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ABSTRACT

Cracked geometries are studied by finite element techniques

with the aid of 'a new special element embedded at the crack tip.:.

This model seeks to accurately represent the singular stre^'ses and

strains associated with the elasto-plastic flow process. 	 Previous

finite element schemes incorporating special elements represent

either the linear elastic singularity or the singularity associated

with materials possessing a power law stress-strain relationship

and yielding according to the deformation theory of plasticity

(commonly referred to as the HRR singularity).	 The present model

is not restricted to a material type and does not predetermine a

singularity., Rather the singularity is treated as an unknown. 	 For

each step of the incremental process the nodal degrees of freedom

and the unknown singularity are found through minimization of an

energy-like functional.	 The singularity and nodal degrees of freedom
f

are determined by means of an iterative process.

I Solutions to a set of elastic test cases and a series of four

elasto-plastic problems constitute the bulk of this work. 	 The elastic

x cases serve as a check of the method's ability to determine the

singularity as a function of notch opening angle.	 The elasto-plastic

problems study four specimens,each consisting of -a different material`,

and incorporate some geometric changes. 	 These problems offer

opportunities to compare results with analytical theories, laboratory

test results of a 'real material, and numerical data of other finite

element analyses.

Elastic results from the model show excellent agreement with the

theoretical prediction. 	 As yielding progresses there is some convergence
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to the HRR model although the process takes place slowly. Particular

attention is given to the stress field surrounding the crack tip and

the parameter J. The J analysis suggests that this quantity is not
^.}

	 path independent in specimens with a large amount of plasticity. Two

1	
contributing factors are identified as causes for the path dependence:

1) the nonproportionality of the stresses near the crack tip which

violates a basic premise of the deformation theory of plasticity;

2) a resharpening of the crack tip in center cracked specimens. An

experiment is proposed to determine if these factors are real.

-.	 After evaluating all the results it is concluded that the model

works. Information is provided nearer the crack tip with better

resolution than previous numerical analyses There is a large degree

of agreement with existing theories and yet there are some original

results. It is important to test these findings as outlined in the

thesis to guarantee their validity.

r
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The study of cracks in solid bodies has been hampered by the
I

complex behavior at the crack tip. Discontinuities in geometry give

rise to singularities at the tip which make modelling very difficult.

Some analytical solutions to the problem have been developed by assuming

a particular material response. Hence, numerical procedures based on

this analytical work are restricted to certain material types. Compu-

tational methods that do not build in such material characterization

are limited by the fact that their credibility diminishes near the

crack tip due to the singularity. A "zone of blindness' develops in

this region.

Swedlow'(1974)*has developed a new computer model for solving

{	 ,crack problems It is not restricted by material behavior yet provides

a much, more detailed description of the response near the crack tip

including singularities. The "zone of blindness" is shrunk considerably.

Of course, this representation entails a few limitations, but

these are common to many other analyses. No history is given as to how

the crack appeared. It is simply assumed to exist in a virgin material.

The body itself is modelled as a two-dimensional continuum. Appropriate`

plane stress or plane strain designation is given to effect the third

dimension. The crack is assumed to be sharp until a load is applied

_t
to she body-. By sharp it is meant that the sides of the crack are

straight and the tip has a zero radius of curvature. No growth of the

crack takes place-throughout the loading process.

Although it may not be possible to adhere to all these assumptions

*References are indicated by author and date.
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in the laboratory it is still a reasonable representation.	 And in light

of the simplifications they make for numerical computation these

idealizations are justified.	 Now, using this model as a basis, a few

material characteristics are incorporated into the model.

Each specimen that is studied in this work consists of only one

material that is assumed to be homogeneous and isotropic. The tensile

stress-strain curve has an initial linear elastic portion and a subse-

quent	 plastic portion with a positive slope at each point.	 Incremental

i^ elasto-plastic flow theory is used for which the plastic part of the

stress-strain curve is discretized into a number of small straight line

segments.	 Loading of the body can be produced with displacements and/or

tractions.	 It is always applied in the plane of the two-dimensional body.

The program, SPECEL, solves problems_ through finite element

techniques.	 This basic method has inherent assumptiGns which are

elucidated elsewhere, for example Zienkiewicz (1967).	 Finite elements

discretize the body into a number of sub-bodies and assume displacement

forms for these regions. 	 This particular finite element procedure,

SPECEL, incorporates a displacement function in the region surrounding

the crack tip (special element) that accounts for singular stresses and

strains.	 This singularity is not predetermined but is treated as `a

degree of freedom. 	 Surrounding this region are conventional finite

elements which in themselves pose no problems but cause minor difficulties

when used in conjunction with the special element.	 A novel approach and

solution method will be discussed later in this work.

As stated earlier, the formulation and development of SPECEL has

been 'carried out by_Swedlow (1974).;' The 'emphasis in this effort is

l

placed on the usage of SPECEL. 	 First, it is necessary to show that
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SPECEL does work within the framework of the model. 	 This is accomplished

by comparing SPECEL's results to those found by accepted analytical and

numerical methods. 	 Of course, the model places certain limitations on

SPECEL and it is important to keep this in mind when evaluating results.

Having checked out the program the next inquiry to make is what one can

Learn with this new tool.	 Answering this question is the central purpose

of this thesis.

Following this introduction the remaining discussion is divided

into five chapters.	 Chapter two begins by briefly reviewing the equations

of elasto-plastic flow.	 Then the two analytical limit cases (elastic

and plastic) plus some other numerical models of near tip crack analysis

are discussed.	 All this provides the motivation for the development of

SPECEL.	 An outline of SPECEL's formulation conzludes chapter two.

