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ABSTRACT

Numerical solution of two-dimensional, time-dependent, compress-

ible viscous Navier-Stokes equations about arbitrary bodies is treated

using density gradients as additional dependent variables. Thus,

there are six dependent variables, p, u, v, E , p and p , to be com-
s x	 y

puted with the SOR iteration method. Besides the new formulation for

pressure gradient terms, a new formulation for computing the body

density is presented. To approximate the governing equations, an

implicit finite difference method is employed. The coordinate system

used here is the automatically generated body-fitted coordinate sys-

tem that was developed at Mississippi State University.

In computing the solution for the flow about a circular cylinder,

a problem arose near the wall at both stagnation points. Thus,

computations with various conditions were tried to examine the prob-

lem. Also, computations with and without new formulations are com-

pared. The flow variables are computed on 37 by 40 field first, then

on an 81 by 40 field.



As a result, density profiles are shown at different time steps

with various conditions. Profiles for velocity and total energy,

velocity vectors, Mach number contours and isobars are shown for

particular cases.

Lastly, convective terms in transformed plane due to the coor-

dinate stretching and the transformed velocity are introduced to

conclude that the coordinate stretching plays an importan-,. role in

this problem. Two ways of overcoming this problem are suggested.

V
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LIST OF SYMBOLS

Symbol

A,D Constants in transformed equations, Equation (3.10)

A Area vector, normal to its surface

C Body chord

C29C39 ... 9 C
18

Coefficients defined in Table 3-1

Cu n
 
' CV n ,Ce n Convective terms in transformed plane

E Specific total energy
s

e Internal energy

f,g Scalar functions

F,G,U Arrays of equations in vector form, Equation (3.9)

h Enthalpy

h 1 Sutherland viscosity law reference temperature

J Jacobian determinant

TS Mach number

p Pressure

POA Product of average

Pr Prandtl number

P,Q Functions which control the coordinate spacing

q 
Heat flux

R Reynolds number

Ra Distances from the center of the circular cylinder

SOR Successive-Over-Relaxation

T Temperature

t Time

vii



u VciuQity component in x-direction

U Transformed velocity component in f,-direction

v Velocity component in y-direction

v Transformed velocity component in ^-direction

V Transformed velocity vector

x,y Physical coordinate

a,s,y Coordinate transformation parameter, in Table 3-1

t Contour in physical plane

^z
r Contour in transformed plane

n,^	 Transformed coordinates

11 1 01 2	Inner and outer boundary contours

0	 Ratio of specific heats, c /c
p v

a	 Second coefficient of viscosity

U^	 Bulk coefficient of viscosity

u	 First coefficient of viscosity

P	 Density

Q,o	 Normal stresses
xx yy

T ,T	 Shear stresses
xy yx

Subscripts

i,j	 Field position in (&,n) plane

t9 x , y ,n)C	 First partial differentiation

xx,yy,nn t ^^	 Second partial differentiation

xy,yx,^n	 Cross partial differentiation

w	 Value on the wall_

00	 Value of the freestream

viii.



Superscript

*	 Denotes the transformed plane

n	 Time step index

o	 Initial value

Degrees

Pref ix

A	 Denotes increment

8	 Denotes partial differentiation

d	 Denotes ordinary differentiation

Ix



I. INTRODUCTION

An implicit finite difference method is used to solve the two-

dimensional, time-dependent, compressible viscous Navier•-Stokes

equations about arbitrary bodies using the body-fitted coordinate

system. A new formulation for pressure gradient terms and body

density is developed and solutions are compared with those with con-

ventional formulations. Various computations are made using differ-

ent conditions and different ways to examine the problem. The new

formulation is developed because the wiggles which appear in the

results with conventional formulation can be suppressed by using

the density gradient method.

Usually, the compressible viscous flows have been solved by an

explicit scheme, and an implicit scheme is rarely used. Moreover,

the compressible viscous flows about a circular cylinder have been

rarely solved. Recent works about the flows past a circular cylinder

are these: [1] used polar coordinates to solve the steady incompressi-

ble Newtonian flows with low Reynolds numbers; in [2], impulsively

started, time-dependent inviscid transonic flows were solved with

different meshes, different freestream Mach numbers and Reynolds

numbers; in [3], inviscid compressible supercritical flows were consid-

ered using polar coordinates. The explicit scheme was used in all

these Yorks.



