Q- 13235¢

Publicly Released
February 10D, 1978

_J
Part [-Final Report, Tasks 1 and 2
FEASIBILITY STUDY OF AN INTEGRATED
PROGRAM FOR AEROSPACE VEHICLE DESIGN (IPAD)
Volnme 1V: IPAD System Design
D6-60181-4
September 21, 1975
(YASR-CR-132394) ¥E ASIBIJI‘;-]?;;?EEKE}M
INTE 5TUpY
DESI%A&{?D PROGEAM FOR AFROSPACE VEHggL.gN N78-16014
DEST on (FfiaD:JL.R VOLEME L: IPAD SYSTEM g
“ epor {Boein Com -
Airplaze Co., Seattle) 36799 Hc‘“ifé”'ﬁl bnclas
e E R0T 63/02 02568

S

v
CAY ’
LEE \

“i;;*'._’- ’ 3y N

A T 4 L
o «f’f:tha}‘.

it s

Prepared under Contract No. NAS1-11441 by
Baeing Commercial Airplane Company
P.O. Box 3707
Seattle, Washington 98124

£ for
o
;m? o Langley Research Center
Sy ATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Db
i
e
Y

PO
\h".
Fom W

1.

Aeport No. 2. Government Accession No. 3. Recipignt’s Gatalog No,

. Titie and Subtitis) 5. Report Daie
FRASIBILITY STUDY OF AN INTEGRATED PROGRAM FOR AEROSPACE September 21, 1973
VEHICLE DESIGN (IPAD) §. Performing Orgsmizat.on Code
VOLUME IV - IPAD SYSTEM DESIGN ’

. Authoris) B 8. Performing Orgarnzation Repart No.
W. Goldfarb D. D. Bedhed L. 0. Anderson D6-60181—4 -

L. C. Carpenter §. D. Hansen A. S. Kawaguchi

10, Work Unit No.

is]

. Pe-forming Organizztion Name and Address

Boeing Commercial Airplame Company
P. 0. Box 3707
Seattle, Washington 98124

11. Contract or Grant No.
NAS1-11441

13, Type of Report and Period Covared

12,

Sponsoring Agency Name and Address
Contractor Report

National Aeronautics and Space Administration s — —
Washington, D. C. 20546 » ©ponsoring Agency Loce

15,

Supplementary Notes
Project Manager, Dr. R. E. Fulton, Structures and Dynamics Division,

NASA Langley Research Center, Hampton, Virginia 23365

&

. Absgiract

Volume IV of the Boeing report on Task 2 of the IPAD feasibility study is a
deseription of the computing system design. The requirements which form the
basis for the system design are discussed. The system is presented in terms of.

a functional design description and technical design specifications. The
functional design description gives the conceptual organization of the system.

The technical design specifications give the detailed description of the system
design tusing top-down structured programming methodology. Human behavicral
characteristics, which specify the system design at the user interface; security
considerations; and standards for systém design, implementation, and maintenance
are also part of the technical design specifications. Detailed specifications of
the two most common computing system types in use by the major aerospace companies
which could support the IPAD system design are presented. The report of a study
to investigate migration of IPAD software between the two candidate 3rd generation

host computing systems and from these systems to a 4th generation system is included-

in this volume.

7.

iy Yeords !S..:gge:!rd by Autheris)) 13, Dustiibution Statement
Integrated Design System
System Design Specification
Online Computer System
Data Base Management

Stored Data Definitions

Y

froumiy CShoswd qoltmseeerty S0, Secunty Caai o s g 21. Mo of Pares 22, Prss’

Unclassified Unclassified 367 L

R] T

e

[D

[N

. FEASIBILITY STUDY OF AN INTEGRATED
PROGRAM. FOR AEROSPACE VEHICLE DESIGN (iPAD)

Volume 1A

. D6-GOIBI-1 A

Volume 1B

PR —
-y

D6-GO181-1B

e —

Part |—Final Report, Tasks 1 and 2

Volume Il
The Design Process
D6-60181-2

Volume I§]

Support of the Design Process
~D6-60181-3

Volume IV
TPAD System Design
D6-G0181-4

Vaolume V
Catalog of IPAD Technical Program Elements
Do-60181-5

Part El—Final Report, Tasks 3 through 8

Volume VI
*1PAD System Development and Opetation
D6-60181-6

Volume Vil
IPAD Benefiis and Impact
D6-60181-7

Summary of IPAD Feasibility Study

Concise Review of IPAD Feasibility Study

ORKHNAI;P
OF poon QUAGE i}

SUMMARY

Volume 1V describes the IPAD system design. The design is
based wupon the reguirements identified in the aircraft design
process and computational regquirement studies documented in
Volumes II and IIT respectively. Tables 1 through 4 summarize
the relationship of these requirecents to the IPAD system design
features, the IPAD sottware requirements and host operating
systemn requiremaents.

These requirements vreflect the user's environment. His
tasks are not completed in a day or with a single run on the
computer, His interface with the computer should be with
language and devices that give him capabilities he needs without
loading hime with jargon and irrelevancies. He works in 1large
organizations where free comrmunication is essential. But he
also works with vast volumes of data that must be controlled and
kept in a high state of integrity. The organization he works
for has a vested interest in his work and an interest in
maintaining some security on the results of his work. At the
same time, the user is a creative individual and reguires some
privacy for thought and invention. The product he is designing
is highly complex and he wmrost work under rigid schedules.
Reliability of the computing system and the data base is
critical. These factors are dealt with ir the design of the
IPAD system.

The IPAD system is designed to manage data on the project
level, Project data and application software are treated as an
e2ntry 1in the data basa. The organizaticn of application
software into sequetces +to perform some particular task is
supported by executive type routines. The execution of module
sequences and the handling of data are supported by the host
operating system and the IPAD data manager. DPersonal terminals
atre the oprincipal interface anrd dialogue language is the
principal means of communication.

Top-down structured programming is the design method. In
this method, the system is systematically refined from the most
general statement of requirements to the nmost specific, The

IPAD system design was refined to where host system hardware and
operating system software, not yet specified, began to have a
major impact.

Human factors, security, and standards were studied in
detail and recommendations are given. A survey was made of
manufacturers of large scale computing hardware to obtain
performancse and size characteristics of basic hardware
componernts.” The results of this survey were utilized to

formulate a CDC 6600 (CYBER 74) and an IBM 370,168 conflguratlon
adequate for a large aircraft design project.

The accaptance of applicatior software already in existence
and software that will be developed independernt of IPAD system
standards was studied by Control Data Corporation. They
recommend in their report, ircluded as Appendix C, development
of a machine independent FORTRAN langquage into which the
software can be translated.

In this volume, answers to task gquestions asked in tha
original RFP from NASA are answared. They are followed by a
detailed description of the bhasic design requirements. The
design requirements are then +transformed into a functional
design that gives a broad diagramatic and conceptual overview of

“the systenm, Finally, detailed design specifications of the
system are given.

Table |

IPAD Design Requirement—Continuity Over Task and Time

CONTINUITY OVER TASK AND TIME

DES1GN REQUIREMENTS

IPAD SYSTEM
DES1GN FEATURES

IPAD SOFTWARE
REQUIREMENTS

HOST OPERATING SYSTEM
REQUIREMENTS

- o

Continuity of day-to-day
work

® Sybtask interruption and
restart

Unique identification of
subtasks)

Saving/ retrieving subtask
library

Subtask setup

User log off with job
executing

® Time sharing system

— multi tasking
= relationship to IPAD executive™

== allowable termina) disconnect
during execution

® Permanent file system

Flow of information
throughout the user
community

® Community library and its
associated support routines

Data display
Information retrieval
Explicit/Implicit 1/0
Unique names
Qualifiers

Data management discipline
and conventions

® Permanent file system
@ Data management utilities

Project plans and progress
related to the user's
day~to-day work

@ Subtask setup and termination

linked to project plans and
reports

Connecting user log-onfoff
to plans and reports

Continuous user capability
while migrating across
computers

® Machine independent high
level design

High level code in the IPAD

system written in machine

independent source
statements

® Compiler for a machine independent

language

Table 2

IPAD Design Requirement — User

. Interface

USER INTERFACE

DESIGH REQUIREMENTS

Parsonal Teminal

IPAD SYSTEM
DESIGN FEATURES

IPAD SOFTWARE
REQUIREMENTS

HOST OPERATING SYSTEM
REQUIREMENTS

—_—

® Unique usar 1D for each
parson

® Support for typlcal terminal
activitien

® User ID tables

®iogic to support tarminal type
actlvities

e —————

@ Tima sharing oystem luppol:tlnu the
appropriste type of terminal

Functional Capabilities
® [afine Varlables

Enter codo and data
Transferring Infomatlon]

within {PAD

Sonding Informatlon
outside iPAD

Edit code and data
Purge Information

Compare information

Conslruct jobs for
exocution

® Execute jobs

L]

Display Information

Find Information {

® Loarning about [PAD

e Dafining library entries or)
varlabies

® Creating library antries

» Disposition of library
entriss

« Vodifylng 1lbrery antries
@ Disposition of 1lbrary
entries

@ Displaying results

Conatruct an OM sequence as
a Job

® Exacyte o Job

® Displaying results

® Searching through the
iibraries

® Dlaplaying results

® §sarching through the
1lbrartes

® Learning about 1PAD

® Executlve and data management
software

® Toaching software

© Execytive and data mensgemsnt
softwars aupport

@enaral Control Commands for

@ Pauning
» Contlnuing

© Log-off ,
® Log-on

» hes|stance

Intorrupted statos

iPAD log-off

* Operating system lag-on,
IPAD log-an

® Learning about 1PAD

* Oporatlng system log-off, }

@ Expcutive loglc working with
the oparating system

© Subtask setup and Interruption
logic

® Teaching software

® foll cut, rall in controllable by a
us®r progran

@ Temminal Intorface for Yog-on and
log-off

fiandiing of Information
insida IPAD 18 invisible
to the user

* Storad data definition

Coding module,operational
moduls, and Job
organization

o Support for the storod data
dofinition and automatic
Vibrary entry handling for
constructed jobs

& File assigomants changeable by a
user program

Human Factors

® [nteractive dlalogue emphasis
with halps to aid usars at
varlous |ovels of
proficiency

® Intoractive Toghc in the code

® Monplogua, dialogus znd teach,
modes

® [nteractive support to the user

Propar rospones time characteristics

2
o 63
2=t
4=
2

iy
R
g1 HOV

Table 3 IPAD Design Requirement — Privacy, Security, Control, and fIntegrity

PRIVACY, SECURITY, CONTROL, AND INTEGRITY

[PAD SYSTEM IPAD SOFTWARE
DESIGN FEATURES REQU IREMENTS

HOST OPERATING SYSTEM

DESIGN REQUIREMENTS REQU IREMENTS

Private and public data

) ¢ Subtask library e Data management support ® Permanent file system
regions -

for this library structure i
@ Conmunity library ® Data management utility routines

Protection against illegal ® Data access Permission codes | e Access code checks o Permanent file system with security

“access to information] Commgnd access permission ® Permission code checks Tackout = . oo
codes
o Security contirol of access ® 3pecialized procedure for @ Central memory readfwrite protection
codes setting codes
Assurance of the intearity @ Unique names for all library] e Checks for name unigueness # Permanent file names with qualifiers
of the data base entries and version numbers
@ Mandatory version numbers @ Yersion number generator
for all altered library
entries
© Automatic qualifier generation] @ Qualifier generator
to record the oriain of
the data
o Trace of information leaving ® Keeping records for all
IPAD . information leaving [PAD
® Protection against ® Warning about the
. self-inflicted accidents implications of certain
actions
¢ Setting of permission and @ Provision for handling such

access codes codes in project plans

e Controlled relationship e Ability to control subtasks
between the project and on the basis of information
its subtasks in the project plans

e

g1 HHVd TVNIOTHO

RIITVAD W00 J0

Table 4.

IPAD Design Requirement—Reliability

RELIABILITY

DESIGN REQUIREMENTS

{PAD SYSTEM
DESIGN FEATURES

.

System unreliability
negligible compared to
user's unretiability

® Recovery of subtask Vibraries
after a system shutdown

¢ Recovery of the entire
community library after a
sysiem shutdown

e Automatic incremental dumps
of the system during
normal running

® Full community library dump
capability

o Intermittent errors of smal}
effect infrequent

¢ Small error recoverability

IPAD SOFTWARE
REQUIREMENTS

HOST OPERATING SYSTEM

el s —

® Logic to recover a subtask

library that was interrupied
out of IPAD's control

® Logic to recover a community
library directory after
a system shutdown

® Cantrols for making
incremental dumps at specified
intervals

e Records of when dumps were

taken

® Check sums allowing correction

and all files associated with it

Recovery of all permanent files after

a system shutdown

Incremental dump feature for the
permanent files

Permanent file dump capability

Fault detection hardware

Check sums in all data transfers

REQUIREMENTS

Recovery of the subtask library file

4.0

5.0

6.0

ANSWERS TO TASK 2 QUESTIONS 1,2,3,12, and 13.......

DESIG‘I REQUIREMENTS. * S % P& S B AT S EPY S RSO S AS e SEE e H RSN
3.1 Continuity Over Task and TidmCeccesreasscassssan
3‘2 User Interfacel #® 5 % & 8 B 8 & B A B S E S S AN St d S eeow

3.3
3.1*

DEFINITIONS AND ABBREVIATIONS.aeescscmcasannscnsans

FUNCTTIONAL DESIGN DPFSCRIPTION. eessecccosnvncasaasans
Primary Systel FeatlreS...esessacssssnsssseana
Hork RelationshipS..ececersceeccsancancnannnanns
Jser InterfacCleieeeressascsesensnnvonssanssases
Personal Terminal.seieencscssancscacsan
Command FloWeiesevsssonncnnsassansansnns
Sign OD tO IPAD.uwescsosansnossnansnasa:
Communication With IPAD.ecceecccccanecss
Sign Off from TPAD.eecececosossnsmasasas
BAtCh ACCESSiuersasernsssssssnnsnnnvanss

5.1
5’2
5-3

[J8;
s 4
-y

EC
-1
2
3

o g

ORKHNAL

OF Poop LAGE Iy

Qu,

CONTENTS

ALITY

_INTRODUCTION--c-----a-.cc.--..--.l...--..“..a--ﬂ..

Privacy, Security, Control, IntegritvVieeecssces

Reliabilitylnolt.o.oa....ooo.o..-.u-.--.o.----

5.3,

L *

S HOEORURE RS RURE NG RT NN RS R R
[]

UMD &880 80 wwwwil
.

HNICAL DESIGN SPECIFTICATIONS..cceessscssannansean
Design MethodologYeeeseerassnsvsnsnnens
Design SpecificationS.eeeecancanscsenses
Hember SpecificationS..scicecacsscannsas
Design OrganizZatioN..eeecaccensssensaces
IPAD EXeCutive..ssescssssvsscscnsennens
Data HaAnagor.eeeceesccassessoncssosssnsan
Data StrUCtUreS.eeeerescnncsnscsanuannnn
Directory Entry SpecificationS..eesceces

Systen
Systen
Systen
6.3.1

Library EDtrieS.ccescccccscscencesnannes
Library VariableS.c.eccssccennsransesns

Library DictionarieS.cseceacanssennscns

Library Entry Naming CoTventionNS.e.cee.
Ob Concept......l“‘.‘C.‘..'.I.I-l..ll.ll

Page
1

3

8
9
14
18
18

19

22
22
25
27
27
27
28
28
31
31
31
31
32
32
32
35

Entering Coding ModuleSiseecscecssacnaa: 36
Building Operational ModuleS..ccevcanas

Constructing JobS.eeeceesacesnsonsanses

Execution of Jobs-o.--.o...’.u.a..ba.q.

Library Entry Specifications

4 Base Nanagdelent.eeesccccncorsassssesassasss
Privacy, Security, Control, Integrityeeceeceasa

36
37
37
37
41

45
45
48
63
63
64
66
69
70

ix

7.4

h
.
W
.
-~

[-
::cnmmchm JIU'I|U1U'IQ :P-{:D&r-l‘-“g

b e »

LI S

t—*mmo\mmmc\o\mmc\mmmmmm
-

e

-

. »

0

a

Logical Organization of IPAD Libraries

in Datd BaSCewecsesecessnsvecacassscnnaa 19
FaCtOrSeeeceseecnscasssasanscscssassancasns 83
User Behavioural CharacteristicS.eeces.. 83
ResSponsSe TiMeS..ievcessasscsevscascnnnsse 85
User ClassificatioNe.sseasccsnsssanseass 88
Han-Machine Dialoge.ceseescasnansasaasss 90
Errors and FailureS...cceevsscssvassaas 93
System BalaNCResesceevesccsssnssnnsecase 94

ulty.-‘llii-....IC...‘-.....Il.........ll. 94

n
.1

4

3

4

5

6

r

1 DefinitionS.sssescecnsccssansvncsoacens 94
.2

3

i

nd

1

2

.3

4§

IPAD Security InitializatioD.ssessveses 97
Accesses and BeqUEesStS.icesssssesvsessases 100
Privacy and Integrity..... ceemmaseaanan 102
8CdSesscecsscsencanncsannsssnsssoasasneas 102
IPAD Design StandardS...ceceeeecsecsseeses 103
IPAD Implementation StandardSeecsssssss 104
IPAD Maintenance StandarTdS.cemeseseasssss 106
IPAD Application StandardSiescessasnesa 107

guage RequirementS...ccecessscssscssnssesess 107

SYSTEM SPECIFICATIONS.c.eeecaesscssscnovasnsss 109
Vendor SULVeYesseoannescacsesccnnsansenssssssnas 109
Hardware Characteristics and Capacity

RequirementSieceeccssencsasassasnssrsunsnsessas 112

7.2.1
T.2.2
7.2.3

HOoSt SyYSteRecenccscnascnsacnnaannensanes 112
Terminals-..0-0000..0'..-..-..--.:--.-. 118
Nt WOTrKkSaeneasuvesanunssseancsnsnnansasase 120

IPAD Host Computing System Using a CDC 6600

(CYBER 7“)o---o-----oo.aoaoon--uwo-ooo.o-o--o- 121
IPAD Host Computer System Using an

IBM 370/168ccccaccccansncannresasesnascscsnanasas 124

REFEHENCES-’t...t..‘.'....!.II--..-..l..‘.‘b.l..'l.l..t.'...l 127

APPENDIX A - DETATLED SYSTEM DESIGN SPECIFICATIONS..e seessesea Al

LEVEL ONEQOQ-OQOOOOCOIIOl-.lc.----.--.a-.-!..o.---t--c.. A7

LEVEL THO
Sgate

E
G
H
I
K

K g O wm

Subtask Setupecccesveccanseacannsscanenas A18
Subtask ComBAnd MOG@ueesecsccanssasvosees 221
Learning About IPADee.cincescrccncsnssoss A26
Sezarching Through the Libraries..veece...pn3l
Creating Library ENtrieS.ieeseceesvesasees A3S
Modifying Library ErtrieS.ccseecscceseess A3
ConsStructing @ JoDesewececosstacsnnssanss ALL
Executing 4@ JODbeevecennensccscasanencennss Add
Communicating with a JObueavasesaceasanee AT
Displaying ResultSecesiceassvanccnnsonnas ASQ
pisposition of Library EntrieS..e.ceeecese... A54

- Snbtask Step Controlled AbOrt.icisvascssees
- Subtask InterruptioNeececcaccccsesrsasseen
Subtask TerpinatioN..ceesccccccensccacssnse
- Defining Library Entries or Variables....

0 O
H

LEVEL THREE

S5tate E.A - IPAD LOg*OD;--..-.---.-;-..-.....--....
E.B - Re-Activate 01d Subtask..sevesacssrosas
E.C - Create New Suhtask.icieeeasccnssascssnas

F.A - Request User Tnput and Interpret
CONMANGe accouausasnsesscocssnsanssenvonsns
- De-Activate Subtask StepPeeeicacesecccaea
- Re-Activate Subtask StepP.eecciecsciconesaans
- User Controlled SeaTCheseccesecserasaan
= System Controlled SearChececessssseaccase
- Construct Library Entryeeecceunasesas vaaa
- Connect User with Data to be Modaified..
- Perform Modifications with DialoGe..a..
- Determine Available Job CormponentS.....
Construct an OM Library EntrV¥.eeecececees
~ Construct a Job Library Erptryecsscesece.
- Establish the Reguired LEFK List........
~ Check for LEY in LibrarieS.sessccesssas
- Prepare JOb for EBXeCutioNieeciascecsesosa
- Tnitiate ExeCutiONusececcesscesaanacans
- Sublask Step Fxecutifnge.isceoeceacessses
- Purge @ CL FNtTYecoseesccenscnanansanssns
- Construct Dictionary EntCVeeececsseccasrase

&] L]) L) * » . - » [] » . . - .
At o me QW B e0E 00w
1

FO@ 22X 2R MBI "I E e

LEVEL FOUR

APPENDIX
B.1

APPENDIX

State - Enter Coding Moduleeeveececconsnacses
- Enter Data Set.eceecsecenncsvsnnasssancs
~ Fanter Stored Data DefinitioONesessssss
— Enter DictionaAryY.ueeceacccccssonssans
Enter Data Control Datlecevssoscscsesass
- Modify CMue.cneuecerieennnsanennas e
~ HOdify OMuceeesevoncanvonsaannnassans
- Hodify JODbivacsecensnssocsccncannsans

- MOdifY DS--...l.o...o..-.o-.-.-.---l-

. Ld LI
. * LI

AR EI RN A=A
L]
w000
[]

DO LEY oW
|

.
L]

B — DETATLED PROBLEM SOLVING MODEL.sesescesscacnsans
GEWERAL WORK FLOW e euceereessvsonvsonossnsancansanunas
"PLAN" NODE DEFINITIONS..ecsnessecnssansncnsoaccsnns
"PREPAREY NODE DEFINITIONSe ecvecscanasrassnsssssens
PTAODIFY" HNODE DEFINITIONS.uceanevsesevaanssorsccannes
"HORK™ HODE DEFINTIONS . eieeneacasssessnonsnasccsnsns
"REPORT" NODE DEFINITIOFS.acesasnascascsasssvsncens

C ~ MIGRATION OF TIPAD SOFTWARE.eceesesoccansnnncanas

A58
A60
A63
A66

A69
A7l
A74
A77
A77
A82
A84
A87
A90
A%4
Al00
Al04
All0
All3
All7
Al20
Al22
Al25
Al28
A130
Al32
Al36

Al4d0
Al44d
Al47
AlS5l
Al55
Al58
Als60
Ale2
Alée4d

Bl -

Bl

B5
. BS
BI1l
B11
B14

Cl

ILLUSTRATIONS

Figure Page
1.1 Effect of Information Volume INCIeaSCeeesceescessss 1

3.1 Organizational Hierarachy of Product Desigheeeses. 10

3.2 Project Growtheeeceeenssacscensescoesncosnnenmnnesnewss 11

3.3 Examples of Projects, Tasks, Subtasks and Jobs.... 12

3.4 Phasing of Design LevelS....ceersccseccscccccsseaes 13

3.5 General Work FloW.iiessesonssesacascanssncsssnsnnes 15

5.1 Representation o0f Project PlaNSessscesscovcesensoes 23

5.2 Characteristics of IPAD Community and Subtask

LibrarieS.---.-...--.---...----.---------.-.....-c 25

5.3 Data Base and Work Relationships in IPADe.ececesease 24
5.4 IPAD System ComMand FlOWeseeessvssacesssasssssacas 20
5.5 Sampl> Job OrganizatioNe.iececevecscenccasnaanssans 34
5.6 Segquence of Job DefipitioN.issveevsccacecnnnneneass 35
5.7 Steps in Job CONSLTUCtiOReeeacenecenacnnasnnnennas 35
5.8 Data Base ContentsS....c.eieecnnnrarncenneavennennas 33
5.0 Relationships of Implicit and Explicit I/0

to The Data BaSGeearereaensarerarrsinncnnncananes 39
5.10 Attributes of Explicit and Implicit I/Ceevacacenne 40
5.11 Example of Explicit and Implicit I/0

Gperations..41
5.12 Stored bata Definition IllustrationS.eececeecnanes 4o
6.1 Structured Programming Diagrams.................m.46
6e2 IPAD System Design Level 1 Transition Diagram.....49
6.3 IPAD System Design Level 1 Transition

Didqraﬂl (COﬂt-)-...----..n..o.on..4....4;...-..... 50

xii

6.9
6.10
7.1

7.2

APPENDIY &

APPENDIX B

B.l

IPAD

IPAD

IPAD

IPAD

Data

Page

Systen Member RelationshipSecessscssacceassos 63
Prototype Library Entryeececcesseaccsscacsnscs 49
Data Base Library OrganizatioOle..icescccesaees gp
Library Organization....,...,................ 81

Set Library Entry OrganizatioN..cceececeeccecess go

Interactive Response Times---..-........-.-...---. 87

Response Time DeviationSceeccecescescsasconcsacansas 88

IPBD HOSt SYStem - CDC 6600 (CYBER 7’4)-----...--00 123

TPAD

Treae

IBAD

H{)St System - IBH 370/168 ----------- "m asw e s 126

Structure DiagraMuieceesceescesvesenencansnsans A2

System Design Level 1 Transitiom Diagram..... 45

IPAD System Design Level 1 Transition
Diagram (Cont.).....‘..I-...I-.III..-....-....--I. A6

General HOrK FlOoW...e.eeeesoseavearsosocsosnnscnanae B2

Organizational Hierarchy of Product DeSigRe.....ea.. B4

An

An

An

An

An

An

An

Expanﬁion
Expansion
Expansion
Expansion
Expansion
Expansion

Expansion

of

of

PLAN . evasoennsaosusssasanaancances BE
PREPAREe-essnsssasssssassancsannaa BO
MODIFYeueuuaaanssoossasenncsncasane BI2
WORKeenoauuarooroesnsesasncncacnns B13

REPOHT..-".--....B."I.....-..I.. Bls
the Total Work Flow MHodelesecesess B17

the Total Work Flow tiodel. {(contd.) B18

TABLES

Page
2.1 IPAD Development RecommendationS..eeececcsecc. 6
6.1 IPAD System Design/Volume IIT
Requirements Comparison SUNMACYeseaesscsancscs 62
6.2 IPAD Systém Member MappPiDgececcescccsassssass 65
6.3 - IPAD System StructuUreSiecescccscacasscsanaces 74
7.1 Comparison of Vendor HardwarC.e.ececesseaseseseasllil

xiv

1.0 INTRODUCTIOXN

Integrated systems have generally been developed to support
a technical analysis requirement without consideration for the
information control and communication <regquirements of the
project organization. Within large project organizations, the
communication of information Dbetween specialized groups is
essaeantial. The critical factor in communication is +the volune
of information being controlled, transmitted or interpreted. As
volane increases, response times get longer, reliability
deteriorates, control diminishes and information becomes more
obscure.

Longer _Response__Tims - In figure l.1, response time is plotted
agaipnst volume of information for several transfer rates. There
is a band of respouss times that is effective for a given
activity. Response times above this band result in informaticn
being trarsferred too late to be wuseful to the receiving
organization. ’

Upper 1imit of acceptable
response time

Transfer Rate 3

Increasing
Information
Volume

Transfer Rate 2

Transfer Rate |

increasing Response Times

Figure I.1 Effect of Information Volume Increase

Besponse time 1is dependent upon the device used. For
example, if it were necessary to transfer a thousand order ten
percent populated flexibility matrix by letter or report using
a human typist, it would rTequire between fifteen and thirty
hours at a steady typing speed of fifty to one hundred sords per
minute discounting errors. Let this be response time A at rate
1l on f£igure 1.1. A mnore efficient wmethod could be punched
cards. If each card holds ten words and the card punch rate is
one hundred cards per minute, the transfer time will be one and
t¥o thirds hours, shown as poinpt B at rate 2 on figure l.l. If
magnetic tape or disc is used, the response time would be one to
ten seconds shown as rate 3 on figure 1l.1l. Hence, acceptable
response times are volume and device dependent.

Deteriorating Reliability - As the volume of information
increases the ability of humans to maintain reliability
decreases. Hence, a capability must be sought that will provide
nearly perfect reliability and still -have—the tramsfer-rdteé
necessary to produce the required response times..

Diminishing Control - An organization 1is managed by a snmall
number of individuals. Data is ¢generated and used by a large
number of individuals. Control of creation and changing of +the
data base 1is dependent upon the ability to collect and contain
the data in a manageable form. Hence a capability is required
to store the data bas= and provide cortrol methods.

Obscuring ot Iaformation - The thousand order flexibility matrix
in the previous example, coupled with a load matrix, contains
the deflections for a thousand points, but it does not
communicate those deflections to a user unless acted upon in
somg way. tence, for high volumes, methods are necessary to
manipulate, extract, and display the precise information needed
by the user to make a decision.

The problem is aggravated and compounded when several
disassocjiated dgroups become involved such as twoc or nmore
companies or a company and a government agency. In these
instances, local Jjaryon and definitions, 1local methodology,
local data formatting and local preferences become part of the
problemn.

Boeing's TIPAD system design exploits the capacity of the
computer to process, transmit, and store data rapidly and
reliably to augment man's ahility to comnunicate.

2.0 ANSWERS TO TASK 2 QUESTIONS 1, 2, 3, 12, AND 13

Ansvers to Task 2 questions which relate to the IPAD systen
design are presented in this section. The remaining Task 2
questions which relate to the support of the design process are
answered in volume II and those which relate to the user
reguirements are givea in volume III. '

task__2, _Question 1 -~ How should the (IPAD} systenm be
organized to provide sufficient flexibility +to acconmodate
independently developed codes, pre-existing and/or those created
in the future?

The system organization should be able to accommodate
multiple language processors, either compilers or translators
and provide a mechanism for data structure transformations.

IPAD should accept other language processors to either
directly compile to object code for a native mode version of the
application code, or to provide language converters for
interfacing with major existing languages. The burden for
development of these converters would be decided on a case by
case basis.

The stored data definition is the mechanisz for interfacing
inconsistent data structures, The user must supply such a
definition for each data structure type and logic wust be
provided to convert from one to the other. #When this is done
for a particular convention, all other sets of pre-existing code
using the same conventions may then enter the system without
additional effort to define the data structure conventions.

Task__2, _Question 2 =-- What conputer languages will be
admissible in the pre-existing codes?

There will be a standard OM language for IPAD (see Volunme
VI). Additionally, any language that is acceptable to the host
operating system is acceptable to IPAL, although +the user nay
have interfacing problems between codes of different languages.
IPAD will execute any code compiled on the host system, but
cannot automatically interface data between codes having
different input/output conventions (see question 1l).

IPAD is not dedicated to working with one langmage in its
library of coding wodules. Since IPAD 1is using the host
operating -system for as many utilities as possible, any compiler
that can be called as a system utility 1is acceptable. The
consequences of the use of arbitrary languages are:

o Input/output data structures may not interface with
current IPAD data.

o Any or all of the specialized IPAD features may never
be usable,

o An unknown gquantity of machine dependence may be
introduced.
Task _2, Question 3 -- What degree of machine independence

is acceptable to IPAD?

Machine dependent code should be restricted to those areas
concerned with the host system interface. ¥No portion of the
IPAD system communicating directly with the user should be
machine dependent; i.e., the user dinterface logic should be
independent of the host system. Machine dependent code for
efficiency purposes should be done only after the performance of
machine independent code is c¢learly demonstrated to be
unacceptable.

Task 2, Question 12 -- What will be the impact of the next
generation computers on IPAD?

Quantitatively the question is not answerable at this tine.
Qualitatively the following areas could be affected:

o increasing size and reliability of the data base,

o introduction of new source language capability
matching new hardware logic,

0 larger number of simultaneous users possible,
o greater involvement in multi-machine networks .

The primary aspects of fourth generation coamputers which
could affect IPAD are:

o array type arithmetic,

Te] virtual memory,

0. distributed computing logic,

o} signifticantly faste£ CPU operations,
o] larger auxiliary storage devices.

Some 0f these are direct benefits and some 9ill <tTequire IPAD
system mnodifications’ and internal redesign in order to receive
significant benefits.)

Task 2, Question 13 —- What is the first release capability
for IPAD which should be developed for subsequent extension.

Specific capabilities for three phases of IPAD development
are given in table 2.71.

Table 2.1 is related to the design nodes of section 6.2.
Continuity in task and time is the primary aim of the first
release systenm and emphasizes the following features:

o) subtask and community libraries,

o continuity of the user's activities through the
subtask concept, and ’

0 constructing and executing jobs.

Table 2.1

IPAD Development Recommendations

tPAD DEVELOPMENT PHASE

NODE FUNCTION AND KEY FEATURES
E Subtask Set Up
e Connection to project plans None
e [nitializing of STL Partial
® Recovery of STL with Partial
executing STS
F Subtask Command Mode
e Command decoding Full
e Utility set up and calling Full
e STS interruption/restart Full
T Subtask Step Contrclled Abort
¢ File clean up Partial
e STS termination Full
U Subtask Interruption
® 3TL preparation for recovery Full
¢ Execution after sign off Partial
) Subtask Termination
¢ Tie into plans None
e Tie into report None
® File disposition Partial
o Keeping ST records Partial
G Learning About [PAD
e Teaching mode Partial
e Automatic ftie-in to each Partial
command
H Searching Through the Libraries
e Display capabilities for Partial
all LE
e Selection criteria Partial
I Creating Library Entries
e Entering code Full
e Entering data Full
® (Convenient transformations None
o Implicit If0 Partial

Partial
Partial
Partial

Full

Partial

Partial
Partial
Full

Partial

Full
Full

Partial
Full

Partial
Partial

C 17 3 1

Full
Full
Full

Full

Full
Full

Full

Full

Full
Full

Table 2.1 IPAD Development Recommendations (Cont'd)
NODE FUNCTION AND KEY FEATURES PAD DE!VE”’;”ENTF PRASE
K Modifying Library Entries
o FEditing logic for code Partial | Partial] Full
e Fditing logic for data .Partial | Partial{ Full
e Display capability Partial | Partiall Full
M Constructing a dJob
e OM specifications Full
e OM control program None Partial|l Full
e Job network specifications Partial {Partial] Full
e Library variable testing None Partial] Full
s Job setup testing Partial |[Partial]l Full
N Executing a Job
o Qualifier specifications Full
e Fxecution time options Rone Partiall Full
¢ Execution records Partial | Partial] Full
0 Communicating with a Job
e Specialized input functions None Partialf Full
o Specialized output functions None Partial| Full
P Displaying Results
e Selection criteria Partial | Full
° Display capability Partial |Partial] Full
Q Disposition of LE
e Options for outside IPAD Partial | Partial] Full
e STL to CL Fuil
o STL,CL to offline archive None Partial|l Full
e STL,CL to offline print None Partial} Full
W Defining LE or LV
¢ Redundancy checking Full
GA,HA,1A,] Interrupted States
KA,MA,NA, e Anytime interrupt Full
0A,PA,QA, e [nterrupt at pre-selected Full
WA states _
General Privacy/security in CL Partial | Partial]l Full
Features| Redundancy checking on name Full
references
Recoverability of IPAD Partial JPartial| Full
relative fo HOST
Access/permission code Partial | Partial|l Full
checking
Support for Report and Plan None Partiall Full
Interactive Graphics Support None Partiall Full
A ———

3.0 DESIGN REQUIREMENTS

The user requirements are the driving consideration in the
IPAD design. The IPAD system that is implemented will be a
balance of user reguirements against software and bardware
constraints to achieve an improvement in cost, timeliness,
and/or technical capability over methods currently in use for
product design.

The basic user requirements for the IPAD system are:

a) Continuity over task and time
b} User interface
c) privacy, security, control, integrity

d) Reliability

The dominating requirements are a) and c¢). Taken in their
broadest sense they imply

a) a system that supports direct communication of
technical information between organizational entities;

b) a system that accepts as a single task, work involving
pany users that runs over time periocds of days, weeks
and months;

c) a system that supports all of the computational, data
storage, data display, data manhagement, and data
communication reguirements of an entire orgapization
engaged in the development of a product or products,
and;

d) design control both through the autonatic data
management and integrity controls built into the
system and through controls made directly available to
the management of the organization.

In this section the user requirements, independent of current
software and hardware constraints, will be described.

3.1 CONTINUITY OVER TASK AND TINE

The design process flow charts developed in Volume II are
representative of the type and organization of tasks necessary
to design an air vehicle. However, they are only
representative. The process actually followed will be an
outgrowth of "the product being designed, the organizations
involved and the preferences of individuals at every level.
Hence, a computer system designed to only perform the tasks and
sequences shown in Volume IT would have short term value to sone
parts of the acsrospace industry and very limited value +to the
industry as a whole. To overcome this limitation, a study was
nade of the general design environment. it was tfound that
continuity of activity and data over task and over time was an
essential characteristic of the design environnernt. Continuity
over task and time affects the desigpn process in the following
ways:

a) Organizational Hierarchy
b) Inteqgraticn of Individual Contributions
c) Phasing of Design Levels

Organizational Hierarchy — There is a bierarchy of plaanning and
control associated with the development of a product.
Information flows continuously through the hierarchy as shown in
figure 3.1. The terms in the parenthesis are basic —descriptors
of the primary interest at each level. While the labels of
company, product, etc. are somewhat arbitrary, there are several
characteristics that seem universal.

a) There is a level at which real work on the product
design 1s accoaplished. Above that level, work is
centered around plapning and nmanagement control.
Below that level, work is centered around preparation
of tools and methods. In the hierarchy shown in
fiqure 3.1, the level of real work on the product is
at the sabtask level.

) fach level tends to transmit information above and
desire action from below.

c) Those above tend to be interested in what 1is being
done; those below tend to be interested in how things
are done; while the user concentrates on the actual

WHAT

INFORMATION @ COMPANY (Profit)

@ PRODUCT OR PROJECT (Marketing)

® TASK (Technotogy)

USER
® SUBTASK (Discipline)
® JOB (Programs & Data)
ACT I ON ® ACTIVITY (Computer Features)
HOW
Figure 3.1 Organizational Hierarchy of Product Design

work, varying his interest bhetween what. and how
depending-on the immediate situation.

d) The number of levels is not uniguely six, but it is
neither large nor small compared to six.

Integration _of _Individual Contributions — A user of IPAD will
execute a job, several jons, or the same job several times 1in
order to complete a subtask. The same user and other users will
complete other subtasks, which, together, will form a task.
#Hany tasks may be required to complete a project (which may be

a product). Figure 3.2 illustrates this relationship.
Projects, tasks, subtasks, and jobs may be large, small, or
nonexistent depending on the circumstances. Some possible

10.

examples are given in figure 3.3. On large projects, the number
of users nmay be many hundreds and the volume of data may be of
the order of billions of words. Each individual working on the
project both receives and contributes data and information. The
effectiveness of each individual contribution depends upon the
effectiveness of his ability to communicate.

Phasing of Design_Levels - In the studies performed in Volume II
several levels, or phases, to the design process were defined.
A different design function 1is performed at each level. Each
level has its own characteristics of time, data volume,
techrology required, etc. These levels will typically be tinme
phased as shown in figure 3.4 1In general, each succeeding level
represents a refinement of the product design. Essential
information in the form of data and conclusions is passed
between the levels, as necessary, to ensure continuity of the
design process. '

JOB ~—meup- SUBTASK —>TASK —— PROJECT
")

JU—
Case 1

o] \ B é Number
Case 2 7 o of Jobs

—
Case 3

Figure 3.2 Project Growth

FIND BEST FIND BEST FIND USES FOR
PROJECT SST DELTA-WING SST | S.A.S. ON AN SST NONE
TASK FIND BEST CONFIGURE USE S.A.S. TO :
—_— DELTA-WING SST IN LEVEL 11 IMPROVE RIDE NONE
QUALITY
DEVELOP GENERAL"
SUBTASK CONFIGURE FIND BEST CHANGE S.A.S.
I IN LEVEL 111 CONFIGURATION - ELECTRONICS SWEEP THICKNESS
WiTH SUBSONIC LE, ONLY TRENDS USING
WIND TUNNEL DATA
Jos SUBSONIC L. E. 4 ENGINES SYNTHES 1ZE ANALYZE ONE
GAINS & FILTERS TUNNEL DATA
—W' = -]
Figure 3.3 Examples of Projects, Tasks, Subtasks, and Jobs
In summary, the significant characteristics of this

environcent are:

a)

b)

There is continuity in the day-by-day work within the
organizational hierarchy, between individual
contributors -and between the several levels
refinement of the product design.

There is a flow of inforwmation (data, directives,
criteria, conclusions, etc.) throughout +the entire
product desigm comamunity. This flow information

attempts to associate plans made, work done, and tools

and methods used into a single congruent whole.

ORIGINAL PAGE IS
OF POOR QUALITY

Reseqrch & Development Develop Deslgn Concepts & New Technology

Rescurces Cantrol _Provide Capoblity {Production, Finance, Facliftles, & Menpower)
Narketing Determing Sales Polenthal & Customer Requiremanis
Conflgurstion Studies Identity Market Cpportunties

Prefiminary Deslgn Go-Aheed

Design Crherla Selection
Design Sizing
L Design Refinement l
Deslgn Veritiation
[—V?]-— Firm Offer to Customers
Flrst Sale
Lo Product Go-Ahesd
Product Detsll Deslgn
Product Manufzcture 1
| Product verification |
| product support
t———— Praliminary Design ————p Certificstion Oranted
= Davelopmasmt Cycle Nf

!' Project Mitestone

c)

d)

Fiqure 3.4 Phasing of Design Levels

At every level of the organization and of the design
there are individuals doing the actual work. Those
above give direction, review results and exercise
control. Those below prepare tools and methods and
supply information.

Design activities are typically ongoirg over periods
extending into years and decades.

It is a user requirement that the IPAD design be compatible
with and provide direct software and hardware support to this
environment.

13

3.2 OSER INTERFACE

Although the design process flow charts in Volume II
represent +the ' procedure a typical design organizationm might
follow, they do not represent the general activities users
perform. An understanding of the general activities a user
performs is necessary to design the IPAD system. To help gain
this wunderstanding, a problem solving model was developed as
shown in figqure 3.5 and given in detail 3in Appendix B. This
model was useful in isclating particular capabilities so that
the system design could be modularized effectively and general
language statements could be developed.

IEAD is primarily a design tool. Hence, its basic
organization is for a human hands-on operation using a command
structure tnat makes the computing system essentially
transparent to the user. As a consequence, the user is placed
in a design environment -entirely compatible with his own
behavicural characteristics and the characteristics of the task
he 1is performing. The principal features of this environment
are given below.

aj) Accessing - Accessing will be through a personal
terminal, i.e., a terminal associated with one user at
a time during a work session. The minimal personal
terminal will be an alphanumeric CRT with passive, low
resolution graphics. High resolution interactive
graphics, hardcopiers, remote job entry devices, and
other equipment will wvary from installation to
installation.

b) Capabilities -~ The IPAD system will provide the
following capabilities:

1) DEFINE - Entering or modifying definitions in the
IPAD libraries. The definitions include
abstracts, variable names, correspondence tables,
and other information necessary to interface an
element "with the data base and provide
descriptive information to the user. An element
is a data set, a module of application code, a
display format, etc. DEFINE is separate fron
ENTER to allow, for example, predefinition of
variables pertaining to a data set by a single
focal point followed by the actual entry of data
by other persons who nust then conform to the
predefinition.

14

PREPARE

PLAN

PREPARE

MODIFY

WORK

REPORT

REPORT

The determination of objectives and constraints which
define a desirable product and the development of a
plan of activities to achieve these objectives within
the constraints.

Setting up to do work.

Altering preparations to do work when it can be done
without changing the plan. Generally, this is due

to contingencies which are minor relative to the
overall plan.

The activity which aims directly towards completion
of a meaningful step in the plan. :

Recording and/or making visible the results of
WORK and determining if the planned work is done.

Figure 3.5 General Work Flow

15

16

2)

3)

W

5)

8)

7)

8)

9)

ENTER ~ Entering the actual library element.
This permits the user to enter information which
conforms with the definition made wusing DEFINE.
Many sets of information may be entered following
a single DEFINE, but each will have qualifiers
supplied by the user and the system to fully
identify and distinguish then.

TRANSFER - Moving elements between lipbraries
within IPAD. This allows movement of elements
between private and community libraries. It does
not allow movement of informaticn to a location
remote to the IPAD installation.

SEND - Sendinyg library elements to a location
remote to the IPAD installation.

EDIT = Locating -and modifying existing 1l1library
elements. Automatic version changes will be made
by th2 system to accurately trace antecedents and
preserve inteqrity for other users.

PURGE ~ Erasing entire library elements. System
controls will exist to ensure against purging of
elements still being used or saved by sonme
segment of the user community.

COMPARE - Naking comparisions between sets of
information or between information -within the
system and information supplied by the user.
This would allow, for example, a check of all
moduli of elasticity within a data set to ensure
they are within a given range.

COUSTRUCT - This triggers a dialogue mode in
which the user may form executable code fronm
groupings or modules of code previously entered
into the systen.

EXECUTE - This causes a particular set of code
formed through CONSTRUCT to be executed. If the
executing code has a language structure of jits
own, the user will interact in that language with
complete transparency of the IPAD systen.
Commands will be available to interrupt an
executing code set to review its progress, change
its direction, or discontinue execution.

c)

d)

10) DISPLAY - ©Bringing information from an TIPAD
library to a display device. Display formats nay
be entered separately through a DEFINE and ENTER.
There will be many display formats, each
providing a particular class of display.
Generally, activation of the display will trigger
dialogue to guide the user in inputting necessary
parameters.

11} FIND - Locating information within the libraries.
'This provides two capabilities: (a) 1locating
particular sets of information such as technical
code or data sets, and (k) locating particular
items within a data set.

12) MHESSAGE - Sending messages through the TIPAD
system to another user.

13) LEARN - X tutorial state that provides a
programmed iearning course in the use of IPAL.

In addition to the specific capabilities defined
above, the systom will also provide tor {a) short term
pauses and returns allowing execution of other
capabilities between the pause and the return, {(b)
long term interruptions extending over log-offs and
log-ons, (c) help from the system to the user to
pronpt kim, tell him of missing information, explain
comphands which he has obviously aisunderstood, and
otherwise smooth and assist the execution of work.

Compunication - The transfer of data betvween
application modules or between application modules and
the systen libraries will be transparent to the user.
The actual locations of stored information will not be
known to the user. Rather, movement or communication
of information will be accowmplished by the user
through command statements utilizing generic names and
adjectives. ’ ’

Human Factors - IPAD is a "hands-on" design oriented
systam. Hence, the characteristics of the user are an
important consideration and include:

1) the characteristics of the human mind,

2) the experience or state of proficiency of the
user, and

17

3) the characteristics of the task beinyg performegd.

3.3 PRIVACY, SECURITY, CONTROL, INTEGRITY

A review of the design process flow charts in Volume II and
the manner in which an organization would proceed to work these
projects indicate requirements for privacy, security, control,
and integrity of system code, application code, and data. These
requirements are as follows:

a) There is a need for both private and public data
regions. Private data regions provide space where an
individual user can do scratch work, correct errors,
etc. Public data regions provide space where data
important to many users can be stored, accessed, and
controlled.

b) There is a need to protect information against
unauthorized access.

c) There is a need to control use of the system and of
the data base.
3.4 RELTABILITY

The reliability of the IPAD system, hardware, and operating
syster should be such that system unreliability need not be a

specific planning consideration for IPAD users. No definitive
studies have Dpeen made to establish the precise parameters and
ranges within which this criteria is satisfied. Nevertheless,

it 1s an essential c¢riteria.

The vreliability of application modules 1is outside the
control of the TIPAD systemn. However, standards should be
established and a rating =system developed and implemented
whereby application modules can be <classified according to
established levels of reliabijility.

18

4.0 DEFINITIONS AND ABBREEVIATIONS

Activity
Record (AR)

Coding
Meodule (CH)

Community
Library (CL)

Data Manager Systenm
(DHS)

Bxplicit Imput/Output

IPAD Data Base

IPAD Executive (IE)

Implicit Input/Output

Job {J)

Part of a subtask library entry,
setup by IPAD for use in subtask
communication, docurentation, -
recovery, and accounting.

4 specific collection of symbolic
code that contributes to the
definition of one or more opera-
tional modules.,

The set of all programs, data, and
reference information available to
the total community of IPAD users
at any given installation.

The collection of software
responsible for information flow into
and out of the IPAD data base.

Input/output action tos/from a library
entry which is under the control of a
user program. The data manager is
responsible only for the library entry
as a unit, and, in general, is not
capable of interpreting the coatents
of any library entry handled in this
way.

The collection of all information
contained in the ccamunity and
subtask libraries.

That portion of the IFAD software used
to control the basic IPAD functions.
It is the primary interface to the
user, .

Input/output action which is under
control of the data manager.
Information transfer by the data
manager is in terms of library
variables.

A specific sequence of executable
operational modules and/or cother jobs
which produces meaningful results for
a user.

19

Library
Entry (LE)

Library Entry
Dictionary (LED)

Library
Divectery (LD)

Library

Directory Entry (LDE)

Library Text
Entry (LTE)

Library Variable {LV)

Library Variable
Dictiomnary {LVD)

Operational
Hodule (OM)

Opetrating Systen
{(05)

Personal Terminal

Project (P)

- Project Plan

20

The basic unit of stcorage in the
IPAD data base is the library entry.
The LE consists of a library
directory entry (LDE) and an associ-
ated library text entry (LTE).

A dictionary containing definitions
of all the library entries in a
library.

An index to ali the entries in a
library.

That portion of a library entry
containing control and referenciag
information for the associated
library text entry (LTE).

That part of a library entry
containing the data associated with
the entry name.)

An alphanumeric data item whose
engineering significance is defined
to IPAD.

A dictionary containing definitions
of all the library variables in a
library.

An executable collection of coding
modules which contribute to the
definition of one or more -jobs.

The operating system for the host
computer within which IPAD executes.

The electronic or electro-~mechanical
device providing the primary path
for the user to access IPAD data

and programs.

The total set of subtasks +o be
perforzed during a design or analysis
effort.

The definition of all project tasks,

Project Report

Qualified
Library Entry
Name (QLEN)

Stored Data
Definition {5DD)

Subtask (5T)

Subtask
Library (STL)

Subtask Eecorids

Subtask Step

Task (T)

Unqualified Tibrary
Entry Name (ULEN)

Userts Identification
{UID)

Version Humber (V)

subtasks, and the associated control
in terms of a pert-chart type network.

The collection of reports expected to
be completed during the progress of
the project. .

An unqualified library entry name
with a qualifier attached indicating
a specific instance of the LEB:

The specifications for a logical
information structure for one or
more library entries in IPAD.

A sequence of IPAD activities which
represents a meaningful step in a
project.

A library that is private to anmn IPAD
user during the execution of one of
his subtasks. Each subtask w#ill have
a sinygyle associated subtask library.

Records in each subtask library for
the purpose of holding activity and
other informpation during the life of
the subtask.

A single step occurring ian a subtask,
normally defined by a host operating
system control card or the execution
of a single IPAD antility program.

A subdivision of a project.

A generic or root name of a library
entry. Specific instances of data
may be identified by a ULEN appended
with a version number and/or an
additional qualifier.

A unigue identifier associated with
each user of IPAD. It is mandatory
that this ID be associated with a
person and not an activity or an
organization.

An identifier appended to an

unqualified library entry name to
record the occurrence of a change.

21

5.0 TFUNCTIONAL DESIGN DESCRIPTIOR

Early methods of organizing computing tasks involved
batching work of a simllar nature and relying on well trained
personnel to maintain a reasonably efficient operation. Aas
volume and complexity increased, many of these administrative
functions were shifted to the computer, leading to the present
day '"operating® and "monitor®” systems. Each new operating
system development had two basic objectives: ’

a) more efficient processing, and
b) new capabilities to aid the professional programmer.

In contrast, software has not been generated which helps the
applications user organize and manage his work., Noreover,. most
operating systems dare Yone run® and “one user™ oriented while
typical applications require numerous vruns, sSpahning several
days or months and involve many people performing inter-related
activities. TIPAD is designed +to help the applications user
manage and organize his work. It will support continuity of
dork on the <computer 1involving many separate work sessions
extending over long time ©periods and requiring communication
between users through the data base.

5.1 PRIMARY S3YSTEM FEATURES

Full Project Support - A project is a set of tasks and a task is
a set of subtasks. W#ithin any project the sequence of tasks and
subtasks is nor arbitrary. Figure 5.1 is a representation of
two projects showing the breakdown of tasks and subtasks and the
flow of information or interdependence between themn.

There are specific items in the data base called "plans®
and "reports" that support management definition and control of
the work flow. FEach project and subtask will be given a report
skeleton at the time planning data is entered in the data base.
Hence, completion of each subtask is a formally recognized event
in IPAD. That is, the completion of the subtask can be recorded
in a project report. If a PEET-chart type logic is used for
planninyg, as shown in figure 5.1, the sequence of subtasks can
be controlled through permission codes in the system. MHanagers
and technical users can also interrogate the status of projects
or subtasks from the project reports.

22

PROJECT A
TASK2

PROJECT B
TASK2 JASK4

Figure 5.1 Representation of Project Plans
Continuity_ _of Work - Subtasks are the prime woTrking
interface between IPAD and the TIPAD user. Subtasks are

generally associated with one user and are organized within TPAD
to provide continuity of activity. All user activity is part of
some subtask which was explicitly initiated by a user and must
be explicitly terminated. The life of a subtask is not limited
to an artificial work boundary such as a computer run or a
terminal session.

The IPAD system will accept any definition of a subtask.
Irn principal, a user may have any number of subtasks defined at
any point in time, althouyh only one would be active at a tinme.

A subtask is a user's private domain ir which he works
individually without impacting other users. He has access,
through the data base libraries, to application modules, utility
modules, and data comamon +to all users. His accessing of
information in the data base libraries is controlled or
restricted as necessary to protect the community nature of the
data base.

23

Continuity of activity means that from the %time <the user
initiates a subtask until he terminates it, he works with the
sense of continuity of a single session. That d4s, having
interrupted his activities for lunch, sleep, or thinking, he
will resume activity with a subtask status identical to that at
the time of his interruption. This continuity will be true for
either interactive or batch type work.

Continuity between subtasks (and bence between users) will
be provided by the data base. As each subtask is terminated,
the user will +transfer entries of common value dinto the
compmunity library.

Library _Structure - The IPAD data base is organized into a
comunity library {(CL) common to all users and subtask libraries
(STL) private to each user. The characteristics of these
libraries aro:

a) The community library contains all application
nodules, data sets, and other information available to
the using community in general.

b} Community library items may Le attached, copied or
transferred %o the subtask library depending upon
permission codes associated with the entry and the
subtask.

c) The subtask library contains all application modules,
data and records associated with a subtask.

d) When the subtaskx is inactive, all items in the subtask
library are logically located within +the community
library. Hosever, contents of the subtask library are
not accessible as community library items.

(e) A subtask library is created when a subtask is defined
and continues to exist until the subtask is formally
terminated. :

(fy A non-community library item in a subtask 1library is
private to the subtask 1library.

The relationship between subtask and community libraries is
illustrated in figure 5.2.

24

BDNHUHIIT L'IBRARY (CL)

* t@ ALL IPAD.PROCRANS AMD DATA .)
* CERTIFIED ® KISTORICAL £ . AT

. « DEVELOPMENTAL * REPORTS, PLANS . o
T © STATISTICAL TABLES & .%

hd VT e - AL M.

< OmSIELL) e i e " OFF LINE el
- - -
® DAA S . s s SDISKPACK . o .

« HISTORIGAL * - = 27 » muwz o TAPE
» BLOBAL R T R
® PROGRANS

o CERTIFIED
o PROPRIETARY _

o s BECONES BHOLLY CL \\&\.]
S #JIRESIDERT DURING O -
<" ,-3?ERIODS OF USER 3
g 'm.u:rmr'f /3

’// A
/////// f/,{

- N ///14,"{-;‘ < .
LIBRARY FOR »‘“-f\//,;'/,:z ; WHEN USER
* SUBTASK b e N SIENS OH,
AN » TASK 1 PREVI0US

* PROJECT A
/ BUTSIDE Gt
f——

// & DATA

' « INTEREDIATE
® COPIES OF CL ENTRIES
« NER ENPUT

© PROGRANS
= NEW CODE
« MODIFICATIONS TD CL PROGRANS

STL STATE
IS RESTORED

Figure 5.2 Characteristics of the [PAD Community and Subtask Libraries

5.2 WORK RELATIONSHIPS

Figure 5.3 shows a schematic relationship of work within
IPAD. A project consists of

a) Project Plans
o} Overall Project Plan
0 Individual Subtask Plans

£ Project Reports
o Project Summary Report

o Individual Subtask Reports

25

/PROJECT A
PLANS

26

c)

Figure 5.3 Data Base and Work Relationships in |PAD

Subtasks

o) A1l user activity in IPAD occurs ir a subtask.

