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ABSTRACT
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Pages in Thesis: 75 Words in Abstract: 217
ABSTRACT

Numerical solution of two-dimensional, time-dependent, compress-
ible viscous Navier-Stokes equations about arbitrary bodies is treated
using density gradients as additional dependent variables. Thus,
there are six dependent variables, p, u, v, ES, px and py, to be com-
puted with the SOR iteration method. Besides the new formulation for
pressure gradient terms, a new formulation for computing the body
density is presented. To approximate the governing equations, an
implicit finite difference method is employed. The coordinate system
used here is the automatically generated body-fitted coordinate sys-
tem that was developed at Mississippi State University.

In computing the solution'for the flow about a circular cylinder,
a problem arose near the wall at both stagnation points. Thus,
computations with various conditions were tried to examine the prob-
lem. Also, computations with and without new formulations are com-
pared. The flow variables are computed on 37 by 40 field first, then

on an 81 by 40 field.
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As a résult, density profiles are shown at different time steps ‘
with various conditions. Profiles for velocity and total energy,
: velocity vectors, Mach number contours and isobars are shown for
particular cases.
Lastly, convective terms in transforhed plane due to the coor-
dinate stretching and the transformed velocity are introduced to
conclude that the coordinate stretching plays an important role in

this problem. Two ways of overcoming this problem are suggested.
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A

c

cz’c3’ .. ,Cla
Cun,Cvn,Cen

E

s

e

f,g

F,G,U

POA
Pr

P,Q

LIST OF SYMBOLS

Constants in transformed equations, Equation (3.10)
Area vector, normal to its surface

Body chord

Coefficients defined in Table 3-1

Convective terms in transformed plane

Specific total energy

Internal energy

Scalar functions

Arrays of equations in vector form, Equation (3.9)
Enthalpy

Sutherland viscosity law reference temperature
Jacobian determinant

Mach number

Pressure

Product of average

Prandtl number

Functions which control the coordinate spacing
Heat flux

Reynolds number

Distances from the center of the circular cylinder
Successive-Over-Relaxation

Temperature

Time
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n, €

n1,n2

EE
XX yy

Txy'Tyx
Subscripts
i,3
t,X,¥,1,8
XX,YY,Nn,EE

Xy, ¥X,En

w

viii

Velocity component in x-direction

Transformed velocity component in f-direction
Velocity component in y-direction

Transformed velocity component in £-direction
Transformed velocity vector

Physical coordinate

Coordinate transformation parameter, in Tabie 3-1
Contour in physical plane

Contour in transformed plane

Transformed coordinates

Inner and outer boundary contours

Ratio of specific heats, cp/cv

Second coefficient of viscosity

Bulk coefficient of viscosity

First coefficient of viscosity

Density

Normal stresses

Chear stresses

Field position in (£,n) plane
First partial differentiation
Sccond partial differentiation
Cross partial differentiation
Value on the wall

Value of the freestream
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*

n

Denotes the transformed plane
Time step index
Initial value

Degrees

Denotes increment
Denotes partial differentiation

Denotes ordinary differentiation




I. INTRODUCTION

An implicit finite difference method is used to solve the two-
dimensional, time-dependent, compressible viscous Navier-Stokes
equations about arbitrary bodies using the body-fitted coordinate
system. A new formulation for pressure gradient terms and body
density is developed and solutions are compared with those with con-
ventional formulations. Various computations are made using differ-
ent conditions and different ways to examine the problem. The new
formulation is developed because the wiggles which appear in the
results with conventional formulation can bevsuppressed by using
the density gradient method.

Usually, the compressible viscous flows have been solved by an
explicit scheme, and an implicit scheme is rarely used. Moreover,
the compressible viscous flows about a circular cylinder have been
rarely solved. Recent works about the flows past a circular cylinder
are these: [1] used polar coordinates to solve the steady incompressi-
ble Newtonian flows with low Reynolds numbers; in [2], impulsively
started, time-dependent inviscid transonic flows were solved with
different meshes, different freestream Mach numbers and Reynolds
numbers; in [3], inviscid compressible supercritical flows were consid-
ered using polar coordinates. The explicit scheme was used in all

these wvorks.