II. BODY-FITTED COORDINATE SYSTEM

The basic idea of the body-fitted coordinate system is to generate

ti p coordinate system having some coordinate line coincident with the

boundary or body surface. A general method of generating body-fitted

coordinate systems is to let the curvilinear coordinates to be solu-

tions of an elliptic partial differential system in the physical plane

with the Dirichlet boundary conditions on all boundaries. Thus, all

the computations can be done on a rectangular fie ld with a square mesh

and all boundary conditions can be expressed at grid points, regard-

less of the body shape.

Major advantages of using body-fitted coordinates are; first, the

computer software utilized to generate the body-fitted coordinate

system is independent of the set of partial differential equations to

be solved on this system; second, the computer software generated to

approximate the solution of a given set of partial differential equa-

tions is completely independent of the physical geometry of the prob-

lem; finally, physical integral conservation relations need not be

lost in the transformed plane [4]. This technique is extendable to

three dimensions and applicable to fields with time-dependent bound-

aries.

Consider the transformation of a two-dimensional, doubly-connected

region, R, bounded by two closed boundaries r, and r2 onto a rectangu-

lar region, R as shown in Figure 1. The boundaries I' 1 and t2 in the

physical plane are denoted by F, and t2 in the transformed rectangular

plane.

Let us consider taking Laplace's equation with inhomogeneous



on the right hand sides as L — j,--i «Ling ell iptic- SYstem. 'Hwil,

these equations are:

Exx + f
yy = P (t,n) ,

nxx + n
yy = Q(C,n)

with the Dirichlet boi+ndary conditions

r :, 1 (x, Y)

I	 (x, Y) E r1

(2. la)

(2. 1h)

(2.1c)

^l

^I

^2(x,Y)

i

L '12

.	 (x ,Y) e r2 (2.1d)

One coordinate is set to be constant on the body and the outer boundary,

while the other is set to vary monotonicall y around the body.

In the transformed plane where all computations are made, the

transformed equations are

ax U - 
2SxCn + Yxnn - - J

2 [ XCP (E,n) + x
11
Q(E,n))	 (2.2a)

ay&C - 
2SY

Cn + Yxnn - - J
2 [Y P (^,n) + y nQ(^,n)I	 (2.2b)



where
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(2.2c)

(2.2d)

(2.2e)

a =X2+y2
TI	 n

S _ xFxn 
+ y y 1

Y = X2 +Y2
C	 f,

with the boundary conditions

X	 fl(,nl)

Y	 f2,n1

gi,n2)

Y	 92Q,n2)

(,nl) e I 1	(2.2f)

(,n2 ) e r2	 (2.2g)

The functions 
f I ( ^ ,n I ), f2(^,nI), g

1 Q ' TI 2 ) and g 2 ( f,,n 2 ) are specified

by the known shape of the boundaries I' 1 and I' 2 , and the distribution

of C specified. Boundary data are not needed along the re-entrant

boundaries I' 3 and F 4 . The functions, P(&,n) and Q(&,n) are used for

controlling the coordinate spacing.

The quasi-linear elliptic set of partial differential equations

(2.2) are then solved on the rectangular transformed plane using

finite differences and SOR iteration.

A detailed presentation of the coordinate generation method has

been given in [4,5,6,7].



III. APPLICATION TO THE NAVIER-STOKES E QUATIONS
IN PRIMITIVE. VARIABLES

The body-fitted coordinate system is used to obtain numerical

solutions of the twc -dimensional, time -dependent, compressible vis-

cous Navier-Stokes equations about arbitrary bodies. The convention-

al form of the governing equations from [8) is given first, then the

new formulations for pressure gradients and body density are present-

ed. In all equatior.L, conservative forms are used.