0 The mode of communication 1in a subtask is
primarily interactive.

0 Batch mode 1s available. Continuity is retained
in the subtask whether accessing is interactive
or batch.

o A user may have an arbitrary number of subtasks
defined at any one time.

0 A subtask has four distinct states: defined,

active, inactive, or terminated.

o Records of subtask progress are contained in the
" subtask library and are used to formulate project

reports.

o Communication between subtasks is through the
community library.

o Protocol is defined to maintain inteqgrity of data

in the community library.

IPAD will provide a framework within which control and
reporting requirements wmay be defined to meet the needs of the
using organization. For example, project and task plans may be
placed within the system in the form of subtask sequences as was
shown in figure S5,1. Control can then be exercised such that
subtasks can only be initiated as preceding subtasks are
terminated and subtasks cannot be +terminated until subtask
reports are entered in the project report. However, project
plans could be eaentered in the system with no control and
reporting requir=ments or there could he a complete absence of
such plans. The minimum requitement in IPAD will be that the
subtask must be defined before it is activated so that resource
accounting and reporting cam be done by the systen.

5.3 USER INTERFACE

5.3.1 Personal Terminal

The primary interface between the user and IPAD will be a
“personal terminal®. A "personal terminal® is uniquely
associated with a given user while he is active. BEBach user will
be identified to the syster via his identification code. Since
the TPAD system will not have terminal handling software, the
user's first contact will be with the operating system. If IPAD
is the only system TrTequiring termipal support, the operating
system will be a transparent message carrier.

5.3.2 Command Figw

In general, each command to IPAD will be mapped into one or
more operating system commands. Control will then be given to
the operating system. When the operating system has cogpleted
a set of commands, IPAD will be rtecalled to determine if all
comrands have been processed. If not, the above process will be
repeated. Yhen all commands have been processed, appropriate
entries will be made in the subtask records and all 1library
entries will be disposed of as regquested by the user. Aan
activity in progress may be interrupted and another activity
initiated. Upon completion of the second activity the user may

27

continue the first activity. This sequence may be nested. The
execution sequences for data and programs may be stored as job
descriptions in the IPAD libraries. The general flow of control
for IPAD and systen conmmands is shown in figure 5. 4.

While many languages may exist within the total IPAD
domain, the IPAD executive itself needs a relatively limited
language capability. The basic commands are modal statenents,
i.e., the command indicates the basic intent of the user. These
commands are +the means of executing all application modules,
executive utility functions and data base management functions,
Recommended basic commands were given in section 3.2.

5.3.3 Sign-On_To IPAD

The sign-on procedure initiates a new subtask or restarts
an existing one. 1 user must supply an identification number
(0ID) and security passwords. Sigh-on will allow the user
access to all library entries where his ID number appears in the
permission code tables. If no subtask name is input, 2a new
subtask will be assumed and IPAD will ask for a subtask plan
identifier so that planning data can be examined to find the
appropriate subtask nane. Planning data can also he used to
search for subtasks in progress.

If an existing subtask name 1is given there will be a
library entry of that name in the community library, and the
subtask library will be established using the information in the
entry. Except for records involving time, the library contents
for existing subtasks will be as 1if the user had never signed
off, providing continuity across time lapses in activity.

If a new subtask 1s defined, the following information must
be supplied by the user or through system defaults:

a) User wvalidation informatiom for the particular
project.
b) Basic options such as display formats, etc.

5.3.4 Comnmunication With IPAD

Having signed on, the user may initiate any of +the IPAD
basic commands in his command permission profile. The systen
will respond in one of three basic modes.

aj Monclogue - The user knows the command format and is
capable of delivering complete commands to IPAD.

28

UTlLlTY/JUBJ USER

DATA
MANAGER

COMMANDS

OPERATING N
SYSTEM
COMMANDS

ACTIVE
UTILETY OR
USER JOB

[PAD
COMMANDS

OPERATING
SYSTEM

EXECUTIVE

OPERATING
SYSTEM
COMMANDS

DATA
MANAGER
COMMANDS

b)

<)

When
following

a)

Figure 5.4 |PAD System Command Flow

Dialogue -~ The user knows the general workings of IPAD
but is not capable of entering complete commands.

Teach - The user may, at any time, request assistance

and

IPAD will gyo into a partial or full teaching node

depending on the request type.

a user's response to the system is interpreted, the
possibilities exist:

Execution is possible and:

o
o

The command is correct in form and intent; or,
The command is correct in form but the user's

intent 1is different from the potential execution
results.

29

These responses are summarized in the following table
The number indicates sequence of

be

b) Execution is not possible because:

o} ITPAD understands the command but has insufficient
information, or
o] IPAD understands . the basic command +type, but

detects amn error in format, consistency, etc., or

o) IPAD does not understand the command.

built into

the

system.

action, and parentheses indicate optional actions.

and

[

Not Possible
- Unable

- Detectable Error

-~ Unrecognizable

(3)
(2)

RESPONSES
EXECUTION OF Ask |f They Ask [f They Explain
COMMAND Do It | Understand Action]Would Like Help|Error
e ———
:H
Possible (2) (1)

30

will

5.3.5 Sign-0ff From IPaAD

Sign-off has two basic medes - inactive or terminated. If
inactive, the system Wwill save the contents of the subtask
library in the community library and prevent purging or editing
of those versions of community library entries associated with
the subtask. If the subtask is terminated, disposition
instructions for all items in the subtask library must be given.
Sign-off 1is a discontinuation of activity on a particular
subtask and ‘may or may not terminate the activity period.

5.3.6 Batch Access

IPAL commands are available in batch Bmode and must be
submitted in monologue fashion. Sign-on and sign-off will be
similar to interactive mode, including the subtask concept so
that continuity is preserved. The end of a batch run is similar
to sign-off with subtask ipactive. A user may submit a job
through batch and, regardless of +the results, make his next
access either from batch or from the terminal. Thus, the IPAD
system will leave an interrupted subtask in the same state for
batch as for iateractive access.

5.4 LIBRARIES

When active on any given subtask, an IPAD user's data base
is his subtask library and that portion of the community library
to which ke has access. Any new information must come through
his subtask 1library or from access to additional community
library information. In these +two libraries, the user is
concerned with library entries and variables and the dictionary
which holds their definitions.

5.4.1 Library Entries (LE)

The primary unit of information storage in an IPAD 1library
is the library entry. In order to handle the wide varijiety of
information expected in the IPAD data base, many different types
of library entries have been defined. The most significant
distinction among types is between user and system entries.
User entries are composed of alphanumeric information which is
either input to or output from some operational modulé in IPAD.
This entry type is couwposed of one or more library variables
(see section 5.4.2). 4 system type does not contain library
variables. These entries contain source code, bipnary code,
proiject plans, etc. The set of 1library entry types is
expandable.

31

5.4.2 Library Variables (LV)

A library variable is defined ip an IPAD dictionary (see
section 5.4.3) in terms of its technical significance. This
includes both its engineering meaning and its mathematical
meaning (e.g., single real number, rectangular matrix, complex
vector, etc.). The isolation of variables is a mechanise for
organizing information transfer betveen technical code and
between people. A 1library variable wmay be resident wholly
within wmore than one library entry, but a multiple valued
variable (e.g., a vector) may unot be partially resident in
several 1library entries. Any variable may have any number of
values residing in separate library entries, but there will only
be one definition of that variable in any one dictionary.

5.4.3 Library Dictionaries
Bach library in the data base has at least one dictionary.

Typically omne would expect a subtask library to have only one
dictionary, but there may be several dictionaries 1in the

copmunity library. #When 1library entries or variables are
referenced, a specific dictionary will be used to reconcile
potential ambiguities. Generally the context of the reference

will be sufficient to define the situation; e.g., the user?s
subtask library is assumed to contain any item referenced, and
if it cannot pe found, a specified community library dictionary
will be used.

S5.4.8 Library Entry Naming Conventions

The user will reference library entries by a generic name
assigned by the entry originator. Some library entries (e.g.,
data sets and coding modules) will be modified during use and
will therefore reguire version numbers. In addition, the source
of data sets generated during the course of work will be
identified. Hence, gqualifjiers will be appended to the entry
name recording the names of data sets and application modules
used to generate the data set. Therefore, library entry nanes
will have the form

MAME.VERSION (QUALIFIER)
To access a library entry, the user, through direct conmmand or
through Jjob control, will give enough of the library entry nanme

to uniquely identify the entry. Less than that will cause the
system to request more information.

32

Name - The name is any set of characters supplied by the user.
#hen stored in the directory, the owners ID aud passvword and the
subtask identification will be appended to the name by IPAD.

VYersion - Versiom is both a user and IPAD generated iten. IPAD
will require a change in version namber vhenever modifications
are made to a library entry without changing the name. The
system will provide the capability of referencing the "latest
version". ;

Qualifiers
The basic intent of gqualifiers is to insure documentation
of the origin of 1library entries. Both the user and IPAD

establish qualifiers. ®hen the user initially creates a library
entry, he supplies a qualified name, except ror those entry
types which logically do not regquire gualifiers. As the entry
is used for various jobs, its qualifier 1is used by TIPAD to
establish qualifiers for newly generated entries. The qualifier
is associated with a library entry and not individual library
variables within the library entry.

Figure 5.5 illustrates how gqualifiers are generated during
the execution of a job. The elements in figure 5.5 are defined
as:

Job Components X, ¥, 2
Input Library Entries A, B, C, F
Intermediate Library Entires D, E
Output Library Entries L, 4, G.

If B is a 1library entry gualified by @, it is
identified as B(Q) wvhere Q is either supplied by the user
or is a qualifier generated by IPAD as a result of a
previous execution. The gualifier dJenerated for L in
figure 5.5 at job assembly time will be

L{Z(D(X(A(NULL))) ,E(Y(B(NULL) ,C(NULL))),¥(NULL))).

33

34

—3- [
-
>0

w
9]

Figure 5.5 Sample Job QOrganization

The gualifier generated for G at job assembly time will be
G (Y(B{NULL) ,C(NULL))).

The user will normally not deal with the long form of the
fully developed qualifier. He will, in general, use only
enough of the name to insure an unambiguous reference.

The null gualifiers are supplied at execution time
to complete the qualification of the output library entries
for each specific job execution.

5.5 THE JOB CONCEPT

Operational modules and utility functions are executed as
one or more jobs. A Jjob 1is a selected set of operational
modules {(OH) and/or-other jobs organized by a user as part of a
subtask. An OM consists of a Selected set of subroutines
organized as coding mwmodules (CH) to execute in a sequence as
defined in a "main program". Bithout regard to execution
Ssequence, the above relationships are shown in figure 5.6. Any
set of source code used in several OM's should be entered as a
CM to make it more visible to the user cormunity. The same rule
applies in the OM to job relationship.

CM's oM's Job
(Source Code) {Relocatable/Absolute Binary) | (System and IPAD Commands)

CMI

[omi Jobl

1

tmz {

o | \\ RN
|

M2 17— Jol?

cMa i

" Symbolic Code used to Define | Executable Sequence of Coding | Executable Sequence of
One or More OM's Modules Used to Define Operational Modules and/for
One or More Jobs Jobs for User Results

Figure 5.6 Sequence of Job Definition

35

Entering a Coding Module Bullding an Operational Module Assembifng a Job

v — AR)
Source Code 1 - Description 1
With Key Words CNAE 1\
Description —t ,
with Kg Words ™ Optional oM N Description
Execution Logic \ ith Key Words
" |Variables and — .If__b
Dafa Sets Used Data Set Executlon =
Disposition J Sequence Logic|
External Flle
Specifications | | —_— /
= o + oM
emb 7
= =
+ oM
L1 /
cMm

Figure 5.7 Steps in Job Construction

5.5.1 Entering Coding HModules

Source code and descriptions are entered as Coding Modules
as shown on figure 5.7.

5.5.2 Building Operational Modules

A completes O# must have one main program, i.e., only omne
main program may exist in the CM's. being packaged into an OM.
If .a main program does not exist in a CM¥, one must be written as
part of the O#f building process. Library entry information, as
shown on figure 5.7 must be defined at OM build time. any files
used by the 0O#M and not linked to library entries by the CH's
nust be linked at this taime. If an OM 1is placed 1in the

36

community library, all its component CH*s must be in the
compunity library also.

5.5.3 Constructing Jobs

Constructing a job 1is similar to building an OHM. An
execution sequence with optional 1logic at -Of boundaries is
specified. The executable units in a job are OM's and other
jobs. During job assembly the gqualifiers for all output library
entries will be partially corstructed. Information supplied at
job execution tire will complete the gualifier. Job
construction is illustrated in figure 5.7.

5.5.4 Execution_ of Jobs

When Job execution is requested, the subtask library and
coamunity library are searched for the correctly gualified input
library entries. The library entries for all intermediate and
output library entries ar= set up in the subtask library and are
qualified by both the set cf qualifiers generated during job
construction and the set received with the request for
execution. all file 1inkages {as specified in the Job
definition) are set. Activity record information for this job
request 1is written and commands are delivered to the operating
system for execution.

5.6 DATA BASE MANAGEMENT

The libraries contain two categories of information
structures:; systen defined and uaser defined. No formal
distinction 1is made between these categories by the data
manager, but system structures are not generally accessed
directly by operational modules. The system structures are used
to store operational modules, referencing information, coantrol
informaticon, etc. User structures contain data-produced and
danipulated by application modules. Fiqure 5.8 gives a general
description of the data base contents.

The user dis not restricted to a <fixed set of data

structures, The +two Dbasic modes of access o data by
applicaticon modules are:
a) EZxplicit TI/0 - The user's c¢ode 1is written with

detailed knowledge of the data structure of the
library entry.

b) ~ Implicit I/0 - The user's code references variables
within a 1library entry by name, letting IPAD do all
storage and retrieval.

37

With explicit 1,0, library entries are magde available at
execution time by the data manager. The data manager then
assumes that the wuser's code will handle all read/write
operations.

With implicit I/0, the operational mnodule definition
contains declaratiomns naming stored data definitioms, and
explicit I/0 -statements are replaced by commands to the data
manager to fetch and store data. The data manager carries out
the reguired I/0 as specified by the appropriate stored data
definition. A schematic of the two I/0 modes 1is given in figure
5.9 with a table of comparisons in fiqgure 5.10. An example is
given in figure 5.11.

STORED DATA DEFINITIONS
DIRECTORIES

IPAD SYSTEM) LIBRARIES
DATA STRUCTURES { - DICTIONARIES DATA SETS
CM's
JOBS

USER DEFINED

DATA STRUCTURES USER DATA

4

® The Number and Variety of User Data Structures Is Indeterminate

® DMS Uses Stored Data Definltions to Carry Out Actlons Which Wiil Satisfy
User's [ntent:
e Physical Additlon / Modificatlon / Deletlon of Data

© loglcal Linking / Delinking of Data

Figure 5.8 Data Base Contents

38

DATA BASE

@D | '

("sbozs)

D MS ,'lb X

7l |
!
. b EXPLICIT
PROGRAM ; {0
IMPLICIT © SYSTEM UTILITIES |
170 _ , FOR USER:
e Create :
® Update
® Query
® USEROMs |

Figure 5.9 Relationships of Implicit and Explicit 1/0 to the Data Base

stored__Data__Dafimition__ (SDD) - All information in the IPAD
libraries may be accessed through a stored data definition (see
figure 5.12}. SphDs for user data are user supplied, avoiding

the problem of forcing users to change their data formats and
structures to conform to 31 single standard.

Each library wentry in IPAD may have one or more formats
associated with it. When described by a single SBD, multiple
formats imply the use of subsets of the whole library entry or
possibly different unit conversions. Multiple format SDDs also
allow =xternal formats (e.g. punched cards) to be-described.

39

SDDs are mandatory when using 1implicit TI/0 and optional for
library entry used in explicit I/0 only.

Implicit_I/0 - SDDs require each variable to have a definition
in the variable dictionary and a corresponding global name. The
utilization of ylobal names ir the SDD eliminates wmany of the
ambiguities that could arise when different wusers are
interpreting data variables or when decisions are made regarding
the selection of a coding module for a specific computation.
The 35D also permits variables to be given local names for
different subroutines. During execution, calls on the data
manager will r=ssult in data being moved frow the storage media
to the user's working area. Data will be positioned in the
user's working area so that local name references to variables
in the user's code will be correct.

EXPLICIT I/0 IMPLICIT I/0

* DMS Connects OM to an Entire Data Set ¢ DMS Connects User to All or Part
of Specified Data Sets

o OM Performs all 1/0 Operations o ljser Reguests Data
Without IPAD Intervention * By Library Varlable (Data Item Key)
* By Positlion
« Sequentiai Data Sets
* Logical Chains
+ DMS Functions Performed only on ¢ DMS Functions Performed on Individual
Entire Data Set Library Variables Within Data Sets

Figure 5.10 Attributes of Explicit and Implicit 1/0

40

Pre-Existing (or Independent) Code May Require Data Input in a Certain Structure
« [f Data Exists in Proper Form, DMS Connects Data to Program
» |f Data Exists, But Not in Proper Form, a Pre-Processing OM Using SDD’s
Can be Used to Interface Pre-Existing Code Without Changes to the Code

DATA BASE (SDD25 SETAIQ) SDD75 | |SETA(QY)
\ 7 y.4
I Y y
DMS

Y T Y
»| Pre-Processor | oM —
PROCESS ING oM (Pre~Existing Code)

4

Figure 5.11 Example of Explicit and Implicit i/0 Operations

Explicit I/0 - When the data handling logic is explicitly
present in the source code, (as it is with all source code
generated without data manager type functions available) the
data manager's functior is limited to module boundaries; j.e.,
the data manager will prepare the data linkage prior to
execution and dispose of the data after execution. Knowledge of
the library entry internal structure by the data manager is not
required during program execution.

5.7 PRIVACY, SECURITY, CONTROL, INTEGRITY

Many of the design features of IPAD, such as the 1library
facility, in themselves provide privacy, security, control, and
integrity. Other fesatures are specifically designed to support
these regquirements. ill features supporting these requirements
are described in tane Eollowing paragraphs.

Subtask _and Community Libraries - The community library corntains
all of the application modules and data generally available tothe

® AN SDD DESCRIBES A DATA STRUCTURE WHICH IS USER'S MODEL
OF REAL WORLD

@® AN SDD FILED IN THE DATA BASE IS A TEMPLATE USED BY DMS WHEN
ACCESSING DATA

USER: Find Item X in Data Set SETA(Q)

4
DMS
TEMPLATE An IPAD Data Set
— g May Have More -
T s = Than 1 Structure
= Sbb2 <

[SETA | | sbD
L INDEX

SDp1

—J SD.D 25

SDD75

7Y
X

SETALQ)

SRS

DATA BASE

Figure 5.12 Stored Data Definition Illustration

community of users as a whole. The subtask library contains
elements of the community library, and provides space for the
user to do scratch work and otherwise prepare or generate data
for entry into the community library. The subtask library may
contain entries peculiar to an individual user and not available
to the community at large. In this case, provisions are
reguired to preserve the integrity or protect the gquality of
information being transfered to the community likrary.

Controlled Access__to__IPAD__Pata - Access will be controlled
through access codes assoclated with individual entries of
application code and data. For exarple all users could be
allowed read permission for a data set but only particular users
could be allowed write permission.

42

There will be at least five types of library entry access

codes: read, write, extend, purge, and execute. Read access
implies permission to read only. Hrite access implies

permission to change existing ionformation to a library text
entry with corresponding changes in the library directory entry.
Purge access implies permission to eliminate the entire 1library
entry. Execute access dimplies that the entry may be executed

but cannot be read for any other purpose.

The list of permission codes (i.e., identifiers for each
user permitted each type of access) for each library entry will
be listed in tan2 access part of the directory. Bach user's
identification (UILD) will be checked against these to determirne
the allowable access permissicl.

The above discussion relates only to the community library.
Items originating in the subtask library are assumed to have all
levels of access to the subtask owner. In the event the user
requests write access to a comnunity library ertry for which he
only has read permission, items may be copied to the subtask
library in order to allow the task to continue without causing
undesirable community library changes.

Controlled Access_to_ IPAD System Comnpands — Use of IPAD systen

e e e e e e e . T s i o, s

conmands (see section 3.2} will be controlled through permission

codes. A new user entering the system will be assigned a
command profil= intermally within the system. This profile will
define command and data regions the wuser may access. For

example, except for eiceptional circumstances, every user will
be allowed to purge information from his subtask 1library but
only specific users will be allowed to purge informaticn fron
the community library. Specific permissionrn will be required to
send data outside IPAD. Transfer of inforwation from a subtask
library to the community library may be «controlled to allow
review before permitting the transfer. In tight security
situations, purge permission from particular subtask 1libraries
may be denied.

Unigueness _of Versions - Since IPAD is designed for large groups
of users working on the same or related projects, it is
necessary that they be able tc change data sets and application
modules without destroying the work or disrupting the plans of
other users. Hence, any alteration of application wmodules or
data within the community library will result in a new version.
The root version will remain intact unless specifically purged
by a wuser having permission. The assignment of new versions
will be automatically required by the IPAD system whenever
modifications are made.

43

Trace_ _of Antecedents - A trace of the data sets and application
modules used to generate a new data set will be compiled and
preserved as Jualifiers 1in the data set identification. This
will allow users to trace the generation of a library entry.

Trace of Data or_ Code_ Leaving IPAD Control — A trace of data or
code either purged from IPAD libraries or sent to a location
outside IPAD control is required to protect +the proprietary
interests of the owner amra to protect against sabotage, spying,
maliciousness, or accidents.

Personal User Identification - Entry to IPAD will be via a
personal user identification code to allow individual assignment
of responsibility for certain acts and assignment of permission

and access codes.

Reliability and Quality Controls - Where possible, the systen
should requirs contormity to standards and procedures that have
been developed to ensure the reliability and gquality of the
system code, data and application modules. Further, a means of
rating the reliability of new application modules should be
provided accordiing to the degree of checking that has been

completed.

Protection_Against_ Self-Inflicted_Accidents- Protection against
self~inflicted accidents will be made through the structure of
the command language and by provision for recovery from command
error whera the action being taken has nonreversible
COnSequUences. —

Security of the IPAD System Code - Where possible, provision
will be made to control access to the IPAD system code itself to
prevent tampering or unauthorized extensions.

Security of the Security _Features Thenselves - Careful
consideration is necessary to restrict access to permission and
access codes only to those persons authorized by the library

oWners.

Controlled Relationship Between Subtasks Within Projects - An
important feature of the IPAD system will be the ability to
input project planniny as data by which lower level work can be
monitored and Tegqulated. Hence, a user responsible for a
subtask may be informed of the relationship of his subtask to

other subtasks forming the project.

Government or defense security provisions are provided by
lav or by requirement from the specific agency involved and are
not considered here. Likewise, special security provisions
necessary for a company to protect proprietary material are not
considered. :

44

6.0 TECHNICAL DESIGN SPECIFICATIONS

6.1 SYSTEM DESIGN METHODOLOGY

Structured Programming is a formal work dealing with
software engineering and hardware-software system design and
development (ref. 1, 2, and 3). The objective of this work is
to transform the development of computer systems from a seat-of-
the-pants art, +to a disciplined technology. This approach has
been utilized to develop the TIPAD system design.

The structured programming approach is a top down design
method in which +the design proceeds from the general to the
specific. Each refinement is a level in the system design.
Tree structure diagrams give the system functional components in
-levels of increasing detail. The nodes at any one level in the
tree structure are states of activity for the system. The
entire system 1is included in +the total set of nodes at each
level, and in fact, higher level nodes are summaries of lover
level nodes.

Transition diagrams describe how the systen components, at
each level, are functionally related. The diagrams also specify
the conditions under which there will be a transition or state
change within a node or from one node in the tree to another
node at the same level. These transition conditions are (1) the
input data or conditions that trigger the transition and (2) the
output data or results existent in the system at the time the
transition is made. Figure 6.1 is a sample tree structure and
transition diagrams for a three level systen.

The IPAD system design given in section 6.2 and Appendix A
follows the general form described above. For level 1, twenty-
ninz nodes or states are described. Except for those level 1
states dealing with hardware or host operating system protocol,
the level 1 states are esach refined into level 2 states. The
level 2 states are, in turn, broken out intc level 3 states, and
SO oh. The emphasis in the design was placed upon consistency
in detail rather than consistency in levels docunented. Hence,
there are differences in the depth or number of levels reached
in some of the tree branches.

While the design is presented in top down form, the actual
design process does not proceed monotonically. Genarally,
design at l2vel n will result in a review of scone elements of
the design at level n-1, n-2, etc. The advantage of the method
is that the exanmination of effects is an orderly process and the
consequences of the iterative design process are highly visitle.

45

46

TREE STRUCTURE DIAGRAM A LEVEL |

2
3
AAA A.A.B A.A.C A.B.A A.B.B
TRANSITION DIAGRAMS
lnput/condltions,
output/results)

(|nput/cond|t|ons,
output/results)

A.AA A.A.C

(ifc, ofr) | A.B.A
(ifc, ofr) e

ifc, ofr)

(ifc, ofr LEVEL 3

A.A.B Ci/er ot) A.B.B

Figure 6.1 Structured Programming Diagrams

Level 1 nodes are included in section 6.2. Level 1 and all
lover level nodes are included in Appendix A. Appendix A is
divided by level; i.e., 2all information is given for level 1,
ther for level 2, and so forth. Level 1 in section 6.2 and each
level in Appendix A contairs the following diagrams and tables:

State Description Tableg-~Three pieces of information are giwven
for each node.

a) Short Structured Name--This name consists of a set of
one or *two alphabetic characters catenated in the
form:

rs
rs. tu
rs. tu. rw
etc.
The syllable position denotes a level.. For example,

if node A 1is at level 1 then node A.B would be at
lavel 2 and would be a state of node 3. Hence, +the
tree diagram can be formed from the short structured
names. There is no requirement that these names be in
sequence, i.s., the existence of node A.B and node A.D
does. not presuppose the existence of node A.C.

b) Long Name--This name is descriptive of the furction of
the node. For example, node E has +the long name
"Subtask Set-Up."

c) Description--Several sentences describing the
capahilities of the node.

Bllowed Transition Tables-—-This is a tabular representation of
the connections between nodes that have a common parent at the
next higher level. The states from which transitions are made,
aleng with the corresponding references to the input/condition
and output/result tables, which follow, are given. 1A bent arrow
is used to flag entry and exit points from the parent node.
When exits are shown, the level of the state exited to may be at
a2 higher level than the state being =xited from, dependlng upon
the level of tree structuring completed.

Transition Piagrams--These are a graphkical representation ¢f the

Allowed Transition Tables. They can be constructed from the
transition tables and are valuable for visualizing
relationships.

Input/Conditions List Tables-~This is a list of the input or
conditions that trigger a tramsition or change of state. This

47

list should be used in conjunction with the Allowed Transition
tables.

Output/Result lList Tables—-This is a 1list of +the output or
results that are , existent in the state when a trarsition is
nade. This 1list should also be used in conjunction with the
Allowed Transition tables.

Tree diagrams are not included. They can be constructed
from the structured names.

Abbreviations ar= not used in level 1. They are used in
lower lovels to facilitate vriting. Definitions of
abbreviations ars given 1in section 4.0. The text part of
section 6.2 and Appendix A was created by a computer progran
from data suppli=sd by the system designers, This cowmputer
program checked +t¢ ensure that transitions were made between
valid states and that lower level states were correctly
referenced to higher level states,

6.2 SYSTEM DESIGN SPECIFICATIONS

FPigures 6.2 and 6.3 are the level 1 transition diagranm.
Hode F is repeated on figure 6.3 for reference, These figqures
should be rTead in conjunction with the State Descriptions,
Allowed Transitions, Input/Condition List and Output/Result List
following the diagram. In some cases, the nodes at level 1 are
moce generalized functions than those given in Volume III and in
section 3.2 of this document. The association is given in table
6.1. -

48

FOLDOUT FRAME

| ALL NODES TG THE RIGHT
'OF THIS NOBE RETURN ¥
HERE IF THEUSER

PERSCNAL
TERMINAL
OFF

PERSONAL
TERMINAL
ON

PERSCMNAL
TERMINAL
CONNECTED

—_———— e ————]

| ALL NODES TO THE RIGHT
| OF THIS NODE RETURN

| HERE IF THE BWITCH

i8 TURNED GFF

* NAME OF EXISTING
SUBTASK INTERRUPTED
DURING TERMINATION

* TERMINAL DIALOGUE WITHOUT

A CHANGE OF STATE

{ HANGS UP -

I

t

!

|

1

]

|

i

1

i

i OPERATING
} CQUPLER o

! TONNECT INFGAMATION

SUBTASK
STEP

CONTROLLED
ABORT

BUETASK
TERMINATION

Fram nodes GA, HA, 1A, KA,
MA, NA, OA, PA, QA WA .

See figure 6.3
ANy
COMMAND
. EXCEFT GO
DONE ANOTHER .
EXECUTE
NAME OF IPAD BABIC
NON-EXISTING SMART)
EXIT CODE
OPERATING
SYSTEM SUBTASK
SET-UP
ﬁ%hgl\EﬁAND Tonodas G, H, 1, X, M,
N, Q,P, 0w
Bea figure 6.3
E NAME OF EXISTIN q
or EX] ETUR,
1IN COMMARND MODE
ANOTHER
1 A
AME OF EXISTIN
SUB-TASK IN EXECUTION
E '
SURTASK | R
INTERRUPTION i
ouT, '
p
Figure 6.2 |PAD System Design Level

Transition Diagram

4%

FOLDOUT, FRAME
FOLDOUT FRAME s

SEARCH DISPLAY

RETURN RETURN RETURN

CONSTRUCTING

DEFLNENG
DISPOSITION
LEARNING SEARCHING CREATING MODIEYING AN OPERATIONR EXECUTING COMMUNICATING DISPLAYIPEIG OF LIBRARY
ABOUT THROUGH LIBRARY LIBRARY MODULE A JOB WITH A RESULTS | LIERARY ENTRIES
IPAD THE LIERARIES ENTRIES ENTRIES SEQUENCE J0B ¢ ‘OR

i ENTRIES
AS A JOB

VARIABLES

Q

QUTPUT
FUNCTION

INTERRUPTED
- INTERRUPTED INTERRUPTED INTERAUPTED
INTERRLFTED SEARCHING INTERRUETED INTERRUSTED CONSTRUCTING AR INTERRUPTED INTERRUPTED INTERRUPTED DISPOSITION DEFINING
LEARNING CREATING MODIFYING COMMUNICATING LIBRARY
THROUGH OPERATIONAL EXECUTING DiSPLAYING oF
ASOUT THE LIBRARY LisRARY ‘AJ0OB WITH A RESULTS LIBAARY ENTRIEE
ENTRIES
IPAD TS EMTRIES 10B

OR
VARIABLES

ENTRIES

1A Ka

PA

ANY
COMMAND
EXCEPT i
GO f

_/

* ¥ TERMINAL DIALOGUE WITHOUT
. A CHANGE OF STATE
i

Figure 6.3 IPAD Bystem Design Level |
Transition diagram {Cont'd)
50

STATE

[]

M

ORIGINAL PAGE Y
COMPONENTS OF IPAD LEVEL ONE O POOR QUALITY

*+#%d STATE OJESGRISTIONS FH¥¥s
LGNS NAMZ ANI TEXT

PZRSOIAL TeE~MINAL OFF

THE ZAUIPMENT L3 HMJT ASTIVE.

PRSONAL TORMIMAL ON
THL EJULPMINT I3 ASTlvie sUT W0 DATA PATH TJ THZ
COAPUTER cAISTSe THZ E JJIPMEINT IS A PERSONAL TERMINA_,
WOT A RLMITE JCJ ENTRY TERMIMNAL, BUT MAY 4F BUGH=NT)
WITH PERIPHERAL OEVIZFS SUSH AS UASSETTE TAPE,F2InTre<,
PLITTER.
FERSUNRL TLRJINAL SONNELTED
THE=ZT NOW FAISTS & TWli-WIY UATA PLTH dETWEDN TH=
TERMINAL AN THE (CAPULTER
CPERATIMG HYSTEM COMMANDG 1COE
THE USe® IS NUA AS.D TU ZHTER COMMANDS TO THLD Timg
SHARIWNG SYSTEM IN THC HOST JPERATING oYSTEM
SUSTASK SET-uP
THE JSER Is #NOA IN COPMUNICATION wWITH IPAL AND AE
IS5 cITHER INITIATING A JZwm SUSTASK OR CONTINJIMOL AN
OLJ OUNE, In ZITHCR CASEs Trc ALT RESULT wiILL 3£ THE
ESTASLISHMIENT CF HIS ASTIVc SUABTASK LIBRARY.

SUBTASK CIMMEND HOOE

THE "JSER I3 NGA A4LL TO ISSUER IPAD SASIC TIOMMAWIS
TG AUVANSE HIS SUETASK dizk,

sl

IRPAD 'LEVEL, ONE .
(COMNTINUED)

STATE

Fe¥¥% STATE DESCRIPTIUNS (CONTINUZI) +%%ew
LOAG NAME AND TeXT

LEARNING A30UT IPAU

THE ACTIVITY UF GAIN.Ju INFORMATION ABOUT [PAD
EITHER A5 A TAUGHT SUURST R AS HELP WITH A SIifGLE
CO4MAND O 4OLU-E.

SEARCAHLNG THIOUGH THE wizBRIES

THL P2OCES3 CF 3CANJING UILTIONARIZE AWD LIRELT-
ORIES 70 IJENTIFY ANJ LJCATE IWNFORMATIOY IM TAE IPAD
UgATa SASE,

CRIATING _I32ARY CNTRIES

THE 2R3JCESS OF INSZRTING 0aTA (NUMERICAL £ND CTH-
Erd INTO TAE IFAD DATA 3857 <ESULTING I NEA L1 3IKARY
ENTRIES(LE)s IMCLUJED IS THE ENTERLING uwF SCURCE CGLET
FOR COUING MOOULES{CH) y INFOI<MATIUN FOR STORZU UATA JiF-

T ENITIONS(S 305 TRSTANCES 9F 08 TA SETSEES»yOISPLA-- MENIS

M

52

(04)y ANS THE INSTANSE J¥ THE SYSTEM DATL SET C(INTAIN-
IN5 ACOESS AND PERMISST IM ZOUZS,

MOOIFYInG LITRARY ENTRIES

ALTERAING CUKRENTLY RtSIDSNT LIdrRARY CNTRIES. THIS
CAN INVOLV- CHAIGES TUO AlY vALiu IPAD LIBSRARY EANTRY
TYPE.

CINSTRJICTING A JOB

ARRANAGING AvhAIvabls SGOINL MUDULEL{LM) INTO CP-2-
ATIONAL HMOJIULZS(0#)y, CGPIRATIOC AL MOOULES INMNTO JU4SS, AND
OPERATIGNAL MCDULES ahU PRIVIQUSLY OEFLYE0 JOBS INTD
WEA JOgS, ’

ORIGINAL PAGRE I§

OF POOR QUALITY
IPAD LEVEL OGONE

{CONTINUED)

¥XEX% STATE DESURIPTIJINY (CONTINUED) #*¥¥s
STATE LONo NAME AMd TEXT

N EXEGUTLNG & JOv

ACTIVATING A PREVIIUSLY SGNSTRJUTLD JGB

0 COrMMUNICATING WITH A JGu

SEING INTERACTIVE 4174 A USER CUOSTRUCTED U332

F GLSPLAYINS XTSULTS

SCAMNING, CHECKIMGy £ td INTERRIGATING IWNFULRMLTION
CONTAINED Id LISRARY ExNI~IDs JF ANY TYPZE,

0 DISPCSITLIN OF CIBRARY INTRIES

TRANSFERRIJu LILREARY INTRIES deTwWclvw IPAD Ll=-
RARIES, SZINOING ITEAs 0JTS1Je COF IPAS(OFFLINE, Jrt VIA A
COMMUNIGATLON NZITWORK) 3 ANDI KEAIVAL OF JPWANTIL L1B243Y
EMTRIES FRIM THE DATa A5 .

7 SUBTA K 3Tob LONTIOLLED A30R]
THE TERHAINATION OF THZ CJURRENTLY INTERRUPTEY Sds-
TASK STz¥F,.
U SJ3TAS< INTERAUPTIOZN

ACTION ATHMZ3 AT TEA2OUSARY INTERRUPTION OF THD 3U3-
TASK AGTIVITIES W1TA THZ INTEWNT OF RE|E-STARTING AT A
LATER TiMe AT THE PRECISI 2O0LAT OF INTERRUPTION.

a3

http:LIJRA.Uf

IPAD LEVEL ONE
(CONTINUED)

STATE

GA

o4

HA

IA

KA

Ma

HA

ex¥ STATE DESCGRIPTIUNS (CONTINUERD) #%3%#
LONG oldmE AWl TEXT

SUBTASK TERMINATION

THL J3ER HAS CINMPLETED THE DEFINED SUBTASK AND
NUW DESIRES T2 IISFISE JF ALL REMAINING INFORMATION,
LOG THE TERMINATION IN THE PROJUECT PLANS, ANU I3SSUL GNY
REJIUIRED REPORTS.

DEFINING LICRARY ENTRIES OF VARIA3LES

A DEFINITION I3 A DICTIONARY E«TRY wHISH CONTAINS
THZ MEANING OF A VARIAGLE T& & LIBRARY ENTRY ANI GRJSS
REFERENCI NG INFOIRMATIGH, ALL SOMAUNITY LIdRARY wwWlRIES
ANJ VARIA3LES REFERENCES IN DATA SETS REWUIRE LEFIN-
ITIONS. DILCTIONARY EnTRIES ARE OPTIONAL FOR SUBTASK
LI3RARY INTRIES.

INTERPUPTED LEARNING A®GUT IPAD

T THISTIS THE STATE IMN-OIATELY FOLLOWIRG A
PAUSE DURING LEARNING 43007 iPAD. EACH GF THE 3TATES
Gy He I, |<’ s Ny Dy Py Ci, AND w HAVE & SIMILARLY
ASS0CIATED STATE,

INTERRUPTEZD SEARCHING THROUGH LIERARIES

INTERRUPTED CREATING LIBRARY ENTRILS

INTERRUPTZI “OLIFYING LI4RARY CENIRIES

INTERRQMUPTED CSONSTRUGTING 4 JU3

INTERRIFTEDS EXCUUTING A 438

ORIGINAL PAGE IS

OF POOR QUALITY
IPAD LEVEL ONE
(CONTINUED)

4%¥¥< STATE DESCRIPTIONS (CONTINUED) x¥#xx

STATE LONG NiWE AND TEXT
OA INTERIJPTEZD SOMMUNICATING WITH A JOB
PA INTERRIPTED JISPLAYING RESULTS
GA INTERRUPTZO DJISPUSITION OF L13RARY ENTR.
Wa INTLRRUFTED JEFINING LIBRARY ENTRY/ZVAR

39

IPAD LEVEL ONE

(CONTINUED)
*#2x2% AL _OWED TRANSITIUNS *¥*¥s¥
FROM STATE TO STATL INPUT / QUTPUT /
(r = ENTRY) (e = EXIT) SONGITION RESULT
el 4 i 1
B A ik 14
H -2 <
c 4 14 13
B 13 i3
U 3 3
D A 14 13
53 13 13
d 15 1%
o 12 iz
c 4 4
E 4 14 as
g i3 is
F 5 g
F B (S
v 1o &
F A is 17
3 13 17
o) 17 2¢
G 34 35
H is 2e
H 34 3¢
I 13 22
I 3k 3G
hY 21 2e
X 3k 3¢
] 23 ee
" 34 3%
N 2h 22
N 34 39
0 34 3%
P 27 22
P 34 3y
a 20 2
Q 34 39
T 3]
U 3 S
v 7 7
7] 23 2e
W 34 34

26

ORIGINAIL, PAGE I&
OF POOR QUALITY

IPAD LEVEL ONE
(CONTINUED)

##¥¥¥ ALLJWED TRANSLTIINS (CONTINUZID) ¥#¥#¥

FROA STATE TO STATE INPUT / QUTFJTY /
(¢ = ENTRY) (¢ = EXITY - CONDITICHN RESULT
6 A 14 4o
3 13 4l
F 35 L4¢
GA 31 sk
H i} 14 Lt
o 14 4
F 35 42
HE 31 36
1 A 14 &<
B 13 LT
F 35 4
iA 31 36
K A iy 45
3! 13 7
F 35 G
LA 31 26
M h 14 4¢
8 i3 4{
F 35 L¢
riA 31 36
N iy 14 L{
o] 13 Li
F 35 w7
0 25 ce
NE& 31 36
U A 14 LG
3 13 b
F 35 Lz
N 25 22
0A 31 36
P A i &1
3] 13)
F 35 42
Pha 31 36
d A 14 Li
3 13 4
F 35 42
QA 31 3e
i 4 14 1&
g 13 1c

IPAD LEVEL ONE
(CONTINUED)

x¥exx AL OWED TRANSITIONS (CONTINUED) *¥%%%

FROM STATE TO STATE INPUT / QUTPUT /
{+r = ENTRY} (2 = EXIMN) CONOITIUN SESULT
U A 14 ic
3 13 1%
] 1i i1
c 19 idl
v A 14 21
B i3 21
0 b i1l
£ 1) 10
W A 14 U
g 13 4¢
F 35 LT
WA 31 36
GA A 14 41
2] i3 41
F 33 30
G 32 37
HA A iy 4
i} 13 Ll
F 33 38
H 22 37
IA A 14 .
B 13 41
F 33 3
I 32 37
K'A A 14 42
2] 13 44
F 33 3 &
K 32 37
MA A i4 L{
3 13 G1
F 33 3o
M 32 37
NA A 14 4
: 5 14 41
F 33 38
R 32 37
A A 14 44
3 13 41
F 33 38
0 32 37

58

IPAD LEVEL ONE
(CONTINUED)

¥¥¥xx ALLOWED TRANSLTIOINS (CONTINUZD) **#*¥*s

FROM STATE TO STATE INPJT / QUTPUT /
{# = oNTKY) (p = cXIT) CONDITION = RESULT
PA A 14 4y

B 13 41

F 33 38

p 32 37
@A A 14 4G

it 13 Sh1

F 33 3t

Q 32 37
WA A 14) 4T

3 i3 &1

F 33 38

W 32 37

ORIGINAL PAGE ¥

IPAD LEVEL ONE OF POOR QUALITH
(CONTINUED)

60

NUM3ER

D e AN IR PV AV

*x¥%3% INPUT 7/ COWDITION LIST *e*x¥

TEXT

SWITCH TUINEI On

DIaL up

VALID 0% LJ6 OM INFIRMATIUM IN THE PROUPER SEGUENCC
VALID 0S5 30#MANI TO LXEJSUTI IPAD

VALIJ SUBTASK IJENTIFIZR FOr A NON EXISTING SUBTASK
VALID SUBTASK IJENTIFIER FoR AN EXISTING 3Su3TASK
TEIMINATE

QULT

STIP

ANOTHER

DONE

- HELLO

USER HANGS UP

SKWITCH TURNEJ OFF

3vc

SU3TASK RESORDS SHUAING AN INTERRUPT GCOCURRZD OURING
THE SUB TASK TERMINATIOA

HELP

SEARCH

CRIATE

DEFINE

MHOJIFY

CONSTRULT

EXECUTE

CONDITION CODZ SHGWING TIRMIMAL INPUT IS RedUIKED
LAST LiNZ OF USER INPUT

DISPLAY

UISPOSE

PAUSE

GG

ANY COMMANG EXCEPT A GO

RETURN

EXECUTION COMPLITED - nORMAL ZXIT

) POOR QUAGEI&
IPAD LEVEL ONE
(CONTINUED)
*¥&x%% QUTPUT / RE3JLT LIST #¥sss
NUM3ER TEXT
i - .
2 PHONE L INS CONNECT
3 VALID OPLRATING SYSTCM L0G6-06 INFORMATION
4 OPCRATINS SYSTEM COMMANGD TJ EXECUTE IPAJ LUG=OR PRC3AM
5 ESTASBLISHMENT OF A NEW 3USTASK LIGSRARY It THE Lo
5 THE OLD SJITASK LIBRARY IN ACTIVE FOFM
7 0S GCOMMAND TO EXECUTE THE SUSTASK TERMLWNATION #<0GF A4
5 0S COMMAND TO ECXECUTE THE SUGTASK INTERRUPTIOWN PR06-3#H
3 DS COMMAND TO EACLUTC T4E SUCTASK STEP I[wTERRUFTIUN
PRIGRAM
11 SU3TASK INTERRUPTION COMPLETE
it -
12 VALIO oOG OFF INFORMAaiION
13 PHINE LINE UISCIUNNECT
14 =
15 -
15 SU3TASK LIJRARY ENTQY ZI3TO«E) To ORIGINAL STATS
17 A PROCEOURE WIL. tE ZXESJUTED EQUIVALENT T THE
FOLLOHING INPJT‘; - 3,15-
13 COMPLETION OF TERMINATION, THEN PROGEEDING PER UJTPUT
17
13 COMPLETION OF IWNTERRUPTION, THEN PROCEEJING AS [F IVWwUT
13 HAD BEEN RICEIVED.
21 JUTPUTS 16 AND 13
21 HOLDING OF THZI TERMIMATION INTACT S3 IT WILL BE
ENTERED JPON RETURN, THZ ! PRUCEEJING AS 1F INPLT 13
HAD BEEN ENCOUNTERED
22 PARSED COMMANOD, UPDATED ACTIVITY RESORD
3 ExXPLANATORY TZRMINAL CUTPUT(IF NEEDZD), INFUT FEQUEST
31 INPUT TG SUBTASK STEF ‘
36 CURRENT SJ3TASK STEP INTERRUPTED IN RE-3TARTABLE FO2A
37 -
33 POINTER TJ LNTE2RUPT:=D sU3TASK STEP PLUS RESTART
INFORMATION
33 05 CUMMAND TO RO-START Fr0M PRECEEJING PAUSE
43 IPAD PROCEJURE EXECUTED CUNSISTING OF A PAUSE, QulT,
DONE,BYE
41 IPAD PROJEOQURE EXECUTED CCONSISTING OF WJITHO0NE,SYE
42 NORMAL EXIT CUGE 7

61

Table 6.1 IPAD System Design/Volume 1!! Requirements

Comparison Summary

DESIGN NODE DESIGN COMMAND CORRESPOND iNG COMMAND
FROM VOL. 111
E Name of Existing Subtask RESUME (from HOLD)
Name of Non-Existing No explicit command given
Subtask for the initial log-on for
a subtask
F QuUIT HOLD
STOP sTOP
TERMINATE No explicit command given
for the ending of a subtask
RETURN RESUME (from PAUSE)
HELP LEARN IPAD
SEARCH FIND
CREATE ENTER
MOD IFY EDIT
CONSTRUCT CONSTRUCT,ENTER
EXECUTE EXECUTE
DISPLAY DISPLAY,FIND,COMPARE
DISPOSE PURGE, SEND, TRANSFER
DEF INE DEF INE
G,H, I,K,M,N, PAUSE PAUSE
0,P,Q,¥] 60 RESUME (after PAUSE)
None | Nome MESSAGE

62

6.3 SYSTEM MEMBER SPECIFICATIONS

6.3.]1 Design Organiza+ion

Section 6.2 <contains the design specifications developed
using a top down approach. Starting with basic user Ffunctions
at the highest 1level, the various downward trails or "tree
walks" specify the actions and data flow required by the system
to carry out these functions. Vieving the complete system from
another perspvective, four basic operational elements or systen
members are idsntified whose relationships are shown in figure
6.4. These =2lements are:

» USER =

A

Y

ACTIVE
J0BS

A A
Y

OPERATING
SYSTEMN

i

DATA
MANAGER

EXECUTIVE =& /M X

Figure 6.4 |PAD System Member Relationships

63

a) ACTIVE JCOB--A set of computer operations performing
work for a user.

b) OPERATING SYSTEM~--The collection of software which
controls the host computer and provides the interface

for the non-IPAD user.

c) IPAD DATA MANAGER--The collection of software unique
to IPAD which controls and manages access to data in

the IPAD data base.

d} IPAD RYECUTIVE--The collection of software aunique +o
IPAD which interprets user commands and controls and
manages system activities in response to those
commands.

No attempt has been made to map the design nodes of section
6.2 and Appendix A completely into the system members. Table
6.2 illustrates how this mapping might he done. Identifying
nodes with system members is primarily an implementation task.

The concept of community and subtask 1libraries and the
underlying system data structures is basic to the IPAD design.
Implementation quidelines for the IPAD Executive and Data
Manager are given in sections 6.3.2 and 6.3.3. Specifications
of the data structures are givep in section 6.3.4.

6.3.2 1IPAD Executive

A design goal has been to rminimize the IPAD ipterface with
any given host hardware/software system. ®ith regard to the
IPAD executive this implies +that it should execute as an
ordinary job under the host operating system. The degree to
which this is not +true 1is a measure of the host systen
dependency of any given IPAD executive implementation.

The most significant result of these considerations is the
design feature of one executive program per user. TIf +the TIPAD
executive 1is to look like a user program and there is to he one
per user, at least three demands are put on the host operating
system:

. It must contain a time sharing system with normal
terminal inpput/output handling features.

» Tt must have a nultitasking capability with the
ability for one task to interrupt another.

64

Table 6.2

IPAD System Member Mapping

SYSTEM MEMBER

DES1GN
NODE(S)

EXPLANATION

EXECUTIVE

- = A T m

Subtask setup

Subtask command mode

Subtask step controlled abort
Subtask interruption

Subtask termination

ACTIVE JOBS

A1l utility operations and user
application modules.

DATA MANAGER

Update usage information

This is an example to show that the
data manager enters the system design
at levels 2,3, and below. The data
manager is support to the executive
and active jobs and therefore will not
be visible to level |. Most nodes at
a lower level will use the data
manager in same way.

OPERATING SYSTEM

N.D.A

Initiate execution

The operating system supports IPAD;
therefore,the -interface to it appears
at the lower design levels.

65

. It must be able to retain the linkage between a user
and his executing job without maintaining a terminal
connection.

The first of these requirements must be satisfied +to
support perSonal terminals in IPAD. The second requirement nmust
be satisified 1f the executive is to initiate IPAD utilities and
user Jjobs, interrupt them, and restart them. The PAUSE command
{see figure 6.3) may be issued by the user at any time during
execution requiring the operating system to suspend execution of
the current activity and initiate a new activity. Repeated
interruptions are allowed, giving rise to multiple activities in
suspension associated with a single wuser/terminal combination.
Since an interrupted activity must be restartable, operating
systemn functions like roll-ocut ané roll-in will be callable by
the IPAD executive. The third regquirement is necessary to free
the user and his terminal during 1long executions. If an
execution requires more than a few minutes, the user may desire
to pursue other tasks and inguire at a later +time about the
progress of his executing job. -

6.3.3 Data Manager

6.3.3.1 Design Intent

The TIPAD data manager will consist of a set of computer
programs written in TIPADL (see section 6.7) and underlying
software provided by the host system. The IPADL programs are
jntended to be machine independent but will be dependent on a
level of data base wanagement software similar to that specified
by the CODASYL Data Base Task Group (DTBG) in their report of
April 1971, (ref. #4). If +the host system does not include
software supporting a CODASYL defined data management system it
is recomnmended that it be added and used. Other software
providing the same capability would suffice. 2t the TPADL level
of dimplementation the underlying software should be invisibhle.

A fundamental concept in the IPAD data management system is
the separation of definitions of data structures from programs
that reference the data. The IPAD stored data definitions gare
the basis for all IPAD controlled data functions as well as the
means by which implicit I/0 is provided to user pregrams. The
schema and subschema of CODASYL are stored data definitions, and
in the following sections modifications to the CODASYL
specifications necessary for IPAD are given.

66

6.3.3.2 MHNodifications +o CODASYL bata Description Langquage
{DDPL) Specifications

External Data_ _Structures--Provision for the definition of data
structures which reside on storage media such as puyunched cards
and magnetic tape are necessary for some IPAD utility functions
dezling with +the movement of data into and out of TIPAD.
Subschena should pernit the differentiation of external -and
internal structures and include facilities for storage device
and media control information. Examples are: field definitions
on punched cards, tape blocking factors and tape mnode and’
density. The DDL, as specified in the April 1971 CODASYL report
of +the DBRTG, does not handie these problems but perhaps will by
the time IPAD 1implementation is begun. Additional woTk
currently under way in CODASYL by a new group, the Stored Data
Pefinition and Translation (SDDT) Task Group, 1s dealing with
this problen. Papers were presented by this group at the
SIGFIDET Conference on Data Description held in Denver, Colorado
in ¥November 1972, (ref. 5). The development produced by the
SDDT Task Group should be evaluated as an early part of the IPAD
implementation effort.

Local Variable ~ ILibrary Variable References--The CODASYL DDL
spacifications must be modified to allow subroutines t.o
reference a global variable with their own local variable names.
CODASYL DDL statements for a schema include those for defining
variables as data subentries of record entries, CODASYL also
permits the definition of subschema which specify which parts of
a data set +the program declaring the subschema may access. 1In
the DDL for a subschema there iz a RENAMING section in which
variables and aggregates of variables (e.qg., records) can be
given names local to a subschema. The CODASYL specifications,
however, require +that all routines which use a given subschena
use the same local nanes. The RENAMING section must be
augmented for IPAD to accommodate the coding module to
operational module building block logic. The addition of a FOR
phrase in +the DATA repaming clause provides this augment for
variables.

As an illustration:

DATA data-base-identifier—-1 IS CHANGED PO data—-base-data-name-1
FOR subroutine identifier-1 {, TO data-base-data-base-name-2 FOR
subroutine identifier-2)....

FOR phrases can be similarly used to rename sets and records.

¥hen a eoding module is generated, the subschema reguired
for implicit I/0 are identified by each subroutine in the CH.
Two or more subroutines declaring the same subschema may have
different names for the same variable in the data set identified
in the DATA statement by dJdata-base-identifier-1. There is a

67

complimentary requirement (discussed in more detail below) that
all local-global name references be correctly resolved at
execution ¢time. The modifications specified here for snbschema
repaming can be used directly for this resolution.

It should be noted that the default mode uses the same
local and global variable names, and this mode will frequently
be used when new programs are developed under IPAD. The
renamning capability is needed, however, for incorporation of
pre-existing and independently developed code into IPAD.

6.3.3.3 Data Manipulation Language (DML) for IPADL and the
IPADL Compiler

: As of this writing the CODASYL DBTG has only specified a
COBCL DHL. If CODASYL produces a FORTRAN DML, as planned, it
should be relatively simple to adapt it to IPADL. If a FORTRAN
DML is not available a DML for IPADL must be specified.

Assuming the resulting DML is modeled after the one which
exists for COBOL, a FIND command issued by a program will cause
the data manager to move the desired data from the data base
storage device to a system buffer. 34 subsequent GET command
noves all or part of the data from the system buffer into the
user's working area where it 1is manipulated by +the calling
program. As mentioned above, different IPAD subroutines may
teference a single global variable with their own local names.
When an ©Operational module is executing and a GET command from
a subroutine has moved some data into the wuser's working area
{UWA); that portion of the UWA resembles a FORTRAN cormrmon block
with respect to the data aggregate moved and +the other
subroutines which use the same subschema. Three conditions must
be satisfied to provide proper referencing to the data in the
OWA:

a) The FIND (or equivalent command) mnust identify the
requestor so the correct data aggregate is retrieved
from the data base:

b) The GET (or equivalent command) must identify +the
requestor so +the correct data aggregate is moved to

the UWA, and [

c) The correct address references are made to variables
in +the UWA from each =subroutine using the sanme
subschena.

