considerable rework and extension to the IDM would be required to provide removal

of these restrictions.

64

3.7.4 The DBMS approach. - The languages specified in the DBTG report provide
all the advantages of structuring and efficient retrieval provided by the CDC Data
Handler' Further, by making the OM independent of the 'external form of the data,
it overcomes the disadvantages of the Interactive Data Manager:

1. 	 Word structure specification is a DDL feature separate from executable
object code.

2. 	 All functions of packing, mapping, etc. aie supplied by supporting (system
level) software.

3. 	 'N6 duplication of capability or object code is needed. The OM/GPU pro
grammer concentrates on the problems of using data. Specialists at the
computer hardware level provide highly efficient software support.

4. 	 The file structure of any data processed by DBMS is specified external
to the program, consequently it can be processed by any other program.

Figures 3-17, 3-18, and 3-19 (taken from the DBTG report, Reference 4) illus
trate the range of SET relationships which may be provided for in DDL declarations.
In particular, Figure 3-19 indicates that arbitrary networks of RECORDs may be de
fined, providing all the logical flexibility required in the interactive graphics environ
ment.

OWNER RECORD
(SET A)OWNER RECORD

(OF 	 SET A) TYPE I RECORD TYPE 2 RECORD

OWNER SET B OWNER SET M
.-........... NiSET 	 BSEM
 A MEBE 	 SE MME SET A2: TYPE 3 RECORD

MEMBERMEMBER SET B
RECORD OWNER SET N

(OF 	 ,SET A)
SET N

Figure 3-17. SET Representation Figure 3-18. SET Representation
of a Sequential Structure of a Tree Structure

65

TYPEI$1RECORD, TYPE 4 RECORDf!,
OWNER.>SET A OWNER - SET, D
OWNER SET, C

SET 	 Al I SET C SET D

TYPEi 2 RECORD, TYPE 5 'RECORD
OWNER-,t SET' B OWNER, SET'E
MEMBER, SET'A MEMBER SETC

MEMBER SET D

SET ESET 	 B

TYPIE' 3'RECORD
MEMBER, SETOB
MEMBER', SET'E

Figure 3-19. SET Representation
of aNetwork Structure

3. 8 Conclusions

Guidelines for an IOF utility were drawn from ,the objectives of the conceptual
design. The requirements 'for such a utility wereanalyzed and a functional design

was developed. A review of this work indicated that adopting this approach would
entail large development tasks for:

1. 	 An I/ODEF data description language.

2. 	 A "compiler" for the I/ODEF language,

3. 	 An IOF command language.

4. 	 Interactive interpretation and supportotthe

command language.

In addition to the development problems, the redundancy of data required by
I1/OPSONGES and corresponding sequential fileswas recognized as a distinct dis
advantage (e.g., see mass storage sizing discussion,in Volume IV, Section 5.4 of
Part 1).

The recommendations of the DBTG were identified as applicable to IPAD by
CDC personnel who also revealed preliminary plans to implement a DMS as re

66

commended, by the DBTG. The, IOF function is preempted by some of the objectives
of such a DBMS. The introduction to the DBTG report (Reference 4) envisions a
central data base:

I. 	 To be suitable for processing by multiple applications and that can
be interfaced by multiple languages.

2. 	 To allow data to be structured in the manner most suitable to eachapplication, 'without requiring redundancy.

3. Allow programs to be as independent of the data as current techniques
will permit.

The 	functions of the IOF with respect to the IPAD user are not provided but the need
for these functions are recognized and provision is made for future development.
Curiously, CDC's implementation plans -indicate that these (QP) functions will be
implemented (in the form of QU/2) prior to the full DBMS implementation. Current
ly QU/2 has 6RM calls to access a data base. Ultimately QU and the OMs will use
a similar mechanism (DML) to submit data base requests.

Further analysis of the DBTG recommendations indicate that NASA should
sponsor extensions of the DBTG work to incorporate an industry-standard DBMS in
the final IPAD design. The extensions are in the areas of:

1. 	 Language development (see Section 5).

2. 	 Special Purpose Utilities (see Section 7).
3. Special data handling needs of interactive graphics (see Section 3.7).

67/68

4 DATA BASE AND DATA BASE MANAGEMENT

IPAD data base and data base management are based upon the IPAD fundamental
operating philosophy and principles discussed in Volume IV, Part I, Section 2. IPAD
is basically designed as a project organized system structure to integrate the various
disciplines of aircraft design within a single computer system and a common repository
of project data. The principal focus of attention in bringing these disciplines together
is to centralize the design data among them, reduce duplication when practical, and
provide for effective dissemination and control of the data so that the entire procedure
progresses in an orderly fashion with a degree of visibility and confidence to all con
cerned.

Section 4. 1 presents the top level description and interrelationship of the data
bases. Section 4.2 presents an overview of the organization of the data bases and data
base management within IPAD from a particular implementation viewpoint. Section 4.3
presents a summary of personnel requirements for data base management. Section 4.4
presents a brief summary of the IPAD data bases. Appendix F represents a detailed
set of requirements and possible design implementation.

4.1 Introduction

There exists a sufficient variation in the design approach and functional group or
ganizations among the aerospace companies that imposing rigid standards on data de
finition is impractical (Volume IV, Part I, Subsection 2.2.3.5). Therefore, the system
structure of IPAD must account for and permit the users to operate in a most effective
manner congidering their skills, design problems, and project organization. The re
sultant IPAD data base design requirements provide a minimum and effectual project
organization for disciplinary interaction within IPAD. Within IPAD's boundaries, both
the project management and the users can adjust and organize processes and data
according to their specific requirements.

This is accomplished by providing:

1 	 IPAD utilities which can be sequenced by appropriate command files
to tailor IPAD processing activity to the needs of a single discipline.

2. 	 An IPAD general data base organization (and management) that provides the
foundation on which the requirements and organization of a project can be
constructed. These facilities will be available to all users.

In order to determine the most effective data base organization and management
for IPAD, it is necessary to look at the typical personnel organization for an

69

aircraft design project.

4.1.1 Project Organization. - Figure 4-1 shows a typical aircraft design organization.

Within the-project there is a top level coordination group that exercises the overall

control for project decision making and evaluating the design. This group decides what

support activities, areas for design, etc. it neeas. It employs and coordinates the

various engineering design disciplines to carry out its design requirements and

decisions.

Disciplinary groups in turn organize themselves to carry out their tasks and
cooperate with one another where their design areas interface thereby overlapping
and exchanging the appropriate design data. Users within the various disciplines per
form their own (less formal) cooperation and exchanges of data.

Figure 4-2 presents a more formalized personnel arrangement that takes into
account the project requirements and the formal requirements dictated by IPAD be
cause of the nature of its computer-system dependence. However, the project ob
jectives are accomplished by still adhering to the project organization and responsi
bilities.

In Figure 4-2, tne Engineering Review Board (ERB) function remains the same
as the original top level control., Between the ERB and IPAD is the Engineering
Review Board Coordinator (ERB9) whose function is to (via IPAD):

1. 	 Monitor the progress of various,abtivities.

2. 	 Interpret directives and data from the ERB and disseminate these to

the disciplinary groups.

3. 	 Evaluate results of design activity preparatory to review by the ERB

(check on results, computer derived preseniation formats, etc.).

A new personnel responsibility in the form of the Data Bank Admimstrator (DBA)
is added to control the dissemination of design data between disciplines, the baselines
for subdesign activities, etc. in accordance with directives from the ERB. This
function has control over approved design data and is able to show current design
status at any requested time. Part of this function's responsibility is to insure that
the various users do indeed have the current design information available to them.

The functions of the members of the disciplinary groups remain the same within
IPAD. However, their capabilities and control over their areas are enhanced via

70

DATA OUT DEStGN CONSTRAINTS, ACTIONEVAUAT(', &2

SCHEDULES,R BRECTIVES,
DISCIPLINARY GROUPS HAVE TRE COORDINATION

AND RESPONSIBILITY WITHIN THEIR DISCIPLINE

ELIAy

STRUCTURLAS

D ESIGN DATA

EXCHAN GES WITS
OTHER GROUPS

EXCHANGE

F~igure 4-1. Typical Project Organization for Aircraft Design

(TAEKGINEEREER

ENgINEERInG

REVIEW BOARD

OTR GROUPS/IE

• (ERB)

REVIEWACTIONWREQUUSEMEN TS,

ACTIONS/REVW

RESULTS ACORINATORCTIONS/RESULTS

REVIEW OARONSQALD

ADM EINISRTGAPOE

TI VIWBORDI C NRY

REUT CODINRETIVESEULT

for Aircraft Designti AFigure 4-1 yaProjectrrangementn

OCAL N FOR REVIEWA

USERVIE XCH VT

OR EXHAGEOR O

SAND E T E

REIE IENGINEERING

IiGANI

OD1500PLIUNART

DATANA

IAi). le iscipnnary troup Leauers IuJLI), Lur exanmpi., uau IiLu ± Uu uu1

plishment and method of accomplishment within their, areas by the more objective

means of interrogating engineering task histories and status information within IPAD.

The individual users can obtain the information they require more effectively

and automatically by dealing through a commoh system and procedures.

Finally, Figure 4-3 transposes this organizational structure into the basic data bases

The nature and function of these data bases are outlined in subsequentwithin IPAD.

paragraphs. A summary of the definitions of-the various data files are given in Sub

section 4.1.2o2.

4. 1. 2 Terminology. - The following list and Figure 4-3 define the data base terms

used throughout this section.

4.1.2.1 General IPAD data base terminology:

Data Base. Data base is used as a generic term to apply to any organized collection
of data within IPAD. The term is used when no specific data base (subbase) is intend
ed in the discussion.

Data Bank. The term data bqnk is project oriented and uged to identify collections of
specific data with the following attributes:

1. 	 Their contents are applicable to all users of IPAD.

or

1'. 	Their contents are applicable to all members of a project,

and

2 . They are required to be directly accessible by the user (or the IPAD
support system) during the performance of his activity without any
explicit directive on his part to the IPAD system.

Libraries. The term libraries is usedto refer to collections of data/code that have
the following attributes:

1. 	 They consist of information applicable to a group of IPAD users (project
members, or functional group members),

and

2. 	 Explicit directions are required on the part of the user stating that a
particular library is to be used.

'72 	 JQy

PROJECT bArA
BANK

PRIVACY DATA

PROJECTIDENTI FIER

PROJECTDATA BASE
IRECTORY

DO~ ~~~~~~~
STATU~ACTONI I MOS I I IPRPROJECT

JL

A

....NoUE,-UET

TnATO Im-L.I UPDATEIN&IFLEZ IL.CEFI13A) PROJECTSMO

PITJECC USE .. . US R O C
STA MmO FILE TASK O

IESIAJTA

{LDISIPLINE LIBRAnVUSER (SPECIAL)FILES I CMMANDS FIL59&DRIVATIVES

Figure 4-3. Data Bases Associated with the Project, an Overview

The term is also applied to common sets of data/code that can be mdde available
to all users of IPAD and is normally maintained in a directly accessible form for
the user. These particular libraries, their structure and contents are strictly under
system control.

File. The term file is used as a qualifier on a data base to identify those data bases
or portions of data bases which are treated by the IPAD support system as the highest
grouping of information referable to by a user that provides him access to all
information within the file.

Data Sets. The term data set is used to refer to named collections of information
within banks, libraries or files directly referable by the users. Data set names may
be. recursive.

Data Items. The term data item is used to refer to the name representing valued data.
The next lower division in the data contains the numerical values.

Data Base Identifier. A name associated with a data base which a user employs to
locate information within IPAD.

4.1.2.2 Specific IPAD data base terminology: The following terms refer to the PAD

data base organization presented in Figuie 4-3:

1. 	 Data/Presentation Files:

a. 	 Multidisciplinary Data Bank (MDB) - Project collection of all specially
approved design data that project members must produce or use.

b. 	 MDB Update File (MDBU) - Project data base file containing data desig
nated for incorporation into the MDB subject to review and approval by the
DBA.

c. 	 Project Review File (PRF) - Project level data base file that contains data
and appropriate display commands that permits the ERB/ERBC to review
the design data or generate presentation or report material.

2. 	 Task Status/Acton (Communications) File (TSA):

a. 	 Status/Action Sets - Collection of data sets within a project level file where
by messages, directives, and data base identifiers are transmitted between
various members of a project. Specific data sets are assigned to the DBA,
ERB/ERBC, each Design Group (DG) and each user.

74

3. 	 Discipline Library/User (special) Files:

a. Disciplinary Library File (DLF) - Collections of utilities, operational
modules (OMs), design data, etc. that are used primarily within a single
functional group or discipline.

b. 	 User File (UF) - Collection of data/programs used exclusively by an indivi
dual member of a project on any specific task.

4. 	 Commands Files and Derivatives:

a. 	 User Task Trajectory (UTT) - Each UTT is a data set that summarizes
actual activity on a task in terms of commands and data bases used.

b. 	 Command Data Sets - The command (e.g. TCS, TCSS) data sets are in
corporated into a variety of data base files. They contain commands that
can be invoked and used for specific purposes.

5. 	 Executable Code Files:

a.' 	Project Common Utilities File - This file contains project common utilities,
viz. those applicable to all users within a project. Utilities common to a
single discipline (or user) may also be stored as data sets within other files
such as DLFs.

b. 	 Project Common OM Files - This file contains OMs applicable to all users
within a project. OMs common to a single discipline (or user) may also be
stored as data sets within other files such as the DLFs.

o. 	 DBA and Project Management Utilities - This file contains the general
utilities/commands that perform the general data base operations (see
Section 4.3).

6. 	 IPAD Support System Data Bases: The IPAD Support System Data Bases

encompass those elements of an IPAD data base that are independent of

projects and are maintained for either the convenience of all users of IPAD
as for general management of the IPAD system.

The 	data bases within the support system are discussed in detail in Appendix F.

4.1.3 Project level data bank, a functional description. - The kernel of data base
organization and management is to integrate together the various members of the de
sign team. There are two paths of project level exchange which organize a project's
activity in an orderly fdshion:

1. Design Data Exchange - Design data exchange is accomplished by establishing
a central residency for approved design data and baselines accessible by all

75

authorized users. This facility, with its appropriate support processing and
control is the Multidisciplinary Data Bank (MDB).

2. Action Directives and Status Information -_ Action directives are required to
permit various members of a project to transmit information and the requests
for information to other members. Status information is required to permit
tracking and analysis of the various activities. This requirement is basically

fulfilled via the establishment and usage of the Task Status/Action File (TSA),

which contains the necessary information associated with each project member.

The following subsections discuss these data bases and their subsidiary data banks

and their usages.

The MDB is the key data base, whereby4.1.3. 1 Multidisciplinary Data Bank (MDB):

the control of the design process data is maintained.

As an aircraft's design progresses through its various design phases - either

serially or in parallel - design data controlling various aspects is generated. This

data must be disseniinated within the design project for utilization by or for controlling
of design activities. The Multidisciplinary Data Bank (MDB) is the mechanism by

which project level control is maintained over the design process. Each project has
its own MlDB.

The MDB is the repository of all project approved design data. In general, as the
design activity progresses, design data will be altered and replaced. The choice of

whether superseded-data should-be deleted or retained (appropriately labeled) is

determined by the project management. It is concebivable that on some projects, the

choice could result in only current data while in others, the choice could result in
maintaining all data ever'entered into the MDB. The meaningfulness and propriety of
retaining all information as well as its implied complexity of usage is the responsi
bility of a project. Individual users operating disciplinary OMs within IPAD extract
the current design data from-the project MDB. Conversely, when design data that is

required for other disciplines is produced and approved, the MDB must be updated
and expanded.

The contents and labeling of contents within the MDB is strictly a project oriented
function. IPAD provides the facilities for the construction of thb MDB with appropriate
labeling of data at the project's discretion . . . that is, IPAD does not force cate
gorization of data into specific groupings. The 'individual project makes decisions
a priori or during design development - as to how the data is to be classified for '
access by the various users who have need of that data. As examples, the same type
of data in one project may be classified in the same disciplines regardless of the

76

project. On the other hand, other types of equivalent data may be classified as be
longing to separate disciplines in different projects. Finally, the same data may be
classified as belonging-to several different disciplines within the same project.

Figure 4-4 depicts a typical data arrangenient within a project's MDB.

Category and subcategory identities and directories are used to organize the design
data into the appropriate classifications for the project. The individual data items
have classification data items associated with them that further identify the nature
of the valued items and version classification.

I
The MDB is further organized to permit more than one design to be considered

concurrent for an aircraft. Each alternative design is treated as a separate logical
entity. From the viewpoint of a- disciplinary user working within the MDB. the MDB
appears as though it contained exclusively, one design. As shown in Figure 4r 4 , the
14DB has further data items to identify alternate designs. If common design data
exists between designs, it will be referenced by all the alternative designs that require
it. Control over modification to the comnon design~data resides with the Data Bank
Administrator (DBA) who must decide whether such modification is permitted.

In order to obtain required information from the MDB, the user executes a sequence
of commands (which may have been prefabricated) to accomplish the data extraction.
The comm ands sequence begins with the accessing of the data bank, passing the user
through authorization checks and selecting the appropriate design alternative to place
the user in the proper context. The user in the first step of retrieval symbolically
drives down the appropriate, category branches until he is within the data subset he
requires His next step in the retrieval sequence is to obtain the actual data he re
quires. The user may obtain the latest data or he may employ a procedure that,per
mits him to obtain some previous data which has subsequently been updated. The pro
cedure is represented schematically in Figure 4-5.

The decisions as to what data resides within the MDB and how the information is to
be referenced lie solely with the project management. , IPAD only provides the system
structure to permit this. Therefore, MDBs among various projects may varyin the,
requirements for,specifying what data is to be recorded. Some data types, declared
to be part of the MDB for one project, may be considered strictly to be local files in
another project. The responsibility for the organization and control of the contents, of
the VMDB belongs to the DBA. Proposed modification to the MDB are inserted into the
lVIDB Data Update file. In accordance with decisions by the engineering review board,
the modifications are made at the direction of the DBA. No other user has modifica
tion access to the MDB. Figure 4-6 shows an abstraction of this process.

77

PRIDATA TYPE,

DESIGN DATA
SUBCATEGORYDTA TE

COODIATE DIENIONBFESTULUE

SUBITEM

ITMSUFL
SUBFIUEFETC

SUBVILE

• ITEM SUENTITY

DESIGN DATA

IDEIIGATA
ALTERNATEG

Figure 4-4 ODB General Data Organization

USER
VIEWS
FROM
ABOVE NOTE VENN DIAGRAM CONCEPT

-DENT 03/31/77

*IDENT 03122177

(MY CURRENT BASELINE LEVEL LESS CONFCHG)

TYPICAL
MAXIMUM IDENTO3I1E/77
50 PAGES
OR S WEEKS
CALENDAR	 NEW

COMPLETE

DATA SET

*IDENT 02/01177[
TAPE SAVING

,

COMPLETE
 PRIOR DATA
DATA SET SET MODIFICATIONS

Figure 4-5. Accessing and Maintaining the MDB

ADVANCED 	 MISSION AERO DATA UPDATE FILEDESIGN R'EOUIREMENTS 	 DYNAMICS PROPULSION

PROPOSED CHANGESSECS & 	 CONTROL PRELIMINARY & ADDITIONSCRITERIA 	 DYNAMICS WEIGHTS DESIGN COSTS
EXPANSION OF DATA

STRUCTURAL DROFTING
LOADS 	 STRUCTURAL STRUCTURAL

ANALYSIS DESIGN DYNAMICS NEW DATA DEFINITION

DATA PROJECT CONFIGURATION LEVELSSYSTEMS 	 THERMO-,
DYNAMICS MANAGEMENT MANAGEMENT MANAGEMENT NEW TCS(s) AVAILABLE

MARKET 	 -RISK DRAWING MERIT FUNCTION PLOTS
ANALYSIS SCHEDULING AESSMENT RELEASE MANUFACTURING

PARAMETRIC PLOTS

INTERFACING RESULTS

DATA BASE ADMINISTRATOR

ERB OK

DATA CURRENCY CHECK

UPDATE ID & LOGGING

CREATE/DELETE PAGES

Figure 4-6. Updating the MDB

79

The MDB interface in the overall design data production process is depicted in
Figure 4-7 which also shows the total data base requirements that may be involved in
design data production.

EVALUATION & REVIEW

MULT I _ D D T

DISCIPLINARY PROJECT DATA UDTFL

CANDI DATES FOR
DATA UPDATE

OTHER •DESIGN DATA DISCIPLINARY

DISCIPLINARY PRODUCTION DICPLN LEIBRAR FATA)

LIBRARIES LOAL DATA (EINAA

USERLOC~. , REPRESENTATIVEDAA OF SINGLEUSER LOCAL DATA

DISCIPLINE/USER

Figure 4-7. DesignData Production Process

The figure represents the inherent procedure (involving both man-man and man
machine communications) but does not illustrate the actual steps an individual user
may go through. For example, he might already know that the data he requires is not
and will not be part of the MDB and he can jump directly to the operation of providing
it from his own local data base or those of other users.

What data is or is not to be part of the MDB and the procedure for updating it are
unique to-a project. It is the responsibility of the user and his supervision to insure
that data generated by an individual user which is decreed by the project to be des
fined for the MDB does indeed end up in the MDB. The Data Bank Administrator
(DBA) can only report, at any one time, what exists within the MDB and any possible
updates that have not been incorporated.

4. 1. 3. 2 MDB Update File (1DBU): The MDBU contains the design data that is a
candidate for incorporation into the MDB. The geneial form of the MDBU is a pre
sentation file which is depicted in Figure 4-8'. The specific typical form is shown in

80

,DATATFILE

-TCSC SUSFILE
T

D I S P UAFIATA

DENDATA

RFRE9D D~ UdteFl

UTILIY DAA IDNTIT

Figure 4-9. This form of the file permits the DBA to use the TCS (QPS) and utilities
sections, generated by the creator of a subfile entry, to review the data before in
corporating or rejecting the data.

4.1.3.3 Project Review File (PRF): The PRF contains data that is to be presented
to the ERB for review or for presentation or ieport generation. It also has the form

of a presentation file as shown in Figure 4-8. The specific typicalform is shown in

Figure 4-10. This arrangement permits the data to be presented as controlled by the

TCSs (QPSs) and utilities generated by the creator of the file.

fPROJECT REVIEW FILE

PRIVACY DATA

DESIGN DATA

REVIEW SUBFILE

DESIGN DATA DESIGN DATA

REVIEW SURFILE REVIEW SUBFILES

ETTIDENTITY..

TCS SUBFILE

DESIGN DATA

SUBFILE

Figure 4-10. Project Review File, A Data Presentation File

4.1.3.4z Task Status/Action file (TSA): The Task Status/Action file (Figure 4-11) con

sists of a special collection of data files to facilitate the communication- f-ction re

quirements between members of a project. These are the primary data bases used to
maintain communications and control among various project m6mbers.

Five distinct types of users of these files are identifiable:

1. 	 Engineering Review Board (EhB) - the ERB has the overall responsibility for
design evaluation and direction of the design project.

82

http:4.1.3.4z

I~I

......... 	 I E

P C- r-E 	 t

II I 	 ' I

D1 	 1 I .. P.. CG

UME LITERWE PROJECTLSIV~ya - - - - - - - -

: C '
i SCIPLRELIBR RYEIiER ILYCIALI PILES J COMMAUESILES& O fIVA VRS 	 J

Figure 4-11. Data Base Organization, Communications Files

2. 	 Engineering Review Board Coordinator (ERBC) - The ERBC has the responsi
bility for translating the requests of the ERBintothe individual actions required
on the part of members of the project and the responsibility for evaluating the
material to be presented to the ERB.

3. 	 Data Bank Administrator (DBA) - The DBA has the responsibility for main
taining the currency and accuracy of the MDB.

4. 	 Disciplinary Users - The disciplinary users have the responsibility for carry
ing out the design process within their disciplines as designated by the ERB.
The users also have the responsibility of preparing and reporting the results of

their activity.

5. 	 Disciplinary Supervisor - The Disciplinary Supervisor has responsibility for
coordinating and monitoring the work within his discipline.

Three distinct types of status/action files are identifiable:

1. 	 ERB Status/Action -R epository of actions required by or status of the ERB and

results for ERB review.

83

2. DBA Status/Action - Basically a record of requests for update-of -the.MDB and
record of action taken by the DBA on requests.

3. 	 Task Status Action - Directives to and status of various disciplinary users
concerning action required on their part. Both the discipline andthe individual
users have status associated with them.

In general, entries into the various action files are maintained as project history.'
Some of this information can be seetively deleted by users.

Various types of IPAD users within a project can communicate via the Task Status/
Action files for various purposes. Figure 4-12 shows the typical conditions for com
munication. The communications required to direct the top level assignment of the
design activity are carried out between the ERBC and the individual disciplinary, groups.
Messages are exchanged interms of actions required (assignments made),and re
sponses to the requested activity.

The communications between a DG and its individual engineering users assigned to
carry ouf the details of the design consist in general of simple messages delineating
the tasks and responses specifying the status of the task. The engineering user who
actually produces the design data reports the existence and location of the data for
review and incorporation into the MDB via the Task Status/Action fils to the ERBC
and DBA. Additional types of messages, such as request for location of particular
design data or a request to report on activities can be communicated via the files.

All TSAs have the same general data base storage requirements; Figure 4-13 shows
the general arrangement. Each set of messages associated with the particular user
are grouped together with sufficient information to identify completely the significance
of the messages both for the user and their relationships to other users on the project.

Each TSA has its own privacy data to coftrol operations on it. Each message has
several parts associated with it for convenience of the user, such as message ED and
sender/receiver identities. Access statistics are provided for each message to in
dicate whether the owner of the file has hadthe message displayed for himself (to
make him aware of requirements).

The history portion permits the owner to maintain a past record of activities-fbr
his area.- ,

Data file references are provided so that a user, where necessary, may know what
designation he will have to use in order to obtain the data referenced by the messages.

84

/ TASK STATUS['

ERBC DIRECTIVE
DGACTINEB DBA RESPONSE

RESPONSE - ACTION REQUEST

DDISCIPLINARY D R DBA STATUS!

PGROUP'TASK STATUS/ DBA RESPONSREEQUEI. :ATO.IE,

AION FIEa R t s

USER] - DG

RESPOSE REUEST
 US ER REFERENCE TO

PROJECT REVIEW DATA

USER TASK- U REF.ISERTO UPDATE EATA
STATUSIACTITONFILE II RNRCTON

USER REQUEST

ACTIOIDACTION•Figure 4-12. Communications File, General R~elationships

D ESG MESAGIESG EN CSS

PRIVACY DATA

Figure 4-18. Communications File, General Form

85

Figures 4-14 and 4-15 show how the general organizatfon-is interpretedfor typical

DBA and ERBC operation, respectivelf. The data,file references, for example, in the
DBAs TSA permit him to locate- nd review particular data within the MDB Update
File that is a candidate for incorporation in the MDB.

Figures 4-16, 4-17, and 4-18 show, 	 for thethree major types of TSAs. what a dis-

In each message complete information is display of a message file might look like.
played-o permit further action if required.

As an example, in the ERB's TSA (Figure 4-16) message reference number 01 in

forms the EBB that the aerodynamics group has produced the requested study

recommendations associated with wing size. The actual data for review and incor
poration in the MDB is located at an entry within the Project Review file which is
identified by the name WING SIZE. The access status field shows that the ERBC
has not yet viewed the message.

4.1.4 Disciplinary-level data bases, a functional description. -Below the level of

project data base management the usage of the system becomes more variable. The
level of organization is within the functional or disciplinary groups. The functional
groups themselves establish all additional data requirements and procedures for
their discipline. In general, the functional groupsI individual requirements are
classifiable into two categories (Figure 4-19).

1. 	 Disciplinary Level - This level of information is common to all users within
a functional group and is, so to speak, the property of that group. The con
trols and usage of the information is determined by that group.

2. 	 Individual User Level - This level is provided for individual users for their
own files and programs. The usage and controls belong exclusively to the
user as long as he is interfacing properly with the project.

4.1.4. 1 Disciplinary Library File (DLF): A Disciplinary Library File is con
cerned with operational support requirements to a single discipline within an 1PAD
project. The DLF is constructed during the course of operations within the discipline.
Data within the DJLF is available to all members within the discipline and the DBA
constructs the appropriate data structures to permit the basic types of data to be
accessed through direct reference by the user.

Although the system provides no utilities to construct cross-referencing linkages

between the DLFs, data within the DLF can be made available to other disciplines/
users. This can be accomplished by transmitting to the interested user, verbally or
via the Task Status/Action file, the identity of the DLF and the desired data. The

86

DRA STATUS!

RR IVACY DATA

MESSAGES SUEFILE'

HISTORY SUBFILE

HI STRY UPDATE ACTIONOF
CORRSPONING REQUESTS

Figur 414. DASau/cinFl

DATAPRV C

RECORERENCTIO

ACIO

ACCIMPLYSHETDf~

MESSAG MESSAESAE SUBEN! ACS

PROJECT REVIEW
FILE 2REFERENCES

Figure 4-15. ERB/ERBC Status/Action File

87

'PROJECT

MESS.

REE
MESS.
ORIGIN

MESSAGE
DESTINATION MESSAGE

REVIEW FILE-,
REFERENCES

ACCESS
STATUS

01 AERO ERB RESULTS OF WING SIZING WING SIZE 0
STUDY WITH RECOMMENDA-
TIONS

02 ERB STRUCT LAND ING GEAR STRUT LG LOAD 1
LOADING PROBLEM.
URGENT

03 AERO ERB 'RESULTS OF CANARD CANARD 0
LOCATION SUB-
OPTIMIZATION

04 COST ERB PROGRAM COST PROJECTION 1
5%OVERRUN

05 ERB PERF CR[TICAL PATH ANALYSIS:
10 PROBLEMS, -4WEEKS,
SLACK, URGENT

I

06 PERT ERB MANPOWER LOADING 0
ANALYSIS: 7 SKILL, 11 LEVEL
PROBLEMS

07 . RAT ERB RISK ASSESSMENT;4
CRITICALAREAS, DECISION 0
URGENT

08 SHELLY ERB NEW IDEA USE OF ALLOY
7"18 TO RELIEVE NOSE GORE

0

TEMPERATURE PROBLEM

09 TAT ERB THREAT ASSES SMENT:(CLASS.
IFIEDTITLE)I NAB ILITYTOMEET

0

10 SMITH ERB MESSAGE: WILL BEOUTOF
TOWN CAN'T MAKE TUESDA 0
SESSION

11 PERF ERB REQUEST NEED DATE
SLIPPAGE' CRUISE I
PERFORMANCE TO 4:18:77

Figure 4-16. ERBts TSA, Typical Display

user can then direct the IPAD system to access the appropriate DLF. He can then
execute (or set up for execution) the TCSs (QPSs) required to extract the information
required. The same procedures apply if the DLF is of value to users working on
other projects within IPAD. -

Figure 4-20 shows typical contents of a DLF. Since a DLF is normally restricted to
a limited set of users, it is not necessary to make permanent residency assignments
for it within a host computer system such as is necessaTy for central project data
bases like the MDB. In the actual operation with a DLF, depending on magnitude of the

88

MESS. MESS. MESSAGE
REF, 'ORIGIN DESTINATION

17 MASS. DBA
PROP.

18 FLT. CONT. DBA

19 PROP. DBA

20 AERO DBA

21 DBA PERF.

Figur&-4-17.

MESS. MESS. MESSAGE

REF. ORIGIN DESTINATION

01 DBA PERF

02 PERF ERB

03 ERB PERF

"_

04 PERF ERB

05 RAT PERF

06 MIKE AL
,

Figure 4-18.

MESSAGE

WING WEIGHTS RESULTING

FROM SIZING STUDY

03111/77 - 181

ERROR CORRECTION. HINGE

LIMIT LOADS FOR CANARD

WEIGHTS UPDATE- PROPULSION
GROUP 04/03/77, URGENT

AERODYNAMIC TRIM DATA
FOR SUBMODEL 3-311

PERFORMANCE UPDATE: DASH
03129177 ** * REJECTED ON
CREDIBILITY*** ACTION
REQUI RED

DBA IsTSA, Typical Display

MESSAGE

I

MDB

REQUEST ACCESS

REF. STATUS

WING SIZE
 0

3

0

TRIM 3-311 2

DASH 1

ACCESS

STATUS

DASH- UPDATE COMPLETE& SUBMITTED
03/29/77 * * *,REJECTED ON CREDIBILITY
* * * ACTION BY 04/05177

0

LOITER: UPDATE INWORK, EXPECTED
COMPLETION 04/07177 * ** NEED DATE
SLIP * *"NEW NEED DATE 04118/77
15:30:00

0

REQUEST: EFFECT OF WI NG SIZI NG STUDY
ON DASH PERFORMANCE - USE UPDATE
IDENTWINGSIZE WHEN AVAILABLE. NEED
DATE 04/15/77 - 15:30:00

1

CRUISE. IN HOLD AWAITING PROPULSION
GROUP WEIGHTS UPDATE

0

REQUEST: PROVIDE SENSITIVITY DATA ON
EFFECT OF PROPULSION VARIABLE STRINGON DASH PERFORMANCE NEED SUGGESTED

0

COMPLETION DATE

MESSAGE: HAVE GONE TO DENTIST.
BACK AT 4

BE •0

Performance's TSA, Typical Display

89

r-I--- - - -- ----- - -- - - -i--

r II

FILEI PRECTORYOEDIAT

IC EC TA ES GSP C A PROJE
TASK TALK D S G RE E E C P E EN A I

MEN DA A F L
ArO ETA1S~TOET~JSAZIO DAT FI FIEAT N UT IL E

I L59"~5FLES&EESIVTLVE

Figure 4-20. Disciplinary Library File (DLF)

90

groups' activities, portions of the file may all reside within the IPAD system and be
directly referenceable.

Micro and Macro Menus are constructed exclusively by and for the convenience
of the disciplinary group. The Macro Menu identifies to the user the portion of the
aircraft design to which the OMs within his discipline will apply. The user employs
the Macro Menu to localize the field of search to a small group of OMs. The result
of selection within a Macro Menu may lead to other Macro Menus. At some level m
the access process, the user will make a selection from a list (the Micro Menu) that
directly references a particular OM.

Figure 4-21 shows a Macro Menu as it might appear in an interactive mode and its
relation in usage to the Status/Action data and the resultant Micro Menu based on a
selection from the Macro Menu. At the lower right is the corresponding OM's re
quired input categories based on a selection from the Micro Menu. The structure
and contents of the various menus are constructed by the disciplinary group.

The Operational Modules (OMs) within the DLFs are OMs that have been linked
to the particular project's discipline. Other general purpose OMs will exist in the
system (within the IPAD utility library) that are accessible by any user of IPAD
(e.g. NASTRAN). The OMs within the DLFs have several parts:

1. 	 Input Definition (DE F) files - These are the information provided to users
representing the input required for OM operation which the user must supply.

2. 	 Output Definition (ODE F) files - These are the information provided to the
users as to the output of the OM during execution.

3. 	 OM file - The executable OM code.

Figure 4-22 shows the data relationships between data bases within the IPAD project
and the execution of an OM. The user obtains the input from a number of sources
both within his group and from other project sources. The disposition of the data
likewise will go to various destinations.

Figure 4-23 portrays the overall relationships with the project data bases of Macro/

Micro Menus and the corresponding OMs.

4. [.4.2 User Files (UF): The User File (UF) is exclusively associated with an in
dividual user and is the repository of information exclusively under his control. The
contents -and management of the UF are his responsibility (some project or system
level controls are however provided). The utilities provided by IPAD permit him

91

C OINDESFINIT .OSTUDYEL

FUELGSUY

RIBS DEIN MTIPL STATION

*WIGAWES. FTE ELM.N

ELGETB

LOAIL

PAATER K

LOO-U2TAN

SAFETYANK

S

S

BAULED ATYIGU ANISLEG DA R

PL ATE IA ELC TIND
EAsHRS)S R

DOMES V SYNTHESIS
RINGS 1ST LEVEL 	 MATL PROP. CREEP DATA

. TEMPERATURES

BEAMS V 2ND LEVEL CONSTRAINTS OPTIONSPANELS 3RD LEVEL
* TCSXXX

Figure 4-21. 	 Sequence of Interactive Operation Illustrating Menu Usage,

Structures Discipline

to keep track of the data and dispose of it as he chooses. In short, the UF is treated
no differently than I/O files within the host computer's operating system.

Figure 4-24 shows typical contents of a UF. The user, in constructing such a file

92

OWN

DISCIPLINE

INPUT
USEUSER FILE

AND/OR

EVALUATION
TOTAL INPUT EXECUTION COMPLETE OF DATA
REQUIRED FOR OF OM USER DATA BY OTHER

DISCIPLINARY OM PARAMETRIC USERS

RESULTS, ETC.

DATA REDUTC N
MULTIDISCIPLINARY AND

DATA BANK SELECTION
DATA BANK

U PSLLECTED

OF OTHERR DATA

DISCIPLINESDATA I D PACKAGE
DATA LOG

Figure 4-22. Selection of Data for Updating the MDB

MCRO MENU
FILE

ffiENTITY

PRIVACY

MACRO MENU

MACRO MENU

LMACRO MENU

,,ICRO MEN MA ODFE

Figure 4-23. OM Files, A General Arrangement

93

USER FILE

PRIVACY DATA

FILE DIRECTORY

SUBF ILS

INPUT DESIGN 	 OUTPUT DESIGN INCOMPLETE

DATA FLE (FROM FILESDATA FILE (FORSUBFILE 	 OMSIUTIES(OMSIUTILITIES)

Figure 4-24. User File, General Arrangement

may name the various subfiles within it and provide himself with a more direct access

capability to the information. In using this file, the user can employ if he chooses the
various data base management functions that are used on the higher leve]s.

4.1.5 Command files, a functional description. -Command files (Figure 4-25) are, in

general, file types used to store TCSs (QPSs) or their derivatives. Their basic func
tion is for user support with prefabricated strings of operations that can be executed
with a single command.

4.1.5.1 TCS/TCSS (QPS/QPSS) files: A commands file and its data arrangement is
depicted in Figure 4-26. Although describable as a file it can be made a subfile to

other files such as a DLF or UF or be rpresented as separate files for various pur
poses. Its components are depicted in the figure. Basically they consist of the in
dividual commands (atomic level) and the data bases against which the commands are

to be applied. Additionally, the data bases for operation can be of specified types
with the actual data base substituted at time of usage. In general TCSs command
general utilities of IPAD and the code is known for the TCS. In instances where
special utilities are used, such as for a particular disciplinary group, provision is
made for inclusion of corresponding utility code. To assist the users of a TCS/TCSS
file, provision is likewise made for textual description of function and instructions for

94

rIOEC I-E-ER

EEr

- - --

II

I I

I

I

I

Figure 4-25. Data Base Organization,
Files (and Derivatives)

Commands

TXTIDENTIFIER

TEXTDEECRIDRITIO

Figue 426.TCS/TS ieGnrlFr

SDATA BASE B UTLE5OMNAME (P01 NTER SUBSTITUTAIRED
ITOANY DESIRED DATABAMSEO

SDATA BASE) UTLTO)

Figure 4-26. TCS/TCSS Fies, General Form

95

using the TCS.

The QPS/QPSS files have the general requirements of the TCS/TCSS files. They
however are recorded or prefabricated QP sessions and utilize the QP directives
rather than the [PAD developed T CS. Further, they'have no requirements for cor
responding utility code since all directives of QP are satisfied by QP itself.

General QPS/QPSS can be constructed by various users, in particular the DBA, and
transferred and modified into various files (DLFs and UFs) for specific purposes to
satisfy the spectrum of usage.

4. 1.5.2 User's Task Trajectory (UTT): Each user task as represented by a UF has
automatically associated with it an LPAD task trajectory data set. This data set is
automatically updated by the IPAD executive function. Its purpose is to permit the
interrogation of the data set,by'responsible personnel who may wish to:

1. 	 Monitor the user's activity todetermine whether the task is being accom

plished in the prescribed manner (roper data inputs are bein-gu ed, appro
priate design data being designated for incorporation in OM, compater time

being used to accomplish task, etc.).

2. 	 Duplicate a procedure of design development.

3. 	 Determine what is required to do a job on the basis of actual operation.

The individual user has no authority to modify or delete items within the task trajec
tory. This is done only in response to authorized personnel action (an action which is
itself recorded). The task trajectory also supports the user's request for current job
status n the course of his job (a recovery consideration). Figure 4-27 shows the typical
UTT file structure for a project. The individual UTTs are established by the DBA to
exist concurrently with a UF.

4.1.6 Remaining project data bases. - Within IPAD the DBA can assemble other

types of filesfor the convenience of the project. These choices of groupings are

largely dependent on project requirements. Some of these types are as indicated in

previous sections and could be made into subfiles of others (basically DLFs and UFs).

Figure 4-28 shows some of the types of files that can be generated for a project.

1. 	 Project Common Utilities - always accessible for project users.

2. 	 Common OM files - contains OMs applicable to many users, their access via

the DLFs is achieved through references in the DL4F' s Macro/Micro menus.

96

-- - - - - ---------- --------

COLLECTI ON

IDENTI TYUTTS

PRIVACY

RECORD
CONDITIONS

ACTIVITIES RETENTIONTT

EOD
*FOR EXAMPLE:

eDATA VERSION USED- E IE

"0Ms 'USED ,,... _

*UTILITIES USED y

*TCS (TCSS) USED- ONE UUT PER USER TASK

Figure 4-27. User Task Trajectory (UTT) File Structure

ASAOJECT~
PISA..PD

T

I

I /AE IIEI &0AA''I I AIO IE UPDUIAITE)IIT IMUMi I

I I FILE....L
PROJECT I

-- -I-------------- ---------- I
SI I I

O1 USER OJCLLF USER
FILE FILE NTA

M IL & D I VAT I V
LDUSILI.NIERLARUSR I J E ES JI S

L EV ECIALIFILES

Figure 4-28. Executable Code Files

97

3. 	 DBA and Project Management Utilities - constructed out of combinations of
TCSs and utilities forthe convenience of the DBA and project management.

The general forms of some of these file types have been previously described (e.g.

OMs and TCSs).

Figure 4-29 shows the general form of the utilities when treated as a separate file.

Other types of files are possible, and are dependent bn the particular implementation

of IPAD.

FILE

UTILITY

SOURCE .UUILITY AITEA

PPRIVS

Figure 4-29. Utility Fie, General eon

4.1.7 IPAJ) support system data bases. -In operation, an IPAI) facility must support

several projects. IPAD users associatedwith a single project are operationally un

aware that any other projects reside within the IPAD data%bases.

The project data bases are isolated and prtected from one another. There is no

internal mechanism for referencing and accessing the contents of one project's data

bases within the data bases of another project, If a user within one project wishes to
the user must employuse 	information that has been developed within another project,

98

a procedure that involves the. copying of the information from the data bases of the
one project and then updating his project's data bases. The restriction is adopted be
cause attempts to link together project data bases can lead to undesirable constraints
on various project's DBAs in the organization of their projects for their exclusive
project needs.

There is, however, a requirement for information that is useful to all projects
within an IPAD facility. These data bases are designed, built, and maintained as
part of the IPAD support system so that they can be referenced and directly accessed
by a user in conjunction with his own project's data bases. For the users of IPAD,
the builders and maintainers of IPAD provide the following types of libraries directly
accessible by the various users.

4.1.7. 1 IPAD general utility library: The Utility Library is the repository of data
and software that are required in general to support any user of IPAD. Characteris
tics of any utility within the library are:

1. Executable only at the user's command.

2. Referenceable by a TCS.

3. General purpose and not directly dependent on any project design data.

'The generar structure of the library was shown in Figure 4-29.

4.1.7.2 IPAD general OM library: The OM Library contains OMs for common usage
of IPAD projects (such as NASTRAN). Its general structure was shown as an OM
file in Figure 4-23; it is bound to various projects by their DBAs via Macro/Micro
menus.

4.2 IPAD Data Base and Data Base Management

After the general requirements of the IPAD data bases had been specified and
further detailed, they were reviewed for implementation on existing facilities Inves
tigation of CODASYL'S Data Base. Task Group proposal, suggesting an implementation
of a Data Base Management System (DBMS) and a Query Processor (QP) - to provide
the users interactive interface to DBMS - showed that such a system, in general, sat
isfied all IPAD data base and data base management requirements. The remainder of
the analyses of IPAD's data bases involved translating these requirements into opera
tions performed within QP/DBMS.

Usage of the IPAD data bases for OM execution - i. e. , a typical user's task - is
discussed later in this volume in Section 1 of Part III. This section presents the IPAD

99

data bases in terms of their overall organization and usage via:

1. 	 The Data Description Language (DDL) which provides the user of IPAD with
a direct means of specifying his desired data base structure without requiring
any additional coding or tailoring of the IPAD system for his particular usage.

2. 	 The Data Base Management System (DBMS)- provides the necessary code
to support the DDL specifications and to perform the user's desired data base
operations.

3. 	 The user's direct interface with DBMS which is via a Query Processor (QP)
that permits him to issue a sequence of commands to perform the desired
data base operations.

These host operating system facilities were discussed in detail in Section 3.

Although the overview is presented in this section, the requirements details for
each data base type and how these are satisfied by the appropriate combination of
DDL, DBMS, and QP is presented in Appendix F. Specifications within AppendixF
are expressed in terms of QP/DBMS/DDL. Although there are alternative methods
of implementing a data base procedure using QP with DBMS, or DBMS alone, the
specifications are limited to QP rather than proposing additional utilities in place of
existing facilities, The actual specifications (Appendix F) are intended' to present
the overall structure and usage of QP, DDL, and DBMS as applied to IPAD. A Data
Base Administrator (DBA) who follows these specifications will be able to satisfy his
requirements for data base management within IPAD. However, since the system
has sufficient generality and capability, the DBA is free to exercise considerable
judgement and variance in usage of the specifications. To a user, there ate three
major components which he designs and utilizes:

1. 	Query Processor Session (QPS) - This is a sequence of QP directives designed
to accomplish a designated data base activity.

2. 	 SCHEMA - This is a DDL description of the total data base which the user is
addressing.

3. 	 SUBSCHEMA - This is a DDL description that interfaces with QP and defines
and limits a particular QPS and the user to the immediate portion of the
data base of concern for data base processing.

The operational relationship among these components are as follows:

1. 	 The SCHEMA is designed first to describe the total residency requirements of
a particular data base (e.g., IPAD aircraft project(s), JPAD Support System).

100

2. 	 Data base operations required are designed as QPSs. To isolate the total
data base only to that portion needed for the QPS, the SUBSCHEMA is designed
for the QPS. A single SUBSCHEMA may suffice for several QPSs.

The remainder of this section is organized to present:

1. 	An overview of total organization of WAD data bases and data base management
1n terms of DDL and QP/DBMS operations (Subsection 4.2.1).

2. 	 A discussion of usages of QP and IPAD data bases as a user would operate
with them (Subsection 4.2.2),

3. 	 An illustration of representative data base operations via QP/DBMS

(Subsection 4.2.3). 1,

4.2.1 Data orgamzation and management via DDL/DBMS/QP. - The facilities of DDL
permit a direct translation of IPAD data bases as required by IPAD operational

philosophy into the appropriate DDL specifications.

Figure 4-30 illustrates a typical total organization of an IPAD project data base via
DDL depicting the more significant aspects of a Project SCHEMA. AREAs within the
SCHEMA DDL are used to specify logical collections of data to be managed as distinc
tive files. RECORD entries within AREAs are-used to describe the actual structure
of data within the data bases. Data subentries, are used to further detail the structure
of data within a RECORD. SET entries are used to describe relationships among vari
ous RECORDs within the data base. The RECORDs comprising a SET may reside in

-various AREAs. The major subdivisions (AREAs and-groups of AREAs) of IPAD are
charted in the figure with thei corresponding DDL assignments.

The expansion of the User File (UF) AREA(s) and Project Common Data AREA(s)
are not shown in the figure. The expansion of the Disciplinary Library File (DLF)
AREA(s) as shown on the figure also typifies the possibilities for expansion of the UF
and Project Common Data.

Figure 4-31 illustrates a more detailed structuring of design data records in DDL
terms. The DATA subentry specification of a RECORD is used to subdivide the
design data structure into the appropriate category and subcategory subdivisions.
The DATA subentries are utilized to detail the identity of design data and its relation
ship with a design data RECORD down to any level required by the DBA. The figure
is 	restricted to one level of subdivision. Further levels of subdivision are achieved
by 	repeating the category structure for each subcategory so desired.

101

REVIEW TROSKCMUTIISIPIR-MULTIVISCIPLIN-
ARE DATA BANK FTTS/I CONMO DATA
ARTDAA DNKUPDATE SILE FILE(PRDO

EODEfR IEODElLlRECORDItRT REODINSET ENTRY SET EERIER

MID UPDATE PE IU R/EC AK DA TASK TASKA TS *** UE/CTS

AREA

U45ERTASK
ARE AiATPA ECTORY

APEA ATA ARMFILE EUTTS

DICPIAYDISCIPINARY USERFILE 0
FILELIERAPEY * LIBRARY FILLEN

LO)U L)RECORD
ENTRY RCORD tERR

USER TASKUSER T ASK
UETAKTRAIECTORY "

TO ACSS ENIOR MENU DEION DA TA' IIE

MODUERGA) PAD DATA DASE TYPICAL ANIANGEHIENTIN TESDIS OF DDL

Figure 4-30. IPAD Data Bases, Typical Arrangement in Terms of DDL

RECORD ENTRY

DESIGN DATA

DATA SUBENTRY

CATEGORY

I

DATA SUBENTRY DATA SUBENTRY DATA SUBENTYDT SUBENTRY
DESIGN DATA DIINDT

SUBCATEGORY ASSOCIATED WITH SUBCATEGORY ASSOCIATED WITH
SUBCATEGORY SVBCATEGORY

Figure 4-31. Design Data: DDL Expansion

Figure 4-32 shows the expansion of PRF/MDBU entires0 The SET entry DDL specil
cation is used since the structure of these files draw upon data sources from many
files for their functions. The OWNER RECORD identifies the SET for operation.
The MEMBER RECORDs illustrate the types of data that are brought together under
the SET designation for the usage of the file.

SET ENTRY

PRF (MDBU)
ENTRY

RECORD ENTRY RECORD ENTRY RECORD ENTRY RECORD ENTRY
OWNER - MEMBER MEMBER MEMBER

ENTRY IDENTIFIER TCS UTILITIES DATA

Figure 4-32. PBF (MDBJ) Entry: DDL Expansion

Figure 4-33 shows the data base's in relation to the data base management functions
Direct data ba-se operations of IPAD (as opposed to those performed in the operation
of OMs, utilities, and the IPAD EXEC) are described in terms of a sequence of QP
directives also designated as Query Processor Session (QPS). These directives are
input to the Query Processor (QP) which communicates with the DBMS. The DBMS
performs the required operations on the IPAD data bases described according to QP
specified SCHEMA, SUBSCHEMA and QP directives.

103

MDII MDBTJ

QUERY PROCESSOR
SESSION (QPS)

-

P

SHM
SUB-
SCHEMA

DIRECTIV

lifTTSA MMOSYSTEM

DATA FILE

USER SPECIIED FILES

(RESULTS, REPORTS, ERRORS)

Figure 4-33. WPAD Data Bases Illustrating Typical QP Procedures

At the right side of the figure are the IPAD data bases represented as files
but described as AREAs Within a Project SCHEMA. The upper group of files are
those that a user can always expect to be available for processing. The lower group
are files the user must specify for his particular application or session.

QP communicates with the user via terminal display or printout.

4.2.2 Representative data base user, operations., - Figure 4-34 traces through a typical
sequence of activities illustrating user/data bas6 interface:

1. Assignment of an area of responsibility pertinent to the design problem.

2. Performance of assigned tasks.

3. Preparation of task results for evaluation and-review.

4. Incorporation of results into the total design data.

5. " Parallel presentation of design data for further analyses.

OF DESIGN OF DESIGN EVALUATION OF DESIGN
ACTIVTY ACTIVITY AND REVIEW INTO THE MDB

OF DESIGN

DATA

Figure 4-34. Design Data Production Cycle

105

4.2.2.1 Assignment of design activity (Figure 4-35): This involves a hierarchy of
m,-ef-Isges in TSAs corresponding to the chain of command for project. The message
requirements are specified to the software in an object SUBSCHEMA. The source
SUBSCHEMAs also serve as tutorial aids whereby users can determine the require
ments. This dual role of the SUBSCHEMA is common to all operations, consequently
will not be pointed out in subsequent discussions.

The ERBC assigns an area of design activity to a particular Disciplinary Group
(DG). He does this via a QPS that permits him to enter the specific assignment into
the TSA of that DG.

The DG supervisor executes a QPS which interrogates his TSA to determine
whether any activity has been assigned since his latest interrogation. When he en
counters a message specifying an assignment, he decides individual task assignments
and distributes messages to the TSA for individual Disciplinary Engineers (DEs).

Each DE executes a QPS which interrogates his own TSA in order to receive
his assignment.

4.2.2.2 Performance of assigned tasks (Figure 4-36): For each task, a user configures
a software entity (see Section 1 of Part III for an example) including OMs/GPUs to pro
vide the required capability and a UF appropriate to the I/O requirements of the OMs/
GPUs. The user and the DBA interact via their TSAs to interface this entity with the
total IPAD system. The user, via QP, initializes the UF from the approved design
data, then controls the operation of the OMs/GPUs which access the UF.

During the course of his operations, the steps he performs are automatically
summarized and placed on the UTT file. The DG supervisor can employ a QPS that
permits him to display the contents of the UTT to evaluate the progress and method
ology of any user. The user himself may also refer to his individual UTT to review
his subtask status.

4.2.2.3 Preparation of design data for evaluation and review (Figure 4-37): When the
user completes his assigned design task he will submit his results for evaluation
and review, and subsequent inforporation into the MDB. He utilizes a QPS to bring
together the necessary design data and processing commands to generate an entry
for the MDBU. Correspondingly he uses a QPS to make entries into the DBA's TSA
to notify the DBA of the existence of the new entry in the MDBU.

106

i f------- -
ENTER MESSAGE
INTO IPn FORH-
DG TO PERFORM S

ERC - THE DESIGlN -- -- -- - - -F SUBSOHEMA
° ACTIVITY . II1

TSA,j

TASK STATUS/ MESSAGE

SUPERVIOR ACTION FILDSL
USER

I RECORDS
ACTIONI*--NTER MESSAGEINTERROGATE

FOR DIRECTIONS ---------
TO USER TO

ACFILEOT ION DISLEEOPERFORM DETAIL
OF DESIGN

Figure 4-35. Assignment of Design Activity via QP

, ,[E G EE F UT -OuTT "

-L gPBSCHEMA

I I

I

'I

-

I

I DFF

TO DESIGN

RELATED

Figure 4-36. Performance of the Design Activity

PREPARE

INCORPORATION
INTO THE MDB

- -- - -

~D!

- --

SUBSCHEMA SIJESOHEMA

urUPDATE

SUBSOHEMA

XMBj

FILEUP E

MDB

SBCEA SUSOEM PRF -

STATUS TO DG7

PRESENTATION

MAERA

NOTIFY flEA

SUPEVIS

EREC

Jj

ORD
TSA

SUB3SCHEMA£

ORTSA

rF

DG

ERB/ERBC

REOD

REOS

Figure 4-37. Preparation of Design Data for Evaluation and Review

C

Likewise, if required, he utilizes a QPS to assemble together an entry for the PRF
to submit for presentation to the EIIB/ERBC. Correspondingly, he uses a QPS to
notify the ERBC of the existence of the new entry in the PRF. He also uses the QPS
to report his status to the DG supervisor via an entry into the DG's TSA.

At this point, the various messages and data now exist within the data bases for
the remainder of the project to use them.

4.2.2.4 Incorporation of design data into the MDB (Figure 4-38): The DBA can now
find during the interrogation of his TSA (via a QPS) that the user has produced a
candidate set of design data for incorporation into the MDB. He then employs a QPS
to locate and display the design data (in the MDBU) via operations provided by the
user within the MDBU. If the design data passes review for incorporation into the
MDB, he then invokes another QPS that permits him to make the design data portion
of the MDBU part of the MDB.

4.2.2.5 Presentation of design data (Figure 4-39): The ERBC can also determine,
during the course of interrogating his TSA (via a QPS), that design data (corresponding
to an original assignment) now exists within the PEF in a presentation form. The ERBC
then employs a QPS that makes use of the user-provided commands to display this
data. Upon approval of the presentation, the ERBC schedules the presentation for
review by the entire ERB.

DBA

DBA~

UPDATE

UPDATDAT

CANDMDBTE

DESIGN
MD1

FI

SUBMECHEMA

Figure 4-38. Incorporation of Design Data into the MDB

110

ER3/RB

NTROATO S

OFER/E"3

FigureB 4-39 Prsetaio ofDeigDt

4.2. 3 Representative data base operations via QP/DBMS. - In the prior discussion,
the user accomplishes his task by specifying and invoking a QPS for the task. The QPS
itself is actually a sequence of QP directives that interact with QP and DBMS. The
user's operations therefore have to be translated into the appropriate system oper
ations. The unique processes involved in the user's operations are therefore presented
in system terms to show the relationships between the user operation and system
support.

The subsections below present the details of the QPSS, covered in the previous
figures, in terms of their individual QP components and the DBMS support.

4.2.3.1 Message entrance (Figure 4-40): In all operations with the QP, the first step
involves the specification (by a QP directive) of the particular AREA(s), SCHEMA,
and SUBSCHEMA(s) with which the QPS will operate. In all cases the SCHEMA used
is the Project SCHEMA. Each QP/DBMS operation has the Project SCHEMA and the
required SUBSCHE IAfor operation.

The 	QPS steps for this operation are:

1. 	 Specification of the TSA as the subject of operation. - This directive
results in the opening of the TSA AREA for operation and the attachment
of the Project SCHEMA and TSA SUBSCHEMA to the QP/DBMS.

2. 	 Request that QP prepare an occurrence for a message RECORD.
QP/DBMS uses the DDL specifications to prepare a RECORD occurtence
(a template).

3. 	 Create message. - QP using the SUJBSCHEMA'foimats the information
supplied by the user as the RECORD description requires.

4. 	 When the user ends the operation, DBMS attaches the information to
the TSA.

4.2.3.2 Interrogation of a TSA (Figure 4-41): This sequene of QP directives will

search a specified TSA and display RECORDs appropriate to a particular user.

1. 	 Again a QP directive sets up the appropriate facilities for operation;

2. 	 A QP directive is used to specify the RECORD selection conditions
for the TSA (e.g., user identification).

3. 	 When a QP display directive is given, the QP/DBMS begins to access
the proper TSA. For each RECORD occurrence:

a. 	 Conditions for selection are checked.

b. 	 If the condition is not met, the next RECORD occurrence is processed.

112

ECIFY TSA IEXTRACT OPENI

AREA AND USER'S SUR8CHEMA OPEN F
TSA RECORD PER USER'S AREA FOR --
SUBSCHEMA DIECTION TSAs

DIUSERRECORD

PROJECT

RECORD] STRUCTURE 4--

r FOR TSASA AREA

NEW MESSAGE
ENTRY

III

RATE USER DATA
CREATE INCORPORATIONMESSAGE VALUES INTO

STRUCTURE

END MESSAGE UDT

GENERATION TSA

SESSION FILE

Figure 4-40. Message Entrance, Details of

HP

AND 	 PREA
EXTRACT

SECIFIC TA SUBSCHEMA OPEN TSA

SLDSCHEMA DIRECTION SHM
SUB3SCHEMA

USoERl TSA 	 PROJECTTSAASPECIF

SETUP CONDITIONS R E O _R ____ 	 S
D A TA_______NGronA-RDSIFI...CO TOI CO C -ESS .LE 	 --

TEA OFIAN ENRE, , I - . JCHANGE

CURRENCES REOD -/STATISTICS
[ASSOCIATED W1T, 	 OCCURRENCE --- TILT AAIE

END TA TEST IOR ANDDISLAYACCESS UPDATEF 	 DIPLA YE FORMAT
DISLAYCONITIN FSTATISTIC

PROMPTEUPDATER

DISISPLALA

Figure 4-41. Interrogation of a TSA

c. 	 If the condition is met, the data is displayed for the user.

d. 	 A subsidiary DBMS function updates the access statistics for the TSA.

At 	the end of the complete TSA, the user is notified of the end of information.

4.2.3.3 Monitoring h UTT (Figure 4-42): In this operation the QP sequence will resul
in the display of a UTT covering only the individual user's portion of the UTT for a
particular task.

1. 	 The QPS first performs a QP directive to set up the facilities for the UTT

processing.

2. 	 The next directives permit the statement of RECORD selection conditions which
are employed in the next step (e.g., task identification).

3. 	 The next directive requests the display of the UTT. In this directive the QP/
DBMS accesses each RECORD occurrence. Using the conditions set up by the
previous directive, it is determined whether this RECORD is to be displayed.

4. 	At completion of the UTT data, the viewer is notified of the completion via the
display.

4.2. 3.4 Preparation of data for insertion into the MDBU (Figure 4-43): In this sequenc
of QP operations, data will be prepared for incorporation into the MDBU using SUB-
SCHEMAs that cover the MDBU and the data source files.

1. 	 The QPS again employs a directive to set up facilities for operation, that is to
access data sources.

2. 	 QP directives are now employed to create design data RECORD occurrences for
the MDBU. This results (in this example) in the creation of a local file
containing data that the user wants assembled for incorporation into the MDB.

3. 	Other QP directives are used to assemble any TCS, QPS, or utilities RECORDs
for inclusion in the MDBU.

4. 	The assembled data is now ready for incorporation into the MDBU. Another

QP directive prepares the facilities for this activity.

5 	 A QP directive is now given that incorporates the data into the MDBU.

The QPS can be repeated using various file combinations to satisfy the user's
requirements.

115

w

I
_l

I I
,
I

00

"

"r00
m

II
H

C
..)

fl
Ioe

0

116

- --

SEIYEXTRACTPF
UF AREA,
SITBSCREMA

EXTRACDAACET

FOR MD3U

(DESIGNDATA,

[TCS, QPS)

SPECIF'Y MDBU

AREA FOR

IF

DATA INTO

AS~~~

REPEAT FOR

OTHER FILES

Figure 4-43.

PROJECT
SUBSCHEMA OPEN UF

FOR MDBU ARIA

OPERATION

MDBU

ENTRY - --

DATA

1L MDBUL
UPDATING PROJECT MDBU

SUBSCHEMA SCEAENTRY

UF AREA

OPEN .MDB3UI

MDBU..[

OOPERATIONAREA OTHER

I

UPDATE

~ AEUREEA-1S""-"'

MDBU,J L
-ASSOCIATED, - -

OPERATIONS ------

Preparation of Data for Insertion into the MDBU

4.2.3.5 Updating the MDB (Figure 4-44): In this operation, both the MDBU and MDB
files will be used to incorporate data into the MDB:

1. 	A QP directive is issued to prepare the facilities. The SUBSCHEMA,

encompasses both'files.

2. 	 A QP directive then results ,n the extraction of the data from 'the 1VIDBU.

3. 	 The next QP directive results in the openine of MDB AREA for activity.

4. 	 The final directive results inr the placement of the design data as RECORD
occurrences within the MDII.

4 2. 3. 6 Displaying PRF design data (Figure 4-45): This QPS will result in the

presentation display of design data for the ERBC/ERB:

1. 	 The first QP directive sets up the facilities for QP/DBMS operation.

2. 	 The next QP directive selects the PRF for display. This is accomplished by
specifying the commands (TCS or QPS) portion of the PRF entry ,under
processing and passing these off to the IPAD EXEC for execution (in cases

'of 	 TCS) or treated as an extension of QPS for display. In case of QPS
extension, the next directive results in execution for display.

4.2 Role of the Data Base Administrator (DBA)

The role of the DBA in the IPAD environment is somewhat different from that
envisioned by the DBTG. The DBTG envisioned a data base accessed directly by the
individual OMs and envisioned a DBA whose prime responsibility was to mediate the
conflicting requirements of the OMs. The IPAD MDB is a centrally controlled coll
ection of data as. described in Section 4.2, accessed almost exclusively by QP and the
IPAD EXEC (e.g., fetching utilities). The requirements of independent OMs are med
iated by the individual user when configuring a UF through 'the SCHEMA Assembler
utility-(see Section 7).

In IPAD, the DBA is-cognizant of the task oriented activity but his primary con
cerns are the construction of the central data base,- maintenance of-its quality and
dissemination of its contents. Incidentally, he approves and permits the attachment
of configured UFs and arranges corresponding UTTs.

An overview of data flow is from the controlled MDB to a UF, from a UF to the

MDBU, and from the MDBU into the controlled MDB. DBA activities include promot
ing and facilitating this flow but also include monitoring the flow and closely control
ing updates to the MDB.

118,

SPECIFY MDB SETU - PJC
AREA, MD. SETUP
UPDATE SDA3U
SUBSOHEMA FOR OPERATION

FOUPDAEDATIFOM--MB ti
OF D DUI P-:lSLEC

MDB II~DB -

- E
SCEM

OMDB
AREA____ __ .__ DATA. .MD.U.ARJA D

AREA
F

AREA4

IMDB

INSERT DATA UPDATE--j
INT MDBU MD

Figure 4-44. Updating the MDB

I

__--------	 TT

I TiE
PEXTER C F

AREA PRF
 SOGHDIPA
 P A.

SSOBSh5AD _ [:rAYOR
F r 4 Dpy 	 flat4

D1ISy 	 JI;
RPLAY

F-

DATAI~ND COM S TO ---

QM TCS

Foma 	 FORar toth
ysemopraioalviwinIPAD Msrasacolcto

of various arrangements of data into files. The direct processing of these files is
supported by Query Processor (QP) functions. Th~e responsibility for constriicting"

and providing the facilities for the various users of the WPAD data bases resides with

the Data Base Administrator (DBA). In his capacity of responsibility for the WPAD

data bases, the DBA has two primary functions:

1. D)DL/QPS design and usage - In this capacity, the DBEA is responsible for

the design and maintenance of the SCHEMA that describe the assignment of
data types to their respective files and the representation of the data within

these fies,. Correspondingly, the DBA designs and niainitains the Query

Processor Sessions (QPSs) and associated SUBSCHEVIA for his function and

for other members of the project to perform operations on or with the IPAD

data bases.

2. 	 Multidisciplinary Data Bank (MDB) design and usage - The DBA also has the
responsibility for the generation and maintenance of a key project'data base,

the MDB.

The remainder of this section details the role of the, DBAAnw the execution of-these

two primary functions, the facilities to assist the DBA, and the, skills he (or his group)

must possess.

120

4. 3.1 DDL/QPS design and usage. - Within this function, the DBA has a number of
subfunctions which are detailed separately.