A. Flow Equation Formulation — Conventional Form [8)

The primitive variable formulation of the two-dimensional,

unsteady compressible viscous flow equations in a non-dimensional

x,y coordinate system is given by

aP + a(P u ) + a(pv) = 0	 (3.1a)
at	 ax	 ay

a (Pu) + a (Pu2 ) + a(Puv)	
auxx + a Tyx

at	 ax	 ay	 ax	 ay
	

(3.1b)  

a(pv) + a(Pvu) + a(Pv2 ) = aTxy + a^	 (3.1c)
at	 ax	 ay	 ax	 ay

a Es 	a(ESu)	 a(Esu)	 r a	 a

	 I
at + a x— + a y 

= (0 - 1)M2 CaX(axxu + Txyv) + ay(Tyxu + ayyv)

	

+ P 0 R) x \ll ax / + ay (Ij	
(3. ld)

ay /)CC

where

Es = p[e + (0 - 1)M 2 (V 2 /2))	 (3.2)



0, Mm and Pr are the ratio of heat, the freestream Mach number and

the Prandtl number, respectively. The lengths or distances are non-

dimensional with repect to the body chord, c; time is non-dimensional.

with repect to the time required for passing one chord distance with

the freestream velocity; density is non-dimensional with respect to

the freestream density,p ,. ; the velocity component u, v are non-dimen-
sional with respect to the magnitude of the freestream velocity, V.;

the thermodynamic veriable, the internal energy, e, is non-dimension-

al with respect to the static enthalpy of the freestream, Ii. ; and the
thermodynamic variables of pressure and the total energy, E s , are non-
dimensional with respect to the product of the freestream density and

the static enthalpy of the freestream, p wh,, . The Prandtl number, Pr,

is the product of viscosity and specific heat at constant pressure

divided by thermal conductivity. Components of stress tensor are non-

dimensional with respect to pCOV2 and are given by

oxx	

P	

2 + R (ax + ay) + R (2 8x)	
(3.3a)

(0 - 1)M00

a = -	 P	 + X Gu + ;v I + R (2 Dv 1	 (3.3b)
yy	 (0 - 1)M2 	 Y	 \	 Y

T xy	 Tyx	 R (ax + 3y)	
(3.3c)

with

X = U' - 211/3 and R = p.V.c/11.

The Reynolds number, R, is based on freestream conditions and the

body chord, c. Bulk viscosity, p' is approximately zero in the



case of local thermodynamic equilibrium which is assumed to be the

case in the present investigation.

Additional relations are needed to solve the compressible flow

equations. They are the equations of state and a relation for the

viscosity.

p - (0 - 1)pe
	

(3.4)

P = ( h) 3/2 [(1 + h 1 )/(b + h 1 )]	 (3.5)

In the Sutherland viscosity law, (3.5), h i is a constant, whose value

depends on the type of gas, and the non-dimensional enthalpy; h,

equals the product of specific heat ratio, 0 , and internal energy, e.

Boundary Conditions

The boundary conditions on the body surface are;

U = v = 0	 (3. 6a)

and

T = constant	 (3.6b)
w

or

q i = 0 (adiabatic wall)	 (3.6c)

The wall temperature, Tw , is non-dimensional with repect to the stag-

nation temperature of the freestream.

Far from the body, the boundary conditions are

7

P	 1	 at infinity	 (3.7a)



u - 1 , v = 0	 at infinity	 (3.7b)

M2
Es a	 + (0 2 1) 	 at infinity	 (3.7c)

Transformed Equations

After transforming to the body-fitted coordinates (^,n), using

the transformation relations of Appendix A of [4], the governing

equations (3.1) can be written in the vector form [8].

The ordered arrays U, F, and G are:

JP

U
 =JPU

( 3. 9a)
P
JE )

s

pu

F	
Puu + xT 

y 
x 

n
- axxYn

Pvu + Qyyx n Txyyn

E u+ D T	 x- a	 y	 u+ D a	 x- T	 y	 v- A e y	 - e x
x	 rl 	 ris yx n xx n	 YY n xY n	 Y

(3.9b)

P6
G =	 pu3 +

axxy^
Tyxx

pvv +
TxYY ^ QYYx

)
F. sv + D 

axxy^
- Tyxx	 u + D T xyy^- Qyyx 	 v - A eyx 	 - ex

yC

(3.9c)
where

D = (0 - 1)M 2	A=
R	

(3.10)
POr



y

Transformed velocity components u, v are defined below, and J is the

Jacobian of the transformation : J = x^y n - x^yn,

u = uy n - vxn 	v = vx^ - uy^	 (3.11)

The transformed forms of stress terms are given in equations

(3.12), (3.13), (3.14), respectively.