These requirements suggest modifications to the DML such as
adding a FOR phrase to the FIND, GET commands. This, however,

68

gwould only satisfy condition {a) and partly satisfy condition
{b). Alterrnatively, the IPADL compiler could be designed to use
the subschema at code generation time which enables it to use
global names for all retrieval/storage commands, and to allocate
space for data in the UWA. A mechanism, like FORTRAN labeled
COMMON, would result from the compiler having obtained the block
structure and the local name equivalences from +the subschema.
All 1local references, in effect, would then be transformed by
the compiler into global references without ary action by the
subroutine other than to identify the proper subschema at
compile time. The DHL should, therefore, 4include subschema
declarations.

6.3.4 Data_Structures

The IPAD gystem uses a set of data structures organized
into libraries as discussed in section 5.4. By convention, all
data stored in the IPAD data base resides in library entries.
Bach library entry 1is divided into two ©parts, the 1library
directory entry and the library text entry. The directory
contains identification and control information pertaining +o

the text. The +text 1is the informpation set stored. The
directory/text relationship 1is essentially the same as an
envelope/letter relationship. Figure 6.5 =shows the Dbasic

elements of a library entry.

f
(LI BRARY NAHE
DIRECTORY 4 |'PE
ENTRY STATUS
LIBRARY USAGE INFORMAT|ON
ENTRY 1 .
LIBRARY
TEXT { TEXT
ENTRY
A

Figure 6.5 IPAD Prototype Library Entry

The structure of all library entries are defined in the
syster by stored data definitions (SDD) which are themselves
library entries. By virtue of usage there are +two classes of

69

library entries, user and system. TUser entries are defined by
the user as he supplies the appropriate SDDs. KFhile there is
currently only one user type 1library entry (data set), the
nunber of user SDDs is not limited. System entries hold source
code, binary code, $DDs, etc. There are currently 17 types of
system library entries, but each one has one and only one
structure ({or SDD). To contrast the twvo usages, there are many
ways one might need to store the geometrical information
describing an airplane body, but it is not difficult to find a
single, useful way to store binary code.

When the system is implemented, stored data definitions
will completely define all the system structures and be able to
process user supplied stored data definitions. Sections 6.3.5
and 6.3.6 contain specific details about the currently defined
library entry types.

6.3.5 Directory Entry Spvecfications

a) NAME--External Form

N Unqualified 1library entry name
(ULFYN) supplied by the user

N.V V is a simple integer denoting a
version of N generated for any
other purpose than error
correction _

N.V,CV,y Vo is a corrected version of N.V
and should be used in its place

N Q is the gualifier attached to the

¥.7{Q) LE by the user and possibly ap-

N.V2CV1(Q} pended to by IPAD.

Internal Form

This is the external form with +the owner's

jidentification appended. OID/PW/PP = owner's
identification.

0ID = owner's identifier

P¥ = owner's password active at the

time the LF was established

70

PP = project pointer--linkage with the
project {could be project or
subtask).

b} TYPE~-Must be one of the following codes

AL = Alias
CH = Coding Module
DY = Dummy
DF = Display Format
pC .= Dictionary
DR = Directory
D = Display Menu
Ds = Data Set
OH = Operational Module
PL =) Plan
RP = Report
Spp = Stored Data Definition
sJ = Standard Job (synonym for Job)
ST = _Subtask
SF = Security File (see section 6.5
below) .
c) STATUS--Basic Dqscription One of the items under =ach

of the following headings must be selected.

Availability - {available, purged, archive)
Security - (unclassified, confidential, secret,
etc.)

Certification Level - (checkout, ..., certified)

Analysis Level - (1, 2, ...n)

11

72

a)

current Structure - (for any LE which may have
text in optional formats, the name of the current

SDhb)

Current State of Access

For each user currently attached to the LE, the
user's identification (UID) w#will be kept along
with the type of access he is permitted to have.

Responsible PersonsOrgapizatbon

.Tdentification of "owner"” of the LE.

External Document Reference

When applicable, references which are pertinent
to the text associated with the LDE.

Text Control Data

Existence and contents of this category of

information is type dependent, Specifications
are given with the LTE specifications in section
6.3.6.

Installation Table

Reserved for host system dependent data which may
be necessary for successful operation.

USAGE_INFORMATION

Date, time or originating action with owner's
identification.

Date, time and type of last access with UID

User access table

gID | READ WRITE | EXECUTE | EXTEWD
UiD; | ¥, W,
AC ac
UID, | PW, i,
aC AC
UID, P,
AC
ANY PW,
AC
ANY ANY
AC

AC = Date of last access, total access count.

Note: For the ANY entries, there is the option to keep
additional statistics by UID.

6.3.6 Libra;v_Entrz Specifications

The contents and 1use of the LTE, by type, are specified
below. The directory entries for some types of data sets
contain a collection of comrtrol information specific to the
type. This information, the Text Control Data, is also
specified below. Table 6.3 contains a summary of the systen
structures.

a) ALIAS _{AL)--The ALIAS +type is provided as a
convenience in resolving data set naming conflicts at the
operational module and job level. An ALIAS may have a qualified
or unqualified name, with or without 'versionrs. The ALTAS has no
text of its own but points to another data set. This "parent?®
data set may be of any type and has appropriate text., All

access pernission is based on the aliased (parent) data set.

b) Coding Moédule {CHM)—--A CM is the basic building block
for the production of executable programs in IPAD. CM names are
unqualified 1library entry names with versions and the text
contains source and object code. The formats of the source and

73

12

Tabl

e 6.3

IPAD System Structures

| |[BRARY éNTHY USAGE DEFINITIONS LIBRARY ENTRY = LLE
[¢—————— LIBRARY DIRECTORY ENTRY = LPE ———e— L |BRARY TEXT ENTRY = LTE
o
. 8] A
O Sy, (%]
SRS 5 4
o 00)
ST ECEST /S
O fva /e /o
CROSEGRY & /L /R
gt Sy N I
TYPE DEFINITION andfor USE [RORET $ S S & TEXT CONTROL DATA TEXT
ALIAS Allow name substitutions 10 resolve ambaguities. Link \/ -
tAL) Possible fpaceet — | — 1 |~ - -
CODING Smallest package of computer code tn system, Used ULEN [Link s Block h
MODULE |asa building block o create executable programs, | 7 flwith f10 1. /4 /1 /1. /1/ |/ ub-routing Block for each S-R :;; gcl;urce °°SE
{CM) A CM may have more than one subroutine versians | Text {See Section 6.3.68) yect code
DUIMAMY Allow LE nomes to be used os formol paromaters, | 3!;52'“‘ -I-1-1-1-1v]- _ _ .
oY) . versions
DISPLAY Allow wdentification of specific displays, May be a ULEN {Link Tta] OM or Job 1D Tuser supplied], or {Detailed format specalications or other contro!
FORAMAT user supplhied display processor or 3 parameteriza- with 10 {1b} System utility 1D information required by display progessor
{DF) tion procedure for a system supphied dispisy \/ versions | Taxt '\/ \/ \/ '\/ '\/ ‘\/ (2} List of LE name‘sior types which
function may be displaye
DICTION- All defimitions to be stared which give meaning to ALEN |Link Collection of dictionary entrigs
ARY LEs in datn base. Used for certain types of retriev. \/ to \/ \/ \/ \/ 4 —_ [See Section 6.3.65)
{DC} als ond user communication Text .
DIREC- Used to locate, manage, and control data (LEs) i QLEN jLink Index to 2 set of LDEs Note that an entire
TORY data base. Consists of index in text * the LDEs v LI LYAEYS NATVARVA V) - library [CL or STL) or a part of a hibracy may
{BR) hinked 10 by the index Text be referenced by a directory.
DISPLAY Allow users to specify display options for a series ULEN |Link
MENU {DM) | of sessions v/ vwé;guns ‘tl%xl \/ VALY '\/ + '\/ - Display opuion table.
DATA Repository for dato required by and produced by QOLEN [Link
SET users. Used 1o coordinate multiple users working — o \/ \/ \/ \/ -\/ \/ — Data values
ins) on a project Taxt
ngI)ENH:L Smullest package of exgcutable code Usedasa ’ ULEN JLink ' {1) List of Coding Madules. .
building block when defining an execution with w — {2) Operatonal module mpecifications
’(‘g?ﬁULE sequence. v versions | Text VIVIVIVIVIV {3} Generated main program.
PLP;N Wsed for project, 1ask, subtask management, ULEN |Link t;; 'l',Pen" chanl m:’h level codes
(eL \/ with 1o \/ \/ \/ _\/ \/ _\/ _ ser control codes
varsions | Text {3} Completion-Actlon
[£A] Message buffer
REPORT Usad for reports produced at subtask ULEN [Link
{RP} termination time v th;::nons .“%m VIVIVIVIVIY - Report text.
STORED User supplied definttion of a data set which con- ULEN jEink
Schema and sub-schema for the data set
DATA DEF!-jtains sufficient informatian to allow dato accoss with to
NITION by user programs and system utilities to be man- v lversions [Text| VIV IV V|V [V - dehn,ed by SDD, (Schema use in CODASYL
{SDD} aged and controlled by DM$S sensel. .
STANDARD [The unit of execution in IPAD User defines jobs ULEN {Link| {1} Newwvork description of Job
J0B (51 |as combination of OMs and/or othor jobs, 3 v Jto VIViVIViVIY - {2} “Symbol table”.
versions | Text {3} Control card skeleton
SUBTASK Used by the system 10 manage a subtask activities ULEN |Link 131} Acuwvity Record
15T) and subtask hbrary. to — {2) Data Set Reference Table
- Text \/ \/ \/ \/ \/ '\/ {3} Termunation Record
SECURITY | tked by the system to control access 1o Data base, ULEN |Link ;
:::SIII:-IE ,\/ El?axt \/ .\/ \/ \/ .\/ \/ —_ User security profiles

d 30

5 oo
d TVNIDINQ

PG

object <c¢ode will be compatible with the host software provided
for maintenance of character string data and for the loading and
execution of compiled routines. A C¥ mwmay contain more than one
subroutine. ~

Text Contrepl Data for CM-~A block for =ach subroutins
in the CM as follows:

1 Subroutine Nanme
2) Main Program Flag
3) Entry Point List
Name, OM Call Flag
4) External Reference List

CM Name, Entry Point Name

5) Common Regiocns Referenced and Dimensions
6) Data Control Specificaticns, for =ach data set
referenced

- Name: (ULEN)
- Use: 1IN, OUT, I/C, Scratch
- #lode: Implicit, Explicit

- 3et up: If mode -. Implicit, subschema nane
If mode - Explicit, file name, positiorn
of data set on file, and £file
- unit correscgondence.

The information in this block <cannot be completely
specifisd until the programming language and host software ars
known. The specifications given assume a FORTRAN~like language.

c) Dunmy_ (DM)--The dummy da*a sst type is vprovided to
allow data set names to be used as formal parameters at OM and
Job definition time. Substitution of actual data set names for
ths dummy names takes place at execute time. There is no text
associated with a dummy, and the name is a simple ULEN.

d) Display_ Format (DF}--This type of data set is used to
identify specific display capabilities provided by the users
such that the displays may be readily invoked. The display
software may be user supplied for a system utility driven by a

75

procedure parameterized by the user. DF names are unqualified
but may have version numbers. The LTE contains control
information, format specifications, procedures (which may be a
combination of TIPAD commands and host OS5 control language
statements).

Text Control Data_ for DF

1) Processor identification

{a) User supplied Job or ON ID, or
(b) System utility ID, or
{c) Procedure flag

2) List of LE names or tyves which may be displayed.

e) Dictionary {(DC)--A& dictionary name may bhe gqualified.

The £fundamental purpose of a dictionary is to provide unique,
unambiguous definitions of data itenms. The dictionaries are

used to search the libraries, both through keywords and direct
references. The LTE of a dictionary contains the individual
sub-entries. A prototype follows:)
Name ({ULEN or Variable name)
Type
Defining Text
Documentation References
Responsible Person/Organization
Key Word List
"Used by" List
Variables used by Data Sets
Data Sets used by CHs
CMs used by OHMs
OMs used by Jobs
£) Directory {DR)--2 directory name may be qualified.
The text of a directory contains an index which points to a set

of LEs. A diresctory is used by the system to access the CL, and
each STL has a directory. The users 4o not have direct access

76

to the CL and STL directories that are maintained and
manipulated by the systen.

q) Display Menuy {DHM)--Names of DMs are ungualified but
may have versions. The LTE contains a display option table that
is used to simplify requests for displays which the user may
nake frequently over the course of working a subtask.

h) Data_Sets_{DS)--Data sets contain user data in. the LTE
wvhose structures are defined by stored data definitions. Data
set names are qualified and may have version nurbers.

i) Operational Module (OM)-—-An OF is the smallest
executable unit in TIPAD and consists of one or more CHs. OH
names are ungualified but may have version numbers. The LTE
contains a list of the CMs. An OM must contain one and only one
"pain" program which is either included inr one of the CH
constituents or produced by the system at the time the OM LE is
entered by the user. In this case the wmain progran
specifications are given in a high level IPAD language and the
source statements are stored in a separate, newly defined CH.

1) Plan _{PL)--The Plan is used to c¢ontain control

information for a project. Plan names are ungualified but may
have version numbers. The LTE has four main categories of data:

1) Description of subtasks and PERT type network,

2) 42 set of user control codes for each subtask.
This information is used in conrjunction with data
from the system security file and permission
codes in the LEs to control activities and data
access at all levels.

3) Specifications of actions to be taken on
completion for each subtask. These include
references to Report LEs +to be produced, the
establishing of other subtasks, issuing messages
to subtasks and to project management.

) Message buffer used to pass coordirating
information among active users om a day to day
basis.

k) Report_ {RP)--Reports may have gqualified names. The

report is linked to another LE of type SJ ({Standard Job) which
contains the information required to produce a report at subtask
termination time. This includes a definition of +he contents,
format, and data sources. The LTE of the Repert LE contains the
actual report produced by the referenced job.

77

1) Stored Data Definition (SDD) =—-5DD names are
ungqualified but may have version numbers. The LTE of the SDD
contains the detailed specfications of the LTE being defined;
i.e., the schema and subschema referred to in the CODASYL DBTG
Teport.

m) Secgurity File (SF)-—The security information is
coptained in the LTE. The SF 1is a unique system LE in the
community library.- Bach subtask library will also have a

security file representing the total security profile for tkhat
subtask. Specifications of the LTE contents are contained in
section 6.5.

n) standard Job_ (SJ)--Job names are ungualified but may
have versions. The job is the unit of execution in IPAD and is
a combination of ONs and/or other Jjobs. Three categeories of
information are in the LTE.

1) Natwork description of job consisting of source
statements of the job definition language.

2) A "symbol table" identifying logical file nanes
used and the unqualified names of data sets which
are external to the Fjob.

3) An execution procedure which is a combination of
05. control cards and IPAD commands to be
parameteriged at run time.

o) Subtask_ (ST)~--Subtask names are unqualified. There is
one ST type LE in each subtask used to record activities and
status of the subtask. The ST LE will only appear in subtask
libraries, never in the community library. Three categories of
information are contained in the LTE.

1) Activity Record--a conmnplete record of all
activities in the subtask such as IPAD commands
processed and status. Accounting information

showing resources (cost) used by activity.

2) LE Reference Table--This information is used +to
determine whether changes have heen made to LE in
the community library which are referenced by the
subtask from session +to session. Current line
.numbers of the usage information table (in the
directory entry) of each LE are recorded at ‘the
beginning and end of each session. Gaps in the
numbers . bsatween sessions indicate changes.
Analysis of the usage data will help determine

" the effect on a particular subtask.

78

3) Termination Record—--The specificatjons of the
activities to be performed when the subtask is
complete are contained in the LTE of the Plan.
Fach activity 1is logged here when it is started
and the status recorded, through completion.
This record becomes part of the project report.

€.3.7 Logical Organization of IPAD Libraries_in_Data Base

IPAD data management is based on the use of the system LES
to contain the different types of information held in the
system. The total collection of data in the data base is
divided into one public aggregate, the community library, and
many private aggregates, the subtask libraries. ¥ith the
exception of subtask and security file types, LEs of all types
may be found in any library.

Access to the data base by the IPAD system is by way of a
location 1in the host operating system which points to the
directory of the commuaity library. This directory is am index
to all 1Es in *he CL. PFach subtask has a directory in the CL,
which is an LE of +type "Directory" having the name of the
subtask. The text entry of the subtask contains an irdex which
points to all the LEs which comprise the subtask library. BAn LE
in’ the community library may logically be attached +o one or
more subtasks, such attachments being shown in the directory
entry of the LE. The index of each attaching subtask will in
turn reference the CL entry.

Figures 6.6 and 6.7 offer +two views of the 1library
organization. The first illustrates the chaining of pointers
which connects the total data base. The second shows what
resides in the community library and subtask libraries. Note
that +the community 1library directory is the text entry for a
library entry called DIRECTORY (CL). Also note that the subtask
‘libraries consist only of text entries and +that all directory
information resides in the community library.

The effect of this organization is that subtask libraries
are only partially visible in the CL. A scan of all +the CL
entries will mnot disclose any subtask library entries except
those CL entriss which are attached to subtasks, and +the
directories of the subtask 1libraries. Subtask libraries are
thus seen to be referenced indirectly, one level down f£from the
CL.

A rTelationship unique to data set type library entries is
shown in figure 6.8. A data set library entry is composed of
one or more library variables each of which must be defined in
the library variable dictionary (see '5.4.2 and 5.4.3). This -~

79

1:
)8

& &oe
d%v

ALITVO
S 4DV

Everything outside this box
15 1n the Data Base A “built

DATA BASE LIBRARY ORGANIZATION

n" system location contains
a pomter to the Community

Library, CL, Directory which |
i1s the entrance 10 the date base |

CLD LOC

Entry Name:
Dvwectory (CL}
Entry Type:
DIR
Text Lacation Specifncaiiuns"

Library Entry Compotition
A Library Entry, LE, consists

of twa parts, Library Directory § LTE

Entry, LDE, and Library Text
Entry, LTE

LE=LDE + LTE.

The LDE and LTE are not
necessarily stored n physically
contiguous locations in the
data base.

Each LDE contains the name
and type of the entry. The
contents of an |.TE are

Taxt

Text of a directery is an index
The CL Birectory indexes all-
the LEs in the hibrary includ-..
ing each active subtask,,______

1L

Entry Name.
ST 1 {Project A)
Entry Type:
DR
Toxt | tion Spocificat E

[
dapendent an type, e
Entry Namo: Entty Nama: Entry Nama;
Sammple 1 Dactionery (CLLE} Drctionary {CLLV)
Entry Typa: Entry Type. Entry Typa:
Any Legal Type DIc oic
Taxt Location Spcclflcatiuns" Text Location Spociflcatnons:’ Taext Location Speclf:catmns?
NOTE Subusk
LE Type is Illagel
nthe CL.
Taxt Taxt Taxt
Contents depend on LE Contsing definitions of CL, Contains definitions of
type. Libraey entriet, angingaring variables used

in the CL.

Figure 6.6

IPAD Data Base Library Organization

Toxt,

Text is an index to the STL .
for subtask ABC.
An LE namad may also be in-
the CL. Heance also in another
5TL

Entry Name:
Sample 2
Entey Type:
Any Laga! Type
Text Location Sp.clficatlom‘T

Text
Contents depend on LE type.

aa
IV, 15

v}
d

ST asvm

18

COMMUNITY LIBRARY

COMMUNITY LIBRARY DIRECTORY

BIRECTORY (GL)

COMMUNITY LIBRARY TEXT

SUBTASK LIBRARIES

Figure 6.7

IPAD Library Organization

DIR l {
| TEXT of SDOA I
2 5DDA
SOD I |
l DICTIONARY Entrles
I ch[;'r?NARY {CLLE} for all CL. Library | »] Taxt k:r .
| Entriss. I s LE of ST?
| Dictionury Entries I T T.:E‘ f‘;' sT1
p| DICTIONARY (CLLV) for all Cl. Libeary | e
oic 4_‘-‘—.—_“) Vlfllb’ﬂl-
et s | ey
I | Text for
Directory entrios I B s LE of 5T1
» ST1 {PROJECT A} for sll library sntries |
DiR In subtask §TY °
| of Project A, I I Toxt for
| a LE of §T1
“_'_"l"'_" Duts of the
A (Q)
I Ds ’ name A (G} l - Taxt tor
l | aLEof 8Tt
I Dsta of the l
A Q) Toxt for
» os') l name A {Q] [P sleorsT2
l I °T-xt for
—]
8 Source Code for » LE of 5T2
 S— oM The Coding Moduts |
-1——--—————-] 8
I - Toxt for
l Directory entries | o LEof 872
ST2 IPROJECT A} for i Library
B DR ontriss in Subtesk 8T 2 | .
i of Project A | Toxt for
| P 4 LEof 572

38
o 42
=
% &
£
g
Ega
722

collection of 1library variables is then defined in the library
entry dictionary as a 1library entry. This then defines a
conceptual -data set which has an ungunalified name but no actual
data associated with it. 2 collection of data representing a
particular instance of the defined data set has a qualified nanme
in the directory. The directory has the linkage to the actual
data.

LIBRARY VAR IABLE LIBRARY ENTRY
DICTIONARY - DIRECTORY
0 ~
—O
Wing Geometry ‘_O
LIBRARY ENTRY (SSCT-1)
Wing Area DICT IONARY e
—O
~O ALL
- Wing Geometry {PAD
Wing Span \ / ($5CT-2) DATA
‘Wlng Geometry ﬁ.o
‘ —0
Wing Sweep Wing Geometry

(747-200)

Wing Thickness

el

$ 1
UNQUALIFIED NAME QUALIFIED NAME

Figure 6.8 Data Set Library Entry Organization

82

6.4 HUMAN FACTORS

The characteristics of the man as well as the computer must
be included in the design of a man-computer dialogue. The
ability of man to adapt to a wide range of circupstances directs
the designer of a man-computer dialogue to give greatest
consideration to the least adaptive of the +two--the computer.
Too often the needs of the man are determined from a value-based
definition which leads to the ultimate ccnclusion that the real
needs of man are only associated with food, water, and shelter.
A more useful basis is a rational definition wherein a 'need or
regquirement is some demonstrably hetter alternative in a set of
competing known alternatives that enabkle a human purpose or
action +to be implemented® (ref. 6). This definition
deliberately ignores the arqument of value versus cost, an
argument that is never «conclusive in the design of a man-
computer dialogue. It does wallow for an exploration of
alternatives and their implications on the quality of work,
efficiency, and general creativeaess of man.

Language is the principal vehicle in a dialogue. Since man
is the dominant element in the dialogue, the following three
observations about the behaviour of man are pertinent:

- Behaviour is strongly time associated.

° Behaviour is conditioned by familiarity and
expactation.

. Familiarity and expectation are the result of
experiences.

These observations are developed as the basis for man-
computer dialogue design in the following paragraphs.

6.4.1 User Behavioural Characteristics

Beduction in computer response time from several days to
several minutes by going from a batch system to a terminal
system may be an adequate improvement if the objective 1is to
provide a more efficient operation through remote job eniry.
However, i1f the objective is to westablish an environment in
which the compnter is part of a continuous thought process, the
improvement in response time €from days to minutes is not
sufficient because the human mind requires response times in
the order of seconds for continuous thinking. Hence, the
following observed characteristics of the mind play an important
part in the design of a computing system.

83

short _ Term __ Memory--%hen tasks are performed, a body of
information is held in the mrind at conscious level, termed
"short +term memory" by Miller {ref. 6). Two characteristics of
short term memory, both associated with waiting, are important.

a) Short term mesmory is never passive. Noise from within
the mnind or distractions from without can cause change
of its contents. The risk of loss of dinformation
Tapidly dincreases when a person 1is conscious of
waiting. Consciousness of waiting occurs within two
seconds after plosure {see below) if new activity is
not begun.

b) During creative or highly innovative vperiods, 1large
amounts of work are performed within continuous,
concantrated, and relatively short time periods.
Interruptions of 1less than a minute during one of
these periods can cause loss of the entire line of
thought.

Closure-—-Humans spontaneonusly organize their activities into
“elumps?" {(ref. 6) that represent an action +that 1is concluded
with a definite result. An example, is looking up a number in
the telephone book followed by dialing the number. At the end
of each of these activities there is a sense of completion.
Psychologists call this sense of completion a *closure."

A closure is also the point where the minimum information
necessary +to proceed to the next clump is held ir short term
memdry. Hence, interruption of a clump of activity results in
a closure and a partial purging of short term memory to only
that information necessary to handle the interruption. This is
observablzs when dialing the telephone where an interruption will
cause loss of nemory of +the number being dialed and, if the
interruption is intense enough, loss of memory that +the phone
was being dialed.

when solving complex problems, short term memory is heavily
filled. The ability of a person to solve complex problems is
directly related to the amount of information he can hold in
short term memory and the <concentration with which he can
achieve a chain of closures leading from one conclusion to the
next. Interruption of this process nearly always results in a
restart" and, as stated above, can result in less of the entire
activity.

Closures come in different degrees depending upon +the
importance of +the result. A person is much more teolerable to
interruption when an important closure has been reached than he
is at an intermediate closure.

84

Step-Pown__DPiscontinuities--The vtTate at which thought processes
decrease in efficiency as the number and 1length of response
delays increase is not continuous. For example, intense
creative dialogue is not possible with response times greater
than 2 to 4 seconds. Ordinary conversational dialoque becomes
awkward with response times greater than 2 to 4 seconds and 1is
not possible with response times in excess of 15 seconds. When
two persons are holding the dialogue, the response need only be
a nod or a grunt but it must occur within the given time period
to avoid fezslings of anxiety or a breakoff of communication.

Where a continuous thought process involving the computer
is not a necessary part of the problem solving activity the user
is engaged in, the above observations and the paragraph on
response time are not relevant. But it should be noted that the
user will not engage the computer for some types of activity
unless he can do so at conversational speeds in a mode that is
compa tible with his thought processes. Useful tasks will still
be completed when these criteria are not met hut some of them
will be done less well. Direct use of the computer for problen
solving, <creative processes, and complex interrogation requires
a converational man-computer dialogue.

The response times given are those for which the user will
be comfortable and continue +to utilize the terminal for his
purposes. They are a guantitative expression of a gqualitative
phenomenon and, as such, are subject +to0 interpretation.
However, they are based upon study ard observation, and, while
tbhe association between tresponse time and activity may not be
precise, such an association does exist and 1is of the order
given. Response time is defined as the time elapsed between the
last input by the user and the first character displayed by the
computer.

Classifications~-The following relationships between response
time and activities are extracted fromn Miller (ref., 6} and
Martin (ref. 7). They are illustrated in fiqure 6.9.

>1 minute - Essentially no interactive activity.
>15 seconds - L Some log-on/log—off functions where the
but user is familiar with the delay.
<1 minute (2) Single enguiries where the auaser is

familiar with the delay, preferably
cued by a message frem the computer

85

>l seconds
but

<15 seconds

>2 seconds
but

<4 seconds

<2 seconds

<1 second

<0.1 second

86

(3)

{#)

(5)
(6)

)

(2)
(L)

(3)
(1)
(2)

(3)

(1)

{1)

(2)

{3)

within 2 seconds acknowledging the,
command.

Systen failures and recoveries,
preferably cued, where possible, by a
message from the computer within 2
seconds warning of the delay.

Loading of programs and data for

axecution and processing, preferably

cued by a message within 2 seconds
acknowledging the command.

Restart from yesterday.

Conversational dialogue is not
possible.

Low key enquiry dialogue possible but
awkward.

Intense creative dialogue not possible.

Complex enquiries where continuity of
thought is necessary.

Initial acknowledgment by the systen
that it is "listening.V

Error messages,
Intense creative dialog .

Acknowledgment by the system that a
command has been received.

Response to a paging request through
a keyboard.

Response to a paging request using a
light pen.

Brightening of characters from a light
pen selection.

Appearance of a line when using the
light pen as a drawing stylus.

Appearance of a character on a CRT
keyboard.

r<.1l sec,

v Scope drafting, character appearance
r< 2 sec.

& Intense creative dizlogue

2 sec. < r<< 4 sec.

N~ Continuity of thought

4 sec. << 115 sec,
Low key dialogue

Interactive
Capablility

r>1min.
Effective dlalogue
15 sec. < r<< 1 min. net possible

Log-on /log-off, recovery

'_,F§§§N§SN§NN®@MM»“»“

10 20 30 &0 i) 60
Response Time, T, Sec,

VT i e a

Figure 6.9. Interactive Response Time

Miller (ref. 6) recommends that error messages be delayed
for 2 seconds and displayed within 4 s=econds. This delay allowus
the user to reach closure before he is faced with a need to
redirect his thought processes to correct errors. Instantaneous
error messages OT error maessages that interrupt the user in mid-
command are disrtuptive and cause confusion and frustration.
This is mors true for the casual user than for +the dedicated
user. .

The critical +threshold for effective creative dialogue is.
2 seconds. Beyond 2 seconds mental =fficiency degrades rapidly.
Delays beyond 15 seconds should be structured to rTelieve the
user of both mental and physical captivity. Experienced users
will prefer faster response times.

Deviations--Permissible deviations in response times vary. In

gensral, the permissible deviation devends upon the seriousnaess

87

of the closure to the user. Response times in the 2 second and
less category should not vary by more than 100%. The curves in
figure 6.10 from Martin (ref. 7) are illustrative of good and
bad response time deviation characteristics.

GOOD
| SECH S S S . R —
10f-— - e e
" 0.9} T g
£ osf 1€
D B 4
b ek
g c 05F 485
2 o<
3+ 5 Hez
2 “ 3
c® 04 o
c 2 £5
19_-‘ 9 g3l <€
8 a
oy 0.2} 438
a o
0.1 -
i 1 1 | N | S .] | | 1 | 1
01 2 3 4 65 6 7 8 9 01 2 3 45 6 7 8 910 11
T (seconds) T {seconds)

]

Figure 6.10 Response Time Deviations

6.4.3 User Classifications

Familiarity--The conmplexity of each problem step a user is able
to handle decreases proportionately, if, through unfamiliarity,
a user's short term memory is filled with personal concern or
memorized step~by-stev procedures. Hence, the unfamiliar wuser
must be helped- by decreasing the complexity of each step,
increasing the naumber of steps, and increasing the volume of
reminder information supplied. The reverse is true when thsz
user is familiar with the activity.

Expectation—--Rasponses strongly dissimilar to the user's
expectations are the same as an interruption. Less obvious and

a8

less critical, but still dimportant, is the style of +the
language. Quick cryptic language statements may appear course
and rude to the manager vho's day-by-day business requires close
attention to a smooth interface with people. On the other hand,
languags that is polite and uses full English may be boring and
time consuming to the technical specialist. As Martin (ref. 7)
says, dialogue design must "“steer a course between operator
boredom and bewilderment."

Classifications--The above factors 1lead +*o the following
classification of users.

a) Totally Usntrained or Novice--This user:
® is likely to be intimidated by the terminal,
. is consciously defensive,
. has his short term memory almost completely

filled with informa+tion related to learning and
very little to problem solving, and

° is easgily frustrated by unclear terminal
responses or unusual response times.

He regquires:

» programmed lesarning,

o tutorial dialogue,

° minimum opportunity for error, and

. display messages that maximize his confidence 1in

himself and in the system.
b} Casual--This user:

. spends nost of his time doing sonething other
than operating a computer terminal,

° is trained in terminal usage and feels at ease
using i%,

e remembers general procedures but forgets specific
commands and formats, and

» expects to return te a system not grossly
different from his last use.

1

89

He requires:

. optional tutorial dialogque,

. descriptive cues and prompts to remind him of
missing information, errors in command structure,
etc.,

. ninimized use of mnemonics,

. insignificant <change %o syntax and sequences

betwean uses, and

. small daviation in resvonse times.
c) Pedicated~—-This user:
. spends most of his +time operating a computer

terminal,

. has near instantaneous racall of command
structure,
. is psychologically tuned to the response pattern

of the t=2rminal,

. is adaptive to command structure changes, and

. is intolerant to language structure beyond the
minimum required for uniqueness.

He reguires:

. abbreviated cues and vrompts,
. maximized use of mnemonics, angd
* faster than normal response times.

6.4.4 HMan-Machine Dialogue

The system is visible to the user only through the command

structure. The command structure of the dialogue is related to
the -system in the same way a person's speaking habits are
related to the person. The users expectations will follow
directly from the class of user he is (as defined in the
previous section) and his personal nonprofessional
characteristics. The users psychological acceptance or

rejection of the dialogue will be based upon how well the systen

90

capabilities, 1language structure, and response times match his
expectations.

Tn

general, the man~-machine dialogue should have +the

foliowing characteristics:

a)

b).

<)

d)

e)

f)

The dialogue should be compatible with the way . the
task is organized, i.e., the dialogue should be
flexible where task organizations are variable.

The extent of the computer responses and those of the
user should be compatible with the user's training and
experience.

Completion of an activity should be punctvuated by a
closing act in the dialogue.

Signals should be given when the computer is
listening, both immediate and interim wher the
computer activity is long.

Where groups of associated data are being input
through a dialogue, the computer should ¥clean-up" and
appropriately display the data at convenient times.

The structure of the dialogue should minimize errors
at input.

Specific classes of dialogue are discussed below.

User_ _Initiated--User initiated dialcocgue implies a dedicated

user, or at least a user of such fregquency that the dialoguse

commands

- are instantaneously recalled. Classes of user

initiated dialogue are given below. Tt should be roted that the
user is leading ard the computer is interpreting and responding.

a)

b)

Full English--Because of the =zlternate meanings of
words and the contex* dependency of English
statements, interpretation of full Enciish syntax by
the computer 1is difficult. Further, full English is
responsive to characteristics of the humar mind that
are not present when the corputer is a party to the
dialogue. Hence, full English 1is not a viabkle
cammunication language for man-machine dialecgue.

Limited English Input--Fnglish words and phrases can
be used where distinctive meanings can be assigned.
Hoewever, use of full Fnglish stateftents vhere some of
the words are read by the comvuter and the rest are
ignored is often confusing to the user. F®or example,

91

92

c)

d)

HARGINS OF SAFETY WHERE THE MARGIN OF
SAFETY IS GREATER THAN 0.95.

In this example, the underlined words are the only
words interpreted by the computer.. In this type of
dialogue the wuser must know the precise words the
computer will read and their required order.
Misspelled command words will, of course, be ignored.
The possibility for misinterpretation is great. The
temptation to try a series of words without
determining the coanmand words 1s also great. Hence,
this type of "mixed".dialogue should be limited. 1If
used, the actunal command read by the computer should
be displayed back. The above command would be better
given as

DISPLAY BEAM ELENENT NAMES AND HARGINS
WHERE MARGINS GT 0.95.

In this command, every word is read and has meaning to
the computer and the entire phrase has meaning to the
user. This *ype of language {i.e., limited English
without extraneous vwords, user initiated) is probably
the most useful language form for the casual user of
IPAD.

Mnemonics--Mnemonics is the most efficient language
for the dedicated user. They given great flexibility
and forego extraneous characters not required o
unigquely identify the command to the computer. The
disadvantags is +that +they mnrust be remembered and
present 1little in the form of mermory aid. The above
command might appear in mnemonics as

D/ 28B1ID, ¥/ * M GT 0.95.

Graphic--This dialogue is initiated by the user
drawing lines, shapes, or symbols; or graphically
supplying instructions to change the size or location
of the same either through +*he CRT face or via an
electronic tablet.

Pictorial-—-This dialogue is initiated by the user by
manually or optically tracing and marking a drawing to
be stored 1in the comvuter. It may also be initiated
through calls for display of stored picture catalogs
with corresponding commands for paging and selection.

Computer Initiated--Computer initiated dialogue is necessary
where +the user is unfamiliar with the command structure or data
input formats and must be directed or *"led <through" the
procedure. It should.be noted that the computer is leading and
the user is following.

a) Fally/Limited English--Full English conmands with
limited English or mnemonic user responses is the most
appropriate dialogue where the user is entirely
unfamiliar with the procedure. Menus, lists of
alternatives, axplanations, and helps are all a form
of this command.

b} Mnemonic--Where the user is entirely femiliar with the
mpemonic set but unfamiliar with order of input, a
computer initiated dialogue wusing mnemonics can be
used.

c) Form Filling-—3A form can be displayed giving
appropriate blanks and headings.

Hybrid--Combinations of user initiated aund computer initiated
dialogue can be useful. -

6.4.5 Frrors and Failures

Effect _of Lanquage--The language response must be consistent
with the wuser's mode. If the user is making a single inquiry,
he will probably have note of it, and a request for reentry is
adequate. If the user is making a complex inguiry, it will be
necessary to display an index of <cateqgories or parameters he
previously input +to place him back in context. If the user is
in 2 conversational problem solving mode, the data he has
constructed to the voint of error or fallure must be available
to him. Reconstructing data is ore of the most arduous and
unreliable activities he performs. Loss of a batch job means
only that the job must be rerun. Loss of a creative terminal
job means the model must be reconstructed. Reconstruction is a
demoralizing activity. Hence, error correction or restart after
system failure must be responsive to the- user's need tc ({1)
retain confidence in the work thus far completed and (2) retain
confidence in the terminal as a problem solving mediunm.

Diversity of Source--The integrity of a data set will generally
be less when multiple independent users are inputting +o it than
when +the data is rtreceived fror a single controlled source.
Hence, procedures for achieving integrity of the conteznts of
data sets increase in importance in a multiple user community.
The following procedure is recommended.

93

http:should.be

ORIGINAL PAGE IS
OF POOR QUALITY

a) Real time dialogue to detect and correct errors.

b) Software for performing scans, sums, Cross file,
checks, etc., of the entire data set.

c) Intelligent methods of correcting errors and the
effects of errors discovered at a time subsequent to

input and first usage.

d) Designation of ownership responsibility to some member
or manager of the user community.

Interruptions--Interruptions have been discussed in the previous
sections. To summarize, interruption of the user to inform him
of errors or to warn him of impending system failure should
occur, if possible, at closure rather than during activity.

6.4.6 System_Balance

Human factors must be balanced against other factors such
as cosi, hardware capabilities, etc. For example, a dialogue
that has voluminous computer responses and mhemnonic user
responses overbalances line usage in one direction, which, a)
affects response time, h) reduces the number of +termirals that
can be multiplexed on a single long line, and c) increases the
cost of the system. In this instance it may be necessary to
shorten the computer responses, or store the responses locally
and trigger them with mnemonic signals from the computer. In
summary, factors such as transaction time, number of terminals,
-line costs, and human effectiveness must be carefully balanced
+o0 achieve the mnost cost effective systen.

6.5 SECURITY

A secure system is a design goal of IPAD. Accessable items
will be protected from unauthorized access and use,: by a systen
of passwords, answerbacks, security classifications, clearances,
etc. Accesses will be logged so that attempted security
violations may be deftermined through security audits.

6.5.1 Definitions

Security Classification_ (SC)-—-The security classification of an
entity 1is the total set of all codes, flags, rasswords,
answerbacks, algorithms, access nodes, etc., assigned to that
entity for the purpose of control,. Entities Q@ consist of:

94

ORIGINAL PAGE I5
OF POOR QUALITY

® IPAD Systen

. User '

® IPAD System Commands
© Project

s Subtask

@ Library Entries

The security classification assigned an entity will be used to
control log-on and access as well as functicnes performed after
obtzining access. This classification will be denoted SCy for
entity a.

Security__Clearance__(C)--A security clearance 1s the security
classification for a user. It will consist of +the following
items:

. User ID
. Password
® Government or Companry assigred clearance, i.e.,

CONFIDENTIAL, SECRET, etc.
. Allowed operations on specified entities

Reguired Log-on or Access_Seguence--Log-on will consist of the
sequence of input items required of a user. This may or may not
be an anforcad order ssquence, i.e., constitute an ordered set.
Usually there will be an acceptable order that mright he imposed.
Hence, it will be assumed %o be an ordered sequence "unless
specified otherwise. PRach entity will require a log-on sequence
denoted byoal,a2,....0n. Note that theqgi's will be functions of
a user u so he must furnish the sequence @l {u), 02(u), ...,an(u)
in order to log-on (= user} or access entity q{ 0+ user). For
example:

1l {u) = user User ID
G2 (u} = user Password
@3(u) = user Clearance — CONFIDENTIAL, SECRET, etc.

denote the required & log-on sequence for user u by Lg{u).

95

http:byal,a2,....an

User Security Profile (SP)--For a given user u with log-om or
access segquence L, {u) for entity @, certain rights and
constraints will be granted and imposed subsequent to a
successful sequence input. These rights and constraints will
constitute his implied security clearance I 4 (u). This
clearance, together with the required input sequence, will
constitute the user's security profile for a, denoted Cqy (0).

Hence,

Ca(u) = Ly(u) U Iyu).

Cqg (uy will also be called u's security clearance to access d.
It should be noted that Cy(u)} must be contained in SCqy, i.e.,

The totality of all such user profiles for each @ will he called
the user's security profile SP(u). Hence,

SP{u) = LuJCa(u) .

Potential Security Violation--A user u is required to furnish an
input sequence Lg(u), if he is to be wvalidated for log-on or
access t0 entity o. Let L'y (u) denote the input sequence
actually supplied by wu and I (u) the resulting implied
clearance allow=d. Let

c () =Ly U 1Y (),
then if

C'y (1) & Cylu),

a potential security violation is said to have occured. Thus,
if a potential security violation (also called potential threat)
occurs, then L'y {u)_;t_l.a(u). The reason for choosing "not a
subset" as opposed to "not egual" is that a partial input
sequencsa Lﬁxlu}Q;Laju) might be supplied by the user resulting
in the partial implied clearance I ()C Iy(uw). Hence,

Cly (u) © Cglu) .

This would allow the wuser some but not necessarily all the
access freedoms available.

Access_and_Security Logs--Two types of logs will be defined: an
access and a security log. Fach time a user accesses an entity
an entry will be mad=e2 in the access 1log. This entry will
consist of +the triple {u, 0, date-time). Here, T denotes
information about the access to @. The access log may exist

96

both as an explicit log used, for example, during IPAD log-on,
or an implicit log in the case of a data set. In the latter
case, access information will be saved in the library directory
entry.

The security log will be used to log access information of
a more sensitive nature. In particular, potential security
violations #ill be entered in this log. Entries will consist of
the quadruple {(u, G, vV, date-time) where O denotes information
about access to a , and V denotes the nature of the security
associated with the access to @ . This could inclade security
associated with the access to @ . This could include security
needed and received, type of security threat, which occurrence
of consecutive threats, severity of threat, etc.

Security Audit--A security audit will be performed periodically
on the security log to determine attempted security viclations.
This audit will be avaijilable in greater or lesser detail, on
option, to the responsible users and managers. This audit nay
be obtained by request or occur automatically, possibly
triggered by the severity of some potential threat.

6.5.2 IPAD Security Initialization

IPAD Security File--The IPAD security £file will contain the
security profiles of all valid users as well as the security
classifications for the IPAD system, projects, subtasks, and
library entries. The file will consist-of an explicit part and
an implicit part. The implicit portion of +the IPAD security
file will reside in the library directory entries of the various
entities and the explicit portion will be contained in an actual
security file. Unless context specifies otherwise the IPAD
security file will mean the explicit part.

The IPAD security file will reside as a proprietary file in
+he IPAD data bhase. It will be initialized with a auser's
security profile and o security classification for O = TPAD
system. This will constitute the 1log-on sequence required
together with the rights of a given user. Bach user, to log-on
to IPAD, must have an IPAD security file entry.

Tnitialization of the security file with a user profile
will not be allowed in the normal mode of IPAD. This must be
done under management control or outside of TPAD. For example,
a special batch program will be reguired or only omre special
terminal will be allowed to create and update the security file.
The initial entries required for a user profile as regards log-
on sequence are as follows:

97

. User ID--An identifier assigned a specific user.

. Password--A password assigned a user.
. Answerback (Optional}

® Last name

. Mother's maiden name

° Social Security number

. etc.

Opticnal entries needed +to complete his profile are, for
example:

© User may create and enter project definitions,

. User may cancel a project.

. User may update another user's profile.

» User's profile may not he altered by anyone without

user's status x.
. Usert's status
» etc.

The above profile entries constitute the user's profile for
access to IPAD denoted CI(u).

Project _Security Information--Project security information will
be established as an implicit part of the TIPAD security file.
It will be initialized by someone validated by the IPAD security
file to enter and define proijects. The project plan will
contain a project Security profile for each user associated with
the project and additional security classifications required by
the project. Entries in the project plan for a given user may
be:

]

User ID (input supplied by IPAD log-on)

Answerbacks, etc.

e User can enter and define proiject plans

User may update a project plan.

98

L] ~Project related items.

The above entries will constitute the unser-profile for access to
a project, denoted Cpl{u). VNote that Cy{u) nmust also be defined.

Subtask Security File--The subtask security file is derived from
the project security information. Entries in this file mway
include the following:

o Subtask Password

° User may define data sets

° User may purge data sets

® User nay execute specific subtask related commands
. User may change his subtask password

- Subtask related iters

The subtask profile for a given user is denoted CST(u).

Library _Entry_ _Security Information--This infermation will
consist of the user library entry profiles together with library
entry security classification. Itens included in this set for
a given user may be:

° Library Entry Password
» User ID
° Access Hode Allowed
° Read
s BExecute
» Extend
. Modify
- Purge
» Clearance required, CONFIDENTIAL, SECRET, etc.
. Accessable time or dates
. Library Entry related items

99

The library entry profile for a user will be denoted Cjp(u}.

User Security Profile--The totality of all profile for all
entities constitute +the user security profile SP(u) which is
equivalent to his clearance C{u). MWoreover, it also consists
of all access input saquences required, together with clearances
granted on successful input seguence submission. Hence,

cw =seq = Uegm = Yrrgo Urgm

The 1last =aquation may be translated into the following matrix:

o C{v)
IPAD Systenm User ID [Password|Answerback|Projects* etc.
Project User IDs|PasswordjAnswerback atc.
CL1) i subtask User IDs{Password|Answerback]Library

Entries* etc.

Librarj User IDs|Password Acess

Entries node etc.

etc.

%* user is allowed to define these entities.

The above matrix, in skeleton form except for entries
needed to log-on to TIPAD, will be entered into the IPAD security
file when a user's profile is initialized. Subsequent matrix
entries will be made by those validated as project, subtasks,
and library entries are developed. This matrix will be
available in the IPAD system for security checking when access
to various items or function is requested by the user.

6.5.3 Accesses_anéd_ Requests

IPAD _Log-On--The wuser must first satisfy the host operating
systemn log-on protocol. Having done so, he will enter TIPAD by
supplying his 1log-on sequence, desnoted L'y (W. This will
consist of:

. User ID
° Password
- Subtask Identifier

100

o Ansverbacks, etc.
Once his input sequence is complete,
'a (1) S L) and Iy (w) & Ig(u),

implying the user'!s stated clearance satisfies IPAD's security
classification for that user, he may proceed to log-on for his
subtask. The user will be primarily entering and accessing
library entriess. His right to do so and in what node will be
contained iIn his security profile established to date.

IPAD System Requesis--Certain IPAD functions are catagorized as
security classifiable. TExamples are:

o DEFINE
- ENTER

] DISPOSE
® MODIFY
. DISPLAY
- SEARCH

Each user's profile will contain persmission codes conhtrolling
use of these functions. For example, only specific_users will
be alloved to send data to a remote location or purge a library
entry from the community library.

Sugpending_ _or_ _Revoking Clearances--At any +time, due to a
security alert, change of project plan, etc., a blanket
revocation of log-on or access may be ipposed. This revocation
may be made by any onz authorized to alter security profiles.
The revocation will be rTeflected in all appropriate user
profiles when entered. An affected user's pregress will be
suspended the next time his security profile is checked by the
IPAD systen.

Potential _Security Viclations--Tf during 1log—-on, access or
requesting an IPAD function, @& user enters an input seguence
L'g {u) not contained in the required sequence Lgy(u), a potential
security threat exists. This +threat will be 1logged in +the
security log and a threat count started. Depending on the
severity of the violation; sensitivity of project, subtask, or
library entry, the threat count will trip a security alert when
it reaches a certain value., Again, depending omn the severity of
the threat, action will be taken. This action way rTange from

101

requesting an additional password, certain answerbacks,
telephone, or even manual verification. If the threat 1is not
severe, +the user may be logged out. If the threat is severe, a
security alert may be issued by automatic notification of a
security office.

6.5.4 Privacy and Integrity

Privacy--Privacy is the —right +to keep information private to
oneself and the guarantee that such information will be kept
safe from unauthorized access. The gquestion of whether such
information may be obtained and kept is a legal and
administration gquestion. The IPAD software design allows
varying degrees of privacy depending on how *the security
controls are used. i

Integrity _of Content-—-A checksum will be made of information
entered into the TPAD data base., This checksum will bhe . updated
whenever +the information is altered. A user may request a
checksum verification, at any time, to determine if a recomputed
checksum compares with an alleged checksum. To insure that a
‘checksum itself bhas not lost integrity, the checksum will be
kept with an additional check digit. The checksum verification
will ensure that, aftsr entering information intc the data base
and determining it to be correct, by visual read out, comparing,
displaying, etc., any loss of integrity can be detected by the
user. .

6.6 STANDARDS

Hebster's Dictionary defines standard as, %"That vwhich is
established by authority, custom, or general consent, as a model
or examnple; criterion; test."

Standards are necessary for an orderly working world.
Without tham chaos would reign supreme; commurnication would be
ineffective or at best, very difficult; time would be wasted;
and learning would be severely affected.

Standards are not to be had without a price. This price is
paid in work 1in defining and establishing standards and in
learning and observing themn. Standards have advantages and
disadvantages. Some disadvantages are:

. Standards are inflexible

* Standards stifle creativity

102

However, standards must be inflexible to bring order to work.
Some also argue that standards stifle creativity and thereby
confuse creativity with +the application or observance of
standards. The real difficulty with standards are:

® Standards must be decided upon
L] Standards must be learned and oObserved

While most people agree that there should be standards, it 1is
usually difficult for them to agree on what standards should be.

Standards are necessary for the orderly maintenance of
activity. They facilitate effective communication, reduce the
effort required to learn, and insure the effective application
of education. Standards enhance reliability, consistency, and
integrity by reducing errors and mistakes. In summary, their
advantages are:

- Facilitate communication, teaching, and learning
® Save time

. Insure reliability, consistency, and integrity

° Minimize errors and mistakes

. Inflexibility

When establishing standards an attempt should be made to
optimize their definition and development, so as to maximize
their advantages and minimize their disadvantages.

6.6.1 IPAD Design Standards

Standards have been adopted in the design of IPAD. These
standards are given as follows:

Structured _Top_ Down Design--Top down design means starting with
the most general view of IPAD as seen by the user community, and
dividing it into constituent parts. Fach refinement comprises
another level in the design, Any one level may be thought of as
describing what the design at that level consists of, with the

next level below giving the how of the preceding level.

Independent Modules--The design results in a set of program

modules that may be implemented and modified as independently as
possible from other modules. This is a design standard, and

103

fortunately a conseguence of the structured top down design
process.

Open__ Ended--It is envisioned that IPAD will undergo continual
development. To accommodate this development and expansion,
open endedness is a design standard.

Machine Independence--IPAD as a design is *o be independent of
specific vendor hardware.

Data Base Management-—To facilitate I/0, a data base management

system 1is a basic design standard of IPAD. Rll standard I/O0 in
IPAD will be through the data base management system.

Standards adopted for IPAD implementation should bhe
consistent with those established in the design. Isplementation
standards should be chosen to facilitate program maintenance and
checkout. The code should be written neatly, uncluttered, and
readable; it should be written for the novice and not for the
coder.

The list of items given below fulfills the above needs.

Language--A comnmon higher 1level machine independent languagse
should be adopted. It should be the implementation language for
IPAD in which most of IPAD would be written. —

Modular and_Open_Ended--3As code 1is developed, modularity and
open endedness should be kept in mind. They are IPAD design
standards.

Common Code--Areas in IPAD whose function can be served by ons
common block of code should he identified. This will guarantee
consistency of function; coded, checked out, and performed in
one place as opposed to many.

Proqram__Blocks—-—Blocks of program code should be structured in
an overall sense much like a book or docunent. The program
block should contain the following items as a minimum:

» Title Section-—author, date, etc.
. Revision Section--modification and revision history
. Abstract Section—-stating the purposé, method, etc.,

for the program block

104

. Bibliography Section--contains any external references
related to the program block

° Usage, Input/OQutput, etc.—--sections describing use of
the program block, input required, output generated,
and other such related items.

° Quality Assurance Section--this would contain a
description and history of required steps and actions
needed to checkout and certify this block.

° Certification Section-—-this would cortain names and
references nf who modified, tested, and approved the
block for release.

. Program Section--this would be that portion of +the
block <comprising the executable statements, arrays,
variables, formats, etc. It may be further subdivided
into structured sections.

Minimize Host System_Interface--One critical design goal of IPAD
is to minimize the host system interface. In the structured top
down design, the actual host system IPAD interface will be
delayed to the lowest level possible. Standards will be
developed for TPAD/Host system interfaces.

Documentation~~The entire program documentation should be
structured to facilitate programmed extraction for production of
a particular program document.

Naming _Cecnventicns—--A consistent convention should be adopted
for naming and distinquishing variables, arrays, tables,
constants, codz2 block names, etc. These names should be short,
3 or 4 characters as opposed to long, 6 or 7 characters. Those
items related to general system activities should be identified,
naned, and used throughout in a consistent manner.

Coding _and__Documentation Conventiong--Prograr coding should
adhere to the framework of eostablished program structure.
Executable program statements should be distinguished from
documentary statements. They may, for example, be offset by
blank lines and indented, using a hierarchal statement

convention.

The executable code program logic should be vell
documented. This documentation should be meaningful and
uncluttered. Comments should be informative and not marely
restate executable statements. Liberal use ©of outline
conventions, blank lines, and blank spaces should be used.
Identifying and setting off items with non-blank special

105

characters should be avoided at all costs. Embellishments add
clutter and decrease raadability.

® Variables should always be used with the values
initialized in one place. Constants should be used
with discretion.

. Labels should-be lexicographically ordered, increasing
in the direction code is read.

Certification-—-Certification is defined to include checkout,
approval, and release of a block of code.)

As part of +the development of a block of code, &
description of the checkout necessary should be entered in the
quality assurance section of the program block. A checkout
procedure, test data, and code should be assembled and placed in
a quality assurance library. This will then be used to certify
the block. Tndividuals responsible for checkout and approval
will be recorded in the quality assurance sectior. The revision
section will be updated to reflect the change 1if nmeaningful.
The block will be checked out, approved, and released with the
appropriate entries having been made in the certification
section. This process will constitute certification.

f.6.3 TPAD HMaintenance Standards

ITPAD maintenance can ' include both ongoing development as
well as modification and maintenance of existing code. All code
should be developed using the same standards created for TIPAD
implementation.

211 development and modifications should be documented as
established by the standard. This would include both progranm
code annotation as well as wupdating the modification record
sections. Development, per se, is +to be distinguished from
error correction.

Modifications should be described whether resulting from
development or errors, and the verification procedure documented
in the quality assurance section. The program code should +then
be tested and certified in the usual manner to insure it will
wvork. The checkout procedure, decks, test data, and
documentation for +the current modification should be added to
the quality assurance library. IPAD should then be re-certified
for release.

106

6.6.4 IPAD Application Standards

Standards related +to +the IPAD user interface will be
determined primarily by implementation. For example, the IPAD
standard for packaging computing and operational modules will be
determined when the actual YPAD command language is defined, the
implementation language known, data base established, and the
host system hardware configured. Standards related to the IPAD
user community ¥ill also be determined by implementation. These
standards will deal specifically with a particular IPAD
implementation and must be user initiated.

One area related to the TPAD user community and standards,
however, needs further study. It is an area that greatly
impacts all TIPAD users and should be considered as becoming an
IPAD standard. This area deals with the following items:

L] Dimensional Units—-The metric system of units (MKS)
might well be taken as an IPAD standard.

b Constants--Numerical constants such as Ty €, etc.,
should be standardized with respect to nomenclature
and significance.

b Physical Constants--Constants such as: speed of sound,
gas constant, gravitational constant, etc., should be
identified and standardized as to units, nomenclature,
and significance.

. Physical Variables--The terms: velocity, acceleration,
mass, force, atc., should be identified and
standardized as to units and nomenclature.

