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INTRODUCTION AND SUMMARY

In the 1850's, Press and others developed expressions for
the mean exceedance rate N(y) of an arbitrary ailrcraft response
variable through a generlc response level y. In deriving these
expressions, they assumed that the alrcraft response is a locally
stationary, locally Gausslan random process; the results were
based on Rice's famous formula for the mean rate of threshold
crossings of a stationary Gausslan process. Modeling the tur-
bulence as a locally statfonary, locally Gaussian random
process — generally with a Dryden spectrum — permitted the
turbulence to be characterlzed by 1its integral scale and the
probablility density function of its standard deviation. The
fact that the standard deviation of the turbulence was treated
as a slowly fluctuatling random variable permitted the mathe-
matical representation of the turbulence to model the patchlike
character of real turbulence. =

Measurements recently obtained in a project being
carried out at the NASA Langley Research Center have demon-
strated the existence of a low-frequency (large wavenumber)
component in many turbulence recordings, where this "slow"
turbulence component wg(t) appears to fluctuate independently
of the patch-like character associated with the turbulence
model used by Press and more recent investigators. The addition
of this large wavenumber component suggests that turbulence
velocity records w{t) be modeled by a three-component random
processT

’

w(t) = wo(t) + wa(t) = w (t) + 0.(t) z(t), (1.1, 2.3)

where E{z} 0, E{z%} =1 (1.2, 2.5)
and where the standard deviation Of.Gf(t) of the "fast" turbulence
component wr(t) satisfiles or(t) > 0. In the work reported here-
in, we have assumed that the random processes {ws(t)}, {op(t)},

t

tMost of the equations 1n this Introductory section have two
numbers. The first number deslignates the order of appearance
of the equation in the present section; the second designates
the number assoclated wlith the same equatlion, as it appears
later in the report where the material is treated in detall.



and {z(t)} are all stationary and mutually independent. Also,
we have assumed that z(t) Is a Gaussian process and, in some
places, that wg(t) also 1s Gausslan. Further discussion of
this model is provided in Sec. 2 of the report. :

One of the central tasks of the present work has been to
determine the conditlons that must be satisfied for validity of
the locally stationary, locally Gausslan response approximation.
To accompllish this task, we have used the concept of the tur-
bulence process {w(t)} conditioned on the behavior of the process
or(t). This conditioning operation is equlivalent to dealing
with the stochastic behavior of {w(t)} while assuming that :the
function of(t) is completely specified. Since the processes
{wg(t)}, {op(t)}, and {z(t)} are assumed to be mutually inde-
pendent, this conditlioning operation presents no conceptual
difficulties. Thus, we are able to form expressions for the
conditional instantaneous autocorrelation function and its
Fourier transform, the conditional instantaneous spectrum of
the turbulence process {w(t)}, given that the function op(t)
is specified. These expressions are derived in Sec. 3.1.

Although the process {w(t)} is stationary, the process
{w(t)} conditioned on of(t) is, in general, nonstationary.
However, in an earlier study that dealt with the effects of
nonstationary behavior on the spectra of atmospheric turbulence,
a series expansion of the instantaneous spectrum was developed
for studying the effects of the time varlations of og(t) on the
instantaneous spectrum. = Some results of this earlier study,
relevant to the present work, are reviewed in Sec. 3.2. The
first term in this series expansion, when applied to the "fast"
component we(t) in Eg. (1.1) and conditioned on the function
op(t), is the usual locally stationary spectrum approximation

<I>wf(f,t|of) x ciz,(t) ¢ (f), (1.3, 3.11)

where %5(f) is the power spectrum of the statilonary process
{z{(t)} of Eq. (1.1). Thus, investigation of the correction
terms provided by the series expansion have enabled us to formu-
late conditions for validity of the locally stationary response
approximation.

First, it was necessary to derive a series expansion for
the instantaneous spectrum of the response process, also condi-
tioned on the behavior of op(t). To obtain this expansion, we
have used the input-response relationship for the instantaneous
spectrum derived in our earlier report. The conditioned instan-
taneous spectrum of the aircraft response process {y(t)} is
given by Eq. (3.29) of the present report. When the seriles
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expansion for ¢w(f,t[of) is combined with this input-response
relatlonshlp, we obtain the series expansion for the conditioned
instantaneous response spectrum given by FEgq. (3.37) or (3.38)
and derived in Sec. 3.4. The leading terms in this response
representatlion are

@y(f,tlof) x [¢ws(f)+o§(t)¢z(f)] |H(E) |2, (1.4, 3.40)

where Qw (f) is the power spectrum of the "slow" component ws(t)
s

in the turbulence model of Eq. (1.1) and H(f) is the aircraft

complex frequency-response. function. Equation (1.4) 1is the

obvious locally stationary response approximation that could

have been written directly from Eq. (1.1).

Examination of the appropriate correction terms in
Eq. (3.38) to the locally stationary response approximation
given by Eq. (1.4) has enabled us to write conditions for
validity of the locally stationary response approximation of
Eq. (1.4) in Sec. 3.5. Three conditions, Egs. (3.41), (3.43),
and (3.46) are given. Equation (3.41) expressed the local
stationarity requirement for the turbulence w(t) of Eq. (1.1),
whereas Egqs. (3.43) and (3.46) express the local stationarity
requirements for the aircraft response y(t), assuming that the
requirement of Eq. (3.41) is satisfied.

The local stationarity requirements of Egs. (3.41), (3.43),
and (3.46) are expressed_in terms of (derivatives of the loga-
rithm of) the function op(t), which 1s still assumed to be a
specifled function at this Jjuncture. Before discussing these
requirements and formulating them in terms of stochastic
metrics of 0%(t), we derive expressions for the aircraft-
response exceedance rate N,(y) and the first-order probability
density function p(y). These expressions are derived in Sec. 4,
where we assume validity of the locally stationary response
approximation given by Eq. (1.4).

In Sec. 4.1, 1t is shown that if the process {z(t)} in
the model of Eq. (1.1) 1s Gaussian then the process' {wp(t)|or},
conditioned on the process og(t), also is Gaussian — this
result being independent of locally stationary requirements.
However, if probability density functions of wp(t) are generated
by time averages, then local statlionarity 1s required for the
"fast" process {we(t)} to be considered locally Gaussian.

In Sec. 4.2, we derive the expression for response exceed-
ance rates (with positive slopes) given by




N, () = [ N (ylod) plo2)dck , (1.5, 4.8)
0

where p(c%) is thg probability density of the square of the
process op(t) — op(t), therefore,being the local variance of
the fast turbulence component we(t) — and where Ny(y|c?) is
the expected local up-crossing rate through the threshold y
off the response process, given that the local value of c%(t)
1s specified and assuming the locally stationary response
approximatjon of Eg. (1.4) to be justified. The expressjon
for Ny(ylof) is given by Eq. (4.22). To evaluate Ny(y|op) we
require spectra ¢,(f) and @W (f) of the turbulence components
. S . . :
z(t) and wg(t), as well as the magnitude of .the aircraft
frequency-response function. . o

For cases where vapiations in_o%(t) are small relative to
the expected value of op(t), a useful series expansion for
N4 (y) has been derived in Sec. 4.3. This series expansion is
of the form . :

5

@ = g mP el a6, b2

where we have defined

L
a'N, (y|od) :
Nik)(YIGE) 4 ———i—;—Ei— y =y o (1.7, b.26)
d(OIZ,) Of = Cf ' |

where

oZ = E{o2} - ' | (1.8, 4.24)

is the expectéd value of o% and where

(k) & (7 (g2-3T)k (g2 2 -
Moz' T J (az-02)" plog) d(og), k = 1,2, (1.9, 4.29)

0

are the central moments of o%(t). Of particular interest 1is the
two-term approximation of Eq. (1.6) given by
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N, (¥)

N, (ylo2) + %'uég) NiZ)(ylgg)- - (1.10, 4.31)

N+(YIE?) [1+ué§)Q(2)(Y|;?)], - (1.11, 4.36)

where Ni2)(y|g§) has been written in the second line as

N2 (oD = an (wled) @ PyleD. (1.12, 4.33)

From Eq. (1.10), it 1is evident that the first term N, (y|o3)
on the right-hand side is the exceedance rate one obtalns by
assuming that y(t) 1s a stationary Gaussian process.* Thus,
the second term 1n Eq. (1.10) is a correction term that modifies

the Gausslan approximation N+(y[;?5 to account for relatively
small fluctuations in o%(t). When written in the form of

Eq. (1.11), the general form of the correction term Q(g)(ylgg)
is given by Eq. (4.34) in the text.

For cases where the response of the aircraft to the slow
component w (t) is negligible in comparison with the response
to the component og(t) z(t), the form of N;(y) given by Eq.
(1.11) is particularly instructive. For these cases, when we

¥Equations (1.6) and (1.10) provide motivation for expressing
N+(y) as an integral over the probabllity density p(of) of the
local wvariance oa rather than as an integral over the proba-
bility density of the local standard deviation of, as was

done by Press and others. The first term 1n the series
expansion of N+(y) given by Egq. (1.6) is, according to

Eq. (1.10), N,(y|o2). However, N,(y|oZ) 1s simply the
exceedance rate gbfained by assuming that of(t) is a constant.
In cases where of(t) varies somewhat with time and we estimate
N4(y) by assuming that the response 1s a stationary Gaussian
process, we obtain for our estimate of N4+ (y) the first term

N+(y|;g) in the right-hand sides of Egs. (1.6) and (1.10) as
is shown in Sec. 4.3 [see Eq. (4.32)]. However, since
E{cZ} # {E[cf]}z, the quantity N+(y|€§) is different from the

exceedance rate that would be obtalned by evaluating the
expression for the exceedance rate for stationary Gausslan
processes usling for Op the mean of the probability density of

o, rather than the square root of oZ.

b by



take the logarithm of Eq..(1.11) and assume that u(z)is small
Of

enough so that we may use &n(l+x) = x, we obtain in Sec. 4.3

the simple relationship

(2)
N, (y) Ho2
on 0 ¥ o1 _f oy [yt o), (1.13, 4.40)
N(o) 202 8 —5y2 02 \o2
+ y (6p)* "y Yy

The first term (-y2/202) on the right-hand side of Egq.
(1.13) is the famililar resuit for statlonary, Gaussian processes;
1.e., the logarithm of the normalized exceedance rate
N+(Y)/N+(O) is linear when plotted as a function of the square
of the response level, and cy is the varlance of the response

process. The coefficlent uéz)/(E?)Z governs the strength of
f

the correction to the Gausslan approximation given by the first
term. The quantity u(z)/(cf.)2 is the square of the coefficient
Of

of variation of the time-varying variance o%(t) in the model of

Eq. (1.1). Except for the value of u(2)/(5§)2’ which is always
O
nonnegative, the functional form of the correction term in the
right-hand side of Eq. (1.13) is fixed. For y = 0, the correc-
tion 1s zero; hence, the Gaussian approximation given by the
first term yields the correct value. For 0 <y < (20.), the
correction term is negative; hence, in this interval,’the
Gausslan approximation overestimates the threshold-crossing
rate. For y > (20,), the correction term is positive; hence,
for large values o¥ y the Gausslan approximation underestimates
the threshold-crossing rate. These theoretical predictions are
conslistent with well known experilimental observations, when
considered as a function of y? (or y2/0§ ), Eq. (1.13) predicts
(a parabolic) concave exceedance plot.

A treatment of the probability density function p(y) of
the aircraft response is provided in Sec. 4.4, where we have
used the same general approach that was used for exceedance
rates. For example, it is shown there that we may express

p(y) by

p(y) = f p(ylo§)p(o§)dc§ . (1.14, 4.42)
0



A series expansion for p(y) that is developed [Eq. (4.46)] is
analogous to that of Eq. (1.6). The two-term approximation to
this series expansion that i1s analogous to Eq. (1.1) is

p(y) = p(yloz) [1+u(§) (2)( Io;.)] (1.15, 4.51)
where U(Z)(ylgg) is defined by
— y 2
@ yeny) = [ (L] -6 2+ 3, (1.16, 4.50)
oy ] [\% %

where we have used the notation of Egq. (4.48). The quantity
cy is the alrcraft mean-square response to turbulence component

Z

z(t) given by Eq. (4.18), and c is the overall mean-square
response given by Eqgs. (4.16) ahd (4.48). It is shown in
in Sec. 4.4 that the correction term given in Eq. (1.15) to

the Gaussian approximation p(y|0§) of p(y) 1s exactly the same
as the first correction term provided by the Gram-Charlier
expansion. However, the derivation of Eq. (1.15) is based on
what would appear to be a completely different line of rea-
soning.

For cases where the ailrcraft response to the "slow" tur-
bulence component w. (t) 1s negligible, the correction term to
the Gaussilan approximation in Eq. (1.11) is given by

_ 2 2
A yan - 2 ). (1.17, 4.39)

8(0%)2 o2\ o2

y y

Comparison of Egs. (1.16) and (1.17) indicates that whenever
the fluctuation in o%(t) is not negligible 1in comparison with

its mean oc2(t), the first-order probability density p(y) and
the exceedgnce.rate N+(y) have different functional dependencies

on y. However, when uég) = 0, both p(y) and N;(y) have the

£
shape of Gaussian probability density functions.

The ‘locally stationary response requlrements, initially
treated 1n Sec. 3, are discussed and related to stochastic
metrics of the process op(t) 1n Sec. 5. In particular, it 1is



shown 1in Sec. 5.1 that the locally stationary response require-
ments may be interpreted as requiring (1) that the relative
changes in o$(t) must occur slowly when measured on the time
scale t' = L /V where L, 1s the integral scale of the component
z(t) in the model of Eq. (1 1) and V is the aircraft speed

[see Eq. (5.1)]; (2) that the relative changes in of(t) must be
small in comparison with unity when measured over time intervals
of the order of the group delay of the alrcraft lmpulse response
function [seg Egqs. (5.4) and (5.6)]; and (3) that the relative
changes in op(t) must occur slowly relative to time intervals
comparable to the nominal duration of h2(t), where h(t) is the
aircraft unit-impulse response function [see Eqs. (3.46) and

(5.7)1.

These three spectrum conditions are expressed 1in terms of
(somewhat less stringent) mean-square response conditions by
Egs. (5.8), (5.9), and (5.10) in Sec. 5.2. 1In Sec. 5.3, the
requirements on the behavior of Oz(t) are expressed in terms
of derivatives of the autocorrelatlon function of the logarithm
of ¢ (t),zwhere the dependence on the logarithm of of(t), rather
than on op(t) itself, has been dictated by the requirements
themselves [It 1s the fractional fluctuation of of(t)zthat
is important, rather than the absolute fluctuation of op(t)].

The flnal forms of the three local statlonarity requirements

are#®

f ¢Z(f)|H(f)|2df

3.2m2 —— (1.18, 5.17)
J @;2)(f)|H(f)|2df

| -0

(rREY) (0)7%

|A

J ¢Z(f)mé0)(€)df

| A

[—R","(O)]l/2 f%- = (1.19, 5.18)
f @Z(f)mél)(f)df

- Q0

¥0One of the other forms of these requirements given in the main
text in Sec. 3 or 5 may be easier to apply 1n practice. Equa-
tions (1.18), (1.19), and (1.20) would seem to be the least
restrictive set of requirements.



and

(e}

f @Z(f)méo)(f)df

1
-—3-R",'(O) 1 +3)2+

< i

Ré“)(o) )%
[R!'(0)1%

ore) 3

(2)
d>z(f)mh (£)dar

- 00

(1.20, 5.22)

where Ry'(0) and R(u)(O) gre the second and fourth deviatives
of the autocorrelafion function of

v(g) & 2nol(t), (1.21, 5.11)

where these derivatives are to be evaluated at the origin, ¢_(f)
is the power spectrum of the component z(t) in the model of

Eq. (1.1), #°)(f) 1s the second derivative of &,(f), H(F)
is the alrcrift complex frequency-response function, and for

(

n=20, 1, and 2, mhn)(f) is the power-moment spectrum of the
alrcraft unit-impulse response function h(t) defined in earlier
work by this wrlter in a completely different context:

4

mén)(f) j t“¢h(f,t)dt, (1.22, 3.36)

- 00

where ¢,(f,t) is the instantaneous spectrum of h(t) defined by
Eqs. (3.25) and (3.26). Writing the complex freguency-response
function H(f) as

ieh(f)
H(f) = |H(f)]e ) (1.23, 5.3)

éo)(f), mél)(f), and mﬁz)(f) in terms of the magni-~

tude and phase of H(f) by

we express m

n{®(r) = |u(e)|? (1.24, 3.39)

de. (f)
mP ey = - L jHry)r B (1.25)



| de. (£)]2. .

b2 af ar?

where the time origin of h(t) must be chosen to satisfy Eq.
(3.22) and where Egs. .(1.25) and (1.26) are a conseqQuence of
Egqs. (3.39), (5.4), and (5.7). Equations (1.18), (1.19), and
(1.20) would appear to be the least restrictlve requirements
that must be satisfied for confident engineering usage of

the locally stationary response approximation of Eq. (1.4),
which 1s the basic approximation used in deriving the above
described expressions for the exceedance rates and probabillity
density functions of an aircraft-response variable y(t).

Evaluation of the left-hand side of the requirements of
Eqs. (1.18), (1.19), and (1.20) requires a capability to evaluate
from measureg turbulence records the autocorrelation functlon
Ry(t) of &nop(t), as indicated by Eq. (1.21). Since only the
derivatives of Ry(T1) are required, Ry(t) need be determined
only to within an additive constant. In Sec. 5.4, 1t is shown
that Ry(T) may be expressed as

RV(T) = {E[&n cf.(t)]}2 + Cov[g&n wﬁ(t), Ln wﬁ(t+1)]

- 2 arcsin? [th(T)/RZh(O)], (1.27, 5.36)

where {E[&n cfz-(t)]}2 is a constant, Cov[ee++] is the covariance
of &n wﬁ(t) and &n wﬁ(t+r), which can be evaluated directly
from a high-pass filtered version wy(t) of the turbulence
record w(t) as described in Sec. 5.ﬂ, and RZ (1) is the (in-

h
verse) Fouriler transform of the high-pass filtered version of
¢,(f) defined by Eq. (5.28). All of the above quantities are
amenable to numerical calculation from turbulence velocity
records. To obtain Eq. (1.27), we had to derive an expression
for the autocorrelation function of the natural logarithm of
the square of a stationary Gaussian process from the autocorre-
lation function of the process itself. This result 1s given
(for processes with zero mean and unit variance) by Eq. (5.31).

The above work suggests that,zin addition to the auto-
correlation function Ry(T) of &n op(t), an adequate characteriza-
tion of turbulence records for aircraft response predictions
requires the spectra o, (f) and ®Z(f) of the components ws(t)

S
and z(t) in the turbulence model of Eq. (1.1) and the probability

10



denslty function p(oz) of the square of the component op(t) in
Eq. (1.1). All of tgese quantities are required for computation
of response exceedance rates — e.g., see Egs. (1.4) and (1.5).
In addition, 1t would be desirable to test the assumption that
{wg(t)} 1s a (stationary) Gausslan process. The "first-order
test" of this assumption 1s the probability density function

of the component ws(t). Especiallg relevant metrics of the
probability density functlons of og(t) and w (t) are the low-
order central moments — e.g., see Eq. (1.13). Furthermore,

it appears 1likely that the fourth-order moment. of the response
process y(t) can be computed if the power spectrum of c%(t) is
avallable, even in cases where neither of the locally stationary
response conditions of Eqs. (1.19) and (1.20) are satisfied,

but where the requirement of Eq. (1.18) is satisfied.¥* Thus, in
addition to the autocorrelation function of &n ca(t), the power
spectra of z(t), wg(t) , and c;(t) and the moments and prob-
abllity density functions of of(t) and wg(t) are useful turbu-
lence characterizations for the prediction of aircraft-response
statisties. Methods for computation of these turbulence metrics
are developed in Sec. 6. Specifically, methods for estimating
the spectra of wg(t) and z(t) arg described in Sec. 6.1, methods
for estimating the spectrum of op(t) are described in Sec. 6.2,
and methods for estimating the moments and probability density
functions of op(t) and wg(t) are described, respectively, in
Secs. 6.3 and g.u.

As 1s the case with most newly developed research results,
the methods and conclusilons reported herein represent a (hope-
fully error free) "first cut" at the problem of adequately
taking into account — in a not too complicated fashlion — the
nonGaussian behavior of real turbulence records for the purpose
of predicting aircraft-response statistics. Recommended future
work would lnclude "fine tuning" and improvements to methods
and conclusions reported herein.

Acknowledgements. Comments by Dr. Kenneth Sidwell have
been helpful in several stages of thils work as detailed in the
footnotes. The typing of the report was carried out by Mrs.
Linda Nelson, and the figures were prepared by Ms. Maria Maléter.
The support of the work by NASA Langley Research Center is grate-
fully acknowledged.

¥This result will be of use in the case of very high-speed
airecraft.
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NONGAUSSIAN TURBULENCE MODEL

Atmospheric turbulence velocity measurements are usually
made in sets of three records: the vertical, lateral, and
longitudinal time histories. When Taylor's hypothesis — i.e.,

x =Vt — is employed, there result vertical, lateral, and longi-
tudinal records that are regarded as functlons of a spatial
variable x. The "standard" turbulence model is to assume that
each of these records is a sample function drawn from a station-
ary (or homogeneous)Gaussian random process. Furthermore, it

is generally assumed that the power spectra of the vertical and
lateral records should be well described by the von Karman
transverse spectrum and that the longltudinal records should

be well described by the von Karman longitudinal spectrum.

Each of these two von Karman spectral forms is described by two
parameters, the rms turbulence veloclity o and the integral

scale L. Since the power spectral density provides a complete
probabilistic description of a Gaussian random process, these
von Karman spectral forms provide complete statistical descrip-
tions of the three components of measured turbulence veloci-
ties — if the stationary Gaussian model with von Karman spectra
is a valid model of turbulence velocity records.