4. 3.1.1 Project SCHEMA definition: The activity of Project SCHEMA definition
involves the DBA in developing the total residency requirements of an IPAD project.
The DBA must:

1. 	 Decide what major data base file organization his project requires (MDB, DLFs,
TSAs, etc.) and then design the SCHEMA portion that will allocate these
files into appropriate AREAs

2. 	 Decide what contents each of the files are to possess and what their most
efficient representation under various usages musk be. He will then describe
in DDL the appropriate RECORD and SET descriptions to satisfy these
requirements and assign them to the corresponding AREAs.

3. 	 Decide the privacy controls that the data bases are to possess for the variety
of usages for the data and incorporate these on the appropriate level (AREA,
RECORDs, SETs) to control specific operations (INSERT, STORE, UPDATE,
RETRIEVE, etc.)

In the process of performing the above, the DBA on the basis of expected config
uration of usage, makes jiecisiornas to the physical residency requirements of the
data. For example, he may require that the MDB always be physically available
onpermanent storage within the host installation but that designated UTer Files (UFs)
may occupy other devices such as magnetic tape or disc packs and need not be
physically attached, or existent, within the host installation until specified by a user.

4.3: 1.2 Project SCHEMA operational development: After~he DBA has created the
Project SCHEMA that describes the totality of his projdct data base requirements,
or at least that portion which requires the facilities of QP/DBMS,, he has the function
of maintaining it for the project. In the performance of this activity the DBA:

1. Assigns the Project SCHEMA Source to a permanent file with its own privacy
, so that the pioject has a permanent record of the DDL descriptioncontrols

of its data bases. This SCHEMA can be displayed Via the facilities of QP.

2. 	 Uses th6'DDL Compiler to compile the Project SCHEMA Source into the object
form which is required by DBMS in performing its functions. The object form
is compiled onto a permanent file with privacy controls set so that essentially
only the DBA has authority to modify it. The object form is available and
required to support all users of the IPAD project data bases.

4.3.1. 3 'Project -SCHEMA maintenance: Once the Project SCHEMA has been devel
oped, compiled andibeen in usage for'a pxoject, there will arise situations which

121

will necessitate changes to the SCHEMA (e.g., a new disciplinary group requiring new
DLF, UF, and TSA definitions or the assignment or organization of a new 5aegory
of design data within the MDB). To maintain the Project SCHEMA, the DBA:

1. 	Establishes, if he desires, DDL descriptions for the SCHEMA itself so that
it may be manipulated via QP/DBMS for his donvenience. Otherwise, he can

establish the SCHEMA Source file so that another general purpose tool such
as a Text Editor can be employed.

2. 	 Updates the Project SCHEMA by adding, deleting, or modifying the appropriate
portions of the DDL. Normally, there is a wide range of changes within a
SCHEMA that the DBA can perform without concern as to invalidating the
occurrences of information already within the data bases. He must, however,
exercise caution when modifying existing RECORD descriptions. His limitations
in this sense are to avoid the deletion or physical reconfiguration of information.

Extensions or leveling are possible. If such restructuring is required then the
DBA must employ an intermediate step of reading under the old DDI specifi
cation and rewriting under the new DDL specification. This procedure itself
will accomplish the physical restructuring. The old structure and its infor
mation can then be deleted. As long as the data-base-identifiers are, maintained,
the SUBSCHEMAs that operate against these data bases are still viable. The new
Project SCHEMA then can directly replace the original.

To assist the DBA in proper organization or reorganization of data bases, the DBMS

provides statistics on frequencies of file usage in terms of transactionsmade (accesses,
insertions, deletion, etc.). Utilizing these statistics the DBA can perform -such
activities as reordering of files and reassignment of RECORDs to residency in faster
access devices, etc., to improve the overall efficiency of the data base operation
performance.

4. 3.1.4 SUBSCHEMA provisions: The user's view of the data base for specific data
base operations is provided via the SUBSCHEMA where only that portion of the data

base needed in the form required by a particular process need be described. The

management problems of the SUBSC-EMA are similar to that of the Project SCHEMA.
The DBA:

1. 	 Designates, with appropriate privacy controls, a permanent file within the

host installation (or project's data base) to contain the SUBSCHEMA.

2. 	 Designs, or assists in the design of, various source SUBSCHEMA for the

operations required.

3. 	 Compiles the source SUBSCHEMA (via the DDL compiler) and places the

resultant object SUBSCHEMA onto a permanent file for usage by the QP/DBMS.

122,

4. 	 'Modifies, adds, or deletes existing SUBSCHEMAs as required. This is
most conveniently done if the SUBSCHEMAs are described via DDL to
reside within a project's data base.

The SUBSCHEMAs whose functions the DBA himself will design are those con
cerned with more basic and common processes, particularly those associated with
MDB operations. For individuals (with their own specific needs), the DBA will provide
allocation and appropriate privacy controls so that they may, when required, develop
their own SUBSCHEMAs and have them managed and used by the QP/DBMS.

4.3.1.5 Query Processor Session (QPS) design and usage: The DBA also has the re
sponsibility for developing the proper sequence of QP directives for performing desired
operations on the data bases. In this capacity the DBA:

I. 	 Designs, for basic operations on IPAD data bases, the appropriate QPS that
will satisfy these operations. The QPS is given a particular identifier and
then catalogued within an IPAD data bases for subsequent usage.

2. 	 Designs, as AREAs or RECORDs within other AREAs, DDL descriptions
for the QPSs to reside within IPAD to satisfy the above.

3. 	 For ease of operation, the DBA can design a QPS that will display available
QPSs or groups of QPSs much in the same manner as Macro/Micro Menus
that permit him or other users to locate and direct a particular QPS for
execution.

4. 	 Designs, if desired, tutorials to go along with the QPS.

5. 	 Assists other users in designing their own individual QPS. In conjunction
with this, the DBA can also incorporate the DDL descriptions for the QPS
into various files for convenience of the user.

Optionally, the DBA can perform the same type of activity for Query Processor Session
Skeletons (QPSSs) rather than QPSs if the operations lend themselves to QPSSs.

Prefabricated TCSs, QPSs, etc. are incorporated and managed in the same way
as any other data; that is, they are represented and described by DDL entries in the
SCHEMA and various SUBSCHEMAs. Consequently they can be operated upon by QP
(as well as the TCS Writer and Expander) and modified versions of any particular
string may be stored by any user.

4.3.2 MDB design and usage. - The other primary responsibility of the DBA is the
MDB. In this capacity the DBA must:

123

1. 	 Decide, with the approval of the ERB, what data the MDB is to. contain and
how it is to be organized to contain the data.

2. 	 Design the storage configuration for the data, build the required DDL specifi
cations, and make the specifications available to the user who must employ
or produce the data.

3. 	 Examine and determine the validity of any design data submitted via the
MDBU for incorporation into the MDB.

4. 	 Be responsible for the updating (addition, deletion, and modification) of
the contents of the MDB.

5. 	 Be able to report the current contents and history of activity within the MDB.

4.3.3 General IPAD facilities for DBA assistance. - Under the implementation
philosophy, each DBA essentially produces a unique SCHEMA (of DDL specifications),
SUBSCHEMAs, and QPSs that are tailored to the requirements of the particular

project to which he is responsible. In particular, although the DBA develops his
data base in the general organization of Section 4.1, he has considerable flexibility

in details. Much of the data types and procedures for utilizing them are expected
to be sufficiently common among projects to permit the developers and maintainers

of WPAD to create support facilities via data bases to assist the DBA. Such facilities
include:

1. 	 Prototype DDL specifications. This data is retrievable by the DBA.
It contains source SCHEMA prototypes for AREAs such as DLFs, TSA,
etc. The DBA selects those needed for his files, updates them to place
them in context for his project and from them, in general, assembles
his Project SCHEMA. He supplies any additional DDL specifications' not
contained in the prototypes or different versions.

2. 	 Prototype QPSSs. This type of data performs for the QPS design
function the same type of operations that the above does for the DDL
specification.

3. 	 Tutorials. This type of data accompanies either prototype and provides
the DBA with explanations of the prototypesand instructions for 'developing
his Project SCHEMA.

All of the above are incorporated into data bases controlled by SCHEMA,
SUBSCHEMA, knd QPSs that permit the QP/DBMS operations to be performed by
IPAD system personnel and DBAs.

4.3.4 DBA skill level. - The DBA is the key individual responsible for the control of
data bases within his project. In order for' the DBA to perform his function, he or his
group must possess the following capabilities:

124

1. 	 Be knowledgeable about the project and design data associated with the
- project to the-degree that appropriate DDL descriptions can be developed.

2. 	 Be knowledgeable about the usage of design data and organization of usage to
the degree that efficient physical placement of data within the MDB can be
achieved.

3. 	 Be knowledgeable about project organization and data requirements of in-*
dividual tpes of users so that data groupings, AREA assignments, and
physical organization will satisfy the individual memlers of the project.

4. 	 Be knowledgeable ibout hoyt machine configuration and device characteristics
to enable him to make the most effective assignments to devices for the re
quired physical organization and, conversely, to permit him to specify
LOCATION MODE and SET telationships within the DDL.

5. 	 Be knowledgeable about both the external usages and internal workings of
QP 'an&DBMS to permit:

a. 	 .Efficient QPS and DDL development.

b. 	 Efficient QP and DBMS operation.

4.4 Summary

The central factor in the choices of establishing the data base requirements of
1PAD is the recognition of the fact that the total set of data base requirements can be
represented as severalbasic data types; the specific data bases as required and seen
by the user are configurations and specific representations of these data types. An
IPAD project data base then becomes a collection of files organized from several basic
RECORD types. Likewise, the operations that are to be performed on the data bases
are reducible to generalized basic data base operations. The general data types and
their organization for processing are satisfied by the DDL which, in turn, is supported
by the DBMS. The pr6cedures for manipulating the data bases are satisfied by the QP.

Consequently, the usage of QP,/DBMS presents a satisfactory implementation
philosophy with two major advantages:

1. 	 Transferability - The QP/DBMS is a general system which is to be developed
in accordance with an industry-wide standard specifications of the DDLs and
DML languages *(Reference 4). These concepts thus present IPAD with a
high degree of transferability.

2. 	 Adaptability - The DBMS code can handle any physical record or file des
criptions by appropriate DDL specifications. It is, therefore, not appropriat
for IPAD to specify data structures and built special utilities to process

125

them. DIBAs have considerable flexibility in their management of data bases both
in defining their contents and in defining procedures to utilize them.

The concept of implementation via this approach leads to more dynamic and useful
operations with the IPAD data bases. For a project, the DBA functional group, which
is knowledgeable both in the data requirements of design aid the characteristics of
the host facility, can now design and develop the optimum data base configuration for
the project. This is done, not via additional coding but by language specifications and
command sequencing.

126

5 LANGUAGE DEVELOPMENT

'The design approach presented in Sections, 2, 3 and4 emphasizes exploitation of

software provided by computer ,system manufacturers. The supporting software is
general in that:

1. 	 It is not developed specifically for IPAD, and

2. 	 With each supporting subsystem, languages exist to provide the capa

bilities of the subsystem to some general class of users.

The development required in support of IPAD is not a development of a new
software system but rather a development of languages (and functional support to these
languages) to exploit capabilities of manufacturer supplied software. The objectives

of this language development are:

1. 	 To provide the full range of capabilities of:

a. 	 The operating system,

b. 	 The timesharing subsystem,
c. 	 The Data Base Management System (DBMS), and
d. 	 The interactive graphics subsystem,

all through a concise lexicon.

2. 	 To produce language standards (eventually to become industry standards)

for increased portability.

The following subsections discuss five language development tasks with respect
to the four items in I above:

1. 	 IPAD Control Language (ICL) to interface between the user and the
operating system /timesharing subsystem.

2. 	 Data Description Languages (DDLs) to define data structures and rela
tionships that exist in the data base and those required by Olks/utilities
thus making interface support via DBMS possible.

3. 	 Data Manipulation Language (DML) which provides the procedural inter
face between specific Olvs/utilities and the database via DBMS.

127

4. 	 Query Processor Language (QPL) which provides the interactive.
procedural interface between any IPAD user and the database via

the Query Processor (QP) operating through bBIVS, 	 I ,

5. 	 General Graphics Library (GGL) which provides interface between

OMs/utilities and the, interactive graylcS, subsystem.

, 5. 	 1 IPADvControl Language (ICL)

For a given implementation, the ICL includes the commands associated with the
suppr'ting operating system/timeshiarng subsystem as well as those associated with
the EXEC and its subsidiary functions.

5. 1. 1 ICL issociated with supporting software. - This class of command languages
has been given the generic name Operating System Control Language (OSCL) by ANSI,
and the X3/SPARC/OSCL committee has recently been reactivated to investigate stan
dardization (see Vol. IV, Section 6.2 of Part I and Appendices C and D for details. Until th
OSCL committee recommends some standards, OSCL can be characterized as follows:

I.. 'Commands and functional support are provided by the manufacturer,
hence will be significantly different for each system.

2. 	 To the typical (noncomputer 6riented) 1PAD user each OSCL is a

cumbersome bother.

However, the language development objectives can still be attained and the full
OSCL capabilities included in the IPAD user's repertoire of commands through the use
of prefabricated TCSSs, as explained in Section 2.2. One of the objectives of a pre
fabricated TCSS is to relieve the user of labor and attention to details of OSCL syntax.
Consequently the-syntax of dummy arguments and the command language associated
with the TCSS expander replace the OSCL language (from an IPAD, user's point of
view).

The development of rules for prefabricatingTCSSs and the, development of the
Expandbr commands should be cognizant of the OSCL committee's recommendations.
AIso, the requirements derived for the Expander commands, and TCSS rules should be

provided to the committee, since one of its stady,tasks is to categorze and define
elements of functional control of computation systems (Appendix C).

5.1.2 IPAD EXEC commands.. - Since the EXEC and its subsidiary functions are
themselves a commandable software subsystem, IPAD has its own requirements for
a set of unique commands different from the supporting software. The actual re
pertoire of IPAD EXEC commands which must be developed for implementation depend

128

on the fial build-to spebifications of IPAD design. However, the following types of
commands are expected to be evolved.

5. 1.2. 1 TCS file control commands: These commands permit the user to direct the
EXEC in the handling of TCS files. They include such items as:

1. 	 Specification of TCS files to the EXEC.

2. 	 Control commands to permit switching between a TCS file and terminal
input.

3. 	 Commands to direct the TCS Intercept6r to begin and/or cancel TCS
recording.

5. 1.2.2 TCSS expansion commands: These commands are used to control TCSS ex
pansion and involve one set that consists of control commands to:

1. 	 Identify dummy arguments and make valued substitution within the
TCS image.

2. 	 Conditional commands that permit adjusting the logic of the resultant
TCS based on user's input.

3. 	 Requests for explanation of dummy argument meaning and methods
of specifying information for the TCSS expansion process.

5:1. 2.3 TCS execution commands: These commands control the TCS during execution
They include such features as:

1. 	 Conditional commands that modify logic of TCS execution.

2. 	 Control commands that permit the EXEC to call upon and switch be
tween various subsystems, such as QP.

5.1.3 ICL constraints. - In the development of IPAD, unique command constraints
are necessary on-language syntax.

5. 1.3.1 Uniqueness: Uniqueness is required to permit the command to be readily
distinguishable from commands that are associated with the various manufacturers
(hence non-unique) IPAD support system languages (the OSCL). This is required to
(1) prevent the need for additional commands and logic in the IPAD EXEC to distin
guish the overlap, and (2) prevent confusion on the part of the user when his tasks
necessitates the mixture of languages controlling the various subsystems.

5. 1.3.2 Meaningfulness. Meaningfulness of the command is required to permit the
user to more easily learn the language in terms of the functions he wishes to employ.

129

5. 1.3.3 Prompting mode: The prompting mode of the ICL permits the IPAD system to
assist the user in command specification. Once the operator portion of the command is
recognized, prompting messages are supplied to the user explaining and requesting
additional information for detailing the specifics of the operands required.

5.2 Data Description Languages (DDLs)

The Data Description Languages permit a high degree of independence in three
functional specialties associated with the data base, by providing means to interface:

1. 	 The Data Base Administrator (DBA) function.

2. 	 The DBMS functions to control system level I/O operations.

3. 	 The programming functions, creation and conversion of OMs/utilities.

The DBTG report (Reference 4) contains detailed specifications for two DDL

types:

1. 	 SCHEMA DDL used to describe data as it exists (or will exist) in the
database.

2. 	 SUBSCHEMA DDL used to describe some subset of the total database
as an individual COBOL program requires.

The concept of the two independent descriptions in compiled (highly processable) form
permits software (DBMS) to accomplish two of the most tedious tasks facing an IPAD
user.

1. 	 Collecting data pertinent to his design task and reorganizing it into a form
acceptable to an OM/utility.

2. 	 Transforming the output of an OM/utility into a form acceptable to the
user for review or to another OM/utility.

Further, the DDLs describe logical structures and relationships rather than physical
entities, which permits DBMS to relieve both the DBA and the general IPAD user of
bookkeeping relative to the location of data.

As is evident, the support that DBMS could provide would be limited by the
quality and applicability of the DDLs. All requirements for management of a database
and interfacing different programs with the database iaust be expressed in the DDLs.
Consequently the DDLs must adequately express the management concepts of an
engineering-oriented DBA and engineering-oriented programmers who create and/or
convert OMs for operation with IEPAD.

130

The DBTG specified very powerful, high quality languages for a COBOL envir
onment; the architecture of the implied DBMS was expected to interface the same data
base with OMs written in a variety of languages, It was further expected that the
pioneer SCHEMA DDL would be developed to accommodate many languages and many
SUBSCHEMA DDLs would be developed, each to interface with its own host language.

5.2. 1 SCHEMA DDL. - The SCHEMA is a description of all data known to DBMS (i. e.
of the database) at any particular time. Hence the SCHEMA DDL is the language by
which the DBA effects a compromise between all the structural requirements of the
individual IPAD users and expresses his own management requirements. The specifi
cations of the DBTG are remarkably comprehensive, containing many features (e, g.
implicit sort specifications) which may never be required in an IPAD implementation.
However, the syntax of the SCHEMA DDL is extremely cumbersome in an engineering
environment and the composition rules abound with restriction that seem arbitrary and
artificial with respect to FORTRAN coding techniques.

5.2.2 SUBSCHEMA DDLs. - Basically the SUBSCHEMA DDLs are languages which
describe a portion of the database as required by a particular OM/utility. The essen
tial difference between SCHEMA' and SUBSCHEMA DDL is that the SUBSCHEMA DDL
must be compatible with the source language of the particular program involved since
that program must invoke the SUBSCHEMA (and its implied procedures) and make
functional requests of DBMS referencing SUBSCHEMA data specifications. The com
plete relationship of the SUBSCHEMA to SCHEMA is detailed on page 18 of Reference
4. The development of SUBSCHEMA DDLs for scientific program languages must
consider the full implications of this relationship as well as:

1. 	 The Data Manipulation Language (DML) enihancement for the host language
(see Section 5.3)

2. 	 The additional I/O support that may be provided outside of DBMS; that
is, the traditional FORTRAN I/0 software may supplement the
features of DBMS.

5.3 Data 'Manipulation Language (DML).

The Data Manipulation Language is the vehicle which provides the functional
capabilities of DBMS to the applications programmers. The DBTG report outlines
the concepts governing the development of a DML and provides a complete specifi
cation for the COBOL DML. The following is quoted from pages 14-17 of the DBTG
report (Reference 4)'

The DML is the language which the programmer uses to cause data to be
transferred between his program and the database.

131

The DML is not a complete language by itself. It relies on a host ianguage
to provide a framework for it and to provide the procedural capabilities
required to manipulate data.

The relationship between DDL and DML is the relationship between de
clarations and procedure. The declarations impose a discipline over the
executable code and are to a large extent substitutes for procedures written
in the DML and the host language; that is, they are implicit procedures
which may be invoked by the execution of DML commands.

A users application program is written in a mixture of host language state
ments dud DML commands. The DML provides the ability to interact with
the database in that it is the language interface with the DBMS. All calls
to and from the database to retrieve data, to add new data, to modify
existing data or data relationships, and to delete existing data or data
relationships are written in DML.

As a result of the successful execution of a call for data included in the
database, the data requested is delivered to the UWA [User's Working
Area] of the calling program and may then be referenced and manipulated
using the facilities of the host language. To add new data or return modi
fied data to the database, the host language is used to initialize the appro
priate values in the UWA and the DML is used to call on the DBMS's services.

This is a departure from standard FORTRAN techniques where the host language
never explicitly references the UWA described here. This difference may require
additional DML development or additional software support from the standard I/O
support routines. The quote continues:

The host language, then, is the language used to manipulate data in primary
storage. The host language processes or provides the framework in which
the DML functions, and the DML is the interface language with the data
base.

DML commands and host language statements are intimately mixed in an
applications program. Indeed, the distinction between them is conceptual.
The two languages may be mixed freely and there are no special "enter"
or "exit" requirements from one language to the other. Thus, from the
programmers point of view, he is using a single language - a language
which has the combined capabilities of the host language and DML.

132

rms proviaes tie overview oi a DIVa,. 'ie detais otJ.D1Vb capabilities to ne proviaea

by DML are specified through the COBOL DML specifications of Reference 4.

5.4 Engineering Oriented Syntax For DDL and DML

The foreword to the DBTG report (Reference 4) envisions that report as a base
upon which a SCIiEMA DDL can be finalized "independent of, but common to, many
higher level languages,

A proposal from the University of Edinburgh (Reference 16) specifies a mechan
ism for "A common SUBSCHEMA framework for all host languages." That is, it pro
poses a mechanism for identifying COBOL-peculiar features of the DBTG specificationi
and for inserting and identifying features peculiar to other languages.

The proposal for a common DDL reasons that since many data management pro
blems are independent of programming languages, some measure of efficiency and
compatibility will be achieved by providing a common DDL. The merit of this approad
will not be disputed here, but the human engineering objectives of IPAD require that
another approach be developed.

The existence and popularity of FORTRAN in the IPAD community and COBOL in
the business community points out a valid need for different languages in the different
environments. The need is not for a common (i.e. to engineering and business pro
grammers) language that adequately expresses problems to a computer (such language,

existed prior to FORTRAN/COBOL). The need is for languages compatible with the

training and thou-ght processes of the individuals involved. A DBMS that supports

interfacing of an integrated database by multiple languages must also support the needs

of humans that use those languages.

The need for languages tailored to the requirements of programmers and IPAD
system maintenance personnel does not indicate a modification of the functions of
DBMS nor a modification of the architecture of the DDLs. What is needed for a viable

IPAD is only a different syntax to be processed by the DDL compilers; nearly the full
range of capability offered by DDL is required for IPAD.

DBMS' does not work with source DDL but with an object table which results from
processing the DDL by the DDL compiler. Obviously a DDL can be specified to ex
press the same ideas as the COBOL DDL but in an engineering syntax. A correspond
ing DDL compiler would produce an object table usable by DBMS.

In the pseudo-English tradition of COBOL, each of the DDLs recommended by
the DBTG consists of a language of declarations, verbs, objects, subjects, clauses

133

* 'and phrases. The explanation for' each element begins with a definition ofitsunetion
;,(what 	fact is ,ponveys to DBMS, or what processing it requires of DBMS and.v.hat ini
tiates the processing). I

The University of Edinburgh specification for a FORTRAN DDL (Reference 17)
proposes that all DDLs adhere as closely as possible to the syntax recommended by the
DBTG, introducing more pseudo-English as required.

'To begin the development of an engineering'syntax for DDL, the definitions of the
functions of the elements of the DBTG language should be listed and a panel of prbspec
tive implementers should decide on a syntax' to express those functions in pseudo-math
notation, introducing more functions and corresponding pseudo-math as experience
inspires.

• 	The approach to an engineering syntax for a FORTRAN DML should parallel that
for'the FORTRAN DDL. The functional, capabilitiesof DBMS are,defined through the
functional description of the COBOL DML. The DBMS provides these functions in res
ponse to execution time requests from the application program and parameters supplied
by that program. To re-emphasize the point, DBMS does not interface with the pro
gram on a source language basis but through its object'code.

A panel of prospective implementers could review the definitions of DBMS func
tions and decide -uponnew FORTRAN statements to be transformed into DBMS requests
by the FORTRAIN compiler.

Hovever, another approach is possible and this approach is almost traditional in
enhancing FORTRAN capabilities, viz. to make no change to the compiler but provide
DBMS functions accessable through standard FORTRAN CALL statements.

Which approach is to be followed should be ldft to the language developers (see
Section 5.7).

5.5 Query Processor Language (QPL):

QPL is the language Which provides the nonprogramiiier (i. e. the IPAD user) in
teractive access to the database. The DBTG deferred development of this Iangage
(Page 8 of Reference 4): ela

In facing this situation the Data Base Task Group came to the conclusion
that an approach which permitted both programmer and ndnprogrammer
interface with the same database was essential - but that the programmer
interface was more basic [essential] and should therefore be tackled first.

134

Howeveij, the implicit architecture of a DBMS contained in the report provides a solid

foundatiomfor a language to provide interactive capabilities such as (quoted,from .page
17 of Reference 4):

ae interrogation - this is inclusive of data selection, 'sorting and
report [e.g. EBB presentation] formatting.

* 	 update - this is inclusive of selection of data to be updated and
the process of changing the value content of the selected data.

a 	 creation - this is the building of the initial instance of the data

base or a portion of it. [Individual users initialize UFs and the
DBA establishes initial versions of design data.

e 	 restructuring'- this involves changing the description of an, existing
database and adjusting the database to the new description.

The IPAD design extends this list as follows:

1. 	 The full range of DML, capabilities is %o be providbd interactively
via QP (i. e. contained within the QPL).

2. 	 The ability to save commands (directives) with or without execution
from one session to another is to be provided (i. e. QPS generation).

3. 	 The ability to perform all or any part of a saved QPS must be pro
vided.

4. 	 The IPAD users will require a desk calculator capability-in QP and
essentially the full range of the FORTRAN mathematical operator and
subroutine library insupport of the update function (See Section 3.2).

5.6 General Graphics Library (GGL)

The General Graphics tittkary represents a collection of subroutines that will
support the entire spectrum of usage of interactive graphics terminals for IPAD, The
necessity for a GGL arises from two basic considerations present in the solution
process of problems in the IPAD environment.

1. The nature of the problem solved is graphical.

2. The solution process is best conducted in an interactive mode.

135

These two factors suggest a heavy dependence on the efficient use of a wide variety of

interactive graphics terminals. It is these terminals that are supported by GGL.

5.6. 1 Current basic software packages. - Each majordeveloper or supplier of inter
active graphics systems has usually developed his own basic graphics support software.
This set of subroutines is usually coded m the computer manufacturerys assembly
language and designed to fully exploit the capabilities of the particular hardware for
which it was written. Even though all the supportpackages are built to be FORTRAN
callable, transferability to other display hardware and host computing systems is very
difficult.

Available interactive graphics software is briefly discussed in the subsections

which follow.

5.6.1.1 IBM software: The basic IBM interactive graphics support library is currently
Graphic Subroutine Package (GSP). GSP (Reference 18) is a set of FORTRAN callable
assembly language routines that facilitates the creation of displays on IBM 2250
Display Units,(refreshed CRT) attached to an IBM System/360 (or 370) Computing
System. Historically, IBM started with the Alpine System, followed by GPAK, and
then GSP. For remote locations there was even an IBM 1130 GSP which was not the
same as the basic IBM 360 GSP.

5.6.1.2 CDC software: The current CDC interactive graphics support package is
Interactive Graphics System (IGS). IGS (Reference 3) is a set of FORTRAN-callable
assembly language routines that are used to create displays ,on the CDC 274 Display
Console (a refreshed CRT). An interactive graphics program using IGS executes m a
host machine, usually a CDC CYBER/70 or 6000 Series computer, and uses the CDC
1700 minicomputer to control some of the basic functions of the CDC 274 graphics
hardware. In the development of IGS, CDC started with systems on the CDC 250
terminals (associated with their microfilm recorder), the CDC 1700rstand-alone system,
and the CDC 3000 series computer system - all of which were different. In 1968, CDC
standardized their product line by bringing together all of the aforementioned systems
m line with the (then forthcoming) 6000 IGS support package.

5.6. 1.3 UNIVAC software: UNIVAC's basic interactive graphics support library is
UNivac Interactive GRAphics Support Package (UNIGRASP). UNIGRASP (Reference 19)
is a set of FORTRAN callable assembly language routines which a programmer can
use on a UNIVAC 1100 Series computer to display images at the UNIVAC 1557/1558
Graphics Display Subsystem (a refreshed CRT). UNIGRASP was developed to be closely
compatible with IBM's GSP.

A second interactive graphics support package which is also supplied by UNIVAC

is the Graphic Programming Library (GPL). GPL (Reference 20) prpvides the software
to easily manipulate data structures which describe dispjay images for the display

136

device itself. GPL can functionally accomphsh all of the capabilities present in

UNIQRAS?-and in a significantly improved fashion.

5,6,1. 4 TEKTRONIX software: The basic interactive graphics support package for
applications that use one of the TEKTRONIX 4000 Series direct view storage tube
terminals (DVSTs)jis PLOT-10. PLOT-10 provides the functions required m alpha
numeric or graphical display generation and interactive processing. It can be used with
any, computer system supporting ANSI FORTRAN IV standards and hiphanumeric termi

-.nals with the full ASCII (128 characters) character set. PLOT-10 currently has two
distinct parts.

The Terminal Control System consists of a set of FORTRAN IV subroutines
to perform the primitive functions required to support interactive graphics applications
(Reference 21). output a character to the terminal, receive as input a character from
the terminal, position the beam, draw a line, display text, etc. Note that these
routines are not:nly FORTRAN callable but are also written in FORTRAN. The only
elements to be provided by an installation wishing to use PLOT-10/Terminal Control
System are the routines to handle the input (TIMPUT) and output (TOTTPT) of a single
character-between the host computer and the terminal.

Advanced Graphing (Reference 22, also part of PLOT-10) represents a set of
FORTRAN IV routines which call the TCS subroutines to fulfill the graphing needs for
a wide range of problems encountered in engineering or business: drawing a lineAr
grid, labeling an axis, displaying time series plots, etc. This higher level capability
drawing upon the Terminal Control System relieves the implementer of the drudgery of
developing a capability for these much needed functions.

5.6. 1.5 Other software: The above brief treatment is not meant to be exhaustive.
There are other terminal manufacturers, such as COMPUTEK and VECTOR GENERAL
(among many others) who have interactive graphics software packages to support the
usage of their respective terminals. Moreover there is a whole class of specialized
software packages which efficiently address specific problem 'areas such as Numerical
Control, Circuit Mask Layout, Printed Circuit Board, etc.

Table 5-1 lists some of the other existing software support packages developed for
specific purposes.

5.6.2 Elementary considerations in the design of a GGL. - The generation of a true
general graphics library requires an understanding of the implications of some of the
obvious elements of a GGL. Once this is accepted, the more complex aspects of GGL
can be appreciated.

5.6.2.1 Interface with operating systems: GGL is a-software support package and as
such does not exist in a vacuum. It must be conversant with some aspects of the

137

TABLE 5-1

SOME GRAPHIC SUPPORT PACKAGES IN USE TODAY

Language Initial Purpose Interactive? Passive?

DRAFT

GRAPH-PAC

Drafting

General

X

X

FLING General
Standardization

X

EUCLID
ICAD-M, IC
ICAM-2+,3
DISECT

Drafting
N/C
PCB
Wire Wrapping

X
X
X
X

MASK Circuit Mask layout X

VIP Non-analytic
drawing

FLEX General

CAFE Non-procedural
animation

MASK IC photomask
MAKER layout
PROGRAM

GLANCE General

GRAPHSYS General
(AED)

138

IX

X

X
(A/N only)

X

X

X

X

X

X

Developed
At Host Computer(s)

U of Wise. CDC 6000 Series

NSRDC CDC 6000 Series

Lockheed, IBM 360/370
Ga. UNIVAC 418

UNIVAC 1100
Series

Integrated REDCOR 70
Computer IBM 1130
Systems CDC 6000 Series
& Systems, (other minis)
Sciences and

Software(S3)

S3 CDC 6000 Series

UC at CDC 6000 Serics
Berkley,
U of
Toronto

U of Utah PDP1'9

? 360/67' CMS

MIT TX-2

Bell Labs GE 635

MIT' 'IBM 360
UNIVAC 1100
Series

:CDC 6000 Series

TABLE 5-1. SOME GRAPHIC SUPPORT PACKAGES IN USE TODAY (continued)

Language Initial Purpose Interactive?/Passive?
Developed

At Host Computer(s)

CALCOMP General X CALCOMP (many)

S-C4020 General X Stromberg (many)
Carlson

APL Graphics General X UC at Sigma 7
Mathematical Irvine TLKTRONIX 4013

(any computer
with APL imple
m ented,)

ITIS. 2 General _'X Lockheed, IBM 360/370
Transferability Ga. (under CDC 6000 Series

contrdct
to NAVSEC

UGLI General X Lockheed, 9
Ga.

operating system with which it is being used. To this end, GGL software should not

duplicate the supporting operating system/timesharing subsystem software. In fact,

GGL would be well advised to build upon IPAD Control Language (ICL) objectives
rather than the individual operating system.

5.6 2.2 Terminal characteristics: The totality of interactive graphics terminals
comes in a variety of shapes. There are round, square, and rectangular display

screens..
 Moreover the topological addressing schemes have differences not only in
magnitude but in sign. A simple linear transformation is usually not sufficiently
effective due t6 differences in character-ratio sizes. For instance, on a CDC 274

-(round screen), a.charactertakes 24 'rasters out of maximum 4096 raster range (0.6
percent) while on an IBM (square screen) a character takes 14 rasters out of a maximum
1024 raster range (1.4 percent).

5.6.2.3 Terminal flexibility: One way to design a standardized software support
package would be to utilize only those common hardware features available on all (or
nearly all) modern graphics display devices. This is the approach taken by Lockheed-
Georgia in developing the Interactive Terminal Interface System (ITIS, see Table 5-1),
The price is terminal flexibility. The design of GGL must not excessively inhibit

139

the capabilities of one terminal orclass of terminals for the goal-of stapdayd'zation.
The intersection of capabilities mhst be identified but alternate solutionsior recog
nized deficiencies must be prepared.

5.6.2.4 Functional classification of general support software: When each of the
various manufacturers' software support packages are investigated,, there are several
common categories of functions to be performed. A particularly straightforward
classification of these functions can be found in the paper that discusses FLING - a
FORTRAN Language for Interactive Graphics (Reference 23). In that presentation,
the authors identify four distinct categories. The following outline presents these
categories with a few examples of representative functions within each:

1. Initialization and termination, e. g.:

a. Attaching to an interactive terminal.

b. Initializing communication areas.

c. Releasing an interactive terminal.

2. Image (display byte-stream) generation, e.g., for:

a. Points.

b. Lanes.

c. Text.

d. Circles.
3. Buffer or display manipulation, e.g

a. Making item (display byte-stream) visible.

b. Erasing iten, from display.

c. Moving item.

d. Changing interrupt sensitivity.

4. Attention or interrupt processing, e.g.:

a. Defining interrupt hierarchy.

b. Retrieving-interrupt information.

c. Displaying/retrieving tracking symbol.

The design of GGL must surely address each of these areas and thereby advance the
initial FLING objectives to a more sophisticated implementation wherein greater
standardization is realized without an overwhelming sacrifice in flexibility.

140

5.6. 3 Complex considerations in the design of a GGL - The complete realization of
a-sophisticated GGL that'meets all'of the IPAD r6quirements demands consideration of
other complidating factors. In fact,'a design of GGL based purely on the factors dis
cussed in the previous subsection would be limited m scope and utility despite the
fact that it would undoubtedly advance the state of the art.

5.6.3.1" Different terminal hardware types:' There are two basic varieties of hardware
being used for interactive graphics - the DVST and r6freshed CRTs.*

The hardware deficiencies of the DYST (relative to the refreshed CRT) are
centeted around the integrity of the display itself, i.e., the egseritial immutability of
items displayed on the screen; For instance, display entities are not light-pen pickable
(there is no light pen on a DVST), items cannot be blanked, items cannot be selectively
erased, and items cannot be dynamically moved on the screen.

It should be noted that there is usually a topological input device associated with
a DVST, sometimes it is an analog tablet'or thumb! wheel driven: cross-hair cursor.
With this device and alphanumeric or functional keyboard interrupt processing, it is
possible to artificially accomplish many of the aforementioned deficiencies.

In particular, the selective erasing of an item must be done by blanking the entire
screen and redisplaying the unaffected items. The method is unmistakably crude but
certainly the results are equivalent. It is natural to assume that an application with a
lot of this type of activity would hopefully gravitate away from a DVST and toward the
usage of a refreshed CRT. The added complication of being able to recreate any part
of a display compounds the difficulty indesigning a terminal-independent GGL.

5.6.3.2 Division of interactive tasks: The majority of existing interactive graphics
software support packages spend a significant amount of time either communicating
with or otherwise interrupting the host computer system. The elimination of unnec
essary and repetitive interruptions of the host's timesharing subsystem can lessen the
impact of interactive applications on the throughput of the total computer system itself.

The inclusion and usage of a minicomputer or programmable display controller
which can process locally many of the mundane interactive operations performed at a
terminal seems to be the solution of the luture to the growinfg overload problem on the
main computer. A futuristic GGL must consider the partitioning of functions between
satellite and host, and be able to take advantage of the presence of an intermediate
processor to streamline interactive commfunications. (See Vol. IV, S6c. 5,3 of Part I.)

*One current supjort software package that provides the flexibility of a program

mable display cbntroller is UNIVAC's Graphic Programming Library (GPL). (GPL

is available for UNIVAC's 1100 Series computers with UNIVAC's 1557/1558 Graphics

Display Subsystems.) With GPL, a programmer can instruct the 1557 (display

*See Subsection 4.3.1, Part I, Vol. V.

141

controller) via an Interactive Control Table (ICT) to locally process certain interrupts
ahd take appropriate action without ever notifying the 1100 Series mainframe (Reference
i0). The satellite (1557) has its own storage containing the data structure of-the image
in effect duplicating part of the data structure existing on the mainframe - which allows
such functions as windowing, translation, or selective erasing to be done without
resourse to the host.

As more powerful minicomputers and display controllers are produced, the
mainframe will continue to relinquish rtore of the mundane requirements for servicing
initeractive users. The design of a GGL must recognize this trend and actively support
such systems.

5.6.3.3 Data accessing and manipulation: The design of a GGL must be aware of its
own data requirements and how it coexists with other supporting data systems. The
implementation of CODASYL's DBMS on IPAD's target host computing systems wall
undoubtedly provide for all the data needs of any design of a GGL. If however future
interactive systems continue to include minicomputers or display contr61lers, the
probability of maintaining a duplicate of a host's DBMS on the satellite system is small.
And yet, if the satellite does not have a local data subbase with which to'operate, the
number of returns to the host rapidly increases. Thus the design of a GGL must not
depend exclusively on a complex DBMS to control its data requirements but instead
should consider the effects of trading its data base management activity against the
advantages of satellite computers.

5.6.4 Justification for a GGL. - As recently as five to ten years ago there were only
several off-the-shelf interactive graphics systems available. There was no identi
fiable reason to standardize the hardware and/or the software support system.
Actually this might have been a good thing, the technology was still developing and
premature standardization could have resulted in a product of limited usefulness and
have had a stifling effect on new innovations.

The situation to'day has drastically changed. With new terminals and'mini
computers appearing almost monthly, the time is ripe for a step toward standardization
and away from wasteful duplication. The advent of inexpensive M~inicomputers has
presented new possibilities that a general graphics software support package should
not overlook. Moreover as more sophisticated interactive terminals (both refreshed
and DVST CRTs)are developed, the initial design of GGL should be a priori structured
to readily utilize these new advancements, at least to the extent possible.

The competitive atmosphere produced by the emergence of the variety of'terminals
and minicomputer systems has made it financially attractive to be flexible and ilde
pendent of any one manufacturer's dominance of an installation's total interactive
graphics system capability. The added diversity of institutions to be serviced by IPAD
adds extra incentive to the realization of GGL.

142

However other approaches to the problems of standardization and flexibility have
Jbeen proposed. In particular, there is currently work going on at Naval Ship Research
and, Developiment Center (NSRDC) in Carderock, Md., that consjdeqrs the problem in a
slightly different fashion. The concept is "consolidated graphics processing." Mel
Haas of NSRDC (Reference 24) notes that currently each graphics I/O display has its
own supporting software package and none of these packages are fully compatible.
The proposed technique for consolidated graphics processing is to divorce the specifi
cation of a graphic display from the hardware commands used to draw those displays.
Currently, each support software package produces a data stream of hardware commands
,specific to the device. This approach defines an intermediate data stream -,the Con
solidated Graphics Data Stream (CGDS) - of picture oriented commands. CGDS would
be produced by substitute programs with the identical call sequences of the standard
support software and new programs specific to each device would translate the CGDS
to the required hardware commands. (Note: A minicomputer would be a logical
candidate for the CGDS translation process.)

The primary benefit of such a system has to be the flexibility to use various
graphics I/O devices now offered to the application programs. Moreover, the graphics
I/O devices would now be divorced from their supporting software, thus permitting an
application written for the CDC 274 to operate as well on an IBM or Vector General
replacement. This concept, if it can be realized, means that terminal independent
programs written with diverse software support systems can exist. The approach
also has one unique advantage. Ekisting interactive (or passive) graphics OMs are
easily transferred between differing computer installations. No reprogramming with
a GGL is required. (Note that an existing interactive graphics OM which runs at a
given facility will still run under IPAD without reprogramming.) In fact as the
ixin §tment in interactive graphics applications increases, this approach will become
even more attractive.

The current situation however finds many more batch OMs than interactive ones,
In addition, with the CGDS concept, another level of overhead is introduced in an area
where response and efficiency are most critical. Further, it dpes not provide for the
additional capability sought and provided within the GGL framework (whether or not
initially available to IPAD).

It.is reasoned that the better long-term approach is to provide a: GGL, specifically
for IPAD but with the intent of providing for subsequent industry-wide developments.

5.6.5 Summary. - Certain characteristics of a GGL now appear obvious. GGL software
should be FORTRAN callable with the ANSI standards for FORTRAN being observed.
Moreover, once many of the display subroutine arguments and conventions are adopted,
it should be relatively straightforward to repackage all of the major manufacturers'
support packages - GSP, IGS, UNIGRASP, PLOT-10, et al - to perform the display

functions specified in GGL. ,

143

The design of a GGL must include consideration of the two basic CRT types -
DVST and refreshed. To service one at the expense of the other would drastically
impair the overall efficiency of interactive graphics within an IPAD system.

Finally, the GGL design must acknowledge and utilize the potential of a satellite
computer system Iwhen present) to relieve-the mainframe bf as many interactive
terminal servicing requirements as possible. This require that the ddvelopment of
GGL provide for a separation of function so that selected FORTRAN code employing
GGL calls may be implemented on either.the host or the mini. Further, som e-data
subbase management will be required on the mim and could be a part of GGL (a Ia
UNIVAC's GPL).

5.7 Conclusions

In order to implement a viabl6 I.PAD, languages must be developed and imple
mented to provide IPAD community-oriented interface with DBMS and interactive
graphics support software. Transferability considerations require that the same
languages be implemented by all pertinent inanufacturbrs.

Ideally, the languages should be developed by potential IPAD system developers
and users, approved by ANSI (see Appendix D) and consistently implemented by the
hardware vendors. -° I

As a practical approach it is envisioned that NASA will sponsor the required
language development in order to insure meeting IPAD schedules. Aside from the
influence of the schedule, the languages should evolve from a CODASYL - like com
mittee (see Appendix E) under the cognizance of both CODASYL and ANSI to insure
acceptance as a standard. Implementation is to be insured by the potential IPAD
market and through representation of the vendors on the committee.

144

6 SYSTEM RECOVERY

The IPAD system consists of a collection of computer facilities provided to the
IPAD user (Figure 6-1):

TAPES .TOPERATING 0 PP
SYSTEM

DISKS CHANNELS

CM BATCH INTERACTIVE DEVICES
BATCHCOMMUNICATIONS

Cr EXTENDED
CORE

IPAD

Figure 6-1. IPAD System Overview

1. Computer hardware:

a. Central processor (arithmetic unit).

b. Peripheral processors, e.g.

" Integral buffered processors.

" Channel couplers.

" Remote minicomputers.

c. Memory units, e.g.

* Main memory (usually core).
o Remote (extended) memory (usually core).
o Disks.
* Drums.

d. I/o devices

* Card readers.
* Card punches.
* Line printers.

145

" Tape units:

" Magnetiq. .

* Punch-paper.
" Online recorders (usually microfilm).
" Remote terminals.
" Operators consoles.

e. 	 Communications equipment:

a Modems.
* Multiplexers.

-* Channel controllers.
* Telephones.

2. Computer operations/maintenance personnel. 	 ,

3. Operating system (e.g. CDC's SCOPE 3.4) with various subsystems:

a. 	 Data Base Management Subsystem (DBMS).
b. 	 Timesharing (e.g. CDC's INTERCOM 4. 1).
c. 	 Query Processor (QP).
d. 	 Compilers (e.g. FORTRAN, COBOL, BASIC).

4. 	 IPAD system:

a. 	 Executive functions (e.g. EXEC, EXPANDER).
b. 	 Utility functions:

* Special Purpose Utilities (SPUs, e.g., -SCHEMA Asselmbler);
e General Purpose Utilities (GPUs).

c. 	 OMs.

From the user's point of view, a failure at any level-in the collection constitutes a
failure of IPAD although only category 4 is IPAD specific software.

All computing systems considered adequatefofr IPAD provide some degree of
recovery, either within the hardware or the operating system software. The extent
of that recovery differs among systems. This section reports on an investigation of
the recovery capabilities offered by the three target computing systems:'

1. 	 The CDC Cyber 70 (or 6000) series with SCOPE 3.4, INTERCOM 4.1
and QP/DBMS.

2. 	 The UNIVAC 1106, 1108 or 1110 with EXEC 8, C.TS and QP/DBMS.

3. 	 The IBM 370/158, 168 with CMS and QP/DBMS.

146

6.1 Recovery Within IPAD-Specific Software

This level of software consists of the IPAD EXEC and related software, Special
Purpose Utilities (SPUs), the IPAD General Purpose Utilities (GPUs) and the OMs that
have been incorporated into an IPAD implementation. IPAD's recovery featires depend
heavily on capabilities provided by supporting levels, hence they need not be very
sophisticated or elaborate.

Specifically, all data associated with a users task (and processed by DBMS)
will reside in permanent storage. A failure of any kind will not require repetition
of an entire task but rather restart of the OM/GPU being executed at the time of fail
ure. (This is due to recovery capabilities provided by supporting levels.) The IPAD
EXEC provides the capability of stepping through a TCS without executing OMs/GPUs
that .had been completed prior to the interruption. GPUs are to be designed as a
number of subtasks with the user in control of the sequence of execution. This pro
vides a second level of task stepping; the user can resume work very near the in
terruption point.

Nominally, no standards are imposed on the individual OMs, consequently some
will and some will not provide recovery capability.

At any restart, there is a requirement to restore the data base to the condition
that existed at the beginning of the interrupted process, that is to undo the effects
of a partially completed operation. This capability is provided by the next supporting
level (following section) .but is a user option in establishing an IPAD task, and must
be accomplished by the user at restart.

6.2 Recovery Within the QP/DBMS Subsystem

The DBTG report left DBMS subsystem recovery to the realm of individual im
plementers with the comment (Reference 4 page 21):

... the specifications for a complete DBMS should include descriptions
and language specifications for:

the data base Recovery System including activity
logging, checkpoint and rollback.

Implementation; as typified by'preliminary documentation of CDC's DBMS and QP
(i.e. QU/2, see Reference 8 and 9) provides the option of logging before and/or
after RECORD images as well as transactions of all modifications of a given AREA.

147

The user can access the log and Recover/Restore to a specific milestone yia QP

Given a status of the AREA where the effect of a sequence of transactionsdirectives.
has been lost, Recovery consists of repeating transactions to a milestone, i.e. the

transaction corresponding to the last completed subtask. Restoring consists of execut

ing the complement of the recorded transactions in reverse sequence.

In addition to functional continuity over system failures, the experienced IPAD

user will employ activity logging to support the exploratory nature of his work. Through

activity logging he can investigate the effects of a decision, restore the UF to undo

those effects and try an approach based upon a different decision.

There are costs associated with activity logging in terms of response time per

transaction and extra storage requirements for redundant data. The experienced user

is permitted (and required) to make a tradeoff decision for each AREA established

in the process of assembling a UF.

The advantages of activity logging are best shown in contrast to conventional

file handling techniques outside the IPAD framework:

1. 	 Within IPAD, the user specifies his need for activity logging during

UF assembly. Thereafter DBMS performs the activity logging whether

the activity is requested by a QPS, an OM, a GPU or other system

utilities.

Outside IPAD, data is normally "saved" a file at a time:

a. If the user is in close control of the process, he
periodically interrupts himself to accomplish the
"'save".

b. 	 For non-interactive OMs the "saving" must be provided

by the programmer; the user has no facility to accomplish

it for himself.

2. Within IPAD (using activity logging) the response time and space require

ment costs are directly proportional to the transactions, i.e. to the actual
need for redundant data.

Outside IPAD, the "saved" data is typically a case of overkill, providing
an excess of redundant data at excessive cost.

3. 	 Within -PAD(using activity logging) the user has access to the log, can

determine exactly what has been done and what has not been done, and
can recover/restore to the single transaction level.

148

Outside IPAD, the user is confronted with file oriented data management
and utilities. -Filesget lost in systen failures, the exact status of saved
files cannot be determined easily, etc.

The 	IPAD framework permits the use of conventional files,where:

I. 	 The format, content and preparation of the files has been previously
standardized so the user need not directly access the files.

2. 	 The user employs a manufacturer supplied utility such as a Text Editor
which does not interact with DBMS (at least in present implementations).

3. 	 The user prefers to use conventional files with his own OMs and utilities.

4. 	 The user or DBA is mapping information into or out of the database
via QP.

The unnecessary use of conventional files is not encouraged since it requires that
the user interact with software which supports IPAD rather than with IPAD itself.
Specifically, the system recovery and data management functiong dealing with con
ventional files are not enhanced by either IPAD or DBMS.

6.3 Recovery Within the Timesharing Subsystem

The failures of the timesharing subsystem from which the subsystem attempts
to recover are hardware failures in the communications devices, They include fail
ures of modems (at either end), terminals, or phone lines; the most common failure
is spurious phone-line disconnects. Most communications failures affect only a single
user, but the loss of a multiplexer (MUX) or line adapter can' affect a whole group of

.terminals-

A communications failure results in the termination of any program in progress
at the instant of failure. None of the three target computing systems being considered
for IPAD offers any automatic facility to restart a program where a communications
failure occurred. All, however, proviae methods for recovering files. The user is
concerned with a UF region of the data base which is composed of one or more perma
nent files as viewed by the timesharing subsystem. All target systems retain perma
nent files associated with interrupted tasks.

6.4 Recovery Within the Operating System

Operating systems of the class considered suitable for IPAD contain features
designed to maintain stability and reliability in spite of a multitude of programming

149

errors and software/hardware failures. The basic mechanism is that the hardware de

tects errors or'failures and invokes appropriate software procedures to prevent or re

cover from harmful effects. Action taken by the procedures depend on the seriousness

and nature of the error and on control options. The actions range from most to least

serious including:

1. 	 Immediate cessation of all processing.

2. 	 Orderly termination of one or more tasks.

3. 	 Diagnosis of the (permanent) error for the associated task.

4. 	 Repetition of the operation producing a (marginal) error until a correct

result is obtained.

The systems also provide utility programs to assist operations and maintenance

personnel in preventive maintenance, creating backup copies of data, ,restoring data

from backups, etc.

Various degrees of support for the checkpoint concept is provided but in practice
this is not an effective ,automatic recovery feature relative to system failures.

6.4.1 System Failures. - Operating system failures result from hardware (other
than communications) or software failure at the central site. They generally (but not

always) effect every user on the system at the same time. (The loss of a tape unit or

a private disk pack might effect only a single user.)

All three target systems attempt to recover from system failures in much the

same way as they recover from communications failures, i.e., ,saving permanent files
and restoring interrupted tasks. The degree of success in recovery however may be
considerably less than with communication failures depending upon the initial cause
of the failure. If an output operation is in progress when the system fails the infor
mation being transferred will generally be lost. If it is part of conventional file, that
file 	can contain nonsense after recovery; if it is part of a directory, one or more
files may be lost altogether. A related problem is loss of synchronization; if a new
file 	is written and then the system fails before the directory can be updated the file
may be inaccessible. On the other hand, if the directory is updated first it may point

to a non-existent file. The systems attempt to detect any such effected files during
recovery, but they are not always successful.

If an operating system failure interrupts an output operation under DBMS, the

consequences are not so ominous because the user can inspect data via QP and re
pair the damage at the RECORD or even DATA-ITEM level. If activity logging is

employed, the recovery should be complete and essentially painless.,

150

'One ,type of failure for which recovery provisions should be essentially perfect
-,,s loss-of power. There is enough energy stored in the power supply's filter capaci
tors 	to,give the computing system several milliseconds to store away a record of
its condition when the failure occurred. In practice, though, a sudden power failure
often causes other (often very severe) hardware failures such as memory failures
or disk head-track collisions.

6.5 Recovery Within the Computer Operations Group

The computer operations group is responsible for developing procedures to
minimize the effects of human errors and supplement the automatic procedures of
the software to avoid heavy dependence upon automatic recovery. One of the most
common methods is to save all disk-resident files periodically (usually every night)
by dumping them, onto magnetic tape. A variation is to dump the entire disk only in
frequently (perhaps once a week) and dump only new or modified files (i.e., all-files
that have been opened for writing) every night; this lessens the amount of dumping
but makes restoring the disk more difficult in the event of a disk system failure.
Which method is used depends upon the frequency of these types of system failures.
The archiving feature provided by disk dumping is also a useful protection against
user errors: it is fairly common for a user to purge a file and then discover later
that he still needs it.

6.6 Recovery Features of Typical Hardware

- , In large scale modern computer systems, the processing hardware performs

two functions which were program responsibilities in antiquity:

1. 	 The detection of a multitude of hardware/software errors.

2.. 	 lnvpking software procedures to take appropriate action whenever an
error is detected.

These are not post-failure recovery functions but are the basis of all recovery. The
error handling procedures:

1. 	 Prevent propagation of the effects of errors thus reducing the requirements
for post-failure analysis.

2. 	 Correct errors thug preventing failures.

3. 	 Recognize imminent failures (e.g. loss of system residence disk),
diagnose the cause for the maintenance personnel, and complete critical
operations in progress.

151

6.7 Conclusions

IPAD-specific software does not include an explicit recovery module. Recovery
procedures depend heavily' on recovery capabilities provided by several levels of sup
porting software.

Each level of the supporting software provides some degiee of recovery capabil
ity to reduce the impact of failures at that level and to enhance the recover capability
provided by levels of software that support it.

Since the IPAD user works with an integrated UP (consisting of permanent files),
the QP/DBMS subsystem provides a user-oriented capability to recover/restore to
the level of single transactions. This is in bontrkst to the file oriented recovery
capability provided by the timesharing and operating system levels of software. To
the IPAD user, the file oriented approach is no'help atalr. Consequently, the use of
conventional files - viz files not processed by DBMS - is 'discouraged.

For all work attempted within the UF via DBMS, recovery pr6blems are reduced
by an order of magnitude and recovery eah be acconplished by an unassisted user.

152

7 SPECIAL PURPOSE UTILITIES (SPUs)

ExploitaItion of DBMS entails a special human-factors problem to be handled by
Special Purpose Utilities (SPUs). This section describes the human-factors problem
and provides a functional description of the solution. The overall process also in
volves the General Purpose Utilities (GPUs) and special utilities associated with the
IPAD EXEC. While this section is primarily concerned with SPUs (those whose only
purpose is to shield users from the details of DBMS interface), the application of other
utilities will also be described.

7.1 Human Factors Considerations: The Requirements for SPUs

The purpose of this group of utility programs is to assist IPAD users and pro
grammers in Providing for the requirements of DBMS. DBMS provides capabilities
to greatly assist the users and programmers in interfacing with a common data bash,
but in preparation for this activity a great deal of detailed information is required by
DBMS. This information must be supplied and expressed in new languages (DDLs
and DML) which would entail a prohibitive amount of time and labor without utility
program support. For example

1. 	 Each potential IPAD installation has a number of currently useable OMs
to be converted and utilized within IPAD. This effort alone - without
utility program assistance - would degrade the immediate usefulness
of IPAD.

2, 	 Learning the new languages is definitely not a trivial task, even for
computer oriented personnel (i.e., programmers). An implementation
that 	required the typical IPAD user to learn these languages would not
be feasible.

3. For each user-task, the user (who is not required to learn the DDLs)
must function as a DBA of sorts, mediating the conflicting requirements
of the OMs, and configuring a UF which is a mini data base in itself.

Quite clearly, utility program assistance is required. The utilities provided espec
ially for this requirement are:

1. 	 The DML Insertion Preprocessor.

2. 	 The SUBSCHEMA Assembler.

3. 	 The SCHEMA Assembler.

153

--

The remaining sections describe these SPUs.

7.2 Incorporation of Existing OMs Into IPAD

Figure 7-1 illustrates the process of converting existing OMs to operate in the

IPAD/DBMS/QP framework. The objective of this process is to perform the con

version task and provide any IPAD user with all necessary material to make use of the

OM without further assistance from the originator or responsible programmer.

lODE F (TUTORIALS)

---- TOIAS
OM DOCUMENTATION I

TEXT EDIT

UTILITYBE-UNITSDEFAN TIO S

OPTIONS- NAtRR.ATIVE
COGNIZANT
\PROGRAMrAER/USER[

SOURCE INSERL ASSEMBLER C
\wrrH RITEL

SOURCE~~ INETO

/\

I I*DDL GENERATED FOR RECORD

DDL ** (INCOMPLETE NOT YET j
STRUCTURES, DM1 GENERATED 'DDI#1

-- RELATED TO A SCHEMA)FRo VARIABLE NAMES.

DDL EXPANDED WITH I
(DATA BASE- RECORD NAMES

UPDATE)- EQUIVALENCES
-SETS (IF NEEDED).

DML EXPANDED TO RECORD AND FILE LEVEL.

Figure 7-1. Initial OM Incorporation into IPAD

OMs to be incorporated in initial implementations are restricted to the FORTRAN sourci

language (see Section 8). The incorporation process is essentially the same, how

ever, with additional modules to process other OMs when language development permits

The inputs to the incorporation process are:

I

154

1. 	 Existing FORTRAN source code of the 0M.

2. 	 Programmer's analysis resulting in:

a. 	 Source code modifications/additions.

b. 	 Text for tutorial IODEF.

c. 	 Text for Task Control Sequence Skeleton (TCSS),

equivalent to a sample job setup.

The 	outputs are:

1. 	 Updated version of OM source code.

2. 	 Updated version of OM object code.

3. 	 DDL expressing the I/O requirements of the OM.

4. 	 Tutorial portions of the IODEF (e.g., variable glossary).

5. 	 TCSS to be used in preparing to execute the OM.

The 	intermediate results produced are:

1. 	 Diagnostics - to call the programmer's attention to problem areas
and to summarize the conversion problem,

2. 	 Updated version of OM source code containing FORTRAN DML
and representing the first cut at conversion.

3. 	 A first cut at SUBSCHEMA DDL required to interface with DBMS.

Through the SPUs, the programmer/user performs:

I. 	 DML insertion - replaces conventional FORTRAN I/O operations
with equivalent DM L.

2. 	 DDL gpneration - extracts data structure specifications from
conventional I/O coding and constructs DDL for the SUBSCHEMA.

3. 	 SUBSCHEMA assembly - orders and completes the DDL for a
partial SUBSCHEMA (relationship to SCHEMA yet undefined)
and insert DDL and DML at the file level.

Through GPUs, and other supporting utilities, the programmer/user performs:

4. 	 FORTRAN compilation - produces a new version of the OM object code to
interface with DBMS.

155

5. 	 Text editing - creates data contents for the tutorial portion of the IODEF
to be associated with the OM, and text for a TCSS to be associated with
the OM.

6. 	 TOSS writer - edits the TCSS produced via a text editor to finish
preparations for the TCSS Expander.

7. 	 Data base update - requests the DBA to insert all outputs (see Figure 7-1)

of the conversion process into the data base, which is available for all
IPAD users.

7.2.1 DML Insertion Preprocessor. - The DML Insertion Preprocessor (Figure 7-1)
is required to assist the programmers in converting conventional FORTRAN programs

to interface with DBMS. The objective is to replace conventional FORTRAN I/O cod

ing with logically equivalent DML.

Actual implementation of this capability may be combined with the SUBSCHEMA
Assembler (Section 7.2.2) and/or may decompose into two or more separate utility
programs reflecting different requirements for interaction with the programmer.
Figure 7-1 depicts such an implementation. The mechanical aspects of DML insertion
and DDL generation are depicted as occurring within a single batch mode DML Inser,
tion Preprocessor execution. A second pass is depicted during which the programmer
interactively "cleans up" and finishes the conversion.

Regardless of implementations, the capability required of a DML Insertion Pre
processor is to replace the procedural aspects of FORTRAN I/O coding with DML,
which is the procedural interface between the OM and DBMS.

The requirement for this capability should influence dedcisions in the DDL/DML
language development; the detailed requirements of the capability, in turn, depend
heavily on the DDL/DML language development.

An overview of the requirements:

1. 	 Scan the FORTRAN source code of the OM to:

a. 	 Locate conventional I/O coding to be replaced.

b. 	 Locate ambiguities which cannot be resolved by the

DML Insertion Preprocessor.

2. 	 Permit the programmer to modify the FORTRAN source code as required.

3. 	 Automatically replace conventional codingwith equivalent DML:

a. 	 Locate occurrences of database RECORDs to be input.

156

bL 	 Cause input RECORDs to be brought into the User's Work Area (UWA).

c. 	 Disribute' input RECORD contents from the UWA into internal
storage locations.

d. 	 Generate occurrences of database RECORDs to be output.

e. 	 Assemble the contents of output RECORDs from internal storage
locations into the UWA.

f. 	 Cause output RECORDs to be transfered into the database.

The 	COBOL DML requires only that DBMS deliver or accept a contiguous
block of data per RECORD. Conventional FORTRAN READ/WRITE state
ments result in compiler generated code to scatter-READ or gather-WRITE.
Replacement of READ/WRITE may require explicit new code to scatter/
gather (items o/e above) depending on conventions adopted for DML syntax
and compiler extensions.

In summary of the above requirements, the conversion required relative to
DML is translation from one set of imperatives to another. A FORTRAN READ state
ment for example results in three DML b6mmands (per the COBOL DML, see Referen
ce 4):

1. 	 'FIND - search the database and establish the existence of the desired
RECORD.

2. 	 GET - transfei data values from the RECORD occurrence into the UWA.

3.-	 MOVE - transfer data values from the UWA into internal array, vector,
or scalar locations related to mathematical procedures.

The function to be executed by the DML Insertion Preprocessor is to replace the READ
with the DML sequence and distribute parameters - associated with the READ - into
appropriate operands over the sequence of DML commands. The development of this
functional capability is envisioned as a small task relative to the development of the
capability to produce appropriate SUBSCHEMA DDL.

The scope of this function falls far short of complete conversion. In any con
version effort the human mhst inevitably finish the job. The overall process described
here provides for the programmer to interactively modify the results achieved by an
automatic implementation of mechanical conversion rules.

7.2.2 SUBSCHEMA Assembler. - The objectivd of the interactive SUBSCHEMA
Assembler is to derive SUBSCHEMA DDL from the conventional I/O coding of an OM.

157

In contrast to the batch DML Insertion capability (Subsection 7.2.1) whidhis concerned
with inserting the logically equivalent procedural interface, this capability is concerned
with extracting data descriptions and producing DDL, which is the required declarative
interface with DBMS.

As discussed in Subsection 7.2.1, implementation may combine DML insertion
with DDL extraction such that the interactive SUBSCHEMA Assembler utility is the
"clean up" phase of both functions. The capability to be provided is little more than
*thatof (possibly) correcting and finalizing the source code for the OMI and generating
the associated DDL.

Regardless of the functional packaging, an analytic capability must be provided
to pioduce a declarative interface with DBMS from analysis of conventional FORTRAN
I/O 	coding. The requirement for this capability should profoundly influence the DDL/
DML language development tasks (as they relate to FORTRAN) and the need for new
software functions will be almost entirely dictated by the language development de
cisions. Conceivably, the new functional requirement could be as little as extraction
of the FORTRAN FORMAT statements and the LISTs from all associated READ/WRITE
statements. FORTRAN compilers and I/O support software have long provided the
analytic capability required so that this capability could be transfered to a single utility
functioning as the DDL compiler.

7.2.3 Other supporting utilities. - The relationship of other utilities to the DBMS
interface problem is described in the following subsections.

7.2.3.1 The FORTRAN compiler: This is the usual manufacturer-supplied utility
which converts FORTRAN source code into executable object code. Implementation of
IPAD will require the manufacturer to upgrade existing FORTRAN compilers to pro
cess the DML enhancements to FORTRAN. Compilation of DML statements provided
'within the enhancement results in object code to interface with DBMS:

1. 	 Provisions to invoke one or more SUBSCHEMAs at execution time.

2. 	 References to names within the SUBSCHEMA invoked (to permit

independent construction and compilation of the SUBSCHEMAs);

3. 	 Calls for DBMS functions.

4. 	 Provision for status communication (e.g., error diagnostic codes).

7.2.3.2 Text editor utility: The text editor is a manufacturer supplied general pur
pose utility (see Section 3 of Part IlI) employed by the programmer to:

1. 	 Construct any appropriate tutorial aids (see.Section 8 of Part III).

168

2. 	 Construct a TCSS to include:

- a:' 	 Tutorial preface for user interface with TCSS Expander (See
Subsection 2.2.1).

b. 	 Typical OSCL image distinguishing:

* Invariant portion of the OSCL.

* Thsk dependent dummy parameters.

7.2.3.3 TCSS writer: The TCSS Writer is an IPAD utility associated with the EXEC
function (See Subsection 2.2.2). The programmer employs this utility to prepare the

TCSS as constructed by the text editor for processing by the TCSS Expander. The
objective is to locate and correct any syntax errors in the OSCL image and to construct
cross-reference pointers between a list of the dummy arguments and their occurrence
within the TCS image (See applicable discussion in Subsection 2.2. 1. 1).

7.2.3.4 Data base update: The data base update process is envisioned as one or

more QP Sessions (QPSs) a8 outlined in Section 4.2. A conversipn has been accom
plished on an OM and all required data to incorporate it into IPAD has been produced.
The remaining task is to install the data within the database and make it available to
IPAD users. The exact procedure depehds on project administiation decisions re
sulting in DBA activities and controls. Typically, a QPS places data in an update
file, along with identification and prefabricated display commands. A message is
placed in the DBA's TSA requesting him to review the data and incorporate it in the
data base.