pTyxxn - axxy =

	

n	 Dn - R [c9uf - c13un - c16vE + c18vn] 	
(3.12a)

axxy ^ 	 Tyxxn	 pDE + R [c13u^ - c 11 n - c17v^ + c
15v T1 1	 (3.12b)

ayyx 11	 Txyy r,	 pDn + R [ c 16uC	 c 17 u n	 c 10v^ + c14vn]	
(3.12c)

TXyy - 
ayy

x^ = x + R [cl8uC8 	 - c15un - c14VE + c12vn J
	(3.12d)

(Tyxxn - axxyn)u + (ayyxn - Txyyn)v = D - RI (c 9u 	 - c16v)u,

• (c v - c u)u + (c u - c v)v
9	 13	 n	 18	 14	 n

• ( c 10v - c 16u)vd	 (3.13a)

(axxy^ - Tyxx^)u + (Txyy^ - ayyx
C )v = D + R [(c13u - c18v)u

• (c 15v - 
c 11U)ur) + (c15u - c12v)vn

• (c 14v - c 17u)v 	 (3.13b)

e 
x n
y - e 

y n	 2	 3 n
x = c e - c e	 3.14a)^ 
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eyx, - exy
C
	c4 

n - 
c 

3 
e &
	 (3.14b)

The subscripted coefficients c are defined in Table 3 - 1 with

the definitions of a, a, and Y• Those coefficients missing from the

table, e. g., c l , arise in the differencing of the transformed equa-

tions.

TABLE 3 - 1. Coefficients For Transformed Equations

c2 = a/J

c3=s/J

c4 = Y/J

C9 = (3a + y2TI)/3J

c lG = (3a + xn)/3J

cll = (3Y + y2)/3J

c 12 = (3y + x2)/3J

c 13 = (3S + y^yn) /3J

c14 = (38 + x&xn)/3J

c15 = x^y&/3J

c16 = xnyn/3J

c17 = (x^y n - 2J)/3J

c18 = (x
ny^ - 2J)/3J

a = x2 + y2
n	 n

s = x^ nx 
+ y^yn

Y = x2 + y2

Solution of the equations (3.8) through (3.14) uses the equation

of state given by (3.4), the viscosity law given by (3.5) and the

boundary conditions given by (3.6) and (3.7). There is no change in

these equations for flow solutions in the body-fitted coordinate

system.

B. New Formulation of Flow Equations

Generally, the pressure gradient terms in transformed momentum

equations are computed by using the equation of state for pressure

values and central difference approximations for derivatives.



New formulations for computing the pressure gradient terms and the

body density are discussed below.

Formulation of Eq uations for Pressure Gradients

The equations of state ( 3.4) is used and differentiated as a
whole with respect to x and y to get the pressure gradient terms.

Thus, the pressure gradient terms of x and y momentum equations in

(3.1) and (3.3) can be replaced by

ax = (0 - 1) [ P ax + e 
ax)	

(3.15a)

a = (0 - 1) [ P 8e + e ap )	 (3.15b)
ay	 ay	 ay

The transformed derivatives of internal energy are expressed as

below. The internal energy at each point can be calculated from the

energy equation.

ax	 J [yn-^ - y e
n)	 (3.16a)

ay	 J 
[ x

C
e n - x n e^j	 (3.16b)

To get px and p  in (3.15), two equations are obtained from the

continuity equation by differentiation with respect to x and y, re-

I 

spectively:
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aPx 	 a2(Pu)	 a2(PV)

a x2	
- axay

SP  = - a2 (pu) — a2(PV)at	 ayax	 a2y

(3.17a)

(3.17b)

After transformation, the following expressions for p
x	 y
and p are

obtained.

aPx__
at	 - 

RUDXX -RVDXY	 (3.18a)

ap

	

— y _ - RUDYX -RVDYY	 (3.18b)
at

where

RUDXX = J
8	 Jn(Pu)^	 J^(Pu)II

J an
I 	)

	

 
Jn (pu)^ - Ĵ(pu) rj 	(3.18c)

x	 x
RVDXY = J

n a J (Pv ) n - J (Pv)

	

- J 8rt J (PV) n - J (Pv) ^	 (3.18d)



X !	 f

RUDYX = ^'- ^^^ ^^^(PIO - J (Pu)n

	

Y	 Y.