. Miscellaneous Terms, Abbreviations, and Symbols--Terns
such as Mach number, 1ift, planform; abbreviations
such as a.m., p.mn., hr.; and symbols such as v, ¢,
[, etc., should be identified and standardized.

. Disciplines--Engineering and design process
disciplines, such as structures, loads, trade studies,
etc., should be defined and standardized. This could
include a standard for planforms, a global airplane
coordinate system, substructure coordinate systenms,
and the like.

6.7 LANGUAGE REQUIREMENTS

A substantial number of computer programs currently exist
that are candidates for inclusion as application modules in
IPAD. These programs are predominately FORTRAN but other
languages are represented. Although FORTRAN is a universally

107

ORIGINAL PAGE IS
OF POOR QUALITY]

accepted language, many dialects exist. Additionally, FORTRAN
contains machine dependent characteristics requiring a specific
combination of source language statements, conpiler, operating
system and computer hardware.

It is a design raguirement that IPRD be capable of
accepting pre-existing application modules. It is also expected
that IPAD host systems will be on third and fourth generation
hardware "of wmore than one manufacturer. Further, it is very
desirable that IPAD have languages for all user functions that
are independent of the host system. That is, all IPAD functions
at the user interface should not vary with changes of the host
system.

A practical way of handling the investment of the aerospace
industry in existing FORTRAN programs mnust be developed
initially. For the 1long term, IPADR should accept other
programning languages such as ALGOL, COBOL, APL and PL/1. The
study made by Control Data Corporation, comsultant to Boeing,
considered:

a) The general problem of software migration;

b)) FORTRAN sourca code migratiom on +third generation
computers;

c) Migration from third generation to fourth generation
computers;

d) The development of a machine independent FORTRAN.

The final report of this study is given in Appendix C. a
recommendation is made im the study for the development of a
machine independent FORTRAN language, IPADF, that could be used
for the implementation of +the IPAD systenm. It is also
recommended din the study +that utilities be developed for
translating existing FORTRAN application modules into IPADF.
The need for a machine independent language may be even more
general than recommended by this study. Such a languags is
referred to elsewhere in this volume as IPADL.

Languages are alsc raquired at the user interface of IPAD,
One user interface is at the host operating system level through
languages such as 0S360/370, JCL or CDC 6600 SCOPE or KRONOS
control statements. The 1language associa*ed with the TIPAD
commnands and wutilities must be specified. Human engineering
factors are given in section 6.4 hut the syntactic forms remain
to be developed.

108

ORIGINAL PAGE IS
OF POOR QUALITY

7.0 HOST SYSTEM SPECIFICATIONS

This host system specification considers current and future
hardware and operating system software. Information yas
obtained €from several manufacturers of large scale computer
systems detailing their products. Two sample host systen
configurations have been given based upon:

a} a Control Data 6600 {Cyber 74) and
b) an IBM 370/168.

Thase computers were chosen for presentation because of their
videspread use in the aerospace industry. They are illustrative
and ars not intended to be a recommendation of these particular
manufacturers at the exclusion of others.

7.1 VENDOR SURVEY

To maximize portability in the IPAD system design, and to
insare that all potential hardware was considered in the design
of the system, all manufacturers of large scale computer systems
were surveyed. The survey covered the following areas:

a) #ainframe
o} System architecture, (multiprocessor, etc.) .
o] Instruction type, complexity, timing, and rate
0 Character, integer, and floating point

representation

Main mpemory size/access rate

Inpat/output rates and number of channels
Multi-programming capability

Time-sharing capability

Reliability

Member of a compatible family of computers
Cost

Public availability date

CO0O0QO0O0O

b)

.
[f=]
-

Speed Random Access Storage
Capacity .

Transfar rates

Latency

Dismountability

Cost

Public availability date

QO O0O0O0O0OIm

109

<) Mass Storage {(=trillion bits)
o] Capacity
0 Transfer rates
o) Number of ports
o] Recording media
o Dismountability
o] Cost
o] Public availability date

d) Data Transmission Peripherals
o} Rates
o] Capacity
o] Cost
o Public availability date

The gquestionnaire was mailed to the following vendors: -

Burroughs Corporation
Paoli, Pennsylvania
Control Data Corporation
. Miuneapolis, Minnesota
Honeywell Information Systems, Inc.
Waltham, ¥Massachusetts
IBM Corporation
¥hite Plains, New York
Sperry Rand Corporation, Univac Division
Washington, D.C.
Texas Instruments, Inc.
Austin, Texas.

Replies were received from all vendors contacted. They
were understandably reluctant to divulge future plang but were
quite willing to supply detailed performance specifications of
their presently marketed systems. The hardware characteristics
of the submitted mainframes and peripherals of all vendors
satisfy the IPAD system reguirements. Instruction rate, or CPU
powar, of some systems is sufficient for a small-to-medium scale
installation. In some cases, a medium scale installation would
dictate a multiprocessor configuration. A large 1IPAD
installation (for example, one capable of supporting the design
of a supersonic +transport as outlined in vVelume II) would
require at least one CDC 7600, IBM 370,195, or Texas Instruments
ASC central .processor. There will be a heavy demand upon +the
timesharing, data storage, and data handling capacilities of
these systems. The information presented is accurate as of late
1972. Table 7.1 is a condensed compariscn of these computer
systems.

110

111

APPROXIMATE MEMORY I/0 CHARACTER SIZE
INST. RATE SIZE/RATE RATE F.P. PRECISION COMMENTS
MILLIONS MILLION CHAR. # CHANNELS BITS,
I:E_R SEC. MCHAR/SEC. MCHAR/SEC. BITS
BURROUGHS 12-18 7-8 32,/I0P 6.8 HIGHLY MODULAR
B7700 EACH* 12 8/I0P 40 MULTIPROCESSOR WITH
VIRTUAL MEMORY
coe 3-5 L6=).3 12 6 OVERLAPPED SCIENTIFIC
CYBER 74 100 8-10 48,96 INSTRUCTION PROCESSCR
(6600))
cne 20-25 1.6~5,7 15 6. OVERLAPPED SCIENTIFIC
CYBER 76 360 25-50 48,96 INSTRUCTION PROCESSOR
(7600) . :
HONEYWELL 1.2 1-6 24 6,9 GENERAL PURPOSE
€070/6080 EACH 40-90 6/I0M(1-4) 28,64 MULTIPROCESSOR {l-4), 6080
HAS MANY CHAR, INSTR.
IBRM 4= .5-3 T-12 8 BIT EBCDIC THE 370/168 HAS VIRTUAL
370/165 16 1.3-3 21,53,109 MEMORY, BOTH HAVE 80 NS.
CPU BUFFER STORAGE
IBM 15-18 5§ 7-12 8 BIT EBCDIC ELABORATE OVERLAP PLUS
370/195 170 1.3-3 21,53,109 54 NS, CPU BUFFER STORAGE
T, 30-50 4-16 4-12 8 1~4 PIPELINE VECTOR/MATRIX
ASC ' " ~-3200 28 21,53 PROCESSOR WITH VIRTUAL MEMORY
UNIVAC 1.8 7.8 g-24 6,8,9 GENERAL. PURPOSE
1110 EACH 12 24 TOTAL 27,60 MULTIPROCESSOR (2-4)

* Each processor of a multiprocessor machine

** Avithmetic only.

Does not include fetch, store, index, and branch operations,

Table 7.1

Comparison of Vendor Hardware

00d JO

SI ZDVJ TVNIDIHO

XITIVND 1

7.2 HARDKARE CHARACTERISTICS AND CAPACITY REQUIREHENTS

211 available 1larg=s third generation computer hardware
systens are capable of supporting an TIPAD implementation.
Limitations are quantitative rather than qualitative. They
include CPU speed, memory size, online mass storage capacity,
etc. Fourth generation conmputers from CbDC, Texas Instruments,
_ Burroughs, and IBM will be much better suited to the expected

computation and data transfer volume required in a faully
utilized IPAD systenm. additionally, the cost per operation
(e-g., addition) will drop by a factor of four to six. Timing
for 64 bit floating point add operations, for example, can be
expected to £fall b=zlow 20 nanoseconds, while the rachine cost
will remain roughly commensurate with today's CDC 7600 and IBH
370/195.

7.2.1 Hosit_System

The characteristics of the hardware required to support an
IPAD implementation were determined from the studies documented
in wvolumes II and TIT. These studies provided an estimate of
hardware capacity requirements in terms of:

o CDC 6600 CPU hours

0o - Input/output rate per CPU second (a measure of CPU -
I/0 dominance)

o] Storage required for program libraries

0 Storage required for data.

Program usage frequency was estimated in the studies from
surveys of current and projected design practices for an
organization similar to the Boeing Commercial Airplane Company
anl the Boeing Aerospace Company. These organizations include
nearly 7500 design and production engineers, who were assumed to
be involved in one detailed product design and seven concurrent
preliminary design projects. The characteristics of these
projects that affect hardware capacity are:

o computer usage characteristics, including Tun |
frequency,

0 desired flow time, and

o} interactive terminal requirements.

Central Processing Unit - The CPU is the heart of a computer.
It is generally +the 1limiting factor with regard to solving
extremely large problems, or allowing a great number of
simultaneous timesharing users.

112

A number of computer manufacturers offer highly modunlar and
interconnected computer systems with multiple instructicn stream
processors, aultiple memory modules, and multiple input/output
processors. This study considers +he central processor *fo
consist of an imnstruction processor, mnemory, and channels or
memory ports. Conputers with wmultiple dinstruction processors
and memory modules are taken to contain ome CPU with a memory
anrd processing capacity d=termined by the total capacities of
the modules. They should have the following characteristics:

a) Instruction Rate
Of all the simple vparameters used to describe a
computer system, the CPU instruction rate has the most
effect on the speed with which the computer can

produce results. Hence, any specification of
instruction rTate is tied directly to the volume of
work expected in, for example, a 24 hour period. The

IPAD host computer system capacity requirements,
deternined in Volume IXI, included the total number of
CDC 6600 CPU hours required to support the Boeing
Commercial Airplane and Boesing Aerospace Companies.
The company mix is projected to consume 42.1 CDC 6600
hours, per 24 hour period. This is equivalent to an
instruction rate of 10 to 14 million instructions per
second {(MIP), depending on central processor
utilization.

b) Multiprogramming Capability
The IPAD system is inherently multi-simultaneous user
oriented. This dictates the need for central memory
write protection from concurrently running progranms.
Read and execute protection would be highly desirable
but is not reguired. Alsoc the hardware should support
task switching in the order of microseconds.

c) Floating Point Precision

A CPU to support IPAD must be capable of at 1lsast 12
digit (40 bit) precision, with an exponent range of at
least -40 to +40 -{decimal). Some IPAD technical code
podules will contain routines for solving very 1large
systens of simultaneous equations, 1inverting very
large matrices, solving nearly unstable differential
equations, and other similar activities requiring high
precision floating point arithmetic. 1In practice, the
precision needed is dependent upon the problem
formulation and the algorithm used. Research, design,
and analysis applications on the CDC 6600 almost never
require double precision (95 bits). However, doubls
precision on the IBM 360 (53 bits) is often required
and gives satisfactory results.

113

d) Input/Output Bandwidth
¥ords input or output per CPU second on a CDC 6600
vere obtained <from the workload prediction study in
Volume ITI. These predicted IPAD CPU I/0 ratios are
comparable to the average rates for the total work on
Boeing's CDC 6600. These rates are:

0 50000 words/ChC 6600 CPU second for IPAD
application modules,
! 56000 #ords/CbC 6600 CPU second for the Boeing

6600 jobh mix.

This is approximately 6 to 8 machine instructions
executed for each character transferred. A +typical
IBM 3707165 installation for scientific work executes
about 5 to 10 instructions ver character transferred.
An IPAD host computer should have an I/0 bandwidth
comparable to these figures.

e) Hemory Size

Application modules must be accommodated through an
overlay +technigque, virtual memory, or a very large
main memory. Virtual memory is preferred because it
simplifies the design and operation of the data base
manager. Application modules in +the order of one
million bytes on an IBM 360-370 or 320K octal words on
a CDC 6600 ar= not unusual.

£) Character Representation

The hardware representation of alphanumeric and
special characters in +the computer system is not
important. It is inwnportant, however, that the
computaer system support a full upper and lower case
alphabet and program constructable remote terminal
control characters (e.g., line feed, backspace, etc.).
ASCII-8 should be supported.

g) Upward and Downward Compatibility]
It is expected that the first IPAD system will be
implemented onr a wmedium to 1large scale compliter.
There %ill be a wide range of user performance demands
at different installations. It would be an advantage
to implement IPAD on one or more compatible families
of computers. During the implementation period it
would be desirable to have a dedicated member of the
target family for software development and checkout.

Random _AcCess__Storage Devices — The IPAD system will utilize a
spectrum of online data storage peripherals. The IPAD data
management system is designed to take advantage of the speed and

114

capacity of these online data storage devices. High activity
library entries, or fragments thereof, will be kept on high
spesd, low capacity devices. Inactive subtask libraries and
currently active community 1library entries will be sorted on low
speed, high capacity devices. Project and task histories, old
experimental data, documents, and other such information will bhe
retained on archival devices.

The specifications below are intended more as a definition
of terms than a specific requirepent. For £fourth generation
hardware, multiply the capacity-transfer rate product by 50.

a) High Speed, Low Capacity Storage
High speed, low capacity storage will be used
primarily for program swapping, library indices, and
small active job scratch data sets.

A high speed, low capacity device has a latency time
of less than 10 milliseconds, a transfer rate of at
least 1.5 x 106 8-bit bytes per second and a capacity
of 1less than 107 B-bit bytes. Devices in this class
include fixed head disks (IBM 2305), drums {UNIVAC FH-
432y, bulk core {CDC ECS), and future sclid state
menories using, for example, bulk MOS5 shift registers
or magnetic domain techniques.

b} Lowv Speed, High Capacity Storage

Loy speed, high capacity storage will be used for
dictionaries, inactive subtask libraries, 1large
portions of active subtask libraries, and currently
active members of +the community library. Library
entries stored on his class of device are generally
regarded as permanent, while the high =peed, low
capacity devices contain predominantly temporary
copies.

A low speed, high capacity device has a latency tine
between 10 and 200 milliseconds, a transfer rate
between 10% and 1.5 x 106 8-bit bytes per second, and
a capacity between 107 and 1010 8-bit bytes. Devices
in this class include dismountable moving-arm disks
(IBM 3330), non-dismountable nmoving-arm disks (CDC
6638), and magnetic strip storage {IBM 2321 data
celly. In +the near future some magnetic domain
devices (Bubblss, DOT) and early holecgraphic systems
will be in this class.

C) archival Storage

The use of archival storage is a distinquishing
feature of +the IPAD system. It will contain project

115

histories, experimental test data, backup versions of
current library entries, and onlire data sets too
large for other storage devices.

An archival storage device 1is defined as bhawving a
capacity greater than 1019 8-bit types. Transfer rate
should be at least 105 bytes per second. There are
three marketed archival storage systems using
different design approaches: Laser/aluminized mylar
strip (Precision Instrument UNICON}, large reel video
tape (Ampex TBHM), and cassette video tape {Grumman
Masstape).

Unit Record Equipment - An IPAD host installation mway have a
complement of unit record devices:

o) Card readers (1 to 2000 cards per minute)
o Card punches (3 to. 600 cards per minute)
o Line printers (2 1000 lines per minute).

The terminal orientation of IPAD greatly reduces the user's
depzndence on punch cards for program and data storage. For
example, th=z computer programs used to verify and format the
system design document in section 6.2. and Appendix A never
existed on punch cards. The programs were entered, edited, and
debugged entirely through alphanumeric CRT terminals. Card
readers and punches will still be required in the future, but to
a lesser extent than today.

Line printers, on the other hand, will remain important.
One or more very high speed, single copy printers, would be
satisfactory for program listings, checkout runs, and most mark-
up and throw-away purposes. Also required is a high auality
printer, similar *o, but perhaps not as versatile as, today's
page or photo composer used to compose books and newspapers.
Such a device will be able to produce document guality tables
and plots, if not entire documents.

. Magnetic _Tape Equipmant - Half-inch magnetic tapes will be with
gs many years into the future. An IPAD system installation,
while not dependent upon magnetic tape for its basic operation,
will require the ability to accept data recorded by offline
devices, non-IPAD computer syst=ms, pre—IPAD computer programs,
and IPAD users. The IPAD installation may also be called upon
to create tapss for offline devices, very lcng term archival
storage, and mailing to installatiens not reachable by a
network. Since the primary purpose of tape on an IPAD system is
communication, there must be both seven and nine track devices
available.

116

Graphical TInput/Qutput - Graphical input/output devices are not
necassarily online to the central host computer., For example,
a digitizer or programmable film reader for loading drawings
into the system is generally a stand-alone device.

Two types of plotters are needed. The first is a high
v.olume plotter to produce cheap, marginally accurate drawings
(.01 irch), for <check prints and inter-company communication.
The other is a very accurate (.002 inch) drafting machine or
flatbed plotter. Drawings produced would be used for
manufacturing, mockup, wind tunnel, and other purposes.

In addition thers may be a requirement £for a microfilm
plotter, which would be used for reducing and storing drawings
on microfilm.

Reliability ~ The user community demands +the freedom from
considering the reliability of the IPAD host computer when
planning projects. Computer designers have devised several
techniques for detecting and correcting hardware errors, for
example: parity bits, Hamming code correction, and automated
voltage mwmargin measurement and adjustment. They have served to
improve the mean time between fallure of the computer systen
hardwara in the face of increasing logical complexity. The IPAD
host computar mnust have a minimum mean time between failure of
one to two weszks and should admit to prompt fault detection and
Tepair.

Summary
CPU Instruction Rate 10 to 14 MIP for the total company
mix.
3 to 4 MIP for Project I, subsonic
commercial transport.
Multiprogramming Memory write protect, read/exscute
protect desired.
Floating Point Precision At least 12 digits with an exponent
range of -840 to + 40 (decimal).
Input/Output Bandwidth Transmit one character per 5 to 10
CPU instructions executed.
Memory Size . Aliow 1 meéabyte IBM 370, and
330K CDC 6600 programs to run.
Character Representation Full upper and lovwer case alphabet.

Terminal function control charac-
ters. Prefer 8 hit characters.

117

’

Upward and Downward Desirable.

Compatability
Random Access Storage Some of each. The quantity is to be
determined at implementation.
o High Speed, Transfer rate 1.5 x 1.03 KB.
Low Capacity Capacity £ 107 bytes.
0 Low Speed, 102 KB £ transfer rate ¢ 1.5x103 KB.
High Capacity 107 bytes < capacity < 1019 hytes.
o Archival Storage Transfer rate 2 102 KB.
Capacity 2 101¢ bhytes.
Unit Record Equipment High speed card reader/punch.
Very high speed line printers, lowv
cost per page. High guality page
or photo-composer for documents.
Magnetic Tape Equipment 7 and 9 track, industry compatible.
Graphical Input/Output - Digitizer or programmable film
reader.
High volume, marginally accurate
paper plotters.
High precision drafting machines.
Possibly a microfilm plotter.
Reliability lfean time between failure at least

1 to 2 weeks.

7.2.2 Terminals

Personal Terminals - The primary means of man-computer compunica-
tion in the IPAD system is via terminals. This study has classi-
fied terminals into three main types:

o Personal terminals like teletypes or teletype
replacements,

o Interactive graphics scopes, and

o} Remote Jjob entry stations.

This study has defined a personal terminal to be a terminal
operated by one person at a time primarily for two-way
alphanumeric communication with the IPAD host computer. It will

118

be used for constructing and modifying CH's, OM's, jobs, and
other library entries. Jobs run on the IPAD host system will,
for the most part, be initiated, monitored, and interacted with
using the personal terminal.

Most of the engineering interaction requirement is easily
handled by purely alphanumeric devices like teletypewriters and
CRT terminals. A CRT terminal should hold at least 20 lines of
72 characters. Any fewer almost demands a printer attachment.
Silent printers and other +terminal ©peripheral devices 1like
casgette tape recorders, small x-y plotters, low-volume card
readers, and simple digiftizers have been identified as necessary
or desirable in the engineering design process. Many
manufacturers allow for switchable peripherals so that, for
exanple, two or more alphanumeric CRT +terminals may share a
single printer. Perscnal terminals would be connected to the
IPAD host via a dial-up telephone line. Whether the lines were
public or private is an implementation decision. The use of
dial-up telephone lines limits the bandwidth +to approximately
2000 bits per second which is more than enoughk for information
display but may just be adequate for a cassette tape attachment.
Through experimentation this study has concluded 110 bhaud (ten
character per second nessage transmission) 1s conducive to
boredom, frustration, and work-arounds. Therefore, 300 baud is
to be considered as a practical minimum line speed.

Interactive Graphics Terminals -~ The interactive graphics
terminal differs from the personal terminal in its ability to
display vector or lire drawings. There is a definite
requirement for interactive graphics in an TPAD system. Two
classes of interactive graphics activity have been identified.
One class is limited to simple keyboard ipput and is useful for
displaying plots and graphs. The other c¢lass is the full
interactive graphical input/output activity associated with
geometric design and topological problems. Besides the display,
hardware to support full interactive graphics includes a
keyboard, lightpen, function keys, analog input devices 1like
joysticks, graphical dinput devices 1ike RA¥ND tablets, and
hardcopy attachmants. Host interactive graphics terminals have
self-contained minicomputers to refresh the display, poll the
user input interfaces, communricate with the host system, and
generally relieve the host system from minor interruptions.

Terminals containing ninicomputsrs are generally able to
interface with a large set of peripherals, including printers,
small disks, slow half-inch tape drives, card readers and
punches, and telecommunications gear.

Remote_Job_Entry_Terminals - In a geographically distributed
engineering community there &are flowtime problems associated
with bulk manual and vehicular transport of computer input and

119

output. A remote intelligent terminal connected to the IPAD
host system via a wideband line would provide redium speed
printers, punches, card readers, and possibly tapes within
walking distance of users. Large volumes of newly generated
data will, for the near future, continue to be in the form of
punched cards. The rsmote job entry terminal allows the remote
user to enter his data into the IPAD data base and obtain a
printed copy for visual checking and backup. Its medium speed
printers complement the personal terminal printers vhen large
data sets are to be printed. The remote job entry terminal may
also act as a message concentrator to minimize line costs for
local personal terminals.

7.2.3 Networks

Networks of interconnected computer systems will be
prevalent in the fuoture as users recognize their advantages.
Computing power will be distributed, much 1like the electric
power industry where failure of one component or subsystem may
be bypassed with a negligible interruption of service. Access
and response time will more closely approach optimum when work
can be partitioned among the network's computers.

Through network facilities, specialized installations such
as ILLIAC IV at NASA Ames, will become available to remote
users.

The greatest benefit computer networks hold for IPAD 1is
inter-installation communication. Government agencies may pass
specifications to contractors and receive reports. Contractors
and sub-contractors can share computer programs and data,
guarantee consistency of configuration, stress levels, .etc.
Public 1libraries of computer programs, standard reference data
lik2 atmospheric properties, and cross indexes of +technical
literature will serve to organize the engineering design process
to an unprecedented degree.

For the near future, an TPRED host system could be connected
into a wideband pack=at switching, store and forward network
similar to the ARP2Z net. ARPA uses 50 kilobit dedicated 1lines
between nodes and special-purpose minicomputers to interface the
local computer system *o the network. The minicomputer is
responsible for all data transmission and error maragement. In
addition 41t «can reconfiqure the petwork in the event of a hard
line failure.

During the implementation of the first few IPAD systenms,
careful +thought will have to be given to the expected growth of
networks and network traffic. - Flexibility of the network's plan
must be sufficient +to allow individual hosts to evolve
separately.

120

7.3 IPAD HOST COMPUTING SYSTEM USING A CDC 6600 {(CYBER T7#)

The host corfiguration in figure 7.1 1s recommended for an
IPAD implementation in a CDhC 6600 installation. The
configuration is based upon the requirements from Volume III and
those given in section 7.2. The recommended operating system is
KRONOS 2.1, primarily on +*he basis of 1its orientation to
terminal operations. SCOPE 3.4 would also be acceptable. Two
critical features, in terms of implementation schedule, absent
in both of these systems are:

a) multitasking within a single wusers +termiral control
and

b) the ability to log-off +the +terminal with the Job
active for later log-on and reconnection.

Implementation of these features would currently involve
oparating system modifications.

Multitasking is an operating system feature which allows a
running program +to command the operating systen to execute
another program, usually 3in parallel with +the originating

program., The originating program may obtain status information
through the operating system and may abort the subordinate
progran and continue ip execution itself. This process of

"attaching” other programs may be nested, or treed, to many
levals.

Specific equipment <for personal terminals is not included
becanse of the rapidly changing technology. However, the
characteristics to support a selection at implemerntation time
are ¥isted. The interactive graphics equipment is an exanple,
rather than a hard requirement because the specific needs are
unknown at this time.

The equipment list for this host configuration 1is given
below. A schematic diagram is given in figqure 7.1.

a) CPU and system contrel equipment
o CYBER 74-18 CPU (131,072 cmM)
o 6612 system CRT comnsole
o} P? option for 14 PPU's and 18 data channels
o} Three each 844-2 disc drives with three each 7054

controllers (to be used for system storage and
job swapping)

b) Online data storage for the user
o Ten each 844-2 disc drives with three each 7054
contreollers
0 Five each 821-2 disc drives with two each 3553
controllers and two each 6681 data channel
converters

121

Op POOR
Qu,
c) Tape drives for system and users
o] Two each 657-4 tape drives (7-track)
o} Four each 659-4 tape drives (9-track)
o] Two each 6681 data channel converters
0 One each 3528 controller
d) Graphics
o} One each 1700 auxiliary computer with a 6674
controller
o) Two each 274 display CRT's each with a 1744
controller
C One =sach tape drive with a controller
o plotters (off 1ine, CRT slave, connected to

remote batch) drafting machines (offlimne)

e) Remote batch entry
0 Two each 732 terminals (4800 baud) with 1 card
reader and printer each
0 Téo each 732 termipals {9600 baud) with 1 card
reader and printer each
o} Cne each 6671 controller
£) Personal terminals
o} Two each 6676 controllers
o] 100 personml termipals
. CRT
. 600/1200 bhaud .
. minimal vector capability
. TTY interface compatibility
0 50 shared printers for the terminals
o} 25 shared cassette drives for the terminalsg

q) Local batch

o] One each 405 card reader with 3645 controller
One each 415 card punch with 3446 controller
Two 512 printers with 3455 controllers
One 6681 data channel converter

(o 3o R n}

The CDC configuration of figure 7.1 will support the
computational 1load from two design projects similar to Project
1 (subsonic transport in Volume II). However, the peak efforts,
during level 4, in Project 1 (cdnfiguration refinement) would
have +o be staggered about three months to prevent saturation.
Project 2 (supersonic transport) would reguire rearly one and
one third greater capacity than +this host configuration for
either level 3 (configuration sizing) or level 4§ (configuration
refinement).

122

A

CYBER 74-18 crU
131,072 60 BIT WORDS
ppt | P2 | Pr3 | era | ees | e | ep7 | ees | era | er1o | pras | eri2 | pr1a | pr1a
CH CH CH CH CH CH CH CH CH CH CH CH CH CH CH CH > CH CH
1 2 3 4 3 [7 8 9 10 11 12 13 14 15 16 17 .| 18
.] [
6681 6681
- 81]- J 6676
6612 7054 66 ez 6674
I] \\D\l}c\n\u\\
3
844.2 3583 31700
054 —<:] H 6574 _1_.__ Yeeo
: 8442 8212 1704 6676
804.2 . L s57.4
Lo l P
I} 844-2 821-2 6504 274 SPEED
7054 LINES
I Y ses2 821-2 H 1744
6594
844.2 I 6681
274
1 7054 6681 6594 |
. 3445
1732 |
I 844-2 3553 559-4
I 405
884-2 TAPES FOR 08
844-2 821-2 SYSTEM/USER
~ / STORAGE GRAPHICS
$YSTEM STORAGE |
884.2 821-2
AND SWAPPING 5671 415
&——v—:—d ¢
| 8442 LOW USAGE USER 1 L] 3855
FILES/ARCHIVE . :
S Y '
HIGH USAGE
USER 7054 512
STORAGE | =
H m2
8442 {3588
" I
8442 512
REMOTE
USER/SYSTEM BATCH LOCAL
REMOVABLE TERMINALS BATCH
PACKS

Fiwgure 7.1

[PAD Host System—CDC 6600 (CYBER 74)

BI 39vd TVNIDIIQ

BITIVNRO 9004 40

7.% IPAD HDOST COMPUTING SYSTFEH USTHG AN IBM 370,168

The hos*t configqguration in figure 7.2 is recommended for an
IPAD implementation din anr TIBM 3707168 1installation. This
configuration is based on the IPAD host capacity reguiirements
from Volume IIXII and the hos* hardware requirements from section
7.2.

Duz tc the ess=ntial +ime sharing nature of the IPAD
system, 0S/v32 with TS0 (Time Sharing Option) is recommended.
Vs2 was szlectad bacause TS0 on VS2 allows 42 simultaneous
active regions, while TSO on MVT allows only 14, The tvwo
critical featuresg, in terms of implamentation time, of the IPAD
design which currently will require system {TSO0) modificatiorns
ares

a) implemsntation of "PAUSF" and

b) the ability to log-off the terminal with the Jjob
active for later log-cn and reconnection.

The "PANUSE" command in the TPAD system enables a terminal
usar, at any tims, *o interrupt an execu*tirg program. He wmay
then give a "GO" commaund ‘o resume execution, or he may enter
some othar IPAD command. At the completion of the inserted IPAD
command he may resume execution of the interrupted program.
This process is nested and a user wmay have several programs in
suspension at one time.

The technology of personal terminals is changing so tapidly
tha*t a specific s2lec*ion at this time would serve no purpose.
Particular +erminals wilil be selected at implementation time.
Four 2250 graphics conscl=2s have heen included. This number is
variable depending on the level of sophistication of the
graphics technology at an individual installation.

The equipment list for this configuration is given bhelow.
A schematic diagram is given in figure 7.2

a) CPU and Miscellaneous System Fguivment
Q 3168KJ CPU with
. High speed multiply
. BuZlfer 2xpansion
. . 3 million bytes
o} 3067 power supply
0 3066 CRT operator's console

b) Channels
o) One 2880-1 Block multiplexer channel
o) Two 2880-2 Block multiplexer channels

124

o} One 2860-2 Selector channel
o One 2870 Multiplexer channel with
one selector subchannel

c) Online Data Storage for the User and Systenm
o One 2305 FPixed head disk with 1its 2835 controller
o Three 333373330 8 spindle disk systems with three
3830-2 controllers
o One 333373330 16 spindle disk system with 3830-2

d) Tape Drives for the User and Systen
o Two 3420-5 7-track, wnulti-density with 3803
controller
o Four 3420-% 9-track, 800/1600EPI with 3830
controllier
e) Graphics
o Four 2250-3 Interactive graphics terminals
£) Remote Batch Entry
o) dne 2702 Transmission unit, 2-4 high speed lines
q) Personal Terminals
o} One 2703 Transmission unit, 60 low speed lines
o 100 personal terminals
- CRT
. 600 baud
. Minimal vector capability
R TTY compatible
o] 50 shar=d fterminal printers
! 25 shared terminal cassette units

h) Local Batch

ol One 2821-5 Unit record controller
o One 2540 Card reader/punch
0 Two 1403-N1 Printers, with Universal Character

Set feature

An TPAD system running on this IBM host configuration would
be capable of =supporting two to three Project 1 (Subsonic
Transport) efforts in parallel. s with +the CBC 6600 host
configuration, it would be very important to schedule the load
peaks of the individunal projects o minimize saturation. This
configuration could handle 1levels 2 and 3 of Project 2
(Supersonic Transport) provided some rescheduling and stretchout
were done- to reduce the ©peak capacity requirements given in
volums IIT.

125

9¢1

3066

2860-2

8B2-5

140G-N1

Fiqure 7.2

IPAD Host System~ IBM 370/168

3M BYTES
3067 2168 HIGH SPEED MULTIPLY
BUFFER EXPANSION
2570 2880-1 2880-2 2880-2
MPX |SELECTOR l
SUBCHANNEL I
[
3803 78385 3830-2 3830-2 3830-2 3830-2
3333/ 3333/ 3333/ 3333/
3420-5 2305-2 3330 3330 3330 3330
g 8 8 18
) SPINDLES SPINDLES SPINDLES SPINDLES
I-TRACK —
E 60 LOW SPEED
7 — LINES
—— 2.4 HIGH
2701 F--- SPEED LINES L]

P

) 8
B] 3» 8

5 .

I
0]0]0.

(1)

(2)

(3)

(4

(5)

(6)

(7)

ORIGINAL PAGE It

OE POOR QUALITY
BREFERENCES

Mills, H. D., "Mathematical Foundation for Structureqd
Programming®, IBM Report FSC72-6012, Feb. 1972

IBM Report FS5C71-5108, "Chief Programmer Teams: Principles
and Procedures®", June, 1971

E. Glaser, et al., Proceedings of 1971 CCMPCON Conference,
Sept. 1972, Set of Articles on LOGOS System, Case-Hestern
Reserve University

Association for Computing Hachinery, CODASYL Data Base Task
Group, April 1971 Report.

CODASYL Stored Data Definition and Tramslation Task Group,
“an Approach to Stored Data Definition and Tramnslation®,
Sept., 1971, and unpublished paper by Taylor, R. W. "The
Translation Process®, U. of Massachusetts, Sept., 1972.

#iller, Robhert B., "Response time in Man—-Computer
Conversational Transactions®, AFIPS Conference Proceedings
for Fall Joint Computer Conference, 1968

Martin, James Systems _Analysis _for _Data _Transmisgion,
Englewood Cliffs, WNew Jersey, Prentice-Hall, 1972, pp 61~
122

127

ORIGINAL PAGE IS
OF POOR QUALITY]

APPENDIX A

DETAILED SYSTEM DESIGN SPECIFICATIGONS

Structured programming is a formal work dealing with
software engineering and hardware-software system design and
development (ref. 1, 2, and 3). The objective of this work 1is
to transform the development of computer systems from a seat-of-
the-pants art to a disciplined technology. This approach has
been utilized to develop the IPAD system design.

The structured programming approach is a top down design
method in which the design proceeds from the general to the
specific. Each refinement is a level in the system design.
Tree structure diagrams give the system functional components in
levels of increasing detail. The nodes at any ome level in the
trae structure are states of activity for the systen. The
entire system is included in the total set of nodes of each
leval, and in fact, higher level nodes are summaries of lower
level nodes.

Transition diagrams describe how the system components, at
each level, are functionally related. The diagrams also specify
the conditions under which there will be a tramasiticn or state
change within a node or from one node in the tree to another
node at the same level. These :transition conditions are (1) the
input data or conditions that trigger the transition and (2) the
output data or results existent in the system at the +time the
transition is made. Figure A.l is a sample tree structure and
transition diagram for a three level systen.

Tha TPAD system design given in appendix A follows the
general form described above. In level 1, twenty-nine nodes or
states are described. Except for a few level 1 states dealing
with hardware or host operating system protocol, the level 1
states are each refined into level 2 states. The level 2 states
are, in turn, broken ont into level 3 states, and so on. The
emphasis in the design was placed upon consistency in detail
rather than consistency in levels documented. Hence, there are
differences in the depth or number of levels reached in some of
the tree branches. :

While the design as pregented is in +top down form, the
actual design process does. not proceed monotonically.
Generally, design at level n will result in a review of somne
elzments of the design at level n-1, n-2, etc. The advantage of
the method is +that +the examination of effects is an orderly
process and the consequences of the iterative design process are
highly visible.

TREE STRUCTURE DIAGRAM A

LEVEL |

ALALA A.A.B " ALAC A.B.A A.B.B

TRANSITION DIAGRAMS . .
(input/éonditions,

A.A output/resuits) A.B

\ﬁ@ . LEVEL 2

(input/conditions,
output/results)

A.AA. A.A.C A.B.A
(i/e, ofr)

(i/c, ofr)
ifc, o/r‘;‘.. ?

. ¥ i (
(ife, ofr --

A.A.B (i/c, ofr) A.B.B

LEVEL 3

Figure A.l Structured Programming Diagrams

Each lavel in appendix A contains the following. diaérams
and tables: .

State Description Tables - Three pieces of information are given
for each node:

a) Short Structured Wame - This name consists of a set of
one or two alphabetic characters catenated in the fornm

rs
rs.tu
rs.tu.vw
ate.,

The syllable position denotes a level. For example,
if node a 1is at level 1 then node A.B would be at
level 2 and would be a state of node A. Hence, " the
tree diagram can be formed from the short structured
. names. There is no reguiremant that these names be in
" sequence, i.e., the existence ¢f node A.B and node A.D
does not presuppose the existence of node A.C.

h) Long Name - This name is descriptive of the function
of the node. For example, node E has the long name
*Subtask Set-TIp.M :

c) Description -~ Several sentences, in surmary fornm,
describing *he capabilities of the node.

Allowed Transition Tables - This is a tabular representation of
the connections between the nodes having a common parent at the
next higher 1level, The states from which and to which

transitions are made, along with the corresponding references %o
the input/condition and output/result tables which follow, are
givan. & bent arrow is used *o flag ertry and exit points fron
the parent node. When exits are shown, the level of "~ the state
exitad to may be at a higher level than the state being exited
from depending upon the level of tree structuring completed.

Transition Diagrams — These ars a g¢graphical representation of
the allowed transition tables. They can be constructed from the
transition tables and are valuable for visualizing

relationships,

Input/Conditions List_ Tables - This is a list of the input or
conditions +hat +trigger a transition or change of state. This
list should be used in conjunction with the Allowed Transition
tables.

A3

output/Result List Tables - This 1is a list of the ountput or
results that are existent in the state when a <tramsition 1is
made, This 1list should also be used in conjunction with the
Allowed Transition tables.

Abbreviations are not used in level 1., They are used in
lower levels to facilitate Writing. Definitions of
abbraviations are given in section 4.0 of Volume TIV. The text
part of appendix A was created by a computer program from data
supplied by the system designers. This computer program checked
for consistency to ensure that +transitions were pade between
valid states and that 1lower level states were correctly
referenced to higher level states.

Tree diagrams are not included. They can be constructed
from the structured names.

Figures A.1 and A.2 are ths level 1 transition diagram.
Node F is repeated on figure A.3 for reference. These figures
should bes read 1in conjunction with the State Descriptions,
Allowed Transitions, Input/Condition List and Output/Result List
following the diagrams. Transition diagrams for lower levels
are included with the level.

Ad

SORDO TRANR,

| ALL NODRES YO THE MIGNT
OF THIS NODE RETURN

| GF THIS NODE RETURN
| HERE IF THE SWITCH
| 15 TURNED OFF

i HERE IF THE USER
HANGS P
H
; From nodes GA, HA, IA. KA,
1 MA, NA, OA, PA, QA WA
i Sea figuw 6.3
1
|
1
1
l 1
i !
' oA w
l COUPLER T IPAD BASIC
i INFORMATION AMMAND
EXIT COD
OPERATING
PERSONAL PERSONAL PERSONAL SYSTEM
TERMINAL TERMINAL TERMINAL COMMAND
Tonodes G, M, 1 K, M,
OFF on CONNECYED onE - | Topotm.t
Soe Hgure 6.3
A 2 AME OF EXISTIN HETUR
SUBTAS|
: IN COMMAND MODE
1 A
| OFF
} [ANOTHER
; J
1 AME OF EXISTIN
I SUB-TASK IN EXECLTION
B { .
l .
i i
1
i SUBTASK ;
| ALL NODES TO THE RIGHT INTERAUPTION ‘f

QuIT,

WAME OF EXISTING
SUBTASK INTERRUFTED
DURING TERMINATION

o m —

* % TERMINAL DIALOGUE WITHOUT

A CHANGE OF STATE

Figure A.2 {PAD System Design Level |
Transition Diagram

AS

“SULDOUT FRAME

FOLDOUT FRAR..

) CONSTRUCTING - DISPOSITION ffa':::"f
LEARNING 'SEARCHING TREATING MODIFYING AN OFERATIONAL EXECLTING COMMUNICATING oF

ABGUT THROUGH LIBRARY LIBRARY MODLULE g WITH A IERARY

waD THE LIBRARIES. ENTRIES ENTRIES SEQUENGE 08

AS A SOB

ENTRIES

a-

INTERRUPTES,
\ N) INTERRUFTED INTERAUFTED EEIING.
INTERRUPTED s":f}iﬁ‘:gﬁn INTERAUFTED INTERRUPTED CONSTRUCTING AN INTERRUPTED INTERAUFTED INTERRUPTED DISPOSITION DmnNnv
NING = CPEATING MILIFY ING COMMUNICATING ISPLAVIN b LiBRA

LEAR TR OPERATIONAL EXECLITENG DISPLAYING GF ENTRIES
ABQUT THE LIBRARY ;?TRFG:: MODULE SEQUENC| “AdoB g';"‘ A RESULTS LIBRARY s

1PAD LIBRARIES ENTRIES AS A JOB ENTRIES

1A

VARIABLES
KA MA

* * TERMINAL DIALOGUE WITHOUT .
A CHANGE OF STATE

. Figure A.3 IPAD System Design Level |
. Transition Diagram (Cont?d)
Ab

STATE

ORIGINAL PAGE IS
COMPONENTS OF IPAD LEVEL ONE OF POOR QUALITY

srrsy STATE OUSCRIPTIONS *¥wex
LONG NAME AND TEXT

P=RSCGNAL TERMINAL OFF

THE EJJIPMENT IS5 HJIT ACTIVE.

PERSGWAL TERMINAL ON
THE QUIPMENT ES AGTIVE 3UT WO DATA PATH TO ThHE
COMPUTER EXISTS, THE EGJLPHYENT Tz A PERSONAL TeERMINAL,
NOT A REMOTE JG3 ENTRY TEREMIMAL, BUT MAY 3£ AUGMENTZO
WITH PEJAIPAERAL JEVICES SUCH AU CASSETTZ TARE,PRINTZR,
PLOTTER. :
FERSCWAL TERYINAL COUNNECTZO
THeRE NOW ZXISTS A Two-wAY OATA FATH BETWEEN THE
TERHMINAL AdD THE COMPUTER .
OPERATLNG »YSTEA COMMANU J400E
THE JSER IS HNOA ASit TO ENTER COMMANDS TD THE TIMt
SHARING SY3TEM IN THz nIST OPZIRATING SYSTENM
SJ3TASK ScT-uP
THE JSER I3 NOA IN COMMUNICATION WITH IPAD AND HE
IS EITHER INITIATING A iew SU3ITASK OR CONTINUIRG AN
GLD ONE. IN EITHEF CALE, THe NET RESULT WILL 8E THE
ESTASLISHMENT OF HIS ACTIVE SJBTASK LIBRARY,
SUBTASK CaMMaxnlr rl0OD:=

THc USER IS WOW A3ILE TO I[SSUE IPAD BASIC COMMANDIS
TO AUVANCE HIS SUBTASK AT,

A7

IPAD LEVEL -ONE
(CONTINUED)

¥%¥x%¥ STATE DESCRIPTIONS (CONTINUED) *x»x¥
STATE LONG NasE AND TeXT

G LEARNING 43uJT7T IPAD

THE ACTIVITY OF GAlxNiNg INFORMATION ABOUT IPAD
EITHER AS 4 TAUGHT COURSE TR 45 HEL? WITH A SINSLE
COMMAMD DR MIDULE.

H SEARCAING THROUGH THE L13RARIES

THE 2:0CeS3 OF SCANIIVG JICTIOHARIZS ANG LIRECT-
ORIES TO LJENTIFY ANJ L JIATT INFORMATION IN THE IPAL
GATA BASz.

I CREATING .l=»~ARY ENTRIES

THE PROCESS CF INSZIRTING JATA (NUMZRICAL aAND CTd-
ER) INTO Tnk IPAY DATA 3ASE ®ESULTING Id NEW L13RARY
ENTRIES{LE), INCLUDED 13 THEZ ZIRTERING OF SCURCE Cols
FOR CODING MODULES(CA), INFORMATION FOR »TORED LATA J=F -
INITIONS{SID) ,INSTANGES OF OATA SETS(LS) 3 JISPLAY MENJS
(o) AND THE IWSTANCE J3F THE SYSTEM DATA SET COnTAIN-
TN ACCESS AND PERMISSIJN CODES,.

K MODEFYING LINRARY ENTRILS
ALTIRING CJURRENTLY RESIOENT LISRARY ENTRIES. THIS
CAN INVOLVYE CHAWNGES TO AnY VALLo IPAD LIzRARY ENTRYS
TYPE,
b CUNSTRUCTING A 408
ARRANGING AVAILASL T COUING HMUODULES(CM) INTD CPER-
ATIONAL MOJULES(GM), OPZRATIONAL MOJULES INTU JOUS,y AWL

OPERATIONAL MCDULES AND PrEVIOUSLY DEFINED JOBS INTO
NEA JCBS. ’

A8

ORIGINAL PAGE IS
OF POOR QUALITY,

IPAD LEVEL ONE
(CONTINUED)

STATE

u

*¥¥¥¥ STATE DESCRIPTIONS (CONTINUED) vwv¥¥®

LONG NAME AND TEXT

EXECUTING & JO2

ACTIVATING A PREVIQUSLY GONSTRUGTED JO3

COMMUNIGCATING WEITH A JOb

BEING INTERALTIVE ALTH 2 USCR CORSTRUCTED JO3

DISPLAYLIN ; RESULTS
STANNINGy SHECKLING, £ND IMTERRIGATING INFCRMATIEIN
CONTAINEG In LISRARY ENTRIES OF ANY TYPC.
CISPUSITLIN OF LI3RARY ENTRIES
TRANSFEREING LIZRARY ENTRICSS BETWEEN IPAD LIB-
RARIES,y -SENDING ITEMS OJTSIUE UF IPAD(OFFLINE, OKR VI4A A
COMMUNICATION NETWORK), AnD REMOVAL OF UNWANTED LEIBRARY
ENTRIES FRUM THE DATa RASE,

SUSTASK SToL¥ CONT=OLLZID A30RT

THE TZRMINATION CF TnE CURRENTLY INTERRUPTZD SJ3-

TASK STEP.

SUBTASK IJTERRUPTION

ACTION ALMED AT T< APGRARY INTERRUPTION OF THE 5J8-
TASK ACTIVITIES WITH TAdZ INTENT OF RE-STARTING AT A
LATER TIME AT .THE PRECISE POINT OF INTERRUPTION.

IPAD LEVEL ONE
(CONTINUED?}

STATE

GA

HA

IA

KA

M3

Na

AlO.

»¥¥ex STATE DESCRIPTIONS (CONTINUE3) r¥#x*®
LCONG NAME AND TEXT

SUBTASK TZRMINATION

THE USER HAS COMFLITES TAdE DEFINED SUGTASK AND
MOW DESIRZS TO DISPOSE OF ALL REMAINING INFORMATION,
LOG THE TEZRMINATION IN THL PR3IJZCT PLANS, ANG ISSUE ANY

REQUIRED REPIRTS.
DEFLINING LIHXARY ENTRIES On VARIAALES

A DEFINITION IS A DICTIONARY ENTRY WAICH COnTAINS
THE MCANIW&G OF A VARIABLE OR 4 LIBRARY INTRY Atid CRI5S
REFERENCINS INFORMATIOW. ALL COMMUNITY LI3ZRARY ZMTRIES
AND VARIAJLES REFERINCEJ IN UATA SETS REQUIRE cEFIN-
ITIONS, DICTICNARY ENTRIES ARE OPTIONAL FOR SULTASK
LI3RARY ENTRIES.,

INTERIUPTED LEARMNING AbCJT IPAD

THIS IS THE STATE IMEOIATELY FOLLOWING A

PAYUSE DURI®G LEARNING A30UT IPAD. EAGH GF THE STATES

Gs Hy I., Ky My Ny Oy Py 0y AND W HAVE & SIMILARLY
ASSOCTAYED STATE,

INTERRQUPTED SEARCAHING THROUGH LIBRARIZS
INTERRJIPTZID CREATING LléRﬂﬁY ENTRIES
INTERRUPTZO MODIFYING LIBRARY £NTRIES
INTERRPTCO CONSTRUCTING A J03

INTERRUPTED £XeCUTING A JOWs

IPAD LEVEL ONE
(CONTINUED)

AN GE

STATE

Ga

PA

QA -

Wa

cn B

. RIGTHAL PA*S .

STATE DESCRIPTIONS

{CONTINUED) #¥¥¥s

LONG NAME ANOD TEXT

INTERRUFTEY
INTERRUPTED
I4TeRRUFTZD

INTERRUPTED

COMMUNICATING WITH A JO3

JISPLAYING REIULTS

JISPOSITION OF LIorRARY LMTR.

JEFINING L IBRARY ENTRY/VA-L

All

IPAD LEVEL OWNE

(CONTINUED)
*¥¥e® AL JWED TRANSITIONS #¥¥¥¥
FROWM STATEL TO STATEL INPUT / QUTFUT /
(¢ = ENTRY) (p = £XET) CONDITION RESULT
el 8 1 i
B A 14 14
C 2 Z
£ A 14 13
B 13 13
i -3 3
B A 14 13
3, 13 15
=1 i5 1%
G 12 1z
E 4 4
£ A 14 2L
] 13 16
F 5 5
F o £
J io6 &
F A 14 17
] 13 17
G 17 272
v 34 3<
H 14 2
H 3y 3G
I i3 2z
I 34 3%
K 21 22
K 34 39
4 23 2c
M 3y $9
N 2y 2e
i 34 3%
a 34 3¢
P 27 ' 22
P 34 3%
| 23 2¢
Q 3 3¢
T 3 ¢
U 3 C
v 7 7
W 28 2c
W 34 34

Al2

ORIGINAL PAGE IS
OF POOR QUALITY,

IPAD LEVEL ONE
{CONTINUED)

¥ex¥¥ ALLOWED TRANSITIONS (CONTINUED) *¥¥¥s

FROM STATE TO 3TATS INPJT / QUTRUT 7/

{p = ENTRY) {r = EXIT) CONCGITION RESLLT
G A i4 4 i
3 13 44
F 35 Lz
GA 31 J&
H A T 14 43
) 13 4
F 35 4¢
Ha 31 36
1 iy i4 4{
T 1la 4
F 35 42
Ia 31 36
K A iy 4T
o i3 4C
F 35 LZ
K& 31 3t
R A 14 Li
3 13 4{
F o5 L7
MA 31 €
N A 14 Gy
3 13 G
F 35 4z
a 25 ec
NA 31 Ky
0 A 14 4l
B 13 4L
F 35 42
N 26 22
0A 31 36
p i 14 LG
B 13 4
F 35 42
PA 3l b
G A iy {
3 13 4
F 35 4z
QA 31 36
T A i4 18
3 13 18

IPAD LEVEL ONE
(CONTINUED)

xE2¥ ALLOWED TRANSITIOWS (CONTINUED) F¥¥¥

FROM STATE TO STATC INPUT 7 QUTPUT /
(» = ENTRY) (p = EXIT) CONDITION RESULT
u A 14 19
B 13 1%
0 11 11
£ 1% 1g
y A 1t 21
8 13 21
D i1 11
£ 13 1r
W A 14 47
1) 13 4
F 35 £2
WA 31 36
GA A 14 41
3 13 41
F 33 3
G 3z 37
HA A 14 i
3 13 41
F 33 3z
H 32 37
LA A 1u u
a 13 41
F 33 38
I 32 37
KA A 14 37
B8 13 41
F 33 3¢
K 32 37
M A A 14 w
3 13 41
F 33 36
M 32 37
NA A 14 4
8 13 41
F 33 3t
N 32 37
CA A 14 4
8 13 41
F 33 38
0 32 37

Al4

IPAD LEVEL ONE
(CONTINUED)

¥¥Ex¥ ALLOWED TRANSITIONS (CONTINUEZD) (**¥¥2s

FROM STAIC TO STATE) INPUT / QUTPUT 7

(¢ = ENTRY) {(r = ExIT) CONDITICN RESULT
PA A 14 bd
8 13 S
F 33 38
P 3z 37
QA A iy T
=} 13 i
F 33 3b
Q 32 37
HA i} p igf
B 13 &1
F 33 3t
L] 32 37

IPAD LEVEL ONE

{CONTINUED)
¥y¥4x INPUT / CONDITION LIST #&¥¥s
NUM3ER TEXT

1 SAITCH TUINED OH

2 0DIAL UP

3 VALIU 0OS LOG Ch INFI=MATION IN THE PROPZR SEQUENCGE
4 VALID GS COMMAND TO EXECUTE IPAD

> VALID SUBTASK IDENMTIFIER FOR 4 NON CXISTING SUBTASK
5 VALIO SUBTASK IJENTIFIEZ FIrf AN £XISTING sSU3TASK

7 TERMINATE

3 QUIT

3 379P

13 ANOTHER

i1 D ONE
12 HELLO
13 JSER HANGS UP

i4 SWITCH TUINED COFF

) BYS

15 SU3BTASK RECORIS SHUAING AN INTERRUPT CCCURREO QURI NS

THE 5U3 TAsSK TEIMINATION

i7 HELP

13 SEARCH
13 CRCATE

23 . JEFINE

21 #4O001FY

23 CONSTRUCT

24 « XECQUTE

25 CUNDLITLON CODE 3HOWING [TZRMINAL INPUT Is REQUIREY
29 LAST LIWE JF LSER IJPUT .
27 BDISPLAY

23 DISPOSE

31 PAJSE

32 Lo

33 ANY CCHMMAND LXCcPT 4 60

34 RETURN

35 EXECUTION GUMPLE=TED - a0RMaL ckIT

Alb

ORIGINAL, PAGH
OF FOO QuALITY

IPAD LEVEL OnE

(CONTINUELD)
eF¥x QUTPIT 7/ RESULT LIST +¥¥ex
NUM3ER TUXT
1 -
2 PHINE LINZ CORNNECT
3 VALID OPERATING SYSTEM LIOG=-ON INFORMATION
+ OPERATING SYSTEA COMMAND T3 EXELUTE IPAD LOG-Oh ~rG3R4AM
El ESTAGLISHMENT OF A HEw 3JSTASK LIBRARY IN THE LL
2 THE UL SJ3TASK LIBRARY IN ACT1VE FORM
7 GS COMMAMI TO LEXECUTS TH4E SUBTASK TIRMLMATION FROomaH
3 US COMMAMD TO EXLEQUTE THe 3JBTASK INTERRUPTION PROG=AM
J 05 COMMAND TO eExXeCUTE THY SUJSTASK STEP INTERRUFTIUN
PRIGAAM
1) SU3TASK INTcRRUPTIOH LOIPLETE
i1 - :
i2 VALIU o726 OFF INFGRAATION
13 PHONE LINI DISGINNECT
1 -
i5 -)
15 SU3TASK LI3ZRARY £NTRY RESTORED TO ORIGINAL STATC
17 A PROCEGURE WItn of SXESUTED CWUIVALENT TO THE
FOLLUWING INPUTS - 3413,
i3 CO4PLETICON GF TEXMINATION, THEN PROGEEDING PER OUTFUT
i7
i3 GOAPLETION UF INTERRUPTIuN, THEW PRICEEIING 435 FF IARPUT
15 HAD BEZW RICEIVED, ;
21 OUTPUTS 15 AND 13
21 HOLI NG UF THz TERMIWMATION INTACT S0 IT wiIiblL SE
ENTERES UPdN RETURN, THEN PROSEESING AS 1F INPUT 13
HAD BEEN SHNSOULNTERED
22 PARSED COMMAND, UPDATED ACTIVITY RESOKD
31 EXPLANATORY TIRMINAL OUTPJT(IF NEEDED), INPUT PEZQUEST
31 INPUT TO SJBTASK STEP
35 CURIRENT SUSTASK STEP INTLCR=RJFTED IN RE-3TARTAZLE FORA
37 -
33 POINTER TO INTEIRUPTED 3UbTASK STLP PLUS RESTART
INFORMATLON
33 05 COMMAND TO RE-ODTART FROM PRRECEEDING PAUSE
43 IPAD PROGEJURE TXECUTEU GONSISTING OF A FAUSEs JULT,
DONE »3YE '
&1 IPAD PROCEIURE EXECUTEJ COUNSISTING OF JJIT,DONE,sYE
42 NOMAL EXIT CCDc

Al7

LEVEL 2
COMFONENTS OF STATE E
SUBTASK SET-UP

#x¥¥¥ STATE OESTRIPTICNS *#%¥%<
STATE _ LONG NaM:t Aty TEXT

Eel IPAL L0500

USER SUPPLIES dHiS USER IJ, PASSWOR0,s AND
SUSTASK TJIeNTIFLER., THE SYSTEIM WILL CAECK FOR
USZR VALIJDTY AND. THZ EXISTENCE OF THE 3JBTASK.