Chapter three describes in detail the problems to be solved in this

work.	 A series of notched disks for a linear elastic material are

I	
; loaded to test the singularity response of SPECEL. 	 Then three center

cracked specimens and one three point bend specimen, each with different

i material properties, are excited for full elasto-plastic_ solutions.	 -

The results of these problems are discussed at length in chapter four.

Out of this discussion emerges a proposal for experimentation which is

outlined in chapter five. 	 Conclusions and =a summary are presented in

,f

I

the final chapter.

f

i

^	 m

^
T
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CHAPTER II

METHOD

A. Equations of`Elasto-Plastic Flow'

Primarily, SPECEL is geared. o solve elasto-plastic stationary

crack problems. Before.-:scussing the difficulty caused by the

introduction of a crack into the geometry first consider the incremental

theory of plasticity and solution procedure that is employed in SPECEL.

A detailed description may be found in Swedlow (1968) so only an outline

of the pertinent material is presented here Quantities used frequently

are defined as follows:

TO = Vs
ij

s
ij /3	

octahedral stress

a	
3	

T	 effective stresse	 p

s..
1^ 

= Q
1)
.. -	

)1
6., '

kk 
/3	 stress deviator

`o	 J d .P 	Iso dt	 octahedral plastic strain

'	 I

{{	 e^	 -	 ep^ sP^/3	 octahedral plastic strain rate
f	 -

Eef	
V-2E0	 effective plastic strain rate

I	 _

Q

£ef = Eef dt + E
	 effective strain

i
i

j



where Q.., F.. are the stress and strain tensors, S::	 is the Kronecker
ij	 ij	 ij

delta, E is Young's modulus, t is the time variable, and the usual

summation convention of indicial notation is used. 	 The process is

I
assumed to be quasi-static so that inertial and convective effects are

neglected.	 Thus, the dot operator represents

a	 d_at	 dt'

For small strains the usual strain-displacement relation - is translated

.. into a rate equation as

1
2	 (ui,j	

+ u j Vii) (1^

I

where the comma denotes differentiation. 	 The strain rates are separated

into elastic and plastic components

1)	 i)

and the elastic portion obeys Hooke's law

oe
=	 [ (l+v) Q	 - vc'skk S	 ] /E (3)

j	
j

where v is Poisson's ratio. 	 The stress rates, satisfy the analogous

equilibrium rate equation in the absence of body forces

l 61j , j	 = 0	 with a..	 Q jl13 (4)

Using the Von Mises yield criterion with Drucker's definition of work

hardening the following flow rule is obtained:

p • p	 __	 sij	 sk Y,
(5)

I
2u0 

E 13 3T 
0 

2	 6k2

I
where 2p^	 =	 dtp/dFo = ^ o/R	 which is the local slope of the octahedral
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stress-plastic strain curve.	 Boundary conditions are given in terms of

displacement rates or traction rates

t	
-	

Q
nJ	 (6)J

. where the n. are the components of the outward unit normal to the

boundary.	 All the problems in this exercise are of the plane strain

type, although SPECEL may be rigged to solve problems in plane stress.

Substituting the total strain rates for the stress rates (adding equations

(3) and (5), then taking the inverse) in the equilibrium equations (4)

i
and then replacing the strain rates with the displacement rates (1)

yields a set of quasi-linear partial differential equations for the

displacement rates.	 While the derivations are performed in terms of

rates the numerical solution proceeds in terms of increments. 	 A large

number of increments is necessary so that the error in going from rates

to increments is minimized.	 For a quantity	 q the relation

i
t	

t
2	 2 q(t2)-a(tl)

q dt
it t	 t	 dt	 -	 q

( t )	 - q(t)	 -	
8q	

(7)
2
	 1	 2

t 1

^. is a good approximation provided t2-t l is small.'

i

Actual solutions to incremental plasticity problems are found usually

through energy methods. 	 The following energy-like term is written for a

f plane strain situation in terms of the cartesian components;

G

I
J--

I

f
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tx II	 = (E/ 2)
f 

{[ (a + 2G)/E - s 2	 /	 (1 + 1 /^)]	 6E:2
Axx

- 4[sYY sxY / (1 + 1/	 6E:	 Sc

i

x Y

+	 [(X + 2G)/E - syy /	 Cl + 1/R)]	 deYY

I

4`[Sxx sxy / (1 + 1/0)] de
xx 66xy

+ 4 [G/E - s 2	 /	 ( 1 + 1/$) ]	 6C2
xy

+ 2[a/E - sXx Syy l	 (1 + 1/S)] 6Exx 6C	 dA

4	 "^' JJ

- f(6tx
I

au + aty 6v) ds	
(8)`

st

where A represents the body, St is that portion of the boundary on which

tractions are specified, G- = E/ (2 (l+v)) , A' = M/ (1-2v) , and	 = G/UO .

An analog to the theorem of minimum potential energy states that a

stationary value of R (actually a minimum) leads to the correct solution

(Jones,	 1972). SPECEL uses finite element techniques to find a minimum

of H.	 This method discretizes-the body into a number of sub-bodies

(elements) which have a specified displacement form

(dui (xi)i =	 [f(xi)]	 {6ui}	 (9)

where {Sui (xi )} are the displacement increments at point (xi) . within an

element,	 [f(xi )]'represents the displacement functions, and {dui } are

the incremental displacements at the element nodes.	 Taking the derivative

u
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8

J	 of {6ui (xi)) to find the expressions for the strain increments, sub

stituting these into the expression for R, and then minimizing n leads

to the usual stiffness equations

[K]	 {Su.}	 _	 {dTi }	 (10)1 :
where [K] represents the stiffness matrix (updated for each step of the

incremental loading) and {dT i } represents the incremental nodal forces.