The project data base (see Section 4.1) provides a Disciplinary Library File
(DLF) to contain utilities, OMs, design data, etc., used primarily within a single
functional group or discipline (but accessible by others). The SCHEMA DDL descrip
tion of the bLF provides for new occurrences of OMs consisting of:

1. 	 QPSs for tutorial aids - which include descriptions of tutorial data.

2. 	 SUBSCHEMA.

3. 	 TCSSs.

4. 	 OM object code and, possibly, OM source code.

7.3 SCHEMA Assembler

The SCHEMA Assembler is an interactive utility with which the user, in effect,
integrates a software entity to accomplish a study or design task. Each user has a
recurring need for this utility, in that he will need to integrate an appropriate entity

159

for 	each task assigned to him. (For a description of this process, the reader is re
ferred to Section 1.3 of Part I)D. The extent of supp6rt to be provided is indcated
by noting that an inexperienced, problem-oriented IPAD user is to function in the
capacity similar to that of the DBA as it relates to his flFs. The prime resp6nsibility
of the DBA is to mediate conflicting requirements of programs sharing data'and to
develop a SCHEMA which is a compromise. The DBA is envisioned (Section 4.3) as
highly skilled and knowledgeable of DBMS and the DDLs. This utility is required to
reconcile the difference in skills between the DBA and the typical IPAD user.

Evolution of the user's task is typically:

1. 	 Definition of the task through interaction with the Task Status/

Action file (TSA).

2.' 	 Selection of a group of OMs which provide the, required capability.

3. 	 Permit examination and re-examination of tutorial data provided with

each OM.

4. 	 Permit examination and interpretation of SUBSCHEMA specifications
provided with each OM.

5. 	 Through analysis of the SUBSCHE1VIAs, assist the decision making
process. For example, the user may decide (through intuition and/or
understanding of the tutorial aids) what data is logically common to the
OMs. After this decision, the following types of decisions must be re
flected in the SCHEMA DDL without requiring that the user compose
SCHEMA DDL directly:

a. 	 Are redundant copies of common data needed?

b. 	 If common data is known to various OMs by various names,
what is its name to be used in the SCHEMA?

c. 	 If various OMs describe common data as structurally different,
which description minimizes the transformations required of DBMS?

d. 	 What transformations, other than structural, are to be implicitly
performed by DBMS?

e. 	 What transformations are to be explicitly performed via QP ?

6. 	 Produce SCHEMA DDL for his UF which is basically a translation of
the assembled SUBSCHEMA DDL, modified by the user's integration
decisions.

7. 	 Produce the completed SUBSCHEMA for each OM by inserting appropriate
references to the UF into the prototype SUBSCHEMAs provided.

160

PrefabricatedTCSs may be available which would permit the user to repeat the pro
cessing which integrated a similar entity previously. In creating a substantially new

entity, the utilty is required to provide the following support (Figure 7-2 depicts the

functional. overview):

USER

[O/1DEFS UOMs)

-SCHEMA 1D SB
,- ASSEMBLER COMPILER SCHEMA

PA ""- KOBJECT
-

4I00 jOMS)
1DJARTAL DDL (3OMs)\\

*

\ SUBSCHEMA / SCIEM2\ jOMs) /sCHEI
 -J

% ~FOR OBJEUFCYT

SCHEMA MODULE FOR UF
(DESIGN-TASK WORK AREAS)

UNxION OF SUBSCHEMA DDL
AS ESTABLISHED BY USER

Figure 7-2. OM Interface Resolution Per Design Task
Through Definition of a UF in the SCHEMA

The DDL complier produces object versions of the individual SUBSCHEMAs, and an

object version of the UF SCHEMA-module to be dynamically appended to the current

object SCHEMA.

161/162

8 RESTRICTIONS

The intent of the IPAD system design is to provide an environment encompassing
as much as possible of the current capabilities at any given installation. The restric
tions imposed by the design are consequently very few.

8.1 Restrictions on OMs

An objective of IPAD is to incorporate and enhance the present level of capability
in the computerized design process. Consequently the incorporation of all OMs at a
given installation, basically without change, was a constraining factor in evaluating
design decisions.

Within the IPAD environment, the OMs interface with two software entities not
present in their current environment. Restrictions imposed by IPAD therefore relate
to the IPAD EXEC and the manufacturer supplied DBMS.

The EXEC permits the full use of the operating system under which the OMs were
developed but provides the IPAD user more flexible control through the TCSs. A re
striction is imposed here in that the execution of an OM may not alter the TCS which
contr4lis its execution.

Interface with DBMS is required to achieve the IOF objectives. This imposes
source language restrictions, prohibits asynchronous operations within the OM, and
requires source code modifications and extensions. Special Purpose Utilities (SPUs)
are provided to assist in constructing, the DBMS interface (Section 7).

In order for an OM to interface with DBMS, certain enhancements must be made
to the general capabilities of the source language used in developing the CM (see
Section 5). The required enhancements for COBOL have already been specified (Ref
erence 4) and the initial IPAD release will'require implementation of a DML-enhanced
FORTRAN. Other languages will be enhanced as the IPAD community grows and de
mands language development.

8.2 User Restrictions

From th6 viewpoint of the system designer, IPAD imposes no restrictions on the
user; the user is free to employ any computer capabilities that he might employ without
IPAD. The intent of the system design is to provide these capabilities as an integrated

163

system featuring direct, interactive interface with the user.

Effective use of'the system, however, vill 'teuirese relearning on the part
of the individual user and restructuring of project organization:

1. 	 The user must learn - in addition to the normal computer facility
operation - the control languages of the utilities which provide the
direct, interactive interface. Also, to configure a task oriented UF,
he must become familiar with the concepts associated with integrated
data bases.

2. 	 The project organization must provide system specialists to perform
the DBA function (see Section 4.3).

8.3 Restriction on the Use of IPAD

The thrust of system design was directed toward providing capabilities to be
used in any situation involving the systematic use,'of computer facilities. Restrictions
on its use will be imppsed only by administrative needs. One such need, obviously,
is security.

DBMS provides for guaranteeing the privacy of data designated as private by
the DBA. This guarantee does not satisfy DOD security regulations, consequently
DOD regulations will prevail. (See Volume IV, Section 5.6 of Part I for a discussion
of DOD regulations.)

The same situation may apply with respect toproprietary work. The decision
in each case is administrative, not a function of the IPAD design.

164

TRANSFERABILITY, HOW IT ISBTAINED

Preliminary considerations concerning transferability were presented in Volume
IV, Section 6 of Part I:

1. - -Transferability was distinguished from transparency.

2. 	 Factors affecting transferability were introduced.

3. 	 Transparency was treated at length and recommendations
were proposed.

4. 	 The subject of this discussion was stated: to identify and resolve
areas in which transferability can be achieved effectively and areas
where the results are not vorth the costs.

In. the manner of the iceberg'concept presented in Volume IV, Section 7 of Part I,
IPAD caumbe decomposed into the following areas:

1. 	 The OMs incorporated into IPAD at a particular installation. The
goal of transferability is applicable to general purpose OMs but their
transferability is essentially unrelated to the IPAD design excepting
that new designs 'should emp1py the approach.

2. 	 Computer system manufacturer-supplied software which, of oourse,
is not considered a candidate for transferability. The related issue to
be resolved however - before transfer is attempted - is that manufacturers
must provide equivalent capability arid support. This software includes:

a. 	 The host operating system.

b. 	 The host timesharing subsystem.

c. 	 Compilers for:

* 	 Programming languages used, principally- FORTRAN, upgraded
for DML enhancements.

* 	 DDL.

d. 	 A DBMS - per the DBTG recommendations - with any upgrading
required by language development (See Section 5).

e. A QP to provide the user interactive interface with DBMS (as
discussed in Section 5.5).

165

3. 	 An integrating interface, embodied in:

a. 	 DDL, which defines a data base and permits OMs and utilities
to interface with the data base, and

b. 	 TCSs (and TCSSs) and their subsets (e.g., QPSs and QPSSs),
which are prefabricated sequences of command language to
control all pertinent executable code.

At any given installation, the frnvestment in this interface area
will probably be greater than in IPAD-special executable code.
Consequently, tranferability of this non-executable code will be
discussed in Section 9.1.

4. 	 Executable code developed especially for IPAD and required by the
integrated framework. This area consists of three software groups:

a. 	 The EXEC and related utilities are basically intended to interface
with a particular machine/system, so intuitively it would be ex
pected that little practical transferability would be achieved (as
discussed in Subsection 9.2.3.1).

b. 	 The SPUs, which function to reduce the impact on human engineering
objectives of the DBMS interface languages (DML and the DDLs).
Since these languages are to be standardized to a high degree,
some degree of transferability will be achieveable (as discussed
in Subsection 9.2.3.2).

c. 	 The GPUs, which support the interactive user by augmenting the
capabilities of OMs. Transferability would currently be difficult
to achieve because of the variation in graphics capabilities among
manufacturers. However, a standard GGL is anticipated (see
Section 5.6) which will alleviate this difficulty. Otherwise, the
nature of the GPUs is very user-oriented, indicating a high degree
of transferability can be achieved (as discussed in Subsection 9.2.3.3)

9.1 IPAD Non-Executable Code

This is the interface with supporting system software which integrates general
capabilities into a functional entity. Prior to the concept of a DBMS as recommended
by CODASYL, the non-executable interface consisted almost entirely of command or
control languages (the OSCL). The scope of the investment in coded sequences of these
was such that transparency rather than transferability was the goal. An industry
standard DBMS and its standard interface languages change this situation somewhat:

1. 	 A standard DBMS is effectively the same as a transferable DBMS.

166

2. 	 The task of developing a DBMS (and an IOF capability) tailored to IPAD
requirements has been-epladed by the task of' developing an IPAD inter
face with the standard, general DBMS.

3. 	 Without this body of software interface there is essentially no IEPAD
implementation.

Transferability of this code can be achieved by the development and implementation of
standard languages as discussed in Section 5.

9.2 IPAD Executable Code

This is the IPAD-special software embodied in modules of source code which
when compiled - results in object code corresponding to computer instructions. This
is the area for which transferability was postulated in the conceptual design as an im
portant objective.

The complete set of factors affecting transferability of these system modules,
and the relationships among these -factors is much too large to d8al with here. How
ever, the more important factors include:

1. 	 Choice o appropriate language and proper us6 of each module.

2. 	 Compatibility of compiler support.

3. 	 Compatibility of hardware/software architecture.

Of these three, only the choice of language (ahd many choices concerning how it is to
be used) is controllable by the IPAD design.

9.2.1 Choice of an appropriate language. - Five computer languages are considered
as candidates for the IPAD system modules: FORTRAN, ALGOL, JOVIAL, PL/1 and
COBOL. In addition, the various assembly languages are considered as a separate
class for comparison purposes. The choice of an appropriate language for each sys
tem module depends mostly 9n themoduihrity specified in the final build-to specifi
cations. These specifications should iermit matching the requirements of the module
to the language features as follows:

1. 	 Matching the modularity specified to the modularity attainable in
each language.

2. 	 Matching the function required to tIe applicability of a language to
meet that function:

a. 	 Math applications.

b. 	 Character manipulation.

167

c. 	 Logic and control.

d. 	 Fuictional interface with, and, dependency on, the operating system.

e. 	 I/O operatiolns.

3. 	 Matching the programming skills generally available to the programming
skills associated with a language as indicated by:

a. 	 Extent of current (domestic) usage.

b. 	 Ease of learning.

c. 	 Ease of use (once learned).

d. 	 Ease of modification.

4. 	 Matching the transferability required to the transferability attainable in
each language.

5. 	 Matching the efficiency required of a system module to the attainable
efficiency of the compiled code.

Before a language can be chosen through these considerations, it may be rejected
from consideration because it is unavailable for the implementation. Availability of
the five languages on the three target systems may be summarized as follows; all
languages are available on all three target systems except: PL/1 is currently avail
able only on IBM systems and JOVIAL is currently available except on IBM systems.
This situation may change* by the time a language selection must be made, so both
language are retained in subsequent discussions.

Having chosen a language for each module based on all the above considerations,
the degree to which IPAD software will be transferable is mostly influenced by matching
the functions required to the applicable languages. All the higher-level languages con
sidered have a high degree of transferability attainable. However, tranferability is
often not achieved because the design application neglected to match functional modules
to applicable languages. As a rule, one language is used, rather a mixture of languages,
to code an entire software capability. Transferability is~further degraded when each
programmer employs his own techniques to overcome deficiencies of the single language.

9.2.2 Candidate language comparison. - The pertinent features of the six candidate
languages are compared in Table 9-1. Each language is subjectively rated on the features
presented in Subsection 9.2.1. The -ratingreflects the appropriaten6s of the language
to an IPAD system module application with respect to each feature. The ratings are

* For example, CDC is said to be working ona PP/I compiler.

168

picked from a numerical scale of I (low) to 10 (high) in order to indicate a relative
comparison. No measurements are implied by the quantification; the ratings are
assigned 'oh the basUh of a 'oonsensus of opinion in the literature and among programmers.
Each language is briefly discussed in the subsections which follow.

TABLE 9-1

CANDIDATE LANGUAGE COMPARISONS

FORTRAN ALGOL JOVIAL PL/1 COBOLASSY
MODULARITY 10 6 4 9 9 10

APPLICABILITY TO:

1. Math Applications 10 10 ' 9 10 6 10
2. Character Manipulation 1 1 6 8 8 10
3. Logic and Control 6 8 8 8 7 10
4. OS Interface 1 4 4 41 1 10
5. I/O Operations 4 4 6 6 8 10

LEVEL OF SKILL MEASURES:
I I

1. Current Usage 9 2 4 6 10 10
2. Ease of Learning - 8 4 4 6 8 1
3. Ease of Use 6 6' 6 8 6 5
4,. Ease of Modification 6 1 1 3 6 3

TRANSFERABILITY ATTAINABLE 9 7 8 6 9 1

EFFICIENCY OF COMPILED CODE 8 6 8 4 8 10

9.2.2.1 FORTRAN: FORTRAN is among the most widely known and used languages
in the scientific field and is available on all large (and most small) computers. Due to
its lon usage and wide acceptance it has undergone many reyisions to become quite
efficient. Most FORTRAN compilers produce efficient code. FORTRAN is strong in
mathematical processing and'good at logical decision making. The I/O features are
good but, as in all higher-level languages, these are often implemented by assembly
language subroutines of rather low efficiency.

FORTRAI is weak or deficient in scaled fixed-point arithmetic, address or
pointer manipulation, run-time storage allocation, recursive or reentrant programming,
and capability in processing part-word data, such as character manipulation.

9.2.2.2 ALGOL: ALGOL enjoys wide usage in Europe but is not widely used in this

169

country. It has many of the features of FORTRAN and includes some reentrant and
recursion capability. The unfamiliar reader has.diffjculty following the instruction
flow due to a feature which includes deeply nested BEGIN... END blocks. There are
a number of ALGOL compilers available but most are inefficient.

9.2:2.3' JOVIAL: JOVIAL is an outgrowth of ALGOL and is principally used by the
Air Force. It has the advantageous feature of declaration-based design which allows
high transferability. It has a cumbersome interprogram communication method called
COMPOOL (which functions somewhat like unnamed common) which complicates pro
gram modification. JOVIAL-compilers are not widely available; for example, there is
not known to be one for the IBM'360/370.

9.2.2.4 PL/I: PL/1 is principally available on IBM 360/370 Series computers. It
is very close to containing all the best features of all the other languages discussed.
It does have the disadvantage of being extremely complicated .as is ALGOL and is,'
difficult to follow by an unfamiliar reader. It has extensive data declarations (increas
ed transferability) which languages such as FORTRAN do not contain. Unfortunately
compilers do not gendrally exist for other than IBM computers.

9.2.2.5 COBOL: COBOL is basically a business laiguage but has strong capability

in character manipulation and file handling which could be of some,use to IPAD. It is

a relatively simple language,but somewhat tedious to use because of its verbosity. It

is widely known and used - perhaps even more than FORTRAN - and compilersTare

available on most large computers.

9.2.2.6 Assembly Language: If a job can be done at all on a computer it can be pro
grammed in its assembly language. Assembly language permits the highest degree of

efficiency attainable for a particular machine. It offers very powerful facilities such

as synbolic parameters, conditional assembly, and macros which make it possible to

reconfigure very general programs simply by changing definitions and reassembling.
These features are rare among higher-level languages. Most assemblers offer the
helpful facility of printing comments on the same line with instructions which mpst
compilers do not. , ',"

A high degree of skill in programming is always evident in the degree of efficiency
attained through use of an assembly language.

9.2.3 Overview of functions to be performed. - As discussed in Subsection 9.2.1, the
primary factor in obtaining overall transferability is matching required functions to
applicable languages. This discussion characterizes the groups of IPAD syste software
in terms of types of functions listed in Subsection 9.2.2'.

170

9.2.3.1 The IPAD EXEC and related utilities: The essential function of the EXEC is
to augment the features of' the host operating/timesharing system. Primarily this
entails interfacing closely with the existing capabilities of the host computing system.
The functions to be accomplished are often so closely related to the host system that
at times a functional requirement must be achieved via a modification to the host soft
ware as opposed to incorporating the code in the EXEC. (e.g., CDC's INTERCOM
4.1). As is evident, attempts to make the EXEC a transferable entity would probably
not be worth the cost.

EXEC-related functions include the TCSS Writer and TCSS Expander. These
functions are primarily concerned with manipulating character strings to produce
valid control language sequences to control the activities of the operating/timesharing
system as well as any interactive capability. A secondary activity is to provide tutor
ial assistance to the casual user concerning the requirements of any particular control
sequence. Further, reduction of these functions to logical modules should identify
modules in which character manipulation is independent of the control language being
produced, and the tutorial assistance modules are independent of the lesson being
taught. However, the total contribution of these modules Would trade badly with the
inefficiency inherent in providing such small modules.

Considering the three functions as three monolithic entities, no available high
level language seems to be well adapted to coding the EXEC and related utilities.
FORTRAN is very weak on character manipulation and completely lacking in recursion,
although both of these deficiencies could be overcome by assembly-language subroutines.
ALGOL provides recursion but is no better than FORTRAN for character manipulation;
COBOL is strongly oriented toward character manipulation but lacks recursion. PL/1
has all the necessary capabilities but compilers are generally available only on IBM
systems. The only practical approach, then, is .to use assembly language with no
transferability, i.e., program the EXEC in the assembly language of each "target"
host computing system series.

9.2.3.2 The SPUs: The nature of the SPUs is similar to the TCSS utilities of the
IPAD EXEC; they are primarily concerned with manipulating character strings in order
to produce valid source code, and are secondarily concerned with tutorial assistance.
However, important differences should be noted:

1. Standard languages are involved:

a. FORTRAN (e.g., programming source).

b. SCHEMA DDL.

c. SUBSCHEMA DDL per standard host language (FORTRAN).

d. DML per standard host language (FORTRAN).

171

2. 	 Tutorial content as well as the method of presentation could be transferable.

3. 	 Less stringent efficiency requirements -would be tolerable:

a. 	 DML Insertion Preprocessor and SUBSCHEMA Assembler
are used only for non-recurring tasks.

b. 	 SCHEMA Assembler is used approximately once per user
task (as described in Section 1.3 of Part 1I).

This 	is dn area, then, where very nearly total transferability is practicable.

9.2.3.3 The GPUs: The GPUs are the only IPAD software concerned with the ulti
mate use of IPAD, that is with actual design engineering. The EXEC and SPITs are
equally applicable to any computerized activity. Consequently, the development of
the GPUs requires the marriage of engineering and programming skills found in the
FORTRAN community, FORTRAN will undoubtedly be the optimum choice for the
majority of the GPU modules, even if it is not the best choice in the overall trade
presented in Subsection 9.2.1. The point to be resolved here then is how to obtain
transferable FORTRAN coding.

I

It is unrealistic to classify FORTRAN as a highly transferable language; however,
a fair degree of transferability may be attained if certain sensitive areas are avoided
such 	as character manipulation, use of shifts or logical operations on numeric operands,
or other operations which vary widely in execution on various machines. Modularity
is the mechanism by which sensitive areas are to be avoided. Some of the more obvibus
problems and pitfalls are discussed below.

Part -word data manipulation.- The biggest problem area is part-word data manipu
lation. There are two main reasons for this. The operators and functions used for
accessing and working with part-word data (AND,, OR, SHIFT, etc.) are not part of
ANSI-standard FORTkAN, and their syntactic forms and semantic effects vary from
one compiler to another. (The operators .AND., . OR, and .NOT. are defined in
ANSI FORTRAN but only for use with logical variables, not for use with numeric
variables.) The other reason is that whatever operators are dctually used, accessing
part-word data via inline code is complethly dependent upon word width. Eafch of the
three machine families being cohsidered for IPAD has - as might be expected - a
different size word: 32 bits for the IBM 360 or 370 series, 36 bits for the UNIVAC
1100 Series and 60 bits for the CDC Cyber 70 (6000) Series.

One major use for part-word data is in character manipulation, which is burden
ed with some extra problems of its own as well. The number of bits per character
and the number of characters per word also vary frok machine to machine: four 8-bit
characteis per word for IBM, six 6-bit or four 9-bit characters (depending on the

172 '

application) for UNIVAC, and ten 6-bit characters for CDC. The internal character
codes, collating sequences, etc.,,, naturally differ as well.

Character manipulation in FORTRAN should be avoided by employing character
manipulation modules to be written in assembly language.

Numerical precision.- The classic transferability problem area - the one that most
programmers worry about first when they have to move a program to another computer
- is numerical precision. This problem is so well known that it is probably not neces
sary to do more here than merely point it out, and admit that it cannot very well be
avoided. If the problem to be solved needs a given level of precision then it must be
run on a machine that will provide at least that level. In some cases the transfer can
be made by changing REAL variables to DOUBLE PRECISION, but not much can be done
if the variables that need it are COMPLEX or INTEGER or are already DOUBLE PRE-
CISION. It might also be noted that cases exist in which a mathematical model contains
marginally stable equations. For a certain application the numerical precision yields
satisfactory results but added precision may not,

Here again, when numerical precision becomes important in providing a capabil
ity, the design should specify that-the required precision be achieved through separate
precision-arithmetic modules.

Number-representation.- Differences in numberrepresentation can also cause pro
blems'when EQUIVALENCE statements are used to overlay different types of data
onto each other. Thus EQUIVALENCE should be used only to set up shared storage,
not to trick the compiler into accessing data of one type as if it were some other type
(e.g., referring to a floating-point word as an integer).

There are still some problems even when the EQUIVALENCE statement is used
only for storage sharing, but the three "target" computer families considered will not
be affected. On them, as on most current large machines, an INTEGER, REAL or
LOGICAL data item occupies one word and a COMPLEX or DOUBLE PRECISION item
occupies two words. This keeps all length and subscript relationships fairly simple,
either one-to-one or two-to-one, when any type is EQUIVALENCEd onto any other.
However, some newer computers are quite-large but have relatively short words
(16 - 24 bits); on these, an INTEGER or LOGICAL item occupies one word, REAL
two or three words, DOUBLE PRECISION three or four words, and COMPLEX four
to six words. This leads to rather complicated relationships for calculating relative
lengths and subscripts. -

This class of problems should not arise since the build-to specifications should
prohibit them. For this particular problem, the effect of mpping one data type onto

173

another can be achieved by a set of no-operation modules to trick the comjiler.

Restrictions on language features. - To maintain transferability between different com
pilers it is essential to use only those language features that are available with essen
tially all FORTRAN compilers. In practice this will probably mean restricting the
coding to the ANSI-standard language set, which will mean giving up quite a few useful
features. For example:

1.1 	 Statements like NAMELIST, ENCODE, DECODE, PARAMETER, BUFFER
IN, BUFFER OUT, IMPLICIT, etc.

2. 	 Semantic extensions to the language, such as right-adjusted character
constants and format conversions, multiple entries to subprograms,
error returns from subprograms, 6tc.

3. 	 Syntactic extensions, such as names longer than six characters, quoted
character strings in constants and formats, etc.

4. 	 Built-in functions like SHIFT, AND, OR, FLD, etc.

Built-in functions can cause trouble even when they are not intentionally used. If a
program that calls a user-defined function named, say, XXO is transferred to a system
whose compiler provides a built-in function named XXX, the built-in function will be
used instead. To avoid this problem, all user-defined functions should be declared
in EXTERNAL statements.

9.3 Conclusion

The areas in which transferability can be obtained at a cost commensurate with
benefits consist of:

1. 	 Non-executable software interface code, principally interfacing with
QP/DBMS.

2. 	 The SPUs.

3. 	 The GPUs.

Transferability of the non-executable code can be obtained only through standard
ization of the languages and compliance by manufacturers.

The primary technique by which transferability of the executable code will be
obtained is through modularity to isolate types of functions and employing applicable
languages for:

174

1.,, Math applications. I

2. Character manipulations.

S. Logic and control.

' 4. Interface with the operating system.

5. I/O operations.

Transferability of the SPUs can be very nearly perfect if the software interface
languages are standardized.

Transferability of the GPUs will be degraded somewhat by the necessity to em
ploy FORTRAN almost exclusively. The maximum-practicable transferability will be
achieved through programming standards which avoid sensitive areas of the language.
A suggested list of standards is contained in Section 1.4 of Part III.

175/176

10 CONCLUDING REMARKS

The role of DBMS - as envisioned by CODASYL's DBTG - is undoubtedly the
foundation of the IPAD design as presented. This first became apparent in Section 3
and became the central theme of the subsequent sections. DBMS and its interactive
user-interface (QP) is the major manufacturer-supplied software being exploited by
IPAD.

The intent of Part II was "to present a viable system design consistent with the
objectives put forth in the Conceptual Design" (Section 1). Section 10. 1 reviews the
Conceptual Design (Section 2 of Part I, Volume IV) to determine the extent of meeting
these objectives. Section 10.2 reviews the dependence on DBMS.

10. 1!The Conceptual Design Revisited

The system design formulated in this part met the Conceptual Design formulated
in Section 2 of Part 2, Volume IV in every respect except one (viz., the earliest release
possible, see Subsection 10.1.5). Slight variations in design implementation are noted
in the discussion of the subsections which follow. These subsections make direct
reference to corresponding subsections in Part I, Volume IV.

10.1. 1 The objectives as they related to the host operating system interface (Sub
section 2.2.2 of Part I). - The objectives related to the host operating system inter
face are:

1. 	 "The IPAD system design shall be open-ended: limitations shall arise
only through the host computer's hardware/software constraints rather
than IPAD's design approach":

a. 	 OM incorporation is essentially unrestricted (see Section 8).

b. 	 The IPAD EXEC permits any host computer operating system facility
available without IPAD (Section 2) .providing it is compatible with DBMS.

a. 	 The DBMS interface permits flexibility unlimited (Reference 4).

d. 	 "IPAD's design approach" is to reduce the tedium of the man/machine
irterface. There were no restrictions imposed on this approach.

2. 	 "The developed IPAD software shall be as transferable to other computer
installations as is practicable":

177

a. 	 Areas amenable to transferability are identified and the piacticability
delineated (Section 9). (Refer alsp to, Section, 6 of Part I, Volume IV.).

3. 	 "Maintenance and modifications required by IPA-D'to achieve increased
capability or retain an acquired capability during a computing-system up
grade shall be minimized":

a. Every attempt has been directed to eiploit host softvare rather
than duplicate it; thus maintenance and required modifi6ation are
minimized. - ,I .

b. 	 System dependencies are isolated to the EXEC and standard interfaces
where required modification can be more easily provided.

10.1.2 The user (Subsection 2.2.3 of Part I). - The IPAD user is principaUy accommo
dated through .the GPUs (Part Il) and the flexibility of organizing his task (Section 1.3
of Part Ill). Virtually any existing OM is at his disposal (Section 8).

10.1.2.1 Applicability (Subsection 2.2.3.1 of Part I): The design approach is appli
cable to virtually any user directing any computerized activity.

10.1.2.2 The role of interactive computing (Subsection 2.2. 3.2 of Part 1): Inter-.
active user control is emphasized throughout the design except that no provision is
made to provide user interactive interface within his non-interactive OMs. OMs
run within IPAD with the same interactive capabilities they have without IPAD:

1. 	 Graphics capability is provided through a GPU and through any OM
featuring graphics.

2. 	 Tutorials are provided within the GPUs, SPUs, and EXEC functions.
Any OM may provide its own tutorial support if desired (Section 8 of
Part fl). , ,

3. 	 Standard units/coordinates are not imposed on the individual user.
Transformation support is'provided to petmit the user to work with
the systems he requires. (Section 9 of Part I).

10.1.3 The TCS, a command structure (Subsection 2.3.3 of Part I). - The TCS -,

as envisioned in the Conceptual Design - has been split into the TCS associated with
the EXEC and the QPS associated with QP. Both are supported by skeleton files,
(TCSSs and QPSSs) and the TCSS Expander (Subsection 2.2.1).

The primary feature of the TCS is that it is an interactive user interface which is
isolated from and thus independent of executable code. The EXEC and QP provide the
capability to store, retrieve and execute prefabricated command strings (TOSs-and

178

QPSs), thus providing:

>1. 	 The ability "to execute complicated task steps automatically"

by issuing a single command.

2. 	 "Unlimited flexibility in the arrangement of the OM execution sequence"
sequences of subtasks (see task integration, Section 7.3) - although some
limit is inherent in the executable code of the OMs both in arranging
sequences and in monitoring the execution.

3. 	 A common command structure is provided for interactive or batch mode
operation (see TCS Interpreter, Section 2.4).

4. 	 "Full control over the desigh process" is maintained by the user.
Task integration permits the user to provide for a control session
between subtasks (OMs).

5. 	 Each task is a user-organized entity (Sections 7.3 and in Part I
Section I) which is "readily adaptable to change, thus improving or ex
tending its useful life."

10.1.3.1 User-organized system (Subsection 2.3.3.3 of Part I): The user-organized
system which became the basis for the IPAD system design was described as possessing
two features:

1. 	 "Data paths for OMs softwired (constructured by user) during checkout
following initial OM incorporation." The "data paths" are actually
embodied in the SUBSCHEMA DDL as provided by the SUBSCHEMA
Assembler during OM incorporation (Section 7.2).

2. 	 "Data Paths for OMs modified as required by user during use." This
modification of the "data paths" is accomplished by the SCHEMA
Assembler interactive SPU during task integration and/or by QP
(interactively or via QPSs) during task execution (Section 7.3 and
Section 1.3 of Part Il).

The 	data path linkage is actually provided by DBMS during OM execution.

10.1.3.2 An example of a TCS (Subsection 2.3.3.4): "TCSs are written with the
help of IPAD utilities using the interactive capabilities of IPAD". The contruction of
a TCS or QPS (a form of a TCS) can be accomplished via the TCSS Expander (Sub
section 2.2.1), or via the TCS Interceptor (Subsection 2. 2.3), and constructing a
QPS can be accomplished utilizing QP (Section 3.6).

Part I presents typical steps of a TCS (much of which are steps of
a QPS). The capability to reverse a step implied in the figure and related text is the

179

"rollback" capability provided by QP/DBMS (Section 6:2)

10.1.4' Incorporation of the -OMs (Subsection 2.3.4 of Part 1). - The objectives with
respect to OMs are completely met:

1. 	 Incorporation - preparation of OM to make it available to IPAD

users. This is covered in Section 7.2:

a. Stated objective is met; simple modifications to the OMs are
however required to provide the DBMS interface. User confidence
in his OM is retained because:

* No extensive changes, logic and mathematics need no modifications.
* SPUs assist with modifications required, however provision is

only made for FORTRAN OMs. (OMs in other languages must
be modified by hand, viz. no SPU is provided at this time.)

b. 	 Replacement of an existing OM with a modified version is permitted
and may be transparent to the user, depending on the OMs them
selves. Modifications for efficiency generally take the form of
complete I/O redesign for efficient RECORD management. Other
modifications can enhance capability. Certain related changes
may be required such as:

" Interface with the operating system (TCSs and TCSSs).
* Interface with DBMS (SUBSCHEIA).
* Interface with user (altered interactive capabilities).

c. 	 No modifications to IPAD software or organization is required to
add, delete, or replace capabilities in the form of OMs as new
techniques develop.

2. 	 Deployment of OMs by the user is covered in Section 7, and in Section 1
of Part III:

a. 	 The user, with the help of tutorial aids (Section 8 of Part 111),
selects OMs to provide the capabilities required for his task and ex
pands associated TCSSs to configure a sequence of OMs/utilities.

b. 	 The user employs the SCHEMA Assembler to configure a UF appro
priate to the data requirements of the selected sequence of OMs/
utilities.

c. 	 QP provides the capability to initialize the UF, and QP, (as a
utility) is available to be configured into the 0M/utility sequence
as the user requires.

180

3. 	 The IDEFs and ODEFs are organized slightly different than presented, in
Section 2. 3. 4 of Part I and the related text. Specifically, neither the IDEF

nor the ODEF contains the location/format of the variables; these are in the

related SUBSCHEMA. The remaining portions of the IDEF and ODEF
are provided only for the user (Subsection 3.5.6.2).

10. 1.4. 1 The i/O Formatter (IOF) utility (Subsection 2.3.4.1 of Part I): The IOF

utility envisioned in the Conceptual Design has not been provided as such. The promi

nent place occupied by this utility in the Conceptual Design has been pre-empted by the

capabilities provided by QP working through DBMS. Both QP and DBMS are to be pro

vided by computer manufacturers. This is explained at great length in Section 3.

10. 1. 5 IPAD System software (Subsection 2.3.5 of Part 1, - Not all the objectives
related to the IPAD system software were achieved:

I. 	 "Strive for the earliest release possible for the IPAD system consistent
with satisfying the system objectives and immediate user needs". This
objective was deemphasized in the interest of providing a viable system with

low cost and risk. The exploitation of a standard DBMS entails the

process of:

a. 	 Language developement (Sections 5.2, 5.3 and 5.5).

b. 	 Implementation of DBMS/QP by the manufacturers.

a. 	 Implementation and checkout of PAD on representative computing
systems.

Several of the objectives with respect to IPAD system software (as distinguished
from OMs) are also met by adopting the industry-standard DBMS:

"Minimize the impact of future computer hardware/software development."2.

3. 	 "Avoid (where practicable) non-standard software development."

The remaining objectives are covered with the programming standards for IPAD

executable code (Section 9.2, and Section 1.4 of Part Hl):

4. 	 "IPAD software shall be modular to the function level."

5. 	 "In both design and implementation, all machine dependent code shall

be clearly identified and isolated."

6. 	 "The IPAD system software shall be structured modularly to aid in re

ducing the time and effort required in transfering IPAD software to different

hardware or software installations."

181

Note however that development of the IPAD EXEC to comply with all the

listed objectives related to..IPAD software is not practical because:

1. 	 Every hardware/software future development will impact the EXEC.

2. 	 The EXEC is tailored to a particular version of a particular operating
system, so cannot be coded as standard software.

3. 	 To isolate all hardware/software dependencies would be a self-defeating
effort.

4. 	 The EXEC is considered non-transferable, and must be tailored to a
specific computing system.

However, it is envisioned that the quantity of executable code associated with the
EXEC is small enough to warrant overturning the stated objectives0

10.1.6 The data bases (Subsection 2.3.6 of Part 1). - All objectives of the conceptual
design with respect to the data base are met by exploiting the QP/DBMS facilities.
These objectives mesh perfectly with the objectives outlined by the DBTG in Reference
4 and will not be listed again here.

The conceptual design specified essentially that every "file" in the system be

self defining; that it should contain:

1. 	 A definition of its (arbitrary) structure.

2. 	 A directory of its (arbitrary) contents.

3. 	 A glossary of its variables.

The intent of this concept was that these should be explicit and available rather than

submerged in executable code. The intent is more than adequately provided for in

SCHEMA/SUBSCHEMA DDLs (Section 3) and Tutorial Aids Support (Section 8 of

Part EIm.

All of the data bases envisioned in the Conceptual Design were easily provided
for via SCHEMA DDL (See Section 4 and Appendix F).

10.1.6.1 Multidisciplinary Data Bank (MDB) (Subsection 2.3.6.2 of Part 1): The
various "versions" of the MDB as discussed in Section 2.3.6.2 of Part Iare easily
accomplished by the SET relation (Subsection 3.7.4).

10.1.6.2 Miscellaneous file types (Subsection 2.3.6.4 of Part 1): The restriction
of various "file parts" (AREAs) to "be transient from tapes or private disk packs"
is provided for in the DBMS concept (Reference 4, p. 25) via the Device/Media Con
trol Language (DMCL, ibid, p. 22).

182

10.1.7 Summary of features of the Conceptual Design (Subsection 2.3.7 of Part I). -
The features and operating philosophy listed were fully met. The generality of the
"structure, type and contents of the file" (Item 5 of Subsection 2.3.7 of Part I) was
met physically ;through the SCHEMA description and separately met functionally
through the SUBSCHEMA description.

As a point of clarification, the IPAD EXEC "is aware of the attached device's
I/O limitations" (Item 10 of Subsection 2.3.7 of Part I) through the sign-on procedure
the user must employ. Thus the device type, including batch (i.e. , no device), is
available to the EXEC and each IPAD GPU as required.

10.2 Dependence on Manufacturer-Supplied Software

The IPAD system design - as presented - depends to a larger degree on manu
facturer-supplied software than typical developments. This circumstance arose
through the desire for

1. Transferability (low machine dependence).

2. -Low cost (both developmental and operational).

3. Long life.

Each of these will be briefly discussed.

Transferability (or portability) is classically achieved by coding in such a manner
as to operate successfully on any of the target computers. This in turn necessitates
avoiding advanced features that are available on some but not all of the target computers.
This approach leads to operational inefficiencies (adverse operating costs) that are
particularly dramatic in the areas of executive functions (viz. poor response time) and
data base management (viz. extreme run-time costs). A functional alternate to trans
ferability avoids the issue entirely by providing separate code for each of the target
computers in the most sensitive areas. This separate but functionally equivalent code
exploits the existing operating system features of a given manufacturer thus providing
the best operational characteristics on his machines.

The disadvantage of this separate but equal approach is creating or drawing upon
special purpose software. This special purpose software - unlike, say, a FORTRAN
compiler - does not become the responsibility of the computer' manufacturer during
computing system upgrades (as does the FORTRAN compiler). Thus the creation of
special purpose software can (and does) lead to substantial refurbishing costs in the

183

long run, typically being several times the developmental costs for successful systems
(viz. those which have a °reasonable'econom ic life)I . These costs can bd considered a
part of operational costs andlthus contribute td a shorter economic life.

The strategy then is to exploit - to the extent practicable - the opprating system
through standard software ,'like the FORTRAN compiler." 'This standard software id
generally under the jurisdiction' of one (or more) of th4 standardization bodies (e. g.,
ANSI or CODASYL) and typically results in functionally equivalent, manufacturer
supplied software to support that function. 1ypically the manufacturer-supplied com
pilers fall into this category.

The design as presented exploits standard (or soon to be standard) manufactulrer
supplied software to the maximum extent practicable:

1. DBMS

2. DDL compiler(s) supporting DBMS.

3. DML enhanced compilers, specifically:

a. FORTRAN
b. COBOL

It also exploits existing (or soon to exist) manufacturer-supplied software that
is a candidate for future standardization, but currently provides functionally equivalent
(albeit operationally different) capabilities:

4. Text (context) editors (see Section 3 of Part IlI).

5. QP (operating through DBMS).

However, there remains certain special purpose software, the responsibility for which
cannot be shifted to the manufacturer (cannot, that is, until acceptance and usage
reaches a high level among the manufacturer's computer users):

6. The core of IPAD's EXEC.

It is this latter category that represents the principal refurbishing costs associated
with this IPAD design.

Naturally, exploitation of existing (or soon to exist) developments -willbeneficially
influence both developmental as well as operational costs (the latter through more
efficient code specific to the intended function). Although often not apparent, this ex
ploitation contributes as well to long life through low-(or no-) cost IPAD upgrades
through computer operating system upgrades. This provides for an increasingly
beneficial tool with low maintenance costs. Life - or more properly economic life -

184

terminates when the system can no longer provide cost-competitive service to the pre
vailing user needs. More realistically, system life is somewhat foreshortened due to
user dissatisfaction with the system, usually through impatience or boredom.

In an economic sense, it is initial acceptance and long life which is the primary
objective for IPAD. In this way can the developmental and maintenance costs be amor
tized over a long, productiv6 time span. The secondary objective must be to see it
eventually incorporated into the then existing computer operating systems (shifting the
maintenance burden to the manufacturer and, hence, to the broad base of users).

A more detailed discussion of the dependence on manufacturer-supplied software
and the developments begun by CODASYL may be found in Section 2 of Volume VI.

185/186

REFERENCES - PART II

1. Richardson, D. G.; Schappelle, R. H.; and Yoshihara, S.: Program P4006C,
A Six Degree Digital Program, Volume 11, Program Handbook. Report
GDC-DDE-021, General Dynamics Convair Aerospace Division, July 15,
1968.

2. 	 Lloyd, J. R.: Users Manual for Structural Analysis Program P4137, Report
SA-72-03, General Dynamics Convair Aerospace Division, April 5, 1972.

'3. Anon. : Control Data 6000 Computer Systems 274 Interactive, Graphics
System. SCOPE 3.3 Reference Manual 17303600, Control Data Corporation,
Revision D, October 15, 1971.

4. 	 Jones, J. L.: CODASYL Data Base Task Group Report, (no report number),

Conference on Data Systems Languages, April 1971.

5. 	 Anon.: UNIVAC 1100 Series DataManagement System (DMS 1100).

(no report number) Revision 2, UNIVAC (Roseville, Minnesota),

June 1972.

6. 	 (System Design & Sizing): Functional Specifications of Query Processor,
Revision 1. (no report number), UNIVAC (St. Paul, Minnesota), (no date).

7. 	 Westgaard, R. E.: DDL Version 1.0. External Reference Specification

TO39:1.0 - E013*3.4.1, Control Data Corporation, August 4, 1971.

8. 	 Semegran, S. D.: Query-Update Version 2. External Reference Specification
TO38:2.0 - E013*3.4.1, Control Data Corporation, August 4, 1971.

9. 	 Anon.: Query Update Version 2. (no report number), Control Data

Corporation, (no date, but after Reference 8).

10. 	 Westgaard, R. E.: ASP, Associative Set Processor Preliminary Design.
(no report number), Control Data Corporation, August 11, 1972.

187

ii. 	 nnun.: .aeuuru ivianager lteerence Jvanuai, moaels u(, 7;a, 74 Version 1,.

7600 Version 1, 6000 Version 1. SCOP! Reference Manual 60307300,

Control 	Data Corporation, Revision B, July 31, 1972.

12. 	 Anon.: query Update Reference Manual, 6000 Version 1, Models 72, 73, 74
Version'l. SCOPE 3.4 Reference Manual 60307600, Control Data Corpor
ation, Revision C, March 3, 1972.

13. Anon. 	 .DDLIQ

13. 	 knon,: QTJIflDL Reference Manual, Models 72, 73, 74 Version 1, 6000
Version 1. SCOPE 3.4 Reference Manual 60327200, Control Data Corpor
ation, Revision C, February 25, 1972.

14. 	 Willner, S.; Saukaitas, B. J.: The COMRADE Query Processor. COMRADE
Design Note DMO6, Naval Ship Research and Development Center (NSRDC)
April 1972.

15. 	 Haas, M. E..: VIM-16 Proceedings. Sixteenth Semi-Annual VIM Conference.

VIM, INC., April 1972, pp. 754-788.

16. 	 Stacey, G. M..: A Proposal for a Standard DDL Sub-schema Framework for

All Host Languages. Edinburgh Regional Computing Centre document,

University of Edinburgh, Scotland, August 1972.

17. 	 Stacey, G. M.: A Data Description Language for a FORTRAN Sub-schema:
Specification for Discussion. Edinburgh Regional Computing Centre Notes
No. 4, University of Edinburgh, Scotland, June 1972.

18. 	 Anon.: Graphic Subroutine Package (GSP) for FORTRAN IV, COBOL, and
PL/1. IBM System/360 Operating System Reference Library Manual
360S-LM-537, Nov. 1968.

19. 	 Anon.: UNIGRASP, UNivac Interactive GRAphics Support Package, User's
Guide. UNIVAC Division of Sperry Rand, Publication No UC-10O0, 1971.

20. 	 Anon.: MARINER 1557/1558 Advanced Graphic Display System, Programmers
Reference. UNIVAC Division of Sperry Rand, Publication UME-7657,
(no date).

21. 	 Anon.: Terminal. Control System User's Manual. Information Display Pro
ducts, PLOT-10 Document 062-1438-00, May 1971.

188

22. 	 Anon.: Advanced Graphing User's Manual. Information Display Products,
PLOT-10 Document 062-1439-00, Nov. 1971.

23. 	 Batdorf, W. J.; and Kapur, S. S.: FLING-A 	Fortran Language for Interactive
Graphics. Paper presented at Navy Conference on Structural Mechanics
(University of Illinois), Sept. 1971.

24. 	 Haas, M.: Consolidated Graphics Processing. NSIDC Internal Memo 1833:
MH:am, Aug. 1972.

189/190

PHASE I, TASK 2

PART III - GENERAL PURPOSE UTILITIES

I IPAD SYSTEM OVERVIEW, SYSTEM INTERFACE AND OPERATING
PHILOSOPHY: AN INTRODUCTION TO GENERAL

PURPOSE UTILITIES (GPUs)

The 	General Purpose Utilities (GPUs) are a collection of programs that:

1. 	 Are created (or are designed from existing code) specifically for IPAD.

2. 	 Provide general capabilities to support the interactive IPAD user and
augment specific capabilities provided by his Operational Modules (OMs).

The IPAD system design presented in Part I could be summarized as a software
framework intended to reduce the time and labor expended by a user in accomplishing a
given task. The prime objective is to relieve him of burdens through improved inter
face with the supporting software and provide the functional capability to which he is
accustomed (viz, his own OMs).

The GPUs, on the other hand, will present the typical user with a whole new
dimension of functional capability. There is no major breakthrough in technology here.
The capabilities have been available for some time. However, they have not been
available in an integrated system. Attainment of even a task-related portion of these
capabilities by a typical IPAD user in todays computing environment would require
considerable computer-oriented work incidental to his assignments and often not be
transferable to other - even similar - tasks.

Specific utilities will be discussed in later sections. This section includes:

1. 	 An overview of the integrated system (IPAD).

2. 	 The relationship of GPUs to the system and how they are incorporated.

3. 	 Methods of linking OMs and GPUs into a task-oriented sequence of OMs.

4. 	 Programming standards applicable to the GPUs.

The Figures of this volume generally adhere to the following symbolism for the
convenience of the reader:

mAny interactive console. Any IPAD user at an interactive console

A Any file on disk.

191

Command or functional, interface. < > Decision functional block

' Data interface.

Card 	input. TCS being executed.I.Interactive communications interface.

W Any functional block being executed. Any display mfdrmation

(CRT, printout, or display file).

The reader is referred to Appendix A for a concise glossary of acronyms and
special terminology used throughout this report.

1. 1 System Overview

The architecture (or design) of IPAD is primarily a comprehensive plan to ex
ploit computer manufacturer-supplied software to achieve IPAD objectives. Where
human interface with the supporting software is socumbersome as to ifterfere with
FPAD objectives, an]PAD utility is provided to buffer and reconcile tedious require
ments with the problem-oriented user.

From the user's point of view, IPAD is a framework which.supports and augments
the capabilities of his computerized analytic tools. From this viewpoint, the frame
work is composed of a number of interfacing capabilities:

1. 	 The IPAD EXECutive function which provides control of the full capa
bility of the host operating system/timesharing subsystem (especially
to invoke OMs/GPUs) interfaced by:

a. 	 Tutorial aids.

b. 	 Prefabricated Task Control Sequences (TCSs).
/

c. 	 The ability to fabricate (and save) TCSs:

* 	 By performing a task.

* 	 By expansion (specifying task dependent parameters) of TCS
Skeletons (TCSSs).

192

2. 	 The Query Processor (QP) which provides interface with a project
oriented central data base and the Data Base Management System
(DBMS). To the user, the data base and QP provide for accurate
efficient communication with respect to task assignments and task
status, and efficient access to pertinent design data and design tools
(OMs/GPUs and associated tutorial aids).

3. 	 A task integration capability which permits:

a. 	 The construction of a task oriented User File (UF) appendage to
the database (i. e. to provide for the I/O requirements of selec
ted OMs/utilities).

b. 	 The construction of a DBMS interface to:

" 	 Share data among the OMs.

* 	 Resolve conflicting requirements of the OMs/utilities with
respect to the UF.

4. 	 Incorporation capability which assists the programming oriented user in
preparing existing OMs to operate within the IPAD framework. Prepara
tion consists of:

a. 	 Converting conventional I/O procedures to DBMS interface
procedures.

b. 	 Providing the basis for a declarative DBMS interface (i.e., defin
ing I/O requirements) to be completed and tailored to each task.

1. 2 Relationship of GPUs to the Overall System

An important objective of IPAD is to provide control* of the system to the user
at all times, thus encouraging innovations. However, it is envisioned that the user
will evolve some orderly approach to each task assigned to him. It is further envision
ed' that capabilities provided by the GPUs will assist in this organization.

Evolution of a typical user's task within IPAD includes the following system/user
interface sequence:

1. 	 Interrogation (via QP) of the Task Status/Action File (TSA) for notifica
tion of a task assignment.

*CONTROL was ranked second or third by the groups constructed in the IPAD User

Survey. See Table 1 of Section 3.4, Part I, Volume IV for details.

193

2. 	 Planning (possibly with Tutorial Aids Support) asequence of capabilities
as provided by OMs/GPUs to accomplish the ta'sk.

3. 	 Constructing (Via the SCHEMA assembler SPU) a task entity; i.e. a UF
appendage to the data base and a DBMS interface with the OMs/GPUs.

4. 	 Initialization of the UF by mapping (via QP) values from the central,
controlled data base - i.e., the Multidisciplinary Data Bank (IVIDE)

or local data bases such as the Disciplinary Library File (DLF) or
User File (UF).

5. 	 Execution (via a TCS) of the sequence of selected OMs/GPUs interfacing
the UF.

6. 	 Mapping of task results (via QP) into the Presentation Review File (PRF).

7. 	 Inserting a message (via QP)into the TSA to notify the Engineering
Review Board Coordinator (ERBC) of task completion.

As the task evolution indicates, the role of the GPUs is the same as that of the
OMs; to provide capabilities within a planned sequence, interfacing a coordinated UF
through DBMS. DBMS provides data transformations when the OMs/GPUs access the
UF, thus (effectively) providing for OM/GPU to OM/GPU interface.

It should also be noted that every stage of task evolution other than execution of
the TCS involve user interface with DBMS or preparation of OM/GPU interface with
DBMS.

It becomes evident that DBMS is -the central coordinating software and an over
view of DBMS is necessary to proceed withGPU incorporation.

1.2. 1 Overview of DBMS. - The DBMS is a manufacturer supplied implementation of
a system envisioned by the Data Base Task Group (DBTG) of the Conference On DAta
SYstem Languages (CODASYL). The final report of the DBTG (Reference 1) does not
contain explicit software specifications but rather language specifications and descrip
tions of capabilities to be provided in support of these languages. The languages spe
cified have the syntax of COBOL, but the architecture explicity provides for interfac
ing through many host languages. The Foreword to their report (Reference 1):

1. 	 Recommends implementations in support of the DBTG specified languages.

2. 	 Indicates that language development will continue under the auspiqes of
CODASYL.

3. 	 Invites the scientific community to participate in this language develop
ment.

194

Manufacturers of two IPAD target computing systems (CDCand UNIVAC) as well as
four othercomputing system manufacturers (XEROX, HONEYWELL, PHILLIPS, and
BURROUGHS) are tentatively committed, to such an implementation. The IPAD tasks
of providing for I/O Formatting and data base software were consequently realigned
to provide plans for exploiting the proposed DBMS and to analyze the need for language
development.

The DBTG report introduces a new vocabulary for discussions of data base soft
ware as well. as the computer system interface languages. Throughout this report, the
special terminology of CODASYL ' s DBTG appear in caps (e.g. RECORDs or AREA).

1. 2. 1. 1 Major concepts and terminology: The following terms are defined in the DBTG
report (Reference 1, page 13, 14) to lend precision and consistency to their language
specifications. The definitions are liberally paraphrased here to present an overview.

SCHEMA - a source language (human readable) description of the
data base (i. e. all data to be handled via DBMS).

SUBSCHEMA - a source language description of the data in the data
base to be accessed by an OM/utility (through'DBMS
in form that that OM/utility expects to use it. To be use
able, it mut*represent a valid subset of the data base.

AREA - a named subdivision of the SCHEMA. For orientation
purposes an AREA may be considered similar to a file,
but no physical implications apply.

RECORD - a named type-definition of a data structure within an
AREA. Structure consists of the names and attributes
of DATA-ITEMs and DATA-AGGREGATEs. This term
has no relationship to the characteristics of I/O devices.
RECORD TYPE is used to refer to the definition of the
named structure; RECORD OCCURRENCE is used to
refer to the contents of an occurrence of the defined
structure.

DATA ITEM - the smallest unit.of named data. DATA-ITEM is the name,
DATA-ITEM OCCURRENCE is the value.

DATA-AGGREGATE - a named collection of DATA-ITEMs, vector or repeating
group.

SET - a named collection of RECORD TYPEs. Establishes the
relationship among the RECORD-TYPEs and other
characteristics of the collection.

195

Data Description Languages (DDLs) are the @ource languages of the SCHEMA and
SUBSCHEMAs. They define the relationshipand charac
teristics of occurrences of DATA-ITEMs, DATA-AGGRE-
GATEs, RECORDs, SETs, andAREAs.

SCHEMA DDL is conceptually independent ofany particular iprogramming language
since it is a description of logical relationships and management requirements related
to actual occurrences of data.

SUBSCHEMA DDL is host language dependent since it describes the data configu
rations required by OMs/utilities written in the specific host language.

Data Manipulation Language (DML) is the language by which the programmer
causes data to be transferred between a program and the data base. This includes
commands at the "file control" level and specifications of record selection criteria as
well as commands at the FORTRAN READ/WRITE level. Note that all data transfers
are performed through DBMS response to DML commands.

Data Base Administrator is the human (group function) whose primary responsi
bility is to mediate the conflicting data requirements of programs sharing the central
data base and effect a compromise. This does not imply that the individual program
mers concur (see variations between SCHEMA and SUBSCHEMA below). The com
promise is made to optimize overall system operation. It is a DBMS software function
to reconcile variations between the SCHEMA and an individual SUBSCHEMA during
execution of DML commands.

1.2.1. 2 Functional overview: The functions performed by DBMS fall into three cate
gories:

1. 	 Control of the I/O functions of the operating system to satisfy DML
requests issued by programs in execution.

2. 	 Transformations to reconcile differences in SCHEMA/SUBSCHEMA
descriptions of the data. This is basically restructuring, mapping, and

conversion (e. g. integer to floating point) of data but also includes in
voking object code (provided in the data base) to transform data.

3. Enforcement and maintenance of management concepts detailed by the

DBA with respect to:

a. 	 Integrity of the data.

b. 	 Logical structure of the data.

196

1.2. 1. 3 Variations between SCHEMA and SUBSCHEMA: The following is copied ver
batim from'Section 2.2.2; page 18 of Reference 1.

A SUBSCHEMA may differ from a SCHEMA in several important respects:

1. 	 At the DATA-ITEM level:, j

a. 	 The characteristics of DATA-ITEMs may be different.

b. 	 PRIVACY LOCKs may be changed.

c. 	 Descriptions of specific DATA-ITEMs may be omtted.

d. 	 The ordering of DATA-ITEMs may be changed

2. 	 Atihb DATA-AGGREGATE level:

a. 	 Descriptions of specific DATA-AGGREGATEs may be, omitted.

b. 	 PRIVACY LOCKs may be changed.

c. 	 The ordering of DATA-AGGREGATEs may be changed.

d. 	 Vectors may be redefined as multi-dimensional:arrays.

e. 	 DATA-ITEMs or DATA-AGGREGATEs .may be selected and given a
group name.

f. 	 Additional structure mapping may te provided by the facilities of a
particular SUBSCHEMA DDL.

3. 	 At the RECORD level:

a. 	 Descriptions of specific RECORD TYPEs may be omitted.,

b. 	 PRIVACY LOCKs may be changed.

c. 	 RECORD OCCURRENCEs included in specific AREAs may be omitted,
while other occurrences of that RECORD TYPE are included.

4. 	 At the SET level:

a. 	 Descriptions of specific SET TYPEs may be omitted.

b. 	 PRIVACY LOCKs may be changed.

c. 	 Different SET selection criteria may be specified.

5. 	 At the AREA level:

a. 	 Descriptions of specific AREAs may be omitted:

b. 	 PRIVACY LOCKs may be changed.

197

A SUBSCHEMA must, however, be a consistent and logical subset of the SCHEMA
I - from which it is drawn [in the sense that they describe the same data].

The following additional points are important to an understanding of the concept
of the SCHEMA 'and SUBSCHEMA:

1. 	 An object version of the source code SCHEMA may be "compiled" in
dependently of, any user program or any SUBSCHEMA.

2. 	 Object versions of a source code SUBSCHEMA may be "compiled" in
dependently of anyuserprogram.and stored in a library..

3. 	 An arbitrary number of SUBSCHEMA may be declared on the basis of
any given SCHEMA.

4. 	 The declaration of a SUBSCHEMA has no effect on the declaration of any
other SUBSCHEIVA and SUBSCHEMAs may overlap one another.

5. 	 Each SUBSCHEIVIA must be named.

6. 	 A user program invokes a SUBSCHEMA.

7. 	 The same SUBSCHEMA may be invoked by an arbitrar number of
programs.

8. 	 Only the AREAs, RECORDs, DATA-ITEMs, and SETs included in the
SUBSCHEMVA invoked by d program may be referenced by that prograni.

9. 	 Since SUBSCHEMAs are host-language-oriented, a program.must in

yoke a SUBSCHEMA that is consistent with its source lapguage. [End'quote]

1.2.2 Incorporation of a GPU into IPAD. - The utilization of a particular GPU-by an
IPAD user requires, preparation of the GPU so it.may be integrated into a task
oriented entity. The objective is to decouple the capability provided by the GPU from
any requirement for a programmer's skills; i. e., to provide within IPAD facilities
all the user will need in order to employ the GPU.

The task of providing the required material for a given OM/GPU process con
sists of:

1. 	 Expressing the I/o requirements of a process in terms of SUBSCHEMA DDL.
This DDL specifies:

a. 	 AREAs (files) required.

b. 	 RECORD names within the AREAs.

o. 	 DATANAME s within the RECORDs.

/ 198

d.' 	 Structure of RECORDs and attributes of DATA.

e. 	 SETs, i. e. logical relationships among individual RECORDs.

'The DDL contains complete correct specification of the above but it is not a
complete SUBSCHEMA at this point. A complete SUBSCHEMA specifies re
lationships of SUBSCHEMA names to SCHEMA names.

2. 	 Expressing I/O imperatives (procedures) in terms of DML. This provides
the execution-time interface between DBMS and a process.

3. 	 Providing tutorial data to assist the user in integrating the process into a
task.

4. 	 Providing a Task Control Sequence Skeleton (TCSS). Functionally this is
the same as a sample control card setqp. It provides the basis of a specific
Task Control Sequence (TCS) of operating system/EXEC level commands to

a. 	 Execute the process.

b. 	 Allocate I/O devices.

a. 	 Supply parameters and analyze completion codes,.

Figure 1-1 illustrates the incorporation procedure as applied to an existing OM.
A preprocessor reads existing OM source code replacing conventional I/O statement
with equivalent DML, simultaneously generating DDL specifications for the structure
of RECORDs involved. A cognizant programmer/user continues the process, inserting
DML to apply to files and SETs, and DDL specifications of RECORD, SET, and AREA
names. With respect to the GPUs, this preliminary work is included m the otiginal
creation of source code. In the figure, the programmer/user-produces tutorial data
(I/ODEF) accessible to all of the OM's users, and inserts DDL EQUIVALENCEs to
equate internal tarable names to the design data names meaningful to the user.

The final responsibility of the programmer at incorporation is to make TCSSs
available to all users. This is a two stage operation involving two system utilities:

1. 	 The TEXT 'EDITOR assists in creating, editing, and duplicating a
general class of syfnbolic sequential "files".'

2. 	 The TCSS Writer provides for a database update creating a TCSS,
edited for acceptability by the TCSS Expander. The TCSS Expander
is a utility which assists the IPAD user in creating and modifying TCS
strings to control the IPAD EXEC.

199

EODEF (TUTORIALS)

OM DOCUMENTATION 	 TEXT EDIT
-DEFINITIONS UTILITY
.UNITS __W'U J-I
- OPTIONS 	 %

NARRATE COGIZANTI 	 I
\ PROGRAMMER/USER 	 I i

TS
DIAGNOSTICS CROSS-liEF-
WRITER

I I

SOMRC SLO NA 	 A OBJECT IU-
SUBSCEi-v 	 FORTRAN ,O RC DML 	 ASSEMBLER COMPILER 454

PREPROCORCOUCE

OEPREPROCESSOR OM SOURCE

CODE OM SOURCE
 i

w\VITH DML/ 	 WITH DMLI*/

*DDL GENERATED FOR RECORD I 	 I
STRUCTURES, IJML GENERATED N. DDL*j DDL *(INCOMPLETE NOT YET

FOR VARIABLE NAMES. RELATED TO A SCHEMA)

DDL EXPANDED WITH i
- RECORD NAMES (DATA BASE

UPDATE)- EQUIVALE NCES
*SETS (IF NEEDED).

DML EXPANDED TO RECORD AND FILE LEVEL.

Figure 1-1. Initial OM Incorporation Into IPAD.

1. 3 Process Integration

Given a new design task, the user (with the help of utilities) assembles the com
ponents of an IPAD task:

1. 	 A Task Control Sequence (TCS) consisting of EXEC commands (and data)
to execute a particular sequence of OMs/GPUs And the Query Processor
(QP) to initialize, interrogate and update the data involved.

2. 	 A Users Task Trajectory (UTT) to provide a history log of user activity
in accomplishing the task.

3. 	 Query Processor Sessions (QPSs, a special form of TCSs) to provide
access/update directives to QP. These may be deferred and generated
by actually performing data manipulation.

4. 	 A module of the SCHEMA called a User File (UF) to satisfy the i/O
requirements of the sequence of OMs/GPUs/QP.

200

5. 	 A SUBSCHEMA for each OM/GPU in the task to permit it to access a
portion of the UF.

6. 	 A SUBSCHEMA for QP to permit initialization of the UF from appro
priate sources in the database.

The tedious details of these components have already been supplied by programmers
responsible for the individual OMs (GPUs). The user's contribution is to make top
level, pioblem -oriented decisions resulting in a correct assembly:

'1. 	 TCS - the user specifies an ordering of the TCSSs supplied with the
individual programs and specifies values for dummy arguments re
lating to the UF.

2. 	 UTT - provided by the DBA when the UF is included in the database.
The contents of UTT are automatically provided by the EXEC. The
user need not be aware of UTT, cannot modify UTT, but may inter
rogate his OTT for job status information.

3. 	 QPSs - will typically be saved by QP (at user's request) during a
tidry run" of data manipulation.

4. 	 UF module of SCHEMA - begins as a simple assembly of all the I/O
requirements expressed in SUBSCHEMA DDL for all OMs/GPUs in
volved. The DDL facilities provide several options for resolving OM
(GP) to OM (GPU) interface problems:

a. 	 ledundant DATA OCCURRENCEs may be eliminated by:

" Specifying, in UF DDL, the source of input which is provided
by some OM output and specifying that the input is "virtual"
data (viz, data that will exist only as a consequence of calcula
tions from existing data).

" Renamingwithin the SUBSCHEMA DDL to define correspond
ence of DATA-ITEMs within the SCHEMA DDL.

b. 	 Redundant DATA OCCURRENCEs may be provided by:

* Specifying in UF DDL the source of inputs as above and specify
ing that the input is "actual" data (via data which has been stored
as a consequence of calculations from existing data).

" Not specifying the source in DDL but explicitly mapping values
onto the DATA-ITEMs via QP.

5. 	 SUBSCHEMA for each OM/GPU is provided - essentially complete - by the
programmer. This may be modified to cross-reference data as defined by
other OMs/GPUs.

201

6. SUBSCHEMA for QP to access sources outside the UF (e g., the MDB).
This results from copying source DDL from the UF DDL and the source
DDL from the SCHEMA currently in use.

1. 3. 1, Design optimization, an example of process integration. - An optimization
study involves:

1. 	 An initial approximation to a set of design data.

2. 	 A sequence of OMs which produce evaluations of functions of the
design data.

3. 	 An optimizer GPU which analyzes the functional values produ6ed by-

the OMs and modifies the design data accordingly.

4. 	 Looping through 2 and 3 until a criteria function has been met.

In preparing to accomplish the optimization task, it is the user's responsibilityto determine (and express to IPAD software) the total relationship of the OMs and the

optimizer GPU.

1. 	 What OMs will accomp~lish the task?

2. 	 What is the sequential relationship of the OMs?

3. 	 What are the logical (set) intersections of the I/O data requirements ?

4. 	 What are the sources of the initial approximations?

Figure 1-2 illustrates this procedure:

1. 	 Select and-organizd the group of OMs/GPUs themselves. This step scans
the TCSSs set up by the cognizant programmer for each OM/GPU (in
cluding the optimizer) and uses the TCSS Expander-to derive a Master
TCS defining the optimization loop. I

2. 	 Interrogate the I/ODEF for each OM/GPU and direct the SCHEMA
Assembler Utility (an SPU) to produce SCHEMA DDL to satisfy the
totality of I/O requirements. In this step the user may cross refer
ence the data such that:

a. 	 Redundant copies of the same logical data will be eliminated.

b. 	 DBMS will be directed to provide any required transformations
at execution time.