II. BODY-FITTED COORDINATE SYSTEM

The basic idea of the body-fitted coordinate system is to generate
the coordinate system having some coordinate line coincident with the
boundary or body surface. A general method of generating beody-fitted
coordinate systems is to let the curvilinear coordinates to be solu-
tions of an elliptic partial differential system in the physical plane
with the Dirichlet boundary conditions on all boundaries., Thus, all
the computations can be done on a rectangular fiel!d with a square mesh
and all boundary conditions can be expressed at grid points, regard-
less of the body shape.

Major advantages of using body-fitted coordinates are; first, the
computer software utilized to generate the body-fitted coordinate
system is independent of the set of partial differential equations to
be solved on this system; second, the computer software generated to
approximate-the solution of a given set of partial differential equa-
tions is completely independent of the physical geometry of the prob-
lem; finally, physical integral conservation relations need not be
lost in the transformed plane [4]. This technique is extendable to
three dimensions and applicable to fields with time-dependent bound-
aries.

Consider the transformation of a two-dimensional; doubly-connected
region, R, bounded by two closed boundaries I'y and Ty onto a rectangu-
lar region, R* as shown in Figure 1. The boundaries T'; and T, in the
physical plane are denoted by FT and F; in the transformed rectangular
plane.

Let us consider taking Laplace's equation with inhomogeneous




terms on the right hand sides as the generating elliptic system., Then, 1

these equations are: |

i
€ * £,y = PCEN) , (2.1a) i

. ¥ ey ™ Q(E,n) (2.1b)

with the Dirichlet boundary conditions

. P~
g El(x.y)
- > (x,y) € Fl (2.1¢)
N f "
67 €z(x,y)-|
= ’ (x,y) € 1“2 (2'1(1)
2= E-

One coordinate is set to be constant on the body and the outer boundary,
while the other is set to vary monotonically around the body.
In the transformed plane where all computations are made, the

transformed equations are

Xy - 2sxgn e = J2 [ng(E,n) + an(E,n)] (2.2a)

=ify. T e 3" [y P(E,n) + ¥y Q(E,)] (2.2b)

ayé& nn

S o o 2




where

= x2 + y? =1

o xn yn (2.2¢)

B E Xpx, + YeVn (2.24)
£ x2 + y?2 | :

Y Exp t+yp : (2.2e)

with the boundary conditions

= FrC

. »  (Esn)) e r: (2.2f)
_)'J £ fz(é:.nl) : '
st Featemy

- e (2.2g)
_Y_J _gz(ﬁ,nz) e

The functions fl(g,nl), fZ(E,nl), gl(E,nz) and g2(€,n2) are specified

1 and Fz, and the distribution

of £ specified. Boundary data are not needed along the re-entrant

by the known shape of the boundaries T

boundaries P; and FZ. The functions, P(£,n) and Q(£,n) are used for
controlling the coordinate spacing.

The quasi-linear elliptic set of partial differential equations
(2.2) are then solved on the rectangular transformed plane using
finite differences and SOR iteration.

A detailed presentation of the coordinate generation method has

been given in [4,5,6,7].




ITI. APPLICATION TO THE NAVIER-STOKES EQUATIONS
IN PRIMITIVE VARIABLES
The body-fitted coordinate system is used to obtain numerical
solutions of the twc-dimensional, time-dependent, compressible vis-
cous Navier-Stokes equations about arbitrary bodies. The convention-
al form of the governing equations from [8] is given first, then the
new formulations for pressure gradients and body density are present-

ed. In all equations, conservative forms are used.

A. Flow Equation Formulation — Conventional Form [8]
The primitive variable formulation of the two-dimensional,
unsteady compressible viscous flow equations in a non-dimensional

X,y coordinate system is given by

2p a(pu) . 3(pv) _

o + = + By 0 (3.1a)
2ow) , 3eu?) | 2Guw) _ Px , Tyx =
ot 9 x oy % oy :
2ov) , 2evw) | 2Gv?) _ Yy , oy <
dt dx dy ox ay (3.1c)

aES B(Esu) B(Esu) .