However, results predicted by the above model are not
always in agreement with turbulence measurements. Differences
between the model and observed records are manifested in at
least two ways: (1) the probabilities of large excursions are
underestimated by the model, and (2) the low-frequency content
of turbulence velocity spectra is often underestimated by the
model. In addition, the "knee" of measured spectra 1s often
less sharp than the knee of the appropriate von Karman spectral
form.

The fact that the probability of large excursions is often
underestimated by the standard turbulence model is directly
attributable to the fact that turbulence time historles often
appear to have a time-varying envelope or patchy character.
One may regard such time histories to be either nonstationary
but Gaussian or stationary but nonGaussian.* For a given
standard deviation (rms value) of turbulence velocity, a time
variation in the envelope generally has the effect of yielding
more large excursions than the Gaussian probability density
predicts. This behavior accounts for the “concave shape" of
turbulence exceedance plots.

#¥The distinction between nonstationary Gausslan behavior and
stationary nonGaussian behavior is, in general, impossible to
make with a single time history. It is often more convenient
to regard such records to be stationary but nonGaussian (or

locally Gaussian).

12



e

The above comments suggest that a given turbulence record,
say w(t), may be modeled by

w(t) = o(t) z(t),  o(t) 20 (2.1)

E{z}

0, E{z%} =.1, C(2.2)

where o(t) may be regarded as a time-varylng standard deviation
(or envelope), and where {z(t)} 1s a stationary process, with
zero mean value and unit standard deviation, which may be taken
to be Gaussian. Time variations of the function o(t) account
for the patch-like character of atmospheric turbulence veloci-
ties observed in many records. Insofar as the visual appearance
of the veloclty records is concerned, the function o(t) may be
regarded as elther a stochastic or a deterministic function.
Appropriate choice of the amplitude distrlibution of o(t) will
allow the probability distribution of w(t) to take on a wide
variety of forms.

Visual 1inspection of turbulence records indicates one addi-
tional feature that cannot be accounted for by the model of
Eq. (2.1). Some records which exhibit the patch-like character
modeled by Eg. (2.1) also have superimposed on this patch-1like
structure another very low frequéency component, which appears
to fluctuate independently of the envelope of the higher-
frequency components that possess the patch-like character.
This apparent independence suggests that a low-frequency term
be added to Eg. (2.1); i.e.,

w(t) = ws(t) + wf(t)
= ws(t) + of(t) z(t), (2.3)
where
we(t) = op(t) z(t), op(t) >0 (2.4)
and
E{z} = 0, E{z2} = 1. (2.5)

In the following work, we shall assume that {wg(t)}, {op(t)},
and {z(t)} is each a stationary random process and that
{z(t)} is a Gaussian process with zero mean value and unit
variance, as indicated by Eq. (2.5). The spectrum of the
"slow" process {wg(t)} generally occupies a frequency range
that is low in comparison with that occupied by the "fast"

t
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process {we(t)}; it is the low-frequency contribution of {wg(t)}
that causes underprediction by the von Karman model of the
low-frequency part of the spectrum. Thus, we shall further
assume that the power spectrum of {z(t)} is described by the
appropriate von Karman form and that {wg(t)}, {opg(t)}, and
{z(t)} are mutually independent processes. In some of our
work, we shall also assume that {wg(t)} is a zero mean Gaussian
process. However, we shall not want to assume that {o(t)} is
Gaussian, since such an assumption would permit o(t) to go
negative. FEquation (2.3) is the simplest model of atmospheric
turbulence that possesses the flexibility required to represent
readily observable features of measured turbulence records.

At this juncture, it 1s appropriate to illustrate the need
for the model of Eq. (2.3) by examination of some measured tur-
bulence velocity histories. The vertical record shown in Fig. 1
(Ref. 1) illustrates a record that is probably reasonably well
modeled by a stationary Gaussian process, especially the
right-hand half of the record — i.e., from 120 sec elapsed
time to the end. Thus, this record would be reasonably modeled
by Eq. (2.3) with ope(t) set equal to a constant — in which case
there is no need for the term ws(t).

The records shown in Fig. 2 (Ref. 1) illustrate mild patch-
like behavior. For example, the patches occurring at 150 and 160
sec elapsed time on the vertical record illustrate distinectly
nonstationary or nonGaussian behavior. The number of large
excurslions of the records shown in Fig. 2 is substantially
larger than would occur for stationary Gaussian records with
the same standard deviations and spectra.

Each of the records shown in Fig. 2 also exhibits an addi-
tive low-frequency component that appears to fluctuate indepen-
dently of the occurrence of the patches. For example, for the
5-sec interval between 183 and 188 sec on the vertical record,
high-frequency fluctuations are absent; however, there remains
in that interval a fluctuating low-frequency component. Similar
behavior occurs between approximately 96 and 99 sec elapsed

time on the vertical record shown in Fig. 3 (Ref. 1). A strong
low-frequency component 1is present there; however, high-frequency
fluctuations are absent in that interval. These "gaps" cannot

be explained in terms of statistical fluctuations of a station-
ary Gaussian process.

Each of the records shown in Fig. 4 (Ref. 2) dramatically
1llustrates the three components of the turbulence model of Eg.
(2.3). PFor example, in the region from 9 min 0O sec to 9 min
45 sec on the vertical record, the term op(t) in Eg. (2.3)
is negligible in comparison with the very strong low-frequency
component wg(t), which is clearly present over the entire

14
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FIG. 1. THE VERTICAL RECORD FROM 120 TO 270 SEC ELAPSED TIME ILLUSTRATES REASONABLY
STATIONARY GAUSSIAN BEHAVIOR. (Ref. 1, Fig. 17.32, p. 223.)
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FIG. 4.

EACH OF THE ABOVE RECORDS CLEARLY ILLUSTRATES THE INDIVIDUAL COMPOMNENTS
wgl(t), of(t), and z(t) IN THE THREE COMPONENT MODEL OF EQ. (2.3)

[MOUNTAIN WAVE CONDITIONS.

AIRCRAFT SPEED 197 m/sec (646 Ft/sec). ]
(Ref. 2, Fig. 10, p. 285.)



record. At about 9 min 45 sec, ogp(t) grows and then decays

back to a small value about one minute later. The behavior

of the records shown in Fig. 4 cannot be modeled by a single
stationary Gausslian process.

A model functionally similar to Eg. (2.3) has been sug-
gested by Reeves et al. [3,4] for use with flight simulators.
However, in Reeves' model, {o(t)}} and {z(t)}} are specified as
(stationary) Gaussian processes, and the processes {wg(t)} and
{wp(t)} both have the same spectral form — the Dryden spectrum -
and both have the same integral scale. The model of Eg. (2.1)
has been proposed independently by Sidwell [5] and Mark [6]. In
addition, Sidwell in work currently being carried out at
NASA Langley Research Center, has proposed the addition of the
low-frequency component wg(t) indicated by the model of Eq. (2.3).

The model of Eg. (2.3) could be generallized further — e.g.,
by including a multiplicative modulating term og(t) in the
slow component ws(t). In thils case, the slow and fast compon-
ents wg(t) and we(t) would have identical functional forms.
This generalization, which may have to be made after fTurther
examination of additional turbulence records, requlres only
modest changes in the methods developed in this report.
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LOCALLY STATIONARY TURBULENCE AND AITRCRAFT RESPONSE APPROXIMATIONS
Conditional Instantaneous Spectrum of Turbulence Model

In the turbulence velocity model described by Eq. (2.3), the
three stochastic functions wg(t), opr{t), and z(t) are assumed to
be mutually independent sample functions drawn from the three pro-
cesses {wg(t)}, {op(t)}, and {z(t)}. For reasons that will become
evident later, we shall be concerned here with the conditional
instantaneous spectrum of the stochastilic function defined by Eq.
(2.3); 1.e.,

w(t) = wo(t) + op(t) 2(t) , (3.1)

where this instantaneous spectrum will be conditioned on the
stochastic funection or(t). The operation of forming the conditional
expectation required in developing the instantanecus spectrum of
w(t) is equivalent to treating or(t) as a known (or deterministic)
function of completely general form, except for the requirement

that op(t) > 0.%

To determine an expression for the conditional insftantaneocus
spectrum of w(t), we first form the conditional instantaneous auto-
correlation function of w{(t). The required instantaneous auto-
correlation function ¢u(1,t|lop) is defined — e.g., Mark [7], Mark
and Fischer [6] — as

¢wa,tIGf) 8 E{W(t—%) w(t+%)[of(t)} (3.2a)

E{[w (t-5) + 0,(t-5) =(i-3)]

X [ws(t+%) + cf(t+%) z(t+%)]|cf(t)} , (3.2b)

where the vertical bars followed by op{t) in the left- and right-
hand sides of Eg. (3.2) indicate that the expectation operation
E{...]or(t)} assumes that the (stochastic) functlon op(t) is known
or speclified; hence, no averaging is carried out over the ensemble
of functions {op(t)}. See, for example, pp. 55 and 56 of Laning
and Battin (8] for a brief discussion of the notion of a conditicnal
expectation. {(Chapters 1 through 5 of this reference provide an
excellent introductory discussion of probability theory and
stochastic processes.) Expanding the right-hand side of Eq. (3.2b}

¥The concept of the process wr(t) conditioned on the process orp(t)
has been used by Sidwell [ 5].
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and recognizing that {wg(t)} and {z(t)} are independent stationary
processes, that E{z} = 0, and that op(t) is being treated as a
known function, we have

¢, (ttlop) = Edw (£-5) w_ (£+5))

+ 0p(t-5) op(6+5) Elz(t-5) z(t+5)}

= ¢, (1) + ¢OF(T,tIGf) o (1) (3.3)

3

where ¢y (1) and ¢z(7) are the autocorrelation functions of {wg(t)}
and {z(t)} and where we have defined

1>

o5 (t,tlop)

. cf(t-%) Gf(t+%) , (3.1)

)

which requires no stochastic average since of(t) is assumed to Dbe
specifled.

The (conditional) instantaneous spectrum of w(t) is defined
[e.g., 5,7] as the Fourler transform with respect to T of
¢w(T,t|Uf):

¢w(f,t|0f) 8 J ¢w(r,t[of) e 1™l 4o (3.5)

=4}

Recognizing that the Fourier transform of a product is the con-
volution of the transforms, and treating t as a parameter in Eq.
(3.3), the conditional instantaneous spectrum of w(t) may be
immediately obtained from Eg. {(3.3) as

¢w(f,t|0f) = ¢ws(f) + [ ¢0f(g,t|df) @Z(f—g) dg , (3.6)

al ++ ]

where &, (f) and %,;(f) are the power spectra of the stationary

processes {wg(t)} and {z(t)}, which are obtained by forming the
Fourier transforms of the appropriate autocorrelation functions —
i.e.,
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(1) [ o, (1) e 12T 44 (3.7)

-0

— and where the conditional instantanecus spectrum ¢0f(f,t|of)

in Eq. (3.6) is obtained by forming the Fourier transform with
respect to T of ¢0f(T,t|Gf). Equation (3.6) is the desired ex-

pression for the condltional instantaneous spectrum of the pro-
cess {w(t)} defined by Egq. (3.1).

Series Expansion of Conditional Instantaneous
Spectrum of Turbulence Model

Equation (3.6) can be written as

¢w(f,t|cf) = ¢ws(f) + ¢wf(f,t[0f) , (3.8)

where

o, (f,t|cf) = J ¢ (g,t]cf) ¢, (f-g) dg (3.9)
T £

—_

is the conditional instantaneous spectrum of the component wf(t)
defined by Eq. (2.4); i.e.,

walt) = op(t) 2(t) . (3.10)

If the temporal variations in o.(t)} occur slowly in comparison
with those of z(t), we would expect the conditional instantaneous
spectrum of wf(t) to have the form

¢wf(f,t[of) z c;(t)-¢z(f)' s (3.11)

where ¢z{(f) is the power spectral density of the process {z(t)}.
Equation (3.11) is the locally stationary approximation for the
conditional instantaneous spectrum of the "fast" component of
turbulence wf(t).

For most measured turbulence reccrds, the fluctuations of
gpr(t) do, in fact, vary slowly in comparison with those of z(t).



Mark and Fischer [6] derived a series representation of the con-
ditional instantaneous spectrum ¢wf(f,t|af) that enables one to

determine the conditlions required for the approximation of Eg.
(3.11) to be valid. This series representation was developed in
terms of distance x and wavenumber k, rather than in terms of
time t and frequency T. However, the results of Ref. 6 may be
applied directly to the variables t and f simply by substituting
t for x and f for k. Applying this substitution, we find from
Eq. (4.11) of Ref. 6, with minor changes in notation,

N a (t)

= n (n)
¢wf(f,tiof) = ngo ~ 7 &, (f) + Ry, (f,8) (3.12)

N+1

where, from Eq. (4.9) of Ref. 6, @én)(f) is defined as the nth
derivative of the power spectral density ¢,(f) of {z(t)) — i.e.,

(n) a a"
2, (f) = g}ﬁ ¢Z(f) (3.13)
— and where
(0) -
¢, (f) = ¢z(f) . (3.14)

The coefficients ap(t) in Eq. (3.12) may be expressed in terms of

the derivatives of op(t) by

dfo () a" Ko (t)
(3.15)

n
a (t) = —=— ] (DX O

k]
(-14m)? 2 KT gk gtk

according to Eq. (8.19) of Ref. &. The quantities (ﬂ) are the
binomial coefficients., From the above expression for an(t), one
may show that for odd integer values of n,

an(t) =0 , n = odd . (3.16)

Expressions for the remainder term Ry47{(f,t) in Egq. (3.12) are
given by Eags. {4.7) and (4.13) of Ref. 6. We are particularly
interested in the first two nonvanishing terms ap(t) which,
according to Egs. (4.50) and (4.52) of Ref. 6, may be expressed
as

a,(t) = oi(t) (3.17)
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dzinof(t)

1 2
a,(t}) = -« — ¢g3({t) ————— (3.18a)
2 gr2 T at?
d2enfoi(t)]
S 3 £ . (3.18b)
1672 dt?

Combining Eqs. (3.12), (3.14), (3.16), (3.17), and {(3.18), we
have for the flrst two nonvanishlng terms in our series expansion
for o,.(f,tlop)

2 2
; 4@ lncf(t)

32m? dt 2

¢§2)(f) +oue

® (f,t|of) = U%(t){ 8 (f) -
(3.19)

We

The first term in Eq. (3.19) is the locally statlonary spectrum
approximatlon given by Eg. (3.11). Whenever the second term in

Eq. (3.19) is negligible in comparison wilth the first, the locally
stationary approximation is walid. Thils conditlon may be expressed
as

dzanc§(t) , ¢z(f) : )
_ | << 327*% - . 3.20
at? ]¢£2j(f)|

The above condition will be expressed in terms of measurable
turbulence veloclty metrics in a later sectlon of this report.

By combining Egs. (3.8) and (3.19), we obtain the seriles
approximation to the conditional instantaneous spectrum of both
turbulence components; i.e.,

dzzna§(t)

o (£,tl0.) = o, (£) + o(t) | o (r) - —L os%) (1)

Wg 3272 dt 2

(3.21)

which is the desired result. Notice that the correction term to
the locally stationary approximation invelves the second tlme
derivative of Znof(t). Thus, when £ncf#(t) fluctuates sufficiently
slowly — 1.e., when Eq. (3.20) 1s satisfied - the locally station-
ary approximation 1s wvalld.
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Conditional Instantaneous Spectrum of Aircraft Response

Consider an aircraft with spatial dimensions negligible in
comparison with the scale of the von Karman component z(t) of
the turbulence model of Eq. (2.3). We may characterize a desired
alrcraft response variable by the response h(t) of this variable
to a "unit impulse" of turbulence velocity w(t) applied at t = 0.
However, for reasons that wilill become evident later, we shall
want to choose the position of the time origin of h(t) so that
the time centroid of h2%(t) occurs at t = 0; 1.e., the time ori-

gin 'shall be c¢hosen so that h(t) satisfies

J t h®(t)at

= =0 - " ' (3.22)
[ h?(t)dt
" Eqguation (3.22) defines a unique position for the time origin of

h(t); it 1is located at the center-of-gravity of the "mass dis-
tribution” h2(t).

Let us denote the conventionally defined unit-impulse
response function by h(t), where the time origin of h(t) is
generally chosen so that h(t) = 0 for t < 0. The time centroid

2(t), which we shall denote by tg, is defined by _

[ t h?(t)at _

— A fe

tH = = (3.23)
th(t)dt

-0

Our definition of h(t) that satisfies Eq (3. 22) may be related to
the conventionally defined h(t) by

h(t) = h(t+tg) , o : (3.24)

which can easily be verified by substitution of Eg. (3.24) into
Eq. (3 22), introducing a change of variable, and then. solving ..
for th. The result of these operations yields Eg. (3.23).
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To derive the desired'input-response relationships for air-
craft, we define the instantaneous autocorrelation function of
the (deterministic) unit-impulse response function h(t) as

6,(1,t) & n(-5) ns+) (3.25)

from which we may define the inStantaneous spectrum of h(t) as

o, (£,1) & J ¢h(r,t)e‘i2"fT ar . (3.26)

- 00

Let {y(t)} denote the generally nonstationary response process of
the aircraft, and let ¢y(T,t|of) and ¢y(f,t|or) denote the con-
ditional instantaneous autocorrelatlon function and conditional
instantaneous spectrum of the response. Then, in Mark [7] it is
shown that the conditional instantaneous autocorrelation function
and spectrum of the response process are related to the correspond-
ing characterizations of the input process w(t) and aircraft by

¢y<r,t|cf) = [ ] o, (E,u) ¢ (1-E,t~ulog)dEdu (3.27)
and
¢y(f,tiof) = J o, (f,u) ¢W(f,t—u|0f)du . (3.28)

- 0O

Substitution of Eq. (3.8) into Eg. (3.28) yields an expression
for the conditional instantaneous response spectrum in terms of
the spectra of the "slow" and "fast" components — i.e., wg(t) and
we(t) — of our turbulence model:

( @h(f,u) ®ws(f)du + f ¢h(f,u) ¢wf(f,t—u|of)du

-0 - 00

@Y(f,tlcf)

(f£) |H(E£)|? + { ¢, (f,u) ¢wf(f,t—u|of)du ,
- (3.29)

S
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where, in going to the second line, we have used Eq. 14 on p. 26
of Ref. 7 — applied to the deterministic function h(t) — i.e.,

J ¢h(f,t)dt = |H(F)|?* , (3.30)

-—

where

H(r) 2 J n(t)e 127t 4¢ (3.31)

- 00

is the aircraft frequency-response function.

Equation (3.29) 1s the desired spectrum input-response
relationship. Notice that the first term in the right-hand side
is the contribution to the response spectrum from the "slow"
turbulence component ws(t) and that this contribution has the
usual form of a response spectrum.

Series Expansion of Conditional Instantaneous
Spectrum of Aircraft Response

By substituting Egq. (3.12) into Eq. (3.29), and then per-
forming the indicated integration term by term, we obtalin a
series expansion for the conditional instantaneous response
spectrum Qy(f,tIOf):

¢y(f,tlof) = ¢ws(f) |H(F) |2

N ¢én)(f) “
+ nzo-—jTr——— ¢h(f,u) an(t-u)du
+ [ ¢h(f,u) RN+1 (f,t-u)du 5 (3.32)

where the third line in the right-hand side of the above ex-
pression 1is the contribution of the remainder term.

27



The requlrement of Egq. (3.20) 1s that the fluctuations of
o%(t) occur slowly in comparison with the fluctuations of the
von Karman component z(t). This locally stationary requirement:
involves propertles only of the turbulence. Obtaining our
locally statilonary representation of the alrcraft response
spectrum ¢,(f,t|of) further requires that fluctuations in oZ(t)
be typicale negliglible over time intervals comparable to tge
nominal duration of the aircraft impulse response function h(t).
We shall now derive explicit conditlons that must be satisfied
for a locally stationary response approxlimation to be valid.

First, we recall from Egs. (3.15) to (3.18) that the terms
an(t) in Eq. (3.32) involve only the time behavior of the time-
varying standard deviation ogf(t) of the "fast" turbulence com-
ponent we(t) — see, e.g., Eq. (2.4). If oge(t) varies slowly in
comparison with the nominal duration of h(t), then a few terms
In the Taylor's series expanslon of a,(t-u) about the instant
u = 0 should provide a good approximation to a,(t-u) in Eq. (3.32)

over the interval of u in the integral [. & (f,u) ap(t-u)du,

where |¢h(f,u)l 1s not negligible. This Taylor's serles expanslon
of ap(t-u) 1is

2
a (t-u) = a (t) - ual(t) + 5 al(t) — --- (3.33a)
M k
- 1 CL 20 )k + my, (b,0) (3.33b)
where
(i) a*a_(t)
a. (t) = ~—EEE~— s (3.34a)
alO(t) = a_(t) (3.34b)

and where the magnitude of the remainder term satisfies

(M+1) M+1
| Fpgan (o) | < ™25 Ja ()| Blyr (3.35)

Here, mleaéM+l)(E)| designates the maximum value of the magnitude

of a£M+l)(E) when £ 1is varied over the range of values (t-u)<g< t
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or ti&i(t—u), depending on whether u is positive or negative,
respectively. We may now substitute Eq. (3.33b) into Eg. (3.32)
and integrate term by term. Defining _ . _

mék)(f)-é J. uk¢h(f,u)dﬁ:. , - (3.36)

- 00

we find, upon carrying out this substitution and the resulting
integration,

 ¢§(f,t|cf) = o (£) [H(E)|?