Or 	he may establish an expedient provision that the I/O data requirements
do not interse&t. This approach must be reflected in the TCS in that the

2r

202

BEGIN

_ _4 _ _ _MASTER TCS
TCSS EXPANDER

TCSs .- .-
 EXPAND SUTASK TCSSs,I " 	 &CREATE MASTER TCS L - -- - --- ,jZ z
INCLUDING LINKAGES,,I

SCHEMA ASSEMBLER

-~INTERROGATEIDEFOROM To
-- CREATE OPTIMIZATION VARIABLE 	 &-DCROSS-REFERENCE EQUIVALENCES

UP SCHEMA

GCROSS-REFERENCEI
RELATIONSHIPS NO'

-OBJECTIVE STSID
CRITERIA/FUNCTION

&SUMMARY DISPLAY SCHEMA ASSEMBLER YESI

SELECT/CREATE OBJECTIVE /DE
CRITERIA/FUNCTION &
SUMMARY DISPLAY DDL

SCHEMAASSEMBLER IINTERROGATE ODEF FOR 0 'k TO1,

SELECT OUTPUT VAR IABLES	 DFOR SUMMARY DISPLAY &&
OBJECTIVE (PENALTY) FUNCTION 	 k

QUERY PROCESSOR 4

CREATE CPS SUBSTRINGS FOR ANY-RECORD
OUTPUT RECORD SAVES & MODIFY SAVEOPS
COMPLETE TCS

I -~

ALO, No

QUERY PROCESSOR,

-PS* CREATE OPS SUBSTRING
FOR SUMMARY DISPLAY

- CREATE QPS SUBSTRINGS TO MAP
REQUIRED DATA (USES VARIABLE

*CROSS-REFERENCE RELATIONSHIPS)-----------_ INPUT
MODS QP'S

TEXT EDITORM
1

C OMPLETE MASTER TCS
-Mn

Figure 1-2. Interactively Preparing a Sequence of OMs
for Optimization (User Not Shown)

203

r 	 'Query Processor (QP) must be invoked between each pair of 0Ms/GPUs in

"the loop so that data is mapped from AREA to AREA within the ,UF.

3. 	 Satisfy the I/O requirements of the optimizer GPU.

a. Select/create the objective criteria/function and summary display
DDL.

b. Scan I/O DEFs for all other OMs/GPUs and select the outputs which
contribute to the evaluation.

4. 	 If the user does not choose to cross-reference data in the SUBSCHEMA DDLs,
he imposes a requirement for QP to explicitly map-data fromb AREA to AREA
within the UF. In this case he must supply QP directives (a QPS) to accom

.	 plish the mapping. There are two ways to supply these directives:

a. 	 With the TEXT EDITOR utility and familiarity with QP he can set up
complete sessions (QPSs) outside the execution loop to be referenced
by the TCS and executed by QP.

b. 	 He can interactively issue directives to QP in an initial execution of
the TCS'and directQP to save the sessions (QPSs)I for redxecution.

5. 	 At the end of the integration process, the following data has been derived:

a. 	 A master TCS through which the IPAD EXEC will call the sequence
of OMs/GPUs. I

b. 	 Any required QP directives, which are available as QPSs and
identified for execution in the master TCS.

c. 	 A source description of the UP in SCHEMA DD L.

d. 	 For each OM/GPU, a source description of that portion of the UF
required by the OM/GPU in SUBSCHEMA DDL.

Source language for the UF module of the, SCHEMA and source language for each
SUBSCHEMA are compiled into object tables usable by DBMS. Depending on the
user's foresight and procedural preference, the UF will be some, compromise between
the following extremes:

1. 	 Each AREA specified in the collection ofOM/GPU SUBSCHEMAs shall be
separately provided to the UF SCHEMA exactly as described. This re
quires that the user intercede between each pair of 04vMs/GPUs and map
data from the output AREA(s) into the input AREA(s) of the subsequent
O M/GPU. 	 4

204

2. 	 The UF SCHEMA shall consist of one logical pool which is the set union
of all I/O requirements at the DATA NAME level; mapping and trans
formations to be provided by DBMS during process execution. This
makes it unnecessary for the user to access the data during the
,equence of OMs/GPUs.

Whatever the compromise devised by the user, his responsibility includes:
I .

1. 	 Providing a description, in the UF SCHEMA, of data that logically
corresponds (i. e., is mappable) to datarequired by each OM/GPU
of the sequence.

2. 	 Specifying, in each SUBS CHEMA, what the correspondence (mapping
technique) is.

3. 	 Providing initial ("pump priming") occurrences of input data prior to
execution of the sequence of OMs/GPUs.

The OMs/GPUs are then interfaced through DML with DBMS which arranges the map
ping and any required data transformations.

Note that the originator of an OM/GPU is not faced with requirements to search
for data or recognize special file names or data names, nor to provide interface with
another OM/GPU.

Figure 1-3 illustrates the execution of the OMs/GPUs in the optimization loop after
UF initialization.

The user, through Query Processor (QP) populates (provides initial "pump prim
ing" data values to) that portion of the database corresponding to his UF module by:

.1. 	 Mapping from the Multidisciplinary Data Bank (MIDB)

2. 	 Mapping form his Disciplinary Library File (DLF).

3. 	 Mapping from other UFs as required.

4. 	 Inserting parameters via keyboard input.

Depending on the Master TCS he assembles for the task:

1. 	 Some sequence of OMs/GPUs will interact with the data.

205

l *INITIALIZEUFVIAQPG
U POSITIOI MASTER TCS

. EXECUTE MASTER TCS - "-

UFMODULEOPTIONAL QPS STRINGS U
IEXECUTE CP$S

STRING TO COMPLETE '"- '

Ir INPUT FOR OM1 IF REQ. I I

S- NPUTCOPLET - FOR
EXECUTE OM I TO

OPS STRING TO IEXECUTE OPTIONAL OPSSTRINGS
MAP SELECTED OUTPUT I I
FROM OMITOOMk
k=2, ,n IFRED [

OUTPUT RECORD WRITE OUTPUT
OCCURRSNCE.0M, RECORD FOR Om1I_ _ II

SEXECUTESTRING TOOPS
 I

I. ,.OMLiO I iPIE TF

__--_ IOUTPUTRECORD -- -OUTPUTXEUT O -WRITEEXFCUTEOPSSTRINOTO r '
RRETRDFOROM

MAPSELECTED OUTPUTFOR O

I I
OCCURRENCEOMj OPTIMIZE DRIVE (OTM)I IRA O

I FROM OMn TO OMk -EECT VARIATINLES
FCPTINP8 FORNUMOD -1. nlFREO - - - - BETV

OUTPUTSUMARYNDISPLYMCRITERI
(OPTIOXEALTA DO M NI IN -- -- -- -- DrA A*nIFCTIOORIN EROrON -- - -- -- .

OUTPUT RECORD 6--,

EXECUEOPSSTNOEI WRITE OUTPUT

Figue MA SELECclinOThUghaTpiiato opwt
FRMONpTiona Ieacie oitrn

k=,06IRE

http:OCCURRSNCE.0M

2. 	 The user, via QP may interact with the data between the execution of
any pair of OMs/GPUs. The interaction is shown as a QPS in the batch
mode. This is recommended as being more practical, however, a
QPS may be replaced at any time by a "live" session.

1.4 GPU Programming Standards

GPUs are designed and coded to conform to standards intended to:

1. 	 Insure compatibility with IPAD objectives with respect to the user.

2. 	 Exploit existing software including:

a. 	 Software developed concurrently with IPAD.

b. 	 Incremental improvements after implementation.

3. 	 Insure portability of source code.

There is no direct correspondence between these objectives and the programming stand
ards. Each subsection below contributes to one or more of the objectives above.

1.4. 1 Standard source language. - This is to be essentially a subset (with respect to
any particular computing system)- of FORTRAN IV:

1. 	 Only-those features supported by all, or nearly all, the major manufac
turers will be used.

2. 	 Code enhancements are required in the form of:

a. 	 DML to interface with an implementation of CODASYL's DBMS.

b. 	 General Graphics Library (GGL) as applicable.

°
3.	 Machine dependent considerations (p. g. dimensions of arrays for text
information) will be isolated and id'entified for ease in modification.

4. 	 Machine/operating system dependent functions (e. g. character mani
pulation, multiprecision arithmetic) will be delegated to interface
subprograms for ease in modification.

1.4.2 Continuity. - It is to be expected that a utility program will be interrupted
(through system failures, abort conditions within the utility, or user termination)

207

before a task is finished. The utilities must be designed to minimize the loss of work
(from the user's viewpoint) in case of interruption.

There are two classes of sudden interruptions: total failures and annoyances.
The total failures are covered elsewhere in this report (Section 6 of Part II). The de
sign of each GPU is to account for the annoyance class of interruptions. The following
design features will minimize annoyance:

1. Each utility will be subdivided into a large number of subtasks .and
control over the sequencing of these subtasks will be provided.to the
user. This permits the user to resume at a point very closeto the
point of interruption.

2. 	 All "files" will actually be permanent AREAs within the UF; structured
to permit individual RECORD identification. The utility can resume

work on the same RECORD(s) as when interrupted. DBMS will ensure
that previous DML "writes" were made permanent.

1.4. 3 Modularity. - The GPUs will each be divided into a number of code modules for
several reasons:

1. 	 Close user control of an interactive task requires that it be broken down
into a large number of subtasks (modules).

2. 	 Continuity of a task over one or more interruptions requires modularity
(as discussed above).

3. 	 Proper segmentation of source code permits each IPAD installation to
exploit machine/operating system features, e.g.:

a. 	 Multi-level (tree structure) overlay techniques,

b. 	 Dynamic overlay techniques.

c. 	 Memory paging or virtual memory techniques.

Modularity must also include:

1. 	 Separation of executable code from data.

2. 	 Separation of logically distinct tasks.

3. 	 Separation of read-only code from modifiable (e. g. data) code.

208

http:provided.to

1. 4.4 Execution mode. - All GPU (except for the General Design Module, GDM) are
to run either interactively or in the batch mode as suits the user. If run batch, the user
must supply interactive input as data intermixed with the job control language (the TCS).
The GDM is to run interactively, mainly supported by a minicomputer.

1. 5 'Conclusions

The IPAD design provides a framework for executing and interfacing sequences of
OMs, i.e. supporting the user with the capabilities to which he is accustomed. The
GPUs augment these capabilities within the same framework, thus contributing signifi
cantly to the user's effectiveness.

The capabilities provided by the GPUs have been under development (and usable
to some extent) for a considerable period of time. However, as a practical matter,
their use has not been generalized due to the difficulty of adapting their specialized
implementations and of providing data interface requirements. IPAD alleviates the
difficulty by incorporating truly general purpose utilities (GPUs) in such a manner that
the same interface resolution assistance applies to all OMs (and every GPU).

An example of OMs and GPUs in a single task sequence is given by a design opti
mization loop. A sequence of OMs evaluate functions of design data, a GPU (OPTUM)
applies an optimization technique to the evaluations and modifies the design data accord
ingly. The sequence is repeated until an optimization criteria is met. IPAD will there
by provide capabilities permitting a relatively unsophisticated user to configure and
exercise this type of sophisticated software capability.

The GPUs are to be IPAD-specific developments. As such they will be developed
subject to additional programming standards not necessarily applicable to the OMs.
The programming standards are derived from IPAD objectives with respect to the user
(e. g., the user will be in close control of the process, will be given opportunities to
correct errors and proceed, etc.) and with respect to supporting software (i.e., maxi
mum exploitation of manufacturer -supplied software). The standards anticipate de
velopments in supporting software and interfacing languages; in particular, a DBMS
to support CODASYL specified interfacing languages, and to interface with graphics
capabilities to support a GGL.

209/210

2 STATISTICAL UTILITY MODULE
(STATUM), A GPU

The purpose of the Statistical Utility Module (STATUM) is to provide the engineer
with a statistical package that can be used at an interactive terminaL The statistics
contained in STATUM cover most of the typical needs of an engineer such as standard
deviations, means, correlation coefficients, regression coefficients, etc. Menus of
the statistical subject matter are made available to him with accompanying tutorial
information to help him find the statistic of his choice. Tutorial suggestions are
offered on how a particular statistical program might be used.

The philosophy behind STATUM is that the engineer shall retain complete control
over his problem each step of the way. He can check to make certain intermediate re
sults look reasonable. After he has selected his statistical program, and given his in
put to the program, he is next presented with the outputs available from the computa
tions. If anything looks incorrect, he can go back and check or redo his work. If the
results look good, he can continue, using additional subprograms of STATUM and
developing more complex statistics. This visibility is particularly important in
regression analyses where raw observation data is manipulated into a variety of statis
tics. If the engineer discovers that the standard deviations of a set of observations
are unreasonably high, he can go back and check his input data before proceeding fur
ther instead of forging ahead and creating results which might be erroneous and totally
misleading.

The statistical options included in STATUM are data screening, computations of
tolerance intervals, regression and correlation analyses, setup and measurement of
testing hypotheses, comparisons of histograms with best fit classical distributions,
analysis of variance, and non-parametric statistics. A subject menu tells the analyst
what output quantities are available in each of these options. Using this information
as a guide, he can browse through the available menus to find a specific statistic if he
is uncertain as to what he actually wants. If the analyst is not familiar with the sta
tistical quantities appearing in the subject menu, the Macro and Micro menus can tell
him more completely what outputs are available from a particular choice.

The statistical utility module is designed with the user in mind. He doesn't need
any special knowledge to find his way through STATUM. The tutorials help him
through every step.

211

2. 1 STATUM User Interface

Once the analyst has called STATUM, he will find himself unknowingly in contact

with the STATUM USER INTERFACE. This INTERFACE subprogram acts as the

host and guide to the user during the time STATUM is active. The STATUM USER

INTERFACE is the driver for the activities that take place within STATUM. Thus,
the STATUM USER INTERFACE plays the key role in acquiring information from the

user, responding to his selections and presenting him with the output results.

The flow diagram showing the functions that the STATUS USER INTERFACE per
forms is given in Figure 2-1 which should be referred to in the following: discussion.
The first thing the STATUM USER INTERFACE determines is whether or not this is
a new task. In some cases the analyst may have broken off his statistical work, and
after a period'of time wants to continue. if the task is new, he is asked if he wishes
to delete occurrences of data in STATUM's AREA of his User File (UF).

The SUBJECT MENU tells the analyst whit statistical options are available. A
selection gets him into the correct family of statistics. Adequate information accom
panying the SUBJECT MENU helps the analyst make his choice. If lie doesn't see
what he wants, he selects the T - (Terminate) DISPOSITION item on the menu. This
gives him the option to go back to the beginning and try again or else to initiate the
termination of STATUM. After the user has selected a specific statistical subject
from the SUBJECT MENU, he is shown the MACRO MENU which lists the main pro
grams available under the selected statistical option. If none of the listed topics
appeals to him, he selects the T-DISPOSITION choice to terminate his search.

Once the main program has been selected, the STATUM USER INTERFACE retains
it and the user is shown the MICRO MENU which contains the subprograms -available
to him under the main program. These subprograms perform the actualistatistical
computations under the supervision of the main program selected from the MACRO
MENU.

When the analyst has selected his main program and one of the subprograms on the
MICRO MENU, he is then placed in contact with the PREFACE to the selected sub
program. He is asked for input data, such as bounds, values of parameters, number
of variables, location of the observation7 matrix and related topics. This extracted
information is saved until the analyst instructs the subprogram to execute.

After execution, the analyst is shown the output quantities available on a OUTPUT
QUANTITY MENU. He is asked what he wants done with any seledted output quantity.
An OUTPUT DISPOSITION MENU is presented so he can choose to display (to list or
graph), punch cards or similarly disposition any output quantity. Each output quantity

212

(" YES INITIALIZE

PREFACE TO
SUBPROGRAM YES MORE
(I/O, TUTOpTAL, SUPPROS
MESSAGES,KEY NO
BOARD INPUT) DELETE

• CCURRENCEB O NO

PREVIOUS
RESULTS

EXECUTE

DISPLAY TDISPOSITION
SUECT

DISPLA
SUBPROGRAM
OUTPUT
QUANTITY
MENU

RESPOND

RESPOND TO MENU ,

OUTPUT

QUANTITY MO

MENU SELEC- YES MAIN

TON (IFANY) I PROGRAMS

?

MACRO TOISPOSITION FROM MU No
tMORE MENU

OUTPUT YES (MAIN PROS)

QUANTITIES

DISPOSTIONRESPOND
MNO

SUBPROGRAM IOT T

OUTPUT
DISPOSITION
MENU

RESPOND

TO OUTPUTI

DISPOSITION
 MIURO T D S

SELECTION TIO I NO

NO ITHUIF ANY)

MORE E

OUTPUT YESIr

ISPOSITIONTEMNT

7NO TR DE

Figure ~ ~ ~ 2-FUucioMlwDagaSAU~ T~ ~ ~
B

Figure 2-1. .Function Flow Diagram, STATEJM YES8

213

that he selects is treated separately. For example, if there are five-output quantities,
he must ask separately for edch of thedm: He 'ust decidewhat 'disposition is to be

made separately. In other words, he ban only make one selection at a time from a

menu. The logic of the STATUM USER INTERFACE permits the analyst to return to
a desired menu for further selections before proceeding to a, new menu.

After he finishes computing results with a subprogram, the analyst is asked if he
wants to return to the MICRO MENU to choose another subprogram. If he does, and
selects a new subprogram, he must answer the input interrogation from the new sub
program PREFACE as before. A new OUTPUT QUANTITY MENU, corresponding to
the new subprogram, is shown. The OUTPUT DISPOSITION MENU he sees is the
same as before; this menu is the same for all subprograms.

When he has finished with all the subprograms under a previously selected main

program, his final results are contained in a UF (User File) area of the Data Base.

Since the analyst may not be through with STATUM when he finishes one set of

statistical computations, he is given the opportunity of returning to the SUBJE CT

MENU and starting another sequence of activity. He will not be terminated from

STATUM until he indicates that he wants to be terminated.

Two examples are given to illustrate the sequence of activities in STATUM. The
first example, shown in Figure 2-2, is the simple case where the analyst wants to
screen the data contained in anobservation matrix and to obtain the means, standard
deviations, and range of the observations for each variable.

The second example, shown in Figure '2-3, illustrates the steps taken'to perform a
multiple linear regression. The analyst is interested in obtaining tie correlation
coefficients between his observation variables.

2.2 Statistical Programs Within STATUM

The statistical programs appearing, in STATUM are mostly derived from available
subroutines described in Reference 2t. These subroutines are programmed in For
tran IV. Nearly all of the subroutines willhave to,be modified to some extent to be
compatible with STATUM. Some will be changed significantly and others will be com
bined. A relatively small number of subroutinei will 'have to be' created from incep
tion to fulfill the needs of STATUMo

These are quite similar to those 123 statistical subroutines in the IMSL package of

about 246 general purpose mathematical subroutines' coded in FORTRAN IV. This,
libr'ary is available on IPAD's three target computing system s (see lleferences 3,
4 and 5) and is available for the modest price of $840.

214

-0 USER CALLS FOR STATUM

* USERSELECTSDATASCREENING FROM SUBJECT MENU
* USER SELECTS DASCR FROM MACRO MENU

* USER SELECTS TALLY FROM MICRO MENU
* PREFACE TO SUBPROGRAM, TALLY, ASKS USER FOR

NAME OF OBSERVATION MATRIX

OUTPUT QUANTITY MENU IS PRESENTED
1. VARIABLES LIST OF TOTALS
2. VARIABLES LIST OF AVERAGES

3. VARIABLES LIST OF STANDARD DEVIATIONS
4. VARIABLES LIST OF MEANS
5. VARIABLES LIST OF MINIMA
6. VARIABLES LIST OF MAXIMA

7 VARIABLES LIST OF RANGE

6 UTPUT DISPOSITION MENU IS PRESENTED
1. DISPLAY
2. LIST

3 PRODUCE CARDS

4. PRODUCE FILE (FILE NAME)

5 HARD COPY OF DISPLAYS

* USER IS ASKED IF HE IS THROUGH WITH STATUM, IF YES, TERMINATE STATUM

Figure 2-2. Simple Case- Data Screening

* USER CALLS FOR STATUM
* USER SELECTS REGRESSION &CORRELATION ANALYSES FROM SUBJECT MENU
* USER SELECTS REGRE FROM MACRO MENU
* 	 USER PERFORMS IN SEQUENCE (BY SELECTION FROM MICRO MENU)

CORRE - GETS MEANS, STANDARD DEVIATIONS, CORRELATION COEFFICIENTS

ORDER - CHOOSES WHICH VARIABLES ARE INDEPENDENT & WHICH IS DEPENDENT FROM

A LARGER SET OF VARIABLES

MULTR - GETS REGRESSION COEFFICIENTS, T-VALUES, & OTHER CONFIDENCE MEASURES
* OUTPUT QUANTITIES MENU-RO-M MULTIPLE LINEAR REGRESSION ISPRESENTED

" USER SELECTS DESIRED INTERMEDIATE OUTPUT QUANTITIES ONE AT A TIME

1 MEANS

2. STANDARD DEVIATIONS

3 SUM OF CROSS-PRODUCTS OF DEVIATIONS FROM MEANS

4. CORRELATION COEFFICIENTS

5 REGRESSION COEFFICIENTS

6 STANDARD DEVIATIONS OF REGRESSION COEFFICIENTS

7. T-VALU ES

8 INTERCEPT OF REGRESSION LINE

9 MULTIPLE CORRELATION COEFFICIENT

10 STANDARD ERROR OF ESTIMATE

11 SUM OF SQUARES ATTRIBUTABLE TO REGRESSION (SSAR)

12 DEGREES OF FREEDOM-SSAR

13. SUM OF SQUARES OF DEVIATIONS FROM REGRESSION (SSDR)

14, DEGREES OF FREEDOM - SSDR

15 MEAN SQUARE OF SSDR

16 F-VALUE

Figure 2-3 Typical Case: Performing a Multiple Linear Regression

215

There are two levels of programs which are responsible for performing the statis
tical computations. The first level which is under the control of the STATU1M USER
INTERFACE is called the MAIN program. The main program is the driver which

supervises the computational programs or the subprograms, as they are called.

There are at least two subprograms under each main program except in the case of

DISCR-Discriminant Analysis -which is just the combined main program and subpro

gram. The MAIN programs appear on the MACRO MENUS. The subprograms appear

on the MICRO MENUS. In actual operation, the MAIN program controls only one sub

program at a time. When the computations are completed for the first subprogram,

the MAIN program is ready to accept instructions from the STATUM USER INTER-

FACE for driving the next subprogram.

A list of the MAIN programs and their accompanying subprograms are given below

with a brief description of each.

2.2.1 DASCR-Data screening - This main program supervises the screening of a

set of observations. Under its direction, bounds can be placed on observations with

in each variable. Histograms can be made from the frequencies of the observations

within given intervals. Totals, means, standard deviations, minimum and maximums,

as well as range can be determined for each selected variable.

2.2.1.1 TALLY: This subprogram computes totals, means, standard deviations,
ranges, minima and maxima.

2.2.1.2 BOUND: This subprogram selects from a set of observations, those obser
vations which are under, between and over two' given bounds.

2.2.1.3 SUBST: From certain conditions imposed on the variables, this subprogram
creates a subset of observations that satisfy those conditions.

2.2.1.4 ABSNT: This subprogram is used to test for missing data in an observation
matrix or to test for zero values in the observation matrix.

2.2.1.5 TAB 1: This subprogram is used to tabulate (for a selected variable in an
observation matrix) the frequencies and percent frequencies over class intervals
where upper and lower bounds are imposed. After the frequency' is' bbtained, then

each frequency is divided by the total number of observations , to obtain the frequency
in percent.

2.2.1.6 TAB 2: This subprogram is used to perform a two-way classification of the

frequency and percent frequency for two selected variables in an observation matrix

where upper and lower bounds are imposed. In addition, it computes the totals,
means and standard deviations for each class interval for variables 1 and 2.

216

2.2.1.7 SUBMX: This subprogram copies from a larger matrix of observation data
a subset mbfirix of those observations which have satisfied certain conditions.

2.2.2 TOCI - Tolerance intervals. - This main program supervises the computations
for tolerance limits, confidence limits and prediction limits. The limits are the two
edges of the interval.

2.2.2.1 TOINT: This subprogram is used to compute tolerance intervals and limits.
Tolerance intervals are computed from a sample to show where most of the population
can be expected to lie within a given confidence level.

2.2.2.2 COINT: This subprogram computes confidence intervals and limits.

2.2.2.3 PREINT: This subprogram computes prediction intervals. It computes the
interval within which the value of the dependent variable from a regression is ex
pected to fall given values of the independent variable.

2.2.3 REGRE - Multiple linear regression - This main program supervises the
development of a multiple linear regression. Under its direction means, standard
deviations, simple and multiple correlation coefficients, regression coefficients and
T-values are computed.

2.2.3.1 CORRE: This subprogram computes means, standard deviations, sums of
cross-products of deviations from means, and correlation coefficients from an ob
servation matrix. Some subprograms are popular and used with a number of main
programs. A typical case is CORRE. It is used with main programs REGRE for
multiple linear regressions, STEPR (see Subsection 2.2.5.1) for stepwise multiple
regressions and MCANO (see Subsection 2.2.6.1) for canonical correlations.

2.2.3.2 ORDER: This subprogram constructs, from a larger matrix of correlation
coefficients, a subset matrix containing the independent variables and a vector con
taining the intercorrelation of the independent variables to the dependent variable.
(See also Subsection 2.2.4. 2.)

2.2.3.2 MULTR. This subprogram performs a multiple regression analysis for a
dependent variable and a set of independent variables. It computes the regression
coefficients, the multiple correlation coefficient and various measures of conffdence,
e.g. standard deviations of regression coefficients, the variance and the standard
error of the estimate (see also Subsection 2.2.4.3).

2.2.3.4 MISR: This subprogram computes means, standard deviations, third and
fourth moments, correlation coefficients, regression coefficients, and standard

217

errors of regression coefficients when data is missing.

2.2.4 POLRG - Polynomial regression - This main program supervises the develop
ment of a polynomial regression. 'Powers of an independent variable are generated to

calculate polynomials of successively increasing degrees.-- If there is no reduction in

the residual sum of squares between two successive degrees of polynomials, the

search for higher powers stops. Under its supervision means, standard deviations,

correlation coefficients, and regression coefficients are computed along with various

confidence measures.

2.2.4.1 GDATA: This subprogram generates independent variables up to the highest

degree polynomial specified and calculates means, standard deviations, sums of cross
products of deviations from means, and product moment correlation coefficients.

2.2.4.2 ORDER: This subprogram constructs, from a larger matrix of correlation
coefficients, a subset matrix containing the independent variables and a vector con
taining the intercorrelation of the independent variables to the dependent variable
(see also Subsection 2.2..2).

2.2.4.3 IULTR: This subprogram performs a multiple regression analysis for a
dependent variable and a set of independent variables. It computes the regression co
efficients, the multiple correlation coefficient and various measures of confidence,
e.g. standard deviations of regression coefficients, the variance and the standard
error of the estimate (see also Subsection 2.2.3.3).

2.2.5 STEPR - Stepwise multiple regression. - This main-program supervises the
development of a stepwise multiple regression. Stepwise multiple regression analyzes
the relationship between a dependent variable and a set of independent variables, and
selects the independent variables in the order of their importance. The criterion of
importance is based on the reduction of sums of squared errors and the independent
variable most important within this reduction in a given step is entered in the regression.
Under its supervision, means, standard deviations, correlation coefficients, and re
gression coefficients with various confidence measures are computed.

2.2.5.1 CORRE: This subprogram computes means, standard deviations, sums of
cross-products of deviations from means, and correlation coefficients from an ob
servation matrix (see also Subsections 2.2.3.1 and 2.2.6. 1).

2.2.5.2 MSTR: This subprogram is used to restructure the storage mode of a matrix.
For example, the upper triangular elements of a general matrix are used to form a
symmetric matrix.

218

2.2.5.3 STPRG: This subprogram performs a stepwise multiple regression analysis
for a dependent variable and a set of independent variables. It computes the regres
sion coefficients and measures of confidence for each step of regression.

: J

2.2.6 MCANO - Canonical correlation - This main program supervises the develop
merit of a canonical correlation. An analysis is performed of the interrelations be
tween two sets of variables measured on the same subjects. The canonical correla
tion gives the maximum correlation between linear functions of the two sets of vari
ables. Under its supervision, means, standard deviations, correlation coefficients,
and canonical correlation coefficients are computed.

2.2.6.1' COIRE: This subprogram computes means, standard deviations, sums of
cross-products of deviations from means, and correlation coefficients from an obser
vation matrix (see also Subsections 2.2.3.1 and 2.2.5.1).

2.2.6.2 CANOR This subprogram performs the canonical correlation analysis be
tween two sets of variables. It computes the canonical correlations and coefficients.

2.2.7 ALLTST - Measurement of testing hypothesis.-This main program supervises
the testing of an initial hypothesis. It analyzes a sample for the purpose of testing a
null hypothesis about a population.

2. 2.7.1 TTEST: This subprogram computes T-statistics on the means of populations
under various hypotheses. For example, a null hypothesis could be as follows: The
population means of B equals the population mean of A, given that the variance of B is
not equal to the variance of A. (Where A and B are input lists of data.)

2.2.7.2 FTEST: This subprogram computes the F-statistics on the null hypothesis
that the ratio of variances of two normal populations is I at the significance level X,
on the basis of a sample size Ni from population I and an independent sample of
size N2 from population 2.

2.2.7.3 UTEST: This subprogram tests whether two independent groups are from
the same population by means of the Mann-Whitney U-test. The scores for both
groups are ranked together in ascending ordei'. Tied observations are assigned the
average of the tied ranks.

2.2.7.4 QTEST: This subprogram determines the Cochran Q-test statistic from a
matrix of dichotomous data. It tests whether or not three or more matched groups
of dichotomous data differ significantly.

2.2.7.5 SIGNT: This subprogram performs a nbn-parametric sign test, given two

219

sets of matched observations. It tests the null hypothesis that the differences-between
each pair of matched observations has a median equal to zero.

2.2.8 KOLM - Kolmogorov-Smirnov tests. - This main program supervises the one
sample and two-sample Kolmogorov-Smirnov tests. In the one-sample test it
determines from what probability density function the sample is most likely drawn,
In the two-sample test, it determines whether the two samples were drawn from the
same population.

2.2.8.1 KOLMO: This subprogram tests the difference in absolute value betweenan
einpirical distribution and a theoretical distribution using Kohnogorov-Smirnov t s
limiting distribution. It is used to determine from what probability density function a
particular sample is most likely drawn.

2. 2. 8. 2 KOLM2: This subprogram tests the difference in absolute value between two
empirical distributions and a theoretical distribution using Kolmogorov-Smirnov's
limiting distribution. It is used to determine whether two independent saniples were
most likely drawn from the same population.

2.2.9 HBFCD - Histograms compared with classical distributions. -This main pro
gram supervises the comparison of a histogram of frequencies against various classi
cal distributions. A residual sum of squares provides the criterion for best fit
among the various distributions.

2.2.9.1 NDTR: This subprogram tests against the normal distribution function.

2.2.9.2 BDTR: This subprogram tests against the Beta distribution function.

2.2.9.3 CDTR: This subprogram tests against the Chi-square1 distribution function.

2.2.9.4 NDTRI: This subprogram tests against the inverse of normal distribution
function.

2,2.9.5 BNDTB: This subprogram tests against the binomial distribution function.

2.2.9.6 PODTR: This subprogram tests against the Poisson distribution function.

2.2.9.7 CADTR& This subprogram tests against the Cauchy distribution function.

2,2.10 ANOVA - Analysis of variance. - This main program supervises the analysis
of variance. This analysis permits the variance to be brokeninto several portions:
a portion caused by experimental error, a portion caused by varying several param
eters simultaneously, and a portion caused by varying a single factor.

220

2.2.10.1 'AVDAT: This subprogram places data for analysis of variance m properly
distributed positions of core storage.

2.2.10.2 AVCAL: This subprogram performs the calculus for the general k-factor
experiment. Deviates for an analysis of variance are computed using the special
operators Z and A.

2.2.10.3 MEANQ: This subprogram performs the mean square operahon for the
general k-factor experiment. It pools the deviates from AVCAL and computes sums
of squares, degrees of freedom, and mean squares.

2.2. 10.4 TWOAV: This subprogram determines the Friedman two-way analysis of
variance statistic from a matrix of groups and cases. It is used to decide whether a
number of samples are from the same population.

2.2.11 RANCO - Rank coefficients. - This main programn supervises the computation
of rank coefficients for two variables (or groups) whose elements are ranked. The
rank coefficients are a measure of the correlation between the two variables (groups).

2.2.11.1 KRANK: This subprogram cbmputes the Kendall rank correlation coeffi
cient. It is used as a measure of the correlation between two variables.

2.2.11.2 SRANK: This subprogram computtes the Spearman rank correlation coef
ficient. It is used as a measure of the correlation between two variables.

2.2.11.3 TIE: This subprogram seeks out ties in ranked observations and computes
a correction factor.

2.2.11.4 WTEST: This subprogram computes the Kendall coefficient of concordance
to test the degree of association among a number of variables.

2.2.11.5 CHISQ: This subprogram calculates the Chi-square and degrees of free
dom for a contingency table containing observed frequencies within certain groups
and conditions.

2.2.12 DISCR - Discriminant analysis. - This main program supervises the classi
fication of new individuals into one of several groups. This main program contains
the subprogram which does the computing. A set of linear functions is calculated
from data on many groups. The classification of an individual into a group is per
formed by evaluating each of the calculated linear functions, then finding the group
for which matchup is best.

221

2.3 input/Output Requirements -

The input and output quantities of STATUM are expressed in three forms - scalars,
vectors and-matrices. To give broad visibility of the different-kinds of scalars, vec
tors and-matrices used inthe various subprograms, two cross-reference-charts were,
preparedo Figurer,2-4 shows the kinds of inputquantities needed to support the STATUM

INPUT DATA NEEDED -

ROUTINE-S--

STATuJM
ROUTINES

TALLY
BOUND

160
8 6 6

11
611 1 1 1 1 1 1 11 1 1 1 1 1

ABSNT a06
S TAB1

TAA2
SUBMX
CORRE

a 11
1 1 1 1 *1 1 1 1 1

MISRSa IIs 1
ORDER a&IIII l 0
MULTReiII
GDATA a 1

Ig
10

STPRG 0 1 1 $ 0-
PROOTI 0 o
CANOR a0

AVCAL S 0
MEANG - -I
DMATX s

TRACE 01a
LOAD aI11
VARMX
AUTO
CROSS

i1
6

I 1
1 1

SMO
EXSMO
KOLMO
KOWM2I I I I
.SMITHI
CHIS$C ,
KRANK
MPAIR

aa
a EST a

OTE'T
RANKSIGNT

MON
a 0

a

I
Ia I

*
II

-
I I

TIE a
TNOAVUT--- -- I - I I - I I - - - - - - - - -

MSTR 999t1 55
GAUSS0
NDTR
BOTH
CDTRNDTRI

BISER

PHi
,222:

POINT
TETRA 0
SPATE

Figure 2-4. Input Information Cross-Reference Matrix

ORIGINAL PAGE I§
,222OF POOR QUAL ITY

subprograms. For example, subprogram TALLY requires as input an observation
matrix and the dimensions of the matrix in terms of the number of variables involved
and the number of observations.

The subroutines listed along the left-hand side of Figure 2-4 are those available
from the IBM 360 Scientific Subroutine Package (SSP), Reference 2, STATUM, as
presented here, will use many of these statistical subroutines but not all of them.
Some subroutines could come from other sources, others may be created expressly
for this purpose. For exafmple, the new subroutines TOINT, COINT, and PREINT
(which do not appear in Figure 2-4) are used in computing tolerance intervals,

confidence intervals and prediction intervals; these subprograms are quite

small and can be created by using the formulas given in any standard

statistical reference manual (e.g. Reference 6).

The output quantities produced by the STATUM subprograms are presented in
Figure 2-5 which is directly comparable to Figure 2-4. As an example, the output
quantities generated by subprogram TALLY are an output vector of totals, output vec
tor of means, an output vector of standard deviations, an outputvectoroftheminimum
value of each variable, and an output vector of the maximum value of each variable.

The analyst has to make certain his input data is available to STATUM before
starting his statistical work. The data can be mapped by QP into a separate AREA
just prior to using STATUM or, if the data already resides in an identifiable AREA in
storage, he can proceed directly.

The STATUM USER INTERFACE will provide a communication link to the analyst
and ask for the name and AREA of the input quantities required for running the main
programs and the subprograms. The output quantities will be inserted in storage and
will be available for whatever disposition the analyst desires.

2.4 STATUM Menus

The key to successful operation of the statistical programs is good communications
between the Statistical Utility Module and the analyst. To help him gain insight to
the statistical options available to him, the analyst is given a tutorial on each menu.

The material presented in this section on the STATUM MENUS follows the STATUIM
functional flow diagram (Figure 2-1). The menus show the options available tc the ana
lyst as he progresses through the flow diagram.

223

A

ObTP13 - '1

RESU LTS

S1"ATU'l TALLY
ROUTINES BOUND

SIJBST 0 1 1

ABSNT 1 1
TASI011
TA62 IIII S o
SUBMX I I I 11
CORRE -
MISR 0 aa*
ORDER Il
IMULTRaAa
GDATA-SIPRG - - - - -

PROBTW
CANOR C0
AVDAT
AVCAL
hMEANQ 00
DMATX
DISCR *
TRACE 1
LOQ OUTPUT CRIANI) FOR11 OF A MATILK III
VARMXaaAUTO1

I
0 1

CROSSI 110
WO
E ID- - -

KOLMO
KOLM2a
SMIRN
CHISO
KRANK- - - - - - -A - - -
MPAIRP--
WEST

- - - -

RANKaSIGNT

SPANK
TIE

0 0

TWOAV a

WREST *
WIR

GAUSS
OilTPUT

S
It EST7RUCTUL D NIA rRIX

NDTR

NDTRI
MOMEN

BISER

PHI
MOINT
TETRA
SRATE

Figure 2-5. output Information Cross-Reference Matrix

2,4.1 STATUM subject menu. - The STATUE[SUBJE CT MENU tries to focus the

analyst's attention on the major categories of statistical topics available in STATUM.

Figure 2-6 shows how the STATUM SUBJECT MENU might appear on the interactive

terminal. Each SUBJE CT MENU topic is meant to guide an inexperienced user in

selecting the statistic that he wants to use. The subject titles are meant to be sugges

tive. If the user finds the subject titles uninformative, he can browse through the

programs under each subject and try to discover what he wants. He can browse, for
instance, by calling for the DATA SCREENING macro menu and its supporting MICRO

MENUS. Continuing along the same vein, he can call for viewing the TOLERANCE

0RIGINAL PAGE IS
Op pOORt QUALITY

224

SELECT (TRACKING CROSS OR LIGHT PEN) OR TYPE IN CHARACTER OF YOUR SELECTION FROM MENU BELOW

1. 	DATA SCREENING - COMPUTES TOTALS, AVERAGES, MEANS, STANDARD DEVIATIONS, MINIMUMS &
MAXIMUMS, RANGE & OTHER GENERAL STATISTICS FOR SELECTED VARIABLES

2. 	 TOLERANCE INTERVALS - COMPUTES FROM A SAMPLE, WHERE MOST.OF POPULATION CAN BE EXPECTED
TO LIE WITH A GIVEN CON FIDENCELEVEL

3 	 REGRESSION & CORRELATION ANALYSES - PERFORMS LINEAR REGRESSIONS, MULTIPLE LINEAR
REGRESSIONS, POLYNOMIAL REGRESSIONS, STEPWISE MULTIPLE REGRESSIONS, OR CANONICAL
REGRESSIONS.

4 	 SETUP & MEASUREMENT OF TESTING HYPOTHESIS - PERFORMS T-TEST, F-TEST, X2 TEST, PAIRED T-TEST
ON INTERACTIVELY CONSTRUCTED TESTING HYPOTHESES

5 	 COMPARISON OF HISTOGRAM WITH BEST-FIT CLASSICAL DISTRIBUTIONS - HISTOGRAMS OF POPULATION
DISTRIBUTIONS CAN BE COMPARED WITH NORMAL DISTRIBUTIONS, X2 DISTRIBUTIONS; BINOMIAL
DISTRIBUTIONS, BETA, CAUCHY, OR POISSON DISTRIBUTIONS.

6 	 ANALYSIS OF VARIANCE - DETERMINES WHETHER SOME CONJECTURED EFFECT EXISTS ALLOWS MORE
THAN ONE FACTOR TO VARY IN AN EXPERIMENT & DETERMINES INTERACTION OF FACTORS

7 	 NONPARAMETRIC STATISTICS - PERFORMS KOLMOGOROV-SMIRNOV TESTS, KENDALL RANK
CORRELATIONS, MANN WHITNEY U-TEST, OR X2 TEST FOR CONTINGENCY TABLES

T. PROCEED TO DISPOSITION OF FINAL RESULTS (IF ANY, OTHERWISE TERMINATE STATUM)

Figure 2-6. STATUM Subject Menu

INTERVALS MACRO MENU and its supporting MICRO MENUS; the REGRESSION AND
CORRELATION MACRO MENU and its supporting MICRO MENUS; etc. Note that the
selection of an item in the SUBJECT MENU does not initiate any computations, it
just guides the analyst to get him started.

2.4.2 STATUM macro menus: - By making a selection on the SUBJECT MENU, the
analyst automatically gets the MACRO MENU corresponding to that selection. For
each item in the SUBJECT MENU, there is a distinct and separate MACRO MENU.
The MACRO MENU contains the name of the main program and a brief tutorial des
cribing the quantities computed under the supettiision ofthe main program. An ex
ample of a MACRO MENU is shown inFigure 2-7 as it might appear at the interactive
terminal. Tutorial information came from Section 2.2.

There are seven MACRO MENUS. Each contains from one to four selections of
main programs. In Figure-927, the MACRO MENU for regression and correlation
analyses, are shown the four possible activities that can be selected-from this menu,
namely, Multiple Linear Regression, Polynomial Regression, Stepwise Multiple

225

THESE MAIN PROGRAMS DRIVE SUBPROGRAMS SELECTED FROM ICRO MENU FOR MULTIPLE LINEAR
REGRESSION SELECT (TRACKING CROSS OR LIGHT PEN) OR TYPE IN CHARACTER OF YOUR SELECTION
FROM MENU BELOW

1 REGRE 	 - MULTIPLE LINEAR REGRESSION - A MULTIPLE LINEAR REGRESSION IS PERFORMED FOR A SET
OF INDEPENDENT VARIABLES & A DEPENDENT VARIA3LE

2 POLRG - POLYNOMIAL REGRESSION - POLYNOMIALS ARE GENERATED TO FIT DATA OF INDEPENDENT
VARIABLES

3 STEPR - STEPWISE MULTIPLE REGRESSION - ANALYZES RELATIONSHIP BETWEEN A DEPENDENT
VARIABLE & A SET OF INDEPENDENT VARIABLES TO SELECT THE MOST IMPORTANT INDEPENDENT
VARIABLES

4 MCANO - CANONICAL CORRELATION - GIVES MAXIMUM CORRELATION BETWEEN LINEAR FUNCTIONS OF
TWO SETS OF VARIABLES THAT HAVE MEASURED SAME SUBJECT

T PROCEED TO DISPOSITION OF FINAL RESULTS (IF ANY, OTHERWISE TERMINATE STATUM)

Figure 2-7. STATUM Macro Menu for Regression and Correlation Analyses.

Regression, and Canonical Correlation. The seven MACRO VENU groupings are as
follows:

1. DATA SCREENING

a. DASCR - Main program for Data Screening

2. TOLERANCE INTERVALS

a. TOCI - Main program for Tolerance Intervals

3. REGRESSION AND CORRELATION ANALYSES (see Figure 2-7)

a. REGR2E - Main program for Multiple 'Linear Regression

b. POLRG - Main program for Polynomial Regression

o. STE PR - Main program for Stepwise Multiple Regression'

d. MCANO - Main program for Canonical Correlation

4. MEASUREMENT OF TESTING HYPOTHESES

a. ALLTST - Main program for Measurement of Testing Hypotheses

b. KOLM - Main program for Kolmogorov-Smirnov Tests

226

5. COMPARISONS WITH BEST-FIT CLASSICAL DISTRIBUTIONS

a, HBFCD - Main program for Histograms Compared with Classical
Distributions

6. 	 ANALYSIS OF VARIANCE

a. ANOVA - Main program for Analysis of Variance

7. NONPA AMETRIC STATISTICS

a. RANCO - Main program for flank Coefficients

b. 	 DISCR - Main program for Discriminant Analysis

2.4.3 STATUM micro menus. - The MICRO MENUS contain the computational pro
grams which produce the desired statistical results. The MICRO MENU appears auto
matically to the analyst after a selection has been made from the MACRO MENU. The
MICRO MENU contains the names of the subprograms and a brief tutorial describing
the quantities being computed. The subprograms contained in the MICRO MENU are
generally independent of each other. There are cases, however, where the subpro
grams must be used sequentially and the output results of one are used as input to the
other. Where this sequential dependence may arise, a tutorial statement advises the
analyst of the correct sequence.- An example of a MICRO MENU with its tutorial
statement (see Section 2.2) is shown itaFigure2-8.

MULTIPLE LINEAR REGRESSION IS NORMALLY PERFORMED BY CALLING IN SEQUENCE CORRE, ORDER &
MULTR SELECT (TRACKING CROSS OR LIGHT PEN) OR TYPE IN CHARACTER OF YOUR SELECTION FROM MENU
BELOW

1. 	 CORRE - TO FIND MEANS, STANDARD DEVIATIONS & CORRELATION MATRIX (IF NOT PREVIOUSLY
ACCOMPLISHED)

2 	 ORDER - TO CHOOSE A DEPENDENT VARIABLE & A SUBSET OF INDEPENDENT VARIABLES FROM A
LARGER SET OF VARIABLES

3 	 MULTR - TO COMPUTE REGRESSION COEFFICIENTS 6(0), ..B@ & VARIOUS CONFIDENCE MEASURES

4 	 MISR - CONSIDERS THAT OBSERVATION DATA MAY BE MISSING COMPUTES, MEANS, STANDARD
DEVIATIONS, THIRD & FOURTH MOMENTS, CORRELATIONS, SIMPLE REGRESSION COEFFICIENTS & THEIR
STANDARD ERRORS

T PROCEED TO DISPOSITION OF FINAL RESULTS (IF ANY, OTHERWISE TERMINATE STATUM)

Figure 2-8. STATUM Micro Menu for Multiple Linear Regression (REGRE)

227

2.5 Output Quantity Menus
I

After a particular subprogram has been executed, n OUTPUT QUANTITY MENU

is presented to the analyst. He can select key quantities for monitoring his inter
mediate results before proceeding further. -Or, for those output quantities he wants

to disposition, he makes his selection and states what he wants done with them wheii

they are presented on the OUTPUT DISPOSITION MENU.

A -typical example, the OUTPUT QUANTITY MENU is given for subprogram
TALLY. The following information is displayed to the analyst.

STATUM

OUTPUT QUANTITY MENU FOR TALLY

Select (tracking cross or light pen) or type in

chara6ter of your choice from menu below.

1. Variables list of totals
2. Variables list of means
3. Variables list of standard deviations
4. Variables list of minima
5. Variables list of madma
6. Variables list of range
T. 	 Proceed to disposition of final results

(if any, otherwise terminate STATUM)

The OUTPUT DISPOSITION MENU is always the same for all of the subprograms.
The analyst has the identical options for disposing of his output quantities regardless
of the subprogram. The OUTPUT DISPOSITION MENU contains the following options:

1. Display (text or graph)

2. Hard copy displays (lister or microfilm)

3. Produce cards

4. Produce a special file (file name)

The output quantities for the various STATUM subprograms were shown in the out
put information cross-reference matrix of Figure 2-5. In this matrix the STATUM
subroutines appear on the left and the output resuts across the top. As presently
envisioned, STATUM will use many of the subroutines shown in Figure 2-5 but not all
of them. The output results shown across the top do not contain all of the output
information that is actually available. There are so many quantities available that

228

they could not all be listed on one sheet of paper. Consequently, there are general
output quantities shown, e.g. OUTPUT VECTOR (variety) and OUTPUT MATRIX
(variety) to catch the unusual details and to place them in asummary vector or matrix.

Additional,output quantities must be provided when the new subprograms TOINT,
COINT, PREINT, FTEST, BNDTR, PODTR and CADTR are designed. These output
quantities are summarized below:

1. The following statistics are available from TOINT

a. Tolerance interval and tolerance limits

2. The following statistics are available from COINT

a. Confidence interval and confidence limits

3. The following statistics are available from PBEINT

a. Prediction interval and prediction limits

4. The following statistics are available from FTEST

a. List containing degrees of freedom associated with the F-statistic

b. F-statistic for a given hypothesis

5. The following statistic is available from BNDTR

a. Measure of the best fit of a histogram to the binomial distribution function

6. The following statistic is available from PODTR

a. Measure of the best fit of histogram to the Poisson distribution function

7. The following statistic is available from CADTR

a. Measure of the best fit of a histogram to the Cauchy distribution function.

2.6 Operating Requirements for STATUM

Now that the general features of STATUM are known, it is possible to estimate the
storage requirements and computational times for various STATUM statistics. These
are summarized in Figure 2-9.

2.6.1 Incore storage requirements for STATUM. - The statistical activity requiring
the largest array of output results and therefore the largest incore storage array is

229

Typical Typical Maximum
Typical Compute Storage Program
No of Time* of Results Size-

Subject Programs (se }; (words) (words)

DATA SCREENING 8 1 4 1,000 3,500

TOLERANCE INTERVALS 4 03 300 rl,200

REGRESSION ANALYSIS 11 1 4 2,500 5,000

TESTING HYPOTHESES 7 1 7 1,000 3,400

BEST FITS 9 1 7 1,000 - 3,300

ANALYSIS OF VARIANCE 4 04 500 4,000

NONPARAMETRIC STATISTICS 7 17 1,000 3,000

'CDC 6400 ..	 INCLUDES SUBPROGRAM PREFACES
& SUBPROGRAM DRIVER

USER 	 4. 300
INTERFACE

SoO
RESULTS

kDRIVEN 	 2,800

(REGRE)

B. 1PROGRAM 800
(CORR)

IN-CORE BUFFERS & DATA MANAGEMENT 3. B00

I/O IN-CORE DUFFERS 2, 000
GRAPHICS SUBROUTINES 1,500
SYSTEM SUPPORT ROUTINES 1.000

GROWTH DURING IMPLEMENTATION 2.500
STATUM OVERALL SIZE 20,400 WORDS

Figure 2-9. Estimated Operating Reqtiirements for STATUIM

Regression Analysis. It requires approximately 2,500 decimal words* of incore
storage (Figure 2-9). These estimates are based on Figures 2-4 and 2-5.

The largest main program that must be handled in core is REGRE (R1gression
Analysis). It contains approximately 2,800 decimal words. The largest subprogram
operating under the direction of REGRE is CORRE (800 words) which computes
(among other things) correlation coefficients. The STATUM- USER INTERFACE which
directs all the activities of STATUM while communicating with the analyst, is esti
mated to require 4,300 words of incore storage. This estimate is based upon the
number of functions it has to perform and by comparing it with similar programs.

In addition to the programs that control and compute statistical quantities, there
are additional host computer operating system support subroutines that must be
accounted for to complete the core storage requirements for STATUMd. These are

*These requirements are based upon CIC 6000 series 60 bit words. Comparable
requirements for 8-bit byte machines can be obtainedfrm- Figure 2-9.

230

interface programs that link STATUM to other functions to handle such things as in
put/output data, graphical-displays, etc. The incore buffers and data management
are estimated to require an additional 3,000 words of storage, the input/output incore
buffers require 2,000 words, the graphical display subroutines themselves require
1,500 words, and the other support subroutines that might be needed tocomplement
STATUM incore are estimatdd at 1 000 words.

It is anticipated that there may be a growth of storage requirements during the im
plementation of STATUM. To°aocount for this growth, anxadditional 2,500 words (14
percent) of core storage growth potential has been added. The madmum incore size
of STATUM is estimated to be 20,400 decimal (47,660 octal) words. This is below
the 60, 000 octal words that might norfally be targeted for such a utility program. It
is low enough that it could be used on smaller computer if'desired.

2.6.2 Computing times for STATUM. - To get an idea df flow long typical problems
would take on a CDC 6400 using STATUM, running times were taken from Reference
2 where typical statistical problems were performed on ab IBM 360/30. This infor
mation was extrapolated to give the typical compute times shown on Figure 2-9. It
can be seen that computing times ranging less than 2. 0 seconds can be expected on a
CDC 6400 computer. This length of compute time is perfectly compatible with activi
ties at an interactive terminal; the analyst has negligible wait time and can perform
efficiently.

2,6.3 Modification and creation of new subroutines for STATUM. - Although many
of the subroutines are readily available for STATUM, a number of new programs
must be created and others need-to be modified. The new programs required are as
follows:

,. STATUM USER INTERFACE

2. 	 TO C1 - Main program for Tolerance IntervIls

1

3. ALLTST - Main program for Measurement of Testing Hypothesis

4. 	 HBFCD - Main program for Histogram Conparisons to Classical

C Distributions
 -

50 RANCO - Main program for Rank Coefficients

6. TOINT - Subprogram for computing Tof6ranoe Intervals

7, PREINT - Subprogram for computing Prediction Intervals

8. COINT - Subprogram for computing Confidence Intervals

9. FTEST - Subprogram for computing F-statistics

231

10. BNDTR - Subprogram for Binomial Distribution Comparison

11. PODTR - Subprogram for 'Poisson Distribution Comparison

12., CADTR - Subprogram for Cauchy Distribution Comparison

The technical requirements for these routines can be obtained from Reference 6.

The programs of Reference 2 that will require significant modifications are the

following:

1. KOLM - Main program for Kolmogorov-Smirnov Tests

2. DISCR - Main and subprogram for Discriminant Analysis'

3. , MIULTR - Subprpgram for Multiple Regression Analysis

4. CANOR- Subprogram for Canonical Correlations

All of the subprograms must be modified to include a PREFACE of about 125 words.

The PREFACE contains tutorial statements and questions to help the analyst satisfy

the needs of the subprogram. The PREFACE for each subprogram will be different

and only have meaning when used in context with its host MAIN program.

232

3 IPAD TEXT EDITING,
A HOST UTILITY

This portion of the study was conducted to determine thetext editing capabilities
required by IPAD and to make a document survey of the existing text editing software
supplied and maintained by the major computer system manufacturers. The survey
was limited to editing capabilities of interactive software subsystems provided under
standard operating systems, The text editors studied in detail are those currently
supplied for the CDC Cyber 70 and 6000 series, the IBM 360 and 370, and the UNIVAC
1100 series computers (References 7, 8 and 9, respectively).

Two additional large scale systems (Reference 10), the HONEYWELL 6000
(GE 600) and the UNIVAC 70 (RCA Spectra 70), and a medium scale system (Reference
11), the DEC PDP-10, were briefly examined to ascertain the extent of text editing
capability provided under their timesharing operating system. This was done primar
ily to ensure that the three text editors studied in detail were representative of the
range of computer systems on which IPAD is likely to be implemented.

3.1 Text Editing Concepts

The two main functions of text editing are (1) the creation of new information
files and (2) the editing of existing information files. "Information" is used here to
cover a variety of computer stored documents: programs written in any kind of source
language; input data files; specifications; and other types of arbitrarily formatted text.
In short, any character-coded, sequentially-ordered file can be created or edited by an
interactive terminal user through the text editors under discussion.

To service the two functions of creating new files and editing existing files,
text editors operate in either an input or edit mode (or both simultaneously). In the
input mode, each editor has an initial command (e. g., CREATE, INPUT) to open a
new edit file -for the user to enter lines of text from his terminal. Depending on the
design of the editor, line numbers are either automatically generated as each line is
entered, or the user may create a file without line numbers.

In the edit mode, various commands may be used to locate, modify and mani
pulate existing text. These commands may be performed upon entire files, lines
or groups of lines within a file, and characters or character strings within a line.
Each of the editors discussed here may perform either line-number editing or con
text editing. Each editor has an edit file line pointer that refers to the line to be
edited. In line-number editing, the pointer moves to the line number referenced

233

by the command. In context editing, lines may be located by a search for specific
characters within a line. When the line is located, the edit file pointer-points to
the 	line to be edited. In addition to this means of locating a line in context editing,
some editors provide commands for positioning the pointer relative to its present
line 	position or to the first or last line of the file.

Once the proper position is established, characters, lines, or blocks of lines
in the edit file may be deleted, inserted, or replaced by information specified within
the command, from the terminal, or from other files.

3.2 A Review of Text Editing

IPAD will employ a text editor as a primary facility for creating and modifying
a number of character coded files:

1. 	 Program source code development.

2. 	 Task Control Sequences (TCSs) and TCS Skeletons (TCSSs).

3. 	 Query Processor Sessions (QPSs) and QPS Skeletons (QPSSs).

4. 	 Tutorial and other textual data.

5. 	 Display or presentation data, e.g. for the Engineering Review

Board (ERB).

Since all editors worthy of the name perform roughly the same functions on
files of information and are not concerned with the subject matter of these files,
IPAD presents no unique design requirements or constraints to existing text editing
software. However, the ease of use, power and flexibility of the editor subsystem
and its commands will be important to both the IPAD system implementer and the

PAD user. These and other points concerning design philosophy of the three text
editors are discussed in Section 3.3.

Text editing capabilities required by IPAD may be broken down into file manip
ulation, line manipulation, character string manipulation, and formatting and general
utility functions. These functions are described below and are cross-referenced in
Table 3-1 to specific commands that perform similar functions under the CDC,
IBM and UNIVAC text editors. This table in turncross-references the page number
of the manufacturer-supplied literature listed in those references appearing in the
table. Thus, considerable information may be readily obtained on the workings and
specific implementations of the functions that follow. The table additionally provides
(left hand edge) a cross-reference back to the subsections below.

234

TABLE 3-1. - MAJOR EDITING .FUNCTIONS AND COMMAND COMPARISONS

Refer FUNCTION CDC IBM UNIVAC
to TO BE PEOMR M EDITOR EDIT ED

(Reference 7) (Reference (8) (Reference 9)

Set up to create a new file

INPUT (p.18-10)
from terminal 	 CREATE (p.4-9) INPUT (P-103)

I 	 .2 load and seqEnce local file EDIT (p.4-12) MERGE (p.fli) ADD (p.18-8)
into edit file 	 first option)

E Combine all or part of a file SAVE (p. 4 -Lk) MERGE (p.ul) ADD (p.18-8)
option MERGE (p.111) ADDS 3 with edit file

Sm erde file upon exit from(second ot option)
.4 edvt fp41l) ex.2) 4 file saved unlessupon fromEdit
editfr 	 SAVE (p 1 4) SAVE (p.121) OMIT (p.18-11)

I 	Delete specified lanes from

edit file 	 DELETE (p.k-20) DELETE (p.91) DEIETE (p.18-9)

2 	 Insert a line or lmes into ADD (p.4-18) INSERT (p.105) INSERT (p.18-8)
edit fileL

1.Dlt/netRpaeasingle Not Available in ED)as

!. Delete/Insert/Repce a e Line No.=Text (p.4-l) Line No.=Text (p.107) a sing le mand

line from terminal 	 a single comand.EE 	 Current line-Text

. Resequence all or a portion of S 422' PBUM '12" Not available in EDedit file R (P2 as a single command.

Position edit file line pointer Not available, line is BOTTOM, DOWN + (p. 18-14)
.5 found by number or TOP, UP

string in line. (p. 85, 93, 127, 129) LAST (p. 18-10)
4.3 	.1 locate a character string SAVE (p. -14) lOCATE (p.18-1)
4 6	 8
S within a lane 	 LIST (p. -!) FIND (P-97) FIND (p.1 -9)

T DELETE (p. 4 -20)

R Replace or modify a string

1 .2
N within lines 	 /text 1/=/text 2/ CHANGE (p. 87) CHANGE (p. 18-9)

G 	 (p. 4-23)
S (1

Define line length, tabs and FOMT (46) TABSET (p.125) P=JNT (p.18-12)
.1 tab key EDIT line (p.76) TAB (p.18-1 4)

/0R 	 SET (P.18-13)
M-16)A 2 Display lines from edit file LIST (p. LIST (p. 0 QUICT (p.18-12)

N * on terminal (UICK (p. 18-13)

Display lanes when located LIST (p. 4-16) VERIFY (p. 131) PRINT (p. 18-12)0 	 .3 by pointer

N .4 Compile and execute program RUN (p. 4-26) RUN (P. 117) Not available,
E under editor Must leave ED

S

exit from editor BYE or
A 	 .5 Terminate, and

4-5) DD (p. 95) EXIT (p. 18-9)
for stBYE,BYE (p.

Not available
.6 	 Check for syntax errors an Not available SCAN (p.123)

source code as line is entered in EDITOR in

HELP (p. 141) Not availabib in ED.
7 Display comand tutorial or TEACH (p. 3-5)

usage nformation

NOTE- Page numbers following commands refer to the manufacturer's literature listed in the references quoted.

OIIGINAL PAGE IS
OF POOR QUALITY

235

3.2.1 File manipulation functions. - These functions relate to either the editor's

edit (random) file, input files to be edited, or the editor's output files.

3.2.1.1 Setup: When the user desires to create a new file, a command is required

fo dire'& the editor to enter the input mode and accept everthing typed at the IPAD

user's terminal. The command should specify the beginning line sequence numbe3,
the line number increment, and whether the line is to be displayed back to the user.

3.2.1.2 Load: In loading an existing file into the edit file for the user to modify,

a command must be given which will allow an entire file to be moved into the edit

file workingarea with line sequencing and resequencing options. These line numbers

are editor-generated and are appended to all lines as they are stored in the edit file.

3.2.1.3 Merge: In the creation of a new file, the editor should have the ability to

merge existing files (or selected portions of existing files) into a specified area of the

edit file. Through the use of these commands the user inserts previously stored
information into any desired new files.

3.2.1.4 Save: The 6ontents of the edit file are operated upon in a temporary stor

age area. In order to save the edit file or selected portions of the edit file, a com

mand which allows the user td assign a file name and write the edit file contents onto
that file must be available.

3.2.2 Line manipulation functions. - These functions relate'to the specific lines
of text being created or modified.

3.2.2.1 Delete: The PAD user has the ability to delete lines anywhere in the edit
file. The line or lines to be dleleted are located by line number, line pointer or by a
character string search. Options include the ability to display the lines before deletion
occurs so the user can determine if the deletion is desirable.

3.2.2.2 Insert: The user requires the ability to dnsert lines created from the IPAD
terminal between existing lines in the edit file. This insert command does not result
mi overwriting of existing edit file lines unless a user-specified option is provided.

3.2.2.3 Replace: The above line deletion and insertion capabilities allow the scanning
of a file with deletions or insertions occurring within line positions bpeoified by commani
mand parameters. In addition, the user replaces a single line with terminal input
information by simply typing in a line number and the associated text any time in the
editing process. This allows simple correction of errors or omissions made by the
terminal user.

236

3.2.2.4 Resequence! At completion, or at any point during the editing of a file,

the user has the ability to resequence the entire edit file or any portion of it. The.

command allows the user to specify the starting number and number mcrement to be
used.

3.2.2.5 Position: CDC's'EDITOR assigrks a line number to every line. Iowever,
the other systems provide for the positioning of a line pointer in files not sequenced
by line rnumbers. This offers an advantage for files (e.g., report text) where line

serves no useful function.sequencing

3.2.3 String manipulation functions. - These functions are related to character

strings embedded within lines.

3.2.3. 1 Locate: The text editor allows the user to locate a character or set of
characters within lines of text in the edit file. A single line, lines within specified
limits, or the entire file is searched at the option of the user. The user modifies
the lines as they are found or displays the entire set of lines containing the search
character string.

3.2.3.2 Modify: The editors provide a command that allows the user to

replace a set of characters with another set of characters within edit file lines.

Both the search and replacement character strings are command parameters.

Characters in all lines between specified limits or in lines throughout the entire

edit file can be so modified.

3.2.4 Formatting and general utility functions. - These functions are related to
formatting or general functions not covered above.

3.2.4. 1 Format: The format of the lines m the edit file is under the control of the
editor user in much the same manner as manuscript typing is Lnder control of the
typist, or card punching is under the control of the keypunch operator. , Commands
exist in the editor which will allow the user to define his own format in terms of line
length (in number of characters), tab positions and terminal tab key definition. He
selects a frequently used format (e. g., FORTRAN source statement) from a list of
predefined formats provided by the editor.

3.2.4.2 Display, general: The user displays the entire edit file or any portion
of it at any time by issuing a single command. This command allows him the options
of displaying the file either with or without the editor-generated line numbers.

237

3.2.4.3 Display, selective: In addition to displaying lines between specified line
numbers, the editor displays all lines containing a specified chakacter string as they
occur in the edit file or as the line pointer points to the line. This allows the user to
limit output to lines containing items of immediate interest to him.

3.2. 4.4 Compile, load and execute a source program: The user has the ability to
compile, load and execute a source program created or modified m the edit file with
out leaving the control of the editor. This command allows debug runs and user cor
rections to be made under the editor until a working program is produced.

3.2.4.5 Terminate: The editor provides a terminating command to exit from the
editor and return the user to the control of the operating system. If the edit file is
automatically destroyed upon exit, the editor provides a prompting message for the
user to save the edit file unless he intentionally wishes to destroy it.

3.2.4.6 Syntax analysis: IBM's EDIT provides the ability to perform a syntax

analysis on progtam source entries as the line is being entered. This is a very

valuable aid in programming since a large number of initial program errors are

simply errors in syntax.

3.2.4.7 Tutorials: Both CDC and IBM provide tutorial information in response to
a user request. IBM's implementation is the more useful in that it selectively pro
vides the pertinent information relative to the command being questioned. An auto
tutorial capability is highly desirable in an IPAD environment.

3.3 A Comparison of Text Editors

The three editors compared in this study represent the current versions, and
the literatum referenced is the latest available from the manufacturers at the time
of the study. Both IBM and UNIVAC representatives say that new releases are due
before the end of the first quarter of 1973. Both indicated thatthese releases will
contain editor improvements.

Each editor has unique design characteristics and unique features. The CDC
EDITOR allows the user to use intermixed EDITOR, INTERCOM and SCOPE com
mands or control statements without leaving the control of EDITOR. This allows
the user to have a very flexible and powerful set of commands and reduces exits, re
entries and file saving. The IBM EDIT does not allow this much flexibili-tr but does
allow the user .to compil6 and execute a newly created or edited program without

238

leaving EDIT. In addition, EDIT can provide syntax checking of each source program
statement as it is created. The UNIVAC ED under the EXECS system for the 1100
series is the most isolated from the operating system of the three. The ED command
list contains more than forty separate commands or over twice the number in either
the CDC or IBM editors. This is due to differing design philosophies. UNIVAC em
ploys many, simple, single-function commands while CDC and IBM use fewer commands
having multi-function options to accomplish many of the same editing requirements,

With the FORMAT and MERGE commands provided by IBM as a program product
(at an additional fee), the IBM EDIT package is the most powerful general text editor of
the three for the general IPAD user. However, from the standpoint of the user whose
primary use will be the creation and editing of source programs as opposed to textual
information, the CDC EDITOR appears to be the most flexible and easy to use. The
UNIVAC editor, in its present form, appears to be the least flexible of these three
editors for IPAD implementation.

3.4 IPAD's Text Editor

The editing functions examined in Table 3-1 will be available to the IPAD user.
All are implemented in the current CDC, IBM and UNIVAC editors and may either be
accomplished by a single command or by a combination of two or more commands.
Although the document survey indicated that these were significant differences among
the manufacturer supplied editors, any of the three editors reviewed in detail
met the IPAD requirements. Rather than supply a separate text editor specifically for
IPAD, it was determined that the existing editors could supply this capability, although
each in a slightly different manner.