+
ot 2 x 3y vy

= (PT?-E)[:%E (u %%) . aiy (u %;i;)] (3.1d)

9 9
+ = = 21 =i
0 l)M°° [Bx(oxxu + Txyv) RS ay(Tyxu + 0 v)]

where

E = ple + (0 - NMZ(V?/2)] (3.2)




O, M°° and Pr are the ratio of heat, the freestream Mach number and

the Prandtl number, respectively. The lengths or distances are non-
dimensional with repect to the body chord, E; time is non-dimensional
with repect to the time required for passing one chord distance with
the freestream velocity; density is non-dimensional with respect to
the freestream density,p_; the velocity component u, v are non-dimen-
sional with respect'to the magnitude of the freestream velocity, ¥
the thermodynamic veriable, the internal energy, e, is non-dimension-
al with respect to the static enthalpy of the freestream, h_; and the
thermodynamic variables of pressure and the total energy, ES, are non-
dimensional with respect to the product of the freestream density and
the static enthalpy of the freestream, pmhw. The Prandtl number, Pr,
is the product of viscosity and specific heat at constant pressure
divided by thermal conductivity. Components of stress tensor are non-

dimensional with respect to pwVi and are given by

S N T
- (0 - 1)M2 x 9 =
- =__B___+%(g_u+.gl -;{i(z%!) (3.3b)
T - == .
u [ 9v du
= = - ne—— —— 3.3
Txy Tyx R (Bx 1 ay) 3:3)

with

A E u'-2u/3 and R = pmvmé/u°°

The Reynolds number, R, is based on freestream conditions and the

body chord, c. Bulk viscosity, y' is approximately zero in the




case of local therﬁo@ynamic equilibrium which is assumed to be the
case in the present investigation.

Additional relations are needed to solve the compressible flow
equations. They are the equations of state and a relation for the

viscosity.

p= (0~ 1)pe (3.4)

= 2 [ + 07+ )] (3.5)

In the Sutherland viscosity law, (3.5); h, is a constant, whose value

1
depends on the type of gas, and the non-dimensional enthalpy; h,

equals the product of specific heat ratio, 0, and internal energy, e.

Boundary Conditions

The boundary conditions on the body surface are;

u=v=20 . (3.6a)
and
Tw = constant (3.6b)
or
q; = 0 (adiabatic wall) (3.6¢)

The wall temperature, Tw’ is non-dimensional with repect to the stag-
nation temperature of the freestream,

Far from the body, the boundary conditions are

p=1 at infinity (3.7a)




B e T T at infinity (3.7b)

- 1)M2
+ B at infinity £3.7¢)

Transformed Equations

After transforming to the body-fitted coordinates (£,n), using
the transformation relations of Appendix A of [4], the governing

equations (3.1) can be written in the vector form [8].

3V, OF 3G _

TR TR 0 (3.8)

The ordered arrays U, F, and G are:

Jp

Jpu
U o (3.9a)

JE

s
ol
s+ =
v pug Tyxxn oxxyn
poig o =T

pvf ¥¥-h nyn

Eu D Y% w0 v HFED 0 ¥ eT-Youga-Xey sgxX

s yxX n XX’ n yy n Xy’ n x'n yn

(3.9b)
oV
S + =

G = DUY I%x’E T Tyx"e

vv T -0 X

E = ny€ yy €

+ e + - - -
Esv D oxxyE Tyxxﬁ u D 'rxyyg oyyxg v - A eyxg exyE
{3.9¢) °

where

5 Pr«R




Transformed velocity components G, ¥ are defined below, and J is the

Jacobian of the transformation : J = xeyn - xgy

n

4 =uy - vx v = vx (3.11)

n n . E_uyﬁ

The transformed forms of stress terms are given in equations

(3.12), (3.13), (3.14), respectively.