72}

¢, (f,u) R (t,u)du

M+1

@h(f,u) R (f,t-u)du , (3.37)

N+1

-+
l 8

where the last two lines are remainder terms that are of academic
interest only insofar as the present study is concerned. Equation
(3.37) 1s the desired series representation of the conditional
instantaneous aircraft response spectrum.

Requirements for Validity of Locally Stationary
Aircraft Response Approximation

The purpose of the present study is to determine conditions
under which all terms in Eg. (3.37) are negligible except for
those corresponding to the locally stationary response approxi-
mation. To accomplish this goal, we write out the double summa-
tion in the second line in the right-hand side of Eq. (3.37) and
make use of Egs. (3.16) and (3.17). These operations yield
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¢y(f,tlcf) = ¢ws(f) |H(f)|?

2 ’
+o_(£) [ ok(t) [H(D)[? - & o2(t) m{P(r) + 1 & c%(t)&n-ﬁz)(f)—-"-]

dt

1 ,(2) & (1) 1 g2 (2)
t 5 <I>Z (_f)[az(t) |H(E) |2 - It az(t)mh (f£) + 5 g‘;; az(t)mh (f)—"']
R (3.38)

where the first line on the right-hand side is the contribution to
the response spectrum @y(f,t|0f) from the "slow" turbulence com-
ponent wg(t), the second line is the expansion over k = 0,1,2,¢..
of the term n = 0 in the double summation in Eq. (3.37), the third
line is the expansion over k = 0,1,2,... of the term n = 2 in the
double summation in Eg. (3.37), and the +... in the last line
represents terms n > 2 in the summation over n together with the
remainder terms in the last two lines of Eq. (3.37). Also, in
writing out Eg. (3.38), we have used the relationship

m % (e) = |H(D)]? (3.39)

which is a direct consequence of Egs. (3.3Q). and (3.36). We shall
discuss interpretation of the quantities mﬁk)(f) later in this
report.

The first line 1n the right-hand side of Egq. (3.38) requires
no further discussion. The second line, which contains terms
corresponding to n = 0 from Eq. (3.37), is the contribution to
¢y(f,t|0f) from the locally stationary approximation to the con-
dltional turbulence spectrum wa(f,tlof). This interpretation

may be seen from Egqs. (3.12) and (3.19), where we remind the
reader that the index n in Egs. (3.12) and (3.37) plays the same
role. The third line in the right-hand side of Eg. (3.38), which
contains terms corresponding to n = 2 from Eq. (3.37), contains
the contributions to ¢y(f,t of) from the first correction term

to the locally stationary approximation to the conditional tur-
bulence spectrum ¢wf(f,t|0f). Furthermore, the first term within

each of the brackets in the second and third lines in Eq. (3.38)
provides the locally stationary approximation to the conditional
response spectrum, whereas the second and third terms within each
of the brackets in the second and third lines in Eq. (3.38) pro-
vide correction terms to the locally stationary approximation to
the conditional response spectrum. These second and third terms
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within the brackets result from the terms k = 1 and 2 in the
expansion of ap(t-u) given by Eq. (3.33). Thus, the locally
stationary response approximation to © (f,tlof) that results from
the locally statlonary approximation to the turbulence spectrum
¢wf(f,t|of) is

oy (£stlog) = e, () +oi(t) o, ()] Im(er® (3.40)

which, of course, could have been written directly from the tur-
bulence model of Eq. (3.1).

Equation (3.38), together with the above comments, provides
us with the crilteria that must be met for the approximation of
Eq. (3.40) to be valid. For the locally stationary approximation
to the turbulence spectrum ¢wf(f,t|of) to be valid, the first
term in the third line of Eq. (3.38) must be small in comparison
with the first term in the second line. When Eq. (3.18b) is
introduced into Eq. (3.38), this loecally stationary excitation
condition becomes

d*2nol(t) o (f) |H(£)]?
——{<< 327

(3.41)
dt? |¢;2)(f)l |[H(f) |?

which must be satisfied in reglons where o%(t) 1is not negligible.
Equation (3.41) is identical with Eq. (3.20), as expected, except
for the terms |H(f)|? in the right-hand side of Eq. (3.41).
Inclusion of the terms |H(f)|? relaxes the requirement of Eq.
(3.20) to the extent that the right-hand side of Eq. (3.20) need
be large in comparison with the left-hand side only over the
range of frequencies where |H(f)|? is not negligible.

When the approximation of Eg. (3.41) is satisfied, our
locally stationary response condition is satisfied if the second
and third terms within the brackets in the second 1line of Eq.
(3.38) are small in comparison with the first term. Using the
fact that

d 2
— 05(t)
£ enoi(e) = S L~ (3.42)
c%(t)

and using Eq. (3.39), the first of our locally stationary response
conditions becomes
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0,(0) Im®V(e)]
QZ(f)'|Wé;3ff)l,

4
at

2no§(t) << (3.143)

Notice ‘that the conditions of Eqs. (3.41) and (3.43) both involve
derivatives of Enof(t) ' .

To relate the second locally stationary response condition
to the derivatives' of lncf(t), we note that

A po2ce) = (02)-' A g2
gt tnop(t) = (07) " g% 9
and
2 _ 2 _ 2
4= nol(t) = (02)7 L= 02 - (63)7? (L 02
at? dt? dt
1 a* o, a4, .\ .
0% dt

hence, rearranging Eq. (3.44), we have
2
d 2 0%(t) 2 ?
dt = 4 2n0§(t) + é% Enoé(t) . (3.45)
o%(t) _ dt?

From Eqs. (3.39) and (3.45), 1t is evident that the condition

that the second term within the brackets in the second line of
Eq. (3.38) be negligible in comparison with the first term may
be expressed as

(0)
® (f) (f)
z Im, | ,  (3.46)

<< 2

42 a 2
- lncf(t) + 3E znof(t)
dt?

(2)
o, () |mi%) ()]

which 1s the second of our locally stationary response conditions.
When Eqs. (3.41), (3.43), and (3.46) are all satisfied, the
locally stationary conditional instantaneous response spectrum
approximation given by Eq. (3.40) is valid.
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The physical significance of the conditions of Egs. (3.41),
(3.43), and (3.46) will be discussed in a later section of this

report, where expressions for mﬁl)(f) and mﬁ2)(f) will be given
in terms of the magnitude and phase. of the alrcraft frequency
response function H(f). Methods for evaluation of the required
turbulence metrics to test for the satlsfaction of the condi-
tions of Egs. (3.41), (3.43), and (3.46) also will be derived
later in this report. . .

The importance of the locally stationary turbulence and

response approximations has been pointed out by Sidwell — e.g.,
pp. 19-22 and p. 41 of Ref. 5.
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AIRCRAFT RESPONSE EXCEEDANCE RATES AND
PROBABILITY DENSITY FUNCTIONS

Gaussian Property of Response Process
Conditioned on the cf(t) Process

In this section, the locally stationary instantaneous re-
sponse spectrum approximation given by Egq. (3.40) will be used to
derive expressions for alrcraft-response exceedance rates and
probability density functions. In evaluating the usefulness of
these results, we recall that the unit impulse-response function
h(t), introduced in the last section, may be regarded as describ-
ing the response of any partlcular part of the alrcraft modeled
as a linear constant parameter structure. For example, h(t) may
be chosen to describe the stress response at a critical section
in a wing spar.

In the derivations to follow, we shall assume that the "slow"
component wg(t) and the component z(t) in the turbulence model of
Eq. (2.3) are both stationary Gaussian processes with zero mean
values. When wg(t) and a(t) satisfy this stationary Gaussian
asgsumption, the response process y(t), conditioned on the process
opl(t), is a zero mean strictly Gaussian (generally nonstationary)
process. To prove this, we first note that each sample function
of y(t) can be expressed as

y(t)op = y (£) + ya(t)|os (4.1)
where o

ys(t) = J h(T) Ws(t—T)dT s (4.2)
and

yf(t)|0f = f h(t) Wf(t"T)lof dt > (4-3)

-0

where the vertical bars followed by of denote the fact that, in
the stochastlc process 1nterpretation of the above results, the
sample functions or(t) are to be regarded as known or specified
but otherwise unrestricted functions of time. According to

Eq. (4.1), {y(t)]oe} is the sum of two (independent) processes
{yg(t)} and {Yf(t)fﬁf}, since wg(t) and z(t) are assumed to be
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independent. By assumption, {wg(t)} is a Gaussian process. Since
any linear transformation of a Gausslan process results in a
Gaussian process, e.g., see Cramer [9], pp. 312,312, it follows
that {yg(t)} is a Gaussian process. Thus, since *thL& sum of any
number of independent Gaussian processes is itself Gaussian,
e.g., Cramer [9], pp. 316-317, it follows that the process
{y(t)|optwill be Gaussian (but generally nonstationary), 1if the
process {yr(t)]or} is Gaussian. However, according to Eq. (4.3),
{ye(t)|op} is a linear transformation of {we(t)|ogl}; thus,
{Y(t)l0f£ will be Gaussian if {we(t)|or} is Gaussian. Further-
more, according to Eq. (2.4), when op(t) is considered as a known
or specified function, we(t) is a (memoryless) linear transforma-
tion of z(t); hence, the process {wp(t)|op} is Gaussian. There-
fore, the conditional response process {y?t)lcf} is a (generally
nonstationary) Gaussian process. This result does not depend

on any of the locally stationary requirements of Eqs. (3.41),
(3.43), or (3.46).

In the following work, we shall require the first-order
probability density functions of {y(t)} conditioned on the
process op(t). According to the above comments, this probability
density p(y|o?) is Gaussian; i.e., ¥

_ y?

2
p(ylod) = —L—— e 2oy lor) (4.4)

2] .2
2ﬂ(0yl0f)

where (ozlo%)2é is the standard deviation of the response process
{y(t)]of¥ given that op(t) is specified; i.e., (0§|o$)% is the
square root of the conditional variance:

0;|0§ = E{y2|0§} . (L.5)

We also shall require the fourth moment of y(t), given that ope(t)

is specified. From Eg. (4.4) and known properties of the Gaussian
density function — e.g., pp. 220-221 of Parzen [10] — this fourth

moment 1is

E(y" |02} = 3(o§|o§)2 . (4.6)

¥We have used both p(---|or) and p(-++|o?) to denote the fact
that the value of the process of 1s specified. These are
equivalent concepts. This equivalence is used in other nota-
tions as well.
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Genéfa].Exﬂrgséion for AifcraftfRespdnsefExcéedance Rates

‘Numerous references 1n the aeronautical literature have -
dealt with ‘the mean rate of exceedances of an aircraft- -response
variable y(t) past some specified threshold level. Here, we -
shall deal with the expected number of crossings with positive
glope N4+(y) of the response past a specified level y. It was
shown by Rice [11] on pp. 189-193 of the Wax edition that, for
stationary processes, one has: |

o

N, (y) = | yp(y,y)dy (4.7)

where p(y,y) is .the joint probability density function of y and
its derivative y A derivation of this result also is given on
pp. 45-47 of Crandall and Mark [12]. The result of Eq (4.7)"
applies to nonGaussiah as well as Gaussian processes. Using the-
conditional joint probability-density function p(y,¥|of) of the
alrcraft response y and its derivative y, we may formally express
Eq. (&4, 7) as

N+(y) = I, y J"‘p(y,§|0§) p(o2)do} dy
0 . [ ‘

r“[
J

© ) ,
J y p(y,§10§)d§] p(o2)do?
0 0

rco

= N+(y|c%) p(c%)do% s (4.8)

_where we have defined

N, (ylo}) = [ y p(y;ylod)ay. . | (4.9)
0

which we may regard as the expected number of threshold crossings
wlith positive slope of the alrcraft response past the specified
level y, given that of(t) is specified.
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Several comments about Eqs. (4.8) and (4.9) are in order -
at this Jjuncture. First, p(y,¥|oc}) designates the joint pro-
bablility density of the response y and its derivative ¥, given
that the stochastic funetion o}(t) is specified. ' Therefore, -
p(y,9lo%) is a function of time. = Furthermore, because of this
fact, the integration involved in the formal determination of .
p(y,9) from p(y,ylod) — 1i.e., ' - :

:p(ysij = J p(y,§|0§) D(O%)d6§.] N T “l _,_j(H;lO)

— must actually be regarded as an infinite dimensional integration
over an infinite dimensional space of(ti), o}(t2), ob(ts), eee

as ti+1't1’ for all 1 = 1,2,3,.., is made to shrink to zero.

However, when interpreted in this manner, the operations in Egs.
(4.8) and (4.9) are valid. In particular, it follows from the
above derivation that Eq. (4.9) is valid even though the condi-
tional process {y(t)|op(t)} is not stationary.

In order to evaluate p(y,y|o}) for the purposes of this
report, we shall want to assume that {y(t)]los(t)} is locally
stationary. When {y(t)|og(t)} 1s stationary with zero mean value,
it is known that E{y 9'0f¥ = 0; l1.e., ¥y and y are uncorrelated.

It is shown in Appendix A of this report that when the conditional
instantaneous spectrum of the alrcraft response satisfles Eq.
(3.40) — 1.e., when the conditions of Eqs. (3.41), (3.43), and
(3.46) are satisfied — the conditional correlation coefficient

E{yy|o2}
f (4.11)

. 2 -
Pyjlot y(o2 lo2) (aF [o?
(0y|0f)(09|0f)

is negligibly small. Hence, for cases where Eq. (3.40) is valid
and where the turbulence processes {wg(t)} and {z(t)} in Eq. (2.3)
are Gaussian with zero mean values, the Joint conditional pro-
bability density p(y,¥|o%) is two-dimensional Gaussian in the
uncorrelated variates y and §y. Hence, when the locally stationary
condition of Eq. (3.40)i8 gatisfied, we may apply Rice's well
known formula [11], p. 193 of the Wax edition, to the evaluation
of Eq. (4.9): - . o :
' . 2
- —
o1 (0,tlo)]® T o212
2y _ 1 y s £/] 202 |0t S
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where ¢y(T,t|0f) i1s the conditional instantaneous autocorrelation
function of the response, defined in a manner completely analogous
to Eq. (3.2a), and where the differentiation indicated in the
brackets 1s with respect to T.

To evaluate the quantity within the brackets in Eq. (4.12),
we first note from the Fourier mate to Eq. (3.5) that the condi-
tional instantaneous autocorrelation function ¢y(T,t|op) is the
inverse Fourler transform with respect to f of the conditional
Instantaneous spectrum ¢y(f,t|0f); i.e.,

12nft

¢y(T,tl0f) = J @y(f,tlcf)e ar . (4.13)

-0

Hence, setting T equal to zero in Eq. (4.13) ylelds

(]

¢y(0,t|0f) J @y(f,t]cf)df

-00

2 | 2
cry(t)lcf . (4.14)
Furthermore, differentiation of Eq. (4.13) twice with respect to

T ylelds, after setting T equal to zero in the resulting expression:

[+ ]

-(27)2 f2¢y(f,t|of)df

9505t ]0¢)

-0

-og(t)lo; , (4.15)

where the second line is a well-known result —e.g., pp. 190-192
of the Wax edition of Ref. 11, or pp. 47-U48 of Ref. 12 — and
where the validity of the second line depends on the locally
stationary property of Eq. (3.40).

We may now use Eq. (3.40) to evaluate the right-hand sides

of Eqs. (4.14) and (4.15). Combining Egs. (3.40) and (4.14)
yields
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o;(t)lc; = g2 + o%(t) gl s (4.16)

S Z
where
o;s £ J ¢ws(f) |H(f) |24 , (4.17)
and
0§Z 4 J o (£) |H(£)|2ar . (4.18)

- 00

Similarly, combining Egs. (3.40) and (4.15) yields

o2(t)|o’= 0% + 02(t)o? , (4.19)
y g Vs Ty,
where
roo
o2 = (2w)?2 £2 ¢ (f) |H(£)]|?af R (4.20)
y N
S J S
and fw
g2 = (2m)* £2 ¢, (£) |H(F)|?dar . (4.21)
Y, J

Finally, by combining Egs. (4.14), (4.15), (4.16), and (4.19)
with Eq. (4.12), we obtain our final expression for the condi-
tional rate of exceedance crossings with positive glope:

2

N4
2 4 g2 2 -
1 Oys Uf(t)cyz 2[G§S+O-i2,(t)o§z]
N+(y|c%) = 5 e , (4.22)
o2 + o%(t)o?
Vs f v,

which is wvalid whenever the locally stationary agproximation of

Eq. (3.40) is wvalid. - The quantities Oy , 02 , 02 , and o3}

y ¥ ¥y

S Z S Z
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within the brackets in Eq. (4.22) are to be evaluated using

Egqs. (4.17), (4.18), (4.20), and (4.21). When Eq. (4.22) is
substituted into Eq. (4.8), we obtain a general expression for
the mean exceedance rate of the alrcraft response expressed in
terms of the probability density function p(cf) of the stochastic
function of(t)

Series Approximation of Aircraft Response Exceedance Rates

Evaluation of the expression for the response exceedance
rate N4(y) given by Egq. (4.8) requires knowledge of the probability
dgnsity function p(o%). However, for cases where the variance of
O'f —i.e.,

(2)

2
Op

e

M E{lc% - E(c2)]1?%}

E{[02]?} - {E[02]}? (4.23)

— is small in comparison with the square of the mean E{c3} of o%,
a useful series approximation to N4(y) can be obtained, as we
shall now show.

Let us consider N+(y|01) as a function of the variable Uf

Consider the Taylor's series expansion of N+(y|of) where_the
expansion is to be centered about the expected value of of — 1i.e.,

Eg - Blo2} . (4.24)

We may formally write this expansion as

T 1 (K),. =% 2 7.k
Z = N (ylof) (of—oi) (4.25a)

Ny (ylof) o K

N, (v]o2) + wiP (710%) (o%-02)

+ % N£2><y;5§> (02-02)% + ... , (4.25b)

where we have defilned
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N (y | 8 (4.26)

and

e

—_ . (4.27)
Of.=0

Nio)(y|c§)

N, (ylo})

Let us now substitute Eq. (4.25a) into Eq. (4.8) and interchange
the orders of integration and summation:

N = T N (y]02) [ (62-02)% p(o2)alo)
0
oy L1 (k) Ty, (K)
- kzo LN (ylo;)uG% , (4.28)
where
ué‘;f) & J (6%-02)% p(o2)a(o?) (4.29)

0

is the kth central moment of the stochastic variable o%. The
reason for choosing the expansion center of the Taylor's series

of Eq. (4.25) about the point o% = o% may be seen from Egs.
(4.28) and (4.29). According to Eqg. (4.29),

(1)
H _2
Op

HE
(@
-

(4.30)

1.e., the term k = 1 in the expansion of Eq. (4.28) vanishes when

the center of the Taylor's series expansion is o%. Furthermore,
it 1s known — e.g., Ref. 9, p. 175 — that the second moment of

02 is minimized when taken about 0%; consequently, the term
k=2 in the expansion of Eg. (4.28) is minimlized when the expansion
center of the Taylor's series expansion of Egq. (4.25) is taken

as E?. The first few terms of Eg. (4.28) are
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N, (¥) = N+(y|;g)_+ 5 u(g)

o Niz)(y|o§) toee. (4.31)

Discussion. It 1s lmmediately obvious using conditilonal
expectations — e.g., Ref. 8, pp. 55-56 — that when we consider
o% to be a stochastic varlable, we may express the mean-square
aircraft response E{y?} as

E{y?} E{y?|o2} p(ol)do?
f f f

- 2 2 2 2 2
= I [cy +ofcy 1 p(oz)dos
) pA
0
2 _2 2
= 0 + 040 4,32
v, P v, s (4.32)

where we have used Eq. (4.16), with an obvious minor change in
notation, and the definition of Eq. (4.24). Consequently, it
follows directly from Egs. (4.22) and (4.32) that the first term

N+(y|0%) in the series of Eq. (4.31) is the response exceedance
rate oﬁe would compute by assuming that the aircraft response

y(t) 18 a stationary Gaussian process with a variance equal to
the actual variance E{y?} given by Eq. (4.32). It follows that
the terms kK = 2,3,... in Eqs. (4.28) and (4.31) are correction

terms to the Gausstian approximation N+(ylo%) of the true air-
eraft exceedance rate N, (y), where these correction terms take
into account the nonGaussian nature of the aircraft response
that 18 caused by the stochastic variations in the quantity
of(t) in the model of Eq. (2.3).

The behavior of the first correction term,

—. (2
%N£2)(y|0§) u((,;) ,

to the Gaussian approximation N4(y|o}) in Eq. (4.31) is of
speclal interest, since this correction term governs the behavior

of the deviation from Gaussian behavior N4(y) when Us2 is small
in comparison with (o%)2. It is shown in Appendix B of this
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report that Ni2)(y|o§) can be expressed, exactly, as

N2 (ylo2) = 2 N (y]o2) @@ (ylo2) (4.33)
where »
2 2
(o] Ok
vy 2 y
CNCIPHIEES 1 LB . A R |
o02jo2\ 02|02 c2|o?
yor\ vyt vy of
(o2 )* (o2 )*
Yz y? Ve
- (2 -t (4.34)
(o;|c§) oy|of (o§|of)

and where we have used the notation

2|42 _ 2 2 2
cylof oys + Ufoyz (4.352)
and
21 ~2 _ L2 2.2
0% = g; + . 4,35b
ylof cys afoyz (4.35b)

When Eq. (4.33) is substituted into Eq. (4.31), and only one cor-
rection term to the Gaussian approximation is retained, we obtain

oy (2) (2
N, () = N (ylod) [1 4 ujs @

SCIFTIE I (1.36)
f

hence, we see that the quantity Q(E)(ylc%) 1s of the nature of a
multiplicatlive correction factor to the Gausslan approximation

N, (ylo}).