- J	 T (P U) -	 (Pu) ,i 	(3.180

RVDYY =rj 
^n 

xf

(0V) r' - 3 (Pv.)^

-	
0) 2 

X& iPv) - Xn(Pv).	 (3.18f)

	

J 2f; J	 ^	 J	 ^

Thus, p  and p  can be obtained from the finite difference ver-

sion of the following equations.

(P 
n	 _	 n-1

x ) i ' J	 (Pa)ij =

At

	n _	 n-1
(P

Y )i ^J	
( P
y)id

At

- RUDXXI . - RVDXYIi^ J	 ( 3.19a)
i'j

- RUDYXIi
'
. - RVDYY In	 ( 3.19b)

After dropping the superscript n and denoting the superscript (n-1)

by o,

(PX)i'J	 (PX)i,J - At I RUDXXI i'J + RVDXYI i j	 (3.20a)

(P ) .= (P )°	 - At r RUDYXI	 + RVDYY	
J	

(3.20b)
Y 1 IJ	 Y i ,J	 L	 irJ	 i9J J

p and p are treated as new dependent variables which change with
X	 y
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time. They are solved with the same procedure as the other dependent

variables, p, u, v and E s , using the SOR iteration method.

Thus, the pressure gradients, pxand py , in (3.15) can be obtained

directly using the equations (3.16) and (3.20) for the computations

of ex , ey , p  and py , rather than by differencing the pressure. Then,

the momentum equations in (3.1) are changed as follows :

a ( P 11 )	 a (p u t )	 a (Puy)	 l a)	 aax.x	 aTYx

	

a t + a x + a y	 = _ D x + ax + ---	 (3.21a)

a(Pv) + a(Pyu) + a(Pv2) _ — 1 ^ + aTxy + aaYY	
(3.21b)at	 ax	 av	 D ay	 ax	 ay

where

U	 auu	 l	 l
axx = R ( 

a

ax + ay
av 

/ + R (tax 	 (3.22a)

U	
av	

(3.22b)ayy -	
au

R ax + 
2.V-
ay ) + R ( 2 ay )

The rest are all same as (3.1), (3.2) and (3.3). In transformed equa-

tions, (3.15) is used for pressure gradients, and a' and a' are used
xx	 yy

instead of a	 and ayy.
xx

Other relations and boundary conditions are the same. When iter-

ating for u and v, the terms p
x	 y
and p are computed using the most

recent iterate values of p , p and e , e .
x y	 x y

Formulation of Equations for Body Densit



E

a
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iu compute the body density, either the continuity cquation,or

momentum equations evaluated on the body, or some type of the extra-

polation method has commonly been used. here, another way of comput-

ing the body density is presented by using the values of P  and p 

computed above from (3.20).

In the transformed plane, p x and p  are expressed as

Px = J [y rip
^ - ypn]	

(3.23x)

py = J [-x nP + x^p n ]	 (3.23b)

f

	 From these equations, (3.23a) and (3.23b), multiplied by x n and yn

respectively, the following relation can be derived.

p n = xnPx + y 
n 
P 
y
	 (3.24)

Thus, p
n	 x	 y	 n

is expressed by a function of p and p . Now, p can be

expressed as below using the second order central difference approx-

imation.

PT1li,2 =	 2 [P i,3 - Pi,ll	
(3.25)

This gives the body density in the form of

Pi,l _ P i,3 - 2 pnli,2	
(3.26x)

or,



h

P I' ,. = P 1,3 - 2 ( x tjp x + y11Pyi 11.2	 (3.26b)

hquation (3.26b) is used for the body density with 
pr1li 2 

calculated

by the equation (3.24) with the most recent iterate values of (Px)1,2

and ( py ) 1'2' Again, the i7R technique is used to compute the body

density.

In the new formulation of flow equations, the pressure gradient

terms are not represented by pressure differences, but are evaluated

directly by using the values of energy gradients and density gradi-

ents.

ITY OF THE
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IV. NUMERICAh YMMULATTON

All space derivatives in the field are approximated by the

second-order, central difference expressions. Thus, the first and

second derivatives are approximated as below setting AC and Art to be

unity.