However, since the Query Processor (QP) is also concerned with interactively
creating/modifying data, a comparison of the two capabilities is in order:

I. A text editor is intended to perform charactpr string operations on sequential
files only. QP is intended to perform arithmetic operations on data base
information regardless of its organization.

2. 	 A major objective of a QP is to permit the user to interactively devise
complex search strategies to access/update data. A text editor provides
one search strategy based on relative or absolute line numbers, and one
based on character content within a line.

3. 	 A text editor is supplied by the computer manufacturer independently of IPAD
and DBMS, consequently (in initial implementations) it operates on con
ventional files only. QP is provided with DBMS and operates on data base
information as well as conventional files.

239

The conclusion is that the functions of the text editor and QP overlap to some extent
but neither is an adequate replacement for the other. The IPAD user need employ both
in manipulating textual information. In particular, when information to be edited exists
in the data base or text editor output-is to be dispositioned to the data base, QP may
be used to interface the text editor with DBMS. That is QP will act as an I/O Formatter
(IF) to map data base information to a conventional file and/or a conventional file into
data base information. Eventually, it is anticipated that all text editors vnll be up-'
dated to optionally operate on data base information directly through DBMS.

240

4 OPTIMIZER AND PARAMETERIZER MODULE
(OPTUM), A GPU

The' IPAD Optimizer/Parameterizer is a collection of General Purpose Utilities
(GPUs) for performing mathematical optimization or one of its subfunctions (viz, para
meterization or sensitivity extraction). The optimization methods listed in the Sections
4.2 are currently regarded as the best techniques for solving the pertinent optimi
zation problems. The particular method selected for use from the collection becomes
the object code driver OPTUM for that particular optimization task. A sequence of
OMs within the IPAD system can be optimized by OPTUM with respect to some ob
jective function 'defined by the user.

4.1 Introduction

The IPAD optimizer operational module collection must contain a selection of
muitivariable search techniques which will modify the initial estimated values of
several independent "design" variables to improve the value of an objective or merit
function. Some of the techniques will result in a set of values for the independent
variables for which the objective function attains a relative optimum. This mathema
tical optimum is usually achieved at the expense of many objective function evaluations.

For situations where objective function evaluation is expensive, techniques must
be provided to modify an initial guess at the independent variable values so that the ob
jective function value is improved. Typically, the interactive user will make a judg-
ment as to whether it is practical to continue the computations to improve the objective
function or whether the expected improvement is not worth the computer expenditure.
In this mode of operation, only an improvement will be achieved; the techniques used
are approximate optinization methods which yield only an approximate optimum.

The practicality of carrying out total vehicle optimization using a detailed syn
thesis program in the necessary disciplines appears to be questionable. The diffi
culty is not in the unavailability of a method but in the computer time involved. A
more practical approach is to carry out optimization at the subsystem level by sub
optimizing the appropriate basic design variables for each subsystem. A limited
number of design variables could then be optimized for the whole system.

Each optimization method must potentially interface with all OMs and be inter
changeable with other optimfzation methods so that the appropraite method can be
matched with the particular task configuration of OMs selected for optimization.
Query Processor (QP), which is discussed in detail in Section 1.3.1, can be made

241

reponsible for the interface between the optimization routine used, and the OMS. QP
can be delegated the responsibility of taking the design variable values generated by the
optimizer and placing them where the OMs can access tliem; QP could also select the
desired results generated by the OMs and place them where the optimizer can find them.
Thus QP permits great flexibility in the choice of parameters used in optimization
studies.

Virtually any input parameter can be modified to optimize the objective function.
Similarly, any parameter generated by an OM can serve as the objective function
to be optimized. This means that an optimization can be performed on any process
where the objective (merit) function varies as a function of the basic design variables.
In the case where more than one parameter is selected as an objective in the optimi
zation problem, a weighted sum of all the desired parameters can serve as the objec
tive function. Again, QP (via a QPS) can provide this weighted-sum objective function
evaluation,.

4.2 Optimization Methods

There are many excellent optimization methods available in the literature. Al
though they each differ in tie procedure used to optimize, they all share characteris
tics in common. For example, they all need some initial guess at the optimal values
of the independent variables. These values (guesses) are then refined by the optimi
zation technique; this is done by determining what changes occur when the variables
are increased or decreased. In some methods this information is used togenerate
gradients; in other methods this information provides local geometry information for
approximation techniques. In still other methods the lowest objective function value
is retained from the exploration of the independent variable influences on the objective
function.

Additional relationships can be seen graphically by classifying each optimization
method by its attributes. Each technique can be classified as falling on a certain branch
of the overall optimization technique evolution tree. Figure 4-1 presents a functional
flow diagram of the evolution tree which classifies the current best technique accord
ing to their attributes. The figure illustrates the fact that each optimization method
is not distinct from all others but is related.

The two primary branches of the tree divide the optimizatio, methods into random
and nonrandom methods. Since the major emphasis has been on The development of non
random methods (because they are faster and more accurate than random techniques),
there are many more methods on the nonrandom primary branch. The most powerful
methods are gradient-based methods whibh is' the first of the secondary branches.

242

RANDOMNNADM

PERTURBATIONS VARIATION

AX

EACHEMENT 	 ONE-DIMENSIONALO LIST
R H SOC 	 AN SP R .
m n f (X + [AX]) mm f (X + aAX INDEPENDENTSE

K VAL E 	 ALONG ORD INATE FOR U METERIZE
SEVTI ES ECOORDINATE 	 RREAXIS O PARAMETRICAXES I ERH STUDY

IN 	 F HNERANOMRANOMSEARCHES

RANDM RADOMONE-DMENSIONAL
SEARCHES IN

WAKRYCALCULATE
 PERFORM LINEAR P IT QUADRATICMODIFIEDSERH SENSITIVITIES

FUNCTION(GRADIENT) 	 COORDINATE REGRESSION ON
AXES OBJECTIVE THROUGH
DIRECTIONS FUNCTION FUNCTION

& CONSTRAINTS VALUES

FOBTAIN 	 LINEAR ONE-DIMENSIONAL DM IA POWELL'S

PROGRAMMING FICSIMPLEX MINIMIZATION IN METHOD SOLUTION OPTIMIZATION
PROBLEM AS SLIN MODIFIED STEEPEST DESCENT LEI OFTOUAZATIC
FORMULATED BY SOLUTION O STEEPEST DESCENT RECTON OF QUADRATIC
ZOUTENDIJK LINEARIZED DIRECTION PROBLEM

PROBLEM

METHOD SIMPLEX OR DAVIDON- METHOD OF SEOD-R
OF SEPARABLE FLETCHER- STEEPEST CURVEFI

ZOUTENDIJC PROGRAMMING 	 POWELL DESCENTCUVFI

METHOD METH-OD

CIO 	 Figure 4-1. Functional Flow Diagram of Optimizer Evolution

The other two secondary branches are specialized methods which apply to problems

with discontinuous gradients, or to problems where only an improvement of the ob
jective functions is desired.

The parameterizer and sensitivity extractor appear in the figure even though
they are not optimization m~thods. The'con'putation r~qnired by these techniques,
however, is identical to a subset of the computations required for some of the'optimi
zation methods. Sensitivity extraction uses the gradient evaluation subroutines from
an optimization technique to obtain sensitivities; parameterization uses the linkages
setup for the optimization process to evaluate the OM sequence with input parameter
variations. For this reason they naturally fall in the evolutionary tree of optimi
zation techniques and are therefore treated here.

Each of the proposed multivariable search-techniques is discussed individually
below. The problem formulatioh to which eachipphes is given. References, tuto-'
rial aids, I/O requirements, and sub-computations required are discussed. The order
of presentation is organized around Figure 4-1. The gradient-based methods are dis
cussed first, followed by one-dimensional search methods, list-change methods, and
finally random -perturbation methods. The last three subsections describe 'techniques
which are supplementary to the previously described techniques, one-dimensidnal
search algorithms, linearization of the objective function and constraints, and penally
function techniques.

4.2.1 Gradient methods. - In this subsection, optimization methods which require

computation of gradients are discussed.

4.2.1.1 Steepest descent method: The method of steepest descent (Reference 12) is
the simplest of the unconstrained optimization methods of the gradient type. It requir
es that continuous derivatives of the objective functions exist. To pbtain these deri
vatives -for a general case a finite difference method is required. The user must make
a judgment concerning the stepsize used in order-to obtain accurate gradients. The
user will also be required to indicat&when theprocess should terminate. The best
way to do this is to monitor the optimizatibn process interactively by viewing plots of
tWe objective function as it decreases and observing the independent variable values
versus iteration cycle. These curves should approach some stationary value near

convergence; the user can then judge whether additional iterations are necessary or

not. Figure 4-2 presents a functionalfflowchart of steepest descent search method.

A one-dimensional search subroutine can be used to obtain the maximum benefit
from a given steepest descent direction. The one-dimensional search requires some
convergence criteria with which the user can interact; the results could be graphically
displayed as an option so that the user could then judge convergence and give direction
to the program. Optionally the program could use convergence tolerances to terminate
the search.

244

INITIALIZATION

FOR

OPTIMIZATIONI

COMPUTE PARTIAL DERIVATIVES

OF PERFORMANCE WITH RESPECT
TO CONTROL PARAMETERS

OM EXECUTION SEQUENCE

COMPUTE WEIGHTING MATRIX I

COMPUTE WEIGHTED GRADIENT
DIRECTION

DOUBLE STEPSIZE YE

EXPLORE WITH SPECIFIED STEPSIZE

ALONG RAY DEFINED BY WEIGHTED
BYGRADIENT A

OM EXECUTION SEQUENCE

DISLA RSUTSOFTHSD

INTERA RON VERGNEMR

PERFORM GOLDEN SECTION
SEARCH TO LOCATE EXTERNAL
ALONG RAY IN REGION DEFINED
BY EXP LORAIONS
OM EXECUTION SEQUENCE

DISPLAY RESULTS OF THIS

INTERATION AND CONVERGENCESUMR

INFORMATION4E

INTERACTIVE INPUT OR AUTOMATIC

CONVERGENCE CHECKS

L "

UE

Figure 4-2. Functional Flowchart of Steepest Descent Method

245

Printed output typically includes the most important parameters after each one
dimensional search, and complete OM output for the final design achieved.

4.2.1.2 Davidon-Fletcher-Powell (DFP) method: The DFP method (Reference 13)
has been recognized in the literature as the best of the gradient type unconstrained opti
mization techniques. The method (Figure 4-3) modifies the steepest descent direction
by using an approximation to the Hessian matrix to ultimately achieve more rapid con
vergence. The user interaction and I/O requirements for DFP method are similar to
those of the steepest descent method.

ITIO D ASATIII AA
FOR

OPTIMIZATION

COMPUTE PARTIAL DERIVATIVES OF
F PERFORACE WITH ESPSECT TO

IACONTROL PARAI NETERSO
*MELCtIO SEQUENCE-

GRAPjDIENT
VECTOR &CHAOGI PARAMETEA G
DURING LAST DAQDON SEARCH

COMPUT CtAG I\ T

OI PUT R~IOVLDWVLIGIITINGMIATRI ET _FO MI AR

FCOMIPUTN ,VIGIr I.IDGI RT DI~i;,CTION,

FEXPLORE IVITHlSPECrIlk D SFEP SIZE ALONG

J. 11 R~~AYD kINhDRB1%WVHGIITLD GR,&DIN T

I"ONI bk CUTIO%S LqLI CI-

ACTOR O GODI.N RATIODI

PLRFORW GOLDLN S1'C IlIONS ARCIHTO

LOCATE LKTRENIAL Al ONG RAI IN REGION
DFFMNED BI IAPLORAI ION

-OM EXECUTION SEQLENCF-

ISPLAA1 RESULTS OF THIS ITERATION SUMR

L CONVERGLNCi INFO DISPLAY

1' TE 'ACTIT INPUT ORlAUTOMATIC

C COV} fR'N NCkSE

iiigure 4-3. Functional Flowchart of Daviden- Fletcher- Powell Method

'ORIGINAL PA(11 1 246

4.2.1.3 Simplex method: The simplex method (Reference 14) applies only to con
strained optimization problems where both the constraints and the objective function

I INITALZATIONFOR
OPTMhIZATION

IUnless
AiDtS ECSCAA

LIARIE THE ADUP3CIVE

CONSTRAINT FUNCTIONS BY

COMPUTING GRADIENTS

*OM EXECUTION SEQUENCE-

FIND LARGEST

NEGATIVE

COEFFICIENT OF Xj

I THE OBJECTIVE

FUNCTION

rInE COSTRNTS
EYALLOSIIEN

COEFFICIENTS 07

THE Xj

RETAINING THE

RESULTING

CONSTRN VMLT

THE SMALLESTtn

RIGHT HAND SIDE,

FROM ALL OTHER
CONSTRAINTS AND

FROM THE OBJECTIVE
FUNCTION

YES IMPROVE NO TO

Figure 4-4. 	 Functional Flowchart
of Simplex Method

are linear. The technique achieves the
mathematical optimum of the constrained
problem with relatively little computer time.

the analysis modules are specifi
cally written to supply the linear coeffi
cients for the simplex method, they may
be obtained by evaluating the gradients of

b v.u.	 teo5the objective and constraint functions
desired.

Figure 4-4 shows the function flow of
the simplex method. The user has no inter
action opportunities for this method. Once
the linear coefficients of the constraints
and the objective function have been ob
tained (either directly or by linearizing
the equations), the simplex method can
proceed to optimize without any addition
al OM sequence execution. Since the sim

plex method is a closed algorithm, there
is no useful interaction.

4.2.1.4 Separable programming: The
technique of separable programming
(Reference 15) applies to the inequality
constrained optimization problem where

the objective function is linear and the

constraint functions are quasi-linear.
The technique consists of approximating

the nonlinear inequality constraints by linear segmenits and solving the resulting lin
ear programming problem by the simplex method. Linear equality constraints could
also be handled by this method.

The user could interact with the program by specifying the way in which the non
linear constraints are linearized, however, for higher dimensions this becomes
difficult,

4.2.1.5 Method of Zoutendijk: The method of Zoutendijk (Reference 16) solves the
inequality constrained optimization problem by breaking it into a sequence of linear

247

programming problems. The simplex method
ITIAI7ATION then used to solve the linear programmingFOR	 is
op"B,,7ATIoN sub-problem. The method works best for pro

blems that are almost linear. Figure 4-5 is the
ODPEATEA functional flow chart of this method.GN yES FEASIBLE TEA

CON'ITAINT'IOM EXECUTTON

;EqUENC" The user can interact by designating for
each iteration the constraints that are most

CONSTRAMTS AT critical at that time. He can also judge con-CURRENT DEIGN

.OMEXFCUTION 	 vergence based on plots of objective functionSIqUENCE

4and independent variable values versus iter-
DLT RMINE ation cycle.
CRITICAL

CONSTRAINTS
Pon lINEAR
PROCIAMO 	 4.2.1.6 Sensitivity extraction: Sensitivity ex-
PROMIT41traction 	 utilizes that portion of the optimizer

GRAE that calculates the sensitivities 	(partial deriv-
CRITICL atives) of the 	objective function with respect(70N49TR AINTS.

AND01 FwrVs 	 to the independent variable identified. The
FtIN(I (N

-,h

SI-QLWN(I

.o(M N,.,, 	 normal mode of operation will be to call the

FILL IOM 	 sequence with the independent variables
TABLEAU D perturbed one at a time. The resulting objec-
SOLVF LINEAR
PROGRAMMING 	 tive function values can also be used to esti-
PROBLEM BY

sIvPmTwcMTIof 	 mate the partial derivatives of the objective

USE A COMBINATION function.

OF BISECTION AND

ITERPOLATION

TOP RDMUINM 4.2.2 One-dimensional search methods: -
IN NEW DIRECTION
OM EXECUTION 	 Discussed in this subsection are optimizationSEQUENCF 	 methods which reduce the multi-variable opti-

D HISLAYE LoN 	 mization problem into a sequence of one vari-
AND CON E ENCE RESULTS able optimization problems.
,NFORMATION 	 om n

IN C I 	 4.2.2.1 Powell's method: The method of
APUT OR
HECAOMA C 	 Powell (Reference 17) with modifications by

CNvF1GFNOE 	 Zangwill (Reference 18) is a quadratically

convergent multivariable search technique
HAVE T 	 TOfor optimizing unconstrained objective

MONITCR 	 functions. The method (Figure 4-6) has the
attractive feature that gradients are not
required. Thus, for functions with dis-

Figure 4-5. 	 Functional Flowchart continuous derivatives, this method is a

of the Method of good choice. It consists of a sequence of

Zontendijk one-dimensional searches in conjugate

directions. The one-dimensional searches
can be handled effectively by a simple

ORIGINAL PAE i
OF POOR QUALIWY 248

curve fit to several objective function
DRECIONSTOBE OR values and its analytic optimization. The
COORDNATE AXES OP IATIONI

PRFORU 82"UENE can interact by judging convergence
o, I the overall technique and stopping the

Euser

SEARCof

ESo C. 	 procedure when practical convergence
SEQUNCE. 	 has been achieved.

ONE-DMESON 	 4.2.2.2 Succession of one-dimensional
SEARCH BASED ON

TH ES s searches along coordinate axes: This meth
'OH, EXECUTON

SQUECE. od should be used when the unconstrained

I 	 function evaluation is expensivemo MEobjective
SACnHE and does not possess nice analytic proper

/MA 	 ties. This method could also be used toRESULTS or

= ITRTobtain a good starting point for a more
RuSBACT IV _powerful optimization method. The tech-
A c USEnique is not designed to optimize but simplyCONVERGENCE

CEK 	 to improve the objective function value.
Figure 4-7 shows the functional-flow-diagram

HAVE RETUR

NO t TOthis oES method.

CONVERGED? TPAD of ti ehd

The user can interact to control the
one-dimensional search convergence, or
to select the order in which the independent

Figure 4-6. Flowchart of Powell's Method
variables are optimized.SCHOCE INDEPENBNT WTIALZATIO NH

T'AmABLE IS RAIO FOR

ORORDERED IIER O oF 4.2. 3 List changing techniques. - The

DETERNE M methods which involve evaluation of the
SEARCH RANGE
OFTHE SELECTED OM sequence for specified values of the
INDEPENDENT
VIABLE 	 independent variables, as an end in it
"OHEXECUTION

SEQUENCE.
 self or for subsequent optimization, are

RC O discussed below.
EXTREMA. IN

THS RANGE By

GOLDEN SECT7ONGOMD CUM)N 	 4.2. 3. 1 Second-order mutivariable
SEQUENCE I

curve fit of objective function and its
No minimization- This technique should be

used whenever evaluations of the objec
o
I LAY RESULTSrtive 	 function are expensive. With only a

Ofew function values, a second order 	sur
,EoT [_..face is fit to the function, and its optimumUT OR CHECK

o 	 USobtained analytically. This optimum will
generally represent an improvement in the

Nobjective 	 function value. This procedure

can be repeated as often as desired. A

Figure 4-7. Flowchart of Succession of one program employing this method is des-
Dimensional Searches Along cribed in Reference 12. Figure 4-8 showsCoordinate Axes 	 the functional flowchart of this method.

249

I I
CARRY OUT 0O3JECTIVE FUNCTION
AT (N + 1) (N 2)/Z ORDERED POINTS

IN NEIGHBORHOOD OF CURRENT POINT
+OM EXECUTION SEQUENCEt

FIT MULTWARtABL9 QUADRATIC FORM TO

PERFORNANCE FUNCTION AT THESE POINTS

LOCATE EXTREMAL OF APPROXIMATING7

QUADRATIC FORM, PERTURB CONTROL

VARTADI,r S TO REACH THS POINT

EXPLORE PERFORMANCE VALUE AT
0 PERTURBED POINT ALONG THIS RAY=

I *OM EXECUTION SEQUENCE*

t YFS PRRMNI

IMPROVE ?

PERFORM GOLDEN SECTION SEARCH
FOR EXTREMAL ALONG RAY IN REGION
SPEC(IFIED BY EXPLORATIONS_

DISPLAY RESULTS OF THIS ITERATION -- SUMMARY

FNTERACTIVE INPUJT 'DR MAXIMUM

, ITERATION CON CHC _UE~

Figure 4-8. Second-order Fit Approximate Modeling Tecdmique Flow Chart

250

4.2.3.2 Parameterizion: Parameterization provides the capability of exploring the
output from the sequence of OMs (or an objective function behavior) as a function of
prescribed changes in the independent variables. Prescribed sequences of changes
(list changes) will e Icc6mmodated.

The'user can interact with the parameterizer by specifying the list changes inter
actively. By observing an objective function behavior, the user can modify the list
changes and continue to explore the behavior of the function.

4.2.4 Random variation. - The following techniques, inyolve the use of random
numbers to arbitrarily change the independent variables. This shotgun approach is
included for the situation where the user has no idea what variations shbuld be niade
in the independent variables to improve the objective -functions.

4.2.4.1 Random walk: This is an-approach to improve the unconstrained objective
function value. Independent variable values are selected at random in an attempt to
find a better value of the objective function (Figure 4-9). This technique is most pro
perly used to provide an initial guess to a more powerful optimization procedure.

4.2.4.2 Random ray search: This is ,acrude method designed to improve the uncon
strainted objective function value (Figure 4-10). The user can apply his knowledge to th
process by selecting a ray which will change certain variables more rapidly than
others. He can also control the convergence of the search along-the-ray. A descrip
tion of this method and a program 'employing it ban be found in Reference 12.

4.2.5 Methods for performing the one-dimensional searches which are required by
most of the preceeding techniques. - Many of the optimization methods require the
minimization of a function of one independent variable. This usually constitutes a
major portion of the computation time. The following is a discussion of the two
techniques which hhve been rqst successfully used for this purpose.

4.2.5.1 One dimensional search by polynominal approximation: This method im
proves the value of ati unconstrained objective function of one independent variable.
-Four functional values are fitted by a cubic polynominal whose minimum is found
analytically. Depending, uponwhow closely the objective function behaves to a cubic,
the resulting minimum point can be close to optimal or conversely not even an im
provement in the objective function value.

The user can interact by selecting the four points mentioned above.

4.2.5.2 Golden section search: The golden section search method (Reference 19)
can determine the optimum of an unconstrained objective function of one independent

251

OPTIMIATION

4NUBDERS LYING BETWEEN 0 ND 1

Th N W1bEPENI)ENtPAhOIE1nOF?

EVALATE PERFOfIMACE AT TiS POIT

*OM EVALUATION SEQUENCE7 1

DISPLAY RESULTS OF TIES EVALUATION SUMMARY

AND RETAIN BEST ANSWER DISPLAY

INTETE IN PT OR M XIMUM
TIERATION CBTA INT CHECK

Figure 4-9. Random Walk Foychar ch

INITIALIZATION
FOR

OPTIMIZATIONCOSINES

UISANfCIN E EN E TPERTURBd ANGLES LYING BETWEEN 0 AND I

SCOMPUTE DIRECTION COSRNSO

THESE ANGLES

COMPUTE INDEPEND ENT PARAtIETER

PERTURBATION BY TAKING SPECIFIED

PERCENTAGE CHANGE IN RANGE OF

VARIABLE MULTIPIED BY DIRECTION

COSINES

PERTURB INDEPENDENT P MR-trFS

OMXECTINSQUZCE DIRECTO COSINES

YES

WIT CURRENT DIRECOID
FinYte lwhr f admRySacNO0

DIPAYRSUT

variable. It is an efficient and reliable technique which will work even for discontinu
ous functions.

The user can interact with the method in determining convergence.

4.2.6 Linearizing the objective function and constraints.- This procedure should be
used whenever the objective function evaluation is expehsive and the objective function
and constraints are quasi-linear. Linear functions are fit in the least squares sense
to the constraints and objective function; the simplex-method is used to solve the re
sulting linear programming problem. A program for this method is described in
Reference 12.

The user can interact by selecting the independent variable points at which the
original objective function and constraints are evaluated.

4.2.7 Transformation of constrained problems to unconstrained problems by way of
penalty functions. - For highly constrained nonlinear optimization problems, the
penalty function techniques are most successful. Two of the best methods for trans
forming the constrained problem into an unconstrained problem by using penalty
functions are discussed below.

4.2.7.1 Fiacco-McCormick method: The method of Fiacco-McCormick (Beference 20)
will solve the general nonlinear programming problem of optimizing an objective
function subject to equality and inequality constraints, all of which may be nonlinear.
The method involves transforming the constraint functions to penalty terms which are
added to the objective function. The resulting combination is then optimized without
constraints by any reliable unconstrained optimization technique. Figure 4-11 shows the
functional flow of the general penalty function nonlinear programming technique. The
method of Fiacco-McCormick belongs to this class of methods.

The user has many opportunities to interact with this method. The penalty func
tions involve parameters which may be interactively selected or modified. Scaling
and normalization constants are important to the technique and could be specified
interactively. Finally, the unconstrained optimization method could permit additional
interaction.

4.2.7.2 Exponential penalty functions: The method of Allran and Johnsen (Reference
21) is a penalty function technique which can solve the general nonlinear programming
problem. The method uses a different form for the penalty terms than Fiacco-McCor
mick. Otherwise the same comments apply here as were given for the Fiacco-
McCormick method.

253

INITIALIZATION
FOR

OPTIMIZATION

_ VIOLATE _ 4FAmEOUIN

O N ECOSRIT GENNE R A T E

SNO

COMPUTE WEIGHT
FACTORS FOR
PENALTY TERMS

EXTRAPOLATE
THE SOLUTION
TO ACCELERATE
CONVERGENCE

CALL UNCONSTRAINED
MINIMIZATION SUB-
ROUTINE TO MINIMIZE
PENALTY FUNCTION
*OM EXECUTION
SEQUENCE*

DISPLAY RESULTS
OF UNCONSTRAINED
MINIMIZATION AND - DP
CONVERGENCE

INFORMATION

INTERACTIVE
,INPUT OR o - .

AUTOMATIC CHECKS
" FOR CONVERGENCE AUE

AND ADJUSTMENT
OF WEIGHT FACTORS'

Figure 4-11. 'Functional Flbwv of Penalty Function-Nnlinear Programming Techniques

254

4.3 Optimization Method Selection

The problem that faces the user is the determination of which method of optimi
zation is best for a given problem. The type of mathematical formulation of the pro
blem is important in solving this problem,

4.3.1 Classification. - Optimization problems can be classified according to the

following characteristics:

1. Type of objective function:

a. Linear.
b. Nonlinear.
c. Continuous
d. Discrete.

2. Type of constraints:

a. Unconstrained.
b. Equality constraints.
c. Inequality constraints.

d, Equality and inequality constraints.

e. Constraint functions.

* Linear

* Nonlinear

3. Type of gradients

a. Continuous
b. Discontinuous
c. Nonexistent

4.3.2 Diminishing returns. - The choice of the best method for a particular problem
depends upon the accuracy desired in the answer. Most frequently the accuracy
criterion is based upon practical considerations. The longer an optimization technique
executes on the computer the better the evaluation of the objective function becomes
until an optimum point has been reached. This is the desirable property of stability
which is characteristic of most optimization methods. Therefore, the cost of com
puter time versus the benefit of expected improvement can be the basis for the de
cision of when the solution is accurate enough.

Expected improvement must be extrapolated from previously observed improve
ment versus the number of iterations, or versus the computer time expended. One of

255

the important contributions that an interactive user can provide is the practical judg
ment of when sufficient and economical optimization has been accomplished.

4.3.3 Applicability. - A great deal is known concerning the applicability of optimi
zation techniques to specific engineering problems. This information can be used in
tutorial form to aid the engineer in selecting the appropriate optimization method for
his particular problem, However the question of how much suboptimization should be
pertormed before overall system optimization is attempted depends on the particular
problem. Trade studies will be necessary to determine the best strategy in each case.

4.3.4 Implementation approach. - Tutorials lead the user step-by-step in the opti
mization process. When the appropriate method has been selected, the object code
driver for that method (along with tutorial aids for their use) are configured into the
sequence of OMs being optimized. The tutorial aids for the specific method selected
lead the user in selecting appropriate iteration counts, tolerances and available
options.

4.3.4. 1 Tutorials: The user will have (1) specified the OMs that he wishes to use,
(2) selected the design variables which will be subject to optimization and provided
their initial values, (3) selected or created the variable which will serve as the ob
jective function, and (4) selected the constraint variables. (This process has been
described in Subsection 1.3. 1) . With the mathematical formulation of the problem in
mind, tutorial aids which will assist in the selection of the appropriate optimization
technique should be employed.

The multivariable search techniques proposed can be classified according to
the type of optimization problem which they solve. For example, a user might -want
the unconstrained optimum of an objective function. There are several excellent
techniques for this purpose. However, if certain values of the independent variables
are not acceptable, then the space from which these values are selected must be con
strained. The constraints are usually expressed as equality or inequality function re
lationships which must be obeyed. Depending upon the linearity or nonlinearity of the
constraints and objective function, there is a method which will best handle the par
ticular formulation.

The following is a list of proposed multivariable search methods which are
classified according to problem formulation:

1. Gradient methods for unconstrained problems:

a. Steepest descent.
b. Davidon-Fletcher- Powell.
c. Sensitivity extraction (as opposed to optimization).

256

2. 	 Nongradient methods for unconstrained problems:

a. 	 Powell's method with Zangwfll's modification.

3. 	 Methods for linear objective function with linear constraints:

a. 	 Simplex method.

4. 	 Methods for linear objective function with nonlinear constraints:

a. 	 Zoutendijk.
b. 	 Separable programming.

5. Methods for nonlinear objective functions with nonlinear constraints:

a. 	 Fiacco-MoCormick
b. 	 Exponential penalty functions.

6. 	 Approximate modeling methods:

a. 	 Second-order multivariable curve fit of objective function and
its minimization.

b. 	 Linearizing objective function and constraints by regression
analysis and then using the Simplex method.

7. Approximate optimization methods which give an approximate optimum:

a. 	 Succession of one-dimensional searches along coordinate axes.
b. 	 Random walk.
c. 	 Ray search in various directions chosen from previous search

or chosen at random.
d. 	 Parameterization (as opposed to optimization).

8. 	 One dimensional searches:

a. 	 Polynomial approximation with analytical optimization.
b. 	 Golden section search with cubic extrapolation.

Some of these techniques require some of the other techniques to solve a subproblem
encountered in using the method. For example, the Fiacco-McCormick method and
the exponential penalty function,method both require an unconstrained optimization
method for part of their computation., Methods under parts 1, 6 or 7 above would be
applicable. Methods under parts 1 and 7 require methods under part 8. The basic
idea is that the various techniques are modular so they can be employed whenever
necessary. With this modularity maintained, it is easy to add additional modules as
improved techniques become available or when it is recognized that a certain type of
problem is best solved by an existmgmethod which has not yet been included as a
module.

257

Figure 4-12 is a flow diagram of the important features in the proposed tutorial
aids TCSS to guide the user, if he so desires, in selecting a good multivariable search
method to solve his particular optimization problem. The method to be selected
(terminating circles in figure) are those listed above. Some considerations involved
will be the following:

1. 	 How many independent variables (ni) are to be used?

2. Is Parameterization (P), Sensitivity Extraction (S) or Optimization (0)
being sought, or is merely an improvement in the objective function
desired?

3. 	 Is the problem constrained? If so:

.a. 	 How many equality constraints (e) are there?
b. 	 How many inequality constraints (i) are there?

4. 	 Is the objective function linear? Approximately linear?

5. 	 Are the constraints linear? Approximately linear?

6. 	 Approximately how many central processor seconds does it take to
execute the sequence of OMs in evaluating the objective function (2) ?

7. 	 Is this magnitude of cycle time acceptable?

8. 	 Are the design variable derivatives continuous?

4.3.4.2 User interaction: When the problem has been completely defined, the user
can indicate that execution is desired. The response time and the degree of inter
action must now be considered. The response time is entirely dependent upon the
execution time of the sequence of OMs that were specified in the problem definition.
(The optimization algorithm's execution time is usually trivial in comparison.) If this
time is excessive, then the value of interaction is questionable. However, in cases
where response time is reasonable the user is shown the results of the objective
function evaluations.

In the event of a failure in the optimization technique, the user can use his
judgement in selecting a good recovery method. Tutorial aids should be provided in
the individual optimization drivers for this purpose. The user should ultimately
judge the convergence of the optimization technique based upon the practical consid
erations previously mentioned.

4.4 Operating Requirements for OPTUM

The central memory storage associated with the optimization techniques being
considered is small (e.g., 5,000 octal) in comparison with the storage requirements

258

ARE ASSIGN X
TUOIL NO DISPLAY LIST
AIDS DSIREDOF METHIODS

UNCOSTRAP D OTPIIZATION ONlUSER

DOS YES USER NO ASIG
N 1SPECIFY 91OW MANY '

0 NDEPENDENT
? VARIABLES ?

?

NO YE I
ASSIGN LOGICAL

USER NO IS PARAMETERIZATION (P),
SPECIFY. SENSITIVI y EXTRACTION (S).

S SINXRQIE)vt ~~~~OR~ OPTIMIIZATION (0)

(NONE SIGNIFIES AN" SELECT A METHOD
FROM THE LIST IMPROVEMENT INTHE

P? S ?

COMPUTEAR BET
N*()L YES C NA INS YS U CI

APPRO XMATE TI E NEOTS ? LTINAR? NT N ALU
REQUIR ED PER{USER

SPECIFIATIONSASSIGNE?
NOE
GIVE THE NUMBER ,NO

~OF QUALITY

CONSTRAINTS AEIS
CNTRINS YES OBJECTIVDIPLY O ACEPALEYE

ASSIGN I APPIROXCHANGE
TO
OF INEQUALITYFU

YES C014STRAINTS No NO N

D B N ASSIGNX

CO TNUU NO 2OSYS E0 SELECT A M ElTOD
DERIVATIVES YE - O? FROM THE L1T

SELECT A METHOD
FROM THlE LIT

SELECT A METR{O"
FROM[THE LIST

CDFigure 4-12. Proposed Tutorial Aids TOSS for Selecting OPTUMV utilizing the TOSS EXPANDER

expected for the OMs being optimized. *ln this case, as in response time,,the problem
definition will determine the computer central memory storage required.

4.5 Conclusion

The 	optimizer GPU as proposed consists of a collection of optimization methods to
give 	the user sufficient opportunity to match a relatively good, efficient method to the
particular problem at hand. The best known current methods will be included, and
the modular' structure of the design will permit additional optimization techniques as
they 	become available.

No one optimization method is best for all problems. For the situation where the
objective function evaluation is time-consuming, approximate optimization techniques
have been provided for efficiency. For problems where the OM sequence has limited
fidelity and possible discontinuities, methods have been provided that are not con
tinuity dependent. For problems with OM execution sequences which have moderate
execution times and which are continuous, there are many good methods depending
upon the type of problem constraints.

With the provided tutorial aids, the user of the IPAD optimizer is led to selecting
the appropriate method for his problem and the appropriate parameters for the method
selected. In this way he saves a great deal of time which is ordinarily spent seeking
a good optimization method for his application. This, of course, is one of the basic
features of the IPAD concept which has been implemented in the design of the opti
mizer.

The more complex optimization problems will require careful planning and control
through feedback of results as the optimization process evolves. The following is a
list of the forinidable problems associated with optimization methods:

1. 	 The large number (n) of design variables (equivalent to the combinational
complexity, Ci). This is what Dr. Richard Bellman (Reference 22) termed
"the curse of dimensionality".

2. The many design disciplines involved (long cycle time through the sequence
of OMs).

Limited OM fidelity (e. g., small angle approximation).

4. 	 Conflicting objective junctions (i. e., there is no single optimum - all optima
depend diiectly on the selected objective function, for which there are often
conflicting disciplinary interests).

3

260

5. 	 Dicdntinuous operating hypersurface (multi-overlapping patch-quilt surfaces
with large voids) whi~re multiple external 'poiits mask the global optimum
this is what Dr. Bellman termed "the menace of the expanding grid". (op cit.).

6. 	 A poorly defined constraint space.

7. 	 Exceptionally poor visibility in complex problems.

In nontrivihl problems there is no a priori way of determining that an indicated ex
tremal point will lie within the constraint space nor is global within that space. The
global optimum cannot be distinguished from localoptima except by exhaustion. For
these and similar problems there can be no simple solution. The optimization analyst
must be fully cognizant of the pitfalls to be avoided and be highly competent at his task.

261/262

5 GENERAL GRAPHICS PLOTTER
(GGP), A GPU

The General Graphics Plotter (GGP) is the cornerstone in the foundation of
IPAD. It addresses the problem of producing for all users the geometric, graphical
and pictorial displays required in any design process. Each user in the design cycle
requires visualization not only to verify that his design or analysis is feasible but also
to document any realizable configuration. In fact, each user must always have upper
most in his mind the actual object he is designing and analyzing. This object, be it the
smallest bolt or the most complex digital autopilot, must function; its aesthetic value
on paper is of no value. Regrettably, the engineer often must use a tool (e. g. a digital
computer) which cannot make subjective judgements and moreover cannot be taught to
understand when a design is "really optimal". The engineer must always be alert to
recognize this and continually check that the results (numerical) found by this tool are
reasonable. GGP provides the vehicle for pictorially representing these numerical re
suits.

The philosophy behind GGP is to allow the user complete freedom to define his
display. He may wish a standard plot of two variables or an isometric view of a com
plex vehicle. In either case, he can control the appearance of the picture within the
physical limits of the image device he is using. Moreover, he can manipulate the
picture (rotate, translate, zoom, etc.) just as if he were holding the object in his hand.

Although hard copy capability is directly available to the user of GGP at an inter
active graphics terminal, nothing precludes him from also using any of the existing
offline vector drawing hard copy devices (e.g. S-C4020 micro film recorder, Gerber
or Calcomp paper-ink recorders). The interactive user would be assisted by GGP in
using any of the many hard copy devices at his discretion.

5. 1 Conventional Graphical Output

In the OM Questionnaire results, discussed in Section 4.5 of Part I of Volume
IV, practically three quarters (76 percent) of the respondents indicated that they could
use a generalized graphics plotter to advantage, To further define the requirements
for GGP, detailed discussiois were conducted with key individuals to identify how GGP
might be used and what it should do. This section presents a collection of ideas and
applications obtained from talking with a representative cross-section of engineers
about how the interactive graphics plotter could help them get their tasks done better
and faster. It concludes with a list of requirements for GGP.

263

5.1.1 Graphing. - The ability to graphically portray analytical results ofanVOM is
a fundamental requirement of GGP. Several applications are discussedliekt,

APPLICATION: Perform dispersion studies at the graphics terminal. The dispersion
studies focus on small changes and correspond to fine changes in vehicle's performance.
Many parameters are held fixed and only one or two parameters are varied at a time.

K
+1.35 M B

mX

Z -0.61

APPLICATION: From the graphics terminal, have the ability to select the desired
parameters and have them plotted against each other.

aeq LIMIT2,000-DESIGN

LU1,000- -lo

(.

2,000

0
-I,000

_2S-2,000

80 81 82

ORBITER ENGINES

DESIGN ocq LIMIT

83 84 85 86
TIME (SEC.)

264

To give more visibility into the optimization of trajectories, showAPPLICATION-
the control function u(t) as it varies with time. The control function may reflect

the combined performance of ten or more of the major parameters.

CONTROL

'FUNCTION /

(1, u(2) u(3) u(4) u(5)

TIME -

Compare an old control function ul(t) with a now control funlction u2(t) .

CONTROL

Ul~FUNCTION ..

U2 (t)

TIME-

265

The gradient of the performance index gives an indicationof how the contro.Lfunction

should be changed to improve the optimization.

Compare the performance index with the penalty function as a function of iteration

number so the convergence of the optimization can be followed.

PERFORMANCE
INDEX

/

\

PENALTY
FUNCTION ',

1 2 3 4 5

NUMBER OF ITERATIONS

Give visibility to the distance of a parameter from a constraint boundary as a

function of time.

MEASURE OF

DISTANCEsFROM

CONSTRAINT .

BOUNDARY

TIME

266

Compare' simultaneously the gradient of the performance index with the control

function.

CONTROL _ _
" FUNCTION t '

TIME -

GRADIENT

OF THE

PERFORMANCE

INDEX

TIME -

APPLICATION: Use the graphics terminal to compare previous vehicle performance
with that of the vehicle under examination. In this way if performance results look
dubious, a data base can be queried to call up similar results from past performance
to see if the results in question fall within the expected range.

APPLICATION: Display the results of a booster/payload synthesis program. Be
able to change a major parameter and immediately see the consequences in the
booster's configuration and performance variables. Being able to examine such
possibilities at a graphics terminal is highly desirable when many configurations
need to be examined quickly.

APPLICATION: Sketch the desired configuration at the graphics tube and insert the
dimensions and parametric relationships for preliminary design analysis. By varying
one major parameter, the resulting new configuration is displayed with new weights,
dimensions, etc.

267

1

5.1,.2 Contour plotting. - Although ,essentially graphical, contour plotting. is-a

special case of grapaing and often displays the results on a pictorial background.
Several applications are discussed in the following paragraphs.

APPLICATION: Show constant performance lines for different performance or

trajectorvcharacteristics..,

ii 'PARAMETER z °

PRM E
PARAMETER y

PARAMETER x

APPLICATION: With transmitting antenna in orbit pointing towards a point on the

earth, superimpose on a Mercator projection map the constant power lines as seen

at the earth's surface.

268

APPLICATION: The electronic engineer wants to see the side lobes of aitennas in
3D. He also wants to see the pattern of a radar-beam and FM sidebands.

APPLICATION: Show the thermal contours on a satellites surface. Accentuate the
hot sp-th since they can cause instrumentation failures. By rotating the satellite
about its axes, show the constant temperature lines under specific sun-radiator
conditions.

APPLICATION: Problems can sometimes be solved in one domain but not in another.
If the ability existed to show how simple curves map into the desired domain, it would
give better understanding of the problem and its potential solutions.

5.1.3 Pictorial displaying. - The ability to convey information by drawing a pic
ture is also a fundamental requirement of GGP.

APPLICATION: Show in 3D the guidance error buildups for lunar and planetary
trajectories as an aid to concept visualization.

MOON
EA.RTH

ELLIPSOIDAL
ERROR VOLUME

APPLICATION: Be able to do shading (the equivalent pf smearing charcoal on paper
to get different shades of black and gray). to make selected surfaces stand out in a
3D portrayal. This might be done by using dots or contour lines at various separation
intervals.

APPLICATION: Simulate what is visible from the pilots eye position to help with
canopy design. This includes objects in the cockpit area, along the aircraft's surface,
in the sky and on the ground.

269

vary the-other 3 andAPPLICATION: In n-space problems, hold n-3 variables fixed,

show a 3D plot of the solution to an optimization problem.

APPLICATION: In designing longerons for an aircraft, the engineer computes the
The loadscross sectional areas needed at each station to support the expected loads.,

vary at each station, therefore the cross-sectional areas vary. The designer has to

fair these different cross-sectional areas into one another. Need the ability to do this

fairing from the graphics terminal.

CROSS SECTION C
B

SECTION
ROSSC

CROSS SECTION,A

270

APPLICATION: In the visualization of complex 3D surfaces - for example in optimi
zation analysis - be able to rotate the reference axes so that the surface is in the propi
perspective. Be able to exaggerate the scale on one axis to make the display more
visible.

271

APPLICATION: Provide perspective in the 3D portrayal to assist visualization..
There are two kinds of 3 dimensional portrayal.

1. Geometrically accurate (isbmetric) for measurement purposes.
2. Perspective, non-orthogonal to aid in visualization.

5.1.4 Configuration display. - Perhaps the most used application of GGP ,in.an

IPAD environment will be to provide configuration definition to the user-, at a graphics
terminal. This is a special case of pictorial displays.

APPLICATION: On variable geometry aircraft, visibility is needed of the wing's
surface contour. Be able to use station lines, water lines, buttock lines and control
lines oftvisible surfaces to indicate 3D surface curvature.

3D LINES

STATION LINES

WATER LINES
BUTTOCK LINES
CONTROL LINES STATION R LINES

LINES

CROSS-SECTIONAL BUTTOCK 	 EXAGGERATED

TOP VIEW OF
CUT AT STATION LINESCANOPY

FUSELAGE TO
SHOW BUTTOCK

TINES

LIE

CONTROL POINT IN C

CONTROL
EACH QUADRANT LINES

APPLICATION: Display the true-length of the structural elements, etc. at the cross
section of a cut through an aircraft's wing.

r

APPLICATION: Find the true-length of a structural member by identifying the member

from the graphics terminal. Or, equivalently, find the clearance between two points

on a structure identified from an interactive terminal.

272

APPLICATION: There are some cases where the analyst wants to see the hidden
lines even though the figure being displayed becomes cluttered. This is particularly
true in structural analysis where the appearance of the hidden line gives confidence
that a member which is hidden from view is included in the picture. In other cases,
where only a 3D portrayal is wanted, the fewer hidden lines showing, the easier it
is for the observer to visualize what the object looks like. Since removing all hidden
lines-takes too much computer time, there are cases where 3D views can be most
efficiently portrayed by leaving in some hidden lines.

3D EFFECT WITH HIDDEN LINES

1. ALL HIDDEN LINES SHOWING 2. SOME HIDDEN LINES
STILL SHOWING

3. NO HIDDEN LINES SHOWING
1

USE VECTOR RESULTANTS TO FIND WHICH LINES ARE HIDDEN AND WHICH
ARE VISIBLE. THE VECTORS ARE (A) THE LINE-OF-SIGHT FROM VIEWER
TO THE POINT ON THE AIRCRAFT; (B) THE NORMAL TO THE SURFACE AT
THE POINT OF EYE CONTACT.

APPLICATION: In preliminary design work, each contributor to the overall design
wants to see how his portion is fitting in. With the ability to rotate a 3D model about
its axes, the engine analyst, for example, could be given a view of the engine inlet
which normally might be obstructed in a regular drawing.

APPLICATION: The designer needs to see where propellant lines go, where cross
feed takes place, and where best to put the valves.

273

APPLICATION: Display struotuial information from a data base. Have several..
levels of detail available. Be able to call for specific structural members. ,Be able
to call for features like the cross-sectional area, moments of inertia. etc. Be able

to call for the material properties of the member, such as its metallic composition,

modulus of elasticity, etc.

AFT ATTACHMENT

FORWARD

ATTACHMENT >.

,LIQUID HYDROGEN (LH2) TANK

\LIQUID OXYGEN (LO 2) TANK

APPLICATION: Have the ability to reconfigure a baseline design to get a better under
standing of the favorable design values for a parameter. For example, during the
preliminary design investigations, when the wing of a cruise missile is made larger,
it starts moving towards the rear until it over-runs the position occupied by the air
breathing engine. The designer needs to know just how big the wing can get before
its size starts to impinge on the engine space.

APPLICATION: Be able to see the effect on the cross-sectional area rule by changing
canopy shapes, fineness ratios, taper ratios, tail, sweep of the wing while sitting at
the graphics terminal.

APPLICATION: Have the ability to zoom-in on a detail from a larger picture and
examine the region in the vicinity of the detail.

27M

L

5.1,5 - Coordinate system visualization. - This could be considered a special
application of a pictorial display.

APPLICATION: Visibility is needed by the engineer to follow a vector starting with
one set of components and passing through a multitude of coordinate transformations.
As an example, consider the Centaur upper stage mounted on a Titan booster. The
Centaur inertial guidance system controls the motion of the Titan engines during the
boost phase. There are about 8 coordinate transformations in getting a control vector
from the guidance computer to the engine gimbals. The engineer needs to understand
and verify that each step is correctly made.

12

-A /

r -- IfVECTOR A

Y
I-

COORDINATE SYSTEM #1 / __

COORDINATE SYSTEM #2

APPLICATION: Same as above with two different coordinate systems but one coordi
nate system is rotated so that vector A appears once as a common vector.

APPLICATION: When an upper stage booster and its payload are moving unpowered
through a coast phase, the pair must eventually be maneuvered prior to firing for the
next powered flight portion of the trajectory. The vehicle must be rolled, yawed and
pitched at various times so it will have the proper orientation when the engines are
ignited. These maneuvers are hard for the analyst to visualize. A 3D portrayal will
verify that the preset maneuvers are correct. If vector representation of the orbital
planes, vehicle axes, etc., are shown, it is possible to verify that the vehicle starts
the maneuvers with the correct orientation and ends up with the correct new orientation.

275

5. 1.6 Clearafce presentation. -Clearance presentations between objects generally com

bine pictorial information with either clearance callouts or graphical displays as well.

APPLICATION: Blast impingement and clearance when space shuttle orbiter separates

from a winged booster. Include callout details as shown.

PRE-BECO
BECO ZERO ORB. ENGS. (180 SEC)

BECO I ORB. ENG.
POST-PT OFFLIFTOFF

216c
MX

/~ OSTI:

PA.,D FLYAWA'Y

ORBITER 2,000AF. (qCM.

=*DECO BOOST ENGINE CUT OFF

APPLICATION: Ilustrate the clearance obtained as a function of time.

2,000 FT. (610OM)

1,000 FT. (305M)

22SEC.

189SC

NOTE

APPLICATION: Visibility is needed when a booster leaves its supports on the launch
pad. Animation in 3D can help to determine the best time to start the initial rollsteering commands. There is always an uncertainty as to the best time to start
initial maneuvering.
 Starting too soon can produce collisions; starting too late wastes
energy.

APPLICATION: Usually when a booster separates from its payload, it is importa.nt
that no engine blast particles impinge on the payload. Need to have' animation in 3Dshowing the payload separating from its booster. Need to be able to rotate about
various axes to get different ,sepatation views.

APPLICATION: Use the 3D portrayal to simulate a pilot landing his aircraft on an
aircraft carrier. Use different sea states and wind velocities.

5.1.7 Packaging and routing. - The packaging problem presumes the ability to
control the placement of items within the display. Routing additionally presumes tocontrol the interconnection of these items, sometimes to the extent of specifing
length and route-path curvature.

APPLICATION: The 2D transfer of components in a printed circuit board packaging
design. (The sketch is hard copy from one such design program.)

0 G

C4 1 0l 0 N

0 a~

277

http:importa.nt

APPLICATION: In a spae'shuttl design with twelve engines, 'it was a requirement
to keep the propellant feed lines of equal length. The large amount of plumbing that
had to occupy.the same space made itealmost impossible to visualize whether ot not
adequate clearance was available for everything as well as to ensure that the feed lines
were of the same length. A 3D portrayal with the ability to rotate the field of view to
examine the crowded regions would have been extremely helpful.

APPLICATION: On satellites, need to package instruments to keep the center
of mass near the middle of the satellite, yet have unobstructed viewing angles for
all the instruments. There is a need for 3D visualization on placement of the
instrument packages to help meet all of the constraints.

APPLICATION: In following conduit or piping through an aircraft's wing box, the
ability is needed to rotate the wing box at various angles to see if the piping can be
inserted in the wing box without hitting other objects or being blocked by some object.

APPLICATION: In building an aircraft wing, visibility is needed of the available space
so actuatbrs, hydraulic lines, electrical lines, etc. can be placed without interference.
To have 3D rotational capability would make this possible.

APPLICATION: The designer needs the ability to switch instruments, crew stations,
plumbing, etc. from one place to another within a volume envelope while still main
taining the center of gravity near the physical center of the volume. The designer
would identify which package is to be moved and where it is to be moved.

APPLICATION: To simplify the volume-packaging problem, it is convenient to create
3 or more spheres or cubes of different sizes that can be assembled in various ways.
The packaging of people and/or equipment within each solid can be handled separately.

APPLICATION: Be able to prepare flowcharts.

5.1.8 Animation. - Animation is an invaluable aid in visualization, combining vis
ualization and time (i. e. sequenced visualization).

APPLICATION: Need to give visibility to a conceptual idea. For example, show how
the cruise missile comes out of its launch tube, how its wings unfold, how the mech
anisms move. The complex motion of mechanism need to be viewed; it is too
difficult to visualize whether the linkages are moving the way they are expected to
move.

APPLICATION: Four-bar linkage problems are hard to visualize but with hnimatxon
they become most understandable.

278

APPLICATION: Hard copy pictures from a graphics terminal, can be used to show
sequences of activities for launching a vehicle, separation of payload and booster, ex
tensi6n of wings, antennas, etc. Microfilm (16 mm) can also be made into animation
movies when properly sequenced.

SEEC

OOSTER
ORITR

APPLICATION: Store in a data base the equivalent of a handbook of linkage mech
anisms and their animated motions. The engineer can call for this "linkage mech
anisms" package and review them for ideas. For the linkages of interest, he can
call for animation and clearly see how they move.

AXIAL LI'NK , x ,

St=4 -AXIAL LINKSDISCONNECTED.
INiTIATE FULL ORIt R THRUST

279

5.1.9 Special applications. - This subsection is a collection of various, applications
illustrating use of one or more of the above capabilities in a specific role.

APPLICATION: Need animation to show how a constellation of four satellites-are
placed to form a revolving Y, where the outer three satellites retain a Y-configuration
and appear to revolve around a central satellite.

Revolving Y Satellite Configuration as Seen from a Point on Earth.

APPLICATION: When vehicle performance and design are tied closely together,
use graphics for quick turn-around and visibility of consequences of the design change
or performance change. For example, take the case of designing a solid propellant.
When the density of the propellant layers are altered, different burning characteristics
emerge and consequently different thrust/weight characteristics appear.

DENSITY LAYER 1
DENSITY LAYER 2

SOLID DENSITY LAYER 3

PROPELLANT
INPUT - DENSITY

CHARACTERISTICS OF
SOLID PROPELLANT

OUTPUT - PERFORMANCE AND
CONFIGURATION
CHARACTERISTICS
OF VEHICLE

280

APPLICATION: Need pictorial 3D display of a vehicle model to verify that the model
is correct. For example, a card-deck composed of x, y, z points represents thevehicle's surface. If any of the x, y, z coordinates are wrong, the surface is wrong.
A direct visual display could quickly point out the errors.

Z WRONG COORDINATES VISUALIZED

APPLICATION: When multiple tasks are being performed in an airborne computer,
it is necessary to know where each task stands. A graph that shows how the tasks
are progressing would be helpful.

0 1 2
TIME

3
-
4

TASK 1 I U

TASK 2

TASK 15 [uu]rTuf ONG4W

APPLICATION: Need visualization to make certain that shadowing between antennas
and solar panels is not occuring, that viewing angles are clear and unobstructed, and
that shielding from radiation is adequate.

281

APPLICATION: Compare the cross-sectional area from Mach cuts with theoretical
area-rule. A Mach cut is the crosssectional area of an aircraft as seen by lines
parallel to the shock wave cutting through. the surface of the aircraft. These cross
sectional cuts change for different Mach -numbers and angles of attack.

AIRCRAFT
STATION
POSITIONS \ 450 SHOCK WAVE

ROTATE SHOCK
LINE AROUND __,_ -

STATION A
7Q OSS-SECTIONAL AREA

AS SEEN FROM STATION.

CROSS-
SECTIONAL THEORETICALMAKE MACH CUTS

AT EACH STATION' AREA AREA ACTUAL AREA

POSITION

A NOSE
STATION POSITION

ROTATE 450 SHOCK LINE
TO MAKE CONE OF INTER-
SECTION WITH A/C SURFACE

It is necessary to compare the actual cross-sectional areas from the Mach
cuts with the theoretical areas. The closer the actual areas matches the theoretical
values the better the aircraft will perform at higher Mach numbers.

APPLICATION: Show frequency response curves.

282

APPLICATION: Show the load distributions graphically over the length of a structural
member or of the complete structure. Have an outline of the structure showing impor
tant station lines. Above this outline have a load distribition curve.

APPLICATION: Need visibility of complicated rib truss loadings. Need to be able to
apply loads and see what deflections take place. Since the deflections are small, they
need to be ampliffed for visibility. These deflections can provide the clues for im
proving the rib truss design.

5. 1. 10 Requirements for a General Graphics Plotter. - The following summary was
obtained from the canvass and presents results not explicitly displayed above.

5.1.10.1 Graphical plotting requirements, general:

1. 	 Cartesian coordinates.

2. 	 Rectangular, polar, cylindrical and spherical coordinates.

3. 	 Logarithmic and semi-logarithmic coordinates with up to 5-cycle
log scales.

4. 	 Histogram coordinates.

5, 	 Bar charts and pie charts.

5.1.10.2 Pictorial plotting requirements, general:

1. 	 Have three different 2D views visible at the same time.

2. 	 Starting with a baseline design, be able to change a parameter while
at the graphics terminal and display the resulting configuration and
performance characteristics.

3. 	 Plot contours (isotherms, isobars, constant power lines, constant
altitude lines, etc.) on a background map or on a surface.

4. 	 Provide 3D isometric display of an object.

5. 	 Be able to translate, in 3D, an object along one of its principal

axes from terminal input.

6. 	 Be able to rotate an object about one of its principal axes from

commands initiatbd at the terminal.

7. 	 Be able to-display a true-length view of a dimension or the clearance
between two points. This involves several rotations for proper viewing.

8. 	 In 3D representation, use station lines, water lines, buttock lines and
control lines on visible surfaces to indicate surface curvature.

283

9. 	 Be able to sequence 3D pictures to create animation. Let sequence of pic

tures be controlled by either time or the value of a selected parameter.

10. Be able to display two dynamical 3D bodies interacting with one another

at different viewing angles. For example, a payload separating from

its booster, where both may be tumbling.

11. 	 Be able to display in 3D two separate and different rectangular coordinate

systems, each showing components of the same vector.

12. 	 Be able to superimpose two rectangular coordinate systems with the origin
of the coordinate systems located at the same point so they can describe
the same vector. This means one coordinate system must be rotated with

respect to the other.

13. 	 Be able to show an ellipsoidal error representation in 3D where the semi

major and semi-minor axes are the standard deviation of the errors.

14. 	 Be able to display the interaction between the'ellipsoidal error envelope
moving along the nominal trajectory and another body travelling on an

impact or near-miss course.

15. 	 Be able to relocate 3D packages from one stowed position to another

within a volume envelope from terminal input. Have computer account

for the constraints imposed on the location of these packages.

5.1.10.3 Special capabilities:

1. 	 Zoom-in display capability,(less area, more detail)

2. 	 Zoom-back display capability (more area, less detail).

3. 	 Need ability to display exaggerated motions (e.g., deflections) to

make the motions more visible.

4. 	 Be able to create objects of various dimensions in 3D and permit the

designer to arrange them arbitrarily. This helps him attack the volume
packaging problem.

5. 	 Need ability to display a window view of objects, e.g. objects seen from

the pilot's eye position. This includes objects in cockpit area, along the
aircraft's surface, in the sky and on the ground.

6. 	 Display schematics for propellant lines, wiring, etc. Provide routing
capability.

7. 	 Display 3D information, graphs, extending mechanisms, etc. called
from a reference data base.

284

8.'-	 keed ability to fair one 3D shape into another. (Like carving a block
of wood).

9. 	 Need ability to shade a surface (equivalent of smearing charcoal on
paper)., Shading might be done with dots or lines or both.

10. 	 Show how a straight line or other feature appears when transformed into
another domain, e.g. conformal mapping.

11. 	 Perspective presentation in 3D to assist visualization.

12. 	 In optimization problems, need 3D portrayal of global slopes and specific
local slopes. For N-dimensional problems, hold N-3 variables fixed
and display the other 3.

5.1.11 Concluding Remarks. - During the canvass, much enthusiasm was displayed
by'the various engineers when they found out how an interactive graphics terminal
could help-them with their tasks. The possibilities of using the terminal for some
applications had never occurred to many before. In genera], they were elated at the
prospect of being able to eliminate the drudgery associated with design. Included in
the drudgery are the repetitive calculations of bending moments, moments of inertia,
areas of wetted surfaces, volumes, etc-. whenever a single design change is made.

One of the biggest potential time savers the graphic terminal can provide is to
reduce the turnaround time in converting small design changes into new performance
characteristics. In preliminary design, where many parameters are changed
usually one at a time - with a subsequent performance reevaluation for each change,
much time is consumed. With a graphics terminal to accelerate this iterative cycle,
the time can be reduced by an order or magnitude in some cases. More importantly,
especially for the predesigner whose time is invariably limited, he can examine more
basic vehicle configurations for the same amount of elapsed time. He can spend his
time on innovations rather than on iteration drudgery.

Another powerful use of the interactive graphics terminal that emerged from the
canvass is the ability to provide 3D visual animation so the designer can display his
conceptual ideas., What may be, clear in his head cannot be readily transmitted to
his fellow workers, his supervision, the project management or the customer. But
with the interactive graphics tool he can make his ideas abundantly clear. This is
another verification of the old adage that "A picture is worth a thousand words."

285

5.2 Graphical Output with Topological Input

There are a class of problems for which the primary method of describing the
problem formulation isby a (generally two-dimensional) topological diagram. Figure
5-1 presents and identifies typical examples taken from engineering design and analysis.
Although each engineering discipline has specialized names and attributes associated
with the identifiable elements of the diagram, the diagram's intent is general and simply
to lend visibility to a problem formulation in a pictorial form. Not only are these topo
logical diagrams convenient forms for problem formulation and communication with the
analyst, but they are also easily interpreted by the computer. In the OM Questionnaire
results discussed in Volume IV, Section 4.5 of Part I, 39 percent of the respondents
indicated that they had a requirement for topological input manipulation.

The following subsections develop the requirement for topological input mani
pulation (TIM).

5.2.1 Fundamental requirements for TIM. - The fundamental information to be em
bodied in the topological diagram are the identification of:

1. 	 Primitives - the fundamental building blocks or "symbols".of the topo
logical diagram.

2. 	 Connectivity - the ways in which the primitives are interconnected
(including, of course, the allowable ways).

3. 	 Attributes - the additional descriptives associated with the primitive
(besides its identification) and its connectivity.

The following subsections identify these three components for some of the symbols
in the examples ,presented in Figure 5-1.

5.2.1.1 Electrical schematics: Electrical schematics of the-type presented in
Figure 5-1a are usually two-dimensional schematics composed of passive and active
elements (primitives) , e.g., resistors (-%,-) capacitors (-i), nductors (-t.,
diodes (-4*-) and even integrated circuits (-:--). Other symbols (also primitives) de
note the state of the circuit at various points in the network, e.g., an open node (o
or a circuit ground (--).

A resistor primitive (-w) has two identical connections - one at each end
called nodes. In theory any number of connections can be made at either node; at
least one at each node is required. Generally three attributes are associated with
the 	resistor:

286

http:symbols".of

Eer D

a. Electrical Schematic

b. Optical Schematic

c. Structural Schematic

C e. FORTRAN Flow Diagram

d. 'Logical Schematic -

f. Mechanical Schematic

g. Simulation Diagram

Figure 5-1. Examples of Problem Formulation Schematics

287

1. Resistance - expressed -in,ohms.

2. Rating - expressed.wwatts.

3. Accuracy - expressed in percent of resistance.

Other attributes can be associated with a resistor if desired (e.g., capacitance,
inductance, leakage, temperatiure coefficient) but these are of lesser importance.

A capacitor primitive (-14-) has two non-identical connections (in general), one for each
voltage polarity. Like the resistor, any number of connections can be made at either
node with at least one required. The principal attributes are:

1. Capacitance - expressed, in farads.

2. Rating - expressed in volts.

3. Accuracy - expressed in percent of capacitance.

Like the resistor, capacitors can also possess resistance, inductance and leakage
attributes. Leakage is often included among the principal attributes. The primitive
-I I- is used to represent a capacitor with two identical, connections (non-polarized).

A ground (-) has only one connection and generally no attributes. (Resistance,
capacitance, etc., however, could be associated with a "low quality" ground.) Any
number of connections can be made to this node.

An integrated circuit (-0-) can have any number of non-identical connections
(at least one is required) and can be configured in many different ways (OC , -',

.) as suits the analyst. Any number of attributes can be associated with an in
tegrated circuit.

J

For high frequency applications, the lead lengths of nodal coinections
become important and must be included in the attributes associated-with connectivity.

5.2.1.2 Optical schematics: Optical schematics are usually two-dimensional sche
matics composed of lenses, filters, prisms, andrefraction gratings arranged along an
optical axis (Figure 5-1b).

Lenses may be concave (ga), convex (Q), or composites (RO) treated as a
single lens. They typically have focal length (positive or negative) and aperture as:
their attributes. Depending on the requirements, the attributes can be expanded to
include the lens material or those attributes providing the material properties (e.g.,
refraction index).

288

Filters ([) typically have associated with them a function of attenuation (percent)
versus wavelength (angstroms).

The "connectivity" of optical schematics is the placement of the primitive along
the optical axis and includes their relative separation (distance). Placement lateral
to the optical axis (offset) can also be taken into account.

The capability for ray tracing specifications, although peculiar to this application,
could be contained with a special primitive, i.e., a RAY.

5.2.1.3 Structural schematics: Structural schematics are usually three-dimensional
schematics composed of such elements (primitives) as bars, beams, panels, linear
springs, clock springs, dampers and the like. Simplistic examples are presented in
Figures 5-1c and 5-1f).

Connectivity of structural primitives are specified by their ability to react
moments, shear or both, For example, a pinned connection can react only shear, a
clock spring primitive only moments, and a clamped connection can react both. This
gives rise to type of connectivity as well as the connection; connectivity type, however,
is an attribute of the connection. Some elements can be connected in several ways,
e.g., the end of a beam jFigure 5-1c) can be clamped, pinned or free (unconnected).
Some elements can only have one connection attribute, e.g., both ends of a linear
spring (---AL, Figure 5-1f) must be pinned.

The attributes associated With structural elements are typically such things as
spring rate or stiffness (springs and beams), mass (mass nodes or distributed mass
elements, e.g., tapered beams) and structural damping coefficient. Beam stiffness is
frequently composed of still other parameters.

5.2.1.4 Computer diagrams: Computer diagrams come in two types. There are
flow diagrams for procedural code, e.g., FORTRAN as illustrated in Figure 5-Ie.
There are also representative diagrams embodying the intended solution, as the simu
lation diagram in Figure 5-1g.

FORTRAN flow fiagrams (Figure 5-1e) are two-dimensional diagrams composed
of interconnected functional blocks (eg., J , t_, -c)and nodes(o). A
node may have any number of connections whereas the functional blocks may have only
one connection per connect point. (If the connection is to a node, the effect is to have
many connections, however these connections are identified to the node.)

Every element except the node has input connections and output connections.
An input connection may only be connected to an output and vice versa. The node has

289

only the single multiple connection. An entry element (N) has only an out
put connection and a return (N) or exit (()) has only an input
connection. By convention, all input connections are located at the top of the element.

A node (o) has only one attribute, a statement number (e.g., 100). In general,
functional blocks have an arbitrary amount of information (the computer source code
statements) associated with the block. Decision blocks (0) come in two types:
two-way branches (-&), as with logical IF tests, and three-way branches (-)
as with arithmetic IF tests.