Py
PR BRI 3 = s
Tyxxn cxxyn 5 g [cgug €134, c16vg + °1s"n] (3.12a)
e &
oSt """ ' [°13“5 SR clSVn] {3.12h)
pxn H
oyyxn - Txyyn = - = 2 + R [c16ug - c17un - clovg - Cllovn] k1 i)
e
= = —= 4 = - - + T
Txyyg oyyxi ) R |:c18ug c15un CMVE clzvn:] (3.124d)

= = = PG _ ¥ =
(Tyxxn oxxyn)u + (oyyxn txyyn)v D R [(cgu cl6v)u€

=3 v-c¢c uu + (¢c u-c¢c v)v
(eq 13 8 14

n 1 n
+ (clov - cleu)vg] (3.13a)
= = = =
(Oxxyg Tyxxa)u + (Txyyf, cyyxg)v ) R [(CIBU clsv)ug
+ (clsv - cllu)un + (CISU - chV)vn
+ (ch - c”u)vg] (3.13b)
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% = =~ 3.14b

eyx6 £y v 8 ¢ 8 ( )
The subscripted coefficients ¢ are defined in Table 3 - 1 with

the definitions of a, B, and y. Those coefficients missing from the

table, e. g., cl, arise in the differencing of the transformed equa-

tions.

TABLE 3 - 1, Coefficients For Transformed Equations

c, = alJ ¢4 = (38 + xgxn)IBJ
£y B/J 5 = x€y£/3J

c, = v/J 16 = xnyn/3J

cg = (3a + yi)/&l ¢ = &y - 23)/33
€0 = (30 + xi)/3J ¢ig = (xnyg - 2J)/3J
¢y = (3y + yé)/3J a = xﬁ + yﬁ

c,o * L3y # xf;)/aJ B = x.x + Y.y
i3 = (38 + ygyn)/3J Y = xz + yé

Solution of the eduations (3.8) through (3.14) uses the equation
of state given by (3.4), the viscosity law given by (3.5) and the
boundary conditions given by (3.6) and (3.7). There is no change in
these equations for flow solutions in the body-fitted coordinate

system.

‘

B. New Formulation of Flow Equations
Generally, the pressure gradient terms in transformed momentum
equations are computed by using the equation of state for pressure

values and central difference approximations for derivatives.




New formulations for computing the pressure gradient terms and the

body density are discussed below.

Formulation of Equations for Pressure Gradients

The equations of state (3,4) is used and differentiated as a

whole with respect to x and y to get the pressure gradient terms.

Thus, the pressure gradient terms of x and y momentum equations in

(3.1) and (3.3) can be replaced by

11

L .- e L 20
e Dipe=d g (3.15a)
= e 2
3y @ - D + a5 (3.15b)

The transformed derivatives of internal energy are expressed as

below. The internal energy at each point can be calculated from the

energy equation.

Je 1
= 3 e e
%_;_ = ; [xze xnegl (3.16b)

To get px and py in (3.15), two equations are obtained from the

continuity equation by differentiation with respect to x and y, re-

spectively:
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ap 2 2
X 34 (pu) 34 (pv)
& (3,17a)
ot 3 %2 X3y
P 2 2
¥y - Jpu) 3% (pv) (3.17b)
ot 9y ox 3y2 '

After transformation,

the following expressions for Py and py are

obtained.
9p
a—ti = - RUDXX -RVDXY (3.18a)
op
a—t-‘L = - RUDYX -RVDYY (3.18b)
where
y y y
= ol s | =8
RUDXX = (J> ag{J (pu)E 3 (pu)n}
_(Ze) 2 B0y = “Rouw) (3.18¢)
Y iont T 't 3Ty s
y = X
= B L —h
RVDXY <J)M{J(pv)n J(pv)g}
X X
et o8 =8
(2) Bn{J (pv)n 3 (pv)g} (3.184d)