Often — e.g., Ref. 13 — the logarithm of the normalized
exceedance rate Ny(y)/N4(0) is plotted. Dividing Eq. (4.36) by
N4+(0) and taking the natural logarithm of the resulting expression
gives
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N, (y) N, (y[o%) (2),(2)

2nm)—=zn N (0 +!Ln[1+ujz?Q (IE)]
N <y|c7> ) —
for U(z) (2 )(YI;) < 0.2 ,
Op

where, 1n going to the second line, we have used the flrst term

in the Maclaurin expansion of 2n(l+x) — i.e., &n(l+x) = x, which
has approximately ten percent error when x = 0.2. It follows from
Eq. (4.37) that, for sufficiently small values of u(Z), the

function Q(Z)(y|0 ) governs the deviation of a plot fof

LnlN, (y)/N (0)] from the quantity 2n[N+(y|of)/N+(0)] which ts,

except for a possible constant factor, the result predicted if
one assumes that y(t) is stationary and Gaussian.

In order to discuss further the result of Egq. (4.37),
shall restrict our attention to the case where the aircraft re-
sponse to the component wg(t) of our model of Eq. (2.3) is neg-
ligible. This assumption implies that oy £ 0 in Egs. (4.35a)

and (4.35b). Consequently, for this 11m1tin§ case, we obtain
from Eqs. (4.35a) and (4.35b) when_o; and o: are set equal to
zero, s Ys

(4.38a,b)

4
2 2
oylo 0%

Y

Substituting Egs. (4.38a,b) into Eq. (4.34) and writing c§ for
o§lo%, we obtain, after simplification,

- 2 2
Q(2)(y|02) = —1 X_ ¥ ), (4.39)
£ 8(02) 2 o2
£ y y
which is valid only when oy = 0 and oy = 0. Notice that, for
this case, = E{of}c hence, the quantity o§ in Eq. (4.39) is
the true. varXance of tK% response variate y(t).” Furthermore,
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according to Eq. (4.39), we have Q(2)(0|0%) = 0. Hence,
according to the approximation of Eq. (4.36), we have N (0) =

N+(O|;?). It follows that, for the case under consideration,
the first term in the right-hand side of Eq. (4.37) can be

written as 2n[N4(y|od)/N+(0|o$)] which is, exactly, the loga-
rithm of the normallzed exceedance rate for a stationary Gaussian
process. Using Eq. (4.22) to evaluate this term and writing

oy for o%o§z (recall that oy = 0), we have for the right-hand

side of Eq. (4.37),
d (2)

N, (y) S 2 Ho2 2 2
+ - _ v 1 f y Iy _ .
in N _(0) ~ oG *E (62)2 o2\ o2 4 ? (4.40)
' : y f v y '

where we have used Egq. (4.39) and where, according to Egq. (4.37),
the correction term, which is the second term on the right-hand
side of Eq. (4.40), should be accurate to within about ten percent
whenever that term is less than about 0.2.

Equation (4.40) is the desired result. If 2n[N+(y)/N+(O)]
1s plotted on the ordinate versus y2/0§ on the absclssa, we see
that the first term in the right-hand Side of Eq. (4.40) is a
straight line with slope of minus one-half and ordinate inter-
section at (y2?/c2) = 0. This first term is the exact result for
stationary Gauss%an processes y{(t). The second term on the
right-hand side of Eq. (4.40) is a parabola 1n the quantity
y2/c%. This second term is zero at (y?/c§) = 0 and at (y*/o§) = 4.
Between these two values, this correction term is negative (since

(2)

2
Ucf
this correction term 1s positive. Consequently, for threshold
levels between 0 < |yl < 20y, Fq. (4.40) indicates that the first
(stationary Gaussian) term overestimates the number of threshold
erossings; whereas, for thresholds lyl > 20y, Eq. (4.40) indicates
that the first (stationary Gaussian) term underestimates the
number of threshold erossings of processes y(t) with time-varying
variance. ¥

is necessarily positive or zero). For values of (y2/0§) > L,

Equation (4.40) provides a theoretical prediction of the
concave shape of aircraft-response logarithmic exceedance plots
for the turbulence model described by Eq. (2.3) for the case
where wg(t) = 0. The "strength" of the parabolic correction
(in the variable y2/0§) to the stationary Gaussian response
result, given by the first term on the right-hand side, 1is
governed by the coefficient

¥For y = 0, 1t 1s evident from Eqs. (4.36) and (4.39) that the
stationary Gaussian term gives the correct value for N4 (0) since

Q(z)(0|5§) is zero.
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u(2) _

o% _ E{[UE-E(0§)]2}

—— p— (4.41a)
(cf) {E[cf]}

E{[02]%} - {E[02]}?
= ’ (ll.'-llb)
E{[02]}2

which 1s the square of the coefficient of variation (e.g., Ref. 9)
of the time-varying varlance of(t) in the turbulence model of
Eq. (2.3).

Aircraft Response Probability Density Functions

It is evident from Eq. (4.12) that, when the aircraft
response y(t) is a stationary Gaussian process, the mean rate
of "up crossings" N4+(y) of the level y is proportional to the
probability density function (pdf) p(y) of y(t). We shall show
in this section that the proportionality between N4+(y) and p(y)
is no longer maintained when the turbulence excitation is modeled

by Eq. (2.3).

Pirst, we shall derive a series expansion for the first
order pdf p(y) of the response process {y(t)} using a method
completely analogous to that used to obtaln our series representa-
tion of N+(y). Denoting by p(y|o}) the conditional pdf of y
given that o% is specifiled, we have

p(y) = [ p(ylof) p(od)dal . (4.42)

0

We now formally expand p(y|c}) in a Taylor's series in the

variable ¢% about the expansion center E{o%} = o%:
S 1 (k) k
p(yle2) = § —p “'(ylod) (oi-02)" , (4.43)
£ 7k £) (9879F

where we have defined
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a¥p(ylo2)

d(o2)¥ —
f G2 = g2
£ £

>

p 3 (y]o2) (4.4h)

and

p{®(y102)

2

plylogd| , — - (4.45)
¢ = 9¢

Next, we substitute Eq. (4.43) into Eq. (4.42) and interchange
the orders of integration and summation, finding thereby that

(k)

1 K 2
T p( )(YI0§) g2 R
: f

e 8

p(y) = (4.46)

k=0

where we have used the definition of Eq. (4.29). The motivation

for using o% as the expansion center of the Taylor's series ex-
pansion of Eq. (4.43) is the same as that described earlier in

the text between Eqgs. (4.30) and (4.31). We may write out the

first few terms of Eq. (4.46) as

p(y) = p(ylcé) + % ué%) p(2)(y|;g) + e , (4.47)

since the term in Eq. (4.46) corresponding to k = 1 1is l1ldentically
zero because we have chosen our Taylor's series expansion center

2 _ 2
at op = 0.

The first term in the right-hand side of Eq. (4.47) 1s the
Gaussian approximation to the pdf of y(t) given by Eg. (4.4) with

o% = g?; hence, according to Eq. (4.35a), we have

c;lo = c; + 0 = E{y?} = o2 . (4.148)

N

The second term in the right-hand side of Egq. (4.47) is the
"first-order" correction term to the Gaussian approximation
provided by the first term. When the coefficilent of variation

—. .k
[uég)/(oé)zjz of the random variable o% is sufficiently small,

this first-order correction term will exhibit the princlpal devia-
tion of p(y) from the Gaussian approximation p(ylc%).
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It 1s shown in Appendix C of this report that p(2)(y|o )

can be expressed,

p<2)(ylgg)

where

u(2)(y02)

Substitution of Eq.

approximation to p

exactly, as

2 p(ylgg) U(2)(yl;§) ,

(o2 )2
_]E__ yZ _ 2y2 +
2 2y 2 2 2
(oylof) cylof
(02 )2 2
1 . yZ yZ _ 6
2 2y 2 2 2
(o IOf) oylof

(4.49) into Eq.
(y):

p(y) ~ p(ylod) [1 + uég)u‘”(yl@]

Discussion.

(4.46), (4.47),

the right-hand side of Eqg.
It is of considerable interest that,

apparently completely different l1line of reasoning — namely,

mation to p(y).

Gram-Charlier seri

and (4.51) that, ok
(4.51) should provide a good approxi-

(4.49)

N

(4.50)
2
y

(4.47) ylelds the two-term

(4.51)

It is in the nature of the derivation of Egs.

when u

es — e.g., Cramer, Ref.

(2)

is sufficiently small,

using an
the
9 — one obtains pre-

clsely the same correction to the Gausslan approximation given

by Eq. (4.51).
comparison of Egs.
p. 272 of Papoulis

the brackets in Eq.

degree four in the

To i1illustrate

(147,

2] 2+\%
variable y/(oy[of) .

the equivalence of Eq.

This equivalence 1s most readlly seen by a
(4.50) and (4.51) above with Eq.
where we note that the quantity within
(4.50) above is the Hermite polynomial of

(8-111) on

(4.51) to the Gram-~

Charlier series with the same number of terms, we must show, by

comparing Egs.

(4.50) and (4.51) above with Eq.

(8-111) of

Ref. 14, or with Eqs. (17.6.5) and (17.6.6) of Ref. 9, that
the coefficient of excess Y§2) of y —1i.e.,
u(“)
YALLEE P A (4.52)
Y (o)t
y
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(where uéu) is the fourth central moment of y) — 1is related to

(2)
ucf by
(2) 2 y2
Y§2) uC% (oyz)
Y] = 3] 21 2.2 (u-53)
. (oylcf)
or, equivalently, that
(o; )2
(2) (2) z
Y = 3 u e S (4.54)
J o (o;lo§)2

The equality in Eq. (4.54) is proved in Appendix D.

The main purpose of the above discussions of response ex-~
ceedance rates and probability density functions has been to
1llustrate the Iimportance of the pdf p(o%) of the gime—varying
variance or(t). The fundamental importance of p(of) in aircraft-
response statistics is clearly illustrated by Egs. (4.8) ang
(4.42). PFurthermore, it is evident from the series expansions

of Egqs. (4.28) and (4.46) that the (central) moments uég),

k = 2,3,4,... constitute the most important set of parametric
descriptors of the pdf of opf. Methods for computing these
quantities from turbulence records will be described in Sec. 6
of this report.

Use of conditional probabilities in computing an expression
for exceedance rates analoggus to Eg. (4.8) of this report, but
%sigg p(op) rather than p(of), has been used recently by Sidwell

15].

Comparison of Exceedance Rates and Probability Density Functions

It is evident from Egs. (4.4), (h.12), (4.36), and (4.51)
that, considered as a function of the response variable y, the
Gausslan approximations to the exceedance rate Ni(y) and the pdf
p(y) provided by the first terms in the right-hand sides of
Egs. (4.36) and (4.51) are proportional to one another; i.e.,
each has the form C exp[—yz/(Zo;lcé)], where C 1s a constant.
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However, this same statement 1is not true of the approximations
to N+(y) and p(y) provided by the right-hand sides of Egs.
(4.36) and (4.51), respectively. In particular, for the case
where °§s = 0, it follows from Eqs. (4.36) and (4.39) that the

zeros of the correction term Q(2)(y|;§) occur at (y2/02) = 0,4;
whereas, from Egs. (4.50) and (4.51) it follows that tge zZeros

of the correction term U(2)(y|o§) oceur at (y2/0§) = (3t/8) =
0.55, 5.45. Thus, differences between the shapes of observed
exceedance functions N4(y) and probability densities p(y) are
an indication of nonGaussian behavlior of the turbulence excita-
tion process w(t).¥

¥On p. 34 of Ref. 5, Sidwell has pointed out that N4(y) and p(y)
will, in general, have different functional forms.
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LOCALLY STATIONARY RESPONSE REQUIREMENT INTERPRETATIONS
AND RELATIONSHIPS TO TURBULENCE MEASUREMENTS

Interpretation of Locally Stationary Instantaneous-
Response-Spectrum Requirements '

.Three requirements for the validity of the approximation of
Eq. (3.40) for computation of the conditional instantaneous
alrcraft response spectrum were arrived at in Sec. 3 of this
report. These requirements are given by Egs. (3.41), (3.43),
and (3.46). T

The first requirement, given by Egq. (3.41), has already been
discussed in Ref. 6 1n terms of a spatial variable X = Vt, where
V 1s the alrcraft speed. [See Eq. (4.82) of Ref. 5.] When the
spectrum of z(t) of the model of Eg. (2.3) 1s the von Karman
transverse spectrum with integral scale Lz, the condition of
Eq. (3.41) can be written as

d?2nol(t) 2
— ) <008 L, (5.1)
L;

dt?

where we note that £nc? = 24no. The condition of Eq. (5.1) means
that the second derivative of %nop(t), measured on the time scale
t' = L,/V, must be less than or equal to 0.08. This requirement
means, roughly, that the relative changes in the time-varying
variance dL(t) of the "fast turbulence component" wf(t) in Eq.

(2.3) mustd ocour slowly when measured on the time scale t' = L,/V
defined by the aireraft speed V and the integral scale Lz (L.e.,
nominal correlation intervall) of the component z. We refer the

reader to the discussion of Eg. (4.82) in Ref. 6 for further
interpretation of Egq. (5.1).

Equation (5.1) 1s independent of properties of the aircraft
unit-impulse response function h(t), while the second and third
requirements are dependent on properties of h(t). The second re-
quirement given by Eq. (3.43), depends on the magnitude of the ratio

méo)(f)/mél)(f); where these two quantities are defined by Eq.
(3.36). The quantities mék)(f), k = 0,1,2,+.+ were defined

earlier in Ref. 16 by the author of this report for use in
another context. It is shown on p. 282 of Ref. 16 that the

quantity mél)(f)/méo)(f) is the group delay Th(f) of the aircraft
unit-impulse response h(t); i.e.,
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(1)
Th(f) é w . (5-2)
m,~ (f)

If we express the Fourier transform, Eq. (3.31) of h(t) in terms
of its magnitude and phase

ieh(f)
H(F) = |H(E)]| e s (5.3)
then Th(f) can be expressed in terms of the phase by
(1)
T, (f) = T%ajifl = - g; Eggéfl . (5.4)
m, (f)

The group delay 1,(f) of h(t) can be interpreted physically as
an energy-spectrum-welghted frequency-decomposition of the time

centroid T of h2(t); i.e.,

fm th?(t)dt
p = 22 ; (5.5)
f h2(t)dt

-0

See Eq. (165) of Ref. 16 and the accompanying discussion.

Substituting Eq. (5.2) into Eq. (3.43), the second of our
locally stationary response spectrum conditions becomes

Lo o2(6)] <« —1— (5.6)

| Th (£

where we have ignored the ratio ¢,(f)/¢,(f) in Eq. (3.43). The
requirement of Eq. (5.6) means, roughly, that the relative
changes in the time-varying variance op(t) of the "fast turbu-
lence component" wpe(t) in Eq. (2.3) mugt be small in comparison
with unity when measured over time intervals of the order of
the group delay ty(f)} of h(t).

For unit-impulse response functions h(t) that are even
functions of time — i.e., h(-t) = h(t) — it can be shown from
Eq. (5.4) that 1h(f) = 0. [Recall the choice of our time origin
of h(t) as deflned by Egs. (3.23) and (3.24).] For such
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impulse~response functions, Eq. (5.6) is always satisfiled;
hence, the third condition given by Eq. (3.46) is required.

This third condition depends on the ratio m(2)(f)/ (O)(f)
which 1s an energy- spectrum—weighted frequency decomposition
of the second moment of h?(t) normalized to unit area. Since,
by our choice of the time origin of h(t), the time centroid of

h2(t) is zero, it follows that méz)(f)/méo)(f) is a frequency

decomposition of the second central moment of h?(t) (normalized
to unit area). See p. 286 of Ref. 16. It 1s shown on pp. 283

and 284 of Ref. 16 that the quantity mé2)(f)/méo)(f) can be

expressed in terms of the magnitude and phase of H(f) by

(2) z
m, () Hdeth)] _ 1 a’anlH(O)| { (5.7)
u 2

méo)(f) af ar?

Because mé2)(f)/m£0)(f) is an energy-spectrum-weighted frequency-

decomposition of the second central moment of h2(t) [with h?(t)
normalized to unit areal, the requirement of Eq. (3.46) means,
rgughly that the relative changes in the time-varying variance
of(t) of the "fast turbulence component"” we(t) in Eq. (2.3) must
oececur slowly when measured over time intervals comparable to the
nominal duration of h?(t). Since the nominal duration of h?(t)
governs the "correlation interval" of the response process, when
the requirements of Egs. (3.41), 53.43), and (3.46) are satis-
fied, the fractional changes in of(t) should be small over in-
tervals comparable to the "correlation lnterval" of the response
process {y(t)}.

Locally Stationary Requirements Expressed in Terms
of Mean-Square Response

The left-hand side of each of our locally stationary re-
quirements of Egs. (3.41), (3.43), and (3.46) depends only on the
behavior of EnG%(t) Furthermore, when like terms are cancelled
in the right-hand sides of these same equations, it 1s evident
that the right-hand side of Eg. (3.41) depends only on the
spectrum of the turbulence component z(t), whereas the right-
hand sides of Egs. (3.43) and (3.46) depend only on properties

méo)(f), mél)(f), and mé2)(f) of the alrcraft impulse~-response
function h(t).
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By integrating the series expansion of Eq. (3.38) over
-o < f < o, we obtain an expression for the conditional mean-
square aircraft response E{y?(t)|or}. It is immediately evi-
dent that, after thilis Iintegration is carried out, the three
locally stationary requirements of Egs. (3.41), (3.43), and
(3.46) are replaced by

J ¢Z(f)|H(f)|2df

dzzno§(t)
—| << 3272 — s (5.8)
dt J ¢é2)(f)|H(f)|2df
® (0)
J @Z(f) m, (£)dar
ag‘E- ,Q,no';‘(t) << == ’ (5.9)

I o () mél)(f)df

-0

and

f ¢Z(f) mﬁO)(f)df

- 00

2
<< 2

dt

12
~ ino%(t) +l:£L zno§(t)]
at

J o, (£) méz)(f)df

- 00

(5.10)

The right-hand side of each of the above three conditlons now
depends both on the spectrum ¢,(f) of the turbulence component

‘z(t) and on one or more of the quantities méo)(f) = |H(F)]|?,

mél)(f), and mﬁ2)(f) that are determined from the (complex)

aircraft frequency-response function H(f). However, the right-
hand sides of Egs. (5.8), (5.9), and (5.10) have the advantage
that, for a given turbulence component z(t) and aircraft, each
i1s defined by a single number only. These conditions are some-
what less restrictive than those defined by Egs. (3.41), (3.43),
and (3.46).
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Expression of Requirements in Terms of Autocorrelation
Function of znoﬁ(t)

The left-hand side of the three requirements of Egs. (3.41),
(3.43), and (3.46) or Egs. (5.8), (5.9), and (5.10) are expressed
in terms of the function f2nofr(t), which, until now, has been
considered to be known or specified. However, in the turbulence
model of Eq. (2.3), cf(t) 1s assumed to be a sample function
drawn from a statlonary stochastic process. We shall now ex-
press the left-hand side of the above three locally statiogary
conditions 1n terms of the autocorrelation function of fnop(t).

For brevity of notation, let us define

v(t) & enoi(t) . (5.11)

Denote the autocorrelation function of v(t) = 2no%(t) by Ry(t);
i.e.,

R,(T) 8 piv(t) v(t+1)} ) (5.12)

Then, denoting by a prime the derivative of a function with
respect to its argument, we have

R (1) = E{v(t) v'(t+1)}
= E{v(t-1) v'(£)} , (5.13)
since {v(t)} is a stationary process. A second differentiation
yields
Ry(t) = E{-v'(t=-1) v'(t)}
= -E{v'(t) v'(t+1)} . (5.14)
Hence,
—R%(O) = E{[v'(t)]1%} (5.15)

i.e., the mean square value of v'(t) is equal to -Ry(0). Further-
more, replacing v(t) by v'(t) in Eq. (5.12) yields, using the
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result Qf Eq. (5.15),
rR(V(0) = BLIvi(£)1%) - C (526

where the superscrlipt on the left-hand side represents the fourth
derivative. The results of Egs. (5.15) and (5.16) are, of course,
well known — e.g., p. 21 of Ref. 17. Since v(t) = Rno%(Z) is a
stationary process, v'(t) and v"(t) are stationary processes with
zero mean values. Hence, the standard deviation of v'(t) is

[- G(O)]%, and the standard deviation of v"(t) is [R&”)(o)]%.