E.3 RE-ACTIVATI GLo SUBTASK
GIVEN Au INAGTIVE SurTASK NAMZ, RESTORE TRE
S5U3TASK LIGRARY TO ITS PRE-INTERRUPTED STATE. SPY¥CIac

CONSTDIRATIONS ARE NECZI3A-Y LF THE INTZRRUPT COCUR-ED
DURING SUITAGK TERMINATION.

LEATE NEA SJ3TASK

™M
.
(9]

INLTIATE A SUBTASK WIotr GENERALLY JEPEND UPON THE
£ XISTENCE JOF PRIJECT PLANS REFERENCING SUCH A SUSTASK,
ADMINISTRATIVE CONTRIL WILL BZ EXERCISED PRIMARILY
ThROUGH TALS MECHANISM. SUBTASKS WITH NO FORIMAL
PRIJECT RELATIONSHIP MAY £ HAWOLED TorIULGH & SPECIAL
CATCH-ALL PROJECT.

BPEET O LLLUOWE) THANSITIONS *¥ews

FROM STATE TO STAT: INPUT /7 OQUTFUT 7
(» = ENTKY) (¢ = ZXIT) CONDITION RESLLT
I’EQA E A 0- S
£.5 1 1
T 40 2 2
E .3 o A 3 3
PV LA) 3
£.0 £.0 7 &
AF .4 4 4

AlS

LEVEL 2
STATE

TRANSITION DIAGRAM
E : SUBTASK SET UP

Al9

E t SUBTASK SET-UP

(GONTINUED)
Frexx INPUT / COMDIVICN LIST ##%x¥
NUMSER T=XT
1 USER 10 ANJ THE NAMZ OF A CURRENTLY INACTIVE SU3TASK
2 USER ID ANJ A SJSTASK dAME NOT RESIOLING IN TRE OL
3 VALID SUBTASK LZ IN THLZ CL
f ALL INFORMATION NECEs5ARY TO INITIATE A SUBTASK.
3 INJICATIGN- IN THE SJBTA5K Lz FHAT TERMIVNATLON WAS IN

PRIGRESS WAEN THE J3ck HuNG UP OR TURNED ThHe SwITOH
OFF . .
INSUFFLCIENT VvALLUITY CHEZK IWFORMATION

3
7 INITIALIZATION INFORMATIuN rFUR USER UPTIUNS ANL/LR
PROJECT REJJIREMENTS
#exes QUTPUT 7/ RESJLT LIST ¥#¥*¥
NUMICR TexT
1 LOCATION JF THE SUBTASK TU BE ACTIVATED
2 NAME OF THe NEW SUBTASK AND POINTER TO PROJELT PLANS
3 SU3TASK LIBRARY RESTORCI TC IWNTERRUPTION TIME STATUS.

INc EACEPTION IS IF A4 JOJ wiAs LofFT I EXESUTION AT THE
TIMc OF INTEARUPTION AMD IS nNOW INACTIVE, IN SUSH A
CASEy THE HNEA STATUS wi_ L ACLOUNT FUR Tdo INTERIM
ACTIVITY.

+ SUATASK LISRARY INITLALIZED CONSTISTENTLY WITH THE

FrRIJECT PLANS.

EXPLANATION OF AJUITIONAL CHeEoK INFORMATLOM RzGJIREJ

5
5 ABIITIONS TO THE S$TL SET u®
#¥¥2% (GQ0SS REFERENCC) TRANSITIONS #®+##x
STATE IS ASCESSIBLE FROM
Z.A

«@ &
. - 8
[N ol

A20

STATE

Fed

R A
LEVEL 2 'QUALITI:? -

COMPONMENTS OF STATE F
SUBTASK COMMAND MOOE

¥y#E¥: STATE IESCRIPTIONS #ewex -
LONG NAME AND TEXT

REQUEST U3ER INPUT AND INTCRPRET JOMMAND

THE SYSTEM wWILL PROMPT THE USER TO GIVE A COMMAND.
AFTER READING IT, 1T WILL SH& INTERPRETZI TO DETERMINE
WHAT ACTIOW .Ht DESIRES. THAE CUMMAND SYNTAX WILL BE
DELT WITH ONLY TO THE LEVeL MECES3SARY T) DETERRMINE TAE
BASIC INMTENT ANJ SEPARATE CUT ANY INFURMATION(E.G. ARG=-
UMENTS) FJOR THE IPAO UTEL1TY.

De-ACTIVATE SUBTASK STEP
THIS LS AN ALTERNATE ENTRY POINT T3 B8E USED WHIN

A PAUSE HAS SEEN GIVeNs FOLLOWED gY A COMMAND GTHER
THAN GUOs A PUSH-UOWN STACK WILL MAVE TC dE KEFT 70

-INSURE A LAST-IN-FIRST-UUT PROCESSING ORDECR.

RE-ACTIVATE SUSTASK STEP
THE PUSH=-DJIWN STACK GF INTERRUPTED SUBTASK STEPS

MUST BE INTERROGATED T3 LOGSATZ THE STEP WHICH IS 7O SE
ACTIVATED.

A2l

F ¢t SUBTASK COMMAND MODE

{C ONTINUED)
b ALLOWED TRANSITIONS ¥*¥¥¥¥
FROM STAYZ. - - TO.STATZ . _....INFUT-/- QUTPUT 7/
(¢ = ZNTRY) (¢ = EXIT) CONDITION RESULT

pF s b Fad ' t 31 & b

Fol b4 L

Gl A & 2]

AH WA 7 €

r’IoA 8 €

r’K‘A ! “1‘38 * L t:

ol A : (120 L K S

oM A . A3 e, et

P A ! 1dy, A

QA - ¥3 % Tk

rTo A" ¢ Ly re ol

pUe A 2 2

VA 3 3

- pWel -) 17 £

PFed Fol 5 5

Feb . B 2 S SN SUUCR I . S 7

" pH Y - 19 T

1 T 1,220 + 7

*K t [. ‘22 . !) ‘?'

oM 24 7

N g 7

0 . . 26 7

eP 27 7

. ’ 28 7

N A .30 o, A

* Since these are transitions to interrupted states, the

node names at level 2 cannot be specified.

A22

ORIGINAL PAGE IS

OF POOR QU
Tig/7] e
Vig7 | |
2071}
20/7 L;
V 22/7 AKA,
F.C el 247 | M)
125/7 | Nt
$26/7 | O
b
4/4 V27/7{ P
38 TRy
'l aPlulie |~
v 7/6 | H.B ! haindei
8/6 | 1.A |
110/6 | K.A 1
L12/6 | MUA
136 | NLA D
114/6 | P.A 4
115/6 | Q.A I
CIA | T.A
1 2/2 | U
133 | VoA
V176 | woa
- ool amoom

LEVEL 2 TRANSITION DIAGRAM

STATE F: SUBTASK COMMAND MODE

F 1t SU3TASK COMMAND M0GE
(CONTINUEZ)

*E¥4% [NPUT /7 GOWDITLON LIST #¥%¥¥#

NUM3ER TEXT

>T0P
JUIT

TERMINATE
RETURN

RECOVERY I[NFOIMATION Fi2Jdel SUITASK STEFP L LLJIUT <RECC 3,
OL) PusH-30dd STALK

a HEL?

7 SEARGCH

3 ENTcR DATA

13 MOJIFY UATA
12 CINSTRULT Jdd
13 EXELUTC

14 DISPLAY

15 wISPJSE

17 o EFINE

Vi £ o P b

13 PUSH-uunM 3TACK WwITH 5TAT: & Qi TOP
13 PUSH-UOWN 3TAGK WITH STATez o JIN TGOP
21 PUSH=-DUwN STATK WITH STaTe I ON TOP
2L PUSH-30WN 3TACK WITH LTATc J Ofl TOP
22 PUSH=-UDKN STACK WITH STITL £ IMN TOP
23 PUSH-00WM STACK WITA STATE L ON TOP
24 PUSH=-00RN 3TACK WiTH STATE M JN TOP
23 PUSH-DOWM STACK WITH STATD N O TOP
23 PUSH-0UAM >TACK wWITH STATL J IN TOP
27 PUSH=-DUvwN 3TACK WITH STATt P ON TOP
23 PUSH=-00WN STACK WITH STAT: U JN TUP
33 PUSH-30WM STACK WITH STATZ w On TQP

a1 INCORRELT COWMMANU FI2MAT

¥rxxs QUTPUT / RESJLT L1ST #w¥sxx

MUY3ER TEXT
1 POI ITERS TU SULBTASK 3TE? TS BE TERMINMNATEY
2 -
3 -
+ PUSH=DOWN 3TACK .
) MODLFIEY PJSH-DOWN STACK, 56D THL Be-ASTIVATED STS

A24

ORIGINAL PAGE IS

F & SU3TASK COMMAND AQDE OF POOR QUALITY -

(CONTINUED)

*r¥xx CUTPUT / RESULT LIST (CONTINUED) *&®*¥=x

NUM3ER) TEXT

CUMMANGD ©RIKEN UP INTGC TAt 3ASIC COMPOUNZILTS

LAST RECORJIED LINE 3cMT T3 THS Tz RMINAL “£FORE

THZ INTERRUPTLION IS RE-ISSUED TO THd T=RMIMALS ALSC THE
AO0J1FIST PJISH OJIWN STACK.

3 EXPLANATION OF TAE Z3RJIY REUQUEST FUR RITRY

{

5 O

gl

FEFRY IS5 REFERENLGZ J THRANSITIONS ##xex

STATE 15 ACCESSIolE FROM

ry

CollL AWk LG HMUOMWLOOSEOOML OFEML. w

- - -» » L] - L] L] - - » L] L] - L] - L - L - - L] - - -

T L OO AO0RNCELeMUTETIARASIIT LOOE MM

A25

LEVEL 2
COMPONENTS GF STATE 6
LEARNING ABOJT 1IPAD

¥ %% STATE DESCRIPTIONS *x¥*x»
’]

H

STATE LONS NAMZ AND TEXT

VALIQATE JSeR

a1
.
I

THE JSER MJST 3% vALIUATzD FOR Trt PROSRAMMED
COURSE OF LINSTRJCTION HIZI WANTS TO BIGIN Or CONTINUE.
COMPLETE SOURSES CUVERI L DIFFERENT SUBJLCTS WILbL pe
OFFERCD. A PARTICULLAR 35J434J=zCT HMAY BE COVERED AT SEVERAL
LEVELS OF JETAIL.

RETRIZVE STUJZENT RECORD

@
-
Cur

USER PROFILE IWORMATIUN 15 MAINTAINED IN THEYE 3Y3-
€4 SECURITY FIiE. A RESORL IS KEPT OF ZACH USERS LEVEL
OF PROFICIENCY 3A5ED CN SIADES FOR JOURSES COMPLETED
AND HIS OYWAMIC USE OF THE TEACHING FACILITY WHLLE HE
WOXKS .

.G ESTASLISH STUBENT KECIORD —
IF 7413 IS A FINST REWUEST FOR HELP QR FOR & P20~
GRAMMEY LOURSE A STUDENT REGORD IS ESTAQLISHEU FOR TH:E
USER.
Gel RETRIZVE LESSOM PLAN
THE SCENARID FOR THE PROPER LESSON IS 28TAINED FOR
USE IN PRESENTING THE “MATERIAL TO THE USLx.
G.E PRESENT LISS0ON

THE MATEXIAL I

3 PRESENTED TO THE USER AT & RATE
DETERMINED BY THE USERS &

WaILITY TO LEARN.

ORIGINAL PAGE I

G : LEARNING ABOUT IPAD . OF POOR QUALITY
(CONTINUED)

STATE

Ged

¥ré¥x STATE UESCRIPTIONS {CONTINUED) #¥%¥¥
LONG NAME AND TEXT

GETERMINE CONTEXLT

THE USER HAS MADE 4 YLQUEST FOR hELP. HE IS5 EITHER
BETWEEN ACTIVITIES OR HZ HAS INTERRUPTED HIMSELF TO BET
ASSISTANCE. IN THE LATTER CASE THE SYSTEM wWILL ATTEJPT
TO DETERMINE wHAT TY2E JF SCEWARIO IS MOST LIKELY T3
SATISFY HIS NEEJS WITHOJT GEING TOLD DIRECTLY. IF THE

. USER IS BITHWEEN ACTIVITIES OR THE CONTEXT GF H13 PKEV=

[0JS ACTIVITY DOES NOT 2ROVEOE A GOOO 5SUCSS, THE SYSTEWM
ANU USER ENGAGE IN A DIALGSUE TU LETERMINE THE TYPE OF
HELP HE WANTS. :
RETRIEVE STENARIO
A SCENARIO TO HULDS & HELP SESSICH 1S RETRIEVED.
THIS HELP IS NOT PROGRKAYMMED TEACHING BUT QUERY-ANSWER,
DISPLAYS OF OPTLONS, ETC.
SELECT LANGUAGE LEVEL
THE USER RECORY IS USZU TO SELEGCT A LANGUAGE LEVEL
COYPATIBLE WITH THE USERS PROFICIENCY. THE USER WAY
CHANGE LANGUAGE LEVEL AT ANY TIME.
RESPONS TO USER WUERIES

FTHE HELFP SESSIOWN IS5 4 DIALOGUE BCTWEEN THE USER
AN THE SYSTEM.

A27

G ¢ LEARNING ABOUT IPAU

(CONTINUED]}
+x¥%x AL]OWED TRANSITIONS *®¥¥s¥
FROM STATE TO-3STATE INPUT 7 QUTFJT 7/
{# = ENTRY) {(r = EXIT) GCOMDITION RESULT

G LA GeA 1 i
G.8 2 2
.3 6.0 T3 2
beD 3 oz
5.6 13 2
G G.0 3 Z
) Geb i 2
Gad G.0 4 3
G.E 3 c
Gac *F oA 7 2
be.E 2] 3
PGl GaB 3 e
L.F 3 3
i LG 12 2
Gea Gt 13 Z
G oH GeH i6 3
el 14 z -
G.1 PE LA 13 2
GeF 17 2
GoH - 15 2
bl 13 3

A28

LEVEL 2 TRAUSITION DIAGRAM
STATE G: LEARNING ABOUT IPAD

A29

N,
G ¢ LEARNING ABOUT IPAD OF p,) ﬁLPA

{CONTINUED)

A30

NUMSER

+ w i

(S N S I

PR)

5
iz
13
i+

1>
15

17

13
13

NUM3ER

[P IR AVIN S

STATE

G.A

¥EEEFE OINPJT 7 CONDITION LIST ¥e¥ew

TEXT

USEX NUT VALIDATEUD FOR “ROGRAMMED COURSE

USZR VALIJATEG

USER TRAINING KEGORDS avAlLAZLE

USER/SYSTE OUIALOGUE RELATIVE TO LESSON SELECTLON
INCOMPLETE

LESSONMN SCZeARIO IN UIER WIRKING AREA

LESSON SES3ION INCOWPLETE

LESSOnN SESSION SOMPLETE .
MORE INFORMATICH REQUI«ES TO JETERMINZD TYPE OF AILF
HANTED

INITIAL HEWP CONTEXT DETERMINCY

USEwx PROFICLENCY DOATA AJVALlLAoLE

SET UP NEW USER USER TRAINING 2EUORD

SECOND ANJ LATER HEL®? COMTIXT UETERMINED

HEwP SCENARIO RITRIEVED SUITA3LE FOR SELECTED CONTEXRT
LANGUAGE LEVEL SELECTLD

USER DESIRES CHANGE 1IN LANSUAGE LLCVEL

USZR/SYSTZY DIALCGUE REATIVE TO LANGUASE CHANGS
INCOMPLETE

USER WANTS TO CHAMGE HILP IONTzZXT

USER/SYSTSA HILP DIACOSJI INCOMPLETZ

HEL¥® COMPLETE

##828 GUTPYT / RESILT LIST **xx»

TEXT

T) SELECST ANGTHZI< COURSE OR TERMINATE

< M4
m
bl
[¥]]
I
c
L

TJ USER INFORMInG HIM TO PrROGEED

Rl
Ui
[%7]
p=3
o
h

#*xxx (R)SS RIFERENCE) (RANSITIGNS *#&wr

IS ACCESSILIBLE FxQ-4

Fa4

ORIGINAL: PAGE I¥
LEVEL 2

OF POOR QUALITY!
COMPIONENTS OF STATE H
SEARCHING THROUGH THE LIBRARIES

#¥¥rs STATE DESGRIPTIONS ¥avxs

STATE

LONG MAME AND TEXT

INTERPRET LOMMANY

THE JSEZX MAY WISH TO CONTROL HIS OWN SEARCH by
SCANNING JICTICONARY AND OIRECTORY ENTRIZS TO IDENTIFY
LIIRARY cnNTRIES JO 3C DISFLAYED. HE MAY 4LSO AANT THE
SYSTEM TO PEIRFGRM SEARGHES UTILIZING SECzCTION SRITERIA
He SUPPLILS.

USEhR CONTRILLED

A SEARCH FOR A P
LI3RARY ENTRY MAY BE
AN ENTIRE

SEARCH
ECIFIC JICTIONARY, DIRECTORY, OR
MAJE, OR THc USER #MAY PAGE THRJUGH
JIGTIONARY OX ODIRECTORY.

Hel SYSTEM CONTRILLED SEARDH
AN INFORMATLION SELZCTION EXPRESSIGN IS GIVEN TJ
THE SYSTEM AND JSED TO SONTROL THE SEARCH.
Hef GISPLAY 5=LECTEY INFORMATION
INFORMATICN

IDENTIFIZD 3Y A SZARCH IS DISPLAYED
TO THk USZR FOLLOWINe VALIDATION FOR REAU ACCESS.

A3l

LEVEL 2 TRAJSITION DIAGRAM

STATE H: SEARCHING THROUAH THE LIBRARIES

A32

H ¢ SEARCHING THROUGH THE LIBRARIES

{CONTINUED)
¥ERRE AL OWED TRANSITIONS ¥#xex

FROM STAGJE TO STATZ INPUT 7 OQUTPUT ~

(p = ENTRY) (o = EXID) SONDITION RESULT

rH.3 Held 2 2
H.O 4 4
Hef 9 G

Hal rFof 1i 1
HeC 5 2
HoE o 1

Hed rF WA i1 i
H.0 5 é
H.E b i

H.E +F A i1 i
H.C 7 1
HD 14 1
HeE 5 2

A33

t SEARCHING THROUGH THE LIBRARIES

(CONTINUED)
Fex¥: INPUT / CONDITION LIST ¥#%%¥»
NUM3ER Texd

2 MORE INFORMATION REQUIRED TO COMPLETE COMMAND AwWALYSIS

4 COMMAND ANALYSIS COMPLETE, USER CONTROLLED SEAFCH
UESIRED.

3 AGOITIONAL JUSER INPUT RIQUIRED

b HATA FOR OLSPLAY LGCATED

7 USER SIGNAL TO START NEA USER CONTRJILLED SEARCH

3 COAMAND ANALYSIS GCOMPL=TE, SYSTEM CONTROLLED StArRuh
DESIRED.

13 USER SIGNAL TO START NEW SYSTEM CONTROULL:L D SEARCH
11 USER SIGNA. THAT HE HAS CUYPLZTED HIS ACTIVITY
x4y QUTPUT / RESULT LIST ¥=¥%«

NUM-ICR TEXT
1 MESSAGE INFORMING USER O #ROGEED
2 MESSAGE RZIQUESTING USER TC ENTER #“ORE INFORMATION
4 PARSED COMMANI ANC CO#MANg CCOWTROL TABLE
#r#x¥x [LROS53 REFERENCES TIANSITIONS #*¥sx
STATE IS ACCESSISLE FRUM
Hed FeA
Fed.1

A34

ORIGINAL PAGE 1%

LEVEL 2 OE POOR QUALITY
GOMPINENTS OF STATE I -
C2EATING LIBRARY ENTRIES

¥¥¥¥% STATE DESCRIPTIONS ##¥x#
STATE LONG NAME AND TEXT

T.A - INTERPRET JOMMAND
THE UsSER MAY ENTER SATA TO SUILD & NEW LIBRARY
ENTRY. THIS HAY BE aN LNSTANSE OF A SYSTEM JuTA STRJST~
URE SULH As A CODING MGIJL:z 0R A STORED DATA DEFINIT-
I0N,. THE OATA ENTEREJ MAY ALSO dc VALUES wWHIUH COMFRISE
AN INSTAMCZ OF 4 UScR VEFINeD UATA SET.
T.3 VALTIUATE USC=R
THE JSER HMJST ddVE PERMISSICN TC ZWdTER PARTICULAR
TY?es OF 34TA INTO THAE SL GR HIS STL.
1.0 CINSTRUCT LLILRARY ENTRY
A COMPLETE, NEWA LIIRARY SNT=<Y(OIRECTORY AMI TEXT)

IS CONSTRJSCTZD. A DISTIONARY INTRY, IF REQUIRED, IS
130 MALE.

1.3 DISCONNLCGT OSER FROM JATA

. A35

I ¢ CRIATING LIBRARY ENTRIES

{CONTINUED) .
¥®E¥: ALLOWED TRANSITIONS ###zz

FrOM STATE TG STATE INPUT 7/ QUTERUT 7

{s = ENTRY) {(p = EXIT) CONDITIUN RESULT

Pl oA 1.4 i 1
l.0 2 z

103 I-B 4 L
1.C 5 g

[I.8 11 i
I.C 13 i
Ian ,‘_) E

I.) e F WA 7 &

TRANSITION DIAGRAM

A36

ORIGINAL PAGE I
OF POOR QUALITH

I ¢ CREATING LIBRARY ENTRIES
{CONTINUED)

NUM3ER

Fowd SOV S Po

| sl aa

NUM3IER

PRV VA oo

b N NI

f

*F¥¥% INPUT /- CONDITIOH LIST *#¥¥+

TEXT

MORE INFORMATION REQULIRZD 7O COMPLETE COMMEND ANALYSIS

COMMAND ANALYSIS COMPLCTC

USER NCT PerMITTED QAUQUZILTEI ACTION
USar VALIDATEY FOR REQUISTED ACTION
LIIRARY ENTRY CINSTRUCTION COAPLETE
USER DISCONNECTED FROM LU

LIFRARY TNTRY CONSTRICTION INSOMPLETE

aDQITIONAL VALIDATION RIWJIRED FOR JERIVATIVE ACTIviTY

weexr QUTRIT 7/ XRESJILT LIsT Fe¥x2

Te X7

MESSAGE RZIIVESTING USER 7O SUPPLY MORE INFCSMATION
PARSED COHMAAND aANY COMsAANE COWTROL TAwLE

AESSAGE INFORMING USER JF LACK OF vALIOAT IUN. AGK
ALTERNATE REJUEST FROM AL,
LE IN USER WORKING A-EA

L AVAILAZLE InN DATA BASE

#¥4%¥ CRJSS RIFERENCeD TRANSITIONS #¥&w¥

A37

LEVEL 2
COMPONENTS OF STATE K
MOOIFYING LIBRARY ENTRIES

*#¥2¥+« STATE JESGRIFTIONS *#=&¥¥+

STATE LONG NaM[C AND TEXT

Ked CUNNECT J3cx HI?H JAT% TC0 £ MGuIFIELU
Kol PERFORM MIJ1IF.CATIONS W1TH DIALOG

Kol URPOATE ODIXRZLTORY ESTRY

KelJ OLSCONNECT LS5SEr FRIM DATA

#¥¥¥% ALLOWED TRANSITIIHS ®F¥*¥%

FRO4 5TAT: T4 STATE InfFUt 7 OUTFUT 7/

{r = cNIFRY) (r = oxIT CONDITIONM RESULT
K o Kah i 1
KeB 2 2
Ke3 KB b i
KoC -+ 4
Kol KeU 7 &
Ke oF A& N 7

A38

2/e

9/7

P

LEVEL 2 TRANSITION DIAGRAM
STATE K: MODIFYING LIBRARY ENTRIES
A39

K ¥ MODIFYING LIBRARY ENTRIES

(GONTINUED)
#5¥x%x INPUT / CONDBITION LIST ¥x¥¥x
NUMIER TEXT
1 ITOENTIFYING AND LOCATIWS INFORIMATION INCOMPLETE
2 LISRARY EWNTRY TJ BE MODIFIED EXISTS AnD USER IS vALIu-
ATED T0O P=RFO MODIFICATIONS
4 MODIFICATION COMPLETZU
3} MOJLFICATIONS INCOMPLETE
7 JIRELTORY ZNTKY UPOATE JSOMRLETE
3 USER I35 DISCONNECTED FRJIM SATA
w#REFx JYTPIT / RESULT LIST ¥¥%¥¥%
NUMSEER TZXT

1 MESSAGE ISSUEQD TC USER REUGJESTING ADDITIUNAL INFORt=-
ATION

2 USER IS CONNECTED TO LIRARY ENT

Y UPJDATED LE TEXT 1IN USER AREA

3 UPJATED L= ATTAGHED TC JUSER

7 UPJATED LE AVAILABLE Id JATA 3ASE

L

U

#¥E¥x [0SS REFERENCCEY THANSITIONS *¥»#x

STATE IS ACCESSIYLE FROHA

Ke A Fo

A40

ORIGINAIL;} PAGE I8

el 2 OF POOR QUALITY

COMPONENTS OF STATE M
COMSTRUCTING A JOB

#%x%¢ STATE JESCRIFTIONS *exx
STATE LONu NAWMI ANJ TEXT

Mol) QETERALNe AVAILABLE J0B COMPONENTS

TAKE Trdg USERS LIST OF 048 AND FIND QUT HOW MAWNY
ARE GCURKENTLY DZF1IMED A ACCESSASLI AN HOW MANY AR:-

YET TO ot OcfFInEv. TdE JSE2 MAY THEN CHJIOSE 70
CONSTRULT THE ©43 U NOT

a3 CINSTRJUCT aN OM LISRARY ENTRY

=

T M3 CONSTRJICT 4 305 LIGRARY £ANTRY

#EEEE ALLOWED TRANSITIONS se¥xw

FROYM STATEZ To 3TATE INPUT 7/ QUTPUT 7/
(r = ENTRY) {r = EXIT) CONJETION RESUWLT
rrla A "’FUA) 5
M3 1 L
M.C 2 3
M3 MaA 3 1
MeB E] g
MW 2 3
4.C s 3
MsC o F . A 4 2
Meh 5 5
1.8 7 7
M.C 13 5

A4l

http:OETER,4.Nc

LEVEL 2 TRANSITION DIAGRAM

STATE M ; CONSTRUCTING A JOB

A42

ORIGINAL PAGE I

M 3 CONSTRUCTING A JOB UA
(CONTINUED) OF POOR QUALITY

NUMIER

i

[N

[ATLN 3 I L %

o~

1]

NUAIER

e =g WJl £ i [

o

STATE

*¥¥¥% INPUT 7 CONDITIOW LIST ¥%x®¥

TeXT

OM SIRECTORY INJICATING TnaT AT LEAST OIC REQUIRED M
I5 JUNDEFINED ANO/OR INASCESSAZLE An) AN INDICATION FRON
THE USER THAT He BESIRES TCO CONSTRUCT THE ©M(3) -

OM DIRECTORY INDICATING ThHAT ALL REQUIRZID OMS £=E
UcFINEy AND ACCESSAdLE.

NON-EMPTY LIST OF 0dAS TO 8L OZFIMNED

EMAPTY LIST OF JJdS TO ¥z DIFINEU

NON-eMPTY LIST JF JO0O5S 73 3E 9eFINED

O DIRECTORY INUICATING VHAF AT LEAST OWE REQUIRED 9%
1S UNUEFINED AMND/OR INACGCESSALE ANY AN INDICATIN F=RI#
THE USERE THAT He 00235 NOT HANT TO CONSTLIT THE JM.
USERS INUOICATION THAT S+ UR MORE OMS MUST 3B LEFNEJ
ENTRY FLAS FROM ¢.C AND ALSO INPUT NO,. 2

OM CONSTRUCTION INFORMATIOH WHICH MUST SOME FRCA THE
USER

JO3 QONSTRUCTION INFORMATION AnICUH MUST COME FROM THEZ
USER

#rRxg QUTPJT / RL3JLT LIST #¥¥x*

TeXT

ONE O« MORE NEWLY DEFINEU LMS IN THE STL ANJ THC
LIST OF UNJEFINED OHS
JOJ DEFINITIONS GOMPLETZI IN THE STL

"SOMPLETE LIST GF OM NAMES #Y LIBRARY

LIST OF NAA4ES FOUND(BY LIGRARY), AND THISE YET TO B
FOUND

LIST OF JJ2dS YET TO 8E UEFINLED

OM NABE (5)

PRIWPTS FROM THE SYSTEM FUR THE PROPER UM CONSTRUCTION
INFORMATION

PROMPTS FRJM ThE SYSTEM FOX TdE PROPER JOO SUNSTRUCTION
INFORMATION

#2%%% (RI3S REFERINCED TRANSITIONS (##%*¥

1S AGCESSISBLE FROA

Fod
Ad3

Ad4

LEVEL 2
COMPONENTS OF STATE N
EXECUTING & JOR

e¥e¥ STATE DESCRIPTIGNS +¥##¥4+

STATE LONG NAME AND TEXT

N.a ESTABLISH TH: REWUIREJ LEN LIST
SCAN THE Jud SPECIFICATIONS FOR ALw INPUT/ZOUTEJT
LEy ANU WITH THE GQUALIFYINS INFORMATICN GIVEN WITH THE
EXCCUTLON COMMAND, ESTAZLISH THE LIST UF NAMES FOr
SEARCHING IN THE LISRARIES.
Nl CHECK FC% tc™ IN LIBRARIES

LOOK FIR TAE LEM IN THALZ »TL ANG THEN IN THz CL.

Mo PREPARE JJ3 FOR EXECUTION
THE SKELEZTON OF THE JUB JEFINMNITICN RUST NGA 8E
FILLEDY IN ~ITH ITEMS PERTINENT TO T4IS ZXECUTICON. TdE

EXEQUTA-L=Z SODE FILES MJST 3E S£T7 UP PRJIPERLY, ANMD THE
CONTROL CARUS FOR THIS ZX£JUTION MUST 22 GENERATED.

Mo INITIATE SXESJUTION

Nez SUBTASK 3Tk eXZCUTING

THIS REPRESENTS T+< STATE OF THE SYSTEN WHE THE
JO3 IS EXSCUTING AND NIT COMHUNICATINGL SITH THE USER.

*¥xxx ALLOWED TRANSITIONS *¥¥*¥%

FROM STAIE T6 3TaT: INPUT 7/ UUTFUT 7/
{r = CNTRY) (» = CXIT) COWNDITION RESULT
riN.A N.d 1 1
Ned NS 7 7
NG c 2
Neu N« 3 3
Na.d MeE 4 €
PG E rGeh 5 L
3 W0 B 5

\-/

LEVEL 2 TRANSITION DIAGRAM
STATE N : EXECUTING A JOB

A45

N &t EXECUTING A JOE
(GONTINUED)

Ad6

NUMJER

e

~N O

NUY3IER

NOUT AR L DY e

STATE

Ned
Na E

xxxzs [NPUT / GONDLTION LIST #xwsx

TexT

LIST OF ULEN FROM JJ3 DZSORIPTION AND WUALIFYING
INFURMATION FRCM THE EXZCUTION REQUEST.

3TLy CL DIRELTCRATIES SONTAImMING AL REQUIRED LEW WITH
PRIPER AC3=ZS5S CoULES

STATUS COMPLETE ON ALL JOD COAPORNENT FILES

INJICATOR FROM THE OS THAT THEZ 3TS IS EXEGUTING
IN?UT RLQUSST CIMMANMI F iGs THE STS

DUTPUT COMMAND FrROM ThE ST3

STuy Cb JIRZCTORLES LACKING SOME OF THE LZN

¥earx QUTRUJT 7/ RESULT LIST #¥%%»s

TEXAT

LIST OF ALL LEN REQULIRII TOR TrE JOB
LINKAGE ESTA4LISHED TO ALy RodUIBED LE
EXECUTAGLE CODE Fliz(s), LZONT0L CARD STREEAHM
TERMINAL INPUT RZQUESST

TERMINAL OUTPUT REWUEST

EXPLANATION TO Tdg JUSESR, %EQUEST FOR AudITICNAL
INFORMATION TC JSE IN LISATING THE MISSING LEN

*EEFEE DRISS RZFERCHCE Y TZANSITIUNS #+*w%x

IS ACGESSISLL FRO

Fold
0.0

o
LEVEL 2 OFIPIGHVM
GOMPINENTS OF STATE © P

COMMUNICATING WITH A J04

¥x¥x®: STATC DESCRIFPTIGNS Feex¥

STATE LONG NAME AND TEXT
0. SUBTASK STiF REJUESTING USER INPUT
0ol SUBTASK STEP P20CESSING USER INPUT

HORK NECESSARY 76 INTERPRET THE INPUT AN ©ORR
ANY ERROURS.

O.0 : SJBTASK STE~ QUTPUTTIWNG INrFORMATION

¥RER2 ALLOWE)D TRANSITILONS ## *¥x

FROM STATE TO STATE INPUT / QUTFJUT 7
{+r = ENTRY) {r = EXIT) CONDITION RoSULT
PJ .4 O.d8 i 1
0.3 0.A 2 L

0.0 2 z
PO es #N.E 4 4

0.4 3 3

O0R gy

I§
I{LITH

o7

A47

LEVEL 2 TRANSITION DIAGRAM
STATE O : COMMUNICATING WITH A “JOB

A48

- pAGE
AL PAY
RICTN
%F POOR qUALITY
0 ¢ COMMUNICATING WITH & JOB
(GOMNTINUEDY
+xexs INPUT / COMDLTLION LIST *s%s»
NUMBER . ToXT
i USER INPUT LINE TO 378
2 INPUT GOMMAND FROM 3TS
3 £NJ OF OUTA2YT INDICATOR
&4 COMPLETEY INPUT FROM L3E-

X TR ER QUTFJT / =S LT LIzl A ¥ ERR

NUA3ER TEXT
1 TERMINAL LINE
2 REJUEST FOR MORI InPJT
3 1 JR MORE LINES TO TowMIdBty INPLT REWUZST
+

OPTIONAL ACKMNOWLEOGEMENT OF 1WPUT RECEIVED SORRESTLY

s

¥EAXE CRJISS REFERINCTI TRANSITIONS w=v¥x

S7TATE IS AGGESSIBLE‘FROW
O.h Ne.t&

N.E.A
0.C NeE

NeT oA

A49

http:RLIAUE.ST

A50,

STATE

Pet

P.E

LEVEL 2
COMPONENTS OF STATE P
DISPLAYING 2w SULTS

¥ex¥d STATE JESORISTIONS s#exx
LONS NAME AND TEXT

INTERPRFT OISPLAY REQUEST
AMNALYZE THE UISPLAY 2EJQUZST TC DETCEMINE THE LE
AND LV IRVILVED AND REWJI=ST THz HELZCTION CRITERION
EVALUATE SELECTICN CRITERIA
ANALYZE THE CRITERIA FOR SELECTING DATA TG 3E
UISPLAYED AND FIRM ToE ANALYTICAL EXPRESSION
ESTABLISA SUPER-SEYT INFORMATION
FETCH IWFORMATION RIGUIRED FOR THE SELECTION AND
IF THE SELICTION EXPRESSION I3 NOT IN THE TERHS OF THE
KA INFURMATION, TRAWSFIZM IT FPRIOR TC APPLYING THE
SELECTION CRITERTA
SELECT PROUPER SUB~SET INFLRMATICH
APPLY THE SELECTION CRITERIA Tu TAEL SUPER-SET .
INFORMATION TCQ ESTASLISH THL JbSIREU SUBSET INFORMATION

JISPLAY REQUESTED INFCRMATLION

Pt JISPLAYING RESULTS

(GOMTINUED)
*#x¥% ALLOWED TRANSITIONS ¥¥%%¥%
FRO4A STATEC TG STATE - INPUT 7/ QUTPUT 7
(e = ENTRY) (p = EXIT) CUNDITION RESULT
oP e A Pah 3 E
P.B 1 i
P.3 P.C 2 2
Y rF oA 11 11
P.C 13 it
.0 3 3
Paed *F oA 3 &
P.C 5 v
Pl.E 4 4
P.E #F oA 7 7
P.A b &

A5l

LEVEL 2 TRANSITION DIAGRAM

STATE P : DISPLAYING RESULTS

A52

P ¢ DISPLAYING RESULTS

(CONTINUED)
F¥#E¥ INPUT / CONDITION LIST #¥x¥x
NUM3ER TEXT
i PROPERLY FURMATTED O1SPLAY SE JUEST
2 SUFFICIENT IWFORMATIUN Tu ESTASLISH A SELCTLO04 CRITIRIE
3 PART COR ALl OF THE SUPCRS-T INFORMATION FRCM THE

L13RARY

EMPTY SCARCH TAILE

NON-cMPTY SCARCH TASLE

USER 'REQUEST FGR MORE JISPLAY

USER TERMINATICW CO3C

USER INUICATOR THAT HE OO0ES HOT WANT THC INFOURMATION

DISPLAYED(THIS IMPLIES TdAT HZ IS ONLY LNTERESTEYD I

KNOWING THAT THE INFORMATLON EXISTS)

3 IMPROPER JOR INSUFFISLENT INFCORYMATION FCR THE SELELTION

CRITERIA

11 LLN REQUIREJ FGR THE SEARIH ARE NOT ACCESSASLE 3Y THIS
USER

11 USERS COMMAND TJ EXIT

NG &

s¥xes QUTPUT / RESJLT LIST wexss

NUM3ER TeEXT
1 FORAMAL EXPRESSION OF QI3”PLAY EQUEST
2 FUIMAL EXPRESSION OF SELIZUTION SRITERIGH
3 SUPER-SET INFORMATION
% INFORMATION TC 3&E DISPLAYED
2 REMAINING SEARCH oIST
5 -
7 -
3 -
3 EXPLANATION OF ZRROR, REQULST FOR CORRECTIGHW/ADJIITION
iz ERROR MESSAGE TO USER, AAIT FOW A RIESCLUTION OR USERS
COAMAND TO EXIT
1t -
#¥#%+ [CRUSS REFLRENCEJ.TRANSITIONS ##wxs
STAT: I5 ACCESSIBLE FrOH4
P.A Fed
FaloD

A53

LEVEL 2 L
COMPONENTS OF STATE & ORIGINAL PAGH I
DISPISITION OF LIJIRARY ENTRIES A% POOR QU

#erde STATE QESLRAPTIONS *#¥s3
STaTe LONG WAME ANU TEX]

QWA TATERPRET SOHMAND

THE SOMMAN] 15 ANALYZLO TO DETERNMIWE WAICH TYPE Or
ACTION L3 TO [E PERFERMIJ. LI3ZRARY CNTRIES #MayY 3&
PURGL, %OVEJ TU ANJ FRJ4 ARCHIVE STO®ASE, MOVE] FRIHM
STu TO STe,y, STL TO 2Ly 3L TO STL,y ANMD FRLHM CL GR STL
TO A LcSTIWATION CUT>10Z CF IPAD.

343 ’ VALIDATE USER FOR aCTIVITY

VALIJATION REGUIRES PFRMISSION TO PERFORM OESIRED
ACTION A% WEL. AS PIRMISSION TO ACCESS THE OATA WHIGH
IS REFERENCED,

ACTIVITY VALIDATION FOR THE ACTIVE USER IS OCN:
HERE. ADDITIONAL VALIDATION MAY BE REWJSIRED FGF THE RE-
CIPIcenT OF QATA WHICH I3 mUVEU FROM AN 3TL TO ANOTHER
STLy GR TO A NCN-IPAQ DESTIWNATION. THE saMe IS TRUE FOR
UATA RESIJING IN THe Cu.e A& SPZCIAL CLASS OF NON-IPLY
USERs ELIGISBLE TO RECGEIV- IPAJO CONTROLLED DATA HAVE
VAL IDATION INFORMATION IN THE SYSTEM SECURITY FILE.,

Q43 PURGE A Cu =NTRY

ER | FIRGE A STL EHNTRY

Q. MOVE F=O0M 4RZAIVE TO JL
.7 MQVE FRC#M CL TO ARCHIVE
Qe MOVE F<xOM STL TO OL

Qerl MOVe FROM CL TO STL

A54

ORIGINAL PAGE IS
OF POOR QUALITY]

Q 3 DISPCGSITION OF LIBRARY ENTRIES
(CONTINUED)

“¥y¥% STATZ DESCRIPTIONS (GONTINUED) #*¥xe

STATE LONG NAMI ANI TEXT
8.1 MOVE FRGM STL TO STL

Q. J MOVE FXGM STL QU1 GF IPAD
@.< MOVE FROM CL OJUT OF IPAD

#¥¥F+ ALLOWED TRANSITIONS Fexww

FRD1 3TATE TO 3TATE INPUT 7/ QUTPUT /

{p = ENTLY) (e = EXIT) CONSITION RESULT
PP A G A 1 1
JdeB 3 3
2.3 Q.0 5 £
Qa0 B 5
ek 7 s
A.F d 5
2.6 9 5
WdeH 13 5
Qa1 11 &
ded 12 5
Ak 13 5
Q-C r’FoA 1% 5
g3 rF A i5 5
Q.E PF <A 15 5
Q.F o o A 15 >
A5 #F oA 15 5
G +H #F «& 15 7
@ol PF oA i% L
Q.Jd *F <A i5 5
Q.K »F e A 15 S

A55

T0

Q.K
5/5
to 15/5
13/5

LEVEL 2 TRANSITION DIAGRAM

STATE Q: DISPOSITION OF LIBRARY ENTRIES

A56

G ¢ DISPOSITION OF LIBRARY ENTRIE
(CONTINUED) ’

*¥E¥E INPUT / CONDITION LIST *2%ax

NUMSER TEXT

1 MORE INFORMATION REQUIRES TO COMPLETE COMMAND ANALYSIS
3 COMAMAND ANALYSIS COMPLETE

5 USER VALIDATED FUR Cu PURGE

6 USER VALIDATED FOR STL PURGE

7 USZR VALIDATED FOR MOVE ARSHIVE TO GL

3 USER VALIDATED FOR MOVE CL TO ARGHIVE

4 USER VALIQATED FOR 40OVE 5TL TO STL

13 USER VALIDATED FOR HMOVE CL TO GTL

i1 USER VALIDATEL FCR MOVE S5TL TO STL

L2 USER VALIOATED FOR MOVE STL 04T OF IPAD
i3 USER VALIDATED FOR “MOYE GL OUT OF IPAD
15 DISPUSITION COMPLETE

¥y QUTEFUT 7/ RESULT LLIST #+¥xx

NUMSER T XT
i MESSAGE REUWUESTING USER TO ENTER MORE INFORMATION
3 PARSED LOMMAND AND COMMAND CONTROL TAbLEZ
5 MESSAGE INFORMING USER T0 PROCEED

#¥ExR GRJISS RIFERENCED TRANSITIONS *¥¥x¥
STATE 1S ACCESSIOLE FROH

de A Fa+A
Falol

AS7

LEVEL 2
COMPONZNTS OF STATE T
SU3TASK STEP CONTROLLED ABORT

+HEEX STATE DESCRIPTIONS *¥rax
STATE LONG NAME AND TEXT

T.A SUsTASK STZk CLEAN=-UP
LOOKIHUG AT THE WATJRE OF THAE SUBTASK STEP, StC
WHAT LE ARE AFFECTED AM) MODIFY THE STL AND Co IN 1nAZ
PRIOPER W4AY,)
Te3 ELIMINATE THE STAGK ENTRY

PURGE THE 3SUSBTASK ROLLOUT FILE AND ELIMINATE THE
TOP ENTRY IN THE PUSH UJAN STACK

*EEEY ALLOWED TRANSITIONS **¢x+s

FROM STATE TO STATZ INPUT / QUTPUT 7/
{r = ENTRY) (e = 2XIT) CONDITION RESULLT
T .4 TJA 3 3

T« 1 1
T.':; ofF oA < ‘

TRANSITION DIAGRAM

A58

T 1 SUBTASK STEP GCONTROLLED ABORT
(CONTINUED)

¥xx¥x [NPUT / CONDITION (IST *¥¥%*

NUM3ER TERT
1 £USH DOWN STACK
2 PURGE RESPJINSE FROM OS5
3

AM3IGUOUS STATUS InN AN LE(THE IMPLICATIONS OF S4vV1Ne OR
PURGING THE LI ARE JOT wWell DEFINED)

wrmxs QUTPUT 7/ RESULT LIST #xess

NUMIER TEXT

1 -
2 -

3 EXPLANATION OF THE STATUS AND A REQUEST FUR A DETISION
T0O SAVE OR PURGE THE LEN

#x#2% [R0SS REFCRENCEJ TRANSITIGNS xewxs
STATE IS ACCESSIBLE FRO#

T.A Fed
FsA.B

A59

* bogAL Pagn

LEVEL 2 QUALITY -

COMPONENTS OF STATE U
SUBTASK INTERRUPTION

*E¥¥¥+ STATE DESCRIPTIONS *¥»=x
STATE LONG WNAME ANJ TEXT

U DETERMINEG EXIT MOOE
BZCIdC IF THE JSER 13 JUST INTERRUPTING OR nE atsd
WANTS TO CudTLINUE £EXECUTLING AFTER SIGNING OFF TAL LU~
TASK.
U.3 PREPARE TAE SUETASK LE FOXR THE CL
CLEAN UP FROM THE JSURRENT STATZ SO THAT RECOVERY
1S POSSIS®Lc AT A LATER TInz
0.0 FREPARL FUR EXLCUTION AFTER LJIG~OFF

SET JP A MAGwO PROZEDURE TO EXECUTE AFTER THE
USER HAS JISCONWEULTZS FRJv THIS SUBTASK,

¥#XEL ALLUKE) TRANSITIONS #¥w¥x

FrROM STATE T0 STAT: InNPUT / OUTRUT /
(p = CNTRY) {p = ZXILT) CONDITION <~ESULT
sU.4 U.B 1 i
U.C 2 2
Ue3d >0 3 3
LA & 5
U.C . + 3 &
ﬁE-A 4 4

A60.

B IS
ORIGINAL PAGE o

OF POOR

LEVEL 2 TRANSITION DIAGRAM
STATE U : SUBTASK INTERRUPTION

A61

ORIGINAL PAGE Is

U t SU3TASK INTERRUPTION
(CONTLNUED) OE POOR QUALITY

Ap2

MUM3ER

wrd

il

NUM3ER

o N

Wl

STATE -

Usa

xxx¥s INPUT / CONDITICN LIST #¥+sx

TZXT

INSTRUCTIONS TC INTEZRRUPT IN THE CURRENT STATE
INSTRUCTIONS TC INITIAT:S EXEGUTION OF A JOB OR
CURRENTLY INTERRUPTED SJ3TASK STeP AFTER TERMINAL Sioil
D OHE

ANITHER

Farey QUTPUT / 2ESJLT LIST we#xe

ToxT

EXEXCUTE COMMAND,y OR A RETUKN

COMAPLETED 3SUBTASK LZ Id 1HEZ ClLy EXIT COMMAND TO $5
MAGCRO PRCZEDURE TO 3c IZXECUTED, COMMAND TO 03 TO
EAECUTE THL MACKRO -PRICEIURE PROCESSOR, SOMMAND TG THE
UGS Ty EXEGUTE THE SUY3TasK SET-UP PROCESSCR.

COAPLETED SUBTASK IN TAZ SL3 CXECUTION SUMMAND TO

THE US TO cXECUTe THZ SJOTASK SET UP PRIGESSOR.

MACKRO PrRICEOQURL TO 3k EXFSUTZD, COMMAND TG THE OGS To
CXECUTE THE MACRO PRUOCZIURIE PROCESSOR, ANI AN EXIT
CUMMAND TJ TH: 08, :

#*%ex CRUSS REFERENCE) TIXANSITIGNS ##3%¥¢
IS5 ACCESSIBLE FROA

Faod
Follots

LEVEL 2
COMPONENTS OF STATE V¥
SUBTASK TERMINATION

s*¥xxs CTATE DESCRIPTIONS *ewxs
STATE LGNS WAND AND TEXT

V.4q REPGRYT GEHERATION
REPORTS (PRJIBABLY SPZJIFLED IN PLANS) WILL 38 P&~
PARED AT TAIS TIME. THIS wnilLl INCLUOE SUMMARY AND
UETAILED REPORTS.
V.3 TABULATE IN PLAN
ALL OF THE SUBTASK LOUORJIS(E.Gw ACCCUNTING) WHIGH
ARZ TG0 Bt REPT WILL 3E TRANSFERREOD INTO THE APPROPIATE
PLACE IN THE PLANS. THE EVENT OF SUBTASK TERMINATION
WILL BE TASULATEZD WHEREVI® REQUIRED.
G UISPOSITION UF LE

AUTOHATIC(VIA THE PLANSY AND MANUAL ODISPOSITICN OF
THE LE RESIJENT IN TAE 3TL AT THIS TIME.

#EXEE ALLOWED TRANSITIONS & ##¥x

FROA STATE T0 3TATE INPUT / DUTFUT 7
(¢ = ENTEY) (e = EXIT) CONDITION RESULT
f’v IA V-B .1. i
Va3 V.C 2 2
V.0 v 3 3
PE A 4 3
Vel 3 L
ORIGINAL BAL
OF POOR Q

A63

LEVEL 2 TRANSITION DIAGRAM
STATE V : SUBTASK TERMINATION

A64

.‘. }, .“
V. ! SUSTASK TERMINATION
(GONTINUED)

NUM3ER

LS SVRYAVIR)

NUMSER

STATE

V. A

- N3 INPUT 7 CONDITIUN LIST HFERXEY

TEXT

ALL INFORMATION REQUIRED TO COMPLETE THE REPURTS
SU3TASK ACTIVITY ANJ ACSOMPLISHMENT Refo:0S

JONE

ANDTHER

UScR INOICATIGN THAT SOSE MANUAL OISPGSITIGN IS NECIED

TERER GUTPJT / xESJLT L1337 ¥o¥xs

TEXT

ALL REPURTS SFECIFIZU I THE PLANS AND/IR ANY CTHERS
OICTATED 3Y THE USER.

ALL SUAMMARY AND AGCOUNTIMG INFORMATION TASULATED IN THE
PROJECT PLANS, .

Ab. STL RESIOENT ITEMS IISPOSEU OF.

REQUEST FIR AJDITIONAL JISPJISTTION SOMMAMNDS

#¥54% CR0O$5 REFERINCE) TRANSITIONS ®eww»

IS AGCEZSSISBLE FROHM

A6S

LEvVEL 2 ORIGINAL PAGE IS

COMPONENTS OF STATE W : (
DEFINING LIGRARY ENTRIES OR VARIASLES OF POOR QUALITY|

#EXEX STATE DESCRIPTIONS *¥¥exx
STATE LONG ~1aMe ANJ TEXT

Wad INTERPRET JOMMAND

THE COMMAND IS ANA_YZED TO OETERMING WHETHEZ THE
USER INTEWUS TO INPUT AN eNMTRY FOR A OICTIONARY IN HIS
STL OR IN THE CL. THE SPECIFIC DICTIONARY AND LIYRARY
ENTRY TYPZ TQ B& DEFIne) &<E ALSU DETERMLANEJ.

We3 VALTDATE JSER

THE USER MUST dAVEZ PrRMISSION AND ACCESS COOES
THAT WILL aloOW HIM 7O GERAY JUT HI3 DESIREL ACTIONS,

Wel CUNSTRJCT OIZTIONARY SNTRY
BATR FOR TAF OIST1DNARY ENTRY IS PRCOVIDED 3Y TnE
USER.
FXCEF OQLLOWED TRANSITIONS *#ex*s
FR0OY STATL TG STATE INPUT 7/ OUTRUT »
(r = ENTRY) {(r = EXIT) LONUITION RESULT
PH LA Wal 1 1
W.ii 3 3
Nl a8 5 (.
Hels L T
Hal *F WA 3 &
WLC o 1

A66

ORIGINAL PAGE IS
OF POOR QU

8/6

LEVéL 2‘ TRANSITION DIAGRAM

STATE W: DEFINING LIBRARY ENTRY OR VARIABLE

A67

W 3 DEFINING LIBRARY ENTRIES Jdr VARIABLES

(CONTINUED)
#*x2% TNPYT / CONDITIGH LIST #*+w:
NUM3e R ' TEXT

1 MORE INFORAATION ReJUIRZD TO COMPLETE SOHMAND ANALYSIS
5 COAMAND ANALYSIS COMPLETS
4 USER VALIOATED FOR REQUISTED ACTIVITY
5 USER WOT PERMITTEU TG CARFY OUT THE REGUESTED ACTIC
5 MORE INFUIMATION RlUI<ED TO COMPLETE DLOTIONARY ENTRY
3 OIGTIONARY ENTRY COAPLETZ

*eexr QUTPUT / <ESILT LIST #¥¥x»

NUHIER CxT

1 MESSAGE RIQUESTING USER TC ENTER MORE DATA
PARSED CCYMMAND AND SOMAAMI CONTROL TASLE

MESSAGE INJICATING ReGUESTED ACTION IS5 NOT VALIJ.
ASK FOR ALTERNATE CUOMMA NI

) JICTIONARY ENTRY AVAILAILL IN THE DATA 3ASE

7 MESSAGE INFURMING USSR TJ PROCEED

+

¥#¥4+ [ISS RCFERZNCTD TRANSITICONS #xxx#

STATE IS ACCESSIBLE FROA

OFTGINAL p
- A
OF FoQR QUHGIEmIf

LEVEL 3
COMPONENTS OF STATE E.A
IPAD LOG-ON

*#ver STATE DESGRIPTIONS ¥¥wsx
STATE LONG MAME ANY TEXT

4.4 USER VERIFICATION

GIVEN A USER ID AND- PASSWORD, VERIFY THAT
THIS IS A VALID USER. AJDITIONAL CHEGKS ScYOND THE
I0 AND PASSWORD #MAY HAVZ TO BE MADE. .

L.4.B SUBTASK VERIFICATION

GIVEAN A. SUJTASK LDIMTIF1ER, CHECK TO SEE THAT
THE SUATASK EXISTS a5 A OIRECTORY TYPE LE IN THZ CL
OR AS A DEFINED ITEY IM ThE PROJECT PLANS. 1F THE 5J3-
TASK EX1ST3 IN Trz Oi, LT mMUST NOT BE ACTIVE WITH

ANJITHER USER.

4xr¥sr ALLOWED TRANSITIONS *¥xxx

FROM STATE TO STATE INPUT / QUTFUT 7
{# = ENTRY} {p = CXIT) CONDITION RESULT
PE JALA Eoh,.D 1 1
£JA.t PE WS4 2 2
PE JCah 3 3
- I
ORIGINAL PAGE

A69

E.A ¢ IPAD LOG-ON
(CONTINUED)

TRANSITION DIAGRAM

A70

MUMIER

NUM3ZR

Lo b b

F¥EEE OINPJT / CONDITiION LIST #*%¥®

ToXT

VALLY USER HNUNSCR-ACCOUNT NUH4ER PAIR.