The stiffness equations are solved for every load increment and the

program tracks accumulated 	 displacements, stresses, strains, and forces.

A detailed description of the finite element solution procedure may be

found in Swedlow - (1973) .

"	 r
B. Singularities

Having considered the general solution method of elasto-plastic

i
problems, the next step is to introduce the crack into the geometry.

i
Williams (1952,1957) considered the case of a sharp notch in a two-

°
j

dimensional, linear elastic, stress field.	 The geometry can be seen

in Fig.	 (1).	 For planar elasticity the compatibility equation is

V4 X	 0	 (11)

where X is the Airy stress function and the stresses are defined in

terms of this function such that equilibrium is 'satisfied.- A solution

of the form

X	 =	 rP+l f(e)	 (12)

is assumed.	 f(e) behaves like sin((pt1)8), cos((p±l)e). 	 Imposing stress

free boundary conditions on the faces of the notch leads to a set of

four homogeneous equations. In order for these equations to yield a

nontrivial solution the following eigenequation must 'be.satisfied:

r



sin [p2a] = p sin 2a

Solutions are found by letting
I

z	 =	 p2a	 =	 (x+iy)2a	 (14)

The real part of z must be greater than zero to insure finite displace-

ments as r approaches zero. 	 For a sharp crack, 2a = 2Tr, the minimum

real z is 1/2. -Williams (1952), gives the minimum real z for a wide

range of a values. 	 For 2a > Tr the 'minimum real z is less than unity

which leads to singular stresses and strains at the notch tip.

A similar analysis, calked the HRR model, was carried out by

Hutchinson (1968a z b), Rice and Rosengren (1968) for a sharp crack in a

power hardening material behaving in accordance with the deformation

- theory of plasticity.	 The tensile stress-strain relation is of the form

e = Q + Uan 	(15)

where stresses and strains are normalized on the yield stress and yield

strain respectively, a is a constant, and n is the constant power

hardening exponent.	 This transforms into the generalized stress-strain

relation

£iJ	 (1+v)sij	 +	
(1^3v)	 vpP aiJ + 2 a Qe-1 s1J 	 (16)

In order to guarantee their validity solutions must be 'checked so that

no unloading takes place and that the deformation history at every point

i5 proportional; that is, the stress components remain in a fixed

proportion to one another, or nearly so, as deformation proceeds:- The

analysis is analogous to the Williams	 solution to the elastic problem

except for the material relationship. 	 In terms of strains the compatibility`

equation may be written as

- -- -	 --	 _
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r-1	 (r e ) 	 + r-2 £r - r 1 er	2r
-2

e 
	

(erer)'	 _	 0	 (17)

where the superscripts	 • denote differentiation with respect to theP

radial and tangential coordinates respectively.	 Using (16) stresses

are substituted for the strains in (17) and then stresses are replaced

with their representations in terms of the Airy stress function. 	 The

-elastic contribution is dropped from the compatibility equation because

near the crack tip its influence is insignificant compared to the plastic

contribution due to the strength of their respective singularities.
r

Assuming a separation of variables solution for the stress function,

krs f(6), the problem is solved using numerical techniques. 	 It is found

that the characteristic singularity of the problem is dependent only

on the power hardening exponent of the material

I
G	 _	 2n+1	 (18)

n+l

This leads to the following exponential r dependence for displacements,

stresses, and strains

1	 -1	 -n
(19)n+l	 n+l	 n+1

Strain energy density is inversely proportional to r, the same as for

the elastic problem.	 No corresponding plastic analysis has-been done

on the notch problem (2a < 2Tr).

C. Plastic Singular Elements

A number of analysts have incorporated the HRR theory into finite

element solution techniques.	 Hilton and Hutchinson (1971) and Goldman

and Hutchinson (1975) use roughly the same method.	 A singular circular

core element surrounds the crack tip. 	 Displacements within this element

are of the form



1

ry	 u = K 
rn+l 

f (6) + C	 (20)

where K is an unknown amplitude, 
n
+1 and f(6) give the "correct"

exponential and angular response from the HRR theory, and C accounts for

rigid body motion.	 The size of the singular element is Q.5% of the crack

length (half crack length in center cracked geometries).	 Outside the

singular core region conventional constant strain triangular elements

are employed.	 The solution is found by minimizing the potential energy

1
with respect to the unknowns K, C, and the nodal displacements of the

constant strain triangles that are not on the singular 'core. 	 This leads

to a nonlinear system of equations which is solved iteratively.

Tracey (1973) also imbeds the power law hardening singularity in

sectors of core elements.	 But the angular variation in these elements

consists of degrees of freedom rather than assuming the prescribed

HRR field.	 so arametric quadrilateral elements surround these singularP 

elements which enables compatibility but not traction continuity to

exist between the two element types. 	 The problems are solved in an

incremental manner using a minimum potential energy, variational principle

and an iterative scheme which allows' convergence to the best representative

constituitive relation for the increment:

More recent attempts using the HRR theory by Atluri, et a1. 1 (1977a,b)

use finite deformation techniques. 	 Core elements contain the rn+1

singularity but the 6 variation is approximated in the usual sense of the

finite element method. 	 Surrounding the singular elements are regular 

eight-node iso arametric quadrilateral elements.	 Compatibility ofP	 Q	 P	 y o

displacements and continuity of tractions between singular and regular

elements are enforced by means of Lagrangan multipliers. 	 An incremental

finite element analysis is employed where the stiffness matrix is updated
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at each step to account for both material and geometric changes. The

stiffness equations are obtained by a variational principle based on

the most recent geometry...