Suppose now, by our << signs in Egs. (5.8), (5.9), and (5.10),
we mean that the first neglected terms in Egs. (3.38) should
be a factor of about three less than the terms they are belng
compared with when the stochastic left-hand sides of the three
conditions of Egs. (5.8), (5.9), and (5.10) are statistically
rather large, say at a "level" of three times their standard
deviations. These two factors of three give us a composlte
factor of three times three, which we shall round off to ten.
Consequently, the signs << in Egs. (5.8) to (5.10) require a
factor of about ten for thelr validity, when the left-hand sides
are replaced by their standard deviations. For engineering
applications, cholce of a factor of ten as thls minimum value
for << is about right — 1.e., not overly conservative. Hence,
using Eqs. (5.16) and (5.15), we may express the requirements
of Egs. (5.8) and (5.9) as

J ¢z(f)lH(f)|2df

(R{V (0017 < 3.2m% = (5.17)
J ¢é2)(f)|H(f)|2df'
and J o, () méo)(f)df
1" 4 1 ==
[-R1(0)7% < & . (5.18)

J o (£) mél)(f)df'

- OO

With the condition of Egq. (5.10), the situation is some-
what more complicated. The expected value of the left-hand side
(without absolute value signs) 1s not zero in this case.
Furthermore, we require the standard deviation of the sum of the
two quantities on the left-hand side, and these two quantitiles
are not statistically 1lndependent.
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To provlide an expression for the standard devliation of
the left-hand side of Eq. (5.10) that 1s of practical use, it
is necessary to assume that v'(t) = d(&nocl)/dt is a Gaussian
process. This assumption would not normafly be Justified;
however, for the kinds of inequalities required here, the
assumption should not cause appreciable error. When thils
Gaussian assumption for v'(t) is made, 1t is shown in Appendix
E of thlis report that the required varlance for the left-hand
side of Eq. (5.10) is

var{v'(t) + [v'(£)1%} = ’R$V)(0) + 2[Rn(0)12 . (5.19)

Furthermore, the mean value of the left-hand side of Eq. (5.10)
(with absolute value signs removed) is

E{v"(t) + [v'(t)]1%} = E{[v'(£)]1%} = -Rg(0) , (5.20)

according to Egs. (5.11) and (5.15). Hence, using the three
times the standard deviation criterion discussed earlier, and
recognizing that thils must be added to the mean value, we shall
want for the left-hand side of Eq. (5.10)

(2[R (0)3% + (P (0017 - L Rr(0)

1

=-3RIO|1+3 §2 +

(4) %
g% (0)
Y % (5.21)

[Ry(0)]7

which is 1/3 times (mean plus three times standard deviation)
and where we have recognized the fact that R{j(0) is negative.
Using the "three times three equals ten" rule discussed earlier,
the requirement of Eg. (5.10) can now be expressed as

S ” (0)
Réu)(O) I 1 f ¢Z(f) my (£)ar

-— 00

!

- Lrroyl + 3‘2 P SERLEER ) P O
37V | [R;(o)]zs 2 J 5, () mé2)(f)df

ot ¢ o

(5.22)

which 1s our third requirement. Equations (6§.17), (5.18), and
(5.22) are the conditions required for confident engineering use
of the loeally stationary approximation of Eq. (3.40) to compute
the mean square aircraft response as was done, for example, in
Eqs. (4.18), (4.17), and (4.18).
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Method for Evaluation of Autocorrelation
Function of Zno%(t)

The left-hand sides of Egs. (5.17), (5.18), and (5.22)
depend only on the second and fourth derjvatives of the auto-
correlation function Ry(t) of v(t) = &noy(t) evaluated at T = O.
Hence, to determine 1f these three conditions are satisfied,
we must evaluate the autocorrelation function Ry(T) from measured
turbulence records. This problem will be treated now.

Let us return to the turbulence model of Egq. (2.3). Con-
sider a high-pass filtered version wp(t) of w(t), where the
filter cutoff frequency is sufficiently high to remove, for
practical purposes, the "slow process" wg(t). Hence, we may
write this high-pass filtered version of w(t) as’

wh(t) = Aop(t) z,(t) s (5.23)

where zr(t) 1s a high-pass filtered version_of the component z(t)
in Eq. ?2 3) assumed normalized so that E{zf} = 1, A is the con-
stant requlred for this normalization, and where it has been
assumed in writing Eq. (5.23) that fluctuations in og(t) occur
slowly 1in comparison with fluctuations in z(t). It is presumed
that wp(t) would be generated from a turbulence recording by
digital filtering. Thus, we shall assume that the record wh(t)
is available.

Let us now square Egq. (5.23) and then take 1its natural
logarithm. These operations yield

n w;(t) = ¢n A2 + ¢n o%(t) + 4n z;(t) . (5.24)

By assumption in our turbulence model of Eq. (2.3), {oe(t)} and
{z(t)} are independent processes; therefore, the same 1is true of
{¢n of(t)} and {#n zf(t)}. Hence, we may immediately write the
covariance of Eq. (5.24), taken at observation times ¢ and t + T,
as

cov[in wﬁ(t), n w;(t+r)] = cov[fn o%(t), n O%(t+r)]

+ cov[n z;(t), Ln z;(t+1)] ,

(5.25)

58



where we have used the fact that the covariance of the sum of
two independent variables is equal to the sum of the covariances
and where we note that the dependence on the constant A has
disappeared. According to the material contained in the pre-
vious sectlgn, our interest 1s in the autocorrelation function
v(t) = &n op(t), which 1s related to the covariance function of

v(t) = 2&n cé(t) by

R, (1) = covlv(t), v(t+1)] + {E[v]}?% . (5.26)

Hence, we wish to solve Eq. (5.25) for cov[&n cZ(t),%n ob(t+1)];
l.e.,

cov[&n c%(t), n c%(t+r)] = cov[&n wﬁ(t), Ln wﬁ(t+r)]

- cov[&n z;(t), Ln z;(t+r)]

(5.27)

The first term on the right-hand side of Eg. (5.27) can be
numerically computed directly from the high-pass filtered version
wh(t) of the orjginal sample w(t). Thus, in order to compute
Ry(t), v = &n o, we need an expression for the second term on
the right-hand side of Eq. (5.27). To obtain this expression,
we first recall that, by assumption, z{(t) is a stationary
Gaussian process; therefore, zp(t) also is a stationary Gaussilan

process. In Sec. 6 of this report, we shall describe a method
for computing the power spectral density of z(t) from the mea~
sured turbulence samples w(t). Let us denote this power spectral

derisity by ¢,(f), and denote by Hh(f) the high-pass filter
complex frequency-response function. Then, when the gain of
this filter is appropriately adjusted¥* so that E{zﬁ} = 1, the
poyeﬁ spectral density @Zh(f) of zn(t) can be computed from

¢ (f) by

Z

(bzh(f) = o, (f) |H (£)]* . (5.28)

Hence, from a measured turbulence record w(t), we shall have at
our disposal the means to compute the power spectral density
@zh(f) of the component zn(t). Therefore, by using Egs. (5.26),

¥Tt will become evident later that this assumption need not be
satisflied in practice.
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(5.27), and (5.28), we shall have at our disposal the means to
compute Ry(T) 1f we can obtaln cov[fn zf(t), &n zA(t+1)] from
the power spectral density ¢zh(f) of zp(t).

Let us define

u(t) 8 n zﬁ(t) . ' | (5.29)

Then, the covariance of u(t), u(t+t) is related to the autocor-
relation funection Ru(r) by

covfu(t), u(t+r)] = R, (1) - {E[ul}?® . (5.30)

Thus, if we can compute the autocorrelation function Ry(t) of
the function u(t) = %n zf(t), we have at our disposal fhe means
to compute Ry (1).

The problem, therefore, 1s to compute the autocorrelation
function Ry(t) of the natural logarithm of zp Z(t), glven that we
know the power spectrum @zh(f) of {zh(t)}and under the assumption

that {zn(t)} is a stationary Gaussian process with zero mean and
unit variance. This problem is solved in Appendix F, where it
is determined that

R (t) = 2 aresin? p_ (1) + (C + &n 2)2 s (5.31)
u Zy
where C 1s Euler's constant — i.e.,
C = 0.577215665... (5.32)

— and where p, (1) 1s the correlation coefficient* of the process
zh(t); i.e.,
R (1)

0 h : (5.33)

¥The formulation of Eq. (5.33) negates the requirement that the
high-pass filter gain be adjusted so that E{z } = 1.
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From Eqs. (5.31) and (5.33), it immediately follows that

covl&n zﬁ(t), n zﬁ(t+f)] = é arésinszZ'(T)/Rz (0)]. (5.34)
h h

Finally, we note that R,, (t) may be computed from &,. (f) by
: ) Zh _ Zh

[¢ 2]
R (1) = J o () e™®™IT ar
h

-0

i2nfT

it

0,(£). [H (£)]% e ar ,. .(5.’35)_

-—CO

according to Eq. (5.28). Equations (5.26), (5.27), (5.34), and
(5.35) collectively provide the means to compute the autocor-
relation function Ry(T) of v(t) = %n o%(t) from the high-pass
filtered version wy(t) of the turbulence record w(t) and the
power spectral density ¢,(f) of the turbulence component z(t):

R, (1) = {E[&n o%.(t)]}2 + cov[fn w;(t), Ln w;(t+1)]

-2 arcsinz[RZ (t)/R, (0)1 , (5.36)
h h

where th(r) is to be computed from 9,(f) and the high-pass
filter frequency-response function by Eg. (5.35). Notice that,

in computlng the derivatives R{(t) and R(u)(T), the constant term
{E[&n Uf(t)]}2 in Eq. (5.36) becomes 1rrelevant Furthermore,
insofar as computation of the derlvatlves of Ry(T) is concerned,
we may replace cov[ln wh(t) n wh(t+1)] by the autocorrelation
function of 2&n wf (t) for this same reason. The computation of
cov[an wi(t), &n wh(t+T)] is to be carried out directly from

the high-pass filtered version of the turbulence record w(t).
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METHODS FOR COMPUTATION OF TURBULENCE METRICS FOR
PREDICTION OF AIRCRAFT RESPONSE STATISTICS

In addition to the turbulence metrics Ry, (1) and Coviin wi(t),
Zh *h

n wﬁ(t+T)] used to compute the second and fourth_ derivatives of
the autocorrelation function Ry(1) of v(t) = &n or(t), which are
required for verification of the locally stationary aircraft
response assumptions, the material described in Sec. 4 of this
report delineates several other turbulence metrics necessary to
predict the response exceedance rates and probability density
functions of an arbitrary aircraft response variable.

To predict the mean rate N4+(y) of exceedance crossings with
positive slope of the aircraft resgonse past the "level" y, one

must compute the parameters 0; , OS5 .’ oy > & 5 therefore, as

z s s
is evident from Egs. (4.8) and (4.22), one must have available
the power spectra ¢5(f) and Qw (f) of the turbulence components

z(t) and wg(t) in the model of Eq. (2.3). See Egs. (4.17),
(4.18), (U 20), and (4.21). These same two spectra are also
requlred to predlct the aircraft response probability density
function p(y). Furthermore, computation of N4(y), using Eq.
(4.8) or p(y) using Eq. (4.42), requires the probability density
function p(of) of the time-varying variance oe(t) in Eg. (2.3).
On the other hand, using Egs. (4.28) and (M.Mg) to compute N4(y)
and p(y), respectively, requires the central moments uég)of o%
defined by Eq. (4.29). 1In addition, in deriving our expressions
for N+(y) and p(y), it was assumed that the turbulence component
wg(t) in Eq. (2.3) was Gaussian. To check the consistency of
this assumption, we require the probability density function
p(wg) of wg(t). A simple check of the Gaussian character of
p(wg) can be made using a Gram-Charlier series representation

of p(wg), which requires the first few moments of wg(t). Finally,
it can be shown that when the locally stationary response con-
ditions of Egs. (3.43) and (3.46) or Egs. (5.18) and (5.22) are
not satisfied, the power spectral density ¢02(f) of the

component of(t) is required to predict response exceedance rates
and probability density functions. In summary, to predict the
aircraft response statistics described above, one reguires
methods for computation of the power spectral densities ¢,(f),
@Ws(f), and écz(f) of the turbulence components z(t), wg(t),

f
and o%(t), respectively; methods also are required for computa-
tion of the central moments and probability density functions

(k)

f
cf(t) and ws(t). [The component z(t) in the model of Eq. (2.3)

is, by assumption, Gaussian.]

and u(k), and p(Of) and p(ws) of the turbulence components
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In thls section, we describe methods for computation of the
above turbulence metrics from recorded turbulence velocities.

Estimation of Power Spectra of z(t) and ws(t)

Let us first obtaln an expresslon for the autocorrelation
function Ry (7) using the model of Eq. (2.3). Multiplying w(t)
by w(t+1t) and taking the expected value of the resulting ex-
pression yields

E{w(t) w(t+t)} = E{ws(t) ws(t+T)} + E{ws(t) op(t+T) z(t+1)}
+ E{ws&+¢) of(t) z(t)} + E{of(t) op(ttr) 2(t) z(t+1)}
= E{ws(t) ws(t+T)} + E{Of(t) Of(t+T)} E{z(t) z(t+1)}, (6.1)

or

Rw(T) = RWS(T) + Rcf(r) RZ(T) s (6.2)

where, in going to the second equality in Eq. (6.1), we have used
the assumption that wg(t), op(t), and z(t) are statistically
independent and that z(t) has an expected value of zero.

To interpret Eq. (6.2), let us examine Fig. U4, which was
first discussed in Sec. 2. First, we note that the nominal
correlation interval associlated with the process op(t) 1s much
larger than that associated with z(t). To see this, examine,
for example, the clumps of turbulence between approximately
9 min 45 sec and 10 min 45 sec in Fig. 4. During this interval,
the term o¢(t) in our model of Eq. (2.3) monotonically grows
to a maximum from a small value and then decays monotonically
back to a small value. The nominal correlation interval associated
with op(t) is of the order of 1/2 min. On the other hand, the
nominal correlation interval of the high-frequency process z(t)
1s of the order of 1 sec. Thus, there 1s an order of magnitude
or more separating the correlation scales of op(t) and z(t).
Since z{(t) has, by assumption, zero mean value, this difference
between correlation scales means that ROf(T) 18 very nearly

equal to Ry (0) over the range of values of T where RZ(T) i8 not

negligible.” Hence, to a first and quite good approximation, we
may replace Eq. (6.2) by
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Ry(T) = R, (1) + Ry (0) R, (¥)

= Ry () o

. f-RZ(T)' s ' : (6.3)

where c% = Ry (0) is the expected value of .the stationary process

of 2(t). Let ug now compare the nominal correlation intervals of

the processes wg(t) and z(t) by further ‘examination of Fig. 4.

It is evident that the correlation interval associated with the
low-frequency (large- amplitude) process wg(t) is at least of the
same order of magnhitude as that of the process ogr(t). Consequently,
we may expect Rws(T) to be very nearly constant and equal to

Rws(O) over the range of -values of T where‘Rz(T) 18 not negligible.

These observations are borne:out by Fig. 5, which is the
autocorrelation function of the vertical record shown in Fig. 4.%
Equation (6.3) and the above discussion indicate that it-.should
be possible to approximate the autocorrelation function shown
in Fig. 5 by a linear combination of Rw (1) and R, (1) and that

there should be an order of magnitude or more difference between
the nominal correlation intervals associated with these two
additive components. . [This situation is precisely what Fig.' 5
illustrates. 1In _fact, if.we conceive of representing Rw (T) for
T >0 by a Maclaurin seriés, S

R"A'I (0+)
RWS(T) = RWS(O) + R&S(O+)|T| * oS T?, o (6.1)

then it is evident from Fig. 5 that the linear approximation
gives a good representation of RWS(T) out to a lag of about

10,000 ft (3048 m), whereas the quadratic approximation in Eq.
(6.4) would appear to give a good approximation over the entire
lag interval shown in Fig. 5. For lag values in the range of
1000 to 10,000 ft (304.8 m to 3048 m), the deviations from the
straight 11ne shown in Fig. 5 may be attributed to statistical

¥Figure 5 is the autocorrelation function expressed in terms of
spatial lag & = VTt rather than temporal lag 1, where V is the
speed of the measurement aircraft. This linear scale factor
on the ordinate has no effect on the concepts being discussed.
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fluctuations in the estimate of R_(1) shown in Fig. 5 that are
a result of the finite duration of the sample [which contains
ab?ut 30 correlation intervals of the low-frequency component
Ws t)].

In the lag interval of Fig. 5 from 0 to 1000 ft (0 to 304.8

m), we see o% R;(T) superimposed on RWS(T), as 1s predicted by

Eq. (6.3). Examination of Eq. (6.3) at T = 0 indicates that, by
setting R(0) = o? for both processes wg(t) and z(t), we have

2 2
g =
w 0'W

= g2 o2 , (6.5)

o2 = o%o? (6.6)

which is consistent with the notation of Eg. (2.3). Examining
the intersection of the straight-line approximation with the
ordinate 1n Fig. 5, we see that

o2 o2

Ws We

—=2 % 0.78 , x 0.22 (6.7a,b)
o

2 2
W W
i.e., about 78% of the contribution to the mean square value of
w(t) in the vertical record is provided by the slow (low-
frequency) component, whereas about 22% of the contribution is
provided by the fast (high-frequency) component. These esti-
mates are entirely consistent with the visual appearance of

the vertical record in Fig. 4.

The above comments immediately suggest a first approximation
to Ry(T). Solving Eg. (6.3) for Rz(1), we obtain

R, (1) = = [R,(1) - R, (1)]
O'f. S
= = (R, (1) - [R, (0) + Ry (0) [t|+...1}, (6.8)
O'f. S S
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where, in the second line, we have substituted the Maclaurin
series approximations to RWS(T) given by Eq. (6.4) and where

the coefficients RWS(O), Ry (0), «.. may be obtained either

"by eye", as in the straight-line approximation of Flg. 5, or
by a more sophisticated technique — e.g., least squares.

Once Ryz(T) is solved, using Eq. (6.8), we may find ¢,(t) by
forming the Fourier transform of Ry(T). ¢ws(f) may then be

found by subtracting gg ¢, (f) from the power spectrum @w(f) of
the original record, as the Fourier transform of Eq. (6.3) would
indlicate:

e (£) - of & (f) , (6.9)

o (f) 7

A\
S

n

2
where op = RW(O)

RWS(O), since we have R,(0) = 1 by definition.

Two minor refinements of the above procedure will now be
discussed. First, we note that, in the high-frequency region
where the contribution of ¢ws(f) to ¢,(f) is negligible, measured

spectra consistently display a slope of -5/3, as predicted by
the von Karman spectral forms. [The spectra ¢ws(f) contaminate

®,(f) in the low-frequency regicn.] This observation suggests
that we assume that ¢,(f) has the appropriate (transverse or
longitudinal) von Karman form. Incorporation of the von Karman
spectral form assumption for ¢,(f) eliminates the problems
assocliated with statistical fluctuations in estimation of the
functional form of &z(f). Estimation of ¢z(f) is then reduced
to estimation of the integral scale L of the component z(t),
since 0% = 1 by definition.

A rough check of the von Karman form assumption for ¢,(f)
was performed as follows. Here, again, we have dealt with auto-
correlation functions rather than spectra. The autocorrelation
function dealt with is that computed from the vertichl component
of a sample case obtained from the NASA Langley MAT project,
which is described in Ref. 18. This autocorrelation function
is displayed in Fig. 6 on the same scale as that shown in
Fig. 5. However, it is evident from Fig. 6 that the relative
contribution of the low-frequency component w.(t) is much less
in this case than it was in the case displayeg in Pig. 5. The
time history from which Fig. 6 was computed is displayed as the
top trace in Fig. 7. Comparison of the top traces in Figs. 7
and 4 clearly shows that the relative contribution of wg(t) in
the vertical trace in Fig. 7 1s much less than that in the
corresponding trace in Fig. 4.
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The autocorrelation fumction shown in Fig. 6 is again dis-
played on an enlarged scale ln Fig. 8. To perform a rough test
of the von Karman assumption using this autocorrelation function,
we estimated (erudely) that (ows/cw) %= 0.10 for the autocorrela-

tion function shown in Figs. 6 and 8. Furthermore, for this
rough test, we retalned only the constant term RWS(O) in Eq.

(6.4) as our approximation to Rws(r). Using this approximation,
Eq. (6.8) reduces our estimate of Rz(T1) to

RZ(T) R (0) . (6.10)

When normalized, this approximation to R, (1) is given by the
continuous curve shown in Fig. 8 when considered as a function
of the relabeled ordinate R,(T)/R;(0).

The encircled points shown in Fig. 8 are points of the
(transverse) von Karman autocorrelation function plotted as a
function of R;(1)/R;z(0) for an integral scale of L = 170.7 m
(560 ft). We refer the reader to p. 253 of Ref. 19 for the
mathematical form of the von Karman transverse autocorrelation
function, as well as for a graph of this function. The encircled
points shown in Fig. 8 were obtained by careful reading of points
off the von Karman transverse autocorrelation function plotted
on p. 253 of Ref. 19, after the points had been scaled to the
integral scale shown in Fig. 8. The fit of the circled points
to the continuous curve 1s easily within our reading error of
the original curve in Ref. 19. From Fig. 8, we must conclude
that the von Karman curve gives an excellent fit to the (small T)
region of the curve that is not highly contaminated by the auto-
correlatlon function Rw (t) of the low-frequency component wg(t)

in tHe model of Eq. (2.3).

A careful comparison of Figs. 5 and 6 indicates that no
measurable difference in the components Rz(T) in those two curves
can be ascertained except for amplitude and integral-scale scale
factors. Thus, it is 1likely that the assumption that Ry(T) and
%, (f) have the appropriate von Karman forms is a good one.

One further comment about Fig. 8 is in order. The von
Karman form falls almost exactly on the original curve where it
first touches the new abscissa. Thus, one could estimate the
integral scale of the component z(t) quite accurately in this
case by using the point where it first touches the new abscissa
(1.e., the lowest circled point). However, the integral scale
of the component z{(t) in the model of Eq. (2.3) would be con-
siderably overestimated if one compufted it from the first
crossing of the original abscissa (as is commonly done).
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The second refinement to the method for estimation of
R, (1) gilven by Eg. (6.8) has to do with the assumption that

Rgf(T) = Rof(O) = E? in the region of the 1T axis where Ry(T) is

not negligible — i.e., the assumption that took us from Eq.
(6.2) to Eq. (6.3). This assumption can be circumvented, because
the normalized autocorrelation function

R, (1)

of(T) 8 Rcf(oj (6.11)
f

p

of of(t) can be estimated using the turbulence model of Eq. (2.3),
2s we shall show shortly. Before showing how Dgf(T) can be com-

" puted, let us first summarize the above described procedure for
estimating %,(f) and @ws(f), where we shall assume that Dgf(T)
is known.