(fE)i,j	 2 
(f	 (4.1) fi-1,j) 	 (4.1)

(f n ) il j	 2 (f i' j+1	 f ig j-l )	 (4.2)

( fC^)i,j ^ fi+l,j - 2filj + fi-1,j	 (4.3)

7_f
(f	

+1 f
nn)i,j 	 i,.i +1 -	 i,j + f 

i,j-1	
(4.4)

1

(f C ) i,j	 4 (fi+l,j +1 
_ 

fi+l,j-1 _ 
f i-1, j+l + fi-l,j-1)	

(4.5)

At the body surface, where central difference approximations can not

be used for the derivatives with respect to n, the second- order,

one-sided difference expressions are used.

(fn)i^l s 2 (-f i ^ 3 + 4f i ^ 2 - 3f	 (4.6)(4.6)

In the r,-directions, the central difference expressions are also used.

All the time derivatives are approximated by the first-order,

backward difference expressions to get the implicit formulation.
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fn_ fn-1

( f ) n	 _ i ±

j

_i j_	 (4.7)t i,3	 At

The explicit method was not used because with explicit method,

the elliptic character of spatial variation is totally neglected.

Moreover, explicit methods have severe stability limitations [5].

Thus, the implicit formulation is used to solve the Navier-

Stokes equations, and the set of resulting simultaneous difference

equations with the boundary conditions are solved at each time step by

the point SOR iteration.

For convenience sake, the finite difference equations for pres-

sure gradient terms and body density are explained briefly in Chapter

III. All other equations in difference expressions are as in [8].
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V. RESULTS AND DISCUSSION

The case considered here is the flow about a circular cylinder

at a freesream Reynolds number of 1000. The Mach number and the

static temperature of the freestream were 0.8 and 273°K, respectively.

The Prandtl number was set at 0.71 [9], and the viscosity law refer-

ence temperature, h 1 in (3.5), was 0.40293 [10]. For an initial

solution, the incompressible potential flow solution was used. The

field acceleration parameters were varied, but the convergence toler-

ance for all variables were set at 0.00001. The time steps used here

were all 0.01, except in the runs of 3.

Runs were made on two different size fields; 37 by 40 field and

81 by 40 field, so the number of ^-lines was increased later as shown

in Figure 2 and 3. The field radius was 6.0 in either field. Log

attraction was used to locate 25 lines inside the R=20 boundary layer

in Figure 2 and 17 lines inside the R= 106 boundary layer ;.n Figure 3

by using [11].

As soon as the first run with the new formulation for pressure

gradient terms and the continuity equation for the body density was

made, dips and spikes showed up near the wall and developed as can be

seen in Figure 4 and 5.

All the computations except 6, were made with the new formula-

tion for pressure gradient terms and all the computations, except 1

and 6, were made by using the new formulation for body density. The

adiabatic wall was assumed in all cases except run 4.
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A. Computations Made with Various Conditions

On 37 by 40 Field

1. Computation with the Continuity Equation for Body Density

At first, the new formulation was substituted for the pressure

gradient terms in the conventional formulation. The continuity equa-

tion evaluated at the wall was used for the body density as in [8].

The acceleration parameters for density, velocity, total energy, p
x

and p were 0.95, 0.50, 0.80, 0.40 and 0.50, respectively. The accel.-
y

eration parameters were set at 0.30 for body density and 1.0 for free-

stream variables.

As soon as two time steps( t = 0.02 ) passed, dips and spikes

appeared in density profile and developed as the time proceeded. The

density profiles are shown in figure 4 and 5. Near the front stagna-

tion point(E = 28 line), the problem seems to be more serious than

near the rear stagnation point( = 10 line).

2. Computation with the New Formulation for Body Density

The new formulation for body density was tried from this compu-

tation to the end, except the computation 6. Other conditions were

the same as those of run 1. The density profiles are shown in Figure

6 and 7. Runs were made up to 1.0 in non-dimensional time. The pro-

files look better than those of run 1. The dips near the rear stag-

nation point became smaller as the time passed, but not small enough.

Near the front stagnation point, the spikes developed and the differ-

ences of the values between the wall and the next point remained

almost the same.
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3. Computations with Different Time Steps

Time steps of 0.02 and 0.005 were tried using same conditions of

run 2. As shown in Figure 8, 9 and 10, the results were almost same

as that of run 2. The acceleration parameter of 1.0 was used for body

density.