All of these previous methods embed a singularity that remains

constant throughout the loading process.	 The singularity is the one

associated with a power hardening material as predicted by the HRR

analysis.	 No attempts are made to explain how the material goes from

an elastic response as characterized by Williams to the HRR behavior.

SPECEL's formulation is such that it is not restricted to purely power

hardening materials and it is able to describe the process in going

from an elastic to alastic material characterization.n.

A parameter frequently used in fracture mechanics is the J integral

aukj	 =	 f	 way - t	 ds	 (21)k
r	

ax

where r is a counterclockwise path encircling the crack tip, W is the

-strain energy density, tk and u k represent the traction and displacement

components,	 (x,y) are the usual cartesian coordinate directions with the
i

' origin at the crack tip (x is aligned with the crack, y, perpendicular

to it)-, and s is the variable of integration along the path T. 	 J has

been defined by Rice (1968) and Knowles and Sternberg (1973) based on

infinitesimal and finite deformations respectively. 	 Both definitions

show J to be path independent for elastic materials and those with a
i

##
power-law stress-strain curve and behaving according to the deformation

t
- theory of plasticity.-- 	 Atluri's work compares the difference in these

I two J definitions numerically for three point bend specimens. 	 He finds

that J is virtually path independent when-using the latter definition

in his finite deformation program whereas the former` definition of J
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leads to substantial differences (16Q) in the parameter depending on

whether it is measured near or far from the tip. This fact should be

kept in mind when the J'results of SPECEL are discussed (Chapter IV).

D. SPECEL

A new approach to the singular problem at the crack tip is taken by

i
Swedlow (1974). Rather than using an elastic or power hardening

I
.;	 singularity the region near the crack tip is given a variable singularity.

Its value is fixed at 1/2 for the elastic (first) step and then found

b minimizing the energy-like functional 8 for the remaining loadY	 g	 gY	 O ,	 g

steps. The initial formulation used two singularities, one each for

the radial and tangential displacements. But due to a number of reasons,

the most crucial being that the development is not coordinate system

independent, only one singularity is now used.

The special element consists of a number of sectors centered at

the crack tip; the optimal number is around 48 for a problem with no

symmetry. This arrangement is shown in Fig. (2). lncremental dis-

placements, radial and tangential respectively, have the following form:

bur	A1(e) + A2 (8)r + A3 (8)rP

(22)
R

sve	 B1(8) + B 2 (8)'r + B3 (e)rP

where the amplitudes of A1(8),-..., are to be determined; A l and $,1

represent rigid translations; the remainder of the expressions admit

constant strains as well as rigid rotations;p is a variable exponent.

The special element is surrounded by constant strain triangular elements.

So there is an incompatibility and discontinuity of 'tractions at the

*the complete form of A 1 (e),	 is given in the addendum (page 177)

yL
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I

interface of the special and regular elements. However, it will be
f

shown that these irregularities are not critical.

Let n represent the sum of the energy-like terms (8) from both
I

element types, special and regular.

n	 ns + nr 	 (23)

Solving the problem requires the minimization of n with respect to the

degrees of freedom

I

dH	 (aH,/a{du}) d{su) + ( an/ ap) dp	 0	 (24)

where {Sul represents the vector array of all the nodal degrees of
I

freedom (in all the elements)	 Attempting to solve this system of

I`	 equations in a straightforward manner would be quite expensive due to

the nonlinear nature of the equations caused by the variable exponent.

A,sufficient condition for the solution is

f	 aff/a{aul	 [K] {su}	 {aTl -	 o	
(2s)

Es	minimum w.r.t. p

t•
	 The first of these represents the usual stiffness equations and is a

I

	

	 set, of linear algebraic relations, whereas the second expression in (25)

is a nonlinear equation. Both relations in (25) must be satisfied

simultaneously.

Actually, SPECEL does not solve these equations simultaneously
i

but uses an iterative procedure to find the minimum of H. Its scheme

for a particular increment, the kth, maybe outlined as follows. First,

p is set equal to the value of the previous increment, p -1 , and while

keeping this value fixed the stiffness equations are set up and solved.

The value of II is noted. Call it 11 1 . Then H is minimized with respect

i
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to p.	 This is done by searching the range of p's in the vicinity of

Pk-1 until a minimum value of R s is found.	 The new p is pk .	 Now the

stiffness equations are reformulated and solved again using p k .	 The

N new value of H is denoted n 2 .	 If

I

III-{{	
IT	 1

Q is	 (set to 0.001 forwhere	 some convergence criterion	 elasto-plastic
1

problems) then the increment is completed and a new increment of load

may be applied.	 If the change in R's is greater than the convergence

criterion the process is repeated until a minimum of n is found that

I

meets the requirements.	 A flow chart for the procedure may be seen

I i 	 Fi g.i	 3.

SPECEL uses infinitesimal strain theory.	 Hence, the definition

of J used is the one given by Rice (1968).- Integration within the

special element is carried out numerically by Gaussian techniques

I

(seven radial and three tangential points in each of the twenty-four
i

sectors).	 Although this method is not exact for singular functions

1 the large number of points gives good results. 	 It is not possible to

use a one point, exact integration method for singularities proposed

by Tracey and Cook (1977) =jecause the exponent is not predetermined.

I

Other procedures used by SPECEL follow conventional methods for solving

incremental ela.sto-plactic flow problems as given by Swedlow (1973).