Procedure for estimating &,(f) and ¢ws(f). Figure 9 i1-

lustrates the estimation procedure. The steps are: (1) Estimate
a linear, quadratic, or possibly higher-order polynomial approxi-
mation to RWS(T) in the neighborhood of t = 0, as 1s illustrated

in Fig. 5. (2) Subtract this estimate of Rws(r) from R, (7).
The remaining function 1s our estimate of Rgf(T) R, (1), as 1is

indicated by Eq. (6.2). Since, by definition, R, (0) = 1, we
have

o = R, (0) R, (0) (6.12)

2
r of

i.e., we obtain an estimate of o} in this operation.* (3) Divide
the estimate of Rop(T) Ry(1) by E? pof(r), which we shall describe

how to estimate shortly. This division ylelds an estimate of
Ry(t). (4) Determine the integral scale that yields the best
fit of the appropriate von Karman autocorrelation function to
this estimate of Rz(t). Note that Ryz(0) will be unity. (5) Sub-

tract the product of this von Karman estimate of R,(T) and E?
pg (1) —1l.e., Rgf(T) RZ(T) — from Ry(t). This subtraction

yields a new estimate of Ry (1). (6) Examine the behavior of

¥An independent alternative method for estimating c% = E{o%} is
described 1n Appendix G.
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Ry (T)=Ry(T) +Ra-f('r)Rz('r)

R(T) [Ro;(r) R, (T)]

FIG. 9.

IDEALIZED SKETCH OF AUTOCORRELATION FUNCTION OF

ATMOSPHERIC TURBULENCE AND AUTOCORRELATION FUNCTION
OF ITS COMPONENTS.
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this new estimate of RWS(T) in the vicinity of T = 0 to ascertain
if there is any obvious contribution from Rgf(T) Rz (1) remaining.
If there is one, form a new estimate of Ry (t) that eliminates
the contribution of Rof(T) R, (1) and repeat Steps (1) through

(6). _(7) The final estimate of &,(f) is the appropriate von
Karman spectral form with the integral scale provided by the
above procedure. The final estimate of @ws(f)-is the Fourier

transform of the final estimate of RWS(T) determined in Step (5).

Procedure for estimating Dgf(T). Here, it will be assumed

that there exists a frequency f, such that for all f 2 fy the
contribution of the component wg(t) of the model of Eq (2.3)
to the spectrum of w(t) 1s negligible in comparison with the
contribution of the component we(t) = op(t) z(t). The frequency
'y should be chosen on the low end of the frequency range of
the portion of the spectrum ¢y(f) that satisfies the -5/3 decay
law of the von Karman spectrum. This value of fy would cor-
respond to an inverse wavelength of about 3 x 10-% cycles/ft
(9.84 x 10-3 cycles/m) for the spectrum shown in Fig. 10, which
is the wavenumber spectrum of the vertical record shown in Fig.
L, whose autocorrelation function is shown in Fig. 5.

The first step 1in estimating Dof(T) from a turbulence

record w(t) is to high-pass filter w(t), where the high-pass
filter attenuates all frequency components of w(t) for f < f_.
Denote the filtered record by wh(t), as was done in Eq. (5.2%)

wh(t) = A" op(t) z, (8) (6.13)

where, here, A' is an arbitrary positive constant and zp(t) is a
high-pass filtered version of z(t). Since o¢(t) 1s nonnegative,
by definition, we may express the absolute value of wp(t) as

Iwh(t)l = A" op(t) |z, (E)] . (6.14)

Furthermore, since the record wp,(t) is available for manipulation,
we may compute its absolute value and find the autocorrelation
function of lw (t)|, which, according to Eq. (6.14), is related

to the autocorrelatlon functlons of op(t) and ]zh(t)l by

|(T) = (A")? (1) RIZ I(T) s (6.15)
h

R
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where, in arriving at Eq. (6.15), the assumption that op(t) and
zh(t) are statistically lndependent was used. Solving Eq. (6.15)
for Rgf(T) yields .

R (1)
R (1) = ¥ | ; (6.16)
Og (A1)2 R, I(r)

%h

furthermore, dividing Egq. (6.16) by Rcf(O) — and using the defi-
nition of Eq. (6.11) — yields

Pl 17
o, (1) = h : (6.17)
f (A')® R, (0) R

f

|%n|
It was shown 1in Ref. 5 that only rarely can we not assume that

the autocorrelation function of wp(t) in Eq. (6.13) is well
represented by

Rwh(T) (A")? E{oZ} th(T)

144

(A)? Ry (0) By (1) (6.18)

Equations (6.17) and (6.18) provide us with the means to estimate
the normalized autocorrelation function pof(T). The numercztor

of Eq. (6.17) can be computed directly from the absolute value
of the filtered turbulence record. Also, we can compute Rwh(T)

from the same (unrectified) record. Furthermore, since z(t),

by assumption, 1s a stationary Gaussian process, zn(t) also is
stationary and Gaussian. We therefore can compute the quantity
(a")? Rof(O) Rlzhl(T) from the measured autocorrelation function

Rwh(T) by using the well known relationship [e.g., p. 166 of
Ref. 8]

'y2 2l
(A0)* 7y () R, () 2R, (037 - (R, (07
m |
+ Rwh(r) arccos [-Rwh(T)/Rwh(O)] -5 Rwh(r)‘ . (6.19)
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Thus, aecording to Eq. (6.17), pof(T) may be estimated by
dividing the autocorrelation funetion R wy, (1) [whieh is to

be ecomputed directly from the absolute value |wp(t)| of the
filtered record wy(t)] by the right-hand side of Eq. (6.19)
[which is computed from Rwh(T)]. The autocorrelation function

Rwh(T) is to be computed directly from the (unrectified) record

wh(t).*

We may check the consistency of the above method by evaluat-
ing Eq. (6.17) at T 0 and T = «», First, consider T = 0. Since
Rywy|(0) = E{|wy,|?} = E{w}}, Eq. (6.17) yields, at 1 = 0,

.E{w;}
p_ (0) = . (6.20)
O (Ar)?2 Rof(o) Rln ](o)
oy

*The approximation made 1n Eq. (6.18) carn be avoided if the
"arcsin law" is employed to compute Rlzhl(r) in the denominator

of Eq. (6.17). We used the arcsin law successfully with turbu-
lence data in work reported in Ref. 6 (e.g., pp. 16-21). 1In
using the arcsin law in the computation of pgf(T), one must

replace the denominator.of the right-hand side of Eq. (6.17)
by

% Rwh(O) {VheIRzﬂ(T)]z + Rzﬂ(T) arccos[—RZﬂ(T)] - % ﬁzﬁ(T)} ,

where
A il
R_,(t) = sin[5 R, (1)1 ,
zh 2

where R,(1) is the autocorrelation function of the hard-clipped
version of,wh(r) that 1s formed by setting the hard-clipped
waveform equal to +1 where it is positive and -1 where it 1is
negative.
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The denominator of Eq. (6.20) must be evaluated from Eq. (6.19);
for T = 0, using the fact that arccos(~1) = 7w, we find from
Eq. (6.19) that

A')2 R_ (0) R n=2lar () -Tr (o |
(a7 5, @) R, (© < Elw R, (0) - K, (0

Rwh(O) = E{wﬁ} ; (6.21)

hence, by combining Egs. (6.20) and (6.21), we have pcf(o) =1,
which 1s, of course, correct.

Now let us evaluate Eq. (6.17) at T = ». Recognizing that
lehl(m) = {E[ |wy,|]1}?, we see that Eq. (6.17) yields, at T = o,

{E[fwhl]}2
Py (o) = . (6.22)
f (A')2 R_ (0) R ()
£ | %h|

g

Evaluating the denominator using Eq. (6.19) and recognizing that
Rwh(w) = 0, we have

(A")* R_(0) R, (=) = 2 {R

-2 _
o 2| (O =3 Elwl]l . (6.23)

W

Combining Egs. (6.22) and (6.23) yields

{E[Iwhl]}z
Py (®) = — " (6.24)
However, from Eq. (6.14), we have
E[Jw,|]1 = A" E[o,] Ellz 11 (6.25)
whereas from Eq. (6.13) we have
Elw2] = (A")? E[02] E[z]] . (6.26)
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Substituting Egs. (6.25) and (6.26) into Egq. (6.24) yields

{ELo,1}% {E[]z,[1}?
(=) = 5 . (6.27)
f E[O%.] P~ E[Z;]

However, Zh(t) 1s & Gaussian process with zero mean value; hence,
we have [e.g., Eq. (4.4-25) on p. 166 of Ref. 8]

El|z,|] =‘J% E(z2] . (6.28)
Therefore, Eqs. (6.27) and (6.28) yield

{E[of]}2
p. (»©) = ———— (6.29)
f E[o%] :

which is the correct value. The method of Egs. (6.17) and (6.19)
therefore checks, exactly, in the limiting cases T = 0 and T = .

Estimation of Power Spectrum of o%(t)

A procedure similar to that descrlbed above can be used to
estimate the autocorrelation function RO (1) of od(t). Squaring
Eq. (6.13), we have

w;(t) = (A')?2 0%(t) z;(t) . (6.30)

From the assumed statistical independence of o%(t) and zﬁ(t),
it follows that

R 2(T) = (A")" Ro2(1) R 2(1) (6.31)
h £ h

where we have defined

R ,(1) = E{w;(t) w;(t+r)} R (6.32)
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with comparable definitions holding for Rg%(T) and Rzﬁ(T).
Solving Eq. (6.31) for Ro§(r) yields

R 2(1)
W

Ry2(1) = . (6.33)
£ (A1)* Rz (1) - o
' h

By squaring a given high-pass filtered recording wp(t), we
can compute Rwﬁ(T) directly. To compute Rzﬁ(T), we begin with

the approximation of Eq. (6.18), which can be expressed as

Rwh(r) = (A")? E[o}] th(r) , _ (6.34)

which 1s equivalent to the expression

~ T2 ol 2y
E{wh(t) wh(t+T)} = E{[A'/E(cf) zh(t)] [A'/E(of) zh(t+1)]} .(6.35)
Now, Zf Eq. (6.35) were an exact expression, it would follow that

Re2 (1) = (A" {BLOF1I? Rya (1) (6.36)

from which it would follow that

sz(T)
R_,(1) = h . (6.37)
“h (AT)*" {E[o§1}2

But, from Eq. (4.4-26) on p. 166 of Ref. 8, we have for stationary
Gaussian processes {wp(t)},

Ry2 (1) = [Rwh(o)]2 + 2[Rwh<r)]2 : (6.38)

Substitution of Eq. (6.38) into Eq. (6.37) yields
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[r, (0)12 +.2[Rwh(T)32

‘R_p(1) x —B , (6.39)

“h (A")* {E[c2]}?

the validity of which depends on the stationary Gausslan assump-
tion for {znp(t)} and the approximation of Eq. (6.34). Combining
Eqs. (6.33) and (6.39) yields, finally,

R 2(T)
Wy,

Ryz (1) = {E[02]}° (6.40)

[R, (0)1% + 2[Rwh(r)]2

h
which is the desired expression.¥*¥ Notice that Rwh(T) can be

¥The approximation of Eq. (6.34) can be eliminated in deriving an
expression for R;2(t) using the "arcsin law" as was the case with

Pge(T) considered in the previous footnote. From Eq. (6.33), we
hage,exactly,

Rcz(T) sz(T) Rzz(o)

o o(t) & ot v = B b
og Roz(O) sz(dj'RZ,(r)
f h h

Applying Egq. (6.38) to the Gaussian process zp(t) yields

(0)1% {1 + 2(p, (1)1"}

Rzz(T) = [R . .

h Z

Using the "arcsin law", we have

h('r) = sin[% Ry(1)]1

Py

where Ro(T) was defined in the last footnote. The above ex-
pressions can be evaluated to yield pcz(T) and, therefore,

Ro%(T) in terms of Roé(o). To compute Ro%(o), we note that

Ry2(=)  {E[o3%]}®

- f -
°o§(“) = Ro%(o) = Ro%(o) >

which can be solved for RU%(O) in terms of p0§(w) and {E[cé]}z.
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evaluated directly from the high-pass filtered turbulence
sample wy(t), whereas sz(t) can be evaluated directly from

. h .
the squared sample wﬁ(t). E{o§} can be evaluated by the method

1llustrated in Fig. 9 or by the method'described in Appendix G.
Notice also that, from the definition of RU%(T), we must have

- T+

Him Roz (1) = {E[0}1}* . (6.41)

To check the consistency of Eq. (6.40), we shall evaluate
it for the limiting cases Tt = 0 and T = ». For T = 0, Eq. (6.40)
yields

E{wﬁ}
R,2(0) = {E[03]}?
f {E[wé]}z + 2{E[w;]}2
E{w;}
= {E[02]}? ——— (6.42)
3{E[wé]}2

However, from Eq. (6.13), using the statistical independence of
op(t) and zu(t), we have

E{w;} = (A")* E[o}] E[z}] - (6.43)
and
E[wﬁ] = (A')?2 E[c%] E[z;] . (6.44)

Substituting these quantities into Eq. (6.42) and cancelling
identical quantities in the numerator and denominator yield

 apeny o
R,2(0) = E[o4] (6.45)

£ 3{E[z;]}2

However, zh(t) is assumed to be a stationary Gaussian procéss
with zero mean value. It follows (e.g., p. 221 of Ref. 10) that
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E[z'] = 3{[z21}° ; | | (6.46)
hence, we ﬁave from Egs. (6.45) and.(6.46)
R 2(0) = E[c4] , | (6.47)

which, of course, is an identity. Thus, Eq. (6.40) yields the
correct value at T = 0. '

For T = o, it follows directly from Eq. (6.40) that we may

write
{ELw2]1}*
R 2(=) = {E[02]}? —2—
f {E[wﬁ]}
= {E[o;]}2 , (6.48)

which is the correct limiting value given by Eq. (6.41). Con-

sequently, Eq. (6.40) provides the correct exact limiting values
at T = 0 and T = o,

To obtain the power spectral density @Q%(f) of o%(t), we

Fourier transform Eq. (6.40). Recognizing Eq. (6.41), we may
express QO%(f) as

o 2(f) = {E[c21}" { &(£)

[o0]

R,2(T)-[R, (0)]*- 2[Rwh(r)]2

+ h h e—i2ﬂfT

ATy,

L3

=\ IR, ()17 + 2[R, (D))

(6.49)

where 8(f) is the Dirac delta funetion and where {E[o%]}2 may

be evaluated using the method deseribed in Appendix G or from
the method illustrated in Fig. 9. All that are required to
evaluate the integrand iy Eq. (6.49) are the autocorrelation
functions of wy(t) and wy(t), both of whieh ean be evaluated
directly from the high-pass filtered turbulence sample wp(t).
The Fourier transform in Eq. (6.49) would, of course, be carried
out numerically.
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Estimation of Moments and Probability Density of o%(t)

Moments of c%. Let us now turn to the development of
methods for determination of the moments and probability density
function of o%(t). The moments uég)required for computation of
the response exceedance rates Ny(y) and probability density
function p(y) in Egs. (4.28) and (4.46) are the central moments -
i.e., moments taken about the mean of of. See Eq. (4.29).

Here, we shall develop a method for determining the moments

Még) taken about the origin — i.e.,
g

ne>

Mé§)

{ (o%)k p(o%)dc% (6.50a)
£

0

E{[cr%.]k} . (6.50b)

It is easy to show [e.g., Egs. (98) and (99) on pp. 273 and 274
of Ref. 16] that the ntk central moment can be computed from the

moments Még), k = 0,1,2,...,n by the formula
f

) _ % [n (WY % (k) _
uO; = kZO (k) (_Moé ) Mo% ,n = 1,2,3,000 (6.51)

0
where we note that Méz) is the area under the probability density
function; hence, £

Még) = 1 , (6.52)
£
and
1
(2) = T (6.53)

are the binomial coefficients. Netice, in partlcular, that for
n=1and 2, Eq. (6.51) yields

(1) _ (2) - m(2) (1 )?
H_2 = 0 uO’;. = MO’%. - (MO'%- ) . (6.5248.,13)
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Equation (6.54a) states that the first central moment is zero,
whereas Eq. (6.54b) is the familiar expression for the second
central moment, which is the variance. [See Eq. (4.23).]

Let us turn now to developing a method for determining the
moments Még), n=1,2,3,... defined by Eq. (6.50). To do so,
we shall again assume that we have avallable the high-pass
filtered turbulence sample wp(t) described earlier, which has
the form of Eq. (6.13), where A' is an arbitrary positive constant
and znp(t) is a high-pass filtered version of the Gaussian turbu-
lence component z(t) defined by Eq. (2.3). Let us now write an
expression for the nth moment of wﬁ(t), which 1s expressed in
terms of o%(t) and zf(t) by Eq. (6.30). Using the fact that
Op(t) and z(t) are assumed to be statistically independent, 1t
fgllo?s immediately that we can write the nth moment of Egq.

.30) as

E{wZ1"} = (A")®" E{[021"} E{[22]"} , (6.55)
from which we may solve for E{[céjn} as

(627} E{[w2]"} 6.56)
Ello = . .5
8 (A1) BLI2217

Since we have assumed that the high-pass filtered sample wyp(t)
is available, we can numerlcally square it and then compute the
first several moments E{{wfI1"}, n = 1,2,3,.... Furthermore,
since z(t) is assumed to be Gaussian, zp(t) also is Gaussian;

hence, we can compute the moments E{[zﬁ]n} in terms of E{zﬁ},
as we shall now show.

It is known (e.g., pp. 233-236 of Ref. 9) that the pro-
bability density function of the square of the Gaussian variate

zﬁ is given by the chi-square density with one degree~of-freedom.
Letting

X = z; (6.57)

and

o? = E{z2} (6.58)
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we have, from p. 236 of Ref. 9, for the probability density of

&

1 2
_E x 2 e—X<(2O ) , x>0
V21 o
P, 2(x) =
“h
0 . s X <0 . (6.59)

To determine an expression for the moments of zﬁ,
w3 = B(rz277) = wiM) (6.60)
Zh h X

we shall want to consider the normalized wvariable, which is de-
fined from Egs. (6.57) and (6.58) as

N
o g N

A - X (6.61)

o?

g

|

Q
[N

Let pg(E) denote the probability density of &£. Then, since

p,2(x)dx = p (£)AE , (6.62)
h
it follows immediately that the moments Min) of z; can be computed
from the moments Mén) of £ by
Mﬁn) 2 [ x" pzz(x)dx = (a2g)" pg(i)di (6.63a)
h
0 4]
= gen Mé“) , (6.63b)

where we have used Egs. (6.61) and (6.62) and where Mén) denotes

the nth moment of the variable & = x/g?.

Using Egs. (6.61) and (6.62), it follows from Eqg. (6.59)
that the probability density of & 1is
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. v2m
0 , E <0 |, (6.64)

where we have used the fact that (dx/d&) = o2. Equation (6.64)
i1s the usual normalized form of the chl-square density function
with one degree-of-freedom. The moments of £ are given on p. 405
of Ref. 20. See Egs. (65) and (66) of Ref. 20, using m = 1.
These moments are

1
M(n) _ I‘('é’*'n)

£ 2", (6.65)
/T

where we have used the fact that T'(1/2) = v¥w. Using the relation-
ship I'(n+l) = n T'(n), together with I'(1/2) = V7, one may

successively write out F(%+n) for n = 1,2,... to discover that

. (6.66)

r(leny = 1°3°5 ... (2n-1) =
2 o

Combining Eqs. (6.63b), (6.65), and (6.66) ylelds the desired
expression for Mﬁn):

m(n) - 1.3.5 ... (2n-1)o§n , (6.67)

where we have inserted the subscript z;, on the o to denote that
it represents the standard deviation o? the variable zp. Com-
bining Egs. (6.56) and (6.67) and using the notation:of Eq. (6.60)
together with the definition

E[wﬁ] = o; s (6.68)
h

2

we obtain for the nth moment of of
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. O E{[w2 1™ o
E{[c2]"} = M§§>—(A v h- s n=1,2,3,... .
O 'o . )

) 1035 L. (2neD) e

To put the above expression in a more useful form, we note that
for n = 1, Eq. (6.69) becomes :

E[wﬁ] ' ' '
Blo] = — 22— . ~(6.70)
(A ozh)

Solving Eq. (6.70) for (A'0g,)? and inserting that expression
“into Egq. (6.69) yields, fina?ly,

s, n =1,2,...

(6.71)

E[o2])?  E{[w2]™}
E{[c2]"} = u'D) = { L } “
f E[w;] 1+3+5 ... (2n-1)

Equation (6.71) is the desired expression for the moments

(n), n=1,2,3,00. Of of Equation (6.51) yields the central

mogents U(z from these moments. In evaluating the right-hand

side of Eq. (6.71), the moments E{[w;]n}, n=1,2,3,... are to
be computed directly from the squared high-pass filtered turbg-
lence sample wy(t) described by Eq. (6.13). The quantity E[of]
can be determined from the method illustrated in Fig. 9 or the
me thod described in Appendiz G.

Probability density function of 0% et us now turn to
estimation of the probability density of or. Since we already
have an expression, Eq. (6.71), for the moments of of, it will
be convenient to develop an approximatlon for the probabllity
density function of ¢} from these moments. To do so, we shall
use an extension of the Gram-Charlier series.

The Gram-Charlier series is an expansion of a probability
density function, the first term in the expansion belng a normal
probabilility density function with the correct mean and variance
and the coefficients of the, say, N correction terms belng
chosen so that the moments through order N of the series approxi-
mation are set equal to the moments of the original distribution.
The Gram-Charlier series 1s described in this manner on pp. 270-
272 of Ref. 14, However, the Gram-Charlier series usually 1s
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not derived using this moment equivalence criterion — e.g.,
Ref. 9, pp. 222-223 or Ref. 20, pp. 136-137. Using the moment
criterion for choice of the correctlion term coefficlents, this
writer has extended the Gram-Charlier series to completely
arbitrary "base density functions" (analogous to the normal
probability density) on pp. 269-278 of Ref. 16 (where the
applicatlon was to a different problem).