Simulation diagrams (Figure 5-1g) are an outgrowth of analog computer circuit
diagrams. There are a variety of computer programs which use such two-dimensional
diagrams as the basis for problem formulation (see Appendix B, Subsection B.1.1,
Simulation Programs).

Simulation elements (primitives) typically have a fixed number of inputs and un
limited outputs. (This was not formerly true for a potentiometer (---) of an analog cir
cuit due to resistive loading; however this is no longer a restriction for its replace
ment, which merely represents a constant multiplier.) Besides conventional input,
some element have special input, e.g., the "initial condition" input of an "integrator"
(-v) and the divisor input of the divider (,).

The attributes associated with a simulation element are typically associated
with its connections, e.g., multiplicative "gain" including sign. The element itself
may have associated with it a non-unity "gain".

5.2.2 Functional requirements. - The analyst requires the following functional
capabilities

1. 	 View any element (primitive) associated with the problem formulation
technique, and:

a. 	 Examine inputs and their requirements.

b. 	 Examine outputs. I

o. 	 Examine connectivity conditions.

d. 	 Examine attributes to be (normally) supplied.

The interfacing software should contain tutorials assisting in this
examination process.

2. 	 Create and place an element or move (or remove) an element already
existing and placed within the diagram. When moved, all connectivity

290

'should automatically, move with the element; When creating an element,
'the element nu iber should be automatically assigned.

3. 	 Establish connectivity or alter existing connectivity. The rbuting of the
connective lines (if required) should be automatically accomplished but
alterable by the analyst.

4. 	 Establish, add fo, take from or-change attributes associated with an
element or its inputs. This includes the capability to displayany
attribute for inspection. (Attributes should not be displayed unless
requested, to obviate excessive clutter.)

5.1 	 fAorient the entire diagram (or that poitin of the diagram being viewed)
on the display. For three-dimensionhl diagrams, the analyst must be
able to reorient the display to obtain better views.

In addition to these, the analyst also must have the capability to:

6. 	 Specify collections of interconnected primitives (subsets of the diagram)
to be automatically reproduced and added to the diagram. Element numbers
should-automatically be assigned and the relative placement among the
elements should be preserved.

7. 	 Selectively alter the names, shape; ttributes and connections of primitives,
and thereby establish new primitives. (For example, a new Integrated
Circuit could be created from an existihig one.)

8. 	 Zoom-in on a display (less area, more detail) and zoom-back on a display
(more area, less detvil).

9. 	 Window a display (i. e., looking at a portion of a large diagram as if it
were contained behind the CRT but such that only that portion directly
'behind the CRT is viewable).

10,. 	 Have three different planar (2D) projections of any portion of a 3D diagram
viewable at the same time, as an 'aid to visualization.

11. 	 Superimpose a grid structure (2D or 3D as applicable) to enhance visuali
zation and to aid the user in "regularizing" the schematic on uniform grid
lines.

5.2.3 The analysis O1W. - The intent of describing a problem formulation by a topo
logical diagram is to ultimately provide the required input to an analysis OM. Examples
are circuit analyzers (e.g., SCE PTRE), simulation network precompilers (e.g., MIDAS
IV and CSMP), structural analyzers (e.g., NASTRAN), control system analyzers (e.g,
CSAP), and prihted circuit board (PdB) packaging programs. (See Appendix B for ex
amples of these and other engineering applications deriving input principally from

291

topological diagrams.) Once constructed, the diagram with its established primitives,
connectivity and attributes supply all that is required for the analysis OM.

'This infoimition is stored in the data base, and is accesbible by the bM through:

1.1 	 Its SUBSCHEMA directly,

2. 	 By mapping selected information to another portion of the UF 'via:

a. 	 A QPS.

b. 	 A DBMS callable function module (code).

c. 	 A special interfacing program.

It is assumed that the analysis OM (or OMs) exists for each application of the
topological 'diagram under discussion and that the required information (primitives,
connectivity and attributes) has been provided in the data base. The analyst need not
be aware that his actual interface is a GPU; it will appear that he is providing input
directly to an OM tailored to his requirements.

5.3 Design Synthesis

It should be noted that pictorial plotting and topological input manipulation (TIM)
share many features in common. Note that TIM must provide pictorial displaying as
must the graphics plotter, e.g. :

1. 	 Display items obtained from the data base.

2. 	 Enable the translation and rotation of displayed items.

3. 	 Provide for different projected views of 3D displays.

Conversely, two general graphics plotter requirements specified in Subsection 5.1.10.3
are actually topological input manipulation, viz.:

4. 	 Be able to create objects of -arious dimensions in 3D and permit the designer
to arrange them arbitrarily. This helps him attack the volume packaging
problem. (Item 4 of Subsection 5.1.10.3).

5. 	 Display schematics for propellant lines, wiring, etc. Provide routing
capability (Item 6 of Subsection 5.1.10.3),

Thus topological input manipulation and the pictorial plotting capability of the graphics
plotter are essentially inseparable. This is why they have been combined as the
General Graphics Plotter (GGP) GPU.

292

5.3.1 Data base implications. - The, data base support to graphical or pictorial

plotting is trivial. DATA AGGREGATEs (usually vectors) are contained in the data

base in a form specified by the SCHEMA module representing the user's UF. Also

contained in-that SCHEMA module, are the names by which these DATA AGGREGATEs
are known to the user. By selecting an output AREA of his UF, the user may examine

the names of the various output variables and plot (crossplot) selected variables or

visualize pictorial displays.

.

The data base support to TIM is more complex in that provision must be made

to provide the topological schematic as well as display it. This in turn requires that

the SET relationships be established during e;ecution time via appropriate DML. The

procedure is outlined as follows. The reader is referred to Tables 5-1 and 5-2 for refer
ence throughout this discussion.

TABLE 5-1. DATA BASE SUPPORT TO -TIM: RlECORD TYPES

PRIMITIVE

Ili (e.g., ground, wire, resistor; node, etc.)

DISPLAY (prefabricated sequence of display commands per menu)

TUTORIAL (attributes, terminals, etc.)

ORIENTATION

LOCATION (coordinates).

ROTATION to be applied to prefabricated display sequences

SCA LING

ATTRIBUTES

N

ATTRIBUTE (i), i = 1, N

TERMINALS

N
CONNECTION (i), i = 1, N 	(location relative to orientation, DATA-BASE-KEY

'(DBIK) of, th other end (TERMINAL))

tELEMENT

ID (e.g., element number)

DBK of PRIMITIVE

OPERATION

ID
DBK of PRIMITIVE (optional)

DIAGRAM

ID

293

TABLE 5-2. DATA BASE SUPPORT TO TIM: SET TYPES

COMPONENT

OWNER ELEMENT

MEMBER = ORIENTATION

CIRCUIT

OWNER = OPERATION

MEMBER = ORIENTATION

MEMBER(s) = ELEMENT(s)

SPECIFICATIONS

OWNER = ORIENTATION

MEMBER = ATTRIBUTES

MEMBER = TERMINALs

NETWORK

OWNER = DIAGRAM

MEMBER(s) = ELEMENT(s), OPERATION(s)

During initialization of the UF, the user identifies the primitives for his appli
cation and maps occurrences of primitive type RECORDs into a menu,AREA defined

for the UF. These RECORD occurrences contain an ID field, reference pointers to

interface with tutorial aids, and prefabricated sequences of commands to direct the

graphics support software to display the corresponding symbols in a menu.

In order to incorporate a symbol from the menv into a diagram, the user picks
the desired symbol from the menu and indicates its orientation in the diagram portion
of the screen. TIM then generates a new occurrence of an "element" type RECORD
and an "orientation" type RECORD. The "element" RECORD contains an ID field
(element number) and a reference to the primitive RECORD (which contains display
commands). The "orientation" RECORD defines modifications to apply to the display
commands in order to display the indicated use of the primitive. Since this, is all the
information required to display the use of a primitive (assuming that connecting lines

,are also defined as primitives) it is reasonable to define a "component" SET consisting
of the "element" RECORD as OWNER and the "orientation" RECORD as the only
MEMBER. TIM can process occurrences of this SET which represents a minimum
of data required to generate and manipulate the diagram.

The OWNER-MEMBER relationship neans that each occurrence of the "element"
type RECORD establishes an occurrence of the "component" type SET. DBMS main
tains the association of the "orientation" RECORD of each "element" RECORD.

294

If a diagram is built up from primitives, each use of each primitive is a separ
ate display item. The number of distinct display items that the graphics support soft
ware can handle will be limited. Also, in a complex diagram, the same primitives
must be used in the same way a number of times. Consequently it is necessary to
group several occurrences of the "component" SET into one entity or display item
which can be manipulated as a unit. To accomplish this, the DDL might define yet
another RECORD type exactly like the "element" RECORD but with a different name,
such as "operation". This would be the OWNER of a second SET type, named
"circuit" for instance. This SET would contain MEMBERs "orientation" and "element"
(an arbitrary number of occurrences of this MEMBER),. The command sequences
associated with a number of primitives are passed to the graphics software as one
sequence, thus the entire SET "circuit" is one display item. The "orientation"
RECORD of this SET specifies transformation parameters to be added to the initial
orientation of each primitive. That is, the primitive is oriented with respect to the
circuit, then with respect to the orientation of the circuit.

When a circuit is to be duplicated, TIM generates a new occurrence of the
"operation" type RECORD, thus establishing a new occurrence of the "circuit" type
SET, and generates the associated "orientation" type RECORD MEMBER. Then, for
each "element" type RECORD MEMBER in the first "circuit" SET, TIM generates an
"element" type RECORD MEMBER in the second "circuit" SET. Each of these "ele
ment" occurrences establishes an Occurrence of the "component" type SET, and TIM
generates (copies) the associated "orientation" type RECORDs for the new components.

Note that the lumping together of display command sequences to make one dis
play item is reversible, Given a "circuit" as a display item, the data base represen
tation still consists of references to the command sequences at the primitive level.
Consequently the user can modify individual occurrences of a basic "circuit".

I

'In order to have an overall definition of the display as a group of display items
i.e., to specify which components are pickable items and which are buried within
"circuits" - a network type SET is defined. The OWNER RECORD, named "diagram"
for instance, consists only of an ID field. The MEMBER RECORDs are "elements"
(OWNERs of 'components") and "operations" (OWNERs of "circuits"). TIM inserts
MEMBERs into this SET whenever a menu item is picked and oriented or whenever a
circuit is to be duplicated. It deletes MEMBERs (of the "element" type) whenever the
user defines a circuit, and it inserts a MEMBER (of the "operation" type).

This completes the data base requirements to generate and manipulate a sche
matic diagram. The display is defined in terms of nested SETs. The overall network
is a SET of "circuits" and "components", anda "circuit" is a SET of "components".
Either the individual "components" or "circuits" may be (pickable) display items.

295

The SCHEMA description of the UF would contain the definition of a fourth SET
type called "specifications". The OWNER of this SET is "orientation" and MEMBERs
are "attributes" and "terminals". Since "orientation" is a logically required MEMBER
of the "component" type SET and the "circuit" type SET, DBMS will establish a "speei
cations" type SET whenever a "component" or "circuit" is oriented in the display, and
DBMS will maintain the association of each occurrence of "specifications" with a
"component" or 'circuit". A point to be made here is that this relationship will be
maintained whether or not the SUBSCHEMA for TIM defines the "specifications" t:pe
SET. It is conceivable that this SET is irrelevant to TIM and need only be processed
by the application OM.

This discussion is summarized in Tables 5-1 and 5-2 which present the RECORD
and SET types supporting TIM.

5.3.2 Graphical display implications. - In order to design a generalized graphics
plotter, it is necessary to define what constitutes a generalized plot or picture.

A generalized picture is always (at least in this context) a two dimensional entity,
that is, it exists on a two dimensional surface - a piece of paper, microfilm, a cathode
ray tube, etc. Immediately, one sees there is a big difference between the physical
object - a three dimensional entity - and a picture of the object. It is possible to made
the picture "look three dimensional" with such techniques as perspective, shading,
etc., but the picture is still two dimensional. In fact, mathematically one can be in
terested in N-dimensional entities - hypersurfaces - but in order to "picture" them a
two dimensional display is made. What has just been said is that in the final analysis
there is at least one transformation (mapping) necessary to "picture" a physical object
or an N-dimensional mathematical entity. This transformation is usually straight
forward and easy to define, e.g., projection or cross section. Moreover the trans
formation once selected can generate "pictures" knowing only the definition of the ob
ject in its natural space.

Obviously a general definition of an object in its natural environment is needed.
Rather than considering three dimensional items specifically, one can look at N
dimensional entities. Objects in N-space can be digitized and numerically approxi-
mated by establishing reference points (coordinate systems, origins, axes, measure
ment directions, conventions, etc.). The accuracy of this'appr6ximation is a function
of the completen.ess of the digitizing. When this digitizing of the entity in N-space is
finished, the approximation is considered to be the definition of the object. In its
simplest elements, the model consists of points, connectivity, and/or textual infor
mation. (Really each text character could be considered as a predefined collection of
lines but for simplicity here a character is considered as a primitive unit.)

296

The digitizing of the object produces points in N-space. Associated with each

point identified is a connectivity relationship which defines how that point relates to

all other points in the model. For example if two points-are "connected" then in the

t, picturing of the model which represents the entity in N-space there should be a line
,displayed. (Here the hidden line problem appears and the solution of which is not con
sidered so important as to completely diminish the effectiveness of the picture.) These
connectivity relationships when transformed to the two dimensional picture surface are
what generate the picture.

Often times the picture of an N-dimensional item only takes on meaning when seen
relative to some of the chosen reference points. This usually takes the form of axes,
legends, labels, sign conventions, titles, or other aids. The presence of this textual
information is specific and not arbitrary. Thus to completely define a general N
dimensional item one must have available in the definition all of the supporting alpha
numerics required with the respective locations of each. Sometimes the text needed
to understand the picture is not properly identified with the item but with a particuldr
view of the item. This is not only acceptable but to be expected.

Now that the general definition of a single object in N-space is realized, the pro
duction of a generalized picture can continue. Occasionally a user may wish to see
the "picture" of a sg N-dimensional item. For exmmple assume the object is a
nodal (x,y,z) representation of an airplane fuselage and the user wishes to see pic
tures of various projections of the,nodal model. He may even wish to translate, ro
tate, or zoom some of the pictures. In general, a user-defined picture is made up
of a composite of various N-dimensional items. He may wish to view that same air
plane fuselage'with a grid superimposed on it, or contours reflecting lines of constant
stress or pictures of any of hundreds of other supporting objects. Thus, in general,
the juxtaposition of the pictures produced by the tranformations of several N-dimension
al entities defines the generalized picture that the user wishes to see.

5.3.3 Design implementation. - The implementation of the design approach must meet
the design objectives and furthermore be user oriented to encourage its interactive use.
The user must be able to control the transformation process and produce the pictures
he needs,to do his job. GGP exists as a utility to be used by all disciplines. It facili
tates the pictorial presentation of data. The data itself exists in the data base possibly
as output from an OM or as the current description of the configuration under study.
Thus the existence of the N-dimensional entity is assumed.

In addition to user peculiar items to picture, there exists supporting N-dimension
al items. For example, the general representation of a grid with labeling, axes, and
reference points can be defined. The various coordinate systems - cartesian, polar,
spherical - all can be represented as points with assigned connectivity relations and

297

textual information. In a sense these types of entities represent overlays or mean
ingful pictures.to a particular user. This-library of user defined items can be ex
panded as more "standardized" picture presentations are desired.

The Generalized Graphics Plotter produces pictures in the infinite (at least in
finite to maximum representable computer floating point word) two dimensional space
herein called the viewable space (Figure 5-2). This space is like a drawing board or
display screen which has no limit - horizontal or vertical. Any picture is finite since
the data is finite and exists somewhere in the viewable space. The user first'defines
in what region in the viewable space the picture will appear and then defines the items
which will be "pictured". It is this viewable space which is eventually mapped to the
device being used. Here also the interactive user of GGP can actively control this
transformation and present on the termninal that region of the viewable spac desired.

The final act of mapping the subset of the viewable space to the hardware device
itself is the most restrictive. Throughout the rest of the approach no hardware de
pendence or limitation need be mentioned. In this way, the various I/O devices can
be interfaced to new OMs with the minimum of modification. Moreover once a picture
is generated and saved in a protected region of the viewable space recall of past dis
plays is trivial - no regeneration of complex pictures are needed.

The functional flowchart (Figure 5-3) of GGP describes the hierarchy of elements.
Entities are N-dimensional items or objects. Pictures are regions in the viewable
space which consists of images of mappings of some number of entities (possibly zero).
Displays are mappings of pictures onto a physical I/O device.

A key factor in the usage of this utility is the completeness of the data base. GGP
retrieves from the data base the entities that the user desires to "picture". Also in
the data base are the often used overlays which can be superimposed over the "pictured
entity" to give greater understanding, for example grids for graphing or station lines
for reference points on a vehicle. Many entities have built-in connectivity relation
ships. For instance an array of two dimensional values (say TIME versus ALTITUDE
for a series of time values) could have the natural relationship that pair i is connect
ed to pair i+1 and pair i-i only.

5.4 Operating Requirements

The user of GGP will generally have his own specific entities that he wishes to
picture. He itemizes these and provides them to GGP for future usage. Along with
these entities are the "library" entities - grids, axes, labels, station lines, etc. -
that are used by a cross-section of IPAD users. From this set of entities the user
can now construct pictures and displays.

298

http:pictures.to

~STATION LINES

~FOR
CONFIG. B

DEVICE
S PENDENT

INTERACTIVE TERMINAL

Figure 5-2. GGP's Viewable Space

299

DEFINE REGION

VIEWABLE SPACE

SELECT ENTITY

TO PICTURE

TRANSFORM ENTITY
TUVRIE BLE SPACE

YESROITRE

OETIIES

! REDEFINE EXISTING PICTURE

Figure 5-3. Functional Flowchart of GOP

300

The first step in defining a picture is to assign it a region of the viewable space.
The user can do this himself or have an internal automatic scheme take over this
assignment. This step is necessary to preserve (if desired) the integrity of past
pictures and prevent the complete regeneration of previous images that are 'recalled
for review. An example menu of this function is seen in Figure 5-4. ,Note that under
the list of current pictures, the user changed thexdefault name from frame three to
BOOSTER.

Once the .region in the viewable space is assigned, the user can b~gin to select
entities to be "pictured" here. As each entity is chosen and validatedthe picture
takes form. Eventually the user will have defined the totality of entities that-makes
up the picture. See Figure 5-5 for a typical menu the user might be confronted with.
In the case depicted a series of plots are accessible with a variety of grids to select
from. In the figure displayed, the user'has indicated tl~at he wishes to define a
picture consisting of two entities - TIME versus MAXQ and CARTESIAN GRID.

As soon as the transformations of the selected entities are completed, a picture
exists in the viewable space. The user now interactively defines what subset of that
picture is-to appear at his terminal. The user may construct a 'display made up of
subsets of several different pictures. When the user directs GGP to generate the
display, the device dependent routines peculiar 'to the terminal in use will be called
to map the display to the I/O device. With.these options, the user can selectively
define what is to appear on the terminal screen from the viewable spAce.

Currently, prototype programs along these lines have been developed. One deals
exclusively with the' production of plots from files of user -data (n-tuples). Another
addresses the problem of "picturing" a physical object described with a nodal relation
ship, i.e., nodes, bars between nodes, etc. The object can be viewed in any orien
tation or rotated through user specified directions Both these programs run on a
CDC 6000 series computer and use the CDC 274 interactive graphics console. They
require only 17000 decimal words of core storage and provide moderate to good re
sponse in most oases. With this historical insight, it is believed that GGP can be
written to reside in less'than 20000 decimal words of incore storage. However, due
to the generality introduced it is expected that '"esponse time will suffer. The initial
constructibn of pictures in the viewable space will undoubtedly increase the delay. An
important benefit however is that once a picture is created, a display of it or a subset
of it is a much simpler operation. The hard copy capability is an immediate by-pro
duct since the chosen device is just another output unit. Moreover, movie making or
animation is not a special task. In its simplest terms, a movie is nothing more than
a series of individual pictures. As each of these pictures is routed to a film recorder
and saved, a movie is made.

301

SELECT (TRACKING CROSS OR LIGHT PEN) OR TYPE IN' CHARACTER OF YOUR
SELECTION FROM MENU BELOW. IF DEFAULT VALUES (SPECIFIED WITH

ASTERISKS) ARE DESIRED TO BE OVERWRITTEN, TYPE IN REPLACEMENT
VALUE.

1. PICTURE REGION NUMBER *5*
2. PICTURE REGION NAME *FRAME 5*

3. LIST CURRENT PICTURES

PICTURE NUMBER PICTURE NAME
I FRAME 1
2 FRAME 2
3 BOOSTER

4 FRAME 4

C. CONTINUE TO NEXT MENU

T. TERMINATE

Figure 5-4. Define Picture Regioh

SELECT (TRACKING CROSS OR LIGHT PEN) OR TYPE IN CHARACTER(S) OF YOUR SELECTION
FROM MENU BELOW IF DEFAULT VALUES (SPECIFIED WITH ASTERISKS) ARE TO BE OVER-
WRITTEN, TYPE IN REPLACEMENT VALUE.

1. BEGIN LIST OF AVAILABLE USER ENTITIES IA. BEGIN LIST OF LIBRARY ENTITIES

A. TIME VERSUS ALTITUDE AA. CARTESIAN GRID
B. TIME VERSUS RANGE BA. LOG-LOG GRID
C. TIME VERSUS MACH CA. LININX- LOG INY GRID
D. ALTITUDE VERSUS RANGE DA. LOG INX - LIN IN Y GRID
E. TIME VERSUS MAX Q EA. POLAR GRID

2. PAGE FORWARD USER LIST 2A. PAGE FORWARD LIBRARY LIST

3. PAGE BACKWARD USER LIST 3A. PAGE BACKWARD LIBRARY LIST

CURRENT PICTURE DEFINITION

Pl. E -- TIME VERSUS MAX Q

P2. AA -- CARTESIAN GRID

C. CONTINUE TO-NEXT MENU

T. TERMINATE

Figure 5-5. Construct Picture

302

GENERAL SURFACE (CURVE) FITTING, AN,

APPLICATION FOR OPTUM AND GGP.

General curve or surface fitting is the task of reducing empirical data to a usable
form. This task appears constantly in the work of an engineer who must analyze and
understand large quantities of data. The data may be ,raw data, experimental-data or
precise, complex and voluminous mathematical calculations from a digital computer.
The engineer's role is to correctly interpret the implications of this data; the capability
of surface fitting in an interactive mode can greatly enhance this analysis process.

Historically, application programs have been written to assist a user in segments
of this task. Often these programs were also discipline-peculiar and hence limited in
scope. These approaches ignored the fact that the understanding and analyzing of data
is a fundamental concern of engineers in all disciplines. The requirements of curve
fitting are similar for all disciplines and can be thought of as a minimization of the sum
of the squares of errors between the data being fitted and the proposed mathematical
model. This minimization can be readily accomplished by the optimizer GPU (OPTUM)
by utilizing.unconstrained optimization methods, some of which are specialized methods
for the most common types of curve fitting. (For example, polynomial curve fitting is
very common because of its simplicity.) The cbmputation involved in minimiziug the
sum of the squared errors can be carried out by using the necessary conditions for the
optimization of a function. The resulting numerical computation involves the solution
of a system of linear equations. The specialized optimization procedure can easily be
incorporated into OPTUM as one of its component procedures. This is the approach
taken to provide a curve (surface) fitting capability to IPAD.

6. 1 The Data Analysis Process, An Overview

The utilities OPTUM and GGP include all the often used techmques encountered in
data analysis and reduction. There are-several distinct phases that may be used in a
given data analysis operation. Each of these must be considered as a necessary seg
ment in the overall task.

6. 1. 1 Data manipulution. - The first phase of the data analysis process can be consid
ered manipulation and is a special application of the GGP utility (See Section 5. 2). Here
the user studies the data to gain an overall understanding for how it should best be ana
lyzed. The user attempts to identify spurious input data that should be removed. He
may also judgmentally add points to areas where data is sparse. In fact, he may com
pletely transform the data mathematically (using a QP directive) to get a new set of
data to work with. Another technique often used is segmentation or grouping of data

303

values together to be considered as a unit. Weighting of points is another option often
employed by data analysts. All of these options are basically preliminary to the-actual
analysis process and are briefly treated in the subsections to follow.

6. 1. 1. 1 Data transformations: The user often defines data transformations which

might be advantageous as a prelude to curve fitting attempts. For example, consider

the following situation.

A user has an array of (x, y) data values and, furthermore, he knows that the depen
dent variable is periodic and hence possibly it is a polynomial function of SIN (x). By corn
ting SIN (x) for each x value and using the new array of points (SIN(x), y),as the basis
for a polynomial least squares curve fit, the solution for ao, a1 , ... , an,in

y= ,o+a, SN(x) + a 2 [SIN(x)]1 + ... -+ an [SIN(x)I n

gives a polynomial fit of order n in SIN(x). The user need ,not only use elementary
functions such as LN, LOG, SIN, EXP, etc., but can also use algebraic combinations
of these. With the transformation features of the Query Processor (QP), a user can
experiment with many possible approaches that he had never previously considered in
the search for an accurate interpretati6n of the data.

6. 1. 1.2 Data alterations: Besides transforming the basic data, the user can selec
tively alter either the data or transformations of the data via GGP (see Section 5.2).
Herein is included the requirement to be able to iscard obviously erroneous.points and
judiciously add data points. The removal of points for curve fit situations is common
place due to any of the following reasons: data redundancy, lack of uniformity, incon
sistency, errors in input, etc.

Note however that all of these operations affect the interpretation of the data and
certainly influence any subsequent curve fitting operation. These alteration actions
can always be made reversible and the insight gained by the results of various altera
tions greatly aid the data analysis process.

6. 1. 1.3 Segmentation: Another technique employed prior to the curve fitting is seg
mentation. Here the user can arbitrarily treat the data as separate entities with dif
ferent functional characteristics. Each part of the data (viz, each segment so defined)
can then be fit separately. Various segmentation strategies for'a given set of data
with their resultant curve (surface, hypersurface) fits can yield knowledge as to the
best interpretation of the data. Here also the user must be concerned with how smooth
ly the transition from one segment to the neighboring segment occurs.

6. 1. 2 Data fitting. - The culmination of data manipulation phase is generally a deter
mination of the "best" functional approximation to the data. The next phase can be

304

considered to be strickly computational, and is a special application of OPTUM. Here
the user actually tries various mathematical algorithms to determine how best to inter
pret his data. The curve fitting options provided within OPTUM must be flexible to
support a broad base of users. Some least-squares fitting options which need be pre
sent are polynomial, trignometric, exponential, rational fraction, and mixtures of
these. Other analysts will prefer to draw upon more refined optimization techniques
(available within OPTUM) for their computational needs.

The optimizer utility (OPTUM) must include and accommodate the great majority
of curve fitting methods in vogue in various disciplines. Each method should have
various measures of the "goodness of fit" to compare different fits of the same data,
e.g. maximum residuals, root-sum-square, sum of the residuals, etc. A user de
fined function may be input via a Query Processor (QP) directive which assigns to a
given fit a real number which quantizes it relative to other fits.

In general the data to be analyzed must be assumed to be N-dimensional. More
over the desired functional relationships may have multiple independent variables. The
curve fitting procedures provided within OPTUM must handle the computations in N
space; interface with GGP will provide user-defined displays on the two-dimensional
output device (interactive terminal and/or hard copy devices). (The actual transforma
tion to the medium of the picture is a topic that is covered in the discussion of the
Generalized Graphics Plotter (GGP) in Section 5.)

As an example, least squares curve fitting requires the use of an optimization
procedure. In such cases, the user can link up to the Optimizer and Parameterizer
Utility (OPTUM) to assist him. He can then specify the design variables of his pro
blem. All the flexibility of OPTUM is available to him and he can now, if he wishes,
do such things as parameter (fit) sensitivity studies.

6. 1. 3 Evaluation. - The final phase that the user enters is evaluation of the resulting
fits. Here the user must begin to subjectively (with some objective mathematical cri
teria) determine the correct interpretation of what he sees. In this mode, the user is
retrieving computational results and comparing different analyses.

GGP is again employed at this stage. The user can begin to consider sensitivity
studies (again via OPITUM) to further define the best solution to the analyses process.

6. 1.4 Conclusions. - It should be noted that the above division of the data analysis
process is by no means rigid and consecutive. In fact, the three phases in general
are intermixed and re-entrant at many points in the actual total solution process as
illustrated in Figure 6-1. It is this variability in the progression to the solution that is
the best argument for man-machine interactive cooperation.

305

GGP

F 	 ACCESS
RAW DATA

GGP

DISPLAY PLOT
OPTIONS

GGP
DEFINE PLOT
PARAMETERS

GGP

PRODUCE

GGp 	 I PLOT GG+P

Figue -1.Dt An lyiPrcsFnt oFow
QP l h ue o u 	 GGP (OR QP) OPTUM

DATA SET DATA SET fute da a SET o DATA SET

of te oeratonsinOTIJ canbe Oun Pn TION4.
Figure 6-1. Data Analysis Process, Functional Flow

Tharsure denotes which utility is used t each step in the dataanalysis process.

The use of OPTUM provides complete computational capabiities as well as the selec

tion of the desired options. For instance a-user must define his design variables (un

heowns) and the objective function to be considered. (Further discussion and treatment

of the operations in OPTUM can be found in Section 4.)

GGP lets the user formulare "pictures" of what he wishes to see. (The reader is

referred to the Section 5 on GGP for further details and definition of terms.) The user

can construct pictures of data with several overlays of different fits to get a visual com

parison. He also can window in on areas of interest and produce hard copy records of
what he sees at any time. The various entities created by data transformations and

curve fits are accessible to the user of GGP and he defines the pictorial makeup of what

he sees on his terminal.

The data itself is assumed to exist in the data base - usually in the UP but possi

bly in an AREA of the IVDB. The curve fitting process itself will access the required

input data (through OPTUIV) for subsequent operations. Any special data manipulations

required (e. g. transformations of data, alterations! of data points, etc.) will be con

306

structed locally via the Query Processor (QP) to expedite the demands for interactive
accessing of information.

All operations on the data items, can be made reversible, i.e. to not destroy the
original representation of the items. This is necessary to provide restart and recovery
procedures. Moreover, the iterative nature of the analyst's task makes it mandatory
that one be able to get back to selected points in the solution process. Although some
operations can be made irreversible, such action is not suggested in general.

6.2 Summary

Curve or surface fitting actually represents an application vith numerous com
putational options which can use the optimizer (OPTUM') to.perform the computation'
and the General Graphics Plotter (GGP) to present the results in pictorial form.

,The inclusion of all required curve fitting options in the OPTUM and GGP utilities
gives the-user powerful tools to assist him in the analysis of data. The man-machine
team functions efficiently in conducting the curve fitting process. The man actively:

directs the machine and takes over completely when subjective judgements are required;
the machine does the algorithmic calculations required and supplies the quantitative re
sults to augment man's decision-making processes.

Curve or surface fitting will be principally interactive due to the unpredictability
of the analysis,process. Moreover, the final act' of the analyst, that of determining the
correct interpretation of the data, is in general a subjective decision requiring the in
tegration of results of numerical calculations and qualitative considerations. There is,
however, the option to execute in the batch mode to perhaps answer independent, rigid
ly determined questions that do not require interactive monitoring of the output.

307/30§,

7 GENERAL DESIGN MODULE (GDM), A GPU

Design/drafting systems have been under development for many years by
various aerospace companies.* These systems have, for the most part, been dev
eloped as drafting systems in that they are intended to reduce calendar time, man
hours and cost figures in the development of engineering drawings. Although highly
commendable achievements have been made in these efforts (see Appendix B, Section
B.2), IPAD's design system is aimed at a broader challenge: the total design process.

7. 1 Introduction

In order to truly augment the designer, the General Design Module (GDM) must
be a tool carefully constructed to be harmonious with the thought processes of the
designer. To be most effective, the automation of the design process must relate
as closely as possible to the actual operations in that process. The design process
can be diagrammed as shown in Figure 7-1.

The designer begins with a concept or requirement of function. This might be
the location of a pulley, or the performance requirements of a jet nozzle; any re
quirement which is dependent on physical or physically-modeled relationships can
utilize the design module. From the concept of function - through the creative talents
of the designer - emerges a concept of form. In the case of the pulley location, this
concept could be a type of bracket; in the case of the nozzle, a preliminary cross
sectional shape. How does the designer create these initial shapes and designs?
Initial designs usually are based on'past experience; previous designs and ideas
give a starting place from which new ideas evolve. The creative designer finds
fault with old designs (while also recognizing their advantages) and from there he
either leaps or steps ahead with an evolutionary design.

Recognizing that the design process is usually evolutionary, IPAD's design
module is modeled after that concept. The ability to give birth to initial design con
cepts is a fundamental goal of IPAD's GDM. Four capabilities reveal the emphasis
of GDM on design

* For example, Lockheed Aircraft Co., Burbank CA; MacDonnel Douglas Aircraft
Co., St. Louis, MO; Systems, Science and Software, San Diego, CA; and Mac-

Donnel Douglas Aircraft Co., Long Beach, CA.

309

1. 	 A comprehensive information storage and retrieval (IS&R) subsystem.

2. 	 Three-dimensional, geometric building blocks supporting a design/
drafting subsystem.

3. 	 An open-ended analytical design analysis program library.

- when the design is concluded4. 	 A comprehensive design data structure which

provides a legacy to assist in Computer Aided Manufacturing (CAM).-

These are briefly described in the subsections which follow:

CONCEPT OF
FUNCTION

IZEZI
INITIAL
CONCEPT

OF FORM

CREATION
OF INITIAL
FORM

OPTIMAL OR QALIATV

PRACTICAL

FINISHEDDt SIGN
-	 A AINTIONCET'''MODIFICT

I NEEDS
J 	 IMPROVEMENT

IMANUFACTURING
PROCESS

-- _T- __ OF FORM
FINISHED 7PART

Figure 7-1. Design Process Flow Diagram

310

7.1.1 'IS-&R subsystem. - The IS&R subsystem enables old designs (and their attri
butes) to be readily located. Magnetic tapes and disk data files containing previous
solutions'to similar requirements are to be retrievable in response to menus of
descriptive information. In the case of the pulley, standard or special pulley brackets
could be displayed upon request for the scrutiny of the designer. In the case of the
nozzle, previous designs which might be of assistance could be reviewed. In either
case, the designer's-task might be as simple as a local modification to an existing
part or it might require a totally new concept. The history of similar designs is an
important ingredient in this process.

It should be emphasized that this IS&R system need not contain only information
regarding previous part designs, but can contain data histories on complete systems.
For example, landing gear geometry, weight, performance data, can be stored for
complete classes of aircraft. Attributes of vital commercial components can also be
filed (e.g., tires and wheels).

7.1.2 Geometric (3D) building blocks. - The second capability encompasses the cap
abilities of the existing design/drafting systems plus providing higher-level capabil
ities. Existing design/drafting systems are modeled after the mechanics of the de
signer's/draftsman's job; namely the drawing of lines, arcs, etc. The General Design
Module (GDM) of IPAD is modeled after the thought processes of the designer/draft
man. The designer normally thinks in terms of plate stock, tubing, bar stock, nuts,
bolts, or three-dimensional shapes, and only draws lines, arcs, etc., to represent
these objects. IPAD's.objective is to relate directly to the designer.

This is the concept of shapes and surfaces. As depicted in Figure 7-2, lines
and arcs are the lowest level of geometric entity. If the designer can request shapes
(e.g., plates, cubes, etc.), the subordinate geometry (surfaces and elements) can be
automatically generated (computed) and stored in the data base. Since all geometry
cannot be easily developed from shapes (e. g., a spoked wheel), the capability to
develop designs from surfaces or primitive elements (lines, arcs, etc.) is also pro
vided.

The designer therefore has a range from the highest to lowest-level geometric
building blocks from which to build. The designer's role is to develop the data struc
ture shown in the figure using the most efficient means available. If the designer
chooses to modify an old part, it is obvious that a great deal of work is saved since
much of the data in the structure (figure) may not need to be changed at all.

7.1.3 Design analysis program library. - The third capability, that of a design
analysis program library, is intended to enable the designer to routinely use analysis
and synthesis programs in the design modification cycle. It provides the ability to

311

-Assembly No.
SNumber of Parts
Effectivity

Part No.cost

Effectivity ASSEM Y Minimum Lots
Vlm

Unit Cost WeightMinimum Lots
InerisMaterial Inertias

Volime DEAIL Centroid
Weigt

DT I Center of Mass-DETAIL DEAL
WneriasETI PART Reponse (Dynamic)PARTPaRTPART
Gentroi~d to Applied Loads

I
Center of Mass r

Diagrams
Shear

Material COMMVERCIAL Deflection
HAS Volume IDESCRIPTIONSHAPES

- } • • Weight
Inertia

Centroid

AreaCross Section

Area SURFACE SURFACE Centrqid

eee*Tolerance*IE.-- Finish
Centroid

Length
LINE POINT ARC LINE -• End Points

Location

Figure 7-2. GDM Data Structure, 'Assembly Level

perform the qualitative test against the concept of function (analysis) and to assist in
the creation of the initial or modified form. In the case of the nozzle design, an
analysis program could provide information to guide the designer in modifying the
nozzle profile. A synthesis program might provide an optimization procedure which
- having started from a previous design's profile - would create a finished profile.

The library of design analysis programs should encpmpass many disciplines,
e.g., heat transfer, thermodynamics, kinematics of machines, aerodynamics, etc.,
and should be coupled to the design module in such a way as to enable direct data,
interaction. For example, kinematics programs would enable animation of landing
gear geometry, door linkages, etc.; springs could be automatically sized and drawn;
loaded structures can be deflected; aerodynamic and thermal effects can be graph
ically related to the geometry.

Any analytical aigorithm (OM) can be added to the design analysis program
library and be made to interface with the geometric data structure.

7.1.4 The legacy to Computer Aided Manufacturing (CAM). - An important part of
existing design/drafting systems is the Computer Aided Manufacturing (CAM) inter
face. Two.basic approaches are available to GDM:

1. 	 Provide a capability which interfaces the graphical part description
with a programming language (e.g., APT),

2. 	 Circumvent programming languages in their entirety and utilize

only graphical interaction to develop tool cutter path movement.

Note that when the data structure (Figure 7-2) is finished and a complete description
of the detail part exists, much of the work of a tooling programmer is already com
pleted:

1. 	 Surface information is available and linked to shape descriptions.

2. 	 Surface intersections and bounds are already defined and available.

This is a case where a graphical part display and its backup data structure provides
much of the required information.

The future of the numerically programmed tools' cutter location (CL) tape
generation lies in total interactive graphic descriptions of cutter paths. Programming
languages are no longer necessary nor comparatively efficient, viz. compared with
the time and cost reductions envisioned with graphical CAM system interfacing with
IPAD's GDM data subbase (Figure 7-2). Further, cutter path descriptions can be
more easily and conveniently saved as a portion of the data base than as is presently
done by saving program card decks. Since the user is interacting, many assumptions

313

can be automatically made by the computer (e.g., most likely cutter path) and if in
correct can be corrected'immediately by the user. This ability to assume defaults
enableasmany instructional shortcuts not practical when operating in a non-interactive
mode.

The key to the applicability of GDM to CAM is the ability to view'the component
building blocks of the displayed object's substructure (Figure 7-2). This provides a
vast quantity of required information no longer available in either the completed design
(e. g., conventional drawings) or the manufactured part.

The following sections describe features of the General Design Module (GDM)
intended to fulfill the general design requirements just described. Being broader in
scope than existing ddsign/drafting systems, it is felt that GDM will fulfill the needs
of the designer better while maintaining the advantages already shown eminent with
computer-aided design/drafting systems (Appendix B).

7.2 Construction Features

Typical constructions which GDM should be capable of producing are:

1. 	 Machine Parts:

a. 	 Casting.

b. 	 Forgings.

c. 	 Bent-up sheet metal.

d. 	 Flat patterns.

e. 	 "Hog-outs".

2. 	 Assemblies and installations.

3. 	 Electrical schematics.

4. 	 Circuit board layouts.

5. 	 Procurement specifications (descriptions of commercial parts, e. g.,
motors, switches, fasteners, etc.).

The 	use of computer graphics terminals for design purposes enables many features
which aid immensely in constructing geometry. It is these special features which give
rise to the impressive cost and time savings inherent with design/drafting systems.
Among these features are mirroring and copying, simplified dimensioning along with
automatic generation of views whenever possible. It is hoped that the following sub

314

sections, in describing some of these features, give insight to the tremendous poten
tial of a well developed design capability envisioned for GDM.

7.2.1 Working with the geometric building blocks. - The geometric building blocks
consist of

I. 	 Shapes (volumes) which provide the basis for.weight studies, section
analysis etc.;

2. 	 Surfaces, which provide the basis for machining instructions,

3. 	 Elements, which are used to create the actual graphic display of
the object.

Surfaces and elements will have analytical definitions (mathematical expression)
while shapes generally will not. Most design analysis calculations will use the
collection of surface expressions for part definition.

Data base support for the GDM must allow fbr growth and facilitate many differ
ent modes of access. The data structure. (Figure 7-2) is a model of the geometry of
(essentially) an arbitrary physical object, consequently the SUBSCHEMA associated
with GDM must define SET representations of arbitrary networks of RECORDs. An
individual SET may represent a detail part, an assembly of detail parts, or an en
tire 	aircraft. The SET definition must be such that the designer can add to.the
structure of a SET occurrence indefinitely and/or create an indefinite number of
SET 	occurrences. Furthermore, a secondary SET definition must be provided such
that 	RECORDs defining attributes (tolerances, revision effectivity, etc.) may be
associated with any basic geometric building blocks.

Note that the designer may work in any of three modes:

1. 	 Building up complex structures from basic elements.

2. 	 Building down complex structures from intersected shapes.

3. 	 Modifying completed structures obtained through the IS&R capability.

It is 	an important consideration that the design of a data base for a basic design
system be adaptable for implementation of new capabilities. The SUBSCHEMA
support to GDM via DDL insures this.

The different ways of creating the design geometry should require minimum
designer interaction. The designer should be able to indicate the type of geometry
he wants and provide the required geometric data; the computer should determine
the appropriate data organization. (E.g., if the designer wants to draw a line, he

315

need only provide the points; tangent circles, etc.,' and the computer, hould find the
appropriate definition to fit the supplied data.) All geometry should be defined in a
three-dimensiqnal coordinate system. During construction, the third coordinate can
be assumed as a default, unless specified.

Capabilities should be included to extend and to bound existing geometric en
tities. For example, lines and arcs should be extendable to aid in construction of
other entities and also be capable of being bounded (i.e., being shortened or seg
mented) to give flexibility to the designer in the construction mode.

Surfaces should be generated automatically through the generation of shapes.
When a shape is specified, its surfaces are automatically identified and stored im
mediately in the data structure (Figure 7-2);in a similar manner 'elements should
be automatically generated when surfaces are intersected or bounded.

The following descriptions of some basic geometric entities are exemplary
and are not intended as complete definitions. A complete set of definitions will re
quire much investigation of utilization methods and human factors and is beyond the
scope of this study.

7.2.1.1 Basic geometric shapes (volumes): A tentative list of geometric shapes

consists of:

1. Parallelepipeds:

a. General.

b. Rectangular.

* Cubes.

" Plates.

* Bars.

2. Solid cylinders (extruded shapes):

a. General

b. Solid circular cylinders (,rods).

3. Spheres.

Additional shapes can be added for special purposes (or for general usage) as re
quirements become apparent.

Following is an exemplary list of suggested methods for defining convenient

and frequently encountered geometric shapes:

316

*1:. Rectangular parallelepipeds could be defined inany one of the following
ways:

a. 	 Definie height, width, length. Sides are to be parallel to cotrdinate
axes. Position may'be varied as well as orientation.

b. 	 Identify six orthogonal planes which form the parallelepiped.

c. 	 Identify edges (points) of the parallelepiped.

d. 	 Identify corners (points) of the parallelepiped.

Cubes, plates and bars will have their own more simplified methods of
definition.

2. 	 Solid circular cylinders (or rods) are the,most generally encountered
solid cylinder and could be defined:

a. 	 Identify axis, radius and length.

b. 	 -Identify axis and point on its surface and length.

c. Identify circular cylindrical surface and two limiting planes.

Other types of cylinders will have similar methods of definition.

3. 	 Spheres could be identified simply by a center point and specifing a
radius.

7.2.1.2 Basic geometric surfaces: A suggested list of geometric surfaces
consists of:

1. 	Quadratic surfaces

2. 	 Ruled surfaces.

3. 	 Meshes.

Additional surface definitions can, of course, be added as requirements for them be
come apparent.

A number of ways of defining a surface is necessary for efficient operation.
The following is an exemplary list of suggested methods for quadric surfaces:

1. 	Planes:

a. 	 Identify a line and a point.

b. 	 Identify three points.
I -	 • •

c. 	Parallel t6 a given plane at a given distance.

d. 	 Parallel to a given plane through a given point.

317

e. Perpendicular to two given intersecting planes.

2. Circular cylinders:

a. Identify a line segment as its axis and a point on its surface.

b. Identify a line segment as its axis and specify a radius.

c. Identify any circle and specify its length.

Similar defining techniques are envisioned for the other quadratic surface definitions.

7.2.1 .3 Basic geometric elements: The minimum basic geometric elements should
consist of points, lines, circles, arcs, and splines. Additional special elements

such as ellipses, parabolas, etc., are required. A number of ways of generating

each is necessary for efficient operation. The following is abstracted from a set of

suggested methods:

I. Points:

a. Positioning of the cross-hair cursor in 3D.

b. Keying in the X, Y and Z coordinates of the point.

c. Keying in the polar coordinates of the point.

d. Intersection of two lines.

2. Lines:

a. Identifing-two end points.

b. Parallel to a given line and through an identified point.

c. Perpendicular to a given line and through an identified point.

d. Tangent to an identified are at a point.

e. Tangent to two identified circles in a plane.

'f. Through a point at an angle.

g. At an offset distance parallel to a given line.

Again, similar definitions for other elements are also envisioned.

7.2.2 Semiautomatic dimensioning. - Dimensioning can be greatly simplified using
a computer graphics design system. Several operations could be made "automatic",
e.g., generation of leader lines, witness lines, arrowheads, and geometric distances.
Dimensions must, of course, be readily changable and movable. Nested dimensions
can be created with an automatic separation allowance. If a dimension in a nest is

318

changed or removed, the rest should be repositioned automatically. A capability
for providing reference-dimensions must also be included.

Datum and dimensional control symbols (concentricity, parallelism, straight
ness, perpendicularity, 'etc.) shduld also'be included to enable precision dimension
ing. The ability to define tolerances (both general and individual) must be available
to the operator. Another feature will permit dimensional compatibility studies (effects
of extreme tolerances on function and interchangability of parts).

7.2'.3 Isometric and perspective views. - To enhance physical visibilitV, isometric
views are sometimes used by designers. A capability must be included in the design
system to display isometric views of a part automatically. This capability should in
clude the automatic detection of hidden lines. Another desired feature allows mod
ification of the part in the isometric view.

Perspective views enhance "visibility" and may be desired either as a construc
tion aid or may be used for presentation purposes. A perspective viewing capabilities
should be provided.

7.2.4 Geometric mirroring and copying. - The ability to mirror geometry can greatly
simplify the work of the designer. Since the large majority of parts are either totally
or mostly symmetrical (about an "axis of symmetry") half of a part may be constructed
and then "mirrored" to create the othei half. The -other half can then be modified to
take into account any deviations from symmetry. Since part geometry is three-dimen
sional, the mirroring operation should mirror about a plane (seen in the mirrored
planar view as the line of symmetry) and should create mirrored surface and shape
definitions if those definitions have been previously defined.

Copying enables any geometric entity or group of geometric entities to be
copied into the data base as positioned on the display. This feature can save multi
tudes of repetitive work by the designer and is possibly the most powerful feature of
any design system. An ability to copy objects already generated - using the basic
geometry definitions - is a must for GDM. The designer should be able to group
shapes, surfaces, lines, circles, etc., into a single item which can be copied as a
single entity. These copied items should, furthermore, be capable of being modified
by adding or erasing their geometric details (e.g., a flange might be copied and then
the bolt pattern changed to fit a different application). A smaller detail of a geometric
entity should also be able to be copied withoutt having to copy the whole entity (e. g.,
copying a boss from a complicated casting). Once a set of geometric definitions
have been made into a group to be copied, further copies should require a minimum
of effort; regrouping should not be necessary.

319

7.2. 5 Parts library (IS &R system). - To enable copying geometry from other part
constructions, a parts library recall capability should exist. The designer should
be able to specify a part number ("drawing number") and get a display of the requested
object. The ability to overlay the retrieved part over the present construction and to
blank out any non-applicable geometry is required. The designer must then be able to
copy, mirror, etc., as if 'the retrieved construction were part of the present construc
tion. After copying and modifying the retrieved geometry, he must then be able to
erase the original and retail only that geometry which has been copied.

An extension of this capability incorporates the IS&R system to allow the design
er to search for parts with defined characteristics (via menus) so that these parts may
be copied. The ability to request views of standard parts-(e.g., NUT PLATES, BEAR-
INGS, etc.) from a menu of parts is a highly desirable feature for GDM. It is envision
ed that a designer might, for example, request a stopnut from a list of standard
fasteners. He is shown either a military or an internal standard, pictorial description
of stopnuts. He is able to select the appropriate size fasteners - as is presently done
- from tabulated size information. The callout and appropriately sized views of the
fastener would be automatically generated for the designer to position on the display.

Although such a system requires considerable data-storage to include a large

number of parts, such a capability is extremely beneficial. GDM must provide the

mechanisms to allow the eventual buildup of a large parts library.

7.2.6 AuxlarX views. - Auxiliary views are arbitrarily oriented orthographic views.
Since it is often desirable to create auxiliary views to depict a special feature of a
part, it is a must that GDM include an auxiliary view capability. Since auxiliary views
are additional to the other conventional views, much of the information contained in the
auxiliary view should be automatically generated. This view could aid in modification
of the part to show the added detail, which then must be reflected back in the other
views automatically.

The automatic generation of auxiliary views should include an automatic solu
tion for the hidden lines. Such a feature should be an optional operation because of

the time-consuming computer calculati6is required. The auxiliary view capability

must not be limited to any particular orientation or set of orientations and no limit

should be placed on the number of auxiliary views per display.

7.2.7 Sectioning. - Generating sections is often necessary to display internal de
tails of parts. GDM should permit section cuts in much the same manner as auxil
iary views. This capability should allow a single cutting plane or jagged section

cuts (section cuts defined by multiple cutting planes). Sections should show only that

portion of the part left after cutting and should be able to detect hidden lines.

320

GDM -should semi-automatically createsection lines (the boundaries being de
fined interactively by the designer) as well as optional totally automatic cross-section
ing.

7.2.8 Assemblies. - The ability to superimpose parts - using library files - facili
tates building assemblies from detail parts. By making particular lines, arcs, etc.,
of the display details dashed (or hidden), or by removing them, the details can be
made into descriptive assembly drawings. Dimensions can be added to control
assembled positions and tolerances. The dimensional compatibility analysis feature
mentioned in the dimensioning subsection (7.2.2) will apply to assemblies as well.
This feature will be useful in Quality Control and interchangeability studies.

It is envisioned that the assembler himself might construct his own assembly
drawings (hard copies) while viewing a constructed assembly at an interactive ter
minal.

7.2.9 Flat pattern development. - The usual procedure for creating bent sheet
metal parts is to first develop a "bent up" display showing the part in its final con
figuration after which the part is unfolded to create what is known as a flat pattern.
Since the development of the -flat patterns is a highly systematic or procedural pro
cess, the computer can be used in the conversion of the bent-up configuration back to
the unfolded flat pattern. GDM should contain a semi-automatic flat pattern develop
ment capability (i.e., the designer may have to fold each bend separately, supplying
specific information, such as corner, radius, etc) and an option that unfolds the
bends automatically and even performs a checking function (such as tearout distance,
bend radius, etc.).

7.2. 10 Revisions. - Making revisions to parts on a graphics-based design system
can greatly simplify conventional procedures and bookkeeping. The conventional
method usually requires a separate form to be completed for each drawing change or
set of changes. This form must reflect graphical and numerical changes and end
item applicability (effectivity). To depict a part configuration or to depict an end
item configuration (e.g., a specific airplane configuration) one must consider the
drawing and the effectivity requirements of every previous change.

Using GDM, revisions and effectivity characteristics can be stored in the data
base (Figure 7-2) and can facilitate viewing configurations for change/effectivity re
quests. As previously discussed (Subsection 7.2.1) a basic configuration is repre
sented as a SET relationship defining a network of geometry RECORDs (Figure 7-2),
attributes are represented as associated (at any branch of the network) SETs of
attribute RECORDs. Several versions of any particular RECORD occurrence within
either type of SET may be inserted, retrieved, deleted, and maintained. DBMS

321

architecture provides for many methods of implicitly controlling and a§siIstirig this
process (through DDL options) and in turn requires additional RECORD selection
criteria from programs accessing various versions of a RECORD occurrence.

Much of the conventional paper work for changes can also be automated through
a revision mode feature (if desired). The designer can be made-to respond to requests
for information (e.g., effectivity, reason for change, date, etc.), and notification
and distribution could be automatically handled via periodically batch processing in
formation contained in the data base.

7.2.11 Desk calculator. - To aid in various calculations not programmed as part of
the design system's code but found necessary by the designer (e.g., subtraction and
addition of tolerance limits to assess fits, etc.), the design system must incorporate
a desk calculator feature. This enables the designer to add, subtract, divide, take
square root, etc., much the same as a simple desk calculator (e.g., Wang, Singer,
Friden, Hewlett-Packard, etc.). In addition it permits the user to develop functions
or programs to be added in the same manner as for stored-program desk calculators.
These functions could be listed in menus built into a logical tree structures, e.g.:

AERODYNAMICS
MECHANICS

TRIGONOMETRY

DERIVATIVES

INTEGRALS

HEAT TRANSFER

STRESS ANALYSIS

Selecting any of these options could produce a more detailed menu for the particular
discipline. For example if TRIGONOMETRY were selected a menu like the following
might appear:

RIGHT TRIANGLES
OBTUSE TRIANGLES
FUNCTIONS OF SUMS OF ANGLES
FUNCTIONS OF MULTIPLE ANGLES
MISCELLANEOUS RELATIONS
LIMITING VALUES AND INEQUALITIES
INVERSE TRIG FUNCTIONS
RELATIONS BETWEEN SIDES AND ANGLES OF ANY

PLANE TRIANGLE
SPHERICAL TRIGONOMETRY

322

Selecting one of these options would then produce the functions desired and allow the
designer.to choose one of those.

The user can select the desired function and the arguments needed will be assigned to
specific registers awaiting keyboard Input.

If several functions were assigned to the keyboard function keys, the user could
then utilize the function as if it were a built-in keyboard function. Several functions
could be stored simultaneously, the number being limited by the available keyboard
function keys. To keep track of the functions a brief list could be displayed to remind
the user of the functions assigned and their keys. Tutorial information.describing
the arguments required will also be available.

7.3 Display Features

The use of interactive computer graphics provides a limited area display tube
upon which the design work - which classically has been done on large drawing
boards - must be accomplished. To facilitate a huianly adaptive system, several
display features are needed to enable display construction and manipulation. The
following subsections discuss those envisioned for GDM.

7.3.1 Line styles. - The following line styles are required for a basic design/system:

1. Solid light (construction lines, dimension lines, leader lines).

2. Solid heavy (border lines).

3. Dashed short-short (hidden lines).

4. Dashed short-long-short (center lines).

5. Dashed short-short-long-short-short (phantom lines, section lines).

6. Break lines for tubes, rods and general shapes.

The ability to change the style of any existing line or a portion of a line must be pro
vided. This capability enables the designer to graphically depict hidden lines in the
construction of auxiliary views and sections.

The lengths ofthe-short dashes sh6uld be a function of the scale of the display.
The long dashes are made adjustable to enable the designer to properly "fit" the line
to the part.

323

http:designer.to

* I

7.3.2 Text. - The text writing feature enables notes and labels to be,'created using
the alphanumeric keyboard. ,(The keyboard employed should be configured as closely
as possible to a conventional typwriter to simplify typing.) The carriage should return
to the starting location of the first line unless otherwise instructed. Semi-automatic
generation of leader lines and arrowheads to the geometry are to be provided.

The ability to move text and to duplicate it is'also a necessary feature. The

character set includes an upper case alphabet and numerals plus common symbols.

"Alphanumerics are preferably of variable size or have at least two different sizes.,
A capability for storing a menu of standard notes is a highly desirable feature, along
with a similar capability for title blocks and drawing frames to be used with hard copy.
A bill of materials and standard parts block capability should be provided which could
either stand alone or be printed with the hard copy. Another capability would provide
an accounting of materials and standard parts in the data base which permits com
puterized material summations and standard parts summations, etc.

7.3.3 Move, zoom,. rotate and scissor. - Because of the limitations imposed by the
small working area of a graphics display tube (as compared to a conventional drawing
board), the ability to move and zoom are critically important features. Moving trans
lates a specified point on the object to the center of the screen, This, in effect, shifts
the viewing area of the design being generated. Because a design6r often works on
several parts of a design simultaneously he must be able to move the viewing area
quickly and easily. As the viewing area is changed, the part of the view no longer

visible must be "scissored" (erased) from view. Zooming is similar to moving

except the shifted image is made larger or smaller (usually in 2:1 increments). Ro
tating causes the entire visible portion of the design to rotate about a specified point

(normal to the viewing plane) by a specified amount. This capability can simplify the

construction of lines, arcs, etc., which would otherwise be at a more inconvenient

orientation. Scissoring must be automatic with moving, rotating and zooming.

7.3.4 Grid. - To enhance the construction mode, a capability should exist which

enables the designer to superimpose a three-dimensional grid. The spacing and

position should be variable and capable of being blanked out (erased) and redisplayed

easily.

7.3.5 Distortions. - The loftsman,(or linesman), frequently needs to "fair" two lines

or curves. To enhance his ability to "eyeball" this fairing, the abilityto distort the

shape of the object is desirable. This can be achieved by allowing different scale

factors to be applied to the orthogonal axes. This has the effect of exaggerating

rough or non-faired areas. If.for example a designer wishes to fair two surfaces

representing the profile of an air inlet duct for a jet engine, he would first orient

the part to obtain the best view of the intersection of the surfaces, and then he would

distort the view to exagerate that intersection's roughness.

324

7.3.6 Erase. - The ability to erase geometric, alphanumeric or any other portion
of the construction is a basic requirement. Erasing must be fast and easily requested.
Two types of erasing are needed. The first simply blanks out items which can later
be redisplayed. The purpose of blanking out parts of a display is to mflimize "flicker"
and to temporarily remove geometry which may tend to confuse or complicate the
picture. The second type of erasing causes the item to be permanently removed; this
will affect both the picture and the data base. It is important to safequard a perman
ent erase sufficiently to insure that the designer has selected the cqrrect erase type.

7.3.7 Hard c6oiy. - Essentially, GDM must be able to.provide hard'copy for any dis
play it can prodtice at the interactive graphics terminal, including the complete dis
play, a portion of which is being "windowed" onto the terminal's display area (Sub
section 7.3.3y. The generation of precise drawings is one of the most critical re
quirements of a design system. Three basic types of hard copy are deemed necessary:

1. 	 High quality, dimensionally precise and stable, full-size drawings
(dimensionless drawings).

2. 	 Good quality dimensionally stable, scaled drawings (mylar originals).

3. 	 Reference copy of any display.

It is expected that the first type must be developed on a high quality, precise
automated drafting machine such as a Gerber plotter or Orthomat. Turnaround time
to obtain this type of drawing should not exceed one day.

The second type of hard copy serves as an original from which prints can be
made for distribution if desired. Revisions are made at the graphics console and a
new original produced. A process used to produce this type of hard copy starts from
the 35 mm film of a microfilm recorder (e.g., the Stromberg Carlson S-C 4020) which
is then projected using a magnified image onto wash-off mylar. High quality equipment
is used to obtain good quality copy. The time to obtain a wash-off mylar should not ex
ceed 4 to 8 hours.

The third type of hard copy is used only for intermediate reference or engineer
ing reports and is either immediately available to the console operator or after a
short delay. This type need not be full size but should be scalable and have "tooth"
to permit writing thereon. It must be of good quality and be legible however. Some
devices which may serve this purpose use light sensitive, heat developing paper (dry
silver) which is exposed to a special CORT; copies can be obtained within a few seconds
(e.g., TEKTRONIX 4610). Other means of providing such reference copy are through
the devices previously mentioned (e.g. ,_ Gerber and Calcomp pen-ink recorders or
microfilm recorders). These latter devices are generally slower but often provide
higher-quality report copy.

325

7.4 Attributes

Since the SET relationships of the data structure (Figure 7-2) actually.model

can be extended to model other attributesthe physical shape of the object, the SETs
can be related to surface descriptions,of the object. For example, surface finishes

material densities with the shape descriptions, etc. The following attributes are

typical of what can be computed and retained for the benefit of the designer.

7.4.1 Volume and mass properties. - The capability of computing volumes and

weights of basic shapes must be available in GDM. This capability would permit

volumes and weights to be calculated for any arbitrary part, regirdless of shape.

Included is the capability of calculating various mass properties, e.g.:

1. Moment of inertia about a given axis.

2. Radius of gyration about a given axis.

3. Center of mass.

Retaining the computed weights of parts, components, subassemblies, etc. (i.e.,

shapes) as attributes in the data structure is potentially valuable since the weight of
Weight of total an entire aircraft can be determined from summing part weights.

can also be determined by summing appropriately delinealuminum, titanium, etc.,

ated parts separately.

7.4.2 Section properties. - After a cross-section (surface); has been defined or

generated, GDM should enable computation of several section properties. These sur

face properties (attributes) - which are stored within the data structure could

include:

1. Area of the section.

2. Moment of inertia of the section about a specified axis.

3. Section modulus.

4. Section centroid.

If the cross-section represents a beam, the capability for computing and storing

additional information should be made available, e.g.:

5. Bending moment diagrams.

6. Vertical shear diagrams.

7. Deflection diagrams.

8. Reactions to applied loads.

This capability should be available for the most common beam supporting methods and

loading conditions (i.e., concentrated and distributed loads).

326

7.4.3 Data retrieval. - Since the designer often needs to know numerical information
about previously constructed geometry, a data retrieval (or verification) feature is

required.- This feature retrieves and displays numerical descriptive information
(attributes) regarding existing geometric definitions (i.e., shapes, surfaces, lines,
arcs, points, etc.), or relationships between them. The following is a exemplary
list 	of information the designer might retrieve:

1. 	 Rectangular parallelepipeds:

a. oWidth, length aid height.

b. 	 Corner coordinates.

0. 	 Volumd.

2. 	 Cylinders:

a. 	 Axis direction cosines.

b. 	 Axis endpoint coordinates.

c. 	 Volume

3. 	 Planes:

a. 	 Equatioi of plane.

b. 	 Coordinates of intersection of plane and line or curve.

Normal distance from a specified plane to a specified'[point.c.

4. 	 Arcs:

a. 	 Radius at a point.

b. 	 Coordinates of center at a point.

c. 	 Start and end tangent angles.

5. 	 Lines:

a. 	 End point coordinates.

b. 	 Length.

c. 	 Angle between lines.

d. 	 Distance between parallel lines.

Normal distance between skew lines and end coordinates of normal.e.

f. 	 Direction cosines of line.

327

6. Points:

a. Coordinates of a ;point.

b. Distance between two points.

c. Perpendicular distance between a point and a line.

All of the above information, where possible, should be available in botli the original.

and viewmg coordinates systems.

7.5 Program Linking

Since other graphics (or non-graphics).OMs/GPUs may be useful when linked to

Some classificationsGDM, a capability must be provided to facilitate this objective.

of OMs which might be beneficially linked to GDM are:

1. Linkage analysis.

2. Linkage synthesis.

3. Structural analysis.

4. Redundant member force analysis.

5. Spring design.

6. Circuit analysis.

It is envisioned that linkage will be completely handled through GDM's data base

through employing different SUBSCHEMAs for each OM/GPU as required. ""

7.6 Partitioning of Computing Functions

During the process of establishing the design form, much repetitive interactiofi

exists between the user and his console. Literally hundreds of display Variations will

be made during the design of a single part. Due to the fact that most of this.interabtiw

processing will not require large core storage or large 'amounts of computing, it is

practical to use minicomputers for much of this procegsing. Using miniconiputers

can reduce the work load of the host computer and can allow for a much more efficient

system

* See Subsection 2.2.2.4 in Volume IV, Part I for a discussion of these advantages.

328

The partitioning of the computing functions (viz. those functions detailed in
Sections 7.2 and 7.3) is very subjective and depends heavily on the architecture of the
system (GDM) as designed. In general, tasks shouldbe allocated to the minicomputer
whenever the estimated response time is acceptable or if it is estimated to be less than
that typical on the host computer (providing the capability exist on the mini). The re
sponse time for tasks performed by the mini should never exceed one second if possi
ble . Tasks allocated to the maxi are expected to vary considerably depending upon
the complexity of the operation and the maxi's background job mix. If a maxi's task
is expected to exceed three seconds, a courtesy (or status) message should be dis
played. In general, accesses to the host computer should be' minimized to improve
response time.

A possible partitioning of some of the design tasks is depicted in Figure 7-3 which
has the majority of the computing functions on the minicomputer. Some tasks which
are ekpected to be best suited for the host computer are the sectioning, generating
hard copy and data base management functions. Sectioning can require considerable
calculations. Hardcopying can be handled separately and draws directly on maxi
peripherals (e.g., the microfilm recorder). Data management will require extensive
disk searching - specifically the capabilities offered by DBMS (see Section 1).

As the user builds or modifies the design, the data structure, stored on the disk
of the host computer, must reflect that design. Modifying the original data structure
with each change would cause an excessive amount of host computer accesses. To
minimize the number of accesses, the minicomputer software must be designed to
store data changes and additions until a block of information is ready to be sent to
the host computer. This will both reduce cost and response time due to fewer host
computer accesses.

Figures 7-4 through 7-12 provide some additional detail on the functions presented
in Figure 7-3 and are self-explanatory. Note that some of the options of the coordinate
transformation subroutine (Figure 7-3) - e.g., zooming, rotating and windowing (scissor
ing) - may be accomplighed (at the display-controller level) by the interactive graphics
device. (One such device is CDC's new General Purpose Graphics Terminal, GPGT.)
In these cases it is anticipated that modular code and installation "parameters" will
be provided to allow a specific IPAD installation which has this capability to optionally
switch off those functions and drop the corresponding code modules.