4. Computation with a Constant Wall Temperature

Instead of the adiabatic wall, the constant temperature wall was

assumed. The time step was 0.01 and still the new formulations for

pressure gradient terms and body density were used. Other conditions

were the same as those of run 3. Wall temperatures were fixed at 1.0.

As can be seen in Figure 11, the results became even worse. The values

of body density went down at both stagnation points.

On 81 by 40 Field

5. Computation with New Formulations

The coordinate system was changed so as to.get smaller grid sizes

in C direction. The time step was 0.01 and acceleration parameters for

density, velosity, total energy, P , P and body density were 0.95,
X y

0.70, 0.80, 0.70, 0.60 and 1.0, respectively. The density profiles are

shown in Figure 12 and 13. As can be seen from the figures, the dips

were even worse than those of run 2 which was made on the 37 by 40

field with the same conditions. Still there are no oscillation except

the dips and spikes. As the time passes, the dips remain almost same

near the front stagnation point(	 = 61 line) and slightly increasing

near the rear stagnation point(	 = 21 line).

In Figure 14 and 15, velocity profiles and total energy profiles
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are shown. From the figures, it can be observed that the velocity

profiles near the stagnation points are smooth and have no dips while

the other have dips. Also, in Figure 16, the velocity vectors are

shown near the front stagnation point. Applying the continuity equa-

tion in difference form to a point (61,2), lying next to the front

stagnation point to r;-direction, then it is easy to see that the out-

flow to n-direction is much more than the inflow, so that makes the

density at this point go down.

6. Computation with Conventional Formulations [81

For making a comparison with new formulations, the formulation of

[81 was run at the condition of run 5. As can be seen in Figure 17

and 18, the density profiles look better near the wall than those of

run 5 and other portions of density profiles are same. The oscilla-

tions near the wall occur in this computation, but not in the computa-

tion with the new formulations. When time is 1.0, the oscillations

still exist near the wall though they are small. They are shown up to

more than five cell width, sometimes more than ten cell width. But

the sizes of the oscillations can be considered as a constant.

The computer tine required was slightly more than a half of run

5. The acceleration parameters for density, velocity, total energy

and body density used were 0.95, 0.70, 0.70 and 0.50, respectively.

The velocity vector plots with new formulations on 37 by 40 field

and 81 by 40 field are shown in Figure 19 and 20, respectively. In

Figure 21, the velocity vector plots with conventional formulations are

shown. In the rear region, the formulations of circulating eddies can

be seen. In the plot with new formulations on 81 by 40 field, waves



appeared. They appeared to be related to shock waves and velocity

vectors oscillate near the waves. In Figure 22 and 23, Mach number

contours and isobars are shown for the waves. From a study of the

Mach number contours, it looks that shock waves will later be formed.

The Mach number downstream of the waves are too high for these waves

to be true shocks. Isobars are so close to each other near the waves.

In plots with new formulations on 37 by 40 field and with conventional

formulations on 81 by 40 field, the waves are smeared out.

7. Computation with Reynolds Number of 50

The density profiles are shown in Figure 24. New formulations

for pressure gradient terms and body density were used with same con-

ditions as run 5. This computation was made up to time of 0.1 to see

whether the viscosity can cure the problem or not. As can be seen in

the figure, dips and spikes are smoothed out.

B. Convection Terms Check

Besides the runs with various conditions, the convection terms

were examined. At first, the expanded forms of convection terms in

x and y momentum equations were used to check which terms are changed

by the expanded forms. The expanded form used here is, for example,

as below.

a (uv)
-
 u Dv + v 

au
ax	 ax	 ax

All the terms that were calculated with and without using the expand-

ed forms were computed. As a result, the changes in convection terms
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pv t

near the stagnation points were pretty big. Thus, two changes below

were tried to correct the problem.

1. Averages In the Continuity Equation

The continuity equation in integral form is

Jf Pt  d W n = - I pV-dA	 (5.1)

where V is the transformed

velocity expressed by V = ui + v^.