Since the random variable o2 under present discussion cannot
be negative, the normal probabil{ty density functlion is not an
appropriate "base density function" for expansion of c%. However,
the gamma density function — e.g., pp. 220-221 of Ref. 10 — is
appropriate since 1t has the flexibillity required in the present
application, yet does not permit negative wvalues of the wvariate

it describes. The gamma probability density has the form

T ’\Y GMY L AV vy s o

p(Vsiy,A) =
0 , V<o |, (6.72)

where T(y) is the gamma function and where V = c% is the varilate
belng described.

Notice that p(Viy,A) contains two "free" parameters, Yy and A.
The mean and variance of p(V;y,A) are related to Yy and X by

E(v} = m{1) = ¥ (6.73)
- w(2) (1) 2 _ v
E[V2] - {E[V]}? = VN (MV ) = ;; , (6.74)

from which we may solve for vy and A in terms of the mean and
variance to give

2
(Mél)) (6.75)
Y = ’
(2) (1),2
My~ ° - (MV )

(1)
My

Y _ -
(1)~ y(2) (1),2
My Mg - (M)

(6.76)

>
1}
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~ Of particular interest, in the present application, is the
capability of p(V;y,A) to approximate the density function of
vV = 0% when the relative standard deviation (or relative
variance) of Op 1s small — i.e., when the ratio of the standard

deviation of'o% to the mean of a% is' small. According to Eqg.

(6.75), this ratio (for the variate V) is given by vy %. Thus,
the asymptotic form of p(V;y,A) for large y 1s of interest.
However, it 1s immediately evident from the form of the charac-
teristic function of the gamma density p(Viy,X) — e.g., p. 221
of Ref. 10 — that, according to the central 1imit theorem, the
gamma density function approaches a normal or Gaussian density
as y »+ «; furthermore, in the actual limit y = «, p(V;y,A)

(1)

becomes a Dirac delta function located at V = E{V} = My~ 7, when
Yy and A are chosen to satisfy Egs. (6.75) to (6.76). Thus, for
small values of relative standard deviation, p(V;y,Xx) has the
general appearance of a Gaussian density centered at E{V}, but
with a truncated tail so that the density is zero for negative
values of V. For large values of relative standard deviation,
p(V;y,A) can take on a considerable range of shapes, as an
examination of Eq. (6.72) will indicate. Furthermore, it is of
some interest to note that, if op were to be exactly normally
distributed with zero mean value (which we have ruled out by
hypothesis), then the probability density of cf would be exactly
described by Eq. (6.72) with y = 1/2.

From the above comments, we might expect Eq. (6.72) to
provide a reasonable approximation to the probability density of
V = 0% if the mean and variance of the density are chosen to
take on the mean and variance of the variate V = o%, a decision
which would require that y and A be chosen by Egs. (6.75) and

(6.76). Thus, computation of only two moments M(i) and M(i>

by Eq. (6.71) should provide a reasonable first estimate of the
probability density function of of

Let us now consider the extension of the Gram-Charlier
series to the base density function given by Eq. (6.72). This
extension 1s provided on pp. 272, 273, and 276 of Ref. 16, where
in Eq. (118) of Ref. 16, we must set A = X/T(y), since the
probability density p(V;yv,A) must have unit area. It follows
from Egs. (97), (114), and (118) of Ref. 16 that our generalized
form of the probability density of V = of can be written as

N
b v Y-1 _-AV 1
Ty Q0T e L Lo ey e (D] V0
pUE‘(V) =
0 , V<0, (6.77)
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where

P, (V) = ;F;(-n;5v;AV) (6.782)
k
n (-n), A
= — k __ v*® , n=1,2,3,...  (6.78Db)
k=0 k!(Y)k

are proportional to the generalized Laguerre polynomials, where
lFl(—n;y;AV) i1s the confluent hypergeometric function, and where,
in Eq. (6.78b), we have used the notation

>

(), =1

i

(u) u(u+l) ... (u+tk=-1) , k > 1 . (6.79)

k

The expansion coefficients b} in Eq. (6.77) are related to those
in Eq. (97) of Ref. 16 by

b
b! = 7? = 5%}— b (6.80)

as may be seen by examination of Egs. (97), (114), (118), and
(122) of Ref. 16, and by recognition of the fact that, in the

present application, we must have M(o)= 1. Consequently, by
substitution of Egs. (94b) and (117) of Ref. 16 into Eq. (6.80)
above, we find for our expansion coefficlents bﬁ,

('Y)n n (k)
bn = n! k£0 Gnk MC% > (6.81)

where, from Eq. (116) of Ref. 16, we have

o - -

which are the coefficients of the polynomials defined by Eq.
(6.78b) above. In Egs. (6.81) and (6.82), we have used again
the notation of Eq. (6.79).
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Equations (6,77), (6.78), (6.81), and (6.82) coZZectzveZy
deseribe the deszred approxzmatzon to the probability density
funetion of 0%, where the two parameters Y and A are to be
evaluated by qs. (6.75) and (6.76) from the first two moments
of V = c%. The series in Eq. (6.77). can be truncated at any
value of the tndex N. According to Eq. (6.81), for any integer
value of N > 2, we can evaluate the expansion coefficients by

in Eq. (6.77) from the sequence of N moments M(Z) Még),

Or
M(f) that are to be determined by Eq. (6.71). Moreover, Eq.

LI Y Y

(6.77) has the property that we may add additional terms without

ehanging the values of the coeffictents of the terms previously

determined. It has been shown inm Ref. 16 that, for any value of
(1) (2) (N)

N 2 2, the moments M M s sees M of the approximation
fo2(V) given by the rzght-hand side of Eq. (6.77) are set equal
to the moments M(Z) Még), . ees Mé?), when the expansion co-

efficients are determined by Eq. (6.81) and when Y and A are
determined by Eqs. (6.75) and (6.76).

For values of V large relative to the mean E[V] = y/A, the
tail in the approximation to pc%(V) given by Eq. (6.77) can go

negative for N > 2. Some judgment willl have to be used 1in
choosing a value of N to prevent this occurrence and possibly
other undesirable behavior of the series of Eq. (6.77). It is
unlikely that much accuracy of any utility will be gained by
using values of N larger than 4 (two correction terms in the
right-hand side of Eq. 6.77), and, for practical purposes, the
approximation given by Eq. (6.72) (no correction terms in the
right~hand side of Eq. (6.77) will probably be adequate in most
cases.

Estimation of Moments and Probability Density of ws(t)

Moments of wg. To form our estimate of the probability
density pws(ws) of wg(t), we shall use the moments of wg(t) to

generate the coefficients of a Gram-Charlier expansion of pws(ws).

Moments will be used here because the moments of wg(t) are
particularly easy to compute from the moments of wp(t) and w(t).
For the present application, we shall require the moments of
wh(t), rather than the moments of its square wi(t).
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According to the turbulence model of Eq. (2.3), the tur-
bulence record w(t) 1s the sum of the "slow" and "fast" pro-
cesses Wg(t) and we(t); 1.e.,

w(t) = w (t) + wa(t) . - . : (6.83)
The mbments
mn) = Ew], n = 1,2,3,... | (6.84)

of the record w(t) can be computed directly. Let us assume,
for now, that we have avalilable the moments

M) = BLvgl, n= 1,23, ~ (6.85)

of the "fast" component we(t). It 1s shown in Appendix H that
the moments of the "slow" component

Mén) = E[wgl, n = 1,2,3,... (6.86)
s
can be computed sequentially from the sequences M(n), and M(n)

wWf
n=11,2,3,... by the relationship

n-=1
min) = win) 7y (E) min=k) y{) -y 210,30, (6.87)

s w k=0 We Ws
where
w(0) _ 1 (0) _ ' “
wa = MWs =1 (6.88)

are the areas under the probabillity density functions of we(t)
and wg(t) and where (n) are the binomial coefficients defined by

Eq. (6.53). The first four of the sequence of the relationships
of Eq. (6.87) are
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WD) - () _ @
Ws W Wf

GRESRT R

w(3) 2 w3 C (3 4 gu(@) WD) (1) (@)1
Ws W Wf Wf WS Wf. WS

Ws w W We s W s W Vs

(6.89)

Notice from Egs. (6.87) and (6.89) that to compute the moments
through order N of wg(t), only the moments through order N of
w(t) and wr(t) are required.

The moments Mén), n = 1,2;3,... of the component we(t) are

to be computed from the high-pass filtered version wp(t) of the
turbulence record w(t), where this high-pass filtered waveform
wh(t) was discussed earlier in connection with Eg. (6.13). It

is shown in Appendlx G that the moments M&?), n=1,2,3,... Can

be computed from the moments Még), n=1,2,3,..s 0f the record
wp(t) by

(n) _ ,n (n) -
wa = K Mwh s, n =1,2,3,00. (6.90)

where the moments M&E) are, of course, defined by the relationship

(n) 3 n =
Mwh = E[Wh] 3 n = 1,2,3,0.. . (6.91)

The positive constant K in Eg. (6.90) is shown in Appendix G to
be given by

J s, (f)af :
K =} -—== , (6.92)
[ |H, (£)]% s, (f)af

-00
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L= e

where S;(f) is the power spectral density of the component z(t)
in the model of Eq. (2.3) and where Hh(f) is the high-pass
filter complex frequency-response function. As we described

in Sec. 6.1, we shall generally want to assume that S5 (f) is
the appropriate von Karman spectral form. Moreover, since
E[z2] = 1 [according to Eq. (2.3)], the numerator in the right-
hand side of Eq. (6.92) will be unity.

Once the integral scale of z(t) has been determined and the
high-pass filter has been chosen, the constant K can be computed,.
Furthermore, from a turbulence record w(t), we may generate the

moments Mén), and the high-pass flltered record wh(t), from
which we may compute 1ts moments M&E). From these moments and
the constant K, we can use Eq. (6.90) to compute the moments
M&?), which we may then comblne with the moments Mén), usling

Egs. (6.87) or (6.89), to compute the moments Mén).

Probability density function of wg. To generate an estimate
of the probability density of wg(t) using the Gram-Charlier
expansion, we must use the central moments of wg(t). If w(t)
has zero mean value, then 1t 1is evlident from the first of the

four equations in (6.89) that we should have M&l) =0; 1.e.,
s

when M&i) = 0, the moments Még), n=1,2,3,... are the central
moments. We shall assume that Mwi = 0 in the following dis-
cussion.

It is shown on pp. 270-272 of Ref. 14 that the Gram-Charlier
expansion of a probability density function, say, pws(ws), may
be expressed as

w? (3)
s M 3
- —= w w 3w
p (W) =——e 20°}1 4+ S8 | 8_25
Weg '8 V2T o 310% \o? o
(4)
1 Mws W; 6w;
L J—a —3 —————-+3 +uo. s (6-93)
Ly o ot o?
where, here,
o = {E[w21}¥* = (%)% (6.94)
s

and where only two correction terms have been retailned, the first
being an odd function of wg and the second being an even function
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of wg. These two correction:tefms are adequate to determine
how closely Puwg (wg) conforms to a Gaussian probability density
function. It may be shown that the results provided on pp.
277-278 of Ref. 16 also lead to the result given by Eq. (6. 93).
To evaluate the parameters in Eq. (6.93), one requireso = [M(2)]
w(3)

MW s and M(u). -These quantities are to be evaluated u31ng "s
Eq. (6.89).
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APPENDIX A
DERIVATION OF REQUIREMENT FOR NEGLIGIBLY SMALL CORRELATION
COEFFICIENT BETWEEN A NONSTATIONARY PROCESS AND ITS DERIVATIVE

Consider an arbitrary function y(t) and its derivative y'(t).
Integrating the product of y and y' by parts, we find :

t+At t+At t+At '
Klg[ y(E)y'(8)aE = %lyz(s) - [ y () Y'(E)dE]
t t t
t+At
= z\l?[yz(twt) - y3(t) - J y(&) y'(E)dE];
t (A1)
hence, we have, exactly,
t+at 2 2
= [ y(£) yr(glag = 2 L (e+at) - y (B) (A.2)

t

Let us now assume that {y(t)} is a generally nonstationary sto-
chastic process. Taking the expected value of Eq. (A.2) and then
interchanging the order of expectation and integration operatlons
on the left-hand side gives

t+At

2 2

e l Bly(g) y'(£)tag = 3 Bly-(erat)) - Bly (0)) - (p 3
t.

If we now take the 1limit At - 0 in Eq. (A.3), we have, assuming
that E{y(&) y'(£)} is continuous,

el

E{y(t) y' ()} = 3 £ Ely2(£)} , (A.4)

which holds for nonstationary and stationary processes. For
wide-sense stationary processes, the right-hand side of Eq. (A.l4)
is zero; hence, for wide-sense stationary processes, Eq. (A.4)
reduces to the usual result E{y(t) y'(t)} = 0.
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Denoting by o2(t) and o2;(t) the mean-square values of
vy(t) and y'(t) and’ assuming that

E{y(t)} =0 , for all t , _ (A.5)

we may express the correlation coefflcient of y(t) and y'(t) as

A E{y(t) y'(t)}
py’y,(t) - cy(t) cy,(t)

1
= ‘2- W at n O';(t) s (A.6)

which is a completely general result for nonstationary processes.

At this Jjuncture, we shall assume that the locally stationary
conditions of Egs. (3.41), (3.43), and (3.46) are satisfied;
hence, the response-process conditional instantaneous spectrum
is well approximated by Eg. (3.40). When these conditions are
met, we shall show that the right-hand side ot rEq. (A.6) is
negligibly small in comparison with unity. In carrying out the
heuristic proof to follow, we shall further assume that the
"slow" component of excitation wg(t) in Eq. (2.3) is zero, which
implies that @WS(f) in Eq. (3.40) is zero. Removal of this

stationary component of the response process has the effect of
increasing the magnitude of the right-hand side of Eq. (A.6),
which is zero for stationary processes; hence, the assumption
that Qws(f) is zero is conservative.

Integrating Eq. (3.40) over ~» < f < » and using a funda-
mental property of the instantaneous spectrum — e.g., Eg. (12a)
of Ref. 7 or Eq. (2.4a) of Ref. 6 — we have

0;(t) = [ @y(f,t[of)df

- 0O

~ oi(t)a2 , (A7)
Z
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where we have set ¢ws(f) equal to zero in Eq. (3.40) before
carrying out the above integratlon, and where ¢§Z is the mean-

square aircraft response to the stationary componsnt z(t) of
the "fast" turbulence component of(t) z(t) in Eq. (2.3); 1i.e.,

N
>

I 0, (£) |H(E)|%ar . : (A.8)

- 00

Equation (A.7) is the deslred expression for Oy (t) for use
in Eq. (A.6). Let us now obtain an expression for OX 1(t). The
0

locally stationary response approximation of Eq. ) implies
that we may write the response process as
y(t) = oa(t) y,(t) : (A.9)

where y,(t) is the alrcraft response to the component z(t) of
Egq. (2.3). Differentiating Eq. (A.9) gives

<

(t) = o.(t) yy(t) + ap(t) y,(8) (A.10)

hence,

>

2,(t) £ E{[y'(£)]?}

o%(t) E{[yé]z} + 20.(t)oL(t) Elyly,} + [c%(t)]zE{y;}

c%(t) °§; + [oi.(t)]2 o;z R (A.11)

where the middle term in the second line of the above equation
is zero because E{yiyz} = 0, which follows from the fact that
the process {yz(t)} is stationary. ©Now, for locally stationary
processes that satisfy Eq. (3.40), we would expect the second
term in Eq. (A.11) to be small in comparison with the first
term. Neglecting the second term yields the locally statlonary
approximation to 0 2. () — 1.e.

o2 (t) =~ o2(t) o2 3 (A.12)
y' £ y,
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hence, from Egs. (A.7) and (A.12), we have

o (t) %y
y v —2 (A.13)

G | g ]
y'(t) v,

whlich is independent of time. Moreover, we note that the approxi-
mation given by the right-hand side of Eq. (A.12) is always less
than the right-hand side of Eq. (A.11); hence, the approximation
of Eq. (A.12) has the effect of increasing the size of the right-
hand side of Eq. (A.6); i1.e., insofar as the present discussion

is concerned, the approximation of Eg. (A.12) is conservative.

We may summarize these results as

g
y
. 1 z 4 2
(t) = 5 -——y 3t lndy(t) s _ (A.1H4)

Q

Py,y! .
zZ

where the approximation of Eq. (A.14) is valid whenever Eq.
(A.13) 1s valid, which requires that the response to the "slow"
component of turbulence wg(t) be negligible in comparison with
the response to the "fast" component or(t) z(t), and further-
more that Eq. (3.40) be satisfied. .

Let us now consider the ratio cyz/cy;. It is well known -—

L

e.g., Ref. 11, pp. 190-192 of the Wax edition or Ref. 12, p. U8 —
that Oy /oy' can be expressed in terms of the autocorrelation

function ¢yz(T) of y,(t) by

o

y y

—Z 1. z_ . (A.15)
¢y (0)

z

Q

1
yZ

The right-hand side of Eq. (A.15) has a simple interpretation
that is analogous to the definition of the Taylor microscale;

e.g., Ref. 19, p. 42, Let us approximate ¢yZ(T) by the para-
bola ¢yz(1)p:

2
o, (1), a ¢, (0) Il - 1;} i (A.16)
V4

y
z To
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=

It follows directly that the parabolic approximation to ¢yZ(T)

given by Eq. (A.16) becomes zero at T = tt,. However, d4if-
ferentiating Eq. (A.16) twice, we find
2¢_ (0)
Yy
o" (1) = - (A.17)
y, p 2
0
Hence, we have
by o) 1, |
= — = 0.71t, ; (A.18)
V2

| ¢§Z(O)p

that is, when a parabolic approximation to ¢yZ(T) is used, the

right-hand side of Eq. (A.15) is slightly less than the time
delay associated with the zero crossing of ¢yz(r)p. In the tur-

bulence application, T, is the analog of the Taylor microscale.

Equation (A.15) has another interpretation. It follows
directly from pp. 192-193 of the Wax edition of Ref. 11 or from
Eq. (1.65) of Ref. 12 that (oyz/oyé) is equal to (1/m) times the

expected time between zero crossings of the Gaussian process
{yz(t)}. Now, we generally would expect T, to be about one-half
of the nominal "correlation time" of the process. Consequently,
we may conclude from both of the above interpretations that
(oyz/oyé) typically is of the order of one-third of the nominal

"eorrelation interval” of T,op of the process yz(t).

Using the above interpretation of cyz/oyé, we may now inter-
pret the right-hand side of Eq. (A.14). Letting the symbol ~
denote "is of the order of," we have

a
. dt
2

o (t
y( )

2
cy(t)

oy g1 () ~ T L (A.19)

Py y,(t) 18 of the order of one-sixth of the fractional
2

change of 0Z(t) that occurs in one nominal correlation interval
of the proecess yz(t). In the present application, the fractional
change in o§(t) is approximately equal to the fractional change

l.e.,
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in o — see Eq. . an .reca at o s a constant.
in or(t) Eq. (A.7) and 11 that of 1 t

Hence, we conclude that when the fractional change in c%(t) is
negligible over the nominal correlation interval of the re-
sponse process, we have p y.(t) x 0. Pinally, we note that
the requirement that the ¥factiona1 change in 0%(t) over the
correlation interval of the response process be negligible is
essentially equivalent to the requirement for the validity of
the quasi-stationary approximation of Eq. (3.40), as is evident
from the discussion in Sec. 5 of this report. Thus, whenever
the approximation of Eq. (3.40) is valid, it is permissible to
assume that the correlation coefficient between y(t)|cf and its
first derivative is negligitbly small.
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APPENDIX B
DERIVATION OF CORRECTION TERM TO GAUSSIAN APPROXIMATION
OF EXCEEDANCE PLOTS

To develop anh expression for the correction term Q( )(ylo
in Eq. (4.36), we require, according to Egs. (4.33) and (U 3&)
an expression for the second derivative with respect to o
(y! f) See E (4.26). According to Egs. (4.12), (4. {u
Hd 4.15), N+(y f) can be expressed as

U 3
o- \2 202
2y = 1 (¥ y
N, (ylok) = 5 2 e , (B.1)
y

where, according to Egqs. (4.16) and (4.19), we have

2 2 2 2
o =0 + 0oL O B.2
y Vs Ty, ( )
and
2 2 2 2
Oe = QO + 0 O
y Vs L (B.3)

and where the explicit dependence of 02 and 0; on o% has been
deleted in the notation of Eg. (B.1l) and in the left-hand sides
of Egs. (B.2) and (B.3).

Forming the first derivative of N+(y|of) with respect to
c%, we have, using Eg. (B.l1) and the notation of Eq. (4.26),

(1) 2 d
N (yloz) =
s log) =

2
N, (ylog)

N

Carrying out the differentlation ylelds
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v (yle2)

o2\% 2 ,  do?
_ _ZL_ _X 2 o 20y J,2 Uy
i 2 24y2 2
\oy 2(cy)‘ dof
do? do?
- 2 2 \~% c; 2 o§ 2
. 1 . 20y 1 Si dof dcf
2m 2 0'2 (0,2)2
LY y
do? do2 do?
y y y
2 dO’2 dO’2 dO’z
R R CA s LAt S Sy—"
2 T+ f 52 o2 o2 o2
vy Oy g y
do? do?2
cy o
C].O'2 2 d.O'2
= LN, (ylod) | (L - 1) + L},
N 02 \g?2 o2
y y v

where we have used the definition of Eq. (B.1l).
(B.2) and (B.3), we have

"hence, Eq.

N (yl02)

104

do?
ol — =52
Yy dc% Vg

(B.4) can be expressed as

2

oy 2

=lN(ylo’2) _Z'. L_l
2 T+ f o2 \g2
J y

(B.4)

But from Egs.