** 	A practical minicomputer would exhibit approximately a one microsecond cycle time,
have a central memory of 24,000 16 bit words, direct memory access (DMA), and
have a one milliqn word disk.

329

7.7 Conclusions

The general design system envisioned advances the state of the art by taking a
completely different approach. The change from the drawing board to the graphics
console must be accompanied by a change in emphasis from drawings to three-dimen
sional objects and a corresponding detailing of the data base. With the inherent re
strictions of classical board design (viz. drafting) lifted, a fresh approach to design
is made possible. Designers will be able to quickly transfer their skills to IPAD's
GDM since continuity has been maintained. However with their newly established free
doms and abilities, these sane designers may well forge ahead with less obstructed
thought processes in a stepped-up, cteatively-enhanced atmosphere.

IPAD's GDM is evolved around a concept in which physical labor is minimized
(in the sense of establishing or documenting ideas) and mental labor is maximized (in
the sense of allowing continuous, rigorous thought processes). More creative thought
per unit of time must result in better designs at lower cost. Bookkeeping and CAM
fall-outs, although not the central objective of IPAD's GDM, can produce an order of
magnitude reduction in associated costs.

330

__
__

ENTERMINI

COORDINATE
TRANSFORMATION QUADRIC DESK

ROUTINE PARALLELEPIPED SURFACE CALCULATOR
(TRANSLATE, DEVELOPMENT DEVELOPMENT MODE
ROTATE, ZOOM, ROUTINE ROUTINE -ROUTINE

DISTORT)

HARD
SECTION ARC COPY SPLINE PART STORAGE/
DEFINITION DRAWING DEFINI- DRAWING RETRIEVAL
ROUTINE ROUTINE TION ROUTINE ROUTINE

ROUTINE

I,

MAXr I -.

HARD DATA BASE

AND THEIR COPY ACCESS/UPDATE

PROPERTIES ROUTINES (VIA DBMS)

SECTIONS

- 6
_

_ _

1I -

- __ __

_
_ _ _ _

W Figure 7-3. Partitioning of Computing Functions Between the Mini and Host.

H¢ (Mai) Computers

1

MINI

CiD
DISPLAY I I
TRANSFORMATION INTERACTIVELY

IOPTION LIST j DfEFINE SECTION
PLANE(S)

DISPLAY INPUT D P
ISPLYPAUSE MSSAGEREQUIREMENTS'

FOR SELECTEDL

TRANSFORMATION MAXI

I INTERSECTCOMPUTE
SECTION PLANE(S)

COORDINATE WITH GEOMETRY
TRANSFORMATION
MATRIX.

I STORE
TRANSFORM INTERSECTIONS

I N DATA BASEDISPLAY ITEMS
(IF APPLICABLE)AND REDISPLAY

MINI

Figure 7-4. Coordinate Transformation jCOMPUTE SECTION

Functional Flow Diagram LINES FOR ALL

SOLID INTERSECTIONS

ERASEPAUSE MESSAGE

I [SECTION

Figure 7-5. Section Development
Functional Flow
Diagram

332

±
 NTED_

WAIT FOR WAIT FOR
GEOMETRY GEOMETRY
SELECTION OR SELECTION OR
,GENERAL
 GENERAL

DESCRIPTION DESCRIPTION1 	 4

DISPLAY DISPLAYDISPLAY-BOUNDS OF
PARALLELEPIPED QUADRIC
DEVELOPED SURFACE

DEVELOPED

STORE SHAPE, STORE SURFACE
SURFACE & & ELEMENT
ELEMENT DESCRIPTIONS
DESCRIPTIONS LOCALLY
LOCALLY

RETURNRETURN

Figure 7-6. 	 Parrallelepiped Develop- Figure 7-7. Quadric Surface Develop
ment Functional Flow ment Functional Flow
Diagram Diagram

MINI

I 'PLS PAUSE
MESSAGE MAXI[

GENERATE
copy

ISPLAY I ARD COPY

DATA&BUFFER
I. TO MAXI 	 STORE ON I('1I 	 DISK FILE

I RETURN,) I

Figure 7-8. 	 Hard Copy Development Functional Flow Diagram

333

MINI

I INTERACTIVELY

ENTER SPECIFY PARTI DESCRIPTORS

I
WAIT FOR L _ 1 w

DISPLAY PAUSE'MESSAGE

MENTER
GEOMETRY

SELECTION CALL DBMS

OR GENERAL WITH PART
, DESCRIPTORSDESCRIPTION WAIT FOR

__1GEOMETRY

SELECTION OR STORE/RETRIEVE
, ,DESCRIPTION(S)GENERAL • PARTI

DISPLAY DESCRIPTION . ONTO/FROM

ARC DISK

[DISPLAY 1
INISPLINE-

ISTORE ARC ERASE PAUSE MESSAGE

DESCRIPTION- STORE SPLINE
DISToDESCRIPTIONLOCALLY
PARTSILOCALLY
.5TORED/ ETRIEVEDT_

REN RETR L c i
Figure 7-11. Part Storage/RetrievalFigure 7-9. Arc Development Func- Figure 7-10. Spline Development

tional Flow Diagram Functional Flow Functional Flow
Diagram Diagram

MOENO

DISPLAY REGISTERS,
DISPLAY KEYBOARD

ASSIGNMENT
EACTrVATE KEY30ARID

DISPLAY -LIST
OF -UNATTACHED
STORED PROGRAMS

ASSIGN PROGRAM
TO KEYBOARD ADD PROGRAM DELETE DELETE PROGRAM
AND DELETE RESELECTION FROM KEYBOARD
FROM LIST AND ADD TO LIST

ET

ERASE LIST OF
IUNATTACHED STORED
PROGRAMS

• ENTER

"DROP" FUCIN SINGLE

RETORN
M ODE KEY HIT FUNCTION

ERASE REGISTERS ACTIVATE TER
AND KEYBOARD STORE PROGRAM STORE, MULTIPLY,,

ASSIGNMENTS USING CONTENTS ADD, SUBTRACT,

DEACTIVATE. OFREGISTERS ETC., AS

KEYBOARD LNTRCE

S DISPLAY

RESULTS

*FUNCTION KEY STRIKE

Figure 7-12. Desk Calculator Mode

335/336

8 TUTORIAL AIDS SUPPORT (TAS), AN APPLICATION

The purpose of Tutorial Aids Support (TAS) is to provide access - through an
interactive terminal - to tutorial aids. This is a general support mechanism as
distinguished from specific logical tutorial aids that may be built into any executable
module (OM or GPU) with which the user interacts. The intent is to satisfy the user's
need for interactive assistance without requiring built in tutorials, and to augment
tutorials that are already built in.

The nature of tutorial aids required for incorporation of an OM into the system
varies. Some of the factors that affect the requirements are:

1. 	 Complexity:

a. 	 The number of different capabilities provided by the OM.

b. 	 The extent of detailed set up for the OM to be performed
by the user.

2. 	 General applicability:

a. 	 The extent to which different users require the capabilities provided
by the OM.

b. 	 The frequency of use of the OM by each user.

3. 	 Extent of built-in tutorial assistance.

Incorporation of the O1M is performed by cognizant programmers and tutorial aids
are provided as required. Requirements for tutorials vary from none to the equivalent
of a program's user's manual, complete with quick reference capabilities. TAS sup
ports this full spectrum of applications and any innovations the programmers may de
vise.

Since the very nature of the tutorials are to be devised by the programmer in
consultation with the users, no rigid preconcieved structure can be imposed. The
very act of providing the tutorials with an OM includes providing descriptions of the
tutorials' structures. Also, the intent of TAS is to assist the user rather than to
burden him with a complex command language to control TAS. Consequently, the
tutorials provided must also contain sequences of commands and menus providing
for details of control. To summarize, tutorials to be provided by programmers
include:

1. 	 Text to be displayed, including menus.

337

2. 	 A description of the text to provide TAS with access capability.

3. 	 Command sequences to be executed in response to the user's

choice from menus.

With this concept of what the programmer must provide for a general TAS
capability, it is evident that TAS is not an IPAD special capability, but is in fact an
application of the manufacturer supplied Query Processor (QP). A specific appli
cation is a collection of QPSs.

338

9 QOORDINATE/UNITS TRANSFORMATIQNI,:AN A-PPLICATION'

A primary feature of the IPAD, concept is a centralldata base,.sharet (through
independent OMs) by the different engineering discipjines. The system, desigr per
mits each user to configure a task-oriented UF (Section 1.3) to be shared by the in
dependent OMs employed in a task. Capabilities of the manufacturer supplied DBMS!
QP provide for:

1. Construction of the central data base, to include the UFs.

2. Initialization of portions of the data base.

3. Management, maintenance and restructuring of the data base.

4. Interfacing independent OMs with the data base.

In support of interfacing independent OMs, executable code within DBMS provides for
transformation of the type implied by variations between the SCHEMA and SUBSCHE-
IVTAs descriptions of the same data. (see Subsection 1.2.1.3). These transformations
are in the nature of reformatting and restructuring. There is no executable code pro
vided within DBMS to evaluate specific mathematical formulas associated with co
ordinate/units transformations. The requirement is for a capability to augment the
DBMS functional capability.

Although the DDLs do not specify the coordinate/unit systems of variables, there
are options through which DBMS can be directed to invoke any augmenting capability
(code) provided by an IPAD installation. The DDLs, then, provide the declarative
interface (e.g., identification of parameters and variables needed in a transformation
calculation) and DBMS provides the functional interface (i. e., invoking the calculation
at the appropriate time).

Wherever the nature of the user's problem is such that the DDL specifications
are awkward or the IPAD installation has not provided the transformation required,
the user can use QP to effect virtually any transformation he desires. Those trans
formations beyond the scope of QP should be provided in the form of additional code
(see Section 9.3).

9.1 Units

Typically, the required units transformation is from one standard system (e.g.,
English to International units). The coding of a DBMS invokeable function to accomplish

339

a given transformation and insertion of the code into the data base is a trivial pro
gramming task, typically involving one executable FORTRAN statement plus some
linkage code.

In addition to the units t ansformation stgndards provided by the IPAD in
stallation, the individual user will require the ability to perform transformations
not provided by the installation. This can be most easily accomplished through the
update capabilities of QP (either interactively or via a QPS).

9.2 Coordinates

A coordinate transformation consists of operating on a set of points (vectors,
matrices), one at a time with one or more transformation matrices. This is a more
complex problem than unit conversion since the relationship of two coordinate sys
tems must be known in order to construct the transformation matrix. Since the OMs
are incorporated independently - without restrictions on subsequent use - the trans
formation matrix corresponding to a given interface problem cannot be provided at
initial OM incorporation into IPAD.

To simplify this, a suitable set of reference systems is chosen for the install
ation and matrics are supplied at OM incorporation to transform the systems used
by that OM into the base (prime) reference systems. This permits the direct inter
face of independent OMs as follows:

TI*A =A? (1)

T 2*B= B (2)

AB = T2 I *T 1 *A (3)

Given a transformation matrix T1 which transforms an OM Ts vector A from its
coordinate system into the prime reference systemii), and given a transformation
matrix T2 that transforms a second OM's vector B from its coordinate system into
the prime reference system (2), then the matrix T2-1*T transforms vector A from
its coordinate system into the coordinate system of vector B (3), suitable for use by
the second OM (e.g., as input vector B).

Coordinate systems obviously apply to geometric data but can apply to other

types (e.g., aerodynamic) as well. An appropriate prime reference system must

340

"be-ehosdr for each type of data handled (with any reasonable frequency) by a project.

The problem of constructing transformation matrices can be further compli
cated by the fact that the elements of a matrix may be variables, whose values change
with time or other problem data. (E.g., angles of attack and sideslip in aerodynamic
transformations.) In this case, a QPS can be provided in addition to the matrix to
assist theuser in updating the values of these elements within his UF (but see also
Section 9.3).

Given the proper matrices, the transformations may be accomplished via
QPSs or by installation supplied code called by DBMS as specified in the DDL.

9.3 Implicit Transformation Functions

In addition to describing data structures and logical relationships of data, the
DDLs provide specificatioi of many imiplicit procedures. Many of these specifications
involve exits to installation-supplied executable code. Two such exits are of particular
interest'in arranging coordinate/units transformations. These are the ON clause
-(Reference 1; page 108) and the ACTUAL/VIRTUAL RESULT clause (op. cit. page
94).

The ON clause is associated with a particular DATA-ITEM or DATA-AGGRE-
GATE and specifies thkt DBMS is to invoke an identified installation-supplied function
code whenever the data is the subject of a specified DML command (or any of a group
of commands) executed'by DBMS. I

The ACTUAL/VIRTUAL RESULT clause specifies that a particular DATA-ITEM
is dependent on the value of other DATA-ITEMs and that DBMS is to invoke an install
ation supplied function code to re-evaluate the DATA-ITEM, whenever the independent
DATA-ITEMs are changed.

Beyond these capabilities, the installation supplied code may also make refer
ence to data not presently in central memory, e.g., within the UF. In this case,
the code must make DML requests of DBMS and must also be supplied with an appro
priate SUBSCHEMA. It should be noted, however, that DBMS is not proposed as an
executive program. When the intent of installation supplied code exceeds the scope
of data management and interface support, the task should be restructured to pro
vide the required code to -becalled via TCS commands.

341

9.4 Conclusions

The nature of coordinate/units transformations is simple enough that QP has

sufficient capability to accomplish these. An interactive QP Session'is,
 in a sense,

a programming session, arid a prefabricated QPS is functionally equivalent to exe
cutable code.

For frequently used "standard" transformations, the IPAD installation may pro
vide executable code as part of the data base. DBMS is then directed via the DDL to
invoke the transformations at appropriate times. This method provides more effi
cient operation and is less tedious to the user. The supplying of such code is in
stallation-specific and must be provided by the various IPAD projects.

No separate transformation GPU is to be provided in the IPAD system design
because of the tasks dependent characteristics at each installation.

342

10 CONCLUDING REMARKS

Wha4 staited out as a "requirement" for twelve GPUs - Figure 10-1, previously
shown in Section 4.5, Part I of Volume IV - has ended up as only four: STATUM

(Section 2), OPTUM (Section 4), GGP (Section 5) and GDM (Section 7).

Each of these GPUs is specific for its purpose and - with the exception of 0DM
complementary to one another. GDM is envisioned as a stand alone capability supporting
the board designers. Each of the originally conceived GPUs (Figure 10-1) are treated
separately in the subsections to follow.

GRAPHIC PLOTER 71

TEXT EDITOR/REPORT WRITER 68

OPTIMIZERISENS ITIVITY EXTRACTOR/ PARAMETER IZER 49

PICTORIAL PLOTTER 47

TUTORIAL AI DS 38

TOPOLOGICAL INPUT MANIPULATOR 36

FILE MANAGER 36

MOVIE SEQUENCER 17

VARIOUS COMPILERS 16

STATISTICAL PACKAGE 10

GENERALIZED FITTER 9

DRAFTING/DESCRIPTIVE GEOMETRY *

DATA CHECKER/VERIFIER 3

• DO NOT INCLUDE ADEQUATE SAMPLING OF BOARD DESIGN OR NUMERICAL CONTROL

Figure 10-1. Projected Usage of IPAD Interactive Utilities

By Questionnaire Respondents

343

10.1 Graphic Plotter/Pictorial Plotter/movie Sequencer/
Topological Input Manipulator

The Graphic Plotter (GGP) is the most frequently used utility by the design ana
lyst. It combines the capabilities of graphic plotting, pictorial plotting, topological
input manipulating, and movie (pictorial) sequencing (Section 5). One of the 93 OM
Questionnaire respondents, 77 (83 percent) would use GGP in one or more of these
roles. The role of topological input manipulation is a general capability with wide
spread implications (see Section 5.2).

10.2 Text Editor/Report Writer

The capabilities of text editing and report writing are met by the host-system
supplied software. The host system text editors (Section 3) provides all the capabiliti
required by the IPAD user for editiAg character-coded, sequentially-ordered files suc
as report text (e.g., this page) or computer program source code. The host system
query processor (QP in IPAD discussions) provides the user with a wide spectrum of
report writing capability through the host-system supplied data base management sub
system (DBMS). QP has the capability to provide even the ,text editing functions, but
not as easily or directly as a text editor. Thus, it was found that there was no need
to provide a separate GPU for text editing or report writing.

10.3 Optimizer/Sensitivity Extractor/Parameterizer

The Optimizer/Sensitivity Extractor/Parameterizer (OPTUM) was seen to be
nothing more than a collection of software modules (each called "OPTUM") 'represent
ing optimization techniques (Section 4). The organizational structure provided by IPA:
allowed for the selection of the correct technique by the user (via the rather strange
vehicle of employing a TCSS) and linking these together m a optimization loop (via the
TCS resulting from the TCSS and various TCSs resulting from process integration
see Section 1. 3). The optimization process optionally drew on GGP for graphic dis
plays. Some element of the collection - viz. some of the many software modules
called "OPTUM" - provide an interactive interface with the IPAD user.

10.4 Tutorial Aides

The requirement for tutorial aids to support'any IPAD OM wasseen to be a
direct application of QP (Section 8). A specific application for a given OM is a coll
ection of QPSs.

344

10.5 File Manager

Filetmanagement with IPAD became more than envisioned in Volume IV, Part I.
File management via DBMS encompasses more than the 'mere management of-"files"
(viz. the management of RECORDs, AREAs, SCHEMA modules, SUBSCHEMAs, etc.).
QP provides , the capability to manage the files under the jurisdiction of DBMS. The
use of conventional files is discouraged (Section 6.2 of Part 1),

10.6 Various Compilers

The requirement for compilers envisioned in Volume IV, Part I is adequately
handled, by host system supplied software. (For example, CDC provides BASIC,
COBOL, FORTRAN, ALGOL and JOVIAL which are among the most frequently used
programming languages. They are also working on a PL/i compiler.) Beyond these,
the system also provides for DBMS support by supplying compilers for the DDLs (as
well as DML-enhancements to the various major-language compilers, e.g., FORTRAN
and COBOL). Again, no separate IPAD development is required here.

10. 7 Statistical Package

The statistical package (STATUM) is an interactive capability to accomplish a
wide spectrum of statistical tasks (Section 2). Whereas STATUM could have employed
the approach of OPTUM by providing its tutorials via a TCSS, it was reasoned that
due to the complexity of statistical analysis and the diverse background of a potential
user - "personalized" tutorials were best supplied interactively as part of STATUM.
(Recall that a user of OPTUM will - of necessity - be highly qualified in both optimi

.zation techniques and data base management. Refer to Section 4.5 for details.) The
minimal demand for STATUM (10 of the 93 respondents, or 10. 7 percent) makes it
an ideal candidate for a phased release of IPAD. Note that all other IPAD system
software is recommended for the first release capability.

10. 8 Generalized Fitter

The requirement for a general curve or surface fitter was seen to be a rather
simple application of an OPTUM software module interacting with the data base and GGP
(Section 6). It is envisioned that a special tutorial TCSS would be provided to inter
face the less qualified user with OPTUM. With this addition, OPTUM becomes the
second ranked GPU (behind GGP) with 58 of the 93 OM Questionnaire respondents (62
percent) employing it.

345

10.9 Drafting/Descriptive Geometry/Data Cheeker/Verifier,

Figure 10-i is misleading with respect to the requirement for the design (drafti

module, GDM, The OM Questionnaire did not adequately account for the board design
er since he is not currently adequately represented by computer software (OMs). (See
Section 4 of Part I for details.) It is envisioned that GDM will be the most frequently
used GPU in a fully deployed IPAD system.

In the case of GDM (Section 7), the approach taken was to provide for both desig
and design analysis (of the type a board designer routinely accomplishes) iA a single
module (GDM). In this sense, GDM is a joint development of a GPU and a collection
of OMs for board designers. It is noted that GDM has a significant contribution to
Computer Aided Manufacturing (CAM) as well (Subsection 7.1.4). Note that it is
GDM only that has the requirement for data checking or verifying.

GDM represented the only GPU within IPAD that had a firm requirement for a
minicomputer. (The other GPUs could benefit from use of a minicomputer to service
several terminals - see Section 5.3 of Part I, Volume IV - but this merely improved
response time at the interactive device.) These requirements lead to a division of
work between the maxi and mini (Section 7.6) and to some problems as well.

If the display data is to be kept at the minicomputer, then adequate local mass
storage must be provided. This generally raises the terminal cost significantly.
While minicomputer costs have been going down (see related discussion in Volume IV,
Section 5. 3 of Part 1)the peripheral devices have not followed at the same rate, and
now, they can represent the major part of the cost of a terminal system. If an inte
grated (computations and display) data structure is maintained at the host computer
(via DBMS), then usually higher speed communication lines (adding to terminal cost)
are required to handle all the data within response times acceptable to the user (a
human factors consideration).

Several other factors that must be included are of an operational nature. Ifthe
minicomputer has adequate I/O peripherals and mass storage, it can be used essen
tially in a standalone mode (independent of host computer load, priorities, failures,
etc.) and access the main computer only when the program requirements (analytical,
large arrays, fast computation, etc.) dictate the use of the larger computer. This,
of course, means programming for two computer, but experience has shown that this
can be done with not too much difficulty with compatible languages. An example of
this has been shown in the software system designed by Pat Hanratty of Integrated
Computer Systems, now a part of Systems, Science and Software (S3). This system

346

encompasses CAD drafting, N/C and circuit mask layout programs. It is highly modu
lar, has extensible data base capability and is very machine independent. It has been
implemented on REDCOR, YBM 1130, CDC 6600, PDP 9, and other computers including
refresh CRTs such as IBM 2250 and Vector General D2, and direct view storage tubes
such as COMPUTEK 400 s&ries and TEKTRONIX 4002A and 4010. Regardless, the
interface between DBMS and the companion capability on the nmini must be addressed by
GDM's developer.

10.10 Coordinate/Units Transformations

Not present on Figure 10-1 - but required in an.IPAD environment - is a coordinate and
units transformation capability. As noted in Section 9, this capability is. most adequately
provided by QP/DBMS.

347/348

REFERENCES - PART III

1. 	 Jones, J. L. : CODASYL Data Base Task Group Report, (no report nuAber),

Conference on Data Systems Languages, April 1971.

2. 	 Anon.: System/360, Scientific Subroutine Package (SSP), Version III. Document
GH 20-0205-4, Fifth Edition, International Business Machines Corp., Aug.
1970.

3 Anon.: IMSL Library 1 (IBM 370/360). IMSL Manual, Edition 2, International

Mathematical and Statistical Libraries (IMSL), Inc., Houston, Texas, 1972.

4 Anon.: IMSL Library 2 (UNIVAC 1100 Series). IMSL Manual, Edition 2, Interna
tional Mathematical and Statistical Libraries (IMSL), Inc. , Houston, Texas,
1972.

5. 	 Anon.: ILMSL Library 3 (CDC 6000 Series). IMSL Manual, Edition 2, Internation
al Mathematical and Statistical Libraries (IMSL), Inc., Houston, Texas, 1972.

6. Crow, Edwin L.: Statistics Manual. Dover Publications, Inc., 1960.

7. 	 Anon.: INTERCOM Reference Manual, Models 72, 73, 74 Version 4, 6000

Version 4. SCOPE Reference Manual 60307100, Revision B, Control Data

Corp., Aug. 1972.

8. 	 Anon.: IBM System/360 Operating System, Time Sharing Option, Command

Language Reference. System/360 Reference Manual, File No. S360-36,

International Business Machines Corp., Sept. 1971.

9. 	 Anon.: UNIVAC 1100 Series Operating System, Programmer Reference.

UNIVAC Programming Manual UP-4144, Revision 2, UNIVAC Division of

Sperry Rand Corp., 1971.

10. 	 Jamison, Floyd L.: Comparative Operating Systems, ACM Symposium.
(RCA File Editor p. 7 and G. E. 's GECOS LI text editor, p. 72). Brandon/
Systems Press, 1969.

11. 	 Anon.: DEC System-10 Users Handbook. DEC System-10 Handbook Series,
DEC-10-NGZA-D. Digital Equipment Corp., 1972.

349

REFERENCES (Con't)

12. 	 Hague, D. S.; and Glatt, C. R.: An Introduction to Multivariable Search

Techniques for Parameter Optimization. NAS2-4507, April, 1968.

13. 	 Fletcher, R.; and Powell, M. J. D.: A Rapidly Convergent Descent Method

for Minimization. Computer Journal, Vol. 6, 1962.

14. Gass, S. I.: Linear Programming. McGraw-Hill Book Co., Inc., 1964.

15. 	 Hovanessian, S. A.; and Pipes, L. A.: Digital Computer Methods in Engineerh
McGraw-Hill Book Co., Inc., 1969.

16, Zoutendijk, G.: Methods of Feasible Directions. Elsevier, 1960, pp. 68-71.

17. Powell, M. J. D.: An Efficient Method for Finding the Minimum of a Function
of Several Variables Without Calculating Derivatives. Computer Journal,
Vol. 7, 1964.

18. 	 Zangwill, W. I.: Minimizing a Function Without Calculating Derivatives.

Computer Journal, Vol. 11, 1967.

19. 	 Johnson, I. L.; and Myers, G. E.: One-Dimensional Minimization Using
Search by Golden Section and Cubic Fit Methods. NASA-MSC Internal
Note No. 67-FM-172, Nov., 1967.

20. 	 Fiacco, A. V.; and McCormick, G. P.: Nonlinear Programming: Sequential
Unconstrained Minimization Techniques. John Wiley & Sons, Inc., 1968.

21. 	 Allran, R. R.; and Johnsen, S. E. J.: An Algorithm for Solving Nonlinear
Programming Problems Subject to Nonlinear Inequality Constraints.
Computer Journal, Vol. 13, 1970.

22. 	 Bellman, Richard E.: Adaptive Control Processes: A Guided Tour. Princeton

University Press, 1961.

350

APPENDIxES

APPENDIX A

GLOSSARY OF IPAD ACRONYMS

AND'SELECTED TERMINOLOGY

351/352

APPENDIX A

GLOSSARY OF IPAD ACRONYMS AND SELECTED TERMINOLOGY

Throughout the IPAD feasibility study - as concepts were formulated and designs
envisioned - acronyms and special terminology were evolved to represent these con
cepts in a concise and easily recognized form. These acronyms soon became insepar
able from the concepts they represented and found their way into all discussions, pre
sentations and documentations concerning IPAD. Although unfortunate from the casual
reader's standpoint, the use of acronyms is a tool which the system designers
especially those involved in conceptual design - tend to rely on and incorporate into
their thought processes.

It is with these apologetic thoughs in mind that Appendix A, which contains most
of the acronyms and special terminology used throughout this report, is presented.

353 / 354

APPENDIX A - continue, ORIGINAL PAGE
OF POOR, QUALITY

ANSC AMERICA14 NATIONAL STANDARDS COMMITTEE...ANY STANDING COMMITTEE OF ANSI
ANSI AMERICAN NATIONAL STANDARDS INSTITUTE...AN INSITIUTE FOR INDUSTRY AND
AREA A CODASYL CONCEPT...A NAMED SUB-DIVISION OF THE ADDRESSABLE STORAGE

SPACE IN THE DATABASE AND MAY CONTAIN OCCURRENCES OF RECORDS AND SETS
OR PARTS OF SETS OF VARIOUS TYPES. AREAS MAY BE OPENED BY AN OM. THE
CONCEPT OF AREA ALLOWS THE DBA TO SUBDIVIDE A DB RATHER THAN CONSIDER
THE DOB AS A SINGLE UNIT. THE USE OF AREAS ALLOWS THE DBA OR THE DBMS
TO CONTROL PLACEMENT OF AN ENTIRE AREA TO PROVIDE EFFICIENT STORAGE
AND RETRIEVAL. THE OPENING OF AREAS bY OMS OR TCS ALSO GIVES USERS AN
OPPORTUNITY TO OPTIMIZE ACCESS TO THE OH SINCE THE OH HAS NARROWED THE
RANGE OF INTEREST IN THE DOB TO A RELATIVELY SMALL NUMBER OF SUBDIVI-
SIONS OF THE ENTIRE Do.

ARPA ADVANCED RESEARCH PROJECT AGENCY.

CGDS CONSOLIDATED GRAPHICS DATA STREAM.
CIO CIRCULAR I/O..TE BASIC READ/WRITE PP UTILITY OF THE SCOPE

OPERATING SYSTEM,
CM CENTRAL MEMORY.
CMS CUNV5RSATIONAL MONITORING SYSTEM...ISM 370/145,158,168 CONVERSATIONAL

TIMESHARING SUBSYSTEM (SOFTWARE),...ALSO USED TO DENOTE
CAMbRIDE MONITOR SYSTEM...IBM 360/67 CONVERSATIONAL TIMESHARING

COBOL
SUBSYSTcM (SOFTWARE).
COMMON BUSINESS ORIENTED LANGUAGE... A PROGRAMMING LANGUAGE DEVELOPED
BY CODASYL (CIRCA 1960) TO PROVIDE THE BUSINESS COMMUNITY WITH A
LANGUAG SUPERIOR TO THOSE PROVIDED BY COMPUTER MANUFACTURERS AND
INDEPENDENT OF ANY MANUFACTURER. PRINCIPAL FEATURES ARE
1. LNGLISH-LIKE SYNTAX,
a. POWERFUL, COMPLETE OATA-DEFINITION FACILITIES ISOLATED FROM

PROCEDURE, AND
Z. POWERFUL LOGIC AND CONTROL FACILITIES COMBINED WITH CHARACTER

MANIPULATION CAPABILITY.
CODASYL CONFERENCE ON DATA SYSTEMS LANGUAGES...AN INFORMAL GROUP OF PEOPLE

BKOUGHT TOGETHER THROUGH THEIR COMMON INTERESTS IN DEVELOPING AND
SIANDARUIZING DATA SYSTEM.LANGUAGES, THE GROUP MEMBERS ARE SPONSORED
BY THEIR RESPECTIVE COMPANIES AND MEET PERIODICALLY TO REVIEW THEIR

CP
WORK AND DISCUSS DEVELOPMENTS. (SEE APPENDIX E.)
CENTRAL PROCESSOR. ,,CDC TERMINOLOGY FOR THE CENTRAL ARITHMETIC UNIT
IN A COMPUTATIONAL SYSTEM.

CPU CENTRAL PROCESSOR UNIT...SEE CP.
CRT CATHODE RAY TUBE DISPLAY OF INTERACTIVE DEVICE. COULD BE THREE TYPES
OVST ORECT VIEW STORAGE TUBE,.. RETAINS IMAGE WITH SLOW DECAY UNTIL REPAINT
REFRESH REFRESHED CRT... THE IMAGED IS CYCLED 50 TO 40 TIMES/SEC AND TO REFRESH

THE CRT TO PREVENT FLICKER.
TV

CTS
TELEVISiON (CONTINUOUS RASTER SCAN)...RESOLUTION LIMITED BY RASTER.
CNVERSATIONAL TIMESHARING SYSTEM.. VNIVAC CONVERSATIONAL TIMESHARING
SUBSYSTEM (SOFTWARE).

DATA- A CODASYL CONCEPT...A NAMED COLLECTION OF DATA ITEMS WITHIN A RECORD.
AGGREGATE Tj-ERE ARE TWO TYPES...VECTORS AND REPEATING GROUPS. A VECTOR IS A

ONE-OIMENSIONAL, ORDERED COLLECTION OF DATA-ITEMS, ALL WHICH HAVE

IUENTICAL CHARACTERISTICS. A REPEATING GROUP IS A COLLECTION OF DATA

TMAT OCCURS AN ARBITRARY NUMBER OF TIMES WITHIN A RECORD OCCURRENCE.

THE COLLECTION MAY CONSIST OF DATA-ITEMS, VECTORS AND REPEATING GROUPS

DATA-ITEM A CODASYL CONCEPT...THE SMALLEST UNIT OF NAMED DATA. AN OCCURRENCE OF

A DATA-ITEM IS A REPRESENTATION OF A VALUE.

Db 	 DATA BASE...THE TOTAL REPOSITORY OF IPAD RELATED DATA ON DISC OR OTHER

ON-LINE MASS STORAGE WHICH IS UNDER CONTROL OF THE DBMS.

MORE SPECIFICALLY, A DATABASE CONSISTS OF ALL THE RECORD OCCURRENCES,

ST OCCURRENCES AND AREAS WHICH ARE CONTROLLED BY A SPECIFIC SCHEMA.

ODBA 	 UATA BASE ADMINISTRATOR (PORMERLY MANAGER)..,THE PERSONOR GROUP OF

PLOPLE RESPONSIBLE FOR THE DB IN GENERAL AND THE MDB IN PARTICULAR.

THE TERM DATA BASE MANAGER (DBM) USED IN THE ORIGINAL CONCEPTUAL

DESIGN WAS CHANGED TO DATA BASE ADMINISTRATOR (DBA) TO ADHERE TO MORE

CONVENTIONAL COMPUTER TERMINOLOGY WHICH USES 'MANAGER' TO MEAN COM-

PUTER SVFTWARE,

DBMS 	 DATA BASE MANAGEMENT SYSTEM.,.A CONCEPT DISCUSSED IN THE CODASYL DBTG

NEPURT AS THE CORE SOFTWARE SYSTEM SUPPORTING DATA MANAGEMENT.

OBT& 	 UATA BASE TASK GROUP... [HE CODASYL COMMITTEE GIVEN THE RESPONSIBILITY

FuR INVESTIGATING THE REQUIREMENTS AND DETAILING THE SPECIFICATIONS

FgR AgCOMPREHENSIVE DATA MANA3EMENT SYSTEM. THESE RECOMMENDATIONS ARE

355

APPENI)IX A - continued

CONIAINLO IN THEIR APRIL 197 REPORT. SEE ALSO APPENDIX E.

DOL DATA DEFINITION LANGUAGE...A CODASYL DBTG CONCEPT. THE DOL IS THE

LANGUAGE USED FOR DESCRIBING A DATABASE, OR THAT PART OF A DATABASE

KINOWN To A PROGRAM.

DE DISCIPLINARY ENGINEER...MEMBER OF ONE OF THE DISCIPLINARY GROUPS.

Db DESIGN bROUP OR DISCIPLINE GROUP.

DbL DISCIPLINARY'GROUP LEADER... RESPONSIBLE FOR LEADING A PARTICULAR

DISCIPLINE.

DLF DISLIPLINARY LIBRARY FILE...THE OB AREA RESERVED FOR A DG LIBRARY.

DMCL ULVICE MEDIA CONTROL LANGUAGE,..A CODASYL'DBTG TERM FOR THE DEVICE

Ot MEDIA SELECTION FOR DATA AND FOR THE CONTROL OF WHERE AND HOW THE

DATA IS TO RESIDE ON THE DEVICE (EG. RECORDING MODE, FORMAT, BLOCKING

ANO THE LIKE). TO A CERTAIN EXTENT DMCL OVERLAPS OSCL.

DML 	 DATA MANIPULATION LANGUAGE...A CODASYL UBTG CONCEPT. THE DML IS THE

LANGUAGL WHICH THE PROGRAMMER USES TO CAUSE DATA TO BE TRANSFERRED

BLTWEEN HIS PROGRAM AND THE DATA BASE.

DMS 	 DATA MANAGEMENT SYSTEM... THE COLLECTION OF DATA MANAGEMENT SUPPORT

SOFrWARL FOR IPAO, CONSISTING OF THE DBMS AND QP FUNCTIONAL ENTITIES

TOGETHER WITH THEIR'SUPPORT UTILITIES AND COMPILERS (FOR DDL AND DML).

DOD 	 ULPARTMLNT OF DEFENSE.

DVST 	 SEE CRT, DVST,

EOF LfD OF FILE.. .A STATEMENT THAT THE END OF A FILE HAS BEEN REACHED.

EOI LND OF INFORMATION...CDC TERMINOLOGY THAT THE END OF THE LAST FILE

HAS BEEJ REACHED AND NO FURTHER INFORMATION EXISTS BEYOND THIS POINT.

EaR END OF NECORD,.,A STATEMENT THAT THE END OF A RECORD WITHIN A FILE

HAS BEEN REACHED,

EDB 	 EIGINEEjING REVIEW BOARD...THE BOARD OR PANEL, A WING OF MANAGEMENT,

GiVEN RtSPONSIBILITY FOR REVIEWING THE ENGINEERING DESIGN FOR ADEQUACY

AND CONTROLLING THE TECHNICAL ASPECTS OF THEPROJECT.

ERBC 	 ENGINEERING REVIEW BOARD COORDINATOR,,.THE PERSON RESPONSIBLE FOR

SLHEDULING THE ITtMS BEFORE THE ERG AND PREVIEWING THESE ITEMS.

ERS 	 LATERNAL REFERENCE SPECIFICATION...A CDC TERM DENOTING A SPEC COVERING

SYSTEM bOFTWARE IN DEVELOPMENT BUT WITH RELATIVELY FIRM SPECIFICATION.

THE DOCUMENT, WHEN DISTRIBUTED EXTERNALLY TO CDC, GENERALLY CONTAINS

THE DISLLAIMER...THIS DOCUMENT IS A WORKING PAPER ONLY AND DOES NOT

NcCLSSAKILY REPRESENT ANY OFFICIAL INTENT ON THE PART OF CONTROL DATA

CORPORATION.

EXEC RLFLRRING TO THE SOFTWARE (CODE) WHICH PERFORMS THE IPAD EXECUTIVE

FUNCTION.

EXPANDER EAPANDER INTERACTIVE UTILITY,.. ASSISTS USER IN CONSTRUCTING A SPECIFIC

TLS (OR GP SESSION) FROM A GENERAL TCSS (OR OPSS).

GUM GENERAL DESIGN MODULE..*THAT IPAD UTILITY THAT PROVIDES THE DRAFTSMAN

AND BOARD DESIGNER WITH THE TOOL SUFFICIENT FOR HIS DESIGN TASKS.

GCL GENERAL GRAPHICS LIBRARY..IPAD'S ANSWER TO SUPPLYING A STANDARDIZATION

OF THE FORTRAN CALLING SEQUENCE FOR GRAeHICS APPLICATIONS. THE NOW

EXISTINb MANUFACTURER SUPPLIED SOFTWARE BECOMES GGL WHEN REPACKAGED IN

ACCORDANCE WITH THIS STANDARDIZATION.

GGP 	 GENLRAL GRAPHICS PLOTTER ...THAT SINGLE IPAD UTILITY RESPONSIBLE FOR

PROVIDING ALL GRAPHIC AND PICTORIAL PLOTTING WITHIN IPAD.

GID 	 GENERAL INTERNAL DESIGN...A CDC TERM DENOTING A SPEC COVERING SYSTEM

SOFTWARF IN DEVELOPMENT BUT WITH SPECS SO FLEXIBLE AS TO NOT JUSTIFY

AN ERS.

THE DOCUMENT, WHEN DISTRIBUTED EXTERNALLY TO CDC, GENERALLY CONTAINS

THE DISCLAINER...THIS DOCUMENT IS A WORKING PAPER ONLY AND DOES NOT

NECESSARILY REPRESENT ANYOFFXCIAL INTENT ON THE PART OF CONTROL DATA

CURPORAfION.

GPGT 	 ULNERAL PURPOSE GRAPHICS TERMINAL...CDC SUCCESSOR TO THEIR LARGE CRT

274 TERMINAL (EXPECTED UELIVERYFALL 1973).

GPL 	 bKAPHIC PROGRAMMING LIBRARY...UNIVAC TERM FOR THEIR HIGHER LEVEL IN-

TLRACTIVE GRAPHICS SUPPORT SOFTWARE (FORTRAN CALLABLE), GPL PROVIDES

FuR EASE OF MANIPULATING DATA STRUCTURES AS WOULD BE REQUIRED TO DE-

FINE AND DESCRIBE A DISPLAY IMAGE, IT ALSO CONTAINS INTERACTIVE CON-

TROL AND GRAPHICS DISPLAY CALLS. UNIGRASP IS A FUNCTIONAL SUBSET

OF GPL.

GpU 	 GrNLRAL PURPOSE UTILITY,..CHAFACTERIZED'AS A PROGRAM OUTSIDE THE SCOPE

OF A TYPICAL OM WHICH IS OF GENERAL USE TO THE IPAD USER,

GSF 	 bENERAL SURFACE (CURVE) FITTING... THE TASK OF FITTING CURVES OR

SURFACES (INCLUDING HYPER-SURFACES) TO DATA.

GSP 	 URAPHIC SUBROUTINE PACKAGE...IBM TERM FOR THEIR INTERACTIVE GRAPHICS

SUPPORT SOFTWARE (FORTRAN CALLABLE).

356 	 ORIG pAG

OF pOOR QUALIY

A - co nu~a ORIGXNAL PAGE 19OF POOR QUALITy

APPENDIX A - continued ' 0-QULT

IQL IPAD CONTROL LANGUAGE,..THE LANGUAGE FOR CONTROLLING IPAD PROCESSES
THROUGH THE EXEC OF THE HOST OPERATING SYSTEM, THE OSCL IS A PART OF
IPAD'S ICL.

IDEF SHORT FOR INPUT DEFINITION...THAT PORTION OF THE OM SUBSCHEMA SOURCE
THAT DESCRIBES ALL POSSIBLE INPUT REQUIRED TO SUPPORT THAT OM,

IDM INTERACTIVE DATA MANAGER...A (PRINCIPALLY) FORTRAN REWRITE BY NSRDC OF
THE CDC VERSION OF THE DATA HANDLER WITH ADDED IMPROVEMENTS.

IS INTERACIIVE GRAPHICS SYSTEM...CDC TERM FOR THEIR INTERACTIVE GRAPHICS
SYSTEM SOFTWARE (FORTRAN CALLABLE). CURRENT VERSION IS 2.0.

IGS V.1 VERSION 1.0 OF IGS.
IGS V.2 VERSION 2.0 OF IGS.
IMS INTERNAL MAINTENANCE SPECIFICATIONS...CDC TERMINOLOGY, THE SOFTWARE

DUCUMENTATION COC PREPARES FOR MAINTAINING THEIR SOFTWARE SYSTEMS.
IMSL INTERNATIONAL MATHEMATICAL AND STATISTICAL LIBRARIES...IMSL IS A LIB-

RARY OF ABOUT 200 GENERAL PURPOSE MATHEMATICAL AND STATISTICAL SUB-
ROUTINES CODED IN FORTRAN IV AND AVAILABLE FOR THE IBM 360/370t
THE CDC 6000 SERIES AND THE UNIVAC 1100 SERIES COMPUTERS.

INTERCOM THE INTERACTIVE (TIME-SHARING) SUBSYSTEM OF.CDC'S SCOPE 3.0 AND ON.
I/O INPUTZOUTPUT...REFERS TO BOTH INPUT AND OUTPUT (EG,I/O FILES).
I/ODEF THE COMBINATION OF THE IDEF AND ODEF OF AN OM.
IOF IO FORMATTING...THE TASK OF SUPPLING DATA FOR OM INPUT OR REWORKING,

DISPOSITIONING, ETC DATA FROM OM OUTPUT. FORMERLY USED TO DELINEATE
THE I/O FORMATTER UTILITY...A CONCEPTUAL UTILITY PRE-DESIGNED TO SOLVE
THE ZOF FUNCTION PRIOR TO ADOPTING THE CODASYL APPROACH. JHE IOF
PRE-DESION FINALIZED THE REQUIREMENTS, POSTULATED A DESIGN WHICH WOULD
MEET THESE REQUIREMENTS AND FOCUS ATTENTION ON THE INHERENT PROBLEMS.

IPAD INTEGRATED PROGRAM FOR AEROSPACE-VEHICLE DESIGN. USED 2 DISTINCT WAYS
1.FULLY IMPLEMENTED...CONTAINS FULL COMPLEMENT OF OPERATIONAL MODULES.
2.SYSTEM SOFTWARE...JUST SUFFICIENT SYSTEM CODE FOR IPAD (NO OM'S).
IPA IS A SOFTWARE FRAMEWORK INTENDED TO REDUCE THE TIME AND LABOR
EXPENDEu BY AN (AEROSPACE) ENGINEER IN ACCOMPLISHING HIS ENGINEERING
TASK.

ISPONGE A FILE CONCEPT SUPPORTING THE IOF UTILITY (BEFORE IT WAS REPLACED
bY UP). THE ISPONGE WAS A RANDOM FILE INTERMEDIARY BETWEEN THE INPUT
FILE ANU THE IOF FUNCTION. THE ISPONGE HAS BEEN REPLACED BY THE UF
AREA OF THE SCHEMA AND THE IOF BY THE OP AND QPS (OPSS).

LSI LARbE SCALE INTEGRATION ... AN ELECTRONICS APPROACH TO
MiCRO-MINIATURE CIRCUITRY.

MACRO LARGE OR OF THE HIGHEST ORDER.
MAXI USUALLY REFERRING TO A LARGE SCIENTIFIC COMPUTER SYSTEM (INCLUDING

CONSIDERABLE SUPPORTING SYSTEM SOFTWARE).
Mou MULTIDISCIPLINARY DATA BANK..,THE OB AREAS RESERVED FOR 'BLESSED DATA

WHICH IS READ-ONLY FOR THE USER AND UNDER THE STRICT PROJECT CONTROL
OF' THE OBA AND HIS PEOPLE.

MDBU MUB UPDATE FILE...THE DB AREA CONTAINING COMBINATIONS OF OPS, TCSr AND
UESIGN OATA THAT PERMITS DISPLAY AND REVIEW OF THAT DATA BY THE DBA
PRIOR TO INCORPORATION OF THAT DATA INTO THE MOB.

MENU A TABLEAU OR LIST OF ITEMS ON A GRAPHICS TERMINAL,ONE OR MORE OF WHICH
AXE MEANT TO BE SELECTEDt GENERALLY BY A TOPOLOGICAL INPUT DEVICE, EG
A LIGHT PEN. -

MICRO SMALL OR OF THE LOWEST ORDER.
MIDI USUALLY REFERRING TO A MEDIUM COMPUTER, LARGER THAN A MINI BUT

SMALLER THAN A MAXI. THE DIVISION SEEMS TO BE MORE ON PHYSICAL SIZE
AND COST THAN ON COMPUTING CAPACITY.

MINI USUALLY REFERRING TO A SMALL COMPUTER USED STANDALONE OR AS A
PERIPHERAL TO A MAXI

MUJ MULTI-USER JOB...A TIME-SHARING JOB THAT CAN BE ACCESSED BY MORE THAN
ONE USER AT A TIME.

NSRDc NAVAL SHIP RESEARCH AND DEVELOPMENT CENTERP CARDEROCKMARYLAND.

OUEF SHORT FOR OUTPUT DEFINITION.. THAT PORTION OF THE OM SUBSCHEMA SOURCE
THAT DESCRIBES ALL POSSIBLE OUTPUT REQUIRED TO SUPPORT THAT OM.

Om OPERATIONAL MODULE...A FULLY FUNCTIONAL PIECE OF CODE WHICH CAN (HAS)
HulN STANDALONE IN BATCH MODE OR IS A FULLY'CHECKED OUT INTERACTIVE

PROGRAM. AN ON IS USUALLY A FULLY OPERATIONAL EXISTING FORTRAN BATCH
PROGRAM WHICH REPRESENTS A PORTION OF A DISCIPLINE'S CAPABILITY.

OPTUM TmE IPAu OPTIMIZER DRIVER IS A GENERAL PURPOSE UTILITY (GPU) FOR
OPTIMIZATION, SENSIVITY EXTRACTION, PARAMETERIZATION ANDCURVE

357

ORaIGI, PAGE IS
APPENDIX 	A - continued OF POOR QAL

OR SURFACE (HYPERSURFACE) FITTING.

OSCL OPERATING SYSTEM CONTROL LANGUAGE...THE LANGUAGE FOR CONTROLLING A

COMPUTER'S OPERATING SYSTEM (SEE APPENDIX C FOR DETAILS)....ALSO

AN AD HOC COMMITTEE REPORTING TO SPARC (SEE APPENDIX 0).

OSPONGE A FILE CONCEPT SUPPORTING THE IOF UTILITY (BEFORE IT wAS REPLACED

BY OP). THE OSPONGE WAS A RANDOM FILE INTERMEDIARY BETWEEN THE OUTPUT

FILL AND THE IOF FUNCTION. THE OSPONGE HAS BEEN REPLACED BY THE UF

AREA OF THE SCHEMA AND THE IOF BY THE OP AND QPS (QPSS).

PL PROJECT DIRECTORY...REFERENCE TO ALL THE DATA BASES WITHIN A PROJECT.

POB PROJECT DATA BANK...ALL THE DATA (DESIGN DATA. OS, ETC.) THAT ARE

UNIQUE TO A PARTICULAR PROJECT.

PLRT PROGRAM EVALUATION REVIEW TECHNIQUE...A SYSTEM FOR SCHEDULING ACTIONS

AND DEFINING TIME-CRITICAL PATHS.

PLC 	 PRObRAMMING LANGUAGE COMMITTEE...THE CODASYL DEVELOPMENT GROUP WHICH

IS RESPONSIBLE FOR THE DEVELOPMENT OF A LANGUAGE WHERE THE OBJECTIVE

IS COMPATIBLE, UNIFORM SOURCE PROGRAMS AND OBJECT RESULTS, WHICH RE-

QUIRE MINIMUM CONVERSION FOR PROGRAM AND DATA INTERCHANGE.

PLOT-1O A PORTION OF THE TEKTRONIX GRAPHICS SOFTWARE.

PP PERIPHERAL PROCESSOR.,.LDC TERMINOLOGY FOR A SEPARATE PROCESSOR USED

liv CDC COMPUTER SYSTEM DESIGN TO HANDLE ALL I/O ACTIVITIES PERIPHERAL

TO THE CENTRAL PROCESSOR.

PRF 	 PROJECT REVIEW FILE... THE DB AREA CONTAINING COMBINATIONS OF OPS,TCS,

AND DESIGN DATA STRUCTURED TO PERMIT DISPLAY AND REVIEW OF DESIGN DATA

BY THE ERB OR CORRESPONDING FUNCTION.

PS PROJECT SCHEMA...THE TOTAL DDL SPECIFICATION FOR A PROJECT DATA BASE.

PSI A CDC TERMINOLOGY FOR PROGRAMMING SYSTEMS INFORMATION GROUP.

PSR PROGRAMMING SYSTEM REPORT... A CDC TERM DENOTING N REPORT COVERING

ITEMS OF INTEREST TO OPERATING SYSTEM USERS (EGDIFFICULTIES ENCOUNT-

ERED, RESULTS OF BENCHMARKS, ETC).

OP 	 QUERY PROCESSOR.. A COMPUTER OPERATING SYSTEM UTILITY TO INTERROGATE

A,D MAINTAIN MASS STORAGE DATA FILES VIA DBMS. THE QP USER REQUIRES

MINIMAL COMPUTER ORIENTATION TO SUBMIT DIRECTIVES THAT WILL CAUSE THE

PROGRAM TO LIST REQUESTED INFORMATIONr LOMPARE DATA# REMOVE AND IN-

SLRT ENFRIES OR SELECT AND MODIFY PORTIONS OF THE DATA CONTENT.

TUTORIALS ARE ALSO PROVIDED FOR THE BEGINNER.OR TO RECALL-A PARTICULAR

DIRECTIVE OR ITS SYNTAX TO MIND FOR THE EXPERIENCED USER.

QP IS REQUIRED TO OPERATE IN EITHER AN INTERACTIVE OR BATCH ENVIRON-

MLNT. OU WAS USED AS A MODEL FOR QP THOUGHOUT THIS REPORT.

ScE ALSO QU.

QPL QUERY PROCESSOR LANGUAGE...THAT PART OF THE OSCL INSTRUCTING THE HOST

COMPUTER'S OP SUBSYSTEM. -

Qps QUERY PROCESSOR SESSION... THE SERIES OF TRANSMISSIONS SENT BY A USER

BLTWEEN THE SIGN-ON AND SIGN-OFF MESSAGES SENT BY QP. EACH SESSION

OR PORTIONS THEREOF MAY BE RECORDED FOR RE-EXECUTION AT A LATER TIME

WITHOUT BEING RECONSTRUCTED. SEE ALSO OP, QPSS, AND EXPANDER.

A OPS IS A SPECIAL FORM OF A TCS. SEE TcS AND TCSS.

QPSS 	 QUERY PROCESSOR SESSION SKELETON... A FILE CONSISTING OF AN INCOMPLETE

SLSSION, NAMES OF PARAMETERS NEEDED TO COMPLETE THE SESSION, POINTERS

TO PLACEMENT OF THESE PARAMETERS TO COMPLETE THE OPS, AND TUTORIALS

OIRECTING THE TASK AND DESCRIBING THE GENERAL FUNCTION SUPPLIED BY THE

SLSSION WHEN CONSTRUCTED. THE EXPANDER UTILITY (SEE) CONSTRUCTS A OPS

FKOM A QPSS. A QPSS IS A SPECIAL FORM OF A TCSS,

QSS 	 QUOIE SPECIAL SOFTWARE...CDC TERM FOR A BID ON SPECIAL SOFTWARE TO

SUPPORT A SPECIFIC INSTALLATION.

QU 	 UUERY UPDATE...A CDC SCOPE BOO SERIES COMPUTER PROGRAM TO INTERROGATE

AND MAI14TAIN MASS STORAGE DATA FILES. QU/i1 (VERSION 1.0) OPERATES'

UNiDER INTERCOM 4.1 AND WAS DELIVERED WITH SCOPE 3.4.0. QU/2 (VERSION

2.0) IS SCHEDULED FOR DELIVERY WITH SCOPE 3.4.1. UNLESS SPECIFICALLY

UDNOTEDr ALL REFERENCE TO QU IS TO OU/2, SEE ALSO OP.

QUIZ 	 SQE iU.

QU/2 	 SLE QU.

0US 	 QUERY UPDATE SESSION... THE SERIES OF TRANSMISSIONS SENT BY A USER

BtTWEEN THE SIGN-ON AND SIGN-OFF MESSAGES SENT BY QU. EACH SESSION

OR PORTIONS THEREOF MAY BE RECORDED FOR RE-EXECUTION AT A LATER TIME

WITHOUT BEING RECONSTRUCTED. SEE ALSO QU, OP AND OPS.

RECORD 	 A CODASYL CONCEPT.. A NAMED COLLECTION OF ZERO, ONE OR MORE DATA-ITEMS

OR DATA-AGGREGATES. THERE MAY BE AN ARBITRARY NUMBER OF OCCURRENCES

IN THE uATABASE OF EACH RECORD TYPE SPECIFIED IN THE SCHEMA FOR THAT

DATABASe. THE DISTINCTION BETWEEN THE ACTUAL OCCURRENCES OF A RECORD

358

http:BEGINNER.OR

APPEINDIX A - continued

OI NGAL PAG@ TF

OF poop, QUAX1'1
RECORD IS AN IMPORTANTONEARD THE TYPE OF THE

REFRESHED SOE CRTp REFRESH.

SAK 	 SLOPE ALTUAL KEY...A CDC FILE ORGANIZATION (TYPE).
SCHEMA 	 A CODASYL CONcEPT...THE DB SCHEMA CONSISTS OF THE FULL DESCRIPTION OF

DATA CONTAINED WITHIN THE OB.

MURL SPECIFICALLY, A SCHEMA CONSISTS OF DDL ENTRIES AND IS A COMPLETE

ULSCRIPTION OF A DATABASE. IT INCLUDES THE NAMES AND DESCRIPTIONS OF

ALL OF THE AREAS, SET OCCURRENCES, RECORD OCCURRENCES AND ASSOCIATED

DATA-ITLMS AND DATA-AGGREGATES AS THEY EXIST IN THE DATABASE.

SCOPE THE HOST COMPUTER OPERATING SYSTEM FOR THE CDC CYBER 7a SERIES MODELS

72 THRU 74. (ALSO KNOWN AS CDC 6000 SERIES COMPUTERS.)

SUA SLOPE DIRECT ACCESS......A CDC FILE ORGANIZATION(TYPE).

SET A CODASYL CONCEPT...A NAMED COLLECTION OF RECORD TYPES. AS SUCHP IT

ESTABLISHES THE CHARACTERISTICS OF AN ARBITRARY NUMBER OF OCCURRENCES

OF THE NAMED SET. EACH SET TYPE SPECIFIED IN THE SCHEMA MUST HAVE ONE

RECORD TYPE DECLARED AS ITS OWNER AND 1 OR MORE RECORD TYPES DECLAR-

ED AS ItS MEMBER RECORDS. EACH OCCURRENCE OF A SET MUST CONTAIN ONE

OCCURRENCE OF ITS OWNER RECORD AND MAY CONTAIN AN ARBITRARY NUMBER OF

OCCURRENCES OF EACH OF ITS MEMBER RECORD TYPES.

SIP SCOPE INDEX PROCESSOR....A CDC FILE ORGANIZATION (TYPE).

SIS SCOPE INDEX SEQUENTIAL...A CDC FILE ORGANIZATION (TYPE).

SPARC STANDARDS PLANNING AND REQUIREMENTS COMMITTEE OF ANSC X3 (SEE APPENDIX

D FOR THE 	RELATIONSHIP).

SPU 	 SPECIAL PURPOSE UTILITIES.. .THOSE UTILITIES OF IPAD WHICH ACCOMPLISH

SPECIAL PURPOSES, EG THE DML INSERTION PREPROCESSOR, THE SCHEMA

ASSEMBLER, AND THE SUBSCHEMA ASSEMBLER.

SSF 	 SUPPORT SYSTEM FILE... THAT FILE OR COLLECTION OF FILES THAT CONTAINS

INFORMATION TO BE MAINTAINED WITHIN THE IPAD SYSTEM THAT IS COMMON OR

NECESSARY TO ALL USERS OF IPAD.

STATUM 	 THE IPAD STATISTICAL UTILITY MODULE...A GENERAL PURPOSE, INTERACTIVE

STATISTICAL PACKAGE.

StBSCHEMA 	A CODASYL CONCEPT...A SUBSCHEMA FOR AN OM CONSISTS OF THE DESCRIPTION

OF THAT DATA WITHIN THE DB RELATED TO THE OM, DESCRIBING THE DATA AS

THE OM WOULD PREFER TO ACCESS IT (INCLUDING NAMES AND FORMAT CHANGES).

MORE SPECIFICALLY, A SUbSCHEMA CONSISTS OF DOL ENTRIES DESCRIBING ONLY

THOSE AREAS, SETS, RECORDS, DATA-ITEMS AND DATA-AGGREGATES OF THE DB

WHICH ARE KNOWN TO ONE OR MORE SPECIFIC OMS, AND IN THE FORM IN WHICH

THOSE OMS 	EXPECT TO ACCESS OR SUPPLY IT.

SWA SCOPE WORD ADDRESSABLE...A CDC FILE ORGANIZATION (TYPE).

S6 A BRAND NAME REFERRING TO THE SOFTWARE FIRM SYSTEMS, SCIENCE AND

SOFTWARE, LA JOLLA, CALIFORNIA.

TAS 	 TUTORIAL AIDS SUPPORT.. .THE GENERAL FUNCTION OF PROVIDING ASSISTANCE

(E.G. PROMPTING) TO AN INEXPERIENCED IPAD USER.

TCS 	 TASK CONTROL SEQUENCE...ESSENTIALLY A COMMANDS FILE PROVIDING THE

AdILITY TO EXECUTE JOB SEQUENCES AUTOMATICALLY. TCS FILES ARE CODED

FILES WHICH CAN BE EDITED BY THE SYSTEMS TEXT EDITOR AND EXECUTED BY

THE IPAD EXECUTIVE AS REQUIRED.

TCSS TASK CONTROL SEQUENCE SKELETON...A FILE CONSISTING OF AN INCOMPLETE

TCSNAMLS OF PARAMETERS NEEDED TO COMPLETE THE TCS,POINTERS TO PLACE-

MlNT OF THESE PARAMETERS TO COMPLETE THE TCS, AND TUTORIALS DIRECTING

- ' THE TASK AND DESCRIBING THE GENERAL FUNCTION SUPPLIED BY THE TCS WHEN
CONSTRUCTED. THE EXPANDER UTILITY (SEE) CONSTRUCTS A TCS FROM A TCSS.

TuEF SHORT FOR TUTORIAL DEFINITION..THAT PORTION OF THE OM SUPPORTING SUB-
SCHEMA CONTAINING TUTORIALS TO ASSIST THE USER--THROUGH OP--TO LOAD
HIS UF AREA OF THE DB FROM THE MOB. SEE SECTION 8 OF PART III.

TED - TEXT (CONTEXT) EDITOR..THAT TEXT (CONTEXT) EDITING CAPABILITY NORMAL-
LY SUPPLIED BY THE HOST COMPUTING SYSTEM SOFTWARE.

TI A BRAND NAME REFERRING TO THE MANUFACTURER TEXAS INSTRUMENTS.
TIM TUPOLOGICAL INPUT MANIPULATOR ...THAT SUB-CAPABILITY OF THE GPU GGP

THAT ENABLES THE DEFINITION OF CERTAIN DISPLAY ITEMS TO BE TOPOLOGICAL
INPUT ITEMS AT EXECUTION TIME.

TSA TASK STATUS/ACTION FILE...COLLECTION OF DATA RECORDS PERTAINING TO
INDIVIDUAL USERS OR GROUPS OF USERS THAT CONTAIN DIRECTIVES FOR
ACTIONS OR MESSAGES OF STATUS.

TTY 	 REFERS FO THE GENERAL TYPE OF INTERACTIVE CONSOLE USING THE STANDARD

TELTYPEWRITER CHARACTER TRANSMISSION INTERFACE OR AN EXTENSION OF IT.

ALSO, A BRAND NAME REFERRING TO THE WELL KNOWN TELETYPEWRITER.

TREE 	 A FILE POINTER ORGANIZATION LOOKING LIKE A TYPICAL COMPANY ORGANIZA-

TiON CHART.

-TV 	 SE CRT, TV

359

APPENDIX A - concluded

UF USERS FILE...THOSE AREAS WITHIN THE DB RESERVED FOR A SINGLE USER FOR

THE PURPOSE OF CONDUCTING HIS ,TASK.

UNIGRASP UNIVAC INTERACTIVE GRAPHICS SUPPORT PACKAGE..,UNIVAC TERM FOR THEIR

INTERACTIVE GRAPHICS SUPPORT SOFTWARE (FORTRAN CALLABLE). UNIGRASP IS

VERY SIMILAR TO GSP.

USER ANY IPAU USER, GENERALLY CHARACTERIZED AS AN ENGINEER NOT EXPERIENCED

WITH COMPUTERS--AT LEAST TO ANY tREAT EXTENT--RUT INTIMATELY FAMILIAR

WITH THE PROBLEM HE IS TRYING TO SOLVE.

UTT USER TASK THAJECTORY...A SYNOPSIS OF THE PERTINENT JOB STEPS A USER

EXECUTES WHILE OPERATING WITHIN IPAD, HENCE HIS TRAJECTORY OR TRACK.

ALSO THL AREA OF THE DB WHERE THE UTT IS STORED BY THE IPAD EXEC. THE

RLCORDING OF A UTT IS OPTIONAL WITH THE INSTALLATION.

VM 	 VIRTUAL MEMORY.. ON A TIME-SHARING SYSTEMtTHE STORAGE SPACE EACH USER

APPEARS TO HAVE FOR HIS OWN USE. ALSO

VIRTUAL MACHINE... AN IUM 370 CONCEPT IN WHICH EACH OM APPEARS TO

HAVE ITS OWN COMPLETE MACHINE CINcLUDINb A SPECIFIC OPERATING SYSTEM)

FoR ITS OWN USE.

2U 	 TO-DIMLNSIONAL.

3u 	 THREE-DIMENSIONAL.

6RM 	 THE SCOPE RECORD MANAGER SYSTEM CODE, 6RM TREATS A WIDE VARIETY

OF FILE TYPES (EG SIS,SDASrASIP, AND SAK).

360

APPENDIX B

INDUSTRY EXPERIENCE WITH INTERACTIVE

GRAPHICS, A LITERATURE SURVEY

(Refer to Volume IV for this Appendix)

361/362

APPENDIX C
REPORT TO SPARC FROM AD HOC

COMMITTEE ON OPERATING SYSTEM
CONTROL LANGUAGE

(Refer for Volume IV for this Appendix)

363/364

APPENDIX D

AMERICAN NATIONAL STANDARDS

INSTITUTE (ANSI)

(Refer to Volume IV for this Appendix)

365 / 366

APPENDIX E
CONFERENCE ON DATA

SYSTEMS LANGUAGES (CODASYL)

367/368

APPENDIX E

CONFERENCE ON DATA SYSTEMS LANGUAGES
(CODASYL)

The following text is copied from the handbook "The World of EDP Standards",
written by Marjorie F. Hill (Control Data Corporation Technical Memo TM 4, Septem
ber 1972). It is presented as a convenience to the reader with the kind permission of
CDC.

E. 1 History

Late in May of 1959 a meeting was held in the Pentagon to consider the desira
bility and the feasibility of establishing a common language for the programming of
business-type applications. Present at the meeting were representatives of users,
both those in the private sector and those in government, computer manufacturers, and
other interested parties.

At this meeting the concept of three committees was agreed upon and the Short
Range, Intermediate Range and Long Range Committees were established. The Short
Range Committee eventually became the official COBOL branch of CODASYL and the
Intermediate and the Long Range Committees evolved into the Systems and Language
Structures Committees respectively.

At the initial meeting the Short Range Committee was given the task of developing
an immediate language and was instructed to take the best of three existing language
compiler systems -- FLOWMATIC, AIMACO, and Commercial Translator -- and to
produce a language superior to any of these.

By September 1959 this committee had specified a language and by December 1959
COBOL existed as a language that was not identified with any manufacturer. The initial
specification for COBOL as published in April 1960 has since become known as COBOL
60.

In 1961 a portion of the Intermediate Range Committee was combined with the
Long Range Committee to form the Development Committee. Out of this group came a
Decision Table Structured Language (Detab X) and a nonprocedural approach to problem
statement identified as "Information Algebrat .

369

APPENDIX E - continued

CODASYL, through its working
Recognizing the evolving nature of the language,

committees, has published several editions of the COBOL language.

.2 Objectives

CODASYL is dedicated to the Aevelopment of Data Systems Languages independent

of any make or model of computer, and provides a forum for the exchange of ideas and

knowledge related to those languages. IStandardization is the responsibility of the

appropriate groups of ANSI/X3.

E. 3 Membership

on a standing comniAttee, which
Membership in CODASYL is through membership

In the case of the P~rogramming
accord membership according to their individual rules.

there is a twenty-five member limit and the added stipu-
Languages Committee (PLC),

can be from any one segment of the,
lation that not more than two-thirds of the members

users or implementors.industry, i.e.,

Membership in one of the subcommittees does not constitute membership in the

parent standing committee.

E.4 Organization

CODASYL is organized as five standing committees: The Executive Committee,

the Planning Committee, the Systems Committee, the Programming Languages Com

mittee and the recently organized Data Description Language Committee. However, the

organization functions as shown in Figure ,-i with the Executive Committee having final

authority and the Planning Committee acting in an advisory capacity.