I

1

I•
I

More detailed information about SPECEL can be found in Swedlow-(1974).
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E. Accumulated Exponents

Although the incremental exponent, p, provides a sophisticated,

model near the crack tip it is not directly comparable to the

singularity presented in the HRR model (18). One characterizes incre-

mental quantities, the other describes total or accumulated values. For

this reason a companion program to SPECEL has been developed to determine

the exponent associated with accumulated displacements. The method fits

the displacements within the special element at -a fixed angular position

into the following form

U	 6ui
	 Ali+A,^ir+A3irP1

*
CI +C2r+C jrp	(26)

where N is the number of increments, A li , ... ,CI ,...	 are constants for

fixed e, p i are the incremental exponents, and p* is the accumulated

exponent.	 There is no proof that the form of the accumulated displace-

ments -is correct but in view of the incremental form it looks intuitively

correct.	 (This intuition is supported in the results, discussed in

Chapter IV.)

j For each angular position the seven Gauss points within the special

element are used to determine the unknowns C I ,C2 ,C
3
 and p*.	 In fact,

CI is already known since it represents the rigid translation of the

node at the crack tip. 	 Therefore, for any one of the seven Gauss points'

the displacement u j	(j=1,7) is

J	
-	 C2 + C

3r j p
r. (Z7)

where all the information on the left side of the equation is known.

Note u is a function of r only since e is p * -1fixed.	 Let yj = r j , then

,,. 	 .,_u.r	 v	 ....: ".. ^s'T:^ay'Ar'	 -
.

.m^orcinYt^*m..« .^..-.-•-._,..._._....:-+.-.-+...-^.^r.e..n-..^..-.a.._.,-. _
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F=	 +
(y^)	 C2	 C3 

yj	
(28)

Assuming values for p	 gives _values of yj andC
2
,C3 may be found through

linear regression techniques.	 The closeness of the fit of SPECEL's

I	 ,
displacements to the predicted curve is expressed by the coefficient

' of determination.	 This parameter ranges from zero to one, one being a

perfect fit. 'Appropriate values of p* are chosen until the coefficient

of determination is maximized, thus providing the best fit of the data.

Hence, p* is the accumulated exponent and may be compared directly with

i
HRR results.

I	 , This method may be used for finding exponential values for any

i

I
parameter that can be expressed in the following form:

KV (r)	 _	 a + brs

where KV represents known values of the parameter as a function of r,

i a and b are the regression coefficients to be determined,	 and s is
I

- the exponent to be found by maximization of the coefficient of

determination.	 More details of the procedure for accumulated displace-

ments are given in Appendix A.

; The purpose of this chapter has been twofold:	 Cl) to provide

motivation for and (2) to describe SPECEL.	 In discussing the Willialis

'.	 I
and HRR analyses as well as the numerical models based on these theories,

; hopefully a need has been demonstrated for a more critical look at the

problem.	 The description of SPECEL has been intentionally brief.

I
Emphasis has been given only to the new aspects of the program.	 With

i
this background information the reader is in a position to appreciate

the problem selection and discussion presented in the next two chapters.
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CHAPTER III

TYPES OF PROBLEMS SOLVED

A. Preliminary Problems

Before describing in detail the problems whose results constitute

i

the bulk of this work a word about the early test problems of'SPECEL

is in order.	 The initial checks of the code were performed by Swedlow

4^-
(1974).	 It was found that using twenty-four special element ,sectors

' gave the most reasonable results in terms of compatibility with

surrounding -regular elements and time required for solution.

For elastic problems, with the exponent preset to 1/2, center

cracked panels subject to uniform tension and a pure K I loading were

studied. 	 For the case of uniform tension a crack length/'ligament

length ratio of 1/2 gave an average J, which, when converted to K I , was

l^
 KI	 _	 3.12 a

Ii
where a is the applied stress and a is the half crack length.	 The

I
coefficient of variation* of KI over the seven J-paths of the special

element was 0.9%.	 This underpredicts the conventional stress intensity

of

K
I	-
	 3.17 a

- given by Brown and Srawley (1966) by about 1.5%. 	 For the case where

pure KI displacement loading was applied at the boundary nodes the

i

numerical KI result overpredicted the analytical result by 2.41%. 	 The

I

*The coefficient of variation is the standard deviation divided by
the mean.



4 amount of error was,reasonable for both problems and the sign of the

error was typical of finite element results. 	 Namely, displacement3

loadings overpredict stresses and traction loadings underpredict stresses

due to the fact that finite elements are.stiffer than the continuum

they represent.	 Further discussion and results are presented in

Swedlow (1974).

A series of problems has been run to observe initial plastic

response and determine the size of the special element to be used.-

' The specimens are center cracked panels with a crack length/ligament

length ratio of 1/2 and the loading is uniform extension.	 (A fuller

description of this problem is given under the A533B STEEL problem

headings.)	 The radius of the special element is either 1/16, 1/32 or

1/64 of the half crack length. 	 Finite element maps for these problems

can be seen in Figs. 	 (4-6).	 Only one quarter of the specimen is

modelled due to two degrees of symmetry along x=0, y=0.	 The special

element and surrounding regular elements are shown in Fig.	 (7).	 Each

near tip finite element map has the same shape but varies in size by

successive factors of two.--

All three problems are loaded for ten increments. 	 The first is

the elastic response and by step ten a small amount of plasticity has

spread through the special. element. 	 The following results show the

stiffness and J values (measured at the seventh and largest path in

the special element) for the three cases:

P/ES

a/16	 a/32	 a/64

Step 1	 0.822	 0.822	 0.824

Step 10	 0.822	 0.824	 0.824

j
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_Jh2/E62a

a/16	 a/32	 a/64

Step 1	 2.64	 2.51	 2.39

Step 10	 2.65	 2.52	 2.40

6 is the applied displacement, P is the resulting applied force, and'

h is the half specimen length. The maps withlarger special elements

exhibit sl-ightly more compliance. Also, J values and, hence, stress

and strain intensity factors are smaller for smaller special elements.