A . y
RUDYX = (—:l) an -]—(pu)i’ - 5(pu),
X »-AX Y-
ny o j-n S :
- (ff) ag{ J(pu)g J(ou)”’ (3.18¢)
X X X
=1-8)2] 8%
RVDYY—<J)an[J(pv) J(pv){"

n) 9 = 3 xn .
() & {Few, - foew, (3.18£)

Thus, px and py can be obtained from the finite difference ver-

sion of the following equations.

n n-1
i =y )
x4 LS L R vl n >
5 RUDXX| | RVDXY!i’j (3.19a)
n n-1
), . =0)
3 TR yi.3 EEn B
- Rumrx|1’j RVDYY |, | (3.19b)

After dropping the superscript n and denoting the superscript (n-1)

by o,

= 0 e
(ox) = (px)i,j At [RUDXXl + RVDXYIi’j] (3.20a)

i,j

(.)

: .
1 (py)i’j At [RUDYXIi’j + RVDYYli’j] (3.20b)

px and py are treated as new dependent variables which change with
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time. - They are solved with the same procedure as the other dependent
_ variablés, p, u, v and Es, using the SOR iteration method.

Thus, the pressure gradients, pxand py, in (3.15) can be obtainecd
directly using the equations (3.16) and (3.20) for the computations
of ex, ey, px and py, rather than by differencing the pressure. Then,

the momentum equations in (3.1) are changed as follows :

Bk et ol B
i M, a(ng) s = (3.21b)
v D ay 9 X oy
where
%ex T %(g_:Jr%:?)*‘E(Z%E) (3.22a)
o %(%*%)*%(1’-%) (3.22b)

The rest are all same as (3.1), (3.2) and (3.3). In transformed equa-
tions, (3.15) is used for pressure gradients, and U;x and o;y are used
instead of ¢ and o .
% yy
Other relations and boundary conditions are the same. When iter-
ating for u and v, the terms px and py are computed using the most

recent iterate.values of p , p and e, e .
- EE R =¥

Formulation of Equations for Body Density




To compute the body density, either the continuity cquation,or
momentum equations evaluated on the body, or some type of the extra-
polation method has commonly been used. Here, another way of comput-
ing the body density is presented by using the values of px and py
computed above from (3.20).

In the transformed plane, px and py are expressed as

1
Px 3 PP = %4l i
p. = l-[-x p. ¥+ x.0 } (3.23b)
y J n g £ n

From these equations, (3.23a) and (3.23b), multiplied by xrl and Y
respectively, the following relation can be derived.
= “+ 3.24
By B T ( )
Thus, pn is expressed by a function of px and py. Now, pn can be

expressed as below ueing the second order central difference approx-

imation.

e o) (3:25)

N |

pnli,z
This gives the body density in the form of
(3.26a)

by = b 10l

or,
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B - Py TR gl 15,30

Equation (3.26b) is used for the body density with pnli 2 calculated
b}
by the equation (3.24) with the most recent iterate values of (px)1 2
and (py)i 9 Again, the 59R technique is used to compute the body
- :

density.

In the new formulation of flow equations, the pressure gradient
terms are not represented by pressure differences, but are evaluated

directly by using the values of energy gradients and density gradi-

ents.
oF THE
UCIBILITY
RFPP\O ?A\ ~ PAGE 18 POOR




IV. NUMERICAL FORMULATION

All space derivatives in the field are approximated by the
second-order, central difference expressions. Thus, the first and

second derivatives are approximated as below setting A£ and An to be

unity.
s T g =t ot
24,3 “% s 301 = f1 1) (4.2)
B e, -0 i (4.3)
(f’m)ﬂ’j 2 fi,j_H - Zfi’j + fi’j_l (4.4)
Eende,g © 'llo— o s tarmr? ) (4.5)

At the body surface, where central difference approximations can not
be used for the derivatives with respect to n, the second- order,
one-sided difference expressions are used.

(f )

TR %-(-f =4 -3 (4.6)
’

i,3 152 i1

17

In the Z-directions, the central difference expressions are also used.