SUSTASK IJEdTIFIER= STM (PN} wHICH EXISTS It THE CL A
IS NOT GCLSJUPIZD 3Y AnOTHER USER(a>THN= SJPTASK RAME,
PN=PROJLCT NAME)

SU3TASK IJENTIFIER= STN(PN) EXISTING ONLY IN ThZ CL
LE TYPE PLAN FCR PRIJEST Pi,

¥r¥E¥ QUTPJT / wESJLT LIST wr*¥3x

TEXT

LOCATION JF THE OLRECTIRY TNTRY FGR THE SUBTASK
LOSATION OF TdHE JIRSCTOWY THTRY FOR THE FRCJIECT BiL-bn
AN3 THE SJ3TASK NAMZ

LEVEL 3
COMPONENTS OF STATE E.3
RE-ACTIVATE 0ULd 3SUBTASK

#¥e¥3 STATE JeSCRIPTIONS #¥¥*x
STATE LONS MNAME AND TEKXT

Fe3.A CHECK CURR=NT STATUS

THE 3J3TASK MAY GR MAY NJOT HAVE AN ACTIVE STEF AT
THI TIME OF 3164 uN. IF NOT, THE NEXT STATE WILL ALHAYS
BE COMMAND MODE(F). IF & STEP 13 ACTIVE, THt CCLNNECTIOW
FRIM THIS JSER TO THE AGTIVE STEP MUST 3t MADE.

m

« 3.8 CIONNEST TJ ACTIVe ULTEP
ESTASLISH THE SORRESFINDENCE BETWEEN TdE ACTIVE

STEP ANJ T4IS ACTIVE USE %0 THAT IT WIur 8Z OF NG
CONSEQUENSE THAT HE INTEZRRUPTED.

wxrax ALLOWED TRAMSITIONS ¥¥¥¥¥

FROM STAT: TO STATE= INPUT / QUTPUT /
{r = ENTRY) (p = EXIT) "CONDITION RESULT
Pl e B A FeBs8B 1 1
‘ PFeAof 2 2
EeBsB > *® 3 N 2
oy ¥F 4 ’ 3

*The state returned to is whatever state the currently
executing STS represents.

**5ince V was interrupted, the precise state within V
cannot be specified.

-A71

LEVEL 3 TRANSITION DIAGRAM

STATE E.B : RE-ACTIVATE OLD SUBTASK

A72

E.B ¢t RE-ACTIVATE OLD SUBTASK

(CONTINUED)
¥EXEX INPUT /7 CONDITIGN LIST ¥¥¥xx
NUM3ER TEXT
1 SU3TASK DIRECTORY INJICATING THAT A STS IS

(A

NU43ER

1
2
$

CURRENTLY EXECUTING

INACTIVE SU3TASK DIRECTO=Y IN CLs WHICH WAS
NOT INTERRUPTZDU DURING STATE

CONNECT SJUCCESSFUL #MESSAGE FROW THE 03
INAGTIVE SUSTASK DIReCLTORY IN THE Gu WHICH
WAS INTERRUPTED UURIHG STATE V¥

_¥EFEE . QUTPJT / RESULT LIST w#xx¥
TEXT

LAST TERMIJAL OUTPUT MT3ZAGE

#®8#% (RJSS RIFERENCEJ TRARSITIONS ##*xx

IS ACCESSIBLE FROM

E«RA.B

A73

LEVEL 3
COMPGAENTS OF STATE E.C SR
CREATE NEW SU3TASK ORIGINAL PA k

POOR QUX
#¥=®s STATE DESCRIPTIONS #¥*¥x
STATE LOAG NAME AND TEXT
EeCoA SET UP SU3TASK SIREGTORY IN THE CL
GREATE A LZ IN THE GL OF TYPE OIRESTORY WITH Tz

NA4E OF STHN{PN) WHERE- STr=sUBTASK NAME AND PWN=PROJLST
NAME .

Ry ST UP SUITASK EGORDS LE Id THE STL

m

USLNs INFUGRMATION FROM THE PRGJECT PLANS, TdE
ACCESS ANUY PERMISSION CODZ TA3LES wWILL 3E FIRMULATE.D.
THE ACTIVITY RECORD fWILiL 83 INITIATED, ALUJNS WITH 74T
RCSOUNTING RECORD,

EsveC LIBRARY LENTRY IAITIATION
INITIALIZE ANY _E TAAT ARE KNOWN TJ BE ASSJOCIATZD

AlTH THE SUSTASK PER THE FROJZCT PLANS. THIS SHOULD
ALAAYS 1INCLUDE A REPORT SKELETONM.

#3285 ALLOWE) TRANSITIONS ®sxxs

FrROA STATZ TO 3TATZ INPUT 7 QUTPUT /
(P = ENTRY) {p = cXITD CONDLTION RESULT
PLea A Celadd i i
EuGa8 E+CaC 2 z
PF JAA 3 2
Eacels *F A L 3

A74

LEVEL 3 TRANSITION DIAGRAM
STATE E.C : CREATE NEW SUBTASK

A75

E.C t CREATE NEW SUBTASK o
(CONTINUED) fquVAL

#¥E¥¥ INPUT / CONDIT1ON LIST ®¥¥¥%

NUM3ER TEXT

1 VAL LU SUBTASK NAME HOT CURRDNTLY IN THE CL.
POLIWTER TO ASSOCIATED PINJZCT 2LAN,

2 SUATASK RECORU FRUM THE PRZJESCT PLAN CONTAINING AT
LEAST 1 LE TO B& INITIALIZZIO

3 SU3TASK RECORD FROM THE PROJECT PLAN WITH NO LE TO 32
EINITLALIZED.

4 LE SPECIFICATIOANS FOR INITIAL SUBTASK LIBRARY ENTRIES

#a%we QUTPJT / RESULT L1ST #¥¥%#%
NUMSER T=XT
1 NEA DIRECTORY ENTKRY IN THE ObL FOR THIS SUQGTASK

2 SUSTASK REZCORDS LE INITIALIZED IWN THE STL
3 LE ScT uUP IN STL

¥Fa¥% [R0S3 RCFERENGED TRANSITIONS *#¥#x

STATE IS ACCESSIBLE FROH

EsGa.A Ceb.B

A76

LEVEL 3 .
COMPONENTS OF STATE F.A
REQUEST USER INPUT AND INTERPRET COMMAND

#¥E¥: STATE JESGRIFTIONS #%%%+
LONG MAMc AN TEXT

ASK FOR, RcAL, AND PARSE USERS CCMMAWD
AFTER PwROMPTING THU USER TO INSEKRT An
IPAD COMMAWD, TrAE COMMAAD I3 .READ AND
THEN THe GAARACTER STRING FOR THE USER OCUMMAND I3
PARSED TO PRODUCE CONSTIYUENT PARTS, THE MOST IMPORTANT
dEING THo CUOWMAND VERD
DETERMINL SOAMAND INTENT
THE SoMMAND INTENT MAY OR MAY NOT 3E LEGITIMATE
AnNd IT MUST B8E GHECKED AGAINWNST THE CURRENT LiS7T.
VERIFY PERMISSION TO USE CCHMAND
USINS THE SUBTASK RELURUS, CHeCK TO_SEE THAT TAIS
UuScrR MAY cXECUTE THIs CJMMAEND,
AGTIVATE [PAD UTILITY-

INITIATE THE ASTIVITY REWUESTED FOR IN THE
COMMAND «

A77

FoA t REQUEST USER INPUT AND INTERPRET COMMAND
{CONTINUED)

##5x® L OWED TRANSITIONS wexxe

FrROM STATZ TG STATE INPUT / QUTPUT 7
{p = ENTRY) (¢ = CXIT) CONDITION RESULT
*F sAL4A Fs.h.3 i 1
Fad.B FeAA 2 g
aF.L A 5 5
T.A 14 T
UsA 25 G
Fa.d.C F.A 21 1t
Fafly i 4L
F.A.D 25 a 3
#H .3 7 £
eI 5 g
r’KlAlf\ 1D o
PMeAA iz (o)
PNA LS 13 &
P A 14 £
P3.A 15 £
A'RY 15 7
. A 17 a

A78

LEVEL 3 TRANSITION DIAGRAM

STATE F.A:

INTERPRET COMMAND

A7Y

FsA ¢ REQUEST USER INPUT AND INTERPRET COMMAND
(CONTINUED)

¥¥ex% INPUT /7 CONODITION LIST ¥¥¥+&+x

NUMBER TEXT -

'-A-

CHARACTER STRING FORMATIED CORRECTLY FOR AN IPAY
CO4MANU .)

2 UNRECOUNIZABLE COMMAND veRb

3 VALID IPAYD SO-MAND VERD

% PERMISSICON JODE INJICATING US:c IS VALID

> RETURN

) AcLP

7 SEARCH

3 ENTER DATA

13 qUJLFY CATA

iz CONSTRUCT JJB

i3 EXECUTE

1w JISPLAY

15 DISPOSE

17 G F INE

is TEIMINATE

i3 sSToP
21 QUIT .
21 PERMISSION COOE INDICATING USE IS INVALID

re¥r QUTPUT / #ESJLT LIST *#®%x
NUMSER TEXT
1 C.OMMAND VERD, ANY OThER INFORMATON SUPPLIED WITH
THZ VERSE

2 ERAOR MESSAGE, REGUEST 703 ANOTHER TRY

3 -

“ -

> FUSH DUKN STACK

5 PARSED COMMAND 3 JPOATED ACTiViTY KECORU

7 -

3 POINTER TO THE STS TO 388 TERMINATED

3 - .

11 ERROR MES340E, <EQUEST FJ? ANOTHER TRY

A80

FeA ¢t REQUEST USER INPUT AND INTERPRET CUMMAND
(CONTINUED)

¥r¥¥¥ LRIS5 REFERENGED TRANSITIONS #+%¥%

STATE IS ACCESSISLE FROA

FeAel

ORIGINAT PAGHETY
OF POOR QU

A81

LEVEL 3
COMPONENTS OF STATE Fa8
DE-ACTLIVATE SUI3TASK STEP

s#x¥® STATE DESGRIPTIONS #*eex
STATE LONS WAME ARD TEXT
Foded FREPAE SJITASK STEP FILES

LOCATE AL THE FILSS ASSOCIATED WITH THIS 3TS a0

PACKAGE TAZId UF FOR REGIVERY AT A LATE®R TIMZ. THIS Al_L
INTERFACE WITH THce 993, ’

Fe3eB L£DJUST STACK
PUT TAIS s5Ts IN Tiiz STAGK
#Rpes ALLOWED TRANSITIONS *rees

FROM STATL TG 3TATE INPUT / QUTRUT ~/

(» = ENTPY) (e = ZXIT) COMDITION RESULT
eFedadld FeBaed 1 1
Faded *F WA A 2 z

TRANSITION DIAGRAM

-,
\
» F.'A.A ’
N ,

o SRR 4

A82

FeB % DE~ACTIVATE SU3TASK STEP

(COMTINUED)
¥¥¥%x INPUT 7 CONDITION LIST **¥¥+
NUMIER TEXT
i PUSH DOWN STACK FOR INTERRUPTEZD STSS RECOVERY

v

NUM3ER
1

2

INFORMATION FxO0d4 THE ST5 <obLOUT FILE
PUSH 304N STACK UPDATE INFORMATION

¥axer JUTPJT /7 EESJLT LIST #%%%=x

TEXT

COYMPLETELY OE-AUTIVATED STS
PUSH 0oked STALK
UPDATED PJSH DO4AN STACK

AB3

LEVEL 3
COMPONENTS OF STATE F.C
RE-ACTIVATE SU3TASK STEP

¥¥e¥* STATE OZSCRIPTIONS #*x#s

STATE LONG NAME AND TEXT
Faal LOCATE ST3
- USING THE PUSK 0OwWd STACKs IDENTIFY THE STS TC BE
RE=-ACTIVATZD
FeGeB PREFARE STS FUR RE~ACTIVATION

THIS IS BASICALLY THE INVERSE OF F,%.A AS IT
PREPARES AclL THE FILES JF TAE 5TS FOR EXECUTION.

FeGel . ACTIVATE 3T

RE-ISSUE TdE LAST TURMINAL MESSAGE AWND REQUEST THe
0S5 TO ACTIVATZ THE 5TS }

FA¥¥: ALLOWED TRANSITICNS *x#zx

FRO¥ STATE TO STATE THRPUT / QUTPUT ¢
(e = ENTRY) {»r = ZXIT) CCNDITICN RESULT
*F.Ca A F.C.B i 1
FeCu B FelLCT 2 Z
FeCsl * e 3 3
»H 4 3
I 5 3
K 7 3
M 9 3
i 10 3
»0 11 3
rP iz 3
eQ 13 3
W is 3

*Since these are transitions to interrupted states, the
node names at level 3 cannot be specified.

AB4

 hadnal nlhuln
1 33 G
' 43 | H !
| § 1
'5/3 1
V73| k!
¥ 1
9/3 | M
HRARLE
Ylo/3 | N !
3l ooy
L 1/3 |
V12/3 | p ,‘
HEZIER
(15/3 | w__}

LEVEL 3 TRANSITION DIAGRAM
STATE F.C: RE=ACTIVATE SUBTASK STEP

ABS

F.C 1 RE-ACTIVATE SUBTASK STEP
(CONTINUED)

¥x¥x% INPUT / CONDITIGWN LIST #x%*w

NUMIER TeXT

i PUSH DOWN STACK AND THE LOCATION OF STS £OLLOUT FILS
AND RECOVZRY INFORMATCHW FOR THE STS AT THZ TOP JF Tl
STACK

2 PRIPER REITORE SADES N ALL S5T5 FILES

3 STS FILE CONTAININGL AR INTeRRJUPTED STATE

“+ STS FILE CONTAINING AN EIMTERRJPTED 3TATE

3 STS FILE CONTAINING AN IJdTIRRJIPTED STATE

7 STS FILE SONTAINING AN INTERRUPTED STATE-

E] 373 FIcE CONTAINING AN INTERRJPTED STATE

11 STS FILE CONTAINING Awn INTERKUPTED STATZ
i1 STS FILE CONTAIWNING AN INTERRUPTcO STATE
iz STS FILE SONTAIWNING 4N INTERRUFPTLOD STATE
i3 3T3 FILE GONTAINING AM INTZRRJPTED STAT:Z
15 ST3 FILE CONTAINING AN INTzRRUPTED STAT:Z

ELCTVOZR A IAC

FErxE JQUTPJT / RESJLT L13T #&¥¥%

NUMBER TEXT
1 5TS FILE PUOINTERI(S)
2 ALL STS FILES REALY TO ZXEIUTE
3 LAST RECORJIED LINE SENT 7O THE TERMINAL

MOUIFIED PJSH DOnN 3TACK

#H¥¥¥ [A0S5 REFERENCED TRANSITIONS **sx¥

STATE IS ACTESSISLE FROA1

FaCuh Fedot

AB6

LEVEL 3
COMPONENTS OF STATE H.C
USER CONTROLLED SEARCH

#4243 STATE DESORJIPTIONS ¥¥¥ex
STATE LUNG WAME AND ToXT

HJeCu A DETERMINE SEARCH MODE
THE J3ER HAS ALREAJY INUICATCO THAT HE WANTS T0
CONTRGL THE L1BRARY SLARIH, HE ENTERS INTO A0DITICMAL
OTALUGsIF WNECESSARY, TO SPCUIFY wHAT HE IS LOOKING FIR
AN) HOW HzZ WANTS TO LINTERACT dITH THAE SYSTEH
Helu.B FERFORM SINGLE ITEM SZARECH
THE USER HAS REQUESTED An EXISTENCE STARCH FOR &
SINGLE ITEZM. IF FOudd HZ ™AY CHOGSE 7O JISPLAY THE ITEM
Heco C PERFOAM PAGED SEARCH
THE JSER WANTS TC P4LGE THROUGH A DIRECTORY OR A

JICTIONARY. WhEN EXAMINING ODIRECTORY eNTRIES THE USER
MAY REQUEST OISPLAY3 OF INDIVIOUAL LISRARY_ENTRIES.

¥¥¥F ALLOMWED T-ANSITIONS #¥xes

FROY STATE TO 3TAT= INPUT 7/ QuTPUT /
{r = ENTRY) (r = £XIT) CONDITION RESULT
pHCWA HeC oA 1 1
Hel o3 2 Z
H.C.O 7 a3
pHDWA 3 €
Heb e B +F JALA 5 5
Helouty b 1
HeCod 3 o
oH L E (" L
HeGaC) +F JAJA 5 &
Ha.CsA o] 1
HalW3 3 3
HeE 4 5

AB7

LEVEL3 TRANSITION DIAGRAM

STATE H.C: USER CONTROLLED SEARCH

A8S

H.C t USER CONTROLLED SEARGH

ORIGINAL PAGE I¥
OF POOR QUALITY]

(CONTINUED) .
xex%% INPUT / CONDITION LIST *x¥xx
NUMBER TEXT
1 USER/SYSTEM OTALOGUE INCOMPLETE
2 USER WANTS EXISTENCE SEARCH
3 SEARGCH COMPLETED
4 DISPLAY DISIREU _
5 USER FINISHED WITh 3EA3d ASTIVITY
6 USER WANTS TO INITIATE A Hew.SEAXCH(WITHOUT DISPLAY, IF

o~

NUM3ER

W N

[o RN (E

IT=#M FOUND)
USER WANTS PAGEL SEARCH
USZR WARTS TO SWITCA TO SYSTES CUNTROLL=z0- SEARCH

Fxa¥F¥x QUTPUT / RESULT LIST *¥%=¥

\ TeXT

SYSTEM MESSAGE REWUESTLING MORE DATA

SEARCH/SELZCTION ERITERIA

USER CUMMAND TO DISPLAY 0= nNOT, TO ENDy OR TO EBEulN NEW
SEARCH -

LOGATION OF ITEA4 TO SE JISPLAYED

LOCATION J3F OICTIONARY O JIRECTORY

A89

A9%0

LEVEL 3
COMPONENTS OF STATE H.D ORIGIVAT. o1
SYSTEM GONTROLLED SEARCH IGINAL PAGE 15

wxx¥s STATE DESCRIPTIONS »x*as
STATE LONG MAME AND TEXT

He3sA EVALUATE SELECTION EXPRES3ION

THE USER PROVIJIES A SET OF INFORMATION USEQD 8Y THE
SYSTEM TO SELECT ANO EXTRACT JATA FOR DISPLAY. THE EX-
PRESSION EVALUATION A4LS0 OETERMINES THE TYFE OF St ARCH
WHICH WILL BE UNDERTLKEN.

HeDW 8 KEYWORD S:cARSH
KEYWORDS 1N DICTICHARY ENTRIES {EITnEF CL Jx STL)
BRE USED TO LOCATE Lifg<AY ENTRIES.
HedWl REFERENGE SEARCH
EXPLISIT REFERENLES SULH AS *USED 3Y* ARE JSED T3
LUOCATE oI3RARY ZINTRILES.
HedeD ATTRI3UTE SEARCH
SIMILAR TC KEYWORD SEARCH. ATTRIBUTE INOCUXES LAN
BE ESTABLISHED 3Y THE USER EXPLICITLY BY UTILIZING Lz
TYPE DIRECTORY. THE OATA B4SE MANAGEMENT SYSTEM wWlIlt
INCLUDE FACILITIES FUR ESTABLISHMENT AND MAINTENANCE
OF ATTRIBJTE INDEXES Y SUPPORTING FILE INVERSION.
HedoE VALUE (CONTENT) SEARCH

DATA AGGREGATES ARE SELEGTED BASED ON VALUES CF
VARIABLES., THIS FOR' OF SEARCA MAY RANGE OVER MoRE THAN
ONE OATA S=T7,

AL ®

031@003 QU
H.D ! SYSTEM CONTRGLLED SEARGH OF ¥
(CONTINUED}
FReFs Al OWED TRANSITIONS #¥*¥s
FROM STATE TC STATw INPUT 7/ QUTPUT /
{r = ENTPFY) {p = £XIT) CUNDITION RESULT
PHWOWA »H.C 13 £
HcUlﬂ l 1
H.Du8 2 z
HeDes 7 2
HaeDald 5 Z
HeldoE 9 4
r'I-D.B I’FQA--’-‘ 5 5
HeD«A b 1
HelDo3 3 3
r'HoE l'(' i
HeDW »F 4 Ao 5 5
HeDu4a) 1
HeUsl 3 3
pH.E & L
HoJoD I*F-Ao{‘l\ > &
Hall.A 5 1
HaDW]d 3 3
"HOE L 4
HedsE PF od oy > 5
HaD.A 6 1
HeDac 3 3
pH.E 4 4

A92

LEVEL 3

TRANSITION DIAGRAM
STATE H.D: SYSTEM CONTROLLED SEARCH

R
4

ﬁv

HoD ¢ SYSTEM CONTROLLED SEARCH
(CONTINUED)

#F&x¥ INPUT / CONDITION LIST *#*¥¥¥

NUMZBER TeEXT

USER/SYSTES OIALOG INCOARPLEZTE

KEYHORD ScCARCH REQUIRED

SEARCH COMPLETED

DISPLAY DZSIRED

USER FIMWISHED WITH SEARSH ACTIVITY

USER WANTS TU INITIATE NER SEARCH

USER WAMTI REFERENCE SZARGA

USER WANT3 ATTRIBUTE SEAZCH

USER WANT3 VALUE (CONTENT) SEARGH

USEZR WANTS TO SALTCH TO JSER CONTROLLED SEARCH

" .
bed s e O A e G P

sxxx% QUTEYT / RESJLT wIST ¥erws

NUM3ER TCXT

SYSTEM MESJAGE REWUESTLNw “40RE BATA

SEARCH/SELZCTION CRITERIA

USER LSOMMAYYD TO BISPLaAY UR NOT, TO ENDy CR TO tGIN NEK
SEARCH

LOCATION OF DATA 70 SE JiS2LAYED

[FVRAN N o

Ul

*€x2% CR)SS RCFERENGED TRANSITIONS *#¥*»

STATE I5 ACUESSIGLE FROM

Heleh) He o h

A93

I.5.E

ledaF

I.3.6

T.C.K

A%4

LEVEL 3 - O0R QUAIJTE
COMPONENTS OF STATE I.C - -
CONSTRUCT L1BRARY ENTRY

*s#x¥r STATE JESCRIPTIONS **¥¥w=®
LONG NAME AND TEXT
SELECT AKPPROPRIATE PROCESSING MUGDE

ENTER TSOOTIHG MODULE

[

.
-
o=
(7))
™
—

ENTER &

ENTER STOR=D DATA JEFINITICW

LNTER JICTIONARY

ENTER JISALAY FORMAT

ENTER OISPLAY McNU

ENTER PLAN

ENTER REPIRT

EJATER DATA SONTROL OJATA

THIS IS THo STATE 3F ENTEFEING THE [RITIAL DATA TO

CONTROL AGUESS TO 0ATA AMND SYSTEM FUNCTLIONS. ALL Sus-

SEQUENT CAANGES TC THIS CunNT=OL INFORWATION IS JOONE VIA
THE MOOIFY STLTE.

ESTABLISH DIXECTORY ENTRY

A DIRECTORY ENTRY [S ESTABLISHED IN THE USERS WIRK
ARCA

I.C 1 CONSTRUCT LIBRARY ENTRY
(CONTINUED), ~

#FEFE STATE DJESCRIPTIONS (GCONTINUED) *#¥¥&x
STATE ' LONG NAME AND TEXT
T.5.L COMPLETE JIRECTORY ENTRY
AUOTITIONAL INFOXMATION IS ADDED TO THE ESTAZLISHED

D IRECTORY ZNTRY

I.C. REPCRT LRROR

A95

GIN.

ALry

AL Pagy |
U

POQRQ

Q
op

I.C t CONSTRUCT LIBRARY ENTRY

(GCONTINUED)

ALLOWED TRANSITIONS **&xs

BREER

QUTFUT /
RESULT

INPJT /
CONDITION

sl

STAT

T.0
(=

STATE

E

FROM
(o

EXIT)

NTRY)

A e B B B I I B I e B B B B T B T B R s St G G o [V S P e Y U ST

AN F N W M D oy
~ 0

BubDEF.bHIJKLM..KLMHINLH/\..LM..KLNKLMKLHK.LUAH
I.!.'.lll.l!.'l‘l‘.‘..l'...l.li.
UCCCCCCCCCCCCCC.UCCCCCCCCCCCCCCCCCC
L * ® & 3 -
T.T.T..lT.T.T:lIIIIIIIIIIIT..IIIT_IIIIIT.ZLIII

rLCsA

* & & & @+ & 9 = & 9 2 =

I.5.8

Mrarod o an
1121121

r>
w4

nJ o7
48]

1

a)
i

L - - » - L] L] - L]

sre]

I.C.E

P

4\ -3 N4 oro
NN

I.GeG

LI |

I.2.H

[oes BEQN]
— o

(a2l RN |
~ 0

T

- - .

I.C.4

3 0N
0O

X

\
-

SV N AN I <N
vt et et

I.CG.K

A%6

ORIGINAL PAGE 16

. OF POOR QUALITY,
I.C 1 CONSTRUCT LIBRARY ENTRY

(CONTINUED) .

FrExs: ALLOWED TRANSITIONS (CONTINUED) #*¥xr

FROM STATE TO STATC INPUT / QUTPUT 7/
(P = ENTRY) - {e = EXIT) CONDITION RESULT
Le0uK I.C.F iz 1
I.C.06 12 1
I.C.H 12 1
I.Col 12 1
I.C.J 12 1
1.C.K 11 z
I.C.L rl.0D 23 1
LCeM I.C.B 24 1
I.CW3 24 1
IQCQQ‘. 3‘(- i
1.C.E 2% 1
1.C.F 24 1
I.C406 24 i
1.C.H 24 i
I.C.1 24 i
I.C.4 24 1

A98

13/1
to 2471
21/1

LEVEL 3° TRANSITION DIAGRAM
STATE I.C: CONSTRUCT LIBRARY ENTRY

I.C &t CONSTRUCT LIBRARY ENTRY
(CONTINUED)

¥F¥%x INPUT / CONDITION LIST (#¥¥¥»

NUMBER ' TEXT

ENTER O#

ENTER 0S

ENTER SOD

cNTER DIC

ENTER OF

ENTER UM

ENTER PLAN

ENTER REPORT

ENTER DCD

19 READY TU 3EGIN LIbRARY ENIRY CSONSTRUCTIIN

it USER SUPPLIEU LIRECTORY INFORMATION INCOMPLETE
i2 DIRECTORY coNTRY ESTABLISHED IN USER WORKING SPALCE.

W N OV L

13 ERROR MESSAGE (CONSTRUCT G ERRCR)

L+ ERIOR MESSABE (CONSTRUCT O3 ERROR}

is EROR MESSAGE (CONSTRUCT S0 ERRYR)

16 E£ROR MESSAGE (COWSTRUCT DIC ERROR)

17 ERROR MESSAGE (CONSTRULCT OF ERROR)

13 ERROR MESSAGE . {COMN3TRUCT DM ERROR)

13 ERROR MESSAGL . (CONSTRUCT PLAN ERROR)

23 ERROR HMESSAGE (COGASTRUCT REP ERROR)

21 ERROR MESSAGE (CONSTRUCT J3CD ERROR) .

22 LI3RARY ENTRY CONSTRUCTION COMPLETE, LE InN JUSER HWORKING
ARZA

273 DIRECTORY ENTRY FGR NEW LE COMPLETED
24 ERROR CUNDITION CLEARED,SOME RECOVERY POSSISLE

¥#2¥% QUTPUT 7 RESJLT LIST #ex®¥
NUMAER TexT

1 - .
e MESSAGE REQUESTING MORE INFORMATION

A9

Al00

LEVEL 3
COMPCONENTS OF STATE K.A
CONNEGT USER WITH DATA 70 8E MOODIFIED

#vxss STATE DISCRIPTIONS *e#rs
LONG NAME AND TEXT

INTERPRET COMMANG

THE 40JIFY ACTIVITY POTENTIALLY INVGLVES UPBDATLING
ANY LIBRARY ENTRY IN THZ DATA BASE. THIS MAY 3C ENGIN=-
EERLNG DATA IN A LATA STT (R SOURCE CGDc In A (M.

MOJIFICATION MAY INVOLVE THE CREATION OF A NEW
VERSION CF AN LE 1IN WHIGH SASE THE PREVIGUS VERSION I3
AVAILABLE JNOHANGED IN THe DATA BASE. IF MODIFICATION
INVOLVES CORRECTION SF A PREVIOUS VERSION THE RETENTIOW
OF THE PREYIOUS VERSIOH IS OPTIONAL.

ReTRICVE JIRPECTORY ENTRY
OIREGTORY ENTRY FJX THE Lz TO 3E MjDIFItO IS U3ESB
FOR VALIGATION AND T3 ATTACH TEXT TD USER
VALIDATE USER S
AS FOR ENTER A USEXR MJUST HAVE PERMISSION Tg CARRY
OUT MODIFICATIONS,., PERMISSION IS GRANTEY BY PROJEUT
MANAGEMENT AND ADMIWISTERED AY IPAD. PERMISSION MAY 3F
SPEGIFIC AILTH RESPECT TJ LE TYPES,GCL OR 5TL, SEGURITY
CLASSIFICATIONy AND PARTICJLAR OCCURRENCES
LAECK PREVIGUS USAGE
INADYERTENT PURLING OF DATA BY REWRITING DATA THAT
MIGHT STILL Of REWIRED mMJST BE AVOLlUED. PREVIGUS USERS

WILL 3E INFORKED THAT MOOIFICATIONS HAVE gEEN MADE AND
THE UNMODIFIED JATA <ETAINZIO,.

ATTACH EXISTING LE TO USER

ATTACH CORPY OF £XISTING LE TO USER

KoA 3 CONNECT USER WITH DATA T0O BE MODIFIED
(CONTINUED)

¥r¥x% STATE DESCRIPTIONS (CONTINUED) *¥¥es
STATE LONG NAME AND TEXT
Kedsl SELECT MOJIFY PROGESSOR

INFOURAATION COLLECTEDL FROM THE GOMAAND IS USED TO
DETERMINME WHICH MODIFY PRCIESSOR IS TC 3E USED

#%%¥¥ ALLOWEY TRANSITIONS *%¥x»

FroWw STATE TO STATE INPUT 7/ QUTEJT 7
{r = ENTRY) {p = cXIT) CONDITION RESULT

rK+AA Kell oA i 1
KeAaB 2 2
KeB.D 5 5
KeboO 3 G
KefoF 12 E
KeAeB KeA A 5 4
KeAWsO Kedod B 1C
KsAL.D KeALE 13 it
KalloF - i1 3
KedlE Kol 13 1c
KsAoF Kelao 13 1L
Kedsb *Kebed 14 i%
PRa3+8 15 it
#KsBel i6 16
#Re8 .0 i7 it
PKeB.E : 13 it
#KaBoF ig ig
eKeBeb ; 24 it
T pKegeH 21 10
*KB.1 22 1iC
PR eB4d 23 10
rKaB.K 2l 1

Al01

LEVEL 3 TRANSITION DIAGRAM

STATE K.A: CONNECT USER WITH DATA TO BE MODIFIED

Al02

Ked t CONNECT USER WITH DATA TO 3z MOOIFIED
(GONTINUED)

¥¥e¥x INPUT / CONDITION LIST **¥3¥¥

NUMBER . TEXT

i MORE INFORMATION REWIEY TO COMPLETE COMMAND ANALSIS
2 LISRARY ANU LIBRARY ZNTRY 70 S8k HMOUIFIED IQENTIFIED
4 DIRELTORY ENTRY FOR LE OBTAIMNED
5 VALTDATION REGQUIRED
5 VALIDATION GHECK OK
3 VALID USER,COMMANG INALYSLS COMPLETZ ZREAFITE REQUESTZD
13 NO PREVIGUS USASE OF LE TGO 3k MODIFIED
1t PREZVIOUS Lo USAGE DETERMINED
12 VALID USERyCOMMANDG GNAYSIS COMPLETE,USCZR HWENTS TO PrRE-
SERVE PxEVIOUS VERSION AND CREATE NEW VEKSION CONSIDEIR-
ED0 A VARIANT RATHER THal 4 CORRECTION.
, 13 LE ENTRY ATTACHES TD USE
i4 USEZR DESIRES TO MODIFY A
15 USEZR OESIRES TO MOUIFY A
1o USER DESIRES TO MODIFY A
17 USER DESIRES TG MGOIFY a4 LATA SET
13 USER DESIRES TO MODULIFY A CISPLAY FORMAT
13 USER DESIRES TC MCDIFY 4 DICTICNARY
A
A
3
3

3

COuING mMODULL
GPERATIONAL MODULE
Ji3

2] USER DESIRES TO HOOIFY JISPLAY MENU

21 USER DE&SIRES T¢ MODIFY PLAN

22 USER DESIRES TO MODIFY REPORT —
23 USZR DESIRES TO MOOIFY STORcL UATA BEFINITIOM
24 USER DESIRCS TO MODIFY JATA GONTROL DATA

#E¥EE QUTPJT 7/ RESULT LIST #%%3¥

NUM3ER TEXT

MESSAGE REQUESTING USER TG ENTER MOSRe JATA
LI3RARY TJ AND LE NAME,TYFE

DIRECTORY INTRY IN USERS wWORKING AREA
SPECIFIL ITEM/ACTION REQIRINe APPROVAL
LIST OF PRZVIOUS USERS

PARSED COMMAND AND COMMAND CONTROL TABLE

(SR « TR E R s i AV

#e¥xx LJSS REFERZINCED TRANSITIONS ¥®¥¥¥x

STATE IS ACCESSIZLE FROY

KeA.d FeAsD
Al03

Kedel

Ke3ad

A104

LEVEL 3

COMPONENTS CF STATE K,.8
PERFIRM MODIFICATIONS WITH DIALOG

STATE JESCRIPTIONS *#¥xx»

LONG NAMc AND TEXT

MOQIFY

MIDIFY

MODIFY

MIDIFY

HADIFY

MODIFY

MODIFY

MIDIFY

MO0IFY

MODIFY

MIDLFY

CH

0M

ORIGINAL PAGE IS
OF POOR QUALITY

PLAN
REPORT

S350

LY
ORICGINA QuALITY
OF POV
KeB ¢ PERFORM MODIFICATIONS WITH DIALOG
(CONTINUED)
*e¥x¥ ALLOWED TRANSITIONS =¥¥%=
FROM STATE TO STATE INPUT 7/ OUTFUT /
{r = ENTRY) {r = EXIT) CONDITION RESULT

rKe3.A KeBsA 1 1
reland Z2 2
PK.B.8 KeBa3 1 1
S Y Z 2
PLe3.0 Ka8.0 i 1
-"KoCcf\ z 2l
o3, 0 Kool 1 1
#HKaCeh 2 2
oKs3.E KaB.E 1 i
+KeCoA 2 pd
Pedaf KeBor 1 1
pKeCalt 2 2
PRedelo KeBelo 1 1
»K.Caa 2 z
*Ke3.H KaBeH 1 1
PKeCaA 2 2
PKe3el KeBol 1 1
P eCohk 2 2
rKa3.J KeBed "1 i
1Y 2 £
rKeS3e K KeBaR 1 i
pKelod 2 Pl

TRANSITION DIAGRAM

-ﬁs

2/2 . N
—{ K.C.A)

Gh-.’

ALO5

. KeB t PERFORM MODIFICATIONS WITH DIALOG
{CONTINULD)

¥¥r¥x INPUT / CONDITION LIST *¥sx»
NUM3ER TEXT

1 OBIFICATIONS I6COMPLETE
2 MOJIFICATIONS COMPLETE

Frexe QUTPJT 7 RESJLT LIST *¥¥¥¥
NUM3ER TEXT

1 MESSAGE IEQUESTING MORE 0ATA
2 LE TEXT COMPLZTE IN USER WIRKING AREA

¥££¥% (2SS REFERENCED TRANSITIONS %éxew

STATE IS ACCESSISLE FROW

KeB.A Kefla b
KeBeB Kado b
KeBalo KodeG
RedeD KeAsG
KeBWE Cale o
KeBoF KeAdeG
KeB b KesAob
v(.ﬂ.H K.AJG
KeBoI KedoG
KaBad K.A.G
KIG.K KIA.{J

A106

LEVEL 3
COMPONENTS OF STATE K.C
UPDATE DIRECTORY ENTRY

¥¥x®F STATEt OESCRIPTIONS ¥vews
STATE LOWG NAME AND TEXT

KeTeh UPDATE TEXT LOCATION SPECIFICATLIONS(TLS)
ALL 3JFFERS ARE FLUSHED MOVING ANY KEMALNING DATA
JUT TO THE DATA BASE, RECCRDIWNG AODITIONAL LOCATING IN-
FORMATION IN DIRECTORY.
KeZeB UPDATE USAGE INFORMATIGN
JATE OF LAST ACCESsS, UID OF ACCESSZRy AGCESS COUNT
ARE ENTERED IN JIRECTORY.
KeCuE UPDATE BATA SET REFERENCE TABLE
THe SUBTASK LE OATA SET REFERENCE TAsL: IS UP-
DATED FOR THE DATA SET WHICH WAS MODIFIED.
KeGul UPDATE STATUS INFORMATION
THE USER MAY CHAMGE THE 3TATUS OF THZI LE (IF HE IS

VA-IDATEG TO 00 30). THIS #A¥ INVOLVE LEVEL OF GERTI-
FIGATION, ANALYSIS LEVEL, TINTERNAL STRUCTURE, ETC.

¥¥2¥% ALLOWED TRANSITIONS **¥e¢x

FROM STATE TO 3TATE INFUT 7 QUTRJT /
{r = ENTRY) {e = £XIT) CONDLTION RESULT
PKoGW A Ke.C+3 1 1
KeGaB KeColl 2 i
: KOC'D 3 1
KeGWl KeCWuD 4 1
Ke.D Kelai 5 2
*K oD B 1

Al07

LEVEL 3 TRANSITION DIAGRAM

STATE K.C : UPDATE DIRECTORY ENTRY

A108

KeC ¢ UPDATE DIRECTORY ENTRY
(CONTINUED) - "

NUMBER

[AVIR o

C VUl & W

NUMIER

1
2

*¥¥¥% INPUT / COMDITIDN LIST #¥¥¥x

TEXT
BUFFERS FLJSHED, ENTIRE LTE ON DATA BASE STORAGE DEVICE
USAGE INFIRMATION UPJATC SOMPLETE. LE IS TYPE DS ANO IS
IN THE CL.
USAGE INFIRMATION UPDATE COWMPLETE., LE IS NOGT TYRPE O5.
OATA SET REFERENCE TauLI IN THE ST LE UPDATE COMPLETE
STATUS INFORMATION UPULATE NOT GOMPLETE
STATUS INFOURMATION COMPLETE

x¥¥¥ QUTPUT / RESJLT LIST #¥3¥%=
TexT

MESSAGE TO JUSER 70 ENTER MORE INFORMATIIN

*¥¥&% SROSS REFeRENGED TXANSLTIONS *¥¥¥e

IS AGCESSIBLE FROT

. ® . »
Ot [l

L] L]
[

KAEARARAAARARRAARAARXRXRXKXKAR
. »
O w

& & ® # e & & = 5 ¥ & B 2 & 4 & » & #
Ge Gw B0 G L0 WL W TL 00 W0 WG I
s % & ® & 8 & 8 & & & = & & 5 8 &

AR T TMAOQoOCOOWITE > I

Al09

LEVEL 3 .ORIG ;
COMPONENTS OF STATE M.A QF P?O%LQPAGEB

f.
DETERMINE AVAILASLE JOB COMPONENTS UALITY,

sexss STATE DESCRIFPTIONS *%e%%

STATE LONG NAME AND TEXT
M:A.A ‘ ESTASLISH THE LIST OF OMS FOR TH1S JG3
ASK FOR AND lNTERP%ET THE LIST OF OMS GIVEW BY
THZ USEk.
Meded SEARCH FOR OM MAMES IN THE STL

TRY TO SATISFY THE LIST OF REQUIREOD OMS WITH THAE
LIST OF 0OM3 RESIDING IN THE STL.
MedA,C SEARCH FOR OM NAMES IN THE CL
TRY TO SATISFY THE LIST OF REQUIRED OMS AITH THE
LIST COF OM3 RESIDING IN THE CL
M.A.D CAECK ACCESS TO CL RESIDENT (MS

ANY JOM5 REQUIRLY WHICH RESIODE IN THE CL MWUST EE
ACCES3ABLE TO THIs USER I[N EXECUTE MODE.

#¥%2% ALLOWED TRANSITIONS e¥¥¥e

FROM STATE TO STATEZ INPUT 7/ QUTFUT 7/
(p = ENTRY) (e = EXIT) CONDITION RESULT
pHsAL A M.A.8 1 1
M.A.B MeALC 3 3
LY 2 4
MeA .G Ml od 5 5
f’MoB:A i 4
Mad..D PM.B.4 6 5
P84 7 7
L | o o)

All0

http:INTERPC.ET

3/3 8/8

,MB;\
[] - ’
‘__/

LEVEL 3 TRANSITION DIAGRAM
STATE M:A : DETERMINE AVAILABLE JOB COMPONENTS

Alll

MeA ¢ OETERMINE AVAILASLE JOB COMPONINTS

(CONTINUED)
®eex® INPUT / CONDITION LIST *xxx«
NUM3ER TEXT

1 LIST OF REQUIRED OHS _

2 STL OM DIRECTORY CONTAIJING THE WAMES CF ALL REQUIRED
oM3

3 STL OM UIRECTORY GONTAINING LESS THAN ALL THE NAMES OF
REQUIRED IS

+ CL OM DIRECTORY CONTAINING NONE OF THE NAMES Ik THE
GIVEN SEARSH LIST

5 CL OM DIRECTORY CONTAIWING AT LEAST 1 0 MAME IN THE
GIVEN SEAWLH LIST

6 ACCESS COJE TABLE DENYING EXECUTE PERMISSION FUR AT
LEAST 1 CL RESIJENT ON

7 ACGESS COOE TABLE GIVING SXECUTE PERMISSION FOR ALL
CL RESIDENT OMS FOUND, AND A GL OM DIRECTORY CONTAINIMG
LESS THAN ALL THE REQUIRED OMS.

3 ACGESS CUDE TABLE GIVING EXECUTE PERMISSiON FUR ALL
CL RESIUENT OMS FOUNJ, A4D THE COMBINED STL, CL OM
DIRECTORIES CONTAIN ALL RZQUIRED OMS.

¥*#%% QUTPYT / RESULT LIST *xxxx
NUM3ER TEXT

L USERS OM LIST

2 LIST OF NAHES FOUND IN THE STL

3 LIST OF NAMES FOUND IN THE STL AND THOSE NOT FCUND

4 LIST GF NAMES FOUND IN THE STL AND THOSE WOT FCUND
IN THE CL

5 LIST OF OM3 FOUND IN THE CL AND THOSE NGT FOUND

6 LIST OF STL OMS FOUND, CL CMS FOUND AND ACGESSABLEs AND
CL OMS FGUND BUT NOT ACCESSABLE

7 LIST OF FOUND AND AGCESSAELE OHS AND THOSE NOT FOUND

3 LIST OF AL. REQUIRED O#S3

*#%%% SROSS REFERENGED TRANSITIONS *¥»xx
STATE IS ACCESSIBLE FROA
Mo WA FeAaD
Mo3oF
MQG.D

All2

STATE

MeBad

MHeBaB

“.3.C

I”.j.a

MedeF

LEVEL 3
COMPONENTS OF STATE M.B
CONSTRUCT AN OM LISRARY ENTRY

#¥¥¥+4 STATE DESCRIPTIONS *¥¥xx
LONG NAME AND TEXT

FIRM INITIAL OIRECTORY ENTRHY
SET U THE DIRECTORY EWTRY PROTOTYPE AND FILL IN
CURRENTLY AVAILABLE IT=+4S _IKE NAME AND TYPE.
PROCESS FUNCTIONAL DESCRIPTION
REQUEST A FUNCTIOMAL JESCRIPTION FRUM THE USER,
VALIDATE THE FORM, AND INSERT IT IN TrAE BIRECTCRY ENTRY
PROCESS THE TEXT CONTRCL JATA
REQUEZST THE ELZMENTS OF THE TEXT CINTROL DATA,
VALIUATE FROM CJURRENT £H LE, AND CONSTRJLT THc TGO
CREATE THE TeXT ENTRY
GATHEZR ALL THE CUAZPONENT CMSy EXTRALT THE SInNARY
DESKS, 00 ANY NECESSARY PRE<LOADING, AND CONSTRUCT
THE EXELUTABLC LOAD FILES,
CREATZ CONTROL CM
IF THE CNMS HAKING JP THE OM DO NGT CONTAIN A MAIN
PRIOGRAM, A CONTROL PROGRAM MUST BE SUPPLIED 3Y THE USER
AT THIS Tidc.,

EATER OM INTO TAE STL

MAKE THE FORMAL ENTXRY OF THE OM INTO THE SUBTASK
LIBRARY.

All3

M.8 $ CONSTRUCT AN OM LIBRARY ENTRY

(CONTINUED)
#s5%%x AL OWED TRANSITIONS *##%xx
FROM STATE TG STATE INPUT / OUTPUT /
(» = ENTRY) (¢ = EXIT) CONDITION RESULT.

rileBe A MeB+3 1 i
M.3.8 MeB.0 2 >
Me3.C MoB .0 3 3
MsBat 4 3
M.B3.D MeB.oF 5 4
MeBaE MoB40 6 5
MeBoF M. ALA 3 b
r’M.C-f\ ? G
PMeCal 3 ¢

All4

LEVEL 3 TRANSITION DIAGRAM

STATE M.B : CONSTRUCT AN OM LIBRARY ENTRY

AllS

M.B t GCONSTRUCT AN O#f LIBRARY ENTRY

(CONTINUED)
¥¥¥¥s TNPUT / CONDLTION LIST *+xxx«
NUMBER TEXT
1 NAME GF THE OM
2 VALID FUNCTIONAL DESCRIPTION
3 VALIO USER SUPPLIED PORTIOGN OF THE TEXT CONTROL DATA
4 LIST OF COMPONENT CoS LACKING A MAIN PROGRAHN
5 CIRECTORY AND OICTIONARY INFORMATION COHNSISTENT WITH

~

£ S

NUM3ER

Alle

Oy WJF i I e

STATE

MeB.A

THE USERS PORTION UOF THE TEXT CONTRIL JATA

VALID CM CONTROL PROGRAM

OM DIRECTORY INJICATING ThAT ALL REQUIRSD OHS ARE
DEFINED AND ATECESSASLE

NON=-EMPTY LIST OF OMS Tu PE JEFINED

NON=-EMPTY LIST OF 045 TO RBE GEFINED AND AN ENTRY FLAG
FROIM M.L.G.

FRERE - OQUTPJT / RESJLT LIST #%#xs

TCXT

PARTIALLY COMPLETED OIRECTORY EZNTRY

FUNGTIONAL DESCRIPTION PLACED IN THE DIRECTIRY ENTRY
USERS PORTION OF THE TG3 IN TAE OIRECTORY ENTRY
COMPLETE OIRECTORY AND TEXT ENTRY FOR THE OM

NEA. CM DEFINEJ IN THE SJBTASK LIBRARY, AND QUTPUT 3
NEWA OM DEFINED IN THE SUBTASK LIGBRARY

##x¥2 (0SS REFERENCED TANSITIONS #x*xxx

IS ACCESSIBLE FRO

Ms8.C
MaAWD
MeAeD
HCC’C

LEVEL 3 ORIGINAT, PAGR 15
COMPONENTS OF STATE M.C OF PooR QUAT,
CONSTRUCT A JOB _I3RARY ENTRY : ITY

¥*¥¥3¥ STATE DESCRIPTIONS #¥¥¥*
STATL LONG NAME AND TEXT

HeTe B CONSTRUCT THE OM NETWORK

REQUEST THE NETWORKX DESCRIPTION FRIM THE USER AnD
COASTRUCT AN ANALYTICAL EXPRESSION OF THE NETWORK

Mo B VALIDATE THE INTEINAL/EXTERNAL UATA FLOW

TAKINS THE OM SPECIFICATIONS, CONSTRUCT THE AGTUAL
DATA FLGW WHICH #OULD O5CUx DURING EXECUTION AND ASK
FOR USER VALIDATION, NOTE THAT EXECUTION TIME DEBISIONS
MAKe IT IMPOSSISLE 7O ANTICIPATE ALL POSSIBILITIES

MeCWC MOUIFY THE CM NETWORK

IF THg DATA FLIKW

IS NOT AS DESIRED, NETHORK
MOJIFICATIONS MAY BE NEC

£SSARY.
Ma3 D DEFINZ THE JJ3 IN THE SUBTASK LIBRARY
TARKING THE NETWORK UESCRIPTION AND THE COMPOMENT

OMS,CONSTRUCT THE JO3 DIRECTORY ENTRY ANO THE SYSTEA
CONTROL CARD SKELETON RECCRD.

*EEEX OALLOWED TRANSITIONS *¥x¥&

FROM STATEZ T0 STaTZ INPUT 7 CUTPUT /
(¢ = ENTRY) (» = EXIT) COMGITION RESULT

LeA MsCu3 1 1
C B M.C.0 2 1
MsCuu 5 3
MG *M.8.4 &4 e
M.C.B8 -3 1
MeGCaD *F JA LA 1) 4
s ALA 7 L

All7

LEVEL 3 TRANSITION DIAGRAM

STATE M.C : CONSITRUCT A JOB LIBRARY ENIRY

AllS

M.C t CONS
(CONTINUE

NUM3ER

ViF o=

~ o

NUM3ER

£ e I

TRUGT A JOB LIBRARY ENTRY
B8

¥¥¥¥» INPUT 7 CONDITION LIST +#¥¥¥x

TEXT

VALID NETWORK SPZCIFICATIONS

USERS RESPONSE THAT THE DATA FLOUW IS NOT AS UESIRED

VALID NETWORK MODIFICATION SPEUIFICATIONS

USERS RESPINST THAT ONE OR MORE OMS ARE MISSING

DICTIONARY AND OIRECTORY INFORMATION COAFPATIBLE WITH

THE NETWORK SPECIFICATIONS.
EWMPTY LIST OF JU3S TU 3c UEFINED
NON=EMPTY LIST JF JOJS TO BE HEFINED

FEEER O QUTPUT / RESJLT LIST #¥¥%#

TEXT
ANALYTICAL EXPRESSION OF TrAE WETWORK
LIST OF OMS

ALL NECESSARY INFORMATION 70 OEFINE THE J0OB.
JO3 ENTERZD INTO THE SUATASK LIBRARY

FHEER ORUSS ReEFERENCED TRANSITIONS #exss

IS ACCESSIBLE FROA4

T
LI T]
[V R = g
» * o 4w
Moo

All9

LEVEL 3
COMPONENTS OF STATE N.A
ESTAQLISH THE REQJUIRED LEN LISTY

¥yxdd STATE DESCRIPTIONS *®¥*®s
STATE LONG NAME AND TEXT

NedeA CONSTRUCT ULEN LIST FOR ALL I/0 LE USED
FROM THE JJ3 DEFINIT1ON, FO=M THE LIST OF oLN JSED
3Y THE J33 AS INPUT, CUTPUT, JR INPUT/OUTPUT.
Na.A.B CUNSTRUCT LtN FOR A DIRECTORY SEARCH
USING THE JLEN ANJ ThE QUALIFYING INFOIMATIUN FROM
THS EXECJTLION COMMAWG (ZXFLICITLY GIVEN CR iMPLIED IN

THE UEFAULT 3SENSE), UCONSTRJCT THE NAMES wHITH ARE
EXPECTEU TJ BE FOUND 1IN THEZ STLsLL SEARCH,

#oF¥e GLLGHED TRANSITIONS #F¥¥®

FROM STATE TO STA1E INPUT 7 GUTPUT 7
(¢ = ENTKY) (p = cXIT) CONDITLON RESULT
FNQAUA N.ﬁ.ﬁ 1 1
NnAoB r'N.U-A 2 Zé

TRANSITION DIAGRAM

Al120

NeA ¢ ESTABLISH THE REQUIRED LEN LIST
(CONTINUED) .

+#x¥% INPUT / CONDITION LIST #%¥*x
NUMBER TEXY
1 LIBRARY DIRECTORY ENTRY FOx TdE J08 WITH EXECUTC

PEIMISSION FOR THIS USER.
2 QUALIFICATION INFORMATION FROM THE EXECUTE COMMAND

¥¥5%%e QUTPUT / ZESULT LIST (#¥¥%#
NUM3ER ’ TEXT

i LIST OF ULEN FROM THE JIRECTORY ENTRY
2 LIST OF NAMES SUITA3LE FOR A OIRECTORY SEARCH

#5464 [RISS REFERENGED TRANSITIONS #*xwx

STATE " IS ACCESSISLE FROM

Nefoh FalsD

Al21

LEVEL 3
COMPONENTS GF STATE N..B
CHECK FOR LEN IN LIBRARIES

¥r#¥® STATE UESCRIPTIONS ¥*¥%x
STATE LONG NAME AND TEXT

Ne3sA SEARGH THE.STL FOR REQUIRED LEN
EXAMIME THE STL DIRECTORY TO FIND THE REQUIRED
LEN. NO ACSESS PERMISSION REGQUIREQD
NeBoeB SCARCH THe o FOR REQUIRED LEN

EXAMINE THE COL DIRECTORY 70 FIND THE REQUIQED LEN.
AGCESS PERAMISSION MUST 35 INOICATED IN THE LEO FOR THE
CORRESPONOING USE DURING EXCCUTION

FEEER ALLOWED TRANSITIONS *#x#x

FROM STATE TO STATC INPUT 7/ QUTPRUT 7/
{r = ENTRY) (p = EXIT) EGNOITION RESULT
PN.3.A NeBo3 1 i
PN.CLA 2 2
Ns3.8 *N.C.A 3 3

A122

LEVEL 3 TRANSITION DIAGRAM

STATE N,B : CHECK FOR LEN IN LIBRARLES

Al23

MNeB % CHECK FOR LEN IN LIBRARIES

(CONTINUED)
*yr¥xx INPJT / CONDITION LIST +##¥x¥
NUMBER ’ TEXT
i SEARGH LIST OF LEN #0T AL CONTAINED IN THE STL
2 SEARCH LIST OF LEN ALL JF WHICH ARE CONTAINED IN THE

ST
3 SEARCH LIST OF LE ALL 3F WHICH ARE CONTAINED IN THZ
GL AN HAVE PRCPER ACCESS PERMISSION COBES

*#¥44 QUTPJT / RESJLT LIST we¥se

NUM3ER TEXT

1 LIST OF LEN LCCATED IM THz 35TL, THOSE YEZT TO BE LOCATED
2 LIST OF GLREAJY EXI3TING LIBRARY ENTRIES TO #3& USED
QURING EXESUTICGN, WITH APFROPIATE LINKIWNG INFOIRMATIIN,

3 -
FrE¥¥ CROSS KREFERENCED) TRAWNSITLIGNS #*®x%%
STATE I5 ACCESSISLE FrOH
NeBaA) NedeO

Al24

NeZoG

NOG'D

-~ T
Lt

[
n X

*

LEVEL 3
COMPUHENTS OF STATE N.C
PREPARE JO3 FCR EXECUTION

F¥e¥* STATE DESCRIPTIONS #¥%¥%
LONG NAWC ANJ TEXT

PREPARE LZN FOR ALL OUTPUT AND I/0 LE
PREPALE AHEAD OF EX=ZCUTION ALL THE NAMES (QUALI-
FIED AND UNQUELIFIED) FOR THE LE TO BE CREATED JURING
THE JO8. UIRECTIRY z=ZNTRIES ARE MADE WITY NO TcoXT ENTRY .
SET UP Fluf L1NKAGES
ACTUAL LOGIGAL FILE nNAMe3 USED BY THE OMS MUST 3c
RECONCILED WITH CURR=NT LOCATIONS FOKR INPUT LE ANMND THE
ACTUAL LINKAGES TC THE .LTE MUST gk SET UF.
FRePARDC THE EXESUTABLE COJE FILES
THE 2¢ TE=XxT ENTRIES MAY 3E READY TJ RUN Ok NEED
SCYE PREPARATION, 3UT IN ANY CGASE THE LJICATION IJF Tat
COJE MUST 3E KNOWN FOR UJONTROL CARD FILL IN.
CREATE LOWT<OL CAROS FOR THIS EXEGUTION
TAKE ALL TdE EXECUTIONM 'TIME DEPENDEm™T INFO<XMATLON
AND PLACE/SUSSTITLTE 17T IN THE CONTROL CLRD SKELETGA.

¥rRexx: ALLOWED TRANSITIONS ¥¥¥¥s

STATE TG STATE INPUT / JQUTPUT 7/
= eNTRY) {p = cXIT CONDITION RESULT

-
- & e 2
[o v o e o
fwmlﬂ
£ D

2 Z ZE
-
[RNV N

Al125

LEVEL 3 TRANSITION DIAGRAM

STATE N.C : PREPARE JOB FOR EXECUTION

Al126

N«C t PREPARE JOB FOR EXECUTION

(CONTINUED)
¥¥x¥x INPUT ./ CONDITICN LIST ¥¥¥»x
NUM3ER TEXT
i OM NETWORK AND THE LIST OF LEN USED DURING EXECUTION
2

3

A

NUMSER

Ll

CORRESPONOANCE LIST FOR EACH OM GIVING THE RELATIONSHIP
BETWEEN LEN AND LOGIGAL F1LE NAME USED IN THE O©5

OM TEXT cNTRY ANJ THE CORRESPONDING TcXT LOCATION
SP=CIFICATIONS.