This seems to indicate that both the overall and near tip maps are

less stiff when larger special elements are used. This is due to the

fact that mapsusing larger special elements have more of the continuum

represented by a less stiff element than the regular constant strain

triangles.

i However, stiffness is not the primary reason for selecting a

i	 special element size. The dominant singularities of the Williams'

I
'

	

	 and the HRR;analyses are valid in regions near the crack tip. Taking

too large a special element may force the singularity in SPECEL to

accommodate more information than is intended.

Also, the results in the special element are somewhat suspect
i

as the boundary of the yield zone moves through it to the regular

.elements. This is due to the :fact that one exponent must handle both

an elastic and plastic response. It has been argued in Brown and
-. a	

I
Srawley (1966) that K resulting from linear elastic fracture mechanics

is valid so long as the plane strain plastic zone correction, `r y, is

less than a/50. Therefore, it is desirable to keep the 'size of the

jspecial element smaller than r so that linear elastic fracture mechanics
y

'	 would be valid as yield spreads to ry . Again this points to the a/64

model. Another reason for selecting the a/64 is that it gives results
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closer to the crack tip.	 Hence, despite its stiffness, the a/64
L

special element model is used for problems involving extensive yielding.

i
B. Singularity as a Function of Notch Opening Angle

In addition to testing 	 ut the specialg	 pe	 1 element for plastic analyses

a series of elastic problems has been devised to determine SPECEL's

response to notch opening angle.	 The analytical work was done by

Williams (1952) and gave the result

sin [p2a]	 =	 p sin 2a

where 2(7-a) is the :notch opening angle and p, a function of a only, is

the exponent of the leading radial term of the Airy stress function X(r,e)

where

04 X	 =	 0
1

assuming

f

X	

=	

r
p+1 

f (6 )

Displacements are on the order of rp (p>l for finite displacements at

the tip), and stresses and strains behave like rp-l :.	 For a equal to

a straight crack exists and p = 1/2.

A finite element map for a zero notch angle is shown in Fig.	 (8).

Only half the specimen is shown due to symmetry at y = 0. 	 In order to

develop a specified notch angle all thepoints are rotated about the

crack tip towards the symmetry line ahead of the tip - the symmetry

line remains fixed: This method increases the aspect ratios of the

finite elements and also the angular resolution.
r

An arbitrary elastic modulus and Poisson's ratio are supplied as

elastic material parameters.	 Loading is in the form of a vertical
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nodal extension of node A. 	 Although symmetry is enforced throughout

i this problem Williams' result only requires a symmetrical notchand 	 ,

no loading on the notch faces.	 Results of these test cases are

presented in Chapter IV.

C. Power Hardening Material (PH)
i

This section describes the set up for the elasto-plastic solution

hardening	 characteristics.of a center cracked specimen with power	 material

The chief reason for selecting such a problem is that it may be compared

with the HRR theory.	 Principally, the distinguishing feature of SPECEL

the variable, (accumulated) exponent, should agree with the HRR model at

some point in the loading process provided certain criteria are met.

Also,	 be	 direct	 the stresses (Hutchinson,there may	 a	 comparison with

1968a,b) as well as J values and crack opening profiles (Goldman and

! Hutchinson,	 1973).	 _

The geometry and the finite element map for one quarter of the -

specimen (due to two degrees of symmetry) can be seen in Fig.	 (9).	 In

order to insure insensitivity to the vertical dimension a length to
i

width ratio ofthree has been chosen. 	 The crack length is one 'half the

specimen width.	 As stated earlier, the special element size is a/64.

In the finite element map one s pecial element with twenty-four

sectors is used in conjunction with 228 regular elements.	 There are

173 nodes and 347 degrees of freedom, two degrees for each node plus

one exponent.	 The band width is fifty-six.

Tractions are applied to the upper boundary perpendicular to the

I plane of the crack to achieve a_uniform tensile 	 oad.	 The direction

of the tractions is fixed while the magnitude is increased three percent
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of theP revious accumulated value for each increment. On the remainder

of the boundary the tractions are always kept at zero. Since the

direction of the tractions is fixed while their magnitude is everywhere

proportional to a single load parameter, the stress at each point in

the body also should vary linearly with the load parameter, provided

E = au  where a and N are constants. This was shown first by
of	 e

Ilyushin (1946). 	and restated by Goldman and Hutchinson (1976). Ilyushin

then points out;that the solution is rigorously correct for both

deformation and incremental plasticity theories. It will be shown below

that although the tractions are linearly proportional to a single

parameter, the stresses, particularly near the tip, are not in proportion

to this parameter. Keep in mind, however, that the stress-strain relation-

ship used by SPECEL is different than the one described by Ilyushin.

Defining a stress-strain curve proves to be somewhat of a problem.
I

Hutchinson (1968a) ignores the elastic contribution. He argues than

>	 near the tip the plastic terms dominate due to the plastic singularity.

However, in the SPECEL formulation it is impossible to neglect the

elastic component. In the HRR theory an octahedral stress-strain curve	 -

of the form

EP -

	

T n
a

E IT LJ.^ 	 L

I	 i	 is employed, where 'T and Ep are the octahedral stress and plastic strain

jquantities, respectively; e  and TL are the octahedral quantities at
I	 ;

yield and related by EL = TL/2G, where G is the shear modulus; a is some

constant and n is the constant strain hardening exponent (n > 1)

i
After some consideration it was decided that the stress-strain curve

to be used in SPECEL should have the form
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e	 T
for T <T

e 	 TL
	

L

E - T:	
for T > TL

L	 L

where c is the total octahedral strain r, e L , TL are the same quantities

as in the HRR model; for this case a has been setot one and n is three..