All the time derivatives are approximated by the first-order,

backward difference expressions to get the implicit formulation.
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£ )" PRy T2 Seenas Th) (4.7)

The explicit method was not used because with explicit method,
the elliptic character of spatial variation is totally neglected.
Moreover, explicit methods have severe stability limitations [5].

Thus, the implicit formulation is used to solve the Navier-
Stokes equations, and the set of resulting simultaneous difference
equations with the boundary conditions are solved at each time step by
the point SOR iteration.

For convenience sake, the finite difference equations for pres-
sure gradient terms and body density are explained briefly in Chapter

III. All other equations in difference expressions are as in [8].
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V. RESULTS AND DISCUSSION

The case considered here is the flow about a circular cylinder
at a freesream Reynolds number of 1000. The Mach number and the
static temperature of the freestream were 0.8 and 273°K, respectively.
The Prandtl number was set at 0.71 [9], and the viscosity }aw refer-

ence temperature, h, in (3.5), was 0.40293 [10]. For an initial

1
solution, the incompressible potential flow solution was used. The
field acceleration parameters were varied, but the convergence toler-
ance for all variables were set at 0.06001. The time steps used here
were all 0.01, except in the runs of 3,

Runs were made on two different size fields; 37 by 40 field and
81 by 40 field, so the number of £-lines was increased later as shown
in Figure 2 and 3. The field radius was 6.0 in either field. Log
attraction was used to locate 25 lines inside the R=20 boundary layer
in Figure 2 and 17 lines inside the R=106 boundary layer “n Figure 3
by using [11].

As soon as the first run with the new formulation for pressure
gradient terms and the continuity equation for the body density was
made, dips and spikes showed up near the wall and developed as can be
seen in Figure 4 and 5.

All the computations except 6, were made with the new formula-
tion for pressure gradient terms and all the computations, except 1

and 6, were made by using the new formulation for body density. The

adiabatic wall was assumed in all cases 2xcept run 4.
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e Cdmputations Made with Various Conditions

On 37 by 40 Field

1. Computation with the Continuity Equation for Body Density

At first, the new formulation was substituted for the pressure
gradient terms in the conventional formulation. The continuity equa-
tion evaluated at the wall was used for the body density as in [8].
The acceleration parameters for density, velocity, total energy, P
and py were 0,95, 0.50, 0.80, 0.40 and 0.50, respectively. The accel-
eration parameters were set at 0.30 for body density and 1.0 for free-
stream variables.

As soon as two time steps( t = 0,02 ) passed, dips and spikes
appeared in density profile and developed as the time proceeded. The
density profiles are shown in Figure 4 and 5. Near the front stagna-
tion point(£ = 28 line), the problem seems to be more serious than

near the rear stagnation point({ = 10 line).

2. Computation with the New Formulation for Body Density

The new formulation for body density was tried from this compu-
tation to the end, except the computation 6. Other conditions were
the same as those of run 1. The density profiles are shown in Figure
6 and 7. Runs were made up to 1.0 in non-dimensional time. The pro-
files look better than those of run 1. The dips near the rear stag-
nation point became smaller as the time passed, but not small enough.
Near the front stagnation pdint, the spikes developed and the differ-
ences of the values between the wall and the next point remained

almost the same.




3. Computations with Different Time Steps

Time steps of 0.02 and 0.005 were tried using same conditions of
run 2. As shown in Figure 8, 9 and 10, the results were almost same
as that of run 2. The acceleration parameter of 1.0 was used for body

density.

4, Computation with a Constant Wall Temperature

Instead of the adiabatic wall, the constant temperature wall was
assumed. The time step was 0.0l and still the new formulations for
pressure gradient terms and body density were used. Other conditions
were the same as those of run 3. Wall temperatures were fixed at 1.0.
As can be seen in Figure 11, the results becéme even worse. The values

of body density went down at both stagnation points.