COMPETE STATUS ON CONTROL SARD REGGRD

#¥xak QUTPYUT / RESULT LIST ¥ex2s«

TEXT
NAMES OF ALL LE USED FOR THIS EXECUTION
CONSISTENT FILE DEFINITIONS FOR ENTIRE DATA FLCHW

EXECUTABLE CODE FILES.
AtL JOB COMPOUNENTS REAOY FOR cXeECUTION

#¥52% 33035 REFERENCED TRIANSITIGNS wexwx
IS ACCESSISLE FROH

N.aOA
N.3.8

A127

LEVEL 3
COMPONENTS OF STATE N.O
INITIATE EXECUTION

¥EXE¥¥ STATE DESCRIFTIUNS #¥e»s
STATE LGNS NAME AND TEXT
Nads A INITIATE cCXECUTION
ISSUYz A SOGHMMAND TO THE OS TO EXECUTE THE CONTEIL

CARD RECORD AND WALT UNTIL THE ZXECUTICW COMMaNJI HAS
BEEN ACCEPTCD.

¥¥E¥E AL UAES TRANSITIONS *#¥¥%

FRGA STATE TG STATE INPUT / QUTFUT /
{p = ENTRY]} (e = cX1ITY SONDITION RCSULT
PN.J+ A - rPN,EA i i

TRANSITION DIAGRAM

Al28

Ne.D ¢ INITIATE EXECUTION
(CONTINUED)

wxx¢x TNPUT / CONULITIGN LIST #sxxs
NUMBER TEXT

1 SIGNAL FRROM THE OS THAT THr JOB EXECUTION COMMAND Has
BEEN ACCZPTED AND TdiE JU3 IS EXECUTING.

#¥2x¥ DUTFUT / RESJLT oI37 #*®*=¥

NUM3IER TEXT

¥¥F®% (0SS REFERENCCOD TRANSITIONS s#%*¥

STATE IS ACCESSIBLE FRIAM

N+Da b NeGaD

A129

LEVEL 3
COMPONENTS OF STATE N.E
SUBTASK STEP EXECUTING

#¥¥xx+ STATE DESCRIPTICNS #¥+¥%
STATE LONG NAME AND TEXT
NeEWA SUBTASK ITEP EXECUTING

SOME ARBITRARY PORTION GF THE .SUsTASK STEF IS «NOW
EXECUTING AND INDICATES NG REJUIREMENT FOR JSER ORK IPAu

EXECUTIVE INTcRACTION,.

#xyee plLOWED TRANSITIONS #¥##¥*

FROM STAT:z TG STAT: INPUT / QUTFUT ¢/

(r = ENTRY) {e = EXIT) CONQLTION . RESULT

eheE o 20 A 1 i
#0.C Z 2

TRANSITION DIAGRAM

Al130.

N+E ¢t SUBTASK STEP EXECUTING
(GONTINUED)

#x:x¥x INPUT / CONDITION LIST #¥*¥x

NUM3LER TEXT

1 INPUT REQUEST COMMAND FROM THE STS
2 OUTPUT COMMAND FROM THZ S5T3

*¥¥¥r QUTPUT / RESULT LIST #%¥»+
NUM3ER TEXT

1 TERMINAL INPUT QEGQUEST
2 TERMINAL OQUTPUT REQUCST

¥¥r+¥ CROSS REFERCNGCED TRANSITIUNS

STATE IS ACCESSISLE FROH

NeEWA NeduA

PEXR TS

Al31

)

Al32

TATE

Q.G,.C

Gel.D

QeloF

AL PAGE I} !
vk QU g
LEVEL 3 ’)

COMPONENTS OF STATE Q.0
PURGE A CGL ENTRY

¥¥¥x¥ STATE DESCRIFTIONS *¥¥ex ORIGINAL PAGE IS

OE POOR QUALITY|
LONG NAME AND TEXT

RETRIEVE JICTIOMARY ENTRY

RETRIEVE JLRLCTORY E£NTRY
THE 3J3TASK I0 LIST mMUST 2E EMPTY JUFORE A& PURSE
CAW BL ZFFZCTED.
TRACE UEPZNUZNCIES
THE JICTIONARY AND OIRECTORY ENTRIES ARE CHECKeD
FOR DEPENDENCIES. IF THz USEU-38Y LIST LN THE DICTIONARY
IS NOT EMPTY THE DEPENJENCY CHAINS ARE TRACED. THE 3Jd-
TASK L3 LIST IN THE JIRICTORY ENTRY MUST ALS0O EEZ EwWPTY
BeFORE A PURGE I5 PERMISSIBLE.
PUBLISH JE£2INJENCY LIST
A COMPLETE LIST OF AiL. DEPENDENT LIBRARY ENTRIZS
AN] THZ OWWER OF EACGH 13 PUSLISHED
SET STATUS
THE STATUS IS SET = *PURSE REQUESTEQ* IF UEPEND-
ENGIES WERE FCUND. STATUS I3 3£T7 = *PUKGED* IF DATA I3
RELEASEDU FROM UATA 3ASE,
PURGE UATA

RELEASE JATA FROM TOXT CF LE.

ORIGINAL PAGE IS
OF POOR QUALITY

Q.C % PURGE A CL £NTRY
(CONTINUED)

€ x¥s¥ STATE DESCRIPTIONS {(CONTINUED) ¥¥¥¥¥
STATE - LONG WNAME AND TEXT
QeSel CLEAR REFERENCES
REFERENCES IN EXISTING LIBRARY ENTRIES WHICH SHOW
PURGED LE AS A USER ARE CLEARED.
ReGoH CLEAR DIRECTORY ENTRY

THE DIRECTORY ENTRY IS CLEARED OF ALL INFCRMATIul
EXCEPT MAME,TYFE, FINAL STATUS RECORD.

FEees BLLOWED TRANSITIONS *¥x¥w

FROM STATE TO STAT:= INPUT / QUTFUT 7
(e = ENTRY) {p = EXIT) CUNDBITION RESULT
.G A Q.C.0 . 1 i
Qs Q6.0 2 1
GeGaU HeCatd 3 2
Q.C.F 4 1
$.G.0 8.C.E 5)
W.C.E QeC,H 3 1
WalofF deColo 7 i
QUC.G QOC.E 0 i
Q.CeH PrFaALA 13 1

Al33

LEVEL 3 TRANSITION DIAGRAM

STATE Q.C: PURGE A CL ENTRY

Al34

Q.C t PURGE A CL ENTRY

(CONTINUED)
*x+¥¥ INPUT / GONDITION LIST ¥¥%x¥s
NUM3ER TEXT
1 OICTIONARY ENTRY RETRIEVED
2 DIRECTORY ENTRY RETRIEVED
3 DEPENDENCIES FCUND
% NGO DEPENDINCIES FOUND
5 LIST OF DEPENDENCIES PU3ILISHED
7 OATA FROM TEXT ENTRY RELZASED FROM DATA GASE
8 ALt REFERENGES TO PJRGEJD LE CLEARED FROM DATA BASE
3 STATUS SET = *PJRGED®
1), DIRECTORY ENTRY CLEARED OF Ace BUT FINAL STATUS
#2e%x QUTPUT / RESJLT LIST ##exs
NUY3ER TEXT
1 -]
2 ERROR MESSAUGE

ERROR GONJITION TO 30 CLEAXEC

Al35

LEVEL 3
COMPONENTS OF STATE W.C
CONSTRUCT DICTIONARY ENTRY

¥¥X¥E STATE ODESCRIPTIONS #¥¥+%
STATE LONG NAME AND TEXT

KeCoA RETRIEVE 3DU FGR DICTIONARY
THE SO0 FOR LE TYPZ DICTIONARY IS RETRIEVED FOR
USE IN SU3SEQUENT PRICESISING.
Helal ENTER DICTIONARY INFORMATION

THE USER ENGAGES IV A DIALOGUE WITHA THo SYSTEMN
BURING WHIGH THE INFORMATION FOR THE DICTICWNARY ENTRY
IS PROVIOZO,.
WelaC REVIEA ENTRY
THZ NzZW OICTIONARY ENTRY IS OISPLAYED TC AND Ro-
VIEHEY 8Y THE USER.
WeloU AJB EWTRY TO SICTIONARY
THE NEW ENTRY HAS SEELN APPROVED bBY THE USER AND
IS ADDED 7O THE JICTIONARY IN THE DATA 3ASE
WeluE EXKOR RECOVERY
RESCLUTION OF A CONFLLGCT OVER AN ENTRY IN 4 CL
DICTIONARY IS MAOE. AN ENTRY HAVING SAME NAME,TYPE HWAS
MAJE BY ANOTHZR USER IN THE TIME INTERVAL AFTER THE
FIRST CHZCK MADE AT THE TIME DIALOGUE BEGAN ANL THE
TIME THE USER KAS REAOQY TG AJd0 THE ENTRY.
WeluF SAVE ENMTRY TEXT IN SL

THE JSER HAS BEEN UNABLE TO SATISFACTORILY RESOLVE
A NAME -CONFLICT AND SAVES THE ENTRY LOCALLY.

A136

Wel ¢ CONSTRUUT DICTIONARY ENTRY
(COMNTINUED)

#EE%2 ALLOWED TRAUSITIONS w*¥¥xv

FROM STATZ T 3TATZ INPUT /7 = OUTPRUT /
{r = ZNTARY) (» = EXLT) CONDITICH RZSULT
eWL.CWA el ot b :
el 3 HeCou3 2 2
G0 4 4
V&.GQC el od 5 4
Aa.Ca0 B 4
AeGaeld r’Fvoﬁ 7 [
P ec W E l"FuA.A 12 1
Wal oo A 1
AaCaF 3 "
WeltoF oFaA.A 12 e
WeloF i1 e

Al37

4/4 5/4

LEVEL 3 TRANSITION DIAGRAM

STATE W.C: CONSTRUCT DICTIONARY ENTRY

Al138

ORIGINAL PAGE 1N
W.C 3 CONSTRULCT DIZTIONARY ENTRY
(CONTINUED) OF POOR QU.

¥x¥e INPUT / CONDITION LIST #¥sx

NUM3ER TEXT

1 S0J3 FOR JICTIONARY RETRIEVZOD

2 USER/SYSTEM BIALGG INCO4PLETE

b OICTIONARY ENTRY COMPLETE 5UT NOT APPROVED

5 USER WANTS Tu MODIFY ENTRY

5 DICTIONARY ENTRY COMPLETE &ND APPROVEU

7 ENTRY ADDEZd TO DILTIUNARY '

3 NAME CONFLICT RESOLVED

3 CONFLICT NOT RESJULVED-USER WANTS TO SAVZ eNIRY T=XT

LOGALLY
14 USER WANTS NO FJRTHER ASTLON ON THIS ENTRY
i1 USERASYSTEM JIALOGUE SPECIFYING LOCAL SAVE OF TIXT
12 ENTRY SAvZY IN St AS SPECIFIED 3Y UHER.

Fre¥: o QUTPUT / RESJILT LIST we=s

NUMBEK TEXT
1 -
2 MESSAGE T USER REGUESTING MORE INFURMATION
4 DISTIONARY ENTRY TEXT I4 USER WORKING AREDA
5 UPJATED DICTIGNARY AVAILAGLE IN OATA oBASE

Al39

LEVEL &
CUMPONENTS OF STATE 1.C.8
ENTER CODING MODULE

#xr¥% STATE OCSCRIPTIONS #&¥¥¥

STATE LONG NAHME AND TEXT

A140

I.C.B.A CHECK LI3RARY ENTRY

THE APPROPRIATE LIJAXY JIRECTIRY IS SEARCHED FOR
A CODING MODULE HAVIWNG THIZI SAME NAMZ. IF ONE IS FOUNJ
AN ERROR CONDITION EXI3TS AND IS REPORTEU.

T.50.8.3 CHECK UICTIUMARY ENTRY

THE APPRIPRIATE DICTICONARY IS SEANCHED FOR A PrRE-
VIQUSLY MAJE ODEFINITION. IF WORKING IN THE CL ANJ ONC
IS FOUND IT I3 OFFERED Fur ROVIEW. LF 1N THE CL AND NO
DICTIOGNARY ENTRY EXISTS, UNE MUST BZ #ADE, IF 1IN TH:
STL THE OB IS CGPTIONAL.

I.G.8.0 REVIEW DICTLIUONLRY ©NTRY
USER #AY DESIRE TO cxAMINE EXISTING DEFINITION FOR
COIRECTNESS. IF A CAANGT Is DESIRED HE ZINTEXS THE
MODIFY DEFINITION MOUE VIA A PAUSE,
I.5,8.0 DEFINE CA

A DEFINITIUN FOR THE NEW CM IS ENTZRz0 (A DICTION-
ARY ENTRY HADED)

IeSeBeE RETRIEVE 35D0 FIrR OH
I.0.8.F REPURT ER«DR
I.5.B.06 CONSTRULT Cn

THE 30URCE CODE AND AUXILIARY DATA WwHICH COMPRISE
THE LIDRARY ENTRY FOR T#c OH ARE ENTEREJD

MODULE

I.G.B t ENTER GODING

{CONTINUED)

ALLOWED TRANSITIONS #¥¥¥»

YRR

QUTPUT /
RESULT

INPUT 7/
CONDITICN

STATE TO 3TATE
{r = EXIT)

FROH
(r

ENTRY)

T T VY S L QO - S T N SN NS R

HIN AN FNOMN OO D DM TN
- - - -

ML, OOWWDWw Y wo

o * @ . 42 & & ° . 4 - L

M@Dm MY BN oMo e s DN
¢« ® » & & & & a & =8 & 3 & 5 = »
DOOLOLLOVLLVLLOLIOO
» & & § S 2 ¢ s & & & & 8 » »
e B BT I B I e B A I e R B I B e N I

* + *

<T = L] Wl O
- - . e & »
foe) s oarm mmao
- . . 9 . o @
&1 o [R] [I o T
. - . . ® »
(200} o] L | o
+

Al41

7/ -, ORIGDJAU
1.C:K PAG
\) OF POOR QUALry

5 e

LEVEL 4 TRANSITION DIAGRAM
STATE 1. C.B: ENTER CODING MODULE

Al42

I.C+8 ¢ ENTER CODING MODULE

{CONTINUED)
¥¥¥a¥ TNPUT /7 CONDITION LIST *#¥**
NUMBER TEXT
i A OM WITH SAME NAME 4S NEW CM FOUND IN LISRARY
2 AMBIGUOUS CH NAMES HOT RESOLVED
3 ERROR GONDITION PGSTED .
b NO PREVIOUS LE FOR SN E£L157S3
3 PREVIGUS DICTIONARY ENTRY EXISTS
5 NO DICTIONARY ENTRY =XI3TS ANJ ONE IS REQUIRED O

-~

13
11
12
13

" 14
15

NUM3ER

NOO N E e N

JESIRED
NO DICTIUNARY ENTRY CXISTS AlJ ONE WNOT REQUIRED d=
WANTED

- QLICTIONARY ENTERY APPROVED

JISTIONARY SOMPLETE 4NU IN QATA gASE

MORE INFORMATLIO4 REWIRED 7O COMPLETE DICTIONARY ENTRY
IMPOSSIBLE TO CONPLETE JICTIUNARY ENTRY

ALt JATA FOR CM LE ACGQUIAED

MCRE DATA REQUIRED FUR wt

IMPOSSIBLE TO COMPLETE LE . .

DIRECTORY NTIIY FCGR NEW Lt ESTABLISHED Ih USER WIRKING
AREA . .

SO RETRIZVeD

wxwy QUTPUT / RESIJLT LIST (¥x#s¥x

TeXT

MESSAGE TJ USZR GIVING OPUGRTUALTY TO REMOVE AMBIGUITY
ERROR MESSAGE (AM3TGJO0US OM NAME)

TeXT OF DICTIONARY ENTRY AVAI_ABLE FOR JISPLAY
MESSAGE INFORMING USER TO PROCEDE

ERROR MESSAGE (DE NOT GOWMPLETED)
ERROR MESSAGE {LE NCT COMPLETED)
H
pAGE
QB.XGNP%‘" au AI.IN
of ¥

Al43

LEVEL &
SOMPONENTS OF STATE I.C.C
ENTER DATA SET

##r¥% STATE DESCRIPTIONS ###%¥
STATE LONG NAWME ANJ TEXT

Te3eCal RETRIEVE 3TO<EDC DATA DEFINLTION

THE USER WANTS TO ZREATE AN INSTAME CR OUCURRENCE
OF A DATA 3T BY ENTCRING VALUES FOR VARIABLES CUOWTAIN-
CD IN THE OATA SET. SU3SEQUENT PROCZSSING REQUIRES AN
SDB. IF THERE I3 NO SD0J IN HIS STL 3R IN THe CL WHIGH
THI USer HAS PERMISSIGN TO USE AN ERROR CONJITION IS
ESTABLISAEZD PREVENTING CoNTINJATIOw AT THIS FOIHT.

I.5.C.B CONSTRUCLT TZxT FOR NeW LE

THE JSERS J3ATA IS ACCEPTES, TRANSFIPMED, FIRMATTEU
ANJ PACFARLO FOR STORAGTZ FOLLOWING SPECIFICATIGWNS CuN-
TAINED IN THE $3D. THE JATA #MAY COME FRIM THE TERMINAL
OR FROM OTHER CRISGLNS EXTERnAL TC IPAD SUCh AS MAGNZTIC
TAPE, PJNCHED CARDS, DISK FILzS, AS INDICATeD oY THC
USIR. DATA FROM SEVERAL SCURCES MAY BE COMEINED.

I.C.C.C REFORT ERAOR
SOME ERRUR CONDITIJUNS MAY OCCUR AFTER «USH VAL~
UA3LE PROGZSSING HAS OCOURRED IN WHICH GCASE THE USER

MAY ELECT TO SAVE THc 0ATE ENTERED FOR ouATER C(RRELTION
vId MOODIrY.

Al44

I.C.C ¢ ENTER DATA SET

(CONTINUED)

Fn s

FROW STAT:
(> = ENTRY)

21.CeC.A

ALLCHED TRANSITIONS *¥¥¥x
TGO STATE INPUT /
{r = £XIT) EONDITION
1.G.C.8B 3
L1+C.Cul 2
F’ItCi_K 1
I.C.C.sB 4
I.Caual b
T TTHR)
]1.eCaol 7
PrleCaeM 3

TRANSITION DIAGRAM

I N L R

QUTPUT 7/
RESULT

Al45

I.C.C & ENTER OATA SET
(CONTINUED)

*¥x¥e INPUT / CONDITION LIST ¥¥¥¥¥

NUM3ER TZXT

STORED DATA DEFINITION CORRESPONDING TO NEW LE EXISTS
300 JCES NOT EXIST

OIRECTORY ENTRY FOR NtW LE ESTASLISHED IN USER WORKING
AREA

DATA INPUT AND L€ CONSTWCTION INCOMPLETE

LE CONSTRUCTION COMPLETE IN USER WORKING AREA
IMPOSSIRLE TO PROCESS S3ME SPCCIFIC INPUT LATA

USER DESIRES TC SAVE DATA SET AS IS

ERROR CONDITION TO 3£ SLEARED

[N AV o

W~ OY g

#¥¥x5 QUTPJT / RESJLT LIST #¥x%¥¥

NUMBER ToXT

ERROR MESSAGE (SD3 DOES NOT EXIST)
MESSAGE REQUESTING JSER TO ENTER MORE DATA
ERIOR MESSAGE (DATA P=OCESSING ExROR)
APPRUPRIATE ERRUR COUE

N e O

Al46

LEVEL & %?IGHV@
_ COMPONENTS OF STATE I.C.0 ; POOR PAGE
ENTER STORED JATA DEFINITIGN Q &

*#x%¥ STATE DESURIFTIONS #¥¥%%
STATE LONG WAME AND TEXTY

I.G.0.4 CHzCK LISRARY ENTRY
THE APPROPRIATE LI3RARY DIRECTIRY IS SeARCHED
FOR AN 300 HAVING THz SAME (lAME. IF ONE IS FOUND AN
ERROR CONJITION EXI3STS 4si IS REPORTEU.
TeGeDe3 CHECK DICTIONARY ENTRY
THt APPROFRIATE DISTIuNARY IS 3ScARCHED Fok Ad
EXISTING OcFIMITIONS 1F WORKIWNG IN THE SL AND ONE
IS FOUND LT IS OFFERED FOr =xEVICW. IF WURKING I
THE CL AND NO DICTIONARY EWTRY EXISTS, OME MUST 8:
MAJE. IF IN THE STL THE Jdc¢ IS OPTIONAL.
1.2.0.C REVIEW OLSTISNARY ENTRY
USER MAY DESIRE TJ £XAMINE EXISTING OEFLNITION
FOR CORHEQCTWESS., IF A CHANGE IS OESIRzZD ot TNTERS
THE HMODIFY DEFIWITIOW MODL VIA &4 PAUSE
TedeUsD UGEFINE 5DJ

A DISTIONARY ENTRY FOR TAE 3ATA SET IS MALE.
T.G.0.E RETRIEZVE 300 FGOR S3D
THE SJD WHICHh SPECIFIES THE STRUCTJRE IN WHICH

ALL HTGRED DATA QEFINITIONS ARE STOREU InN IPAg I3
RETRIEVED,

TeS40aF REPGRT ERRIX

Al47

T.C.0 ¢ ENTER STORED DATA DEFINITION
(CONTINUED)

&¥x¥ STATE DESCRIPTIONS (CONTINUED) *¥¥¥xs
STATE LONG WNAME AND TEXT

TeGoDul CONSTRUCGT 5G3

THE INFORMATION WHICH SPECIFIES THE CONTENTS
AND ORGANIZATION OF TH: DATA SETS FOR WHICH THIS
SD3 IS TO 3E USEDQ I3 ENTERED AND A LE OF TYPE SJO

CONSTRUCTED.,

¥EEE¥Y ALLOWED TRANSITIONS #=#%¥¥

FROM STATE TO 3TAT:Z INPJT 7 JUTPUT 7
{p = ENTRY} (o = EXIT) COMDITION RESULT
Prl.CoULA I1.Cs.4 1 1
I.C.3.8 15 7
I.Cou.F 2 12
rI.C.K 4 7
L.CaDuB I.,C.0.0C 5 3
I-&cU-D 6 —L('

- 1-C.L',-E ? L -
IIC!D'U InC.D.E a 4L
I.CovWi3 L.Cedad 13 4

I.C.3.E 9 &4

I.Cu0.F 11 5

I.040eE T.C.0.6 16 7
I.0.0.F AP P 3 7
TeGa8.6 I.C.0WF 14 B
I.Culians 13 4

elCol iz 7

Al48

{ LCK }
/

LEVEL 4 TRANSITION DIAGRAM
STATE I1.C.D : ENTER SDD

Al49

I.CeD 3 ENTER STORED DATA DEFINITION

(CONTINUED)
*¥¥%% TNPUT / GUNDITION LIST *v¥%*
NUMSER TEXT
i AN SDD WITA SAME NAME A3 NZiW SDO FOUND IN LIBRARY
2 AM3IGUOUS NAMES NOT RESOLVED
3 ERROR GONIDLTION POSTED
3 NO PREVICJS Lz FOR 330 £XISTS
5 PREVIQUS JICTIONARY ENTRY £XISTS
B NO DICTIONARY EWTRY ©XIsTS ANJ O6E IS REGUIRED IR
JESIRED :
7 NO DICTICNARY ENTRY e=XIST: AN ONE IS NEITHLR RE-
QUIRED NOR AANTEGD.
) DICTIONARY ENTRY APPRCVED
3 DICTIONARY GOMPLETE Afd IN GATA dASE
13 MORE INFIRMATION REJAUIRID TU COMPLETE DLCTLIOMNARY chkTRY
1l IMPOSSIgLE TO COMPLETE ULTTIGNARY ENTRY
12 ALL DATA FOR 500 AGIJIREZD
14 MORE JATA FIOR SJ0D RaJUIREG
14 IMPOSSISLE TO COMPLETE bk FOR WEs SO0
15 DIIECTORY SINTRY FUR NEW LLE ESTA3LISHED In USER WORKING
AREA
13 SU0 FOR 533 RETRIEVED
¥rxxx QUTRJT / RESJLT LIST *¥x¥x
NUMBER TEXT
1 MESSAGE TO USER GIVING OPPCRTUNITY TO REMOVE AMBIGUITY
2 ERIOR MESSAGE (AM3Io JOUS S30 NAME)
3 TE3T OF BIGCTIONARY =ZHTRY AVAILASLE FOR JISPLAY
b MESSAGE INrORMING USER 710 PROCEEU
3 ERROR MESSAGE (OE WNOT LOAPLETED)
5} ERROR MESSAGE (LE OT COMPLETED)
7 -

A150.

LEVEL &
COMPONENTS OF STATE I.LC.E
ENTER DICTIONARY

¥¥¥¥¥ STATE DESCRAIPTIONS *¥w¥*x
STATE LONG NAME And TEXT

TeGeELA CHELK LI3RARY EWNTRY

THE USER CAN ON_Y DEFINE NEW OLCTIONAKIES FOR AIS
STL, TWC 3ICTIONARIES FIR STL VARIABLES ANL tILRARY
ENTRIES ARZ GIVEN DEFAULT NAMIS EQUAL TJ THE CL DliTl-
IONARY NAMES WITH SUoTASK 10 APPENDED. THE UStR IS FREE
TO ODEFINE ADODITIONAL DICTIONARIES TO SUIT HIS OAN NEEDS
dgUT THC DcFAULT DICTLIONARILCS ARE USED Fd7? Su3TASKS IN A
MANNER ANALOGOUS TO THE CL USAGE.

I.C.E.B) CAEGCK DICTIGNARY ENTRY

THE t3CAL 3R SL DISTICGNARY 1S CHECKED FGOGR PREVIJUS
JEFINITION OF NON-DEFAULT NAMED UICTICNARY.

T.C.E.C RevIied DICTIONARY ENTRY
I.G.E.O DEFINE NEW S1CTIOHARY
TsSeEWE RETRIEVE 300 FOR UICTIONARY
T.CeEWF REPORT ERROR

T.CeEOG CINTRUST OD1C0TIONARY

Al51

I.C.E 3 ENTER ODIGTIONARY

(CONTINUED)
¥urrd A1} OWED TRAMSITIONS #¥¥*¥¥
FROM STATE T0 STATE INPUT / QUTPUT /
(» = ENTRY) (p = EXIT) CONDITION RESULT
rlCeELA I.C.EsA 1 1
I.C.ELD 15 7
I.C.E.E 7 4
I.C.EF 2 2
*l.CaK 4 7
I1.04EaB I.CeEeC 5 3
I.C.EW.D 6 4
I+CeEeC IoCeEWE 3 4
I.C.E.D I.C.E«D i3 4
I.C.ELE gy 4
I.C.E.F i1 5
I.C.E.E L.CoED 16 7
I«0WEWF PrTCeld '3 7
I.C.E.G LT404EF 14 &
I.C.E.G 13 &
pl.Cat 12 7

A152

ORIGINAL PAGE:IS
OF POOR QUALITY!

LEVEL 4 TRANSITION DIAGRAM

STATE 1.C.E : ENTER DICTIONARY

Al53

I.C.E 3 ENTER DICTIONARY OF POOR QUALITY
(CONTINUED) i

NUM3ER

NUM3IER

Al54

1

oo N0 T

B b b e P e
LA o Y Y SV R

[
o

[ZYRN AV o

O £

FEF¥EX INPUT / CONDITION LIST **¥*¥x

TEXT

A DICTIONARY WITH SAME NAME AS NEW DICTIONARY FOUND IN
STL

AM3IGUOUS JISTIONARY NAJ4ES NOT RESOLVEGD

ERROR CUNJITION POSTED

NO PREVIOUS LE FOR DICTIONARY

PREVIOUS DICTIONARY ENTRY LXISTS

NO UICTIONARY ENTRY ZXISTS

USER WANTS DEFAULT NAMEJ LE DICTIONARY

DICTIONARY ENTRY APPRGVED

DISTIONARY TWTRY CO4PLETE AND 1IN DATA BASE

MOREZ INFORMATION REQUIRED TO COMPLETE DLCTIUNARY tmr<v
IMPGSSIBLE TO COMPLETE JICTIUNARY ENTRY

ALL UATA FOR UICTIONARY oE ACQUIRED

MORE UATA RZQUIREDL FOR LE

IMPOSSIBLE TO COMPLETE L=

DIRECTORY ENTRY FOR NEW LE ubTABLISHEJ It USER HWORKING
AREA

SO0 RETKIEVED

#E¥EE O QUTPJT / RESULT L13T *#xxs

TEXT

MESSAGE TJ USIK GIVING OFPURTJUNITY TO REMOVE AMBIGUITY
LRROR MESSAGE . (AM3IGUOUS DICTIONARY NANME}

TEXT OF DICTIONARY ENTRY(DEFINING NEW DICTIONARY) IS
AVAILASLE FOR DISPLAY

MESSAGE INFORMING USER TO PROSEED

CRROR MESSAGE (DIRZCTORY cWNTRY NOT COMPLETCD)
ERROR MESSAGE (LL3RARY INTRY NOT COAPLETED)

LEVEL 4
COMPONENTS OF STATE I.CeJ
ENTER DATA GCONTROL DATA

#¥%#¥ STATE DESCRIPTIONS *¥wws
STATE LONG NAME AND TEXT

TeGoadeA RETRIEVE 500

THE Sud FOR THE SYSTEM OA4TA STRUCTURE WHICH HCLDS
THE SECURITY,ACGESS JATA I8 RETRIEVeED FO~ USE IN THE
PRICESSING OF THE INPUT OATA

T.04de3 CONSTRUCT TEXT
TrF CIONTRGe UATA I3 ACCEPTED,PROCLSSED ANL PRE-
PARED FOR STORAGE.
I.0.d.0 REPORT EL0<

ALl ERROR CONDITIONS eNCIOUNTERED IW THIS STATE ARL
FATAL., PROGESSING IS A33-TZD. i

FeEex ALLIWED TRANSITIONS *#¥¥#

SR04 STATE 10 STATE INPUT / DUTHUT /
{(+ = ENTRY) (¢ = £XxIT) CONOITTION RESULT

PleCoJaA I.CsJ4B 3 i
I.Ced.C 2 ?
Pl .C.K 1 1
LI.0edeB I.Cauen b 3
I.Cuede 5 4
rl.Call 5] 1
L.CaJeL Y P | 7 5
ORIGINAL PAGE I
OF POOR QUALITY

Al55

LEVEL 4 TRANSITION DIAGRAM

STATE [.C,J : ENTER DATA CONTROL wATA

Al56

I«CaJd t ENTER DATA CONTROL DATA
(GONTINUEY)

*xrx¥x INPUT / COWNDITION LIST ¥¥xxs

NUMSER TEXT
1 SDD FOR SYSTEM LE TYPE OCD EXISTS
2 SDI DCES NOT ZIXIST
3 OIRECTORY EMNTRY FOR GCONTRCL UATA LE ESTABLISHED IN USER

WORKING ARcA

4 OATA INPUT AND ¢t CONSTRUCTION INCOMPLETE
2 TMPOSS1IuslLE TO PROCESS SOME SPECIFIC INPJT DATA
5 LE CONSTRJCTICN COMPLETE IN USER WORKING AREA
7 ERROR CONOITIUN TO 3t LLEAREY
#REFE OQUTFYT / RESULT LIST #%¥x¥
NUM3ER TeXT
1 -
2 ERROR HMESSAGE
3 MESSAGE RZQUESTING USER TO ENTER MORE DATA
3 ERROR MESSAGE
5 APPROPRIATE ERRJR COJE

A157

LEVEL &
COMPONENTS OF STATE K.B.A
MODIFY CHM

*x¥¥% STATE OESGRIFPTIONS *#¥¥x%
STATE LONG NAME AND TEXT

Ke3aAA RETRIZVE STORED DATA DEFINITION

THE 30D FCR A O I35 RETRIEVED FOR USE IN FOLLOWING
PROCESSIHG.

KedaAuB PcRFORM C 4 MOJIFICATIONS

THE USER ENGAGES I DIALOGUE WITH THE SYSTEM 19
CARRY OUT ALS CHANGES. .

KedeA.C REPORT ERROR

FEEES ALLOWED TRANSITIONS #¥¥xx

FROM STATE Ty STATE INPUT / CUTPJT /
(r = ENTRY) (# = EXIT) CONDITION RESULT
PKe3aAA KeBsAWB 1 1
Ke3d.A.B KaBeAad P e
Kebasflal & K
PKeCel 3 i
r’K.f}.F\.C F’K!C.E\ 6 1

Al58

KeBsA ¢ MODIFY €M
(CONTINUED)

s iﬂ@ﬂ;PAG -
PGOR QUAIﬁ%gF‘
TRANSITION DIAGRAM

4223 TNPUT / COIDLITICNM LIST ¥¥¥¥**

NUM3ER TEXT
1 SDJ FOR CH¥ RETRIEVED
2 MOOIFICATIONS INGOMPLETE
3 MODIFICATIONS COMPLETE
4 ERRAOR CONJITION ENCOUNTERED DURING MODIFICATION
3 ERROR GUGNOITION CLEARED ’

#¥3xex¥ QUTPUT /- RESJLT LIST ¥%*¥*=
NUABER TEXT

MESSAGE T3 USER REGUESTING ADDITIONAL DATA
ERROR MESSAGE

W

Al%9

LEVEL &4
COMPGNCSNTS OF STATE K.B.B
MOOIFY OM 2

¥EE¥L STATE OESCRIPTIONS ¥¥s#+

LONG NAME AND TEXT

STATE
KeBeBoh RETRIEVE 30D FOR OM
Ked.B.83 PERFOR#® 0 MGDIFICATIONS
Ke3.8.C "~ REPORT ERRI0R
FEEEY ALLOWED TRANSITIJONS *+xxx
FROY STATE 16 STAT= INPYUT 7/ QUTPUT /
{r = ENTRY) {e = EXIT) CONDITION RESULT
PKedede A KeBeTau 1 1
Ke3eBeB KeBaB43 2 2
KeBa8,0 4 3
PK.Coh 3 1
!’KQBOBOC f’KoCoa 6 1

Ale0

KeBo.B t MODIFY OM
{CONTINUED)

NUMSER

DV F w v+

NUMBER

LETNA VIS o

F¥axx INPUT / CONDITICH LIST ##¥ex

TeXT

3D2 FOR OM RETRIEVED
MODIFICATIONS INCOMPLET:
MOOIFICATIONS COMPLETE

ERROR CONJITION ENCOUNTEREY DURING MODIFICATION
ERRAOA CONDITION CLEARE)D

Frexx QUTPUT / RESJLT LIST *¥*+#«

TEXT

MESSAGE TO USEFR REQUESTING AOJITIONAL DATA
ERAOR MESSAGE

Al6l

LEVEL &

COMPONENTS OF STATE K.3.C

nr ¥
STATE
K.d.C.a
Ke3.Ce8
KedasLluC
o FE

FROM STATL
{p = ENTRY)

ﬂ e3:Ce
«3+C>

*Ka3ela0

MOBIFY JOB

STATE DESCRIPTIONS (¥#¥*¥=%

LONG NAME AND TEXT
RETRIEVE 0D FOR JOB8
PERFORM JJ13 MOUDIFICATIONS
REPORT LRROR

ALLOWED TRANSEITIONS ##%¥

106 STATE INPUT /
(s = EXIT) CONDITION
Ke3.CuB i
KeBoled 2
KeBsSal b .
PKeG Wil 3
oGl b

TRANSITION DIAGRAM

QUTFUT. /
RESULT

L N I VI

Al62

K=B.C ¢ MODIFY JOB
(CONTINUED)

NUMBER

[« 0 S PR AV o

NUM3ER

1
2
3

Al163

*3xvy TINPUT / CONWNDITION LIST *¥¥¥x

TEXT

SO0 FOR JO3 R:TRIECVED

MODIFICATIONS INGOMPLETE

MOOLFICATIONS COMPLETE

ERROR CONDITION ENCOUNTEREU OURING MOUIFICATION
ERIOR CONDITION CLEARED

“#%x¥ QUTPUT / RESJLT LIST (#¥¥¥=s

TEXT

——

MESSAGE T3 USER REQUESTING ADJITICONAL DATA
ERROR MESSAGE

LEVEL &
COMPONENTS OF STATE K.8.D
MOOLFY 85

FxE¥E STATE OESORIPTIONS #%%x#

STATE LOMNG N&ME ANQ TEXT

Ka3.D.4 RETRIEVE 300 FOR DATA SET
MODIGCLICATIONS ARE TO AL MADE 7O A USER DEFINED

DATA SET AND THE CORRESPONIING SDU IS RETRIEVED FOR
USE IN THEZ SUBSEQUENT PROCESSING.

KedaDeB PERFCGRM DATA SET #O0IFICATIONS

Ke3.0.0 REPORT ERROR

¥R¥E¥: OALLOWED TRANSITIONS *#eex

FROM 3STATL TGO STATE INPJT 7/ guTRPUT 7/
{0 = cNTRY) {e = EXIT) CONDBITION ESULT
rKe3.D0.A Kadaded i i
Ke3e0u8 KseBeDoWB 2 2
Kebellel 4 KA
#X +CWA 3 1
PrKeBaDael PGk B 1

TRANSITION DIAGRAM

I/l

Al64

KeBo.D % MODIFY DS
(CONTINUED)

NUMBER

O F WiV bk

NUM3ER

LIV IRV)

¥¥¥¥¥ INPUT 7 CONDITION LIST *¥¥¥¥

TEXT

SDD FOR JS RETRIEVEU

MODIFICATIONS INCOMPLETE

MODIFIGATIONS COMPLEZTE

ERROR CONOITICN ENCOUNTERED DURING MODIFICATION
ERROR CONDITION CLEAREU

®¥x¥sr QUTPJT / RESJLT LIST weews

TEXT

MESSAGE TJ USER REQUESTING AUJITIONAL DATA
ERROR HMESSAGE

Ales

APPENDIX B

DETATLED PROBLEM SOLVING HODEL

B.1 GENERAL WORK FLOW

The design procedures in Volame IT are representative of
the type and organization of tasks necessary to accomplish the
design of an aircraft. However, a computer system designed only
to perform the tasks shown in Volume IT in the sequences given
would have limited value. A generalization of the design
procedure into basic elements is needed so that the design of
the computing system will support +the development of a wide
range of air and space craft. The work organization presented
in Volume II has been divided into five basic activities. These
activities, and their relationship, are shown in figure B.1.
Each of the nodes in fiqgure B.l1 should be looked upon as
actions. The nodes are defined as follows:

PLAN The determination of objectives and constraints
which define a desirable product and the development
of a plan of activities to achieve these objectives
within the constraints.

PREPARE Sa2tting up to do work.

MODIFY Altering preparations to do work when it can be done
without changing the plan. Generally, this is due
to contingencies which are minor relative to the
overall plan.

WORK The activity which aims directly towards completion
of a meaningful step in the plan.

REPORT Recording and/or making visible the results of HWORK
. and determining if the planned work is done.

The work flow diagram shown in figure B.l. was used to make
the following observations:

a) Entry can be made at any node; however, activity in
preceding nodes affecting the entry node must have
been completed.

b) The nodes are coupled; i.e. activity in a node is

directly affected by the quality of the information
comning to it from a preceding node.

Bl

c)

PREPARE

REPORT

Figure B.! General Work Flow

211 nodes ars not connectasd to all other nodes, nor do
all connecting lines. have double arrovwheads. Exanmples

are:
1)

2)

3)

JORK always terminates in a REPORT with a raturn
to PLAN. This preserves accountability and
managemant control.

There is no direct connection going from PLAN to
WORK bypassing PREPARE. Doing so would encourage
resource waste and ineffectiveness in WORK.

MODIFY always results from an attempt to PREPARE
to do WORK. The result of MODIFY is either that
a changes c¢an he made and PREPARE continue without

affecting PLAN or that an error or weakness has
been exposed in PLAN that must be corrected
before PREPARE can continue.

d) The flow diagram car be applied to a single person oT
a group of persons. Soms nonqualitative observations
on efficiency can be made. For example, working only
vithin the WORK node is the mark of an undisciplined
individual and a poorly managed organization. Working
without the REPORT node signifies a lack of personal
or supervisory review of work progress relevant to the
plan.

These considerations are typical of human planning and
organizing functions. The IPAD system will work compatibly
within this environment.

4 study was alsoc made of how product development is
generally organized. Tt was found that there is a hierarchy of
planning and management control as shown in figure B.2. There
is a flow of information through the levels of the hierarchy
with each 1level essentially summarizing the level below and
providiang feedback about the direction of work. The labels of
company, product, etc., are somewhat arbitrary. The terms in
the parenthesis are basic descriptors of the primary interest at
each level. These descriptors are only representative and are
not accurate for all organizations. There are, however, several
common characteristics.

a) There is a level at which real work on the product
design is accomplished by the user. Above that level,
the activity 1is oplanning and management control.
Below that level, the work is preparation of tools and
methods. In the hierarchy shown in figure B.2, real
work on the product is at the subtask level.

b) The user at a particular level tends to transmit
information above him and desire action below him.

c) Those above the user are interested in what is being
done, those below the user are interested in how
things are done, while the user conceptrates on | the
actual doing, varying his interest between what and
how depending on thzs immediate situation.

d) The number of levels shown in figqure B.2 1is not

uniguely six, but it 1is npeither large nor small
conpared to six.

B3

Some further comments
there are activities that
preparing criteria <fron
activities are included in
refining +the description

on a) are useful. In
relate to +thinking, planping, and
which to work. In figure B.2, these
working out the product description,
into a group of tasks that signify

general ternms,

areas of responsibility, and further refining each of the tasks
into subtasks that signify actual work packages. Once the work
package is defined, activity centers around collecting and
defining tools and methods into packages with which to perform
the work. This latter activity is called a "job"™ in figure B.Z2.
If the tools or methods do not exist or have to be modified,
another class of activity is required called an "activity" in
figure B.2. From these considerations, the IPAD system should
be formulated around a principal work activity called a subtask
and that all other activities support or relate to working on a
subtask.

WHAT

INFORMATION ® COMPANY (Profit)

® PRODUCT OR PROJECT (Marketing)

® TASK (Technology)

\

USER

@ SUBTASK (Discipline)
© JOB (Programs & Data)

c .
CACTION © ACTIVITY (Computer Features)

HOW

Figure B.2 Organizational Hierarchy of Product Design

Figures B.3 through B.7 are an expansion, of each node of
figure B.l. ' For example, figure B.3 is an expansion of PLAN
with +the unexpanded nodes, HODIFY, PREPARE, WORK and REPORT,
appended to show connectivity.

The following definitions will be helpful in reading the
flowcharts and descriptions:

Objective - The result to be achieved from a design
activity.
Constraint - A bound placed on a design activity as a ’

limit or assigned value.

Report - The collection of objectives and constraints
which, when satisfied, will describe and
specify the product design and serve as. a
basis for judgement on the success or
gquality of intermediate design activities.
{This is distinct from the verb WREPORT®
used as one of the nodes of the work flow
nodel.)

-Other definitions are given in section 4.0 of volume IV.

B.2 "PLAN" NODE DEFINITIONS - Figure B.3

Node 1 - DEFINE Product into Tasks

DEPINE is a general node meaning refinement of an
existing definition by dividing it into subparts; for
example, in this case, dividing a product development
program into several tasks. Heace, this define is a
description of the desired product objectives and all
the major work tasks necessary to achieve these
objectives. The results of this definition need to be
available €for rTeview, revision, and comparison
throughout +the product development period. This, and
other similar information generated in later DEFINE
blocks, 4is <compiled in a Tecord which serves as a
continuing source of direction.

B5

Bagin Product

Planning

DEFINE
Product into
Tasks

Product
Not Possible

11
Sefect next
- task{s} to /\ T
 start 3 DEFINE
Tasks into
subtasks
yes 4
e ERROR
?
no
5 Is 6
- yes Select subtasks
this ln.ma_’l for deteiled
Planning? planning
no
1 3 Sub-
task Already
defined 7
DEFINE
Subtasks into
12 Jobs
Evaluate
Results and
Select next o
Subtask

< MODIFY >“"'°"

PREPARE

REPORT el ——

F

igure B.3 An Expansion of PLAN

Node 2 -

Noda 3 -

Node

Node

Node

Node

Node

4

ERRCR?

A YBES choice in an error branch means an inconsistency
was found during refinement 3in +the previous DEFINE
that requires reconsideration of a higher level
DEFINE. In practice, the ERROR box at Node 2 probably
does not exist because the implications of a YES
choice at this 1level are too far reaching. Any
changes in the original product definitions would have
been corrected prior to compiling the record in Node
1.

DEFINE Tasks into Subtasks

Sze HNode 1 definition. Tasks are divided into
subtasks. Nota that an error found in Node 8 may
force a redefinition in Node 3. This is primarily a
dependent variable problem that would not exist 1f the

tasks were independent. Subtask definitions are
characterized by a record of chijectives and
constraints. A subtask appears to be the basic level

at which meaningful work on the product is done. The
objective in PLAY is to identify +the necessary
subtasks closely enough so +that scheduling and
resodrce regquirements can be estimated and to assure
that a workable set of activities has been defined.

ERROR?
See Node 2 definition.

Initial Planning?

The dividing line between planning and actual work on
the product design is at the subtask level. There may
be a division 3in the PLAN activity centered around
this distinction. buring inijitial planning, sone
critical subtasks may be planned in detail, i.e.,
while others may be left until the work actually
begins.

Select First Subtask (s)
There will be many subtasks. Critical ones may be
selected for initial planning, others left for later.

DEFINE Subtasks into Jobs

The relationship between the subtask definition and
the tools and methods available to do the work is
established hers. Within IPAD, this activity usually
means collecting and assembling computer programs into
working packages. See Node 1 definitijon also.

ERROR?
See Wode 2 definition.

Node 9 - DEFINE Jobs intc Activities

Specific computing technigues enter into the planning
at this level. Any Jjob involving computational tools
already developed and tested need not enter into this
level of planning. Typically, +the non~computing user
would only work in this level during the original tool
planning and specification phase. This is the typical
lavel at which computer programming and system design
support will be utilized.

Node 10 - ERROR?
See Node 2 definition.

Node 11 - Select Next Task
This is either

a) a return from REPORT at the completion of a *ask
with the intent of beginning a nevw task, or

b) a rTeturn from MODIFY with the conclusion a
subtask 1is unworkable and must be redefined at
the task level.

Node 12 - Evaluate and Select Next Subtask
This is a return from REPORT after subtask completion
and before task completion. The completed results of
this subtask are evaluated against the task plan to
datermine if the results of the subtask aTe
satisfactory and what the next subtask is.

Nods 13 - Subtask Already Defined
If the review at VNode 12 introduces an unplanned
subtask, a redefinition at the task level is required.

B.3 M"PREPARE"™ NODE DEFINITIONS - Figure B.4

Node 1 - Sit Down
"3it Down" is the activity of addressing ones self to
performing a Jjob. It expresses the act of focusing

attention to a relatively narrow field of potential
accomplishment that can be completed in hours or days
as opposed to vweeks or months. That is, the time span
for completion is small compared to the total task and
very small compared to the product. Generally, the
job is «capable ‘of being accomplished ‘through the
primary involvement of one user.

Sit down

Revise
Question

todoa
Subtask

“

Now impossible?

noe

yes

{ REPORT

Figure B.U4

An Expansion of PREPARE

Determine
Unsatisfied
Requirements

B9

i

Node 2 -

Node 3 -

Hoda 4 -

HNode 5 -

Node 6 -

B10

May T2

Given the user has some plan of action, he +then
proceeds to initialize. Initialization generally
consists of collecting all the data and capability the
user understands to be pre-requisites to starting.
The user knows in principle what data, computer
programs, sequences, etc., is needed. He must now
package specific 1items and in so doing determines
availability, adequacy, permission requirements, etc.

Can I?

While "May I?" concentrates on availability, general
adequacy, and authorization; "Can I?" enphasizes
workability. That is, "Will the program execute on ny
hardware?Y; "gill sequential corputer programs
interface data automatically?"; etc. If the user has
complete control over his tools, this step diminishes
in importance. When the wuser 1is wutilizing tools
developed and controlled elsewhere, this step can be
of commanding importance.

Determine Unsatisfied Requirements
Any requirements not previously identified wmust be
satisfied before continuing.

Job Impossible?
The job may be threatened by any of the following:

a) Requesting access without permission.
b) Requesting access to nonexistent information.
c) Illogical relationships in planning not

identified until now.

The problem is resolved by either taking an alternate
equivalent route or by modifying the plan.

Revise Question

Local variations in PLAN implementation are possible.
This box allows for such a variation (provided it does
not change the basic plan), as well as for the
conclusion that the user asked a bad question.

B.4

Rode

Node

Node -

Node

B.5

Node

Node

WHODIFY" NODE DEFINITIONS - Fiqure B.5

1 -

Can I Redefine Job?

The current job is not executable and somehow must be
altered if +the subtask is +to be continued without
compromise. Sufficient information is reguired to
avoid an unnecessary NO answer to this gquestionr, and
be clear about why the Jjob 1is impossible in its
current state. A self teaching system would be useful
here.

Redefine Job
The full power of job construction and modification
must be available at this point.

Can I Redefine Subtask?

Because the current job execution is not possible, the
subtask definition is threatened. A ¥O0 answer to this
guestion means a review of basic plans.

Redefine Subtask
The remarks under Node 2 apply here. Redefining the
subtask may or may not reguire job redefinition.

"RORK" NODE DESCRIPTIONS - Figure B.6

1 -

2 -

Execute

Activities in this box tend +o0o be associated with
computation in the general sense. Upon completion of
this box, the user expects results from which sunbtask
or task decisions will be made. To the scientific
user this is where the "floating point arithmetic®
takes place. The distinction between some activities
done in WORK and those done in PREPARE can be user
dependent. For example, FORTRAN compilation could be
done in either place. This node is where the primary
use of the central processing unit occurs. il
technical code will execute in this box.

Interaction Required?

The user may need to interact with an executing
computer program to guery certain parameters, alter
sequences, stop execution, test optimization
convergence, etc. Any type of control that is not
exercised through the technical code falls 1into the
category of system code interaction.

Bl1

‘ e REPORT
Radsfine yeas Can |
lob i it —— Redefins
Job?
4
Redafine yes Cen 1
Subtask | il seve— redafing

subtask?

Figure B.5 An Expansion of MODIFY

B12

!

4

l
~

<

MODIFY PREPARE >

1 ¥

EXECUTE i

Interaction
Required
- 7

Perform
Intéraction

no

Al
interactions
dong?

.Continue
Current
Job?

\

{ REPORT

Figure B.6 An Expansion of WORK

B13

Node 3 -~

Node § -

Node 5§ -

Perform Interaction

In this activity, the user inserts his Jjudgment and
control into the execution sequence. Activity status
needs to be maintained while interaction takes place.
The point at which dinteraction will take place is
specified at the time of interaction without having to
alter the initial execution plan. The physical and
logical interface characteristics are all important
and must support any aim the user may have in desiring
interaction.

All Interactions Complete?

Continue Current Job?

#hen interactions are complete, the current job may or
may not be useful. TIf yes, restart must be able to.
take place. If no, the option must be available to
continune the job at a later time.

B.6 YREPORT" NODE DESCRIPTIONS - Figure B.7

Node 1 -

Node 2 -

Bl4

Save Job and Subtask pata

Since the current job is not to be continued at the
moment, restart data may need +o be retained for
restart at a later time. Whatever has been completed
in this Job needs to be logged on the subtask record
sheet unless the user dssires an elimination of all
job effects and accomplishments. 2ll data _saved nust
be sufficiently labeled to avoid ambiguity and
confusion later on. Time and date are nmnminimal
components in this identification.

Save Task Data

This implies a knowledge of task data as opposed +to
subtask or job, which implies a knowledge that a task
exists. Thus some kind of task plan must be visible
in the system, or at least identifiers of task level
data that canr be matched must exist. This can be
extremely important when data from one subtask feeds
another subtask. Otherwise a user could invoke a job
where execution 1is dependent upon data sets not yet
generated.

PLAN

- ORIGINAT: pas
] INAT; p
\—_ OF Poop o AGH T
' r

MOPIFY PREPARE Yu

Y 1
Save Job &
WORK Subtask
data
2
Save —
Task data
3 F
Tabulate
results for

Task Report

ne

Subtask
complete

yes

issue
Fask
Report

no Product

complete?

issue
Product EXIT
Report

Figure B.7 An Expansion of REPORT

BlS

Node

Nodz

Node

Node

Node

Node

Bi6

Tabulate Results for Task Report

Assuming that the report is defined and carried over
from PLAN, any subtask data that is also part of the
task report should be identified and logged so that

the degree of report completion is clearly observable

on a timely basis.

Subtask Complet=?

A subtask plan must be available (even if it is only
a mental picture) before this question can be readily
answered. A WO answer implies that the user is now in
the middle of an interrupted subtask, trying to follow
a path to allow restart of the subtask.

Task Complete?

Similar to WNode 4.

Issue Task Report

Report generation capability is clearly needed here.
Each 1item in the report needs to be threaded to the
data which contributed to the item. The report should
have several levels of detail, depending upon the
level within figure B.2 to which it is issued.

Product Complete?
Similar to Node 4.

Issue Product Report
Similar to Node 6.

B17

i Select next
Taskis} tor

Begin
Product

Planning

ORIGINAL PAGH Iy
OF POOR QUALITY|

DEFINE
Products inta
Tasks

Product not
possiblg

Error? Exit

no

starting

Evaluate results
and select next |
subtask(s)

Figure B.8.|

DEFINE
Tasks Into
Subtasks

yes

no

subtask

already dulined

?

yes

Is
This Inital
Planning

Select the first
subtask for
witial planming

DEFINE
Subtasks
into
Johs

DEFINE
Johs
Into

JActivitias

An Expansion of the Total Work Flow Model

Sit down to

* . do a subtask
Revise J—
Question o i
Determine
Job Unsatisfied

impossible Requireaments

¥

Execute

¥. Can |

s Fedefine Radefine Job All
Job ? no Intaraction Perform Interaction
Requ ?lred Interaction Completa
?
Save Job and
Continue
- suglnk Current Job
ata
yos Can i
Iy Redefina redefing
Subtask btask?
Save
Task
data
Tabulate
Results for
Task Report

Subtzak
completg
?

Issug
Task
Report.

Issug
no Product
complete Praduet Exit
7 Report

Figure B.8.2 An expans.ion of the Total Work Flow Model (Cont'd.)

B18

APPENDIX C

HIGRATION OF IPAD SOFTWARE

A special study was conducted by the Control Data
Corporation as a subcontract of the Boeing IPAD comntract, to
investigate the problems of:

a) migrating applications programs and the IPAD system
software from a 3rd generation conputer +to a 4th
generation computer within a computer family and

b) migrating applications programs and IPAD systen
software across 3rd generation computer families.

The following is the final report of their study.

C1

C2

ORIGINAL PAGE IS
OF POOR QUALITY!

IPAD

SOFTWARE MIGRATION

5 January 1973

Approved: fj // /45- 1";'/{;.;: .
!

¢« A, Kershaw
General Manager

Submitted by

W. E. Glass
Control Data Corporation
Advanced Systems Laboratory
4201 North Lexington Avenue
St, Paul, Minnesota 55112

1.

2.

3.