For a given state of stress both the HRR and SPECK analyses consider

the same area under the stress- strain curve. The SPECEL formulation

q	 yis not uite-the same as the HRR model but b includin g an elastic

response it is a more realistic representation.

Elastic numerical constants have been selected to keep the elastic

contributions small. The octahedral yield stress is 1000 psi which

converts to a tensile, or effective, yield stress of 2121 psi. Poisson's

ratio is 0.3 and the elastic modulus is 1x10 7 psi. This gives an octa-

hedral strain of less than 0.0003 at yield. Besides keeping the elastic

contributions small,: these constants enable quite a bit of loading

before finite deformations become important.

D. Bilinear Material (BIL)

This problem is identical to the PH problem with the exception of

a different stress-strain curve. It is a pseudo bilinear curve where,;

a smooth curve joins the two linear portions -of.the curve. A bilinear

curve has been chosen because it can be compared directly to analytical

{	 work done by Hutchinson (1968a) which is independent of the analysis
c

for power hardening, materials.'

The two linear portions of the BIL curve as well as the PH curve

can be seen in Fig. (10). In the next figure the 'small, strain region

which includes the transition between the two linear regions is shown.

7
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Both BIL and PHP roblems have the same elastic constants. The second

linear segment of the BIL curve has been chosen such that it closely

approaches the PH curve in the region of critical loading. This	 {

region of critical loading, 2.0 < T/i L <- 5.0, has been determined

after analysis of the PH problem. Most Gausspoints in the special

element are in this range between net section yield (yield extends

from the crack tip to the outer boundary) and gross yield (applied

stress exceeds yield stress) So the second linear portion of the

BIL curve is found by merely running a straight line through the

points of the PH curve where T/TL equals two and five. The slope of

this second linear segment is 2.5% that of the elastic line.

As staged above the two linear portions of the bilinear curve

are joined by-a smooth curve in the _region -1 < T /T L ,s 2. This curve
f

is drawn such that continuity of the stress-strain curve and its first

derivative is maintained as nearly as possible at the curve's inter-

section with the two linear portions. Attempts at meeting these

I t	requirements analytically have not been successful. The reason that
i

such a curve is necessary is that a strict bilinear curve could lead

'	 to a significant overshooting of the stress-strain curve when a point

yields initially or a very costly analysis would be necessary to turn

the corner sharply.

E. A533B STEEL (RS)

This problem also involves a center crack panel but with different

previous two.geometry, loading, and material properties than the^	 P	 P

Actually, it was the first problem in the sequence and was used as a

test case in comparison with another numerical result, Riccardella and

Swedlow (1973). This problem affords the opportunities to use a real



stress-strain curve and to compare with actual laboratory results.

The finite element map for one quarter of the problem '(two

degrees of symmetry) is shown in Fig.	 (12).	 The dimensions of the

specimen agree with the subsized finite element map used by Ricardella-

and Swedlow.	 This subsized model has been developed to avoid the

complexities of the pin loaded, center cracked specimen used in the

laboratory.	 The upper boundary of the subsized model is a region of

uniform displacement.	 Dimensions for the problem analyzed by SPECEL

are as follows:	 half height - 1.75 in.; half 'width - 1.5 in.; half

crack length - 0.5 in. 	 The special element is embedded in a map with

I
232 regular elements.	 There are 174 nodes, 350 degrees of freedom

(two for each node and two exponents), and the band width is 56.

i
Loading is imposed by uniform vertical_ displacement along the

I _
upper edge.	 The sides are traction free.	 Increments of load are

five percent of the previous accumulated applied displacement.

>
i

Tensile stress -strain relations are shown in Riccardella and

Swedlow (1973), p. 136. 	 The actual curve exhibits a yield point

instability which cannot be handled numerically. 	 So the curve used

in SPECEL is the dashed, curve in the same figure.	 The tensile yield

stress is 60,000 psi, which converts to 28,284 psi in octahedral

quantities.	 Young's modulus is 3.158X10 7 psi, and Poisson's ratio is 0.3.

F. Task Group - Round Robin (Bend)i

The final ,problem in the sequence has been proposed by the E-24
i

i
Task Group of ASTM. 	 It is a three point bend problem.	 A number of

I
analysts have solved this problem using various finite element techniques.

Solving such a problem invites'an evaluation of SPECEL with other in-

service programs.	 This type of problem also offers a different
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in thegeometry not seen	 previous problems.

A .finite element map of the specimen is shown in Fig.	 (13).

Due to the symmetry of	 =D only half of the problem is modelled.y^	 Y	 Y	 P

Displacement at node A is applied in the horizontal direction.	 Node

B is held fixed and the remainder of the boundary is traction free.

Displacement increments are no more than five percent of the previous

accumulated load,	 I

Two hundred thirty-six regular elements serve as host to the

special element.	 There are 174 nodes, 349 degrees of freedom (only

j one exponent), and the band width is 56.	 The specimen half length

is two inches, its width is one inch, and the crack length is one-half'

I,
inch.

The uniaxial (effective) stress-strain curve is of the form

e	 =	 a/E	 for a < a

R
y

E	 =	 +	

n	

fora>- a
E	 IBOJ	 Y	 I

_

where	 E	 3.158x10 7 psi

j
Bo'	 =	 1.20x10 5	psi

cry	 =	 3x10'	 psi

n	

_	 10

I
Poisson's ratio is 0.3.

i
Effective quantities are converted to octahedral

quantities for use in SPECEL.	 This problem has the least amount of

j strain hardening of the four considered. 	 Little plastic strain occurs

until a exceeds lay.
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These four problems will serve as the basis for the evaluation

j	 by SPECEL of the elasto-plastic flow process. The power hardening

and bilinear problems provide a comparison with the HRR theory. A

chance to study a real material with actual laboratory data ii offered

by the A533B steel. SPECEL's numerics can be compared with other

computational methods in the Task Group problem. With t^ixs carefully

selected problem set the analyst is in a position to pose questions

a
regarding material and geometric effects in elasto-plastic flow.