On 81 by 40 Field

5. Computation with New Formulations

The coordinate system was changed so as to. get smaller grid sizes
in £ direction. The time step was 0.0l and acceleration parameters for
density, velosity, total energy, px, oy and body density were 0.95,
0.70, 0.80, 0.70, 0.60 and 1.0, respectively. The density profiles are
shown in Figure 12 and 13. As can be seen from the figures, the dips
were even worse than those of run 2 which was made on the 37 by 40
field with the same conditions. Still there are no oscillation except
the dips and spikes. As the time passes, the dips remain almost same
near the front stagnation point( £ = 61 line) and slightly increasing
near the rear stagnation point( £ = 21 line).

- In Figure 14 and 15, velocity profiles and total energy profiles
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are shown. From the figures, it can be observed that the velocity

profiles near the stagnation points are smooth and have no dips while

the other have dips. Also, in Figure 16, the velocity vectors are
shown near the front stagnation point. Applying the continuity equa-
tion in difference form to a point (61,2), lying next to the front
stagnation point to n-direction, then it is easy to see that the out-
flow to n-direction is much more than the inflow, so that makes the

density at this point go down.

6. Computation with Conventional Formulations [8]

For making a comparison with new formulations, the formulation of
[8] was run at the condition of run 5. As can be seen in Figure 17
and 18, the density profiles look better near the wall than those of
run 5 and other portions of density profiles are same, The oscilla-
tions near the wall occur in this computation, but not in the computa-
tion with th; new formulations. When time is 1.0, the oscillations
still exist near the wall though they are small. They are shown up to
more than five cell width, sometimes more than‘ten cell width. But
the sizes of the oscillations can be considered as a constant,

The computer time required was slightly more than a half of run
5. The acceleration parameters for density, velocity, total energy
and body density used were 0.95, 0.70, 0.70 and 0.50, fespectively.

The velocity vector plots with new formulations on 37 by 40 field
and 81 by 40 field are shown in Figure 19 and 20, respectively. In
Figure 21, the velocity vector plots with conventional formulations are
shown. In the rear region, the formulations of circulating eddies can

be seen. In the plot with new formulations on 81 by 40 field, waves




appeared. They appeared to be related to shock waves and velocity
vectors oscillate near the waves. 1In Figure 22 and 23, Mach number
contours and isobars are shown for the waves. From a study of the
Mach number contours, it looks that shock waves will later be formed.
The Mach number downstream of the waves are too high for these waves
to be true shocks. Isobars are so close to each other near the waves.
In plots with new formulations on 37 by 40 field and with conventional

formulations on 81 by 40 field, the waves are smeared out.

7. Computation with Reynolds Number of 50

The density profiles are shown in Figure 24. New formulations
for pressure gradient terms and body density were used with same con-
ditions as run 5. This computation was made up to time of 0.1 to see
whether the viscosity can cure the problem or not. As can be seen in

the figure, dips and spikes are smoothed out.
B. Convection Terms Check

Besides the runs with various conditions, the convection terms
were examined. At first, the expanded forms of convection terms in
x and y momentum equations were used to check which terms are changed
by the expanded forms. The expanded form used here is, for example,

as below.

d(uv) _ v du
9 X ' = = 9x

All the terms that were calculated with and without using the expand-

ed forms were computed. As a result, the changes in convection terms




near the stagnation points were pretty big. Thus, two changes below

were tried to correct the problem.

1. Averages in the Continuity Equation

The continuity equation in integral form is

[[ 03 dtan = - | pV.dA 8.1

where § is the transformed

velocity expressed by ? = 4i + vj. oV T
' 80____?9.__9 5
The integral equation can be
, approximated as below: —> 3¢ o - 5 1 JEL_,
i 0
n
(00):+(Oﬁ)1 4 ) 4
(4th)0 = - -———415————— //7;7/{///;7/////r7//
[
(pU)1+(pU)6]
e e

+
2

+_[(pﬁ)8+(pa>3 <pa)3+(pﬁ>i] : [<p‘v>5+<p6)4
2 2

+ g +

(p0)4+(p6>8] [(p0)6+<p0>2 <p0)2+<p0)7]
_— T+
2 2

In this way, pt was calculated to get CPY but the result was even

worse and densities went down more.