The integral equation can be

approximated as below: 	 —

(PO)r+(PQ)1
(4p tJ) 0 = --	

y2

(Pu)1+(Pu)6

2

+ p 	 + (Pu) 3 ") T - (PO 
5+(Pv) 

4
2	 Z	 2

+
(PO 

4+(Py)$ + ( 	 + (pv) 2 ")
2	 2	 2

In this way, p t was calculated to get p 0 , but the result was even

worse and densities went down more.

2. POA Forms

The product of average forms were tried in the continuity equa-

tion and x and y momentum equations and used only at the front and
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rear stagnation point because the POA form can approximate better

in the flow reversal region. But there were only very small changes

in flow variables or no change at all.

C. Cu n , Cv and Ce
T1	

n

From the results of various computations and the convection terms

check, the following conclusions can be drawn :

1. The problem of dips and spikes is not an instability problems

because at later time the magnitudes of dips remain almost same. In-

stability usually means oscillations and a rapid growth of errors.

2. There are truncation errors in computations near the stagna-

tion points, but those are not due to the difference expressions of

derivatives because the errors remained nearly constant when the cell

size in C direction was reduced.

From [8), Cu	 Cv and Ce are introduced as below by taking domi-
n	 n	 n

pant terms in x and y momentum equations and energy equation near the

stagnation point :

1	 a(Pc11) 
=	

_
Pv (5.2)Cun

R	 a n

1	 a(uc12)
Cvn =	 -

PV (5.3)
R	 a n

a (lic	 )4
CP PrC R	 a n

Pv (5.4) 
r l

Where 
c n , c12 

and c 4 are shown in Table 3 - 1.	 These terms act like

convective terms in the transformed plane. The first terms are due



to the coordinate streching in n direction and the second terms are

due to the transformed velocity. Because dips are in density profiles

and energy profiles, Ce n is calculated as in Table 5 - 1 and pe

profiles are shown in Figure 25. The calculations were made with new

formulations at t = 1.0.

TABLE 5-1. Cen

z

I	 J Ce
n

- pv

62	 1 -	 2.142 x 10-4 0 _4-
2 3.341

1.824
x 10_ 3 5.060 x

x
10_3
103 x	 10 1.970
10_34 4.014 x	 10_3 4.158 x

x5 6.652 x	 10_ 3 6.803
x

10_3
106 9.542 x	 10 9.702

67	 1 -	 2.135 x	 10- 4 0
2 2.110 x 10_ 3 4.081 x

x
10-3

3
A

1.372 x 10-3 1.548 10_3

5
3.053 x 10_ 3 3.209 x

x
10_3

5
5.051 x	 10

-3
5.198 10

-37.243 x	 10 7.388 x 10

71	 1 - 2.024 x10_5 0
2
3

- 6.198
4.160

x 10-4 1.874 x 10_4

4
x	 10_
x 10_3

6.574 x 10
10_3

5
1.037 1.223 x

x1.557
2.431

x 10_3 1.782 10_3
6 x	 10 2.560 x 10

Near or on the body surface, the first term is dominant while_ in

the other region, the second term is dominant. In [8], the region

where the first term is dominant is wider than this case because in

his case the Reynolds number is much higher. In Figure 23, the pe

profiles are not realistic, too.

From these calculations, it can be said that the coordinate

stretching makes the problem, or, at least, plays an important role



in the problem.

In regions of large gradients, a fine mesh is usually used. In

[12, 131, halving the coarse mesh cell size was used to get a medium

mesh and a fine mesh, and the governing equations were solved sepa-

rately. In [14], a fine, exponentially stretched mesh spacing was

employed and explicit artificial viscosity terms were added to avoid

the instability. In [15, 16], the same stretched coordinate spacing

as [14] was used but a fine constant mesh spacing was used in the

sublayer region.

k
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VI. CONCLUSION

An implicit finite difference method was applied to solve the

compressible viscous flows about a circular cylinder using new formu-

lations for pressure gradient terms and the bcdy density, but a prob-

lem arose near the stagnation points in both results with and without

the new formulations. In the result with conventional formulation

[8), wiggles appear near the wall, but not in the results with new

formulations, except the dips and spikes. It was concluded that the

coordinate stretching in the n-direction plays an important role on

the truncation errors which causes the problem.

This problem can be corrected by; 1) employing explicit artifi-

cial viscosity terms, or 2) employing a few n lines which have a

constant or very slowly changing spacing for a first few r, lines.

f
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