E.4.1 The Executive and Planning Committees. - The Executive Committee is composed

of not more thanfifteen members, selected as being individuals who have made significant

In addition, the chairman
contributions to the advancement of the goals of CODASYL.

of each standing committee is a member of the Executive Commiittee. The Chairman is
The viceelected by the committee members at the first meeting of each calendar year.

chairman and secretary are appointed by the chairman.

The Executive Committee provides policy guidance and direction to the other stand

approves all formal publications ofing committees, establishes publication policies,
CODASYL, provides membership policy, appoints chairmen of the other standing com

and reviews membership in the other standing 6omnmittees periodically.mittees,

370

APPENDIX E - continued

EXECUTIVE

COMMITTEE

COMMITTEE

PROGRAMMING SSESDT ECITO
LANGUAGE COMMITTEE LANGUAGE COMMITTEE
COMMITTEE

Task Groups

-Mass Storage Task Groups as as required

-Asynchronous Proc. required

- Data Base Language Storage Structure

-Data Base Concepts Definition Language

Task Group

input/output

Proposal Editing

other TG's as

required

Figure E-i. Functional Organization of CODASYL

The Planning Committee acts in an advisory capacity to the Executive Committee
and is responsible for gathering, and disseminating information from implementors and
users which is aimed at fulfilling or extending the long range goals of CODASYL. The
Chairman is appointed by the Executive committee and the chairman appoint s a vice
chairman. Mot of the manufacturer's user groups are members, as well as theAssoc
iation of Independent Software companies and the National Association for State Inform
ation Systems,

The Planning Committee may approve release of committee papers. However,
final approval as a CODASYL release, is by Executive Committee action.

E.4.2 The Technical Development-Committees. - The Programming Language Committee
(PLC) is a development group responsible for the development of a language where the
objective is compatible, uniform source programs and object results, which require mini
mum conversion for program and data interchange. The committee concentrates its
efforts on the tools and techniques needed by applications programmers.

The Systems Committee's purpose is to build up an expertise in, and to develop, ad

vanced languages and techniques for data processing, with the aim of automating as much
as possible of the processes burrently thought of as systems analysis, design and imple
mentation.

371

APPENDIX E - Concluded

The recently organized Data Description Language Committee is to establish ways
to aid the functions of data administration and systems administration, including speci
fications required to establish and maintain data base structures.

E. 5 Relation to Other Organizations

CODASYL is recognized internationally as the language development body for
COBOL. The American National Standards Insitutue (ANSI) standards body uses the
CODASYL work as the base for the American National Standard for COBOL. All
clarifications, changes or corrections are approved by the Programming Language
Committee before incorporation into the American National Standard. The development
of the national and international standard is the combined Wmrk of CODASYL for the de
velopment phase and the appropriate groups of the European Computer Manufacturers
Association (ECMA), and ANSI for the standardization phase. CODASYL also maintains
liaison with Japanese standards organizations.

E.6 Finance

CODASYL is completely supported by the contributed work of its members. There
are no membership dues or other assessments.

E. 7 Technical Work

The technical development work is vested in three committees, i e., Programming
Languages, Systems, and Data Description Languages Committees.

The responsibility for the major portion of the development work for the COBOL

language resides in the Programming Language Committee. The PLC is the author of

the COBOL Journal of Development. Extended capabilities are added to the language
as they are developed by the task groups and approved by the PLC.

Task Groups are established as the need is recognized and become responsible for

functional segments of the COBOL language. Each task group is responsible for the
language extensions and the modifications required for a particular project.

Task Group membership is by organization, but is not restricted to the same organ
izations as those of the parent committee. For example, a Data Base Language Task

Group member may represent an orgamzation which does not choose to be a member of

the PLC.

As projects are completed, the task groups are disbanded, so that over a period of

time the complement of task groups is continually changing.

372

APPENDIX F

DATA BASE AND DATE BASE MANAGEMENT, DETAILED REQUIREMENTS

373/374

APPENDIX F

DATA BASE AND DATA BASE MANAGEMENT, DETAILED REQUIREMENTS

The function of the IPA-D Data Base and Data Base Management systems is
basically to provide the structure and facilities so that the various users may construct
and use data files according to their project and their individual needs.

Section 4 of Part I1 presented the overview of the IPAD Data Bases and Data
Base Management requirements. It further presented the overall correspondence
between the data base management problem and its solutions using the Query Processor
of the Data Base Management Systems (QP/DBM.S). In this appendix, a more detailed
presentation is made of the IPAD data bases and data base management requirements.
A detailed set of solutions via QP/DBMS is made to show how QP/DBMS would support
the data base function. This appendix further presents the essential overall translation
of the data base requirements into the Data Declaration Language (DDL) using Query
Processor (QP) procedures. It also discusses the general usage of the SCHEMA DDL
required for IPAD.

The notation used in this appendix is the same as that used throughout this report.
Words written in all capital letters refer to the terminology presented in Reference F1
(e.g., SCIIEMA, WITHIN) or QP directives (actually QU/2 directives) presented in
Reference F2.

F. 1 Project Data Bank (PDB)

The Project Data Bank (PDB) for an active project is organized out of all the data
that is unique to a particular project's design process. There are several major types
of data within IPAD that are essentially of use to all types of users. The usage of these
data types vary and are dependent on the individual users, therefore, the data types
are organized into particular zlata bases according to the orientation of the users.

To conform with the operational and managerial philosophy of IPAD, the PDB
has the requirement of a Project Directory. This Project Directory permits IPAD to
coordinate the usage of the facilities (data and programs) of a project or a discipline.
The users, in general, are dealing with the IPAD system in different (and sometimes
conflicting) time periods and for different purposes. Farther, because of the com

plexities of communications and data flow through the data bases, the individual user
must be freed of the responsibility for setting up any data base operations other than
those applicable to his problem at hand. The Project Directory contains the necessary
reference information for all data files that normally must be directly accessible to
a user during the course of his activities.

375

APPENDIX F - continued

F.l.1 Directories. - Directories are used both to permit cataloguing and Jinking of
the data with the user, and to permit internal structuring and linking of the data. A
directory is a collection of data that permits linkage between a symbolic (name) ref
erence to data and the valued data associated with that name. A directory entry
consists of two types of information:

1. The entry nam6.

2.,Valued data.

The organization structure of a directory may vary; e.g., consider the alternates:

1. Entry names and data base identifiers for the valued data.

2. Entry names and valued data within the same structure.

The requirements for a directory to the various data files Within a project are
satisfied by the AREA specifications and are embodied in the object SCHEMA. Likewise,
the requirements to manage the project directory are satisfied by the functions that
permit management of the Project SCHEMA. A Query Processor (QP) procedure to
display the SCHEMA enables the Data Base Administrator (DBA) to obtain'the specifi
cations for the total project data base structure at any desired time.

Table F1 summarizes the DDL for the defining Project SCHEMA. The total
SCHEMA, of course, is made up of all the DDL specifications pertaining to the data
bases. (The terminology used in this and subsequent tables is taken directly from
Reference Fl):

TABLE Fl. PROJECT SCHEMA DDL

CLAUS'E 	 DBA Supplied Information

SCHEMA 	 Project Identity Name stored
in the Project SCHEMA.

PRIVACY 	 Separate looks (if desired)
for eabh privacy option. 	 A
minimum privacy lock is
required for the ALTER 	option.

In addition to the directory references to identify the data files, the Project
Directory requires two other pieces of information in order to control access to the
data:

376

APPENDIX F - continued

1. 	 Project Identity - This identifies to the IPAD system the'externkl access
nam e for' the project data.

2. 	 Privacy Data - This data controls access to the project. There are two
types of privacy data:

a. 	 Data access - Identifies the access conditions of the project data
bases. At this level only the access to the project data base as a
whole is checked. Details of particular data bases are handled
within the data base management facilities for the particular data
bases themselves.

b. 	 Project Directory access - This data identifies who has access to
modify the Project Directory itself. Access information consists
of conditions for access such as display, delete, insert, etc.

Within'the DDL, the Project Data Bank (PDB) is represented by a Project SCHEMA
(PS), which is designed to encompass all the data that will be associated with the project.
Section 4.2 summarized the various data base requirements of an IPAD project and
their representation within the PS. The structure of the various data bases are de
scribed in the following subsections.

The data base management requirements detailed in the following subsections
are concerned with the data base operations on the project level over the lifetime of
a project.

F. 1, 2 Project initialization. - This functional operation is required to identify the
project and to set up the initial structure on which the rest of data bases will be built.
The operation is satisfied via the construction and compilation of the Project SCHEMA.

The 	initialization procedure:

1. 	 The DBA generates the source SCHEMA for his project as a permanent
file. This includes all AREAs, SETs, RECORDs, etc., for the MDB, DLFs,
TSAs, etc.

2. 	 Using the DDL compiler, the DBA compiles the source SCHEMA into a
permanent object SCHEMA file.

3. 	 If the DBA so chooses, both source SCHEMA and object SCHEMA can be

,described 	via SCHEMA specifications within his Project SCHEMA in AREAs
that correspond to the permanent files for processing with QP.

F. 1. 3 Proiect archival. - This functional operation permits the user, when engaged in
purging a project from IPAD, to maintain data in an archive file. The user can generate
separate files by identifying the files and which of the project data banks are to be

377

APPENDIX F - continued

part of the separate files. The procedure involved uses the Project SCHEMA and
associate SUBSCHEMAs for only those portions of the data base to be saved.

The 	QP procedure:

1. 	 The DBA extracts the desired project data onto an archival storage medium
(tapes, disc packs) via QP functions.

2. 	 The DBA edits the Project SCHEMA as recorded within his data base via
QP and incorporates it into the archived file(s). If the SCHEMA is not
stored within his data base, other tools such as the Text Editor should be
used. The purpose of this step is to have a SCHEMA description that
accurately defines the archived portion of the project data.

3. 	 The DBA may then release the permanent files from the IPAD system via
the purge procedure.

F.1.4 Project purge. - This functional operation is required to remove the data bases
of a project from an IPAD installation. If the user wishes to archive project data, the
project archiving operation is used. Otherwise, the permanent files associated with
the project are released.

The 	procedure:

1. 	 Basically the project can be purged from an IPAD installation by releasing
all permanent files associated with the project.

2. 	 If the DBA has included within his data base the source SCHEMA, object
SCHEMA, source SUBSCHEMAs, and object SUBSCHEMAs, these too are
released.

F. 1.5 Prelect privacy data. - This is data which specifies the accessing information
necessary for various operations upon the design data. Each entry in the directory
consists of three items of information:

1. 	 Access Codes - These identify the user and the permission codes necessary
to use the file.

2. 	 Conditions - These specify the conditions for all access forms (fetch, write,
delete, replace).

3. 	 Alternate Designs - These specify the actual alternate design to which the
above conditions apply.

Conditions of access may vary for different users so that the actual access permission
consists of 'and' combinations of the three items.

378

APPENDIX F - continued

F. 2 Design Data

In the IPAD system much of the data is direc4ly referenceable by the user through
appropriate naming and stracturing-of the hierarchical relationships of the-design data.
The data base requirements include, therefore, both the extern ally referenceable identity
of the design data (or groups of design data) and the valued data itself.

Design data within IPAD may reside within a number of files (e.g., MDB, DLF,
and Support System files). The DDL here pertains tb the record entries that the DBA
will develop and incorporate into the various files' according to their needs. Table F2
is a summary of the various data base requirements of the design data and their
general corresponding fulfillment (including options) m the DDL. Table F3 illustrates
the corresponding DDL specification for a design data RECORD.

TABLE F2. DESIGN DATA REQUIREMENTS WITH DDL SPECIFICATIONS

Design Data Requirement 	 DDL Solution

Category Identity 	 Group name with level number.

Subcategory Identity 	 Group name with level number subordinate to
category to which it belongs.

Category Directory 	 DATA ITEM with name of category on same level
as category subdivision, RECORD occurrences
automatically provide the category directory as the
data base is built.

Subcategory Directory 	 DATA ITEM with name of subcategory on the same
level as subdivisions or data associated with the
subcategory, subcategory directory is automatically
updated as subcategories are detailed out.

Design Data Reference 	 Lowest ievel of data it'em specifications with design
data RECORD; naming convention automatically
produces the referenceable data.

Design DATA ITEM Identity Optional DATA ITEM on lowest level. To be used
if DBA desires actual storage of name for reference
purposes.

PrivacyData. The DBA has privacy lock specifications available
to him on any level.

Glossary DATA ITEM at lowest level describable as character
with limits set by DBA.

379

APPENDIX F - continued

TABLE F2. DESIGN, DATA REQUIREMENTS WITH DDL SPECIFICATIONS (contd)

Design Data Requirement 	 DDL Solution

Units 	 Same as glossary.

Coordinate Systems 	 Same as glossary.

Data Type 	 Specified as part of the DATA ITEM specifications
which actually identify the storage requirements
for the valued data itself.

Data Structure 	 Same as data type (e. g., OCCURS clause).

Design Valued Data 	 Controlled by above two specifications which are
repeatedfor each type of DATA ITEM.

Versions 	 Each lowest level DATA ITEM has a version identity
DATA ITEM which is updated for each version.
Searches by QP include Version condition.

TABLE F3. DESIGN DATA DDL

CLAUSE 	 DBA Supplied Information

RECORD 	 DBA assigns data name to encompass the total
design data to be incorporated in this record.

WITHIN 	 DBA assigns RECORD to AREA (synonymous with
MD, DLF, and Ur).

Data subentry level number 	 DBA details out as many levels as required to
describe the total category to data relationship.

Category name 	 If required, a DATA ITEM for storage of name for
each internally named subeategory.

Data version 	 ID's for versions of design data, DATA ITEM on
same level as design data, or default filler in DDL
specs.

Design data identifiers 	 Described as required by DBA.

Subentry design data 	 Described as required by DBA.

PRIVACY - Assigns protection down to any level according to

options required.

380

APPENDIX F - continued

Categories and subcategories are the first major subdivisions in the IPAD system.
Category and subeategory definitions are handled by the DBA by establishing each
category as a distinctive RECORD entry and then spelling out the relationships by
appropriate group level naming until the actual DATA ITEMS are to be detailed.

If the DBA also desires to include an internally stored category (or subcategory)
name for retrieval purposes, he can accomplish this by introducing a DATA ITEM on
the same level'as the subdivision of the category or subcategory for the category
desired. He then, by usage of QP, generates the appropriate RECORD occurrence for
that name.

The 	Category Directory is the first subdivision of a design data database. The
Category Directory identifies by symbolic name the various design data categories
selected by the creator of the data base. Each entry in the Category Directory contains
two items of information:

1. 	 Category Identity: The Category Identity is the symbolic name to be
associated with the directory for the data base.

2. 	Subcategory Directory: The Subeategory Directory identifies by symbolic
names any further symbolic trail to the actual design data required. A
Subeategory Directory can be of two forms:

a. 	 Hierachical Data Reference - This type has the same construction
as a category directory entry and is used to continue symbolic name
breakdown if required.

b. 	 Design Data Reference - This type is used when no further symbolic
breakdown is required and the actual data can be referenced. The
Design Data Reference consists of three items of information:

* 	Design DATA ITEM Identity - The symbolic name of the DATA
ITEM.

* 	 Design Data Structure Information - Information used to identify
the structure of the actual DATA ITEM for processing, including
descriptive data such as: glossary (textual description of data,
if desired), units, coordinate systems, data type (integer,
double precision, floating) and data structure (vector, matrices).

* 	Alternate Design Directory - When alternate design data exists
there is a further subdivision of DATA ITEMs within the data
base. (When only one design exists thdre is only one entry
within the directory.) The Alternate Design Directory has two
additional item s per entry:

381

APPENDIX F - continued

* 	 Alternate.,Design Identification - Identifies the alternate
data'set.

* 	 Design,Data Version Directory - The directory permits
access to varioub versions of data that has been produced
during the course of the design'

In situations, where the'DBA wishes the data to be shared or accessed by different
category chains, he -either employs, 1) a procedure to copy data into various RECORD
types ,from other RECORD types, 2) maintins the MDB or design data under one
standard SCHEMA and provides various SUBSCHEMA for different relationships, or
selective usage by design data in other contexts, or 3) replaces the appropriate data
subentry level with a fully qualified name that identifies the RECORD occurrence within
another category.

F. 3 Multidisciplinary Data Bank (MDB)

The MDB is the repository of all approved design data required by a project to
represent the design. It is a collection of'the design data RECORDs as described in
the preceding subsection. Its characteristics which distinguish it from other design
data files are:

1. 	 It is a permanent resident of the IPAD data bases for direct reference and
access by users.

2. 	 The access controls for operating with it are controlled by the project.
Replace, delete, and insert activities are controlled by the DBA. Fetch
operations are available to any-qualified user.

The Multidisciplinary Data Bank (MDB) is represented within the Project SCHEMA
(PS) as an AREA. The AREA is farther detailed',as a collection of RECORD entries to
satisfy the needs of a particular project. The DDL specifications for the individual
design data RECORDs is described in Section F.2. This section is concerned with the
DDL specification for the MDB as a separate file.

Fundamentally, the updating of thePMDB is considered as the exclusive function
of the DBA and is performed separately from operations with the data of the various
users. For this reason, the privacy controls are selected to permit only one updating
activity for the 14DB. The MDB consistgof the following RECORD entry types:

1. 	 RECORD entries for design data.

2. 	 RECORD entries for history of operations in the MDB.

Table F4 summarizes the DDL for the MDB as a file.

382

APPENDIX F - continued

TABLE F4. MDBDDL

CLAUSE DBA 	Supplied Information

AREA 	 MDB name.

PRIVACY 1. 	 DBA selects PROTECTED UPDATE as
minimum. If users, in general, always reqmre
latest MDB data EXCLUSIVE is the preferable
specification.

2. 	 A separate lock for retrieval.

MDB operations are subdivided into two categories of operation:

1. 	 MDB structure definition.

2. 	 MDB design data operation

The 	MDB Structure definition is accomplished by a set of functional operations
that permits a DBA to detail out the data name hierarchy for external reference and
operations on the MDB. The MDB Authorization Privacy Specification function is
employed to permit authorized personnel to specify the privacy data required to man
ipulate the MDB. The Category Definition functional operation permits a user to define
a categpry subset of data fbt the MDB. A function is required either to initialize MDB
categoty structure or to modify it.

The Subcategory Field definition functional operation permits a user to further
detail out the hierarchial structures of a file. The function can be used to detail as
many levels as may be required. Function is also used to modify existing structure.
Finally, the Design Data Structuring function permits authorized personnel to define
contents and type of design data.

The activity of AREA definition for the MDB for incorporation into the project
SCHEMA satisfies the category definition, subcategory definition, design data struc
turng and,MDB authorization,privacy specification functions. The activity is part of
des~ign of a project SCHEMA. Thqprocedure is:

1, 	The DBA details out the entire category/subcategory/design data structure
according to design data specifications (see Section F. 2).

2. 	 The DBA defines a unique AREA for the MDB according to specifications
contained in Table F4.

3. 	 The DBA incorporates this SCHEMA as part of the Project SCHEMA (see
Section F. 1).6,

./ 	 383

Ci

APPENDIX F - continued

4. 	 Additionally, if choice is m'ade to incorporate category names into RECORDs,
then the DBA uses a category naming procedure.

The category (subcategory) naming procedure uses the Project SCHEMA and a
SUBSCHEMA that need only specify the category (subcategory) data items for MDB AREA
The QP procedure.

1. 	 Insert directive to create a RECORD occurrence for category (subcategories).

2. 	 Move data items into RECORDs that occupy the category (subcategory) name
fields to identify the category (subcategory).

Restructuring the MDR or adding more details to it is accomplished by modifi
cations or additions to the MDB DDL specifications. The procedure:

1. 	 DBA generates additional DDL specifications for MDB AREA.

2. 	 The Project SCHEMA is recompiled.

The DBA, however, must insure that existing R CORD occurrences are not
violated by changing RECORD definitions.

The MDB display functional requirement is to provide the user with the capa
bility of displaying the contents of the MDB (or a selected portion thereof). The user
can declare one of the following options:

1. 	 Organization display - The organization structure of the MDB with the
symbolic names will be displayed. This will display each category and the
names of data associated with it, including recursion if so structured. The
user can specify any name limits (all, a category, a data set of a category,
or lower).

2. 	 DATA ITEM display - The actual data values associated with named data
will be displayed.

3. 	 Combinations of 1 and 2.

If user is authorized to display contents, the 'display options specified will' be
employed to access the structural or data item information and format the contents
for display. Both the actual information and its linkage with lower level data will be
retrieved. .The QP procedure(s) employed uses the Project SCHEMA, and SUBSCHEMA
designed to limit the view of the MDB to Organization display, DATA ITEM display, or
combinations. Alternative QP sequences are:

1. 	 To provide simple listing:

384

a. 	 A directive specifies the appropriate SUBSCHEMA to control the
display options.

b. 	 A QP Display directive provides the contents to display.

2. 	 To obtain a specialized (report type) format:

a. 	 The user must perform a prior construction and store a REPORT
format using QP.

b. 	 A directive then prepares the display according to the REPORT
specifications.

The 	following subsections detail the requirements for updating the MDB.

F. 3. 1 Addition of design data. - A functional operation is required to permit the ad
dition of design data. , Basically the MDB is updated from entries within the Multi
disciplinary Data Base Update (MDBU) file. The MDBU can contain entries that
completely identify the IPAD file and data set that contains the design data or the MDBU
can contain the data itself. Alternatively the DBA can incorporate data directly into
the MDB from any file provided'it satisfies the MDB structure requirements. The QP
procedure for updating from the MDBU involves specification of an MDB update SUB-
SCHEMA which encompasses both the MDBU and MDB AREA of interest. (A SUB-
SCHEMA that repeats the AREA specification of the MDB and MDBU is adequate.) The
procedure involves:

1. 	 Extraction of the desired design data for update into a local file.

2. 	 Insert from local file unto the MDB.

This procedure in combination with the MDBU Data Set Construction procedure
(see Subsection F. 12) permits flexibility in operation for MDB update. (Alternatively,
the user can construct the local file and the DBA can incorporate directly from this
file, thereby eliminating step 1 of this procedure. This method, however, necessitates
a procedure to pass a message to the DBA to completely identify this file which is not
exercised through normal controls.) The requirement to permit new Category Defi
nitions within the operation of actual data incorporation is prohibited by this method;
the function is more appropriate to MDB Restructuring.

A procedure is required to permit MDB Data Subset Deletion by the DBA from
the MDB. The DBA by reference to a named data substructure can cause deletion of
either all or part of the data. The DBA can also place the deleted data into an archive
file, if it is so desired. The QP Procedure (actually QU/2 procedure, Reference F2)
involved:

1. If archived data is required, the DBA extracts data from files for relocation
in off-line storage.

385

APPENDIX F - continued

2. 	 The DBA specifies the complete name (for deletion),and exercises a DELETE
QP directive.

3. 	 The DBA updates.History Record entries in the MDB:I

a. 	 QP INSERT directives create RECORD occurrences for history.

b. 	 QP MOVE directives enter the history information into the RECORD.

Functional operation is required to permit MDB Design Data Modification, i. e.,
the changing of existing design data. This operation differs from addition/deletion of
data since it is concerned with changes to existing data values. The DBA can either
personally replace data values or he can maintain both the original data values and
their changes (appropriately identified). The QP procedure uses a SUBSCHEMA
specifying the MDB AREA of interest and involves either:

1. 	 Updating individual data items without retention of original data:

a. 	 A QP UPDATE directive obtains the RECORD occurrence of interest.

b.' 	A QP MOVE directive (with data values) modifies the data items.

For history RECORDs:

c. 	A QP INSERT directive creates the RECORD occurrence for history
RECORDs.

d. 	 A QP MOVE directive places pertinent information in the RECORD.

2. 	 Maintaining both versions of the data requires:

a. 	 A QP UPDATE directive to obtain original data RECORDs to modify
the version.

b. 	 A QP MOVE directive to provide the Version Identity field for the
Version Identifier.

c. 	A QP INSERT directive tocreate a new version.

d. 	 A repeat of c and d from procedure 1 to generate the history RECORD.

Functional operations are required to permit the MDB to be subdivided into
Alternate Designs. The QP procedure uses a SUBSCHEMA that specifies the MDB
portion of interest. The QP Procedure:

1. 	 For each data category that is to belong to an Altdrnate Design, the DBA
introduces Alternate Design identifiers via QP INSERT and MOVE directives
into alternate design DATA ITEMs.

386

APPENDIX F - continued

.2. 	 For DATA ITEM RECORDs that will, be different,, the DBA generates nec
essary RECORD occurrences.

F. 3.2 Design data copy. - A functional operation is requi'red to permit a user to copy
a design data subset. The user specifies a SUBSCHEMA incorporating the MDB AREA
of interest and the file onto which the design data is to be copied. The QP procedure:

1. 	 Use the QP EXTRACT directive to copy the MDB data onto a local file.

2. 	 If the local file is already part of a data base DDL, the procedure is
complete.

3,. 	If the local data file is not a part of a data base DDL, then it is made a
part of the desired data file by a QP INSERT directive.

F.3.3 MDB update history maintenance. - A functional operation is required which
permits the maintenance of a history of all update activity applied to the MDB. Any
updating reference to the MDB requires a corresponding entry into the MDB history
file. The entry recorded corresponds to the activity that is employed against the MDB.
The SUBSCHEMA used refers only to that portion of the MDB concerned with occurrence
of MDfl History RECORDs. The QP procedure:

1. The DBA uses a QP INSERT directive to prepare history RECORD occur
rences.

2. The DBA uses a succession of MOVE directives to accomplish the detailng
of history RECORDs.

Normally, this procedure is a subprocedure of any MDB update activity.
However, it can also be used as a separate procedure to incorporate additional data
into the history file for the convenience of the DBA.

F. 4,Disciplinary Library File (DLF)

The DLF is the collection of the,common body of information required by a
functional group or collection of users assigned a related part of the design. A DLF
is described as an AREA. Foi eich DLF to be employed by a Disciplinary Group (DG),
the DBA constructs a separate AREA to satisfy the requirements of the DG. The DDL
description for the DLF can consist of any RECORD entries.

In general operation, several users may update portions of the DLF, The
privacy locks in this case are necessary only for PROTECTED update.

The requirements-of DLF directories are satisfied by the SCHEMA description
itself. Operations on the DLF are those operations possible on any of its data types.
The basic DLF structure includes:

387

APPENDIX F - continued

1. 	 A subfile directory - The subfile directory identifies all data sets within
the DLF that are referenceable by the various users.

2. 	 Privacy data - The privacy data identifies access conditions of the DLF.

The DLF Subfile Directory consists of the following types of information for
each subfile:

1. 	 Subfile identity - Identifies the name of the subfile by which the user can
externally reference it.

2. 	 Subtile type - Identifies the type of subfile for accessing and management
(e. g., OMs, TCS, Local Design Data).

3. 	 Subtile data referenbe - Locates within the DLF itself the actual subfile.

4. 	 Subtile file cross-reference - Identifies for data management purposes
any other file within the JjLF that includes this subfile 'as part of its
structure.

Specifics of the subfile entries are presented with the appropriate writeups.

Table F5 summarizes only the DDL pertaining to the DLF as a DLF.

TABLE F5. DLF DDL 	 T

CLAUSE 	 DBA Supplied Information
j

AREA 	 Disciplinary Group (DG) name for its DLF.

PRIVACY 	 Lock for retrieval. Separate look, if desired,
for PROTECTED update.

F. 5 Operational Modules (OMs)

The OM is the actual computer process (program),which will perform the:
design analysis at the user's control. The data requirements associated with the OM
include:

1. 	 IDEF (Input DEFinition) - This user provided data defines the-input require
ments of the OM. The IDEF requirements are described m Section 3 of
Part I.

2. 	 ODEF (Output DEFinition) - 'This data specifies the output requirements of
the OM. Its requirements are likewise described in Section 3 of Part I.

388

APPENDIX F - continued

3. 	Executable OM - This is the executable (object) code of the OM.

4. 	 OM Source Code - This permits the user to maintain the OM source code
• 	within IPAD.

The 	storage requirements for OMs are defined by the DBA. An OM and all of
its parts are described as SETs. The elements of an OM can also be tied together by
SET specifications. The OWNER RECORD for the SET is a Micro Menu (see Subsection
F6.3.1). The MEMBER RECORD types (assigned to various AREAs as required by
DBAi) are as follows:

1. 	 Object Code- - RECORD description for residehcy of object code (summarized
in Table F6).

-2. Source Code - Same for object code (summarized in Table F7).

3., 	 IDEFs, ODEFs - RECORD descriptions that control the I/O requirements
for the OM according to DDL specifications.

The 	source code RECORD can be treated separately from the OM SET, if so desired.

TABLE F6. OM SOURCE CODE DDL

CLAUSE 	 DBA Supplied Information

RECORD 	 DBA (project or system) assigns a generic name
for-the OM source code.

WITHIN 	 DBA designates file within which source code will
reside.

PRIVACY 	 Separate codes for.

a) Update.

b) Retrieval (optional).

F. 5.1 OM management. - The following functions are to explain the requirements for
the database management functionsfor the operations to be performed on the OMs.

F.5.1.1 OM access: A functional operation is required to permit a user to specify an
OM for execution. The OM is selected when the user specifies the OM identity. When
the user choose6 a Macro/Micro*Menu sequence (see Section F. 6) he specifies the
successive entries mcluding the multiple entries of Micro Menu as is necessary. At the
completion of the functional sequence, the executable OM, its input map, IDEFs and
ODEFs are available for direct reference by the user.

389

APPENDIX F - continued

TABLE F7. OM OBJECT CODE DDL

CLAUSE 	 DBA Supplied Information

RECORD NAME 	 DBA (project or system) assigns a generic name for
OMs. Each class of OMs (i.e., controlled by a

Micro Menu) has a separate RECORD description.

WITHIN 	 DBA (project or system) assigns the object code to
a particular AREA (file).

PRIVACY 	 DBA provides separate locks for:

a) Update.

b) Retrieval (optional).

Data Subentry 	 OM subentry for object code should be defined to
correspond to host system requirements for man
ipulation of object files.

The user employs the SUBSCHEMA identifying the appropriate files (e. g., DLF

or common data base) on which the OM resides. The QP procedure(s):

1. 	 For a direct reference to an OM, the user specifies directly the fully

qualified name for the IPAD EXEC.

2. 	 For reference using the Macro/Micro menu:

a. 	 The user performs a Macro/Micro access procedure to determine

the OM data base residency name from the IPAD data bases for

ACCESS.

b. 	 This name is then used for other directives and procedures to

utilize the OM.

F. 5.1.2 Operational Module (OM) update: A functional operation is required to permit

user to update an ONE file. The OM file may be within a DLF, a generalan authorized

OM, or a project common OM. The user must supply identity of the file within which

the OM resides.

For addition or modification to an OM, the user supplies the ,dentity of the OM,

and 	the identity of the file containing all pertinent ON data (e. g., IDEFs, ODEFs,

OM 	code data to modify). For modification, the user supplies the identity of the OM

and identity of the OM associated 	data to modify (IDEF, ODEF, code). For deletion,

the additional information required is the identity of the OM and whether the option to

retain backup file is to be exercised.

390

APPENDIX F - continued

The OM file is processed according to user specifications. The user (if auth
orized) is permitted to change either a part or the entirety of an OM file. The QP
Procedure (using appropriate SUBSCHEMA for file concerned):

1. 	 The DA completely identifies the RECORDs he wishes to work with (includi
object, source, interface, etc.) to determine types of OM data.

2. 	 For addition:

a. 	 A QP INSERT directive is given for RECORD entering into the file
containing the OM data (object or source).

b. 	 MOVE directives are given for special types of DATA ITEMS

(identifiers, descriptions).

S. 	 For deletion:

a. 	 Use the QP DELETE directive with the specifications developed
in step 1.

4. 	 For modification:

a. 	 Use the QP UPDATE directive with specifications developed in
step 1.

b. 	 Use the QP MOVE directives to edit appropriate DATA ITEMs, or
use file name in the UPDATE directive to handle large volumes
of data (such as object code).

F. 6 Macro/Micro Menus

Within IPAD the selection and operation of the OMs is assistedby the usage of
Macro/Micro Menus, IDEF/ODEF, and display option data subfiles.

F.6.1 Macro Menu entry. - A Macro Menu is a collection of OM category names from
which a user chooses the type of design analysis he intends ,to engage in. The names
in turn are bound to successively more definitive names that enable specification of
the portion of design for which analysis would be made. The data requirements
of a Macro Menu are:

1. 	 Identity of Macro Menu names.

2. 	 Macro Menu directory which consists of two elements per entry:

a. 	 Name associated with the entry.

b. 	 Identity of next Macro/Micro Menu directory that corresponds to the
selected entry. The next reference may in turn be a Macro Menu.
Eventually the user will obtain the Micro Menu directory.

391

APPENDIX F - continued

F. 6.2 Micro Menu directory. - The Micro Menu directory is a collection of names and
names of options that permits the user to select an OM and the conditions under whichl
it will run. For each Micro Menu the data requirements structure is as follows:

1. 	 Micro Menu identity which is related back to its entry in the selecting Macro
Menu.

2. 	 Micro Menu directory, a collection of names from which the user selects
his desired analysis., /

3. 	 Micro Menu selection masks, a collection of combinations of selections of
entries from the directory. Its data requirements are for each entry:

a. 	 Micro Menu entry combination.

b. 	 Operational Module (OM) that corresponds to the combination.

After choosing from the Micro Menu, the user will have the selected OM with which
he will operate.

Macro Menus are satisfied by RECORD entry descriptions which contain:

1. 	 Specifications which identify the Macro Menus.

2. 	 Identifications of the strings of Micro Menu (or Macro Menus) identifiers
associated with a Macro Mend.

This arrangement permits the user to access a particular Macro Menu by its identity,'
and display the data base names of its subdivisions. This then enables the user to
directly access any of the programs or subdivisions. Table F8 summarizes the DDL
for the Macro Menu.

The Micro Menu requirements are satisfied within DDL by usage of RECORD
entry requirements that account for the following characteristics:

1. 	 A unique identifier for each Micro Menu.

2. 	 For each Micro Menu, there are as many entries as required to contain:

a. 	 The conditions for selecting an OM.

b. 	 The identity of the OM and its residency.

This arrangement permits both the selection of a particular Micro Mpnu and the
display of conditions necessary for direct selection of OM from .whatever file it,is
recorded on. Table F9 summarizes the DDL for Micro Menus.

392

APPENDIX F - continued

TABLE F8. MACRO MENU DDL

-CLAUSE

RECORD Name

WITHIN

PRIVACY

Data Subentries Identifier

Macro/Micro Subdivisions

CLAUSE

RECORD

WITHIN

PRIVACY

Data Subentry Identifier

Conditions

DBA Supplied Information

Generic name for all Macro Menus.

AREA residency for RECORDs (normally one for
each DLF).

Unique privacy locks for each DG (optionally the

same as DLFs).

-Identity of Macro Menu character type.

Two entries per Micro/Macro reference:

1. 	 Identity of Micro/Macro Menu.

2. 	 Data base name to use to locate the
subsidiary menu.

TABLE F9. MICRO MENU DDL

DBA Supplied Infornation

Generic name for all Micro Menus.,

Assignment to particular file (normally DLF).

Unique privacy locks for DG.

Identifies Micro Menu, character type, length

determined by DBA.

1. 	 Character types that specify the combination of
conditions that determine OM.

2. 	 OM complete identifier - the character type that
uniquely identifies an OM which may reside
anywhere m the system.

F. 6.3 Macro/Micro Menu operations. - The following data base management functional
requirements apply to Macro/Micro Menus associated with Operational Modules (OMs).

F. 6.3.1 Macro/Micro Menu construction: A functional operation is required to
permit the consttuction of'a Macro/Micto Menu. The QP Procedure using the SUB-
SCHEMA for the appropriatefile (DLF, UF):

1. 	 A QP INSERT directive to create RECORD occurrence.

APPENDIX F - continued

2. Successive QP MOVE directives to build the Macro (Micro) Menus. The
,DATA 	 ITEMs to be generated are part of specifictions summarized' in
previous subsections.

F. 6.3.2 Micro Menu selection mask construction: These are the functional require
ments which permit the user to specify the combinations of entries within the Micro
Menu which will in turn select an OM. The QP Procedure:

1. 	 The function is accomplished as part of the Micro Menu construction.

2. 	 If Micro Menu is o 'be updated to reflect additional options, then:

a. 	 A QP UPDATE directive is used.

b. 	 Necessary QP MOVE directives are used to complete the updating.

F. 6.3.3 Macro/Micro Menu display: A functional operation is required to permit
the user to display menus and successively track down to an OM. The QP Procedure:

1. 	 The user gives the qualified name for menu (with the identity of menu to
display) and specifies the subdivision data items and their IPAID names
(their menu locationd) for the QP DISPLAY directive.

2. 	 The user successively repeats step I until the desired OM level is achieved.
1II 	 I

F. 6.3.4 Micro/Macro update: A functional operation is required to permit a Macro/
Micro Menu to be updated. This operation is similar to both the Macro and Micro
Menu file construction functions but is used to update an existing program file. The
QP Procedure:

1. A QP UPDATE directive is given with an adequate identity of the menus to

isolate the RECORD occurrence desired.

2. 	 Necessary QP MOVE directives are utilized to update the menu.

3. 	 The user repeats steps I and 2 for as many subdivisions of menus. as re
quired, using the Macro/Micro access procedure if necessary.

F. 7 Task Control Sequence (TCS) Strings

The Task Control Sequence strings are special groupings bf TCSs. These TCS
strings are stored within various data bases either for direct usage by the IPAD exec
utive (on reference by the user) or for reference by the user to 6onstruct the command
sequences he desires.

394

APPENDIX F - continued

The separate TCS strings differ from the TCSs within the utilities by the fact
that these strings may combine operations from many different file sources (i. e.,
system files, DLFs, User Files, project, etc.). Indeed, TCSs from the utilities
file may be extracted. However the control strings supporting utilities are, in general,
of a Task Control Sequence Skeleton (TCSS) nature.

A specific TCS string is directly executable by the user without further specifica
tion of data. This string is normally constructed for repetitive usage on similar data
files. TCS data requirements are:

1. 	 TCS string identity, the name by which the TCS will be invoked.

2. 	 TCS Expansion, the data required to identify all the components of the string:

a. Textual data which identify for the user the function of the string.

b. The TCS string, each entry of which is a command in the sequence:

* 	TCS command, to identify the actual TCS.

* 	Data base command which identifies the specific data bases utilized
by the TCS commands.

* 	Absolute code reference, which identifies the object code (if re

quired) that satisfies the TCS.

An alternate type of entry can occur which will specify that the TCS is
to be yet another TCS string. Its data requirements are:

* 	TCS,command, the TCS string identity.

* 	The TCS string reference, identity of the TCS strings which will
satisfy the TCS.

3. 	 TCS cross reference which identifies all TCS strings which contain a particu
lar TCS as one part of their string.

The TCSS string requires specification by the user of some of the parameters
before execution can take place. The data requirements are:

1. 	 TCSS string identity, the name by witch the TCSS will be invoked.

2. 	 TCSS data subile, which contains the data associated with the TCSS. Data
requirements are:

a. 	 Textual data, identifying the function of the TCS to the user.

b. 	 Substitutable parameters which specify the data bases within the TCS
data fields for which specific data bases must be supplied.

395

APPENDIX F - continued

c. 	 TCS string - Data that identifies each element of the string. For each
entry, Type 1:

* 	TCS command which identifies an existing TCS that satisfies the
component of the string.

* 	Specific data references, i. e., non-substitutable data references

in the data fields.

For Type 2, where reference is again to another TCS string:

* 	TCS command - Identity of the TCS with the Macro string.

* Reference - Identity of the TCS string that corresponds to TCS
within the string.

3. 	 TCS cross references - Collection of identities of all TCSs that include
this TCS as part of their expansions.

The TCSs are handled by simple RECORD entry descriptions. These RECORD

descriptions are attached to any AREAs required by the DBA. Since TOSs are free
field, data descriptions are, likewise, relatively simple. Where TCS refer to other
TCSs which may reside in other files, the data name of the TCS storage is provided.
Table F10 summarizes the DDL specifications.

TABLE F10: TCS DDL

CLAUSE DBA Supplied information

RECORD Generic name for TCS RECORDs.

WITHIN Generates one RECORD type for each file. The TCS
will reside in (MDB, MDBTJ, PRF, DLF, UF).

PRIVACY Provide separate privacy locks or permit the AREA
locks to suffice.

DATA ITEM

Identifier Identity of TCS, character type.

TCS One per each TCS in string, implementation dependent.

TCS Pointer If TCS in above data field is expanded in another file,
the DATA ITEM provides the identity of the file in
which it is located.

Tutorial DBA may provide a textual tutorial field for a TCS.

The following functions provide for the management of TCSs within IPAD.

396

APPENDIX F - continued

F. 7. 1 New TCS incorporation. - A functional operation is required to permit the ad(
tion of new TCSs into data files. The TCS supplied by the user is assembled into a
TCS record and attached to the designated file. The QP Procedure:

1. 	 User generates the TCS source image either as a series of RECORD occu
rences using QP INSERT directives or generates the TCS as a local file.

2. 	 The INSERT directive is then used to move the TCS into the appropriate d
base.

Data base names must include the identifiers necessary to umquely locate
the IPAD data bases required (the names employed within DDL specificati
or the data identifying other DATA ITEMS.

F. 7. 2 TCS string construction. - Functional operation to permit a user to build a I
string from other TCSs.

In the user assembled TCSs, specific information is stored in the TCS string
subtile. If the user has referenced other TCS strings, the strings are incorporated
totally into the subfile if the referenced strings were originally stored in nonpermar
files, otherwise, only references to the permanent file are stored in the subfile. O
tionally, the user can include the referenced TCS within his own file (particularly if
is not a permanent resident). The QP Procedure:

1. 	 User constructs a file to correspond to the TCS Expander requirements f(
storage.

2. 	 User then employs QP INSERT directive to store the TCS into appropriab
file.

F. 7.3 TCS file update. - The functional operation to permit the updating of a TCS,

TCS file, or TCS RECORD within a file.

This operation requires the location of the TCS data files and the appropriate
TCS. For complete TCS operation, the function deletes, adds, or replaces. For
editing within the TCS, the user specifies the field and the modification which the
function then incorporates into'Tile. The QP Procedure:

1. 	 DATA ITEM modification:

a. 	 The user specifies the qualified name and sets up a QP directive for
the particular TCS.

b. 	 A QP UPDATE directive is then employed to obtain the TCS.

c. 	 A QP MOVE directive is used to edit the particular DATA ITEMs.

3C

APPENDIX F - continued

2. 	 Addition of TCS:

a. The new TCS incorporation procedure (Subsection F.7.1) is used.

3. 	 Deletion of TCS:

a. 	 A QP IF directive identifies the TCS(s) to delete.

b. 	 QP DELETE directive accomplishes the deletion.

F. 7.4 TCS file display. - A functional operation to permit the user to display a TCS
string. The function may be directed to display down to the executable utility level.
The function locates and displays the TCS data (within the appropriate file). The
operation can be directed by the user to display all expansions of a TCS string which
is made by other strings. The QP Procedure:

1. Specify a QP DISPLAY directive for all TCS occurrences within the file:

a. 	 For TCS only specify identifier items.

b. 	 For TCS and aU1 commands specify commands and identifier items.

2. 	 For recursive or cross referenced TCSs

a. The TCS names are used to continue DISPLAY directives.

F.7. 5 TCS file operational access. - A functional operation to permit the user to
designate a TCS file for execution. The identity must be as complete as necessary to
identify the file. The procedure is:

1. 	 Give name of TCS to IPAD Executive.

2. 	 The TCS Executive interfaces with TCS records via DBMS by DML operatic
to fetch the TCS string.

Alternately, a user can:

1. 	 Extract TCS from data base via QP.

2. 	 Give the MAD Executive the TCS file name.

F. 8 IPAD Utilities

The IPAD utilities, as executable code, have the same requirements for storage
and operation as IPAD OMs. The same DDL specifications and QP procedures apply
for handling them within the data bases. The RECORD descriptions are made part of
any AREA which will contain utilities.

398

APPENDIX F - continued

F. 9 User Files (UFs)

User Files are aso65 iated with a specific user and contain data of primary
concern only to the individual user in the performance of his particplar design task;
information on these files, however, maybe of value to other users. The basic data
requirements of this file ar6 to permit the user to appropriately organize the files to
be of maximal use to himself and to make maximum use of IPAD data base manage
ment facilities to support them.

User File (UF) data, requirements consist of three basic types:

L 	 File identity - The file identity is the name by which the user will refer to
a file.

2. 	 Privacy Data - The user specifies the privacy data to control the access to

his 	file. The data requirements of access authorization are:

a. 	 Privacy data for manipulating the contents of the file.

b. 	 Control data to permit operation on the privacy data itself.

3. 	 Subfile directory - The subfile directory identifies the various data files
which the user may wish to have contained within this file. Each entry in
the subfile directory contains three types of information:

a. 	 lidentity of subfile - Identity by which the user will refer to the informa
tion'within the subfile.

b. 	 Types of subfile - Identifier to indicate the type of data in the subfile:

ofDesign data
* TCS data
* Utilities
* User's own I/O data.

c. 	 Subfile data - The subfile data is stored according to the file type and
is entered into the subfile according to~the data type rules.

User Files are described by the DBA~as separate AREAS. As many AREAs are
allowed as necessary to support a user. User Files are exclusively oriented to a
single user and are provided for his convenience in utilizing the capabilities of the
IPAD system for operations that are not satisfied within the scope of the other files
(e. g., DLFs, MDB). The DBA, in general, at project initialization or when a new
User File requirement arises during the course of the project, will construct a gen
eralized AREA.that includes all types of data that the user may require. A UF may
include the same data types as the DLFs.

399

APPENDIX r- - continued

TABLE.F11: USER FILE DDL

CLAUSE DBA Supplied Information

AREA 	 Unique name to identify User File.

PRIVACY 	 In general, lock for PROTECTED.
LOCK FOR UPDATE and RETRIEVAL.

Table Fi summarizes the UF DDL for the UF. Controls and operations over

the file are exclusively the responsibility of the user.

Operations on the UF are those necessary to manipulate the data RECORD types
that the user has included in his AREA.

F. 10 User Task Trajectory (UTT)

The UTT files are used to automatically record the design activities of individual
users within a project. The recording of the information of the activity of the user
serves several functions:

1. 	 Permits the userts activity to be monitored by authorized personnel.

2. 	 Permits the user in non-continuous sessions to review his status in the
activities he has been performing.

3. 	 Permits an historical record of how an activity was actually accomplished.

In addition to the UTT files themselves, there are data requirements to permit
specifications for controlling the content and size of the UTTs. Data requirements
for specifying limits are:

1. 	 Length of retention for entry - a specification of how long the record should
be maintained after the activity is performed.

2. 	 Activities to record:

a. 	 Data bases used - only activity in specified data bases will be recorded.

b. 	 OMs or utilities used - only data of specific OMs used Will be recorded.

3. 	 User File to record - only specified individual User Files will have their
activities recorded.

Data requirements for UTT RECORD:

1. 	 User identity.,

2. 	 Activities entry:

400

APPENDIX F - continued

a. 	 Process used - identifies the OM or utility used.

b. 	 Data sources - identifies the data bases processed.

c. 	 Data disposition - identifies the data bases generated as a result of the
process.

d. Time of activity - record of date/time activity was performed.

All UTTs are combined into a single AREA with a unique RECORD entry per UF.
The DDL requirements are an AREA specification for all UTTs (Table F12). For each

individual UF, there is a RECORD entry (Table F13). To control size and conditions

of entry mito UTT there is another type RECORD entry (Table F14).

TABLE F12: USER TASK TRAJECTORY DDL

CLAUSE % DBA Supplied Information

AREA Unique file name for UTT.

PRIVACY Privacy looks are best handled on
individual RECORD entry.

TABLE F13: INDIVIDUAL USER's FILE UTT DDL

CLAUSE' DBA Supplied Information

RECORD Unique name for each user.

WITHIN UTT.

PRIVACY Privacy locks to permit:
a. 	 IPAD executive to enter information
b. 	 DBA/DG leader to delete/modify.

c. 	 User to review.

DATA 	 a. TCS

b. 	 Data Bases used.
c. 	 Time of record.

TABLE 14: UTT ENTRY CONDITIONS DDL

CLAUSE DBA Supplied Information

RECORD Generic name.

WITIIN UTT.

PRIVACY Privacy locks for: DBA to define conditions
for entry into UTT.

DATA a. Condition description needed by IPAD
Executive utility for recording.

b. 	 Condition description needed by IPAIS
Executive utility for editing.

401

APPENDIX F - continued

F. 10. 1 User registration. - A fmctional operation to permit the user's identity'and
association with project to be registered within IPAD. The procedure is:

1. 	 The DBA generates the appropriate RECORD entry for the user's TSA.
This may be generated as part of project initialization.

2. 	 The SCHEMA is compiled or recompiled.

F. 10.2 Task trajectory initialization. - Functional operation to permit an authorized
user to specify the conditions under whi~h task trajectories ill be recorded. The
QP Procedure (using SUBSCHEMA corresponding to UTT):

1. 	 QP INSERT directive is used to create RECORD occurrence for UTT identities.

2. 	 QP MOVE directive(s) are used to permit identifying information.

F. 10.3 Task trajectory display. - A functional operation to permit a user to display a
UTT can be displayed within specified limits, and its contents formatted for identifying
OMs, utilities, data bases. The QP Procedure:

1. a. The user uses the DISPLAY directive specifying the RECORD entry
type associated with the particular user.

b. If RECORD selection limits the DISPLAY are required, the user sets
up an IF directive to specify the DATA ITEM and conditions to check for.

2. 	 Alternatively, if a previous operation of report formatting had been developed
via QP REPORT directives, then a QP PREPARE directive is issued.

F. 10.4 Task trajectory entry. - This is an automatic function-to record user activity.
The function tests to determine if the conditions for recording are met. If conditions
are ,met, a TJTT entry RECORD is assembled and the UTT updated. An executive
utility gathers the data for incorporation into the UTT using the conditions described
by UTT entry conditions RECORD. It interfaces with the IPAD executive by usage of
a DML STORE operation.

F. 11 Task Status/Action Files (TSAs)

The Task Status/Action files refer to the collection, of communication files whereby
various members of the project communicate action and information requests amongst
themselves. The first part of this paragraph details the general requirements for the
files. The general data requirements of this file are:

1. 	 File Identity - Identifies the owner of file (e. g., ERB, DBA) and personnel
associated with it.

402

APPENDIX F - continued

,2w,' 	 Messages - a textual communication,

3. 	 Privacy - Identifies access conditions for:

a.' 	 Interrogation of file.

b. 	 Insertion of messages.

c. 	 Deletion of messages.

The 	general requirements of a message are:

1. 	 Message type - Identifies the message type as one of the following:

s 	 .a. Action request - Identifies requirements for action and person generat
ing the ,requirements.

b. 	 Action response - Identifies the response to the request now entered
into another task action file (e. g., DBA, ERB).

c. 	 Information request - Identifies a request for information from a user
but is not regarded as of the same priority as an action request.

d. 	 Non-action messages - Identifies information with no requirement for
response or action.

2. 	 Message ID - Identification appended to message whereby users can refer to
a message.

3. 	 Message - Textual content of message.

4. 	 Sender/Receiver ID'- Identifies the source o destination of message.

5. 	 Data file references - For ERB/ERBC and DBA files, this gjves the refer
ences to additional data files necessary for processing.

6. 	 Access statistics - This data is automatically recorded by the system for
action request messages. It is to record when the owner of the file en
countered the message.

All 	TSAs for a project are described within one AREA which includes separate
RECORD descriptions for each TSA required. Table F15 summarizes the DDL re
quirements for the entry. Tfe choice of a single AREA is made to minimize the num
ber of files necessary for a user to do his job. A separate RECORD entry type for
each distinct TSA'is made to make the access and display of pertinent data more
efficient (summarized in Table F16). Messages that are to be addressed to all mem
bers of a project are-recorded with the designation of ALL.

403

APPENDIX F - continued

TABLE F15: TSA DDL

CLAUSE DBA Supplied Information

AREA - DBA assigns unique file name for
all TSAs.

PRIVACY Privacy locks are handled on
RECORD entry level.

TABLE FI6: INDIVIDUAL TSA -

CLAUSE 	 DBA Supplied Information

RECORD 	 DBA assigns unique name for each DG,,
User, etc. that has a TSA. He also
creates the ALL set.

WITHIN 	 Each is assigned to a TSA AREA.

PRIVACY Lock 	 Separate locks for -DISPLAY, UPDATE, and
DELETE.

DATA Subentry Message Entire message, so that total contents

can be displayed.

Message Components Data storage specifications.
(subdivision of above)

Message Type Integer field.

Message ID Integer field.

Message Character type field.

Sender ID Character field.

Access Statidtics 	 Integer type field.

File REF 	 Identifies by name, 1ocation,of any refer
enceable file within IPAD (usually MDBU
or PRF).

The functional requirements detailed in subsequent paragraphs pertain to opera
tions that generally can be performed on Status/Action Files. The following subpara
graphs qualify, where necessary, the requirements for specific Status/Action Files.

F. 11.1 TSA definition. - Afunctional operatibn to permit authorized personnel-to
identify the conditions of access and manipulation on a TSA. The'procedure is:'

404

APPENDIX F - continued

1. 	 DBA generates DDL RECORD entry specificaton for each TSA.

2. 	 DBA generates DDL AREA specs for all TSAs.

3. 	 DBA, if required, generates an ALL TSA for project common messages.

For an additional TSA once data has been entered, DBA must modify the AREA
associated with the TSAs and recompile the SCHEMA.

F. 11.2 TSA interrogation. - A functional operation to permit the interrogation of a

TSA. -The user may employ optional specifications of types of messages to display
such as:

1: 	 All messages in file.

2. 	 Messages added since last interrogation (owner of file request).

3. 	 Requests for information.

4. 	 Non-action messages .

5. 	 Historical message records.

The operation results in the display of messages as appropriately specified by user.

If the user owns the file, the access statistics for messages requested will be updated.

The procedure is:

i. 	 An IF directive is used to set the conditions for display of TSA messages

as summarized in Table F17.

2. 	 A DISPLAY directive is then given.

The requirement to update access statistics is satisfied by incorporating (at the
end of the procedure) a QP that:

1. 	 Updates RECORD occurrences for designated TSA.

2. 	 Moves by an updating expression the new access statistic into DATA ITEM
field.

TABLE F17: SUMMARY OF CONDITIONS FOR TSA DISPLAY

DisplayLType 	 Conditions

All messages 	 Specific TSA record and the common TSA by ALL.

Unprocessed (Additional Specific access statistics field zero.

since last access)

Specific message types 	 Specific identifier for message type in message
type data item.

405

APPENDIX F - continued

F. 11. 3 TSA message purge. - A functional operation to permit user to delete an entry
from a TSA. User must provide identify of TSA file, and identity of message to delete.
The procedure is:

1. 	 If the message has no corresponding source, the message simply may be
deleted.

2. 	 If it has a source, a message is placed on the source's TSA file to indicate
that the action has been deleted but information is retained pending the corre
sponding approval by the source.

3. 	 If the deletion refers to a deletion response on another file, the deletion is
performed for all files.

4. 	 If the dele1er of the message is the originator, the message is deleted.

The 	following QP Procedures will satisfy the requirements:

1. 	 Straightforward delete - QP DELETE directive is used which identifies the
message by its message ID.

2. 	 Deletion of mutual message.

a. 	 QP DELETE directive for user's own TSA.

b. 	 QP DELETE directive for corresponding message.

3. 	 Proposed deletion of mutual message.

a. 	 QP UPDATE directive for RECORD occurrence.

b. 	 QP MOVE directive to set flags pending deletion.

F. 11.4 TSA entry (new message). - A functional operation to permit the addition of
a message into a TSA file. The user supplies the identity of the file into which mes
sage will be placed and the message type action request (required), and the a§sociated
file references, if required. The message is appended to originator's file (and to
receiver's file if copy is desired). The message and its associated information is
given an identity for further reference and the appropriate message fields detailed.
The procedure is:

1. 	 User designates RECORD type, (e.g., ERB, DBA, ALt) for INSERT.

2. 	 User develops message via QP MOVE directives for individual DATA ITEMS.

3. 	 For entry into more than one file, procedure is repeated with new RECORD
type.

4. 	 If copy is desired, steps 1 and 2 are performed for user's own TSA.

408

APPENDIX F - continued

Steps S and 4 can be repeated by saving all associated directives of step 2 and executing
them after changing the RECORD designation of step 1.

F. 11. 5 TSA entry (response). - A functional operation to permit the user to tie a
response to the originator's file message. The user supplies the identity of file into
which the message will be placed, the message type (same as new message entry),
the message ID to which this message is associated, and associated file references,
if required. The message is appended to requesting message. The QP Procedure is:

1. 	 User performs a QP INSERT directive to record the response for the re
questing TSA.

2. 	 User performs a succession of QP MOVE directives to completely specify
response.

For 	copy of response:

1. 	 User extracts created message onto temporary file.

2. 	 INSERT directive is used to record message on temporary file into own TSA.

F. 12 Presentation File/PRF/MDBU

Both the Project Review File (PRF) and the Multidisciplinary Data Base Update
file (MDBU) belong to classes of presentation files which have the same general struc
ture and requirements.

The 	MDBU file. - The data requirements of the MDBU file are:

1. 	 MDBU file directory - References to various data to be inserted into the
MDB. For each entry:

a. 	 Identity of design data.

b. 	 File reference - Two types are possible for file reference:

* Design data can be within MDBU file.
" Reference can be made to appropriate user file.

2. 	 MDB Update Data - The form of MDB update data corresponds to any of the
specifications of Section F. 2.

3. 	 TCS subfiles - TCS data that can be executed by the DBA to process and
display the design data. References to TCS within other file of the system
can be included or the TCS itself can be included.

4. 	 Executable code (Utility) subfiles - Additional processing code required to
process the design data is included either by reference or eutual incorpora
tion in the MDBU entry.

407

APPENDIX F - continued

F. 12.1 The Project Review File (PRF). - A collection of data and instructions where
by the ERB/ERBC can evaluate a design (or portion of a design) froha-ttie-§pdially
prepared data file.

The 	data requirements for a Project Review File are:

1. 	 Project ReviewFile directory - Collection of references to all design data
and associated TCS strings that have been prepared for the ERB/ERBC.

2. 	 Project Review data The Project Review data can reside either in the-	 I

Project Review file or be referenced to a User
'

File. Th6 data requirements
of the Project Review File are:

-a. - TCS string - The specific TCS string subtile required to process the
data for ERB review.

b. 	 Design data - Data prepared according to requirements of the utilities
incorporated in the corresponding TCS string.

c. 	 Utilities - Executable utility provided by creator of data file to support
its processing (if required).

The Project Review File (PRF) is composed of several record types bound to
gether in SETs. Table Fi summarizes the PRF as a file.

TABLE Fi8: PRF DDL

CLAUSE DBA Supplied Information

AREA Unique project name for PRF.

PRIVACY Separate locks to permit:

1. ERBC to revi6w and update.
2. User to add (but not delete).

The 	RECORD entry types consist of:

1. 	 TCS RECORD entry.

2. 	 Design data RECORD entry.

3. Utilities RECORD entry.

The SET entry (Summarized in Table F19) consists of:

1. 	 The previously mentioned three RECORD entry types as MEMBERs.

2. 	 An additional OWNER RECORD (which belongs to the PRF) that for each
occurrence has recorded the occurrences of the previously mentioned
types (Table F20).

408

APPENDIX F - continued

TABLE F19: PRF ENTRY DDL

CLAUSE DBA Supplied'Information

SET Generic name for PRF entry.

PRIVACY 1. Permit user to add.
2. Only ERBC to delete.

OWNER RECORD PRF entry identifier RECORD.

MEMBER RECORD 1. TCS.
2. Design Data.
3. Utilities.

The method selected here assumes all data to be in the PRF AREA. However,
a DBA can utilize the SET specifications to make only the PRF entry identifying

RECORD a part of the PRF, whereas the associated data may belong to other AREAs.

TABLE F20: PRF ENTRY IDENTIFIER DDL

CLAUSE DBA Supplied Information

RECORD Generic name.

WITHIN PRF.

PRIVACY Same as PRF entry.

Data Entry Definition for identifying PRF SET.

The MDBU structure has the same DDL specifications as PRF. These are sum
marized in Table F21 for the AREA, Table F22 for MDBU entry, and Table F23 for
the MDBU entry identifier.

TABLE F21: MDBU DDL

CLAUSE DBA Supplied Information

AREA Unique project name for MDBU.

PRIVACY Separate privacy lock to:

1. Permit Non-DBA user to add.
2. DBA to delete.

409

APPENDIX F - continued

TABLE F2Z: MDBU ENTRY DDL,

CLAUSE DBA Supplied Information

AREA Generic name for MDBU entry.

PRIVACY Privacy locks to permit:

1. User to add
2. Permit only DBA to modify or delete.

OWNER RECORD MDBU entry identifier RECORD.

MEMBER RECORD 1. TCS.
2. Design Data.
3. Utilities.

TABLE F23: 1DBU ENTRY IDENTIFIER

CLAUSE D3A Supplied Information

RECORD Generic name.

WITHIN MDBU.

PRIVACY Same as 1VIDBU entry.

Data Entry Definition for identifier of MDBU entry.

F. 12.2 Presentation file operations. - The following functions support the construction
and processing of files that can be accessed.

F. 12.2. 1 Presentation file definition: A functional operation to permit definition of

a file for presentation. The procedure is:

1. 	 Define AREA for file.

2. 	 Incorporate SET and RECORD entries necessary.

3. 	 Incorporate into project SCHEMA.

This procedure can be used as a subprocedure of project initialization.

F. 12. 2.2 Presentation file, data set construction: A functional operation to permit
a user to construct a data set for a presentation file. The QP Procedure (using appro
priate SUBSCHEMA to handle the data source file and presentation file):

1. 	 User, employs a QP EXTRACT directive to obtain data from his files,for the
presentation file):

410

APPENDIX F - continued

2. 	 If the procedure involves incorporating TCS, QPS, or utilities to display the
data for review, then the user performs the appropriate operations to incor
porate this data.

3. 	 Then the user:

a. Uses a QP INSERT directive to move data from the local data file
(created in previous two procedures) into the presentation file.

b. 	 Generates OWNER RECORD with entry identification.

This operation creates either the 1VDBU entry for a DBA to incorporate into the
MDB, or an entry into PRF which can be used to review the data.

F. 12.2.3 Presentation file usage: A functional operation to permit a user to execute
the presentation stored on the presentation data file. The-QP Procedure:

1. 	 The user uses a DISPLAY directive to scan the entries available for display.

2. 	 Then the user selects an identifying name of a SET occurrence to process
the data from the display.

3. 	 The user then instructs the IPAD EXEC to execute the TCS member of the

SET.

F. 13 Project Data Base Definition

This functional operation provides the user with the ability to define data bases
of the various classes of information that are to be made directly available to all
members of a project. Any selection of basic data types may be combined including
project general utilities,, design data TCS strings, and OMs. The DBA may declare
any such collection as an AREA. For the DDL specs, the DBA provides, via
RECORDs, an identity by which the file is known, and the type of data it is to con
tain. The general procedure is:

1. The designated collection of data is encompassed in a single AREA for the
project. The AREA description is produced at project initialization and in
cludes all RECORD descriptions necessary for the common project file.

2. 	 The incorporation of the data into the common data bases is handled accord
ing to their type in the subsequent paragraphs.

Once the project data base-has been initialized, the DBA can extend the descrip
tion of the data file, ff required, by editing the SCHEMA and recompiling. It is recom
mended, however, that the single file be described to include all common data types
for the project-since the corresponding object SCHEMA will occupy very little space
and will reduce the necessity of recompilation of the SCHEMA.

411

APPENDIX F - continued

F. 14 IPAD Support System Data Bases

The support system data bases are the responsibility of special system DBAs
who build and maintain the IPAD system itself (rather then project data bases within
IPAD).' It is the responsibility of these system DBAs to construct the various types
of c6mmon data files that are needed by projects and their project DBAs. Table F24
lists the types of'support system data bases available to all users of IPAD, and the
types of access authorized. Section F. 15 discusses the m'thod of integrating these
databases with the project data bases via DDL specifications. The common data
bases are contained in a single AREA. The other data bases are separate AREAs.

The Multi-Project Directory requires the DBAs to enter pertinent information
into a Support System Data Base for that purpose.

TABLE F24: IPAD SUPPORT SYSTEM DATA BASES

Data Base Type Availability SCHEMA Type

Multi-Project Directory Users and system AREAbelongingto Support
System (SS) SCHEMA.

Common OMs Users - retrieval RECORD entries per
System - retrieval/update SS AREA.

General Utilities User - retrieval RECORD entries per
System - retrieval/update SS AREA.

System Message Files User - retrieval SS AREA.
System - retrieval/update

SCHEMA/SUBSCHEMA/ User - retrieval SS AREA.
QPSS Support System - retrieval/update

F. 15 DBA Support Facilities

Additional data base and data base management functions can be introduced to
facilitate construction of the required interface to employ the capabilities of DBMS
and QP. These functions include:

1. 	 QPS data - This type of data represents specific sequences of QP direc
tives which can be cataloged and stored. Their purpose is to permit data
base activity to take place by the single usage of a PERFORM directive

412

APPENDIX F - concluded

rather than the actual repetition of the step-by-step procedure required by
the DBA. The QPS data includes both directives and identification of speci
fic data bases.

2. QPSS data - This type of data is the more general form of the QPS. In
general, the directive sequence is fixed and is applicable to many data
bases or types of data bases. The DBA employs QP or a QPS to place the
QPSS within the data bases required, where they will be available for ex
pansion into specific QPSs.

The format and, operations performed in these data types are similar to
those performed with a TCS, including their incorporation into various
files. However, their actual requirements and conditions for usage are
dependent upon the requirements of vendor supplied QPs.

3. 	 SCHEMA, SUBSCHEMA - This type of data base can be used to incorporate
the SCHEMA and SUBSCHEA (source DDL) within IPAD data bases so that
the operations on them can be performed via QP and DBMS. This arrange
ment also gives the DBA greater privacy control over various portions of
SCHEMA and SUBSCHEMAs. Not doing this provides protection only on a
permanent file within the host system.

The DBA can integrate support system data bases into his project data bases
by copying the portions of the support system SCHEMA into his project SCHEMA.
This permits the contents to be used in conjunction with other project data bases.
However, the DBA would have no authority to modify the contents of these files.

F.16 References

Fl. Jones, J. L: CODASYL Data Base Task Group Report, (no report number),
Conference on Data Systems Languages, April 1971.

F2. 	 Semegran, S. D.: Query-Update Version 2. External Reference Specification
T038:2.0 - E013"3.4.1, Control Data Corporation, August 4, 1971.

413/414