2, POA Forms
The product of average forms were tried in the continuity equa-

tion and x and y momentum equations and used only at the front and




reaf stagnation point because the POA form can approximate better
" in the flow reversal region. But there were only very small changes

in flow variables or no change at all.
C. Cu, Cv_ and Ce
n n n

From the results of various computations and the convection terms
check, the following conclusions can be drawn :

1. The problem of dips and spikes is not an instability problems
because at later time the magnitudes of dips remain almost same. In-
stability usually means oscillations and a rapid growth of errors.

2., There are truncation errors in computations near the stagna-
tion points, but those are not due to the difference expressions of
derivatives because the errors remained nearly constant when the cell
size in £ direction was reduced.

From [8], Cun, Cvnand Cen are introduced as below by taking domi-
nant terms in x and y momentum equations and energy equation near the
stagnation point :

p 9Cue, )

= T L e
Cun E i pV €5.2)

a(uclz)

Cvrl = iT—pv £5:3)

-

o a(uca)

————— 9 5.4
PreR 9N . £5:4)

e =
en

Where cll’ c12 and ca are shown in Table 3 - 1. These terms act like

convective terms in the transformed plane. The first terms are due




to the coordinate streching in n direction and the

due to the transformed velocity.
and energy profiles, Cen

profiles are shown in Figure 25,

formulations at t = 1,0,

The calculations

Because dips are

is calculated as in Table

second terms are
in density profiles

5 -1 and pe

were made with new

TABLE 5-1. Cep
I J Cer1 pv
= 2,142 x 10:2 0 =
2 3.341 x 10_, 5.060 x 10_,
3 1.824 x 10_3 1.970 x 10_3
4 4.014 x 10_3 4,158 x 10_3
5 6.652 x 10_3 6.803 x 10_;
6 9.542 x 10 9.702 x 10
=} 2.135 x 10:2 0 =
2 2,110 x 10_, 4.081 x 10_,
3 1.372 x 10_3 1.548 x 10_3
4 3.053 x 10_3 3.209 x 10_3 -
5 5.051 x 10_3 5.198 x 10_
6 7.243 x 10 7.388 x 10
e 2,024 x 10:2 0 4
2 6.198 x 10_, 1.874 x 10_,
3 4.160 x 10_, 6.574 x 10_,
4 1.037 x 10_3 1.223 x 10_3
5 1.557 x 10_3 1.782 x 10_
6 2.431 x 10 2.560 x 10

Near or on the body surface, the first term is dominant while in

the other region, the second term is dominant. In [8], the region

where the first term is dominant is wider than this case because in

his case the Reynolds number is much higher,

profiles are not realistic, too.

In Figure 23, the pe

From these calculations, it can be said that the coordinate

stretching makes the problem, or, at least, plays an important role




in the probiem.

In regions of large gradients, a fine mesh is usually used. In
[12, 13], halving the coarse mesh cell size was used to get a medium
mesh and a fine mesh, and the governing equations were solved sepa-
rately. In [14], a fine, exponentially stretched mesh spacing was
employed and explicit artificial viscosit; terms were added to avoid
the instability. In [15, 16], the same stretched coordinate spacing
as [14] was used but a fine constant mesh spacing was used in the

sublayer region.
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VI. CONCLUSION

An implicit finite difference method was applied to solve the
compressible viscous flows about a circular cylinder using new formu-
lations for pressure gradient terms and the bcdy density, but a prob-
.lem arose near the stagnation points in both results with and without
the new formulations. In the result with conventional formulation
[8), wiggles appear near the wall, but not in the results with new
formulations, except the dips and spikes. It was concluded that the
coordinate stretching in the n-direction plays an important role on
the truncation errors which causes the prnblem.

This problem can be corrected by; 1) employing explicit artifi-
cial viscosity terms, or 2) employing a few n lines which have a

constant or very slowly changing spacing for a first few 1 lines.
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