(B.5a,b)

(B.6)



Differentiating Eq. (B.6) with respect to 0% ylelds

2
Oy

(2) 1 . ! g2 a0l
N M (ylo2) = 3 N (y]o2) | & - -
+ f 2 '+ f 52 ' (g2)? §o2
y y £,
2 2
g 2 a 2
do do:
fer_ ) Y2 %y s 9%
2 24y2 2 2\2 2
oy (oy) dof (oy) dof
\ o2 o2 P
1| Yz [y2? Yz | 2
+ il S 1, + " N+(y|0f). (B.7)
% \% / Oy

Substituting Egqs. (B.5a,b) into Eq. (B.7), and simplifying the
resulting expression gives, flnally,

o2 0§ 2
(2) 2y _ 1 oy e | Yz ‘y2 2
N+ (YIO'f) = 2 N+(YI0f) 2 02 \02 - + 02
y y Y
(c2 )2 (02 )2
- yzzz 2 Lz' 1)+ yzzz (B.8)
(cy) oy (05,)

When o§|o§ and c§|o§ are written for o2 and 0% in Eq. (B.8),
and the result is combined with Eq. (4.33), we obtaln the
definition of Q(2)(y|0§) given by Eq. (4.34).
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APPENDIX C L |
DERIVATION OF CORRECTION TERM TO GAUSSIAN APPROXIMATION OF
PROBABILITY DENSITY FUNCTION

According to Egs. (4.49) through (4.51), the second deriva-
tive of p(y|o%) with respect to ¢} 1s required to derive an

expression for the correction term U(2)(y|o%) to the Gaussian

probgbility density p(ylgg). Suppressing the dependence of oy
on-og, as given by Eq. (B.l), we have from Eq. (4.4) for p(ylc%),
2

2

-
1 202
p(y|od) = —=— e y oo, (c.1)
£ Y2102 '

From the fact that (doj/do}) = of, [see Eq. (B.5a)], it follows

froszq. (C.1) that the first derivative of p(ylc%) with respect

to op is )

(1 N - A
p P ylod) = = |(2)%e ¥ L g2
/o7 y 2(0;)2 Yz
.y 1
l 202 2 _/2 2 ]
-=e ¥ (02) o
v, ]
o2
yZ 2 22 1
= = p(y[of) - . (c.2)
' (cr;)2 0;

Differentiating Eq. (C.2) with respect to q%, and again using
Eq. (B.5a), we have

p{?)(ylo2)

o.2
Jz p(ylo2) | -2y2(a2) %c2 + (02) %02
e £ y y Y,

Yo
02 2
+ _XE 2((12)'—2 -(02)-1 (y]o2)
2 |Y ‘9% y Piyigr

(02 )2 2

o 45
= —p(le ) —= 1] -y + = - 1 . (C.3)

2 £ (c;)2 [ Oy 2 E§
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e

(We pemind the reader that we have used the notation o§ for
oflor.) By combining Eqs. (4.49) and (C.3), we obtain®the

definition of U(2)(y|6§) given by Eq. (4.50).
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APPENDIX D
DERIVATION OF EXPRESSION FOR COEFFICIENT OF
EXCESS OF RESPONSE PROCESS
(2)

To show that the coefficient of excess vy of the response
process y(t) is given by Eq. (4.54), we first'note that the mean-
square response E{y?} is obtained from Eq. (4.35a) by

2} = 2 2,2 .2 2
E{y®} g ’ (cyldf) p(cz)dog

0

2 2 2 2 2
oys + [ o p(of)dof oyz

0

2 "2 2
= g + 0% 0 . (D.1)
ys r yz

The fourth moment of the response y(t) may be expressed as

E{y*} = [ E{y“loé} p(d%)do% . (D.2)
0

Substitufing Eq. (4.6) into Eq. (D.2), then using the expression
for o;|of given by Eq. (4.35a), and then simplifying, we have

roo

E{y*} = 3 (0§|0§)2 p(o%)dok

— b 2 2 L & 2 2

= 3 J (oy +20y o, 0% + oy of) p(of)dof
(1}

o% + ot o}) . (D.3)
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Noting that uéu) is the fourth central moment of y and that the

mean value of y 1s zero, we can see from Eqs. (4.52), (D.3), and
(D.1) that the coefficient of excess of y may be expressed by i

(2)_
Yy ' — - C— —2.
y +2 2 2 2+ & 4 - 4 +2°.2 0202 + 2 4
3[(0ys oysoyzof oyzof) (cys v, P y, O cyz)]
= - ... 5 z 70“
y
3 0% (40 )
y i
- 4
0.‘0
y
2 2 2412 2 2
3(0yz) E{(of) - [E(cf)] }
(o;)2
(o§ )2
=3 —2 & (D.1)
(62)2 Of
y

which is the expression given by Eq. (4.54), when it 1s recognized

that (o2lg2) = o2.
( yl f) y
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APPENDIX E
DERIVATION OF EQUATION (5.19)

To establish the validity of Eg. (5.19), we shall first
show that for ergodic processes v'(t), we have

Var{v'"(£)+[v'(t)12} = E{[v'"(£)]1%} + Var{[v'(t)]2}. (E.1)
Let us define
x(t) & vrrge) + [vr(e)1z . (E.2)

Using a well known result, we have

Var{v''(t)+[v'(t)]?} Var{x} = E{x%?} - E2{x}

E{[v''+(v')2]1%2} - (E{v''}+E{(v')?})?

i

E{(v'')2} + 2E{v""(v')2} + E{(v")"}
- E2{y''} - 2E{v'"}E{(v')2} - E2{(v')?2}

Var{v''} + Var{(v')?}

+ 2(E{v''"(v')2} - E{v''"}E{(v')?}) (E.3)

However, v(t) is a stationary process; hence, E{v''} = 0. Using
this result, we may write Eq. (E.3) as

Var{v''(t)+[v'(t)]12} = E{(v''")2} + Var{(v')2} + 2(E{v'"(v"')?}).
(E. L)
To evaluate the last term in the right-hand side of Eq. (E.4),

we shall assume that {v'(t)} is an ergodic process; hence, we
have
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T/2

E{vit(v)2} = 0L [ v e [vr ()12t
-T/2
T2 T1/2
= Tom 7 V(0] -2 f v (e)[vi(£)]12dt L (E.5)
-T/2 -T/2

where the second line was obtained by integration by parts. It
follows from Eq. (E.5) that

T/2
P v em@rae - & v - w210 L (m.6)
-T/2

However, for a stationary process v'(t), the quantities v'(T/2)
and v'(-T/2) are bounded; hence, the right-hand side of
Eq. (E.6) vanishes in the 1imit T+». Consequently, we have

E{v''(v')?} = 0. (E.T7)
Therefore, from Eq. (E.4), we have
Var{v''(t)+[v'(t)]1%2} = E{[v''"(£)]2%} + Var{[v'(t)]?}, (E.8)

which 1s the result given by Eq. (E.1).

Unfortunately, the quantity Var{[v'(t)]?} depends on fourth
order statistics of the process v'(t). These statistics are
impossible to evaluate from the autocorrelation function of
v(t), unless it is assumed that v'(t) is a (stationary) Gaussian
process, which necessarily has zero mean value because the
process {v(t)} is, by definition, stationary. If this Gaussian
assumption is made, it is known (e.g., Ref. 21, p. B92) that

Var{[v'(t)]?} 2E2{[v'(t)]?} (E.9a)

2[Ry (0)]% , (E.9b)

where the second line is a consequence of Eq. (5.15). Further-
more, from Eq. (5.16), we have

E{[v''(t)]2} = Ré”)(O). (E.10)
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By combining Egs. (E.8), (E.9), and (E.10), we have, finally,
Var{v'' (£)+[v' ()12} = R\ (03 + 2[RIT(0)12, (E.11)

which is the result given by Eq. (5.19), and 1s strictly valid
only for cases where {v'(t)} is an ergodic Gausslan process.
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APPENDIX F
DERIVATION OF RELATIONSHIP BETWEEN AUTOCORRELATION FUNCTION
OF A STATIONARY GAUSSIAN PROCESS AND AUTOCORRELATION
FUNCTION OF THE SQUARE OF ITS LOGARITHM

Here, we shall derive an expression for the autocorrelation
function of &n zA(t); i.e.,

R(t) = E{2n z;(t) n zﬁ(t+r)} (F.1)

in terms of the autocorrelation coefficient of the stationary
Gaussian process zh(t), where

E{z,} =0 s E{z;} =1 (F.2a,b)

p(t) = E{zh(t) zh(t+1)} . (F.3)

We shall carry out the derivation using the form of Price's
Theorem given by Egs. (20) and (21) of Ref. 22.

Let zp(t) be a stationary Gausslan process satisfying Egs.
(F.2a,b), and let f[zn] be an arbitrary zero-memory (generally
nonlinear) transformation of zp. The form of the theorem that
we shall use states that

)
pos)

= E{f'[z, (£)] £'lz, (t+1)]} s (F.4)

@

o

where the primes denote the derivative of f[znp] with respect to
Zn, and where these derivatives are evaluated at times t and

t + T, as indicated. In the left-hand side, p denotes the cor-
relation coefficient defined by Egq. (F.3) and R denotes

R(t) = E{f[zh(t)] f[zh(t+T)]} . (F.5)

Thus, comparing Eqs. (F.1l) and (F.5), it is evident that we are
interested in the case
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f[zh] = &n zﬁ 3 (F.6)
hence, we have
£z, ] = 2

Substitution of Eq. (F.7) into Eq. (F.4) yields, when the ex-
pression for the joint Gaussian density is written out and where
we substitute z, = z (t) and z, = z, (t+1),

2, 2
(z;+z,-2p2,2,)

3R _ L 1 ) 2(1-p2)
—_— = ——— I [ ET__ e dz dz,. (Fr.8)

Ip 2nv/1-p? 2,
Let us define
z, Z,
e — V2 = ——— . (F.9a,b)
V2(1-p?) v2(1-p%)
Then, Egq. (F.8) reduces to
A -(y2+y2-2py,y,)
%B -2 1 o ! dy,dys . (F.10)
P ﬂ/l_pz yIYZ

-—00 =00

Using the integral given on the bottom of p. 207 and the top of
p. 208 of the Wax edition of Ref. 11, we have, formally, for n
and m both equal to -1 and p equal to -cosd¢,

y  T(1-3) T(-3)

%B = . — _? cos¢2F1(1,1;%; cos?¢)
P TV1-p2 (sing)
= tlp,F (1,1;3; p2) (F.11)
where we have substituted T(1/2) = VY7 and p = -cos¢ (hence,

sind = *+/1-p?) and where ,F,(see) 1s the hypergeometric function.
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However, using Egs. (A.1.35) and (A.1.39a) of Ref. 23 on pp.
1076 and 1077, we have

=% 1
2Fi (1,13 %; p?) = (1-p*)7" 2Fl(%,g; %; p?)

-% arcsinp

= (1-p2) (F.12)
P I
Thus, combining Egqs. (F.11) and (F.12) yields
%B = ¢ 4 arcsinp . (F.13)
P /1_p2

To determine R, we may integrate Eq. (F.13) with respect to p:

p(T)

R(1) = 4 éifiigi ac + ¢, (F.14)

where ¢ 1s the constant of integration and & is a "dummy variable.

Now, when p(t) = 0, zh(t) and znp(t+t) are uncorrelated according
to Eq. (F.3). 1In this case, it follows from Eq. (F.1l) that

R = {E[%n zﬁ]}2 = 4{E[%n zh]}2 , for p = 0 , (F.15)

which, according to Eq. (F.14), 1is our constant of integration.
Thus, we have from Egqs. (F.14) and (F.15),

p(t) I

R(t1) = M‘Ez[zn z, 1 ¢ arcsing 4 ( (F.16)
| =

However,

H (F.17)
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therefore, 1if we let F(§) = arcsinf, the integral in Eq. (F.16)
is of the form

p(T) p(t) (p(T) _
F(§) F'(&)dg = [F(§)]? "~  F(§) F'(§)at , (F.18)

where the prime denotes differentiation. Thus, from Eq. (F.18),
we have

p(T)
J F(g) F'(g)ag = % {[F(p)1* - [F(0)1%} . (F.19)

0

Using F(§) = arcsinf and noting that arcsin0O = 0, we have, by
combining Egs. (F.16) and (F.19),

R(1) = U4{E?[%n zh] t % arcsin? p(t)} . (F.20)

We may now determine the correct sign in Eq. (F.20). ¥#hen p = 0,
arcsin p = 0. On the other hand, when p = 1, arcsin p = n/2.
However, p = 1 occurs when 1t = 0, and for this value of 1, R(T)
must achieve a maximum. This is possible only with the plus

sign in Eg. (F.20). Consequently, the correct sign in Eq. (F.20)
yields

R(t) = {E[2&n z;]}2 + 2 arcsin? p(1) . (F.21)

The result of Eq. (F.21) can be checked as follows. At
T = 0, we have p(t) = 1; hence, arcsin p = 7/2 at this point.
Consequently, Eq. (F.21) gives, for this value of T = 0,

."2

R(0) = {E[&n z;]}2 > (F.22)
But, from Eq. (F.1l), we have
R(0) = E{[%n 22]%} . (F.23)

By combining Egs. (F.22) and (F.23), we can see that Eq. (F.21)
yields the result
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E{[zn'zgjz} - {E[%n zﬁ]}z = %; 5 (F.24)

that is, Eq. (F.21) predicts that the variance of &n zf is equal
to m?/2. Since zﬁ is, by assumption, Gaussian with zero mean
and unit variance, the result of Eq. (F.24) can be checked
directly. For the expected value of £n zﬁ, we have, using the
fact that %n zf is an even function of zy,

2
= _Zn
E{&n z;} = 7%: [ n zﬁ e ° dz,
2n
e OO
w zp
Ly -2
= n z. e dz
v/2n J h h
0
= - (C+&n 2) , (F.25)
where C is Euler's constant,
C = 0.577215¢.. , (F.26)

and where the last line in Eq. (F.25) was obtained using Formula
(4.333) on p. 574 of Ref. 24. For the expected value of

[¢n z{]?, we have, agaln using the fact that &n zf is an even
function of =z

h’
- _ %n
E{[2n z;]z} =-€£: (2n z;)2 e ° dz,

vyen

2

@ _’n

- 7%: (8n z Pe ° az, . (F.27)

T

0

To put Egq. (F.27) into the form of a tabulated integral, we
substitute £% = zﬁ/2. With this substitution, Eq. (F.27) becomes
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Nle

E{(n 22)?%} J (en (/ZE)17 &% ar
b

Y

[ [en v2 + 2ntl’ e-Ez ag
) ,

e

J [(&n /§)2 + 2(%n vZ)(AnE) + (LnE)?] e‘gzda
0

+ I, + I (F.28)

1 2

1}
—

3 5

where I,, I,, and I; are the three terms that result from inte-
grating each term within the brackets in Eq. (F.28) separately

and then multiplying each by the common factor 8/v/m. Using, from
Ref. 24, pp. 307 and 574, Formulas 3.321.3, 4.333, and 4.335.2
to evaluate I,, I,, and I,, respectively, we find

I, = 4G v2)* = (an 2)* (F.29)
I, = - 4(an v2) (C + &n 4) = - 2(2n 2) (C + &n 4) , (F.30)
I, = (C + 28n 2)% + %; = (C+an 1) 4+ %; : (F.31)

Combining Egs. (F.28) through (F.31), we have

]
H
+
)
+
—

E{[an z}]%}

2
(2n 2)2 = 2(%n 2) (C + &n U4) + (C + 2 bW)2%+ %T

= [(2n 2) - (C + n 4)7% + %;
= [(&n 2) - C - 2(&n 2)]% + %;
= (C + ¢n 2)2% + %; . (F.32)
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Finally, combining Egs. (F.32) and (F.25) we obtain the desired
result

E{len 221°} - (E[%n 221}" = 0, (F.33)

which 1is in perfect agreement with the result of Eq. (F.24).
This completes the check of Eq. (F.24).

To obtain the final result for R(Tt), we combine Egs. (F.21)
and (F.25); this gives

R(t) = (C + &n 2) + 2 aresin? p(1) , (F.34)

which 1s the final result. Insofar as we are aware, the result
of Eq. (F.34) is new. We remind the reader that R(t) and p(T)
are defined by Egs. (F.1) and (F.3), and that {zp(t)} is a
stationary Gaussian process wlth zero mean and unit variance as
indicated by Egqs. (F.2a,b).
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APPENDIX G
~METHOD FOR ESTIMATION OF E{0$}

In Eq. (6.13), a high-pass filtered version
w (8) = A" 0n(8) 2, (¢) (6.1)

of the turbulence record w(t) was considered, where A' z,(t) is
the filtered version of the original component z(t) of Eq. (2.3)
which satisfies

E{z?} = 1 . (G.2)

Let Hp(f) denote the high-pass filter complex frequency response
function used in obtaining wp(t) from w(t). Then, using the
approximation of Egq. (6.18), we may express the mean square
value of wp(t) as

E{w;} = E{o§} J th(f)l2 ¢Z(f)df R (G.3)

-— 00

where ¢z(f) is the power spectral density of the component z(t),
which satisfies, according to Eq. (G.2),

J ¢ (f)af = 1 . (G.4)
Solving Eq. (G.3) for E{cf} yields

E{wﬁ}
E{G;} = — . (G.5)
|Hh(f)|2 ¢ (f)af

According to the discussion in Sec. 6.1, ¢(f) may be assumed
to have the appropriate von Karman form; thus, because 9,(f)
is constrained by Eq. (G.4), it is defined by its integral scale.
A method for estimating the integral scale was suggested in
Sec. 6.1. Furthermore, |[H (f)|? 1s a known function and
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E{wj} can be measured from the filtered waveform wh(t). There-
fore, Eq. (G.5) can be used to estimate E{of}.

Let us now turn to justification of Eq. (6.92). Taking
the nth moment of both sides of Egs. (2.3) and (G.l), we obtain

E{wp} = E{op} E{z"} (G.6)

and

-E{wg}' (A'in E{o?} E{zg} o, . (G.7)

from_which we obtailn

E{wg} E{z"}
_ (G.8)

Bl (a0 E{z)

However, since z(t) and zp(t) are both normally distributed with
zero mean values, we have

E{z"} = B" Elz} , (G.9)
whefe B 1s a constant. Combining Egqs. (G.8) and (G.9), we have

E{w?} =(3i)n E{w?} (G.10)
(2 n : .

However, from Eq. (2.3), we can write

E{w;}
E{O%} = —_— s (G.11)

o

¢Z(f)df

where the denominator in Eq. (G.11) is unity. Combining Egs.
(G.5) and (G.11) yields
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o, (£)df | | |
E{w2} = —=2 E{w2} , (G.12)
[ o120 (00ar

which is of the form of Eq. (G.10) for n = 2. Equation (6.90)
follows directly from Egqs. (G.10) and (G.12), if we define

@ %
J ¢, (f)af
K =}=2 . (G.13)

! |H (£) ]2 o, (f)af

-]
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APPENDIX H

DERIVATION OF GENERAL EXPRESSION FOR MOMENTS OF w (t)
IN TERMS OF MOMENTS OF w(t) and "f(t)

Let w_ and L be 1ndependent random varlables and denote
thelr sum By w:

W b | @D

Let P2 Py and Dy denote the probability density functions of
Ws We

W, , and w It 1s well known —e.g., Ref. 9 — that P, is the
convglution gf p and p ; 1le. .
Wy We
b, (0 = [, (w-E)p, () (H.22)
Lo S b
= f pws(E)pwf(w—a)dE- (H.2b)

-= 00

Taking the nth moment of both sides of Eq. (H.2b), we have

ne>

Mén) J wnpw(w)dw

=00

_ oonoo
= f W I pr(E)pwf(W-E)dEdw

- 0O - OO0

= J pws(€> J wnpwf(w—g)dnldg

- 00 -0

= f P, (&) j <s+u)npwf<u)du]da

-0 |~

where we have introduced the change of variable u = w =§.
Expanding (&+u)?,; we have
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w n _ |
Mén) 4 I pr(E) jmégo(ﬁ)ikun k;pwf(u)du dg

- 00 - 00

f

- 00

n o o .
= ZO(E4_j Ekpw (S)dé][J un—kpw (u)dﬁ], (H.3)

where we have used the binomlal expansion

n
(e+w)™ = T (MefunE, (H.4)
k=0
Where
(2) = k!(giKS! (H.5)

are the binomial coefficilients.

The last line in Eq. (H.3) is a relationship among the

moments of
» Py? pws, and P, 3 i.e.,

f

(n) _ § 0y, (k) (n-k)
YT kZO(k)Mws Mg

(Dym{n=ty() (H.6)
f s

|
e

k=0

Since the area under a probability density 1s unity, by defini-
tion, we always have

(0)y _ ,(0) _ (0) _
M. = wa = MWS = 1. (H.7)

Using this fact, we may write out the relations of Eq. (H.6)
for n=1,2,3,4 as
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w2 w1, @

W W W
m{?) = (2 4 an(Dy(D) 4 y(2)
W - We £ Ys Ys
M3 - w3 4 3M(1)iw2) + (3
We We Ys Ws
(" =l (DD s en(u D3 4 D,
w £ Wp Ws We Ws f Ws ¥s
The above relationshlips may be solved successlvely for M(l)
Ws
M(z), M(3) *e+ to yield the set of relationships given by
s S
Eqs. (6.89) in the main text. The general form of these
relationships 1s easily seen to be given by Eq. (6.87)
l.e.,
(n) _ w(n) _ "5t ny (nek) (k)
MW - MW - _z_ (k)M Mw > N = 1,2,3,00.

S

Wf s

(H.8)

(H.9)
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