0

TN A -
T 0 41,
TABLE OF CONTENTS Ia POOR PAGE s
IPAD SOFTWARE MIGRATION) >

SUMMARY AND CONCLUSIONS

THEORFETICAL BACKEROUND

e e Rt fel
. e e e . .
L B - B &) B T

The General Problem

Language Conversion

A Model Language Converter

Problems of Language Conversion
Comparison of Conversion Methods
Implementation of Language Converters

Preliminary Remarks on Common Language Design

FORTRAN SOURCE CODE TRANSLATION ON THIRD GENERATION

COMPUTERS

2.1

D M DN DN DN

© 3 O o W N

Features in CDCF not in IBMF

Features in IBM¥ not in CDCF

Syntax Differences Between CDCF and IBMF

Machine Dependent Statements in CDCF and IBMF
Input/Output and Data Transfer Statements in CDCF and IBMF
Implementation Restrictions in CDCF and IBMF

CDCF and IBMF Interfaces with Job Control Languages
Translation from IBMF to CDCF

INTRODUCTION TO THE DEVELOPMENT OF A MACHINE

INDEPENDENT FORTRAN

3.1
3.2
3.3
3.4

Preliminary Remarks

IPAD FORTRAN (IPADF)
FORTRAN Dialect to IPAF Translation

IPAD Implementation Language

C3

C4

MIGRATION OF OM'S FROM THIRD GENERATION TO FOURTH
GENERATION COMPUTERS

4.1 Introduction
4.2 IPADF Extended for Vector and String Processing (IPADFYV)
4.3 IPADF to IPADFYV Translation

SUMMARY AND CONCLUSIONS

A solution of the general IPAD problem (Section 1. 1) includes, as one of its
principal parts, development of methods for moving operational modules (OM's)
freely among the various computers in the IPAD system. Since most of the OM's
are written in some form of FORTRAN, a solution for this case alone can be
expected to be useful.

A number of methods for solving this migration problem, at least in principle,
are examined in Section 1.2, Of these, only two showed sufficient promise to

be retained for further consideration. The first, Method 1, requires that each
source language program be translated to a common language before compilation
and execution, The second, Method 3 in the original list, is based on a pairwise
set of source - host translators. The principal advantage of Method 1 is that

the common language becomes, by definition, the IPAD standard., The advantage
of Method 3 is that its initial cost is probably lower, but as new dialects enter
the system, new translators must be written, and documentation standards would
be difficult to enforce. Method 1, thus appears, on balance, to be the preferred

choice, and is accordingly recommended.

The design of the common IPAD language is the next concern. Three require-

ments are basic. It must be possible to translate existing programs to it, the
translated programs must not contain machine dependent code, and the language
must be extensible to accommodate fourth generation computers entering the
IPAD system.

Ag a preliminary step, two FORTRAN dialects, one for CDC computers and the
other for IBM computers, are examined in detail and differences in syntax and
usage noted (Section 2). Syntax differences are numerous, but do not constitute
a serious translation problem, since the intended interpretation for the source
code is known, and the corresponding statements in the host language can be
constructed from this knowledge. Several examples of this syntax conversion

are given in Section 2. 8.

A more difficult problem arises out of the interaction among the program, the
job control language, and the compiler. Fortunately, the areas in which this

problem are most likely to arise are known, and even if translation cannot be

C5

carried out automatically, the suspect parts of the program can be flagged for

programmer examination.

The most difficult translation problem occurs when code adhering to a common
FORTRAN syntax makes use of machine dependent constants or variable values,
since here there may be no indication that the code is machine dependent, and
therefore, there is nothing for the translator to detect. Even here, however,
there are constructions in which this problem is more likely to occur, and these
too can be flagged for review. The conclusion that follows is that much of the
translation process can be automated, but a substantial residue remains for
hand translation, and the signficant problems are the detection of machine inde-
pendent code and then fathoming of the programmer's intent.

It follows from examination of FORTRAN dialects in current use that the common
IPAD language can be machine independent only if it requires that much detail
that is now implicit in the computer environment for which the program was
written be specified explicitly., Accordingly in the proposed common language,
IPADF (Section 3), it is required that all variables be declared, either explicitly
or by class, together with their lengths in appropriate units. The collating
sequence must either be given explicitly, or fixed once and for all, (The decision
here was left open, pending further study). Explicit reference to overlays is
banned, but it may be desirable to allow declaration of variables by level in a

presumed hierarchy of storage.

To allow for extension of the language to the new class of vector and string

processors IPADF allows elementary arithmetic and logical operations on one

. dimensional arrays, but not on subsets of declared arrays, This rationale

Co6

allows operations favoring fourth generation computers that can still be

implemented readily on third generation machines,

More extensive vector and string operations analogous to those available as
primitive functions in APL are reserved for IPADFV, the fourth generation
IPAD FORTRAN, which contains IPADF as a subset. The architectural differ-
ences between third and fourth generation machines is so fundamental that it can
be assumed that rriost OM's will in time be reprogrammed for the newer com-
puters. Consequently, IPADFYV is not expected to be introduced until fourth

generation machines have effectively replaced their predecessors., An example
illustrating this reprogramming is given in Section 4. 3.

The conclusion reached in this study is that the IPAD software migration
problem is best solved by translating current OM's into, and writing all future
OM's in a common machine independent FORTRAN based language, IPADF,
developed especially for IPAD, that can be extended to include vector and string
processing in its fourth generation version, IPADFYV. '

Cc7

IPAD SOFTWARE MIGRATION

1.0 THEORECTICAL BACKGROUND

1,1 The General Problem

The IPAD software migration problem can be stated as follows: given an
open-ended set of programs, called Operational Modules (OMs}, written in
several languages for different computers, design a machine independent
system, IPAD, in which the OMs are linked by an executive program through
a data management subsystem to a common data bank. The system should
execute as a job in batch mode under the standard operating system at any

installation having the minimum equipment configuration required.

1.2 Language Conversion

Suppose that m different source languages are represented among the OMs
and that IPAD must execute on n different host computers. If d of the source
languages are also languages for the host computers, then mn-d source
language to host machine language conversion algorithms will be required.

Most scientific programs (in the United States at least) are written in some
form of FORTRAN. If will be assumed, therefore, that the OMs are all
written in a dialect of FORTRAN and that each source and host computer is

provided with a compiler for converting programs to its own machine code.
Now let -
L, be the i® FORTRAN dialect
Mj be the jth machine language
P(A, Li) be a program for algorithm A expressed in Li
P(A, Mj) be a program for algorithm A expressed in Mj
Tij be a translator for converting programs from Li to L.,

J
Cij be a compiler for converting programs from Li to Mj

Also let A —»| B~—» C denote the execution of program B with input A and

output C.

C8

With thié notation, a software migration process can be described concisely.

For exampie -

P(A, Li) P(T.H, Mr) . P(B, Lj) 5 P(Cjk‘ Ms) i P(D, Mk)

In words, algorithm A written in Li is translated to Lj in machine r to
produce a program for the modified algorithm B, The new program is
compiled on machine s yielding a machine language program for yet another
modification of the algcorithm which can be executed on machine k. In real
pfocesses, r and s normally belong to the set (j, k), but it is not necessary.
Nor is it necessary that A, B, and D be the same algorithm. Indeed, there
is no general way to decide if they are or not, except at the machine language
level where the outputs of a program and its translation can be compared.

In what follows, however, it will be assumed that the algorithm is carried
unchanged through the steps of a migration process, unless deliberately

altered,

The migration process sketched in the exarmple above can be partitioned in
three different ways, depending on whether j = o, i, or k.

Method 1. j = o. For this case, each source language program
is translated to a common language, Lo’ before

compilation. Schematically -

P(A, L) _HP(T; , M YL P(A, L) —P(C

MS) |, P(A, Mk)

ok’

Here, m translators Tio and n compilers CO are required.

k

Method 2, j=1i. bSince Tii is equivalent to the identity translation,
this method simplifies to -

P(A, L) [P(C M)] P4, M)

and requires mn-d compilers.

Method 3. j = k. Here -

9

This method requires mn-d translators, but makes dse of

the already existing host language compilers.

If t represents the cost of a translator, and c¢ the cost of a compiler, then

mt + ne, (mn-d)ec, and {mn-d)t are the cost functions for these three methods
respectively. The relative ranking of these cost functions depend, of course,
on the values assigned the parameters. However, under the plausible
assumptions that (i) d=o, (ii) m +n < mn, and (iii) t < ¢, it is easy to see
that Method 2 is more costly than either Method 1 or Method 3. Accordingly,
it will be dropped, at least for the time being, and Methods 1 and 3 retained

for further consideration.

One other method merits introduction at this time. Let Iij be an interpreter

for converting programs from Mi to Mj' Then -

Method 4.

P(A, Li)

P(Cﬁ, Mi) L, P(A, Mi) sl P(Iij’ Mj) — P(A, Mj)

—>

This method requires mn-d interpreters:

Sometimes translation and execution are combined, so that each instruction

in Mi is translated as needed, yielding -

Method 4a.,

P(A, Mi) P4, Mj)

P, M,
(i J)

I—»

1.3 A Model Language Converter

It will be useful to have at hand an idealized model of a converter which can
represent, in turn, a translator, compiler, or interpreter. Suppose the
conversion to be performed by a finite state machine defined by the two
functions

Y+ = ¥ [80), =), Y
and i

si+1)= & [sW, =), ¥ +1)]

C10

where x(i) is the current character from the input source language text, Y(i)
is the current (possibly empty) sequence of output characters of the converted
text, and S(i) is a vector defining the current state of tﬁe machine. The
converter, thus, can be conceived as a black box that accepts the source
text, one character at a time, and after a certain number have been received,
depending on the state, issues a string of one or more characters of the
converted text., For certain combinations of input and machine state, con-
version may not be possible, and Y(i + 1) will be issued as an error message.
In the simplest case, well-defined (as to beginning and énd) substrings of
input text are replaced by substrings of output text, where a one-one corres-
pondence exists between the two strings. In the worst case, the complete
input text must be received by the converter before the first character of the
converted text is emitted.

In general, conversions will range between these extremes, Well-defined
substrings (called here sentences) are presented to the converter in sequence,
Ag each sentence is received, it will have 0, 1, or many conversions.

If the input sentence has no conversion, and is a syntactically correct sentence
of the input language, it denotes an action of the source computer that cannot
be expressed in the output language, either (i) because of a shortcoming in

that language, or (ii) because no comparable action exists for the host machine.

In either case, a special message is inserted in the output text.

If an input sentence has just one conversion, the corresponding output sentence

{or sentences) is issued.

If an output sentence has more than one translation, it must be saved until

sufficient text is accrued to resolve the ambiguity.

1.4 Problems of Language Conversion

There are a number of problems associated with the design of a practical
converter. The main fask is to establish a correspondence between the

sentences of the source and host languages, Most sentences in most languages
are ambiguous when taken by themselves. In FORTRAN, statements (sentences)

are made up of a fixed part and a variable part (which may be empty). The

Ci1

fixed part serves to identify the class to which the statement belongs, and, in
fact, is a sort of distributed name for that class. If the variable part is absent,
the statement cannot be ambiguous; it will either have exactly one meaning, or
none. On the other hand, the v_ariable‘ part, when present, 1s composed of
parameters whose values in a given program may be determined by the charac-
teristics of the source computer; i.e., the statement may be machine dependent.
If every statement containing parameters needs to be analyzed in its {often
unbounded) context to ascertain its true meaning, the conversion task, if not

impossible, becomes one of truly formidable proportions.

Despite the fact that many FORTRAN statements are potentially ambiguous,
most statements actually appearing in a pair of FORTRAN programs written
in different dialects are identical in form and have almost the same meaning.
Of the remainder, most involve merely syntax differences, in which again
essentially the same meaning is expressed in another way. The residue,
comprising only a small part of the source program, requires the most effort,
and here the difficulty lies more often in detection of the anomaly than in its

correction.

While similar statements in the source language generally have close to the
same meaning as in the host language, they are seldom identical, due to
differences in the computer's word lengths, data representation methods,
memory organization, etc. When a statement has a different meaning for the
host machine than for the source machine, a decision must be taken as to which
meaning the converied texi is to carry. If the host computer's interpretation

is accepted, the statement and its conversion are identical. If the source
language interpretation is to be preserwved, the converted text becomes a set

of directions for reproducing the source machine action on the host computer.

In the latter case, conversion reduces to imitation (emulation or simulation)

of the source computer on the host machine. This is essentially Method 4 above.
The advantage is that conversion is exact. The disadvantages are that (i) writing
an interpreter for one computer in the language of another is not a simplé task,
and (ii) simulation of one machine on ancther leads to very inefficient program

execution.

Ci2

1.5 Comparison of Conversion Methods

It is obvious from the analysis so far, that the major problems of program
migration lie not so much in the differences between FORTRAN dialects as in
the differences between the source and host computers. Even if they used a
common language, programmers writing for different computers would produce

different programs.

As can be seen, each of the methods so far described has advantages and dis-
advantages. Method 1 is attractive from the standpoint that a common language
for IPAD would impose a standard FORTRAN on all source programs. Pre-
existing code would be converted to it, and all new programs would be written
in it. The major disadvantage is that it is still possible to write machine
dependent code in a common language, and the temptation to do so would be

as strong as ever - namely, to improve performance on one's own computer,

A priori, Method 2 appears to have little to recommend it. The writing of a
new compiler, or the rewriting of an already existing one to provide for different
'diale_qts is on the face of it more difficult than making the conversion at the
source language level. Method 3 does just that, and it should be more cost
effective than Method 1. However, without a common language and an official
version of each program, uniform standards of program documentation and
maintenance would be difficult to enforce. Method 4 has the advantage that
conversion is exact, but execution is inefficient - again there is no common

language.

An interesting, but expensive possibility, denoted Method 5 provides for a
common language as in Method 1, and allows as an option, the exact conversion
of Method 4. '

Method 5.

P(A, L) B(T; ;M)| P8, L) fP(C M) L, P(A, M) P S TET]LP(4, M)

\——ﬂ_—y
I C s IVI- ’____’ I j&, IUI.

Here, if d=o, m translators, m + n compilers, and mn interpreters are needed

for the full system,

C13

The advantage of a common language is expected to be decisive for IPAD users,
and in what follows, the emphasis will be placed on conversion by way of Method

1, but much that will be said will apply to the other methods as well.

1.6 Implementation of Language Converters

While not strictly necessary, it is of some advantage that the conversion pro-
cesses themselves be machine independent. This is not as easy to achieve as it
might at first appear. Suppose it is required that all conversion programs be
written in a common implementation language. Then a compiler is needed for
each target computer. By hypothesis, this condition is fulfilled if FORTRAN is
chosen for this purpose. But this approach must be handled carefully to avoid
machine dependencies creeping into the conversion code, since it is just as easy
to write machine dependent conversion programs as OMs. For example, for

Method 1, the implementation process is represented by

P(Tio’ LJ.) - P(Cjk’ Mk) - P(Tio, Mk)

where Li is the source FORTRAN dialect, LO is the common [PAD FORTRAN,
and Lj is a machine independent subset of Li (e.g., ANSI FORTRAN).

Another approach that reduces the labor of creating a special implementation
language compiler makes use of a two stage process. Here a simple bootstrap
compiler, Cl K written either in machine independent FORTRAN, or in the
assembly language of the target machine k, is compiled and then used to compile
the second stage compiler, C,,, written in language L. Cg is a macro pro-
cessor for the macro language L2. The converter (translator, compiler, or
interpreter) is written in L2 and compiled by CZk' This is essentially the method
of STAGE 2 [1] . Schematicaily,

P(Cyy, L) _,LP((;lk,Mk) | P(Cy,. M)

Cl4

A macro processor provides a reasonably efficient way to resolve syntactic

differences between a pair of languages, since in principle, all that is required
is the substitution of one string of characters for another. The fixed part of the
first string is a template representing the distributed macro name, The macro
body generates a new fixed part, inserts parameters to replace those from the

original siring, and produces the replacement string.

Either method solves the context-free conversion problem. When a syntactic
unit (sentence, statement) of the input text can have more than one meaning,
depending on the context in which it is embedded, the problem becomes more
difficult. By way of illustration, suppose the following subroutine was written
to be executed on the CDC 6600, which is capable of storing 10 6-bit alpha-
numeric characters in one 60-bit word. It is desired to translate this routine
for compilation and execution on a computer in which 8-bit alphanumeric

characters are stored four per word.

SUBROUTINE PACK

THIS ROUTINE READ IN AN 80 COL CARD INTO AN ARRAY IN

WHICH THE CHARACTERS ARE STORED, ONE PER WORD, RIGHT
ADJUSTED WITH ZERO FILL. THE CHARACTERS ARE THEN PACKED
INTO 8 WORDS, 10 TO A WORD,

DIMENSION IN (80), IOUT (10)

READ 1000, IN

1000 FORMAT (80 R1)

Q00

I=1
DO10J=1,8
IOUT (J) =0

DO'10 K =1,10
IOUT (J) = IN (I) + IOUT (J) * 64
10 I=I+1
PRINT 1001, 1OUT
1001 FORMAT (A10)
RETURN
END

The only dialect statement in the subroutine is the first format statement, yet

nearly half the statements are machine dependent and, therefore, ambiguous.

C15

The translator can detect and replace the dialect statement although the details
of implementation may not be simple. For example, replace -
1000 FORMAT (80R1)
with
1000 FORMAT (80A1)
CALL PATCH (IN)
and insert
SUBROUTINE PATCH (IN)
DIMENSION IPT (64), JPT (64)
DO 101I=1,80
DO5 J=1,64
IF {(IN(I). EQ. IPT(J) GO TO 10
5 CONTINUE
10 IN(I) = JPT (J)

IPT and JPT are preset with a data statement to the character set left adjusted
with space fill, and right adjusted with zero fill, respectively.

What the translator cannot do without considerable analysis, is detect that the
indices on both DO-loops in the original program are machine dependent. The
detection and conversion of machine dependent code is the central problem for
automatic language translation and will be discussed more fully in subsequent

sections of this report.

1.7 Preliminary Remarks on a Common Language for IPAD

Method 1 requires that all programs be transiated to a common machine inde-~
pendent FORTRAN dialect, called here, IPADF.

At the syntax level, a language is just a set of rules for stringing the symbols of
an alphabet together. At the semantic level, a language is a method for recording
and communicating information. The two aspects of language are joined by the
process of interpretation, whereby symbol strings generated by a set of syntax
rules are assigned meanings, It is easy to see that a symbol string can be given
more than one interpretation, so that fixing the syntax is not sufficient to fix the
interpretation. As any student knows, there is no way to infer the meaning of a

word in a strange language by just looking at it. If it can't be found in a dictionary,

Clo6

its meaning must be determined by observation of the response it evokes in a
user of the language. '

The interpretations given FORTRAN statements vary among users. The
relevant response to an interpretation is the action taken by the user's comi)uter,
and that response is determined by the compiler. Thus, it is not always
possible to know what a statement in a FORTRAN program means without
knowing the computer on which the program is to run and what the compiler does
in translation. This is clearly unsatisfactory for IPADF whose statements are

intended to be interpreted in just one way.

While it is not possible to structure a language in a way that compels the user
to adopt the intended interpretation, it is possible to develop the syntax in a
way that will make it easier for him to do so. It is most important that the
language be rich enough so that useful concepts can be given explicit statement.
This means that if it is customary for a user of one machine to interpret a
FORTRAN statement differently than a second user does, the statement must
be replaced with a pair of statements, one for each interpretation. Thus, it
turns out that a machine independent language is of necessity richer in detail
than one specialized to a single computer. .

Following an examination of two well known FORTRAN dialects in Section 2, the
main features of a machine independent IPAD FORTRAN are described in
Section 3.

C17

2.0 FORTRAN SOURCE CODE TRANSLATION ON THIRD GENERATION
COMPUTERS .

Tt is expected that IPAD will be implemented first on conventional third genera-
tion computers with later transfer to fourth generation vector processors. For
both Method 1and Method 3 of the preceding section, translation from one
FORTRAN dialect to another is required, either to a common language (Method 1),
or between pairs of source-host dialects (Method 3). In either case, the feasi-

bility of translation must be demonstrated.

In this section, two well known FORTRAN dialects are examined, FORTRAN
Extended for the CDC 6000 series computers, and FORTRAN IV (H Extended)
for the IBM 360 series computers. For convenience, the former will be called
CDCF, the latter IBMF.

Neither language includes the other as a subset. Each contains statement forms
peculiar to it, some denoting extensions to the basic FORTRAN language, others
included to utilize certain machine features, and others representing little more

than variations in syntax.

The catalogue of differences between CDCF and IBMF given below were obtained
by comparing the respective reference manuals [2] s [3] .,and do not include

deviations introduced by the compilers. g —

2.1 Features In CDCF Not In IBME

(2.1.1) ENCODE-DECODE (allows data moves in main memory under
format control)

(2.1.2) Implied DO-loops in data statements

(2.1.3) Data initialization in labelled COMMON by DATA statements
outside a BLOCK DATA subprogram

(2. 1. 4) Two branch arithmetic and logical IF statements

(2.1.5) Literals and octal constants in arithmetic statements

(2.1.6) Masking expressions (permits use of logical operators on
non-logical variables)

(2.1.7) Abbreviated subscripts on arrays, and abbreviation of logical
symbols

(2.1.8) Left and right justified literal constants with zero fill

C18

2.2 Features in IBMF Not In CDCF

(2.2,
(2.2.
(2.2.
(2.2,
(2.2,
(2.2.
(2.2,

2.3 Syntax

1)
2)
3)
a)
5)
6)
7)

IMPLICIT type declaration by initial letter

Maximum of seven subscripts in array declarations

Data initialization in type declaration

GENERIC statement (allows function calls by genéric name)

Dummy variables on ENTRY statements

List directed I/O (allows data transfers formeitted by separators)

Call-by-name for subroutine variables

Differences Between CDCF And IBMF

(2. 3.
(2.3.

(2. 3.
@. 3.
(2.3,
(2. 3.

(2. 3.
(2. 3.
(2. 3.
(2. 3.
(2.3.

(2. 3.
(2.3.

1)
2}

3)
4)
5)
6)

7)
8)
9)
10)
11)

12)
13)

Element

comment

string delimiter in
FORMAT statements

maximum name length
alphabetic symbol set
PAUSE n

END

TYPE in type
declarations

computed GO TO
out of range

assigned GO TO
out of range

RETURNS declaration

Complex argument in
I[F statement

PROGRAM statement
NAMELIST

CDCE

C,¥*,or $incol. 1

s
o~

7 characters
A-Z
n (octal)

termination program
optional
abort

go to absolute
address

SUBROUTINE SUB,
RETURNS (A, B)

real part taken

yes
$ NAME
$

2.4 Machine Dependent Statements In CDCF And IBMF

(2. 4.
(2.4.
(2. 4.

1)
2)
3)

IBMF

Cinecol. 1

6 characters .
A = zs $
n (decimal)

does not terminate
program

_ o

CONTINUE
abort

SUBROUTINE SUB

(%, %
not allowed
no

& NAME
& END

type ECS in CDCF (identifies variable in Extended Core Storage)
type *S statements in IBMF) :

Any other FORTRAN statement in which the value of a parameter
depends on the word length of the machine, the collating sequence,
or the way in which memory is organized.

C19

2.5 Input/Output And Data Transfer Statemenis In CDCF And IBM¥F

(2.5.1)

(2.5.2)

-C20

Asynchronous read-write
CDCF

BUFFER IN (a,p) (A, B)

BUFFER OUT (a,p) (A, B)

IF (UNIT(a))r, s,t

a is data set number, p is parity mode, A, B first and last
address in main memory; r,s,t are respectively, unit ready,

end-of-file detected, parity error.

IBME

READ {a,ID=n) list

WRITE (a,ID=n} list

WAIT (a, p) list

a is data set number, n is identifier, list defines area in main
memory, and is either an array name or first and/or last
address. If list is not specified on READ, a record is skipped.

Random access
CDCFE

QOPENMS (a, ix, d, p} open mass storage file
READMS (a, fwa,n, i) read mass storage file
WRITMS (a, fwa,n,1i) write mass storage file
STINDX (a,ix,1) store index

a is data set number, ix is first word address of index, 1 is
index length, p is parity mode, fwa is first word address of
record, n is number of words to be transferred, and i is the

record number or address of record number {name).

IBMF

DEFINE FILE a (m,r,f,v), ...

READ (a'r,b, ERR=c) list

WRITE (a'r, b, ERR=c) list

FIND (a'r)

where a is data set number, m is number of records in data
set, r is maximum size of each record in a, [is the format

control, and v is the pointer to the record involved in the

current operation.

2.6 Implementation Restrictions In IBMF ‘And CDCF

There are no uniform standards restricting the range of most FORTRAN para-
meters. As a result, part of the definition of the language is left to implementive
_decisions which may or may not be documented. Tor example, in IBMF, the
following restrictions are imposed:

(2.6.1) DO-loop nesting is limited to 25 levels

(2.6.2) The test value in a DO-statement may not exceed 931 _ 5

(2.6.3) No more than 255 characters -allowed in a literal constant or in
a field in a FORMAT statement

(2.8.4) Up to 50 nested references to another statement function can be

made in the definition of a statement function.

In CDCF,

(2.6.5) DO-loop nesting can extend to 50 levels

(2.8.86) The test value in a DO-statement may not exceed 215.

(2.6.7) A literal in an expression is limited to 10 characters; in a DATA

statement, the length cannot exceed 19 contmuatlon cards; ina
FORMAT statement, 136.

{(2.6.8) The number of nested references to other statement functions is
undocumented; up to 63 arguments are allowed.

2.7 CDCF And IBMF Interfaces With Job Control Language

There exists a close relationship between a version of FORTRAN in use with a
given operating system, and that system's job conirol language. In a general
way, the algorithm is described in FORTRAN, and the manner of execution in

a given computer system is specified in the job control language. The distinction
is not precise, and in some systems run time specifications are made in
FORTRAN that in other systems are given in the job control language. In CDCF,
for example, overlays can be defined and called explicitly in the program. In

the IBM. sysiem, overlays are defined in the job control language, and called
implicitly in the program. Again, CDCF requires that the names of all input/
output files be given in a special PROGRAM statement. The IBM system provides

this information in the job control language.

C21

2.8 Translation From IBMF To CDCEF

Now suppose it is desired to iranslate programs written in IBMF to CDCF. For
this case, items under 2.1 above play no role, except perhaps for optimization.
Ttems under 2. 3 are the most common cause of trouble whenever an attempt is
made to run an IBMF program on a CDC computer without preliminary editing,

but they are in fact easy to translate since each can be converted as encountered.

Those features of IBMF having no precise counterparts in CDCF listed under 2.2
are more- difficult to translate. For example, the IMPLICIT type declaration,
(2.2.1) IMPLICIT INTEGER A-H requires in CDCF that each variable beginning
with one of the letters A through‘ H be included in a type INTEGER declaration.

Arrays having more than three subscripts (2.2.2) must be converted for CDCF.
One way to deal with this problem is to define a function subprogram with the
same name as the array, that returns the specified array element from the

original array, renamed as a one dimensional array. For example, in IBMF

DIMENSION A(5, 10, 20, 3)

X = A(I, T,X, L)

would be translated to
COMMON/B/B(3000)
X =A{1,J,K, L)

where A is defined by
FUNCTION A(L, J,K, L)

COMMON/B/B(3000)
M=1-1+5%(J-1+10%(K-1+20%(L~-1))}
A = B(M)

RETURN

END

For CDCF data initialization must be removed from type declarations (2.2, 3)

and put in a separate DATA statement.

GENERIC statements (2. 2. 4) must be deleted for CDCF, and the appropriate

subprogram name inserted in all function and subroutine calls.

€22

ITBMF allows a parameter list on ENTRY statements (2.2.5); CDCF does not.
This problem can be scolved in several ways. One solution that leaves the

subroutine calls undisturbed is illustrated below.

IBMT code

SUBROUTINE SUB (W, X,Y,Z)
(body 1)

ENTRY SUBA (Y, X, U)
(body 2)

END

CALL SUB (A, B, C, D)
CALL SUBA (B, A, E)

CDCF code

SUBROUTINE SUBT (W, X, Y,Z,U)
(body 1)
ENTRY SUBTA
(body 2)
RETURN
END
SUBROUTINE SUB (W, X, Y, Z)
CALL SUBT (W, X, Y, Z,U)
RETURN
END
SUBROUTINE SUBA (Y, X, U)
CALL SUBTA (W,X,Y, Z, U)
RETURN
END

List directed I/O (2.2.6) will have to be handled by a list scanning
subroutine. :

Call-by-name for subroutine variables (2.2.7) is taken care of in
CDCF either by the LOC library function, or by making the variable
a one dimensional array.

Cc23

Real numbers in the IBM 360 are expressed in base 16 (hexadecimal notation).

All have a 2-digit exponent. The characteristics for REAL*4 (single precision),
REAL*8 (double precision) and REAL*16 (extended precision) are 6, 14, and

28 digits respectively. For most mathematical work, satisfactory precision is
preserved if REAL*4 and REAL*8 variables are represented as single precision
(REAL) variables in CDCF, while REAL*16.are classified as double precision.

No difficulty should arise if LOGICAL*1 and LOGICAL*4 are replaced by
LOGICAL; similarly for INTEGER*2, and INTEGER*4, Hexadecimal constants,
on the other hand, can be expected to be involved in machine dependent operations,

and will regquire manual translation.

The input/output and data transfer statements of 2.5 are more subtly machine
and software system dependent. For example, the asynchronous read/write
statements (2.5, 1) in the two languages are quite similar and, except for the
record skipping feature in IBMF, translation involves little more than syntax
changes. It is not clear, however, that a CDC programmer and an IBM pro-
grammer would resort to asynchronous operation at the same place and under
the same circumstances in their respective programs. For the present, it will
be assumed that the translator makes the translation, but inserts a warning

flag that all might not be well.

The situation with regard tc the random access statements is similar, except
that here translation is complicated further by the two languages specifying
different parameters as well as different formats. Those statements probably

should be flagged for manual translation.

The conclusion that emerges from the above thicket of detail is that, while not
always easy, machine translation of FORTRAN programs from one dialect to
another is possible, provided that the translator can detect that translation is

regquired.

Machine dependent data and parameter values are most likely to occur in
DATA statements
FORMAT statements
IF statements

DO statements

€24

integer assignment statements
logical assignment statements

and can be expected to require the most attention from the programmer to

resolve.

The translation process as it is presently conceived, proceeds in the following
way. All programs are submitted with test data and the expected output. An
attempt is first made to compile and execute the program without preliminary
translation to determine adherence to IPAD programming standards. If the
program fails to compile correctly, a preliminary examination of the error
listing should be made to determine if translation will resolve the difficulty.

{The error may be an untranslatable statement.)

If, after translation, the program compiles but fails to execute correctly, it

can be assumed that the program contains machine dependent code. At this
point, the programmer takes over, and begins a detailed examination of the
suspected parts of the code aided by the IPAD compiler's cross reference

listing. His editing comments are keypunched to create a correction deck for
the program in UPDATE (editor) format. The edited code is compiled, execution
is attempted, and the cycle repeats until a correct executable program is

obtained.

C25

http:program.in

3.0 INTRODUCTION TQO THE DEVELOPMENT OF A MACHINE
INDEPENDENT FORTRAN

3.1 Preliminary Remarks

One conclusion that emerges from an examination of both CDCF and IBMF¥ is
that neither language is appropriate for use as the machine independent IPAD
FORTRAN (IPADF). Both languages contain explicit machine dependent
statement forms and, more important, statement forms thcy share in common

are often given different interpretations by the respective compilers.

The proliferation of FORTRAN dialects, of which the above two are examples,
is caused by a number of factors, not the least of which is the 'not-invented-

here" syndrome. A less frivolous reason is that computer language development
has been directed toward incompatible goals. While the language theorisis

sought to develop languages suitable for the machine independent description of
algorithms, another and more influential group, wanted languages for practical
programming use that allow the programmer to reduce the amount of detail he
need write, and yet produce programs that execute satisfactorily on predeter-~
mined computers. The result was an odd compromise. The theorists specified
nothing quantitative in languages designed primarily for numerical calculations.
In fact, in the hope of preserving machine independence, they defined nothing .
that was not, in some sense, common to all machines. The developers of
practical languages merely added what they felt they needed either, explicitly

to the syntax, or implicitly in the interpretation given by the compiler.

The error of the theorists was in leaving so much undecided. What is not
specified is left to the user to interpret as he sees fit, and each will avail
himself of the freedom granted. A truly machine independent language will
require more, not less, information than one intended for a single class of
computer. For example, if the FORTRAN statement, C = A + B, is interpreted
routinely as a 24-bit operation on one machine, and as a 48-hit operation on
another, the two computers are very possibly not working the same problem.
The numerical precision with which an arithmetic process is carried out is
generally crucial to its accuracy, and it is a fundamental shortcoming of a
machine independent language if it is incapable of expressing this most basic

of parameters.

C26

In TPADF it is expected that the precision of real numbers is to be specified
by an explicit statement of the number of significant decimal digits desired;
thus, REAL*s, has s significant digits. There is to be no default option, and
hence no REAL or DOUBLE PRECISION declaration. No penalty is expected if
calculations are carried out with higher precision than required. The treatment
of complex numbers is similar, and needs no separate discussion.

The declaration INTEGER*s specifies the number of decimal digit positions
_required, and is included for the sole purpose of aiding the compiler in deter-

mining storage requirements.

Integers expressed to bases other than 10 constitute a special class, denoted
by the declaration BASE*n. s, where n is the base and s is the number of base
n digits. IL.ogical constants have a fixed length and require no additional

specification.

A similar sort of vagueness plagues most FORTRAN dialects with respect to
their character set, or alphabet. Few dialects have common alphabets, or
order them the same way, ANSI standards notwithstanding. Even when the
sets more or less agree, they are often partitioned into subsets differently.
For example, IBMF counts "'$" as an alphabetic character; CDCF, as a special
symbol. Clearly, IPADF must either (i) specify once and for all what its
character set is, how the symbols are to be classified, and in what order they
are to be ranked (collating sequence), or (ii) this information must be provided
explicitly with each program requiring it. It is expected that the first of

these alternatives will be adopted for IPADF,

Packing and masking operations occur frequently in FORTRAN programs, and
almost invariably are machine dependent involving an addressable unit, usunally
a machine word, capable of storing n characters of the alphabet, where n is

a machine dependent parameter. It seems likely that the requirements for
machine independence will make it necessary to introduce a type LITERAL*s

declaration to define the number of characters in the addressable unit.

Because every variable must be given an explicit length declaration in IPADF,
the default rules for implicit typing must be dropped. However, the IBMF

C27

"IMPLICIT type *s declaration will be retained to provide blanket typing, except
that the length specification s, optional in IBMF will be mandatory in IPADF,

It is tempting to consider a general overhaul of FORTRAN mixed mode arithmetic
for IPADF, since different dialects often produce differeht results for simple
arithmetic statements involving mixed real and integer operands. At the very

least, arithmetic operations involving non-numeric variables should be disallowed:

For the IPAD environment, it is undesirable that run-time specifications appear
in the body of a program. Specification of overlays, for example, would have
to be deleted, or ignored, if the program is to execute on a virtual address
computer. Leaving aside development of a machine independent job control
langnage as visionary at present, it would appear that the best solution for IPAD
is to require that all run~time information be provided on printed forms for

operator use in constructing the job control deck for the host computer.

The above discussion applies primarily to so-called third generation computers
in which instructions usually involve one operation per instruction, the most
notable exception being block transfers of data. Fourth generation computers are
distinguished by a capability to perform arithmetic and logical operations on

. all or a selected subset of the elements in a one dimensional array or vector.

It turns out that very little modification of the FORTRAN language is required

to permit elementary vector operations. The usual convention is that the name of
a one dimensional array represents the arrayinanarithmetic or logical expression,
while a vector in a higher dimensional ariray is selected by replacing the index

of its elements by a * in its indexed name. For example, if DIMENSION A(10, 20),
B(10) then B = A(*, 5) means that the fifth column of A is transferred to the

vector B.

A proposed machine independent IPAD language incorporating the features

discussed above is sketched briefly in the following paragraphs.

c28

3.2 IPAD FORTRAN (IPADF)

The character set of IPADF are the 26 letter symbols A-~Z, the 10 digit symbols
0-9, and the special symbols =+ - * [/ (), . $; Letter and digit symbols are
called collectively alphanumeric symbols.

Names begin with a letter and can contain up to 7 alphanumeric symbols. Variz-
bles are identified by name and declared by type and length. The following types
are recognized by IPADF: REAL, COMPLEX, INTEGER, LOGICAL, BASE,
LITERAL. For real and complex numbers, the length is the minimum number
of significant decimal digits in the fraction part of its floating point representa-
tion. ILogical variables are of constant length and require no specification.
For all the remainder, the length specifies the maximum number of elements
denoted by the variable, for integers, decimal digits; for base variables,
the number of base a digits; and for literals, the number of characters. Type
REAL, COMPLEX, INTEGER, and LITERAL follow the form

type *s name,;, nameg, ...
where s is the length. Based variables are declared by

BASE *n, s name;, nameg, ...

where 8 is the maximum number of base n variables (octal, hexadecimal, etc.)

For logical variables
LOGICAL namel, name

is sufficient.

92 v

Arrays may have up to 7 dimensions and are declared in a dimension statement
of the form

DIMENSION Array name (dl’ d o d)

2° " n

€29

Arrays can be referenced in a number of ways. An array name, standing alone,

denotes the whole array. An array name followed by coordinate variables,
A(L, J, K) picks out an element in the array, while A(¥, J) designates the Jth

column vector in the array A.

There are no default type declarations.
allows variables to be typed by their initial letter.
IMPLICIT type *s

Howeveyr, the IMPLICIT declaration

The statement form is

followed either by the specific letters involved, or by their range e.g. I-N).

Arithmetic operations involving variables of different type is called "mixed
mode arithmetic. " The results of valid IPADF mixed mode arithmetic operations

are shown in Table (3. 1) below.

Real Complex | Integer Logical Base n Literal
Real Real Complex Real —_——— Real ————
Complex | Complex | Complex | Complex - ———— ————
Integer Real Complex | Integer - - ————
Logical -———- e _——— Logical ———— —-————
Base n Real ——— -——— _——— Base n ————
Literal -——— -———- e —— o ————

Table (3. 1) Mixed Mode Arithmetic

Definition of IPADF assignment staterments follow normal FORTRAN rules

except for the restrictions imposed on mixed mode arithmetic shown above,

and the extension of the notion of variable to include vectors as well as scalars.

Thus, if A, B, and C have been dimensioned as N element one dimensional

arrays, C = A+B, has the same meaning as:,

1

C30

PO 11I=1, N

C(I) = A(I) + B(I)

Run time declarations are not permitted in IPADF. Directions for segmenting

memory, definifion of overlays and input/output files, etc. are rélegated to the

job control language.

In general features common to both CDCF and IBMF are retained in IPADF.

For unshared features, the decision on which to incorporate and which to rejec't

is based on estimated ease of coding in a machine independent environment, a

purely subjective judgement. This list below is not complete, but covers most
of the differences between CDCF and IBMF noted in Section 2.

(3.2.1)
(3.2.2)
(3.2.3)

(3.2.4)
(3.2.5)

(3.2.86)
(3.2.7)

(3.2.8)

(3.2.9)
(3.2.10)
(3.2.11)

(3.2.12)

ENCODE-DECODE is not implemented
Implied DO-loops in DATA statements are permitted

Data initialization in labeled COMMON is aliowed outside =z
BLOCK DATA subprogram

Two branch arithmetic and logical if statements are not allowed

Literal and Base n constants can appear in arithmetic statements
subject to the rules of mixed mode arithmetic

Masking expressions are not permitted

Abbreviated subscripts on arrays, and abbreviated logical
symbols are not permitted

Left and right justified literal constants are permitted, but
with blank fill.

Data initialization is confined to DATA statements
No GENERIC statement

Dummy variables are permitted on ENTRY statements,
following IBMF rules

List directed I/O not implemented

C31

3.3 FORTRAN Dialect to IPADF Translation

For the implementation of Method 1, it is necessary that OM's written in each
of the m FORTRAN source dialects, Li.’ be translated into Lo, the common
IPAD FOR’?RAN. (IPADF).

It wiil be assumed that the translafor TiO is written in Li.’ though, of course,
this is not necessary; any language at the source installation will do. The
main point is that each source user is expected to develop and checkout his own
translator, and convert his own OM's. The complete process is depiéted

schematically below.

(1) compile translator on source computer

(2) translate test program A

(3} compile test program on source computer

P(A, Li) ~p | P(C

(4) execute test program on scurce computer

D—®|P(A, Mi) —® Rg

(5) compile translated test program on host computer

P(A, —» P(C_.,M,) |—® P(A, M,
(A,L,) (Cys0 M) (4, M)

(6) execute test program on host computer

D—»} P(A4, Mj) —PR

H

(7) compare results Rg and Ry from steps (4) and (6) respectively.
The validation process was described in some detail to direct attention to the

fact that final certification of each translator will have 1o be made on 2 host

computer. Initial translator checkout and translation on source computers is

C32

proposed here to distribute the workload more evenly, but this approach involves
considerable travel between source and host installations until checkout is com-
pleted. The alternative is to perform all translation on the host computers. If
the workload permits, this may be the better way. A final decision cannot be

made at this time.

Translation from source dialects to IPADF is mainly a matter of removing
machine dependent code from OM's. Some of this code can be expected to
satisfy the syntax rules for both languages, and will be impossible for a trans-
lator to detect. An example of this type was given in Section 1. 6.

Each installation is responsible for its own OM translation, and, consequently,
is free to develop whatever aids it chooses for the purpose. However, it is
expected that most will find it useful to incorporate into the translator the
capability for flagging sections of code having a high probability of being
machine dependent. Particular attention should be given to:

(3.3.1) DO-loops involving integer variables
(3.3.2) Logical IF statements

(3.3.3) Non-standard library functions operating on characters
(e.g., SHIFT, PUT, GET, etc.)

(3.3.4) DATA statements contzining binary, octal or hexadecimal data
(3.3.5) FORMAT statements (non-standard, literal)

Hand corrections to programs will normally be made via the installation's
standard editing program (e.g., CDC UPDATE). Final validation of an OM
will require comparison of its output with that obtained from the untranslated
program, and for suvme cases, it can be expected that several passes through

the translate-correct-edit loop will be necessary.

3.4 IPAD Implementation Language

Implementation strategies were discussed briefly in Section 1. 6, and the con-
clusion was reached that the implementation language for IPADF should itself
be machine independent. One language description will suffice then for all IPAD
users involved in the development of IPADF, and if the implementation language
is one for which a compiler is generally available, it remains only to determine

C33

its suitability for the task.

The main operations performed by a compiler are (i) parsing of the statement
symbol strings to separate the fixed and variable parts and establish the pre-
cedence of operations, (ii) conversion of constants and data to internal machine
representation, (iii) allocation of storage to variables by name and type, and

finally (iv) generation of the machine language code.

There is no obvious reason why algorithms performing each of those operations
cannot be described satisfactorily in FORTRAN, augmented, as necessary, by
the addition of library subprograms. Call this implementation language, IMPF.,
The principal advantage of this approach is that, if care is taken to keep machine
dependent code out of the program itself, ITPADF and its successor for fourth
generation computers, IPADFV, can be written in IMPF for each host computer
and compiled by its standard FORTRAN compiler.

It is not intended that the compiler itself be machine independent. Much of the
code could be made so, but at exorbitantly high cost. Very likely it would be
necessary to settle on FORTRAN character as the information unit, and store
data one character per machine word. Every variable name in the symbol table
would then be represented by an array, named by a pointer variable. Storage
allocation strategies would have to be made uniform, and this could cause
undesirable system repercussions. Then, too, it would be desirable to translate
the FORTRAN statements to an intermediate language so that the only machine
dependent operation was the final generation of machine code. It is unlikely

that very efficlent compilers would result from an approach subject to so many

restraints.

C34 -

4.0 MIGRATION OF OM'S FROM THIRD GENERATION TO FOURTH
GENERATION COMPUTERS

4,1 Introduction

A rudimentary capability for expressing vector operations is incorporated in the
proposed design for IPADF. More extensive features are required for fourth
generation compfzters such as Control Data's STAR-100, which can perform
arithmetic and logical operations on character and bit strings, as well as normal
and compressed {sparse) vectors. ‘

For concreteness, STAR will be taken as representative of fourth generation

computers, and a brief sketch of its salient features will be useful.

STAR is a virtual address computer able to distinguish 248 distinet address bits.
These addresses are automatically converted by the instructions using them into
bit, byte, half-word‘ or full-word addresses. The central memory consists of
500, 000 full words of core storage, and a high speed register file of 256 words.
Arithmetic operations are carried out on either 32-bit half-words or 64-bit fuli-
words in either scalar or vector mode.

Vector operations can be performed on normal or sparse vectors. A normal
vector is just an ordered list of half-words or full-word elements. A sparse
vector is a vector formed by application of a binary mapping function, or order
vector, that extracts in order a subset of elements from the original vector.
When arithmetic operations are performed on sparse vectors, these elements of

the original vector not appearing in the sparse vector are taken to be zero.

In addition to the standard arithmetic and logical operations, a comprehensive
set of macro and APL functions (c. f. Iverson)sare implemented such as contract,
expand, merge, mask, element sum, element product, maximum element,

minimum element, vector dot product, search, and select.

4.2 IPADF Extended For Vector And Stiring Processing (IPADEFV)

Part of the usefulness of FORTRAN is that programs in it are shorter and more
readable than if written in a computer's assembly language. To preserve this
feature for fourth generation computers, it will be necessary to extend the

C35

capabilities of the language to encompass the more sophisticated instruction
repertoire of these machines. This can be done in two ways: by enlarging the

syntax, or by creating new in-line functions.

In fact, both methods will be found to be useful. Certainly, new declarations

will be needed to accommodate the new variable types, and logical functions
extended over all the members of an ordered set will require quantifiers in
addition to the standard Boolean functions. On the other hand, many of the -
macro and APL instructions in STAR can be implemented easily and efficiently

by in-line functions. Probably, frequency of use and readability should be the
criteria for deciding whether an operation should be represented by an in-line
function or by a new statement form. Elements in a function argument list tend
to be anonymous, particularly when they can be distinguished only by their
position in the list. The alternative is not always better - witness the bewildering

array of infix operators in APL.,

Fourth generation computers are distinguished from third generation machines
primarily by their capability for processing lists efficiently. In the computer, a
list is just a consecutive set of storage locations, and is defined by a starting
location and the number of elements contained in it. From the programmer's
point of view, the meaning assigned a list depends on how it is to be used. For
example, a list A can represent (i) an n-dimensional vector A (with ith component
Ai) which enters as single varia}ble in a calculation f(A,b,c,...) or (ii) the set

of values of.a single variable a, whose typical element a; is the value of a in
in the ith calculation of f(ai, b, ¢, in} for 1i=1,2,...n. Often a list contains
logically distinct sublists which are extracted to become new lists in subsequent

operations.

The case for which the elements of a sublist form an arithmetic progression in

the master list occurs often enough to justify a special notation of the form

B =,A(M1 : M2 :MS)

where B is composed of those elements of A whose indices i satisfy the inequality
M., + M3 (i-1) < M,. More generally, IPADFV allows any of the following

1
forms to apply as well to the component vectors of an array.

C36

(1)

My : M, : Mg
(ii) MI : M2
(iii) * -
(iv) M1 <% MS
(v) Ml : %k

Here M, and M3 have the value 1 when omitted. The symbol * denotes that M

has the value of the dimension length., For example, if

2

DIMENSION A(20), B(10,6)

then ,
A(8:18:7) represents A(3), A(10), A(17)

B(2:%:6, 4) represents B(2, 4), B(8, 4)
Reference to sparse vectors in IPADFV have the general form [:V, L_] . Wwhere
V is the vector from which the elements were obtained, and L. is a logical vector

specifying which elements of V occur in ﬁf, 1] . Subscripts can appear on
either V or L., and follow the rules given above. For example,

[vi: 3, LGo: 190]

The logical operators

.NOT. negation

. OR. alteration

. XOR. disjunction
AND, conjunction

of IPADF which can take either vector or scalar arguments is extended in IPADFV
by the unary logical vector quantifiers

ALL, I, universal conjunction of all elements of L
. ANY. I. existential alternation of all elements of L
.NONE. L universal negation denial of all elements of L

Logical expressions are evaluated by scanning from left to right with precedence
of logical connectives established by

C37

. NOT.

.ALL, .ANY. . NONE.
. AND.
. OR. . XOR.

If 1. is a scalar logical variable, the .ALL. L and .ANY. L reducetol,
and .NONE. I. reduces to .NOT. L.

A relational assignment statement is introduced in IPADFV of the form
P=Q. R. S
where @ and 8 are vectors, and R is one of the relations

.EQ. .NE. .GE. .LT.

Execution of this statement leads to three different results depending on the type
of P. If P is an integer variable, P 1is assigned the index of the first elements
of @ and S to satisfy the relation R. If P is an integer vector, each element
of Q is compared with successive elements of S, and whenever the relation R
is.first satisfied, the element of P corresponding to the element of Q is
assigned the index of S. If P is a logical vector, each element of P is set to

. TRUE. if the corresponding elements of @ and S satisfy R; otherwise,

. FALSE.

The scalar (dot) product C of two vectors A and B is simply

C = A%B
The notation
B =+A
and C = *A

where A is a vector and B is a scalar, denote the sum and product of the

elements of A, respectively.

In addition to the extensions of the IPADF syntax noted above, the set of in-line
functions is enlarged in IPADFYV to include most of the STAR macro and APL-like

instructions. These include:

C38

MERGE (A, Z, B) selects an element from vector A or vector B,
depending on whether the corresponding element value in logical vector
Z is .TRUE. or .FALSE. No elements of A or B are skipped.

MASK (A, Z, B) selects an element from vector A or vector B,
depending on whether the corresponding element value in logical
vector Z is .TRUE. or .FALSE. The element not selected is
passed over. The symbol * in either vector position indicates

that no selection is made if the element normally selected would

have come from the vector in that position. For example

MASK (A, Z, ¥) is equivalent to selecting an element
of A whenever the corresponding value of Z is .TRUE.,
while (%, Z,B) selects an element of B whenever the

corresponding value of Z is .FALSE.

4,3 IPADPE To IPADFV Translation

The principal problem for IPADFV, the fourth generation FORTRAN, for IPAD
‘1s the same as for its predecessor, IPADF, namely to preserve machine inde-
pendence. Clearly, the introduction of list parameters (vectors, strings, ete.)

in fourth generation computers does not of itself aggravate the situation unduly
since the same length prescriptions can be applied to the elements of a list as

to individual variables. What must be taken into account is the near certainty

that during the lengthy transition phase from third to fourth generation processors,
the IPAD host computers will be a mixed bag - some belonging to one class and
some belonging to the other. Nevertheless, if machine independence is to be
preserved, the OM's written in this period should execute on all host machines,
though it is unreasonable to expect them to execute on all with the same efficiency.
This concern for linking third to fourth generation computers was the prime
reason for introducing elementary vector operations in IPADF. For a third
generation machine, the definitions are little more than abbreviations for simple
DO loops. For a vector processor, each represents a basic machine operation.

It follows from considerations such as the above that the shift from IPADF to
IPADFYV should be delayed until fourth generation machines are IPAD standards.

C39

As the migration from third to fourth generation processors progresses, it will
become necessary to decide in the case of individual OM's whether to reprogram
or not. The incompatibility in structure between vector and conventional com-

puters is reflected in the programs written for them.

An example illustrating this point is the discrete Fourier transform defined by
n-1
(4.1) Hw) = L g(exp(-2muv/n) u=0,1,...,n-1
v=0
where f{u) and g(v) are suitably chosen complex functions of the integer variables
u and v, and is a basic tool in the analysis of complex wave forms, so that much
effort has gone into the search for efficient procedures for making the calculations.
The most successful of these have come to be called Fast Fourier Transform

(FFT) algorithms, and all depend upon some form of factorization of the exponent.

When the sample size n is a power of 2, n=2™, the execution time on a digital
computer is reduced in this way to approximately the fraction m/n of that

required by direct calculation.

The STAR algorithm consists of two parts. In part 1, the n/2 sine and cosine
terms are calculated by an application of the polynomial evaluate (DE) instruction

which performs a power series expansion

2 - r
y]—ao i'alxl lale ... iax] k."'O, 1,-.., n-1

Part 2 is the main loop, executed m times. The calculations of (4. 1) are carried
out by 10 instructions operating on vectors of length n/2 followed by a merge of
the upper and lower halves of the real and imaginary components, respectively.
This step is required to position elements x(0), x(1) and y(0), y(1}) n/2 postions
apart for the next stage. That it does so is easily seen, since at stage k, the
matching elements for stage k + 1 are n/4 postions apart. The merge moves

all elements ays k <n/2, to a:‘i and all elements a, k>n/2 to a‘_'i)
1

' Thenif, j=i+n/d it

where j = 2k (mod n) - k(mod 28"1), and j; = j +257,

follows in either case that j' - i' = n/2.

Finally, a compression instruction followed by a merge instruction replaces

490

every other group of length s in the sine and cosine lists by the group just
preceding it.

Besides eliminating the final sort required by most FFT algorithms, the pro-
cedure described above eliminates memory bank conflicts when (as in STAR)
the number of banks is a power of 2.

The main loop of the FFT program written in IPADFYV is given in Figure 4-1

below. All functions are in-line and represent single STAR instructions.

100 U0 =Y0 +Y1
Ul =Y%0 - Y1
Y0 = X0 +X1
Y1l =X0 - X1

X0 =Y1 * COS
X1 =Y1 * SIN

E = U1l * SIN
Y1 =X0+E

E =Tl * COS
Ul=X1+E

X = MERGE (Y0,2,Y1)

Y = MERGE (U0, Z, U1)
U = MASK (COS, Z, *)

COS = MERGE (U, Z, 1)
U = MASK (SIN, Z, *)

SIN = MERGE (U, Z, U)
Z = BIT (Z, Z)
N=N-1
IF(N) 110,110, 100
110 CONTINUE

Figure 4-~-1. FFT Main Loop {Vector)

C41

ORIGI
o g

A TORTRAN version for the same algorithm, but for a conventional computer is
given in Figure 4-2. The above subject was discussed at some length to empha-~
size the critical point that, while software migration from local FORTRAN
dialects to IPADF (or its extension, IPADFV) will permit execution on either
third or fourth generation host computers, hand reprogramming will be required

if the full potential of a vector computer is to be realized.

DO 2 PASS=1, N4dPOW
NXTLTH=2*%(N2 POW-2*PASS)
LENGTH=4*NXTLTH
SCALE=6,283185307/FLOAT(LENGTH)
DO 2 J=1, NXTLTH
ARG=FLOAT(J-1)*SCALE
C1=COS(ARG)
S1=SIN(ARG)
C2=C1*%C1-8S1%81
S2=C1#S1+C1%S1
C3=C1%C2-81%82
S3=C2*S1+82*C1
DO 2 SEQLOC=LENGTH, NTHPOW, LENGTH
J1=SEQLOC-LENGTH+J
J2=J1+NXTLTH
J3=J2+NXTLTH
J4=J3+NXTLTH
R1=X(J1)+X(J3)
R2=X(J1)-X(J3)
R3=X(J2)+X(J4)
R4=X(J2)-X(J4)
I1=Y{(J1)+Y(J3)
12=Y(J1)-Y(J3)
13=Y{(J2)+Y{(J4)
14=Y(J2)-Y(J4)
X(J1)=R1+R3
Y(J1)=11+3
IF(J.EQ.1) GO TO 1
X(J2)=C1%(R2+414)+S1%(12-R4)
Y(J2)=-S1%(R2H4H+C1%(I12-R4)
X(J3)=C2*(R1-R3)+S2%(11-I3)
Y(J33)=-52%(R1-R3)HC2%(11-I3)
X(J4)=C8%(R2-14)+S3*(12+R4)
Y(J4)=-S3%(R2 -14)+C3%({I12+R4)
GO TO 2

1 X(J2)=R2+4
Y(J2)=12-R4
X(J3)=R1-R3
Y(J3)=I1-I3
X(J4)=R2-I4
Y(J4)=12+R4

2 CONTINUE

Figure 4-2. FFT Main Loop (Scalar)

C42

REFERENCES:
1. The Mobile Programming System: STAGE 2, W, M. Waite, Comm. ACM
vol. 13, no. 7, July 1970

9. FORTRAN Extended Reference Manual 6400/6500/6600
Computer Systems 60176600 Rev. E., Control Data Corporation

3. IBM System/360 and System /370 FORTRAN IV Language 9th Edition,
GC28-6515-8 International Business Machines Corporation

4, The Use of An Algebraic Language as Both a Source and Target Language,
P. H. Knowlton, Proc. 23rd Nat. Conf. ACM, 1968

5. A Programming Language, Kenneth Iverson, Wiley, 1962

C43