This is done in the next chapter.

Ir	

^
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CHAPTER IV

j	 -4-

0ISCUSSION OF THE RESULTS

A. Notched Disks

SPECEL's ability to determine the elastic singularity as a

function of notch angle is shown in Fig. 	 (14).	 The displacement
!!

exponent, p, is plotted against the angle of the notched disk, 2a,

!
and compared with the analytical Williams	 solution.	 Each point

'	 s representing,SPECEL's result is actually the average of four values.

These fcur values of p are found through the minimization procedure

and for each of the four the minimization begins at a different

guess for-p which is within ±10% of the 'analytical value.	 The co-

efficient of variation for the final four p ;alues is less than 20.

In order to obtain this agreement among the final values it is

necessary to tighten the convergence criterion of the minimization

process (see Chapter II)from 10
-3
 to 10^6	This tightening is a

( result of the large scatter in initial guess for p.	 For the elasto-

plastic problems the initial guess is much closer to the desired,

value since the increments are so small. 	 Hence, the 10
-3
 convergence

criterion is acceptable.
I

SPECEL's prediction for the exponent is consistently about 4%

Less than the analytical values.	 A contributing factor for this

I
deviation is that the size of the special element is 5.2% of the notch

f depth.	 When the relative _size of the special element is reduced to

less than 2% of the notch depth by using the geometry of any of the

elasto-plastic problems for a straight crack (PH,BIL, etc.) SPECEL's

p value is within 3% of the analytical value. 	 In view of this and the
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fact that the initial guess for the exponent for each increment of

the elasto-plastic problems is close to the "true" value a high degree

of confidence is placed in SPECEL to select the best exponent for

these problems.

B. Power Hardening Material (PH)

One of the reasons for studying this particular problem is to

compare SPECEL's exponential response at high loading with the HRR

-- theory.	 Of course, some transition from elastic to plastic is to be

expected.	 Figure (15) shows the response of the incremental displace-

ment exponent versus the applied load.	 It begins at the preset elastic

value of 0.5 and then drops sharply until yielding exceeds the special

element (applied stress, a, is 0.16 times the tensile yield stress, QY).

F. After levelling off for a time the incremental exponent reaches a

i
minimum at a/ay = 1.09 before increasing. 	 This increase is accompanied

by two other events which may explain the unexpected rise.	 First,

since there is so much yielding near the tip the small strain theory

used in SPECEL no longer may be applicable for this region. 	 McMeeki.ng

' and Rice (1975) argue that small strain theory breaks down when the
.tangential modulus (2up) 	of the material is comparable arable to the ma	 i.tude

of the stresses. 	 Up to o/a	 = 1.09, 2pP is greater than stress levels
Y

at all Gauss points, but for higher loads the near tip Gauss points 	 j

have stresses that exceed 2pP . 	 The second possible explanation of the

exponential increase may be that the Gauss points have yielded so much

that they have exceeded the limits of the inputted stress-strain curve.

These points are using an approximate extension of the stress-strain

curve.	 Results show that points using this extension technique have

s difficulty following the desired curve.

Figure (16) snows the accumulated exponent for selected steps.
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f These steps are: step l (elastic response), step 60 (yield exceeds

the special element), step 115 (net section yield, NSY),_and step 125

(applied stress exceeds tensile yield stress). As described in

Chapter II the accumulated displacements are put into the form

u	 a+br+crP*

i
where p* is the accumulated exponent. Results for both the radial and

i tangential displacements are shown.

a
As expectedthe elastic step shows exact agreementbetween

incremental and accumulated exponents. When yield first exceeds the

special element there is some 0 dependence in p as well as some spurious
i

results for small and large A values. From the point of net section

yield there is a nearly constant p* and very good agreement with the

HRR prediction.
.I

A comment about the accuracy of this accumulated exponent method

is in order. The coefficient of determination for all of the points

except two in Fig. (16) is 1.000000. This accuracy indicates that the

accumulated displacement form is suitable for summing the incremental

displacements. The two points which are the exception are the first"
i
„	 two A values of the ,tangential exponent at step 60. These points have

i a coefficient of determination of 0.998 which may explain their curious

behavior.

An average p* is computed for a number of steps by averaging six

p* values for tangential displacements near 90 0 (56°, 71 0 , 86 0 , 94 0 ,

109 0 , and 124 0 ). These values typify the response for the whole element

i and show the most constant p* for all load levels. This average p* is

plotted in Fig. (17) as a function of the applied load. The transition
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.	

s	 clearlyfrom elastic to HRR response is c	 ly seen although the rate slows

considerably for (/la	 > 0.2.	 The deviation from the HRR prediction

for large loads corresponds to the rise in the incremental exponent

and may be explained by the same reasoning'.

An attempt at characterizing the strain energy density exponent

is shown in Fig.	 (18). 	 Accumulated values of the energy density for

i

the seven radial positions of the Gauss points for a fixed 6 are fitted

to the form

I
W	 =	 A+Br

where A`and B are constants and s* is the strain energy density

exponent.	 The A term is included to account for the T effect (Larsson

and Carlsson, 1973) of the stresses.	 Both elastic and HRR theories

predict a value of minus one for this exponent. 	 The results show

reasonable agreement with this prediction except for small and large

I	 ' e.	 For some large e values no value of s* is found within the range

I
shown.	 All except two of the plotted points have a coefficient of

determination of 0.99997 or greater.	 It seems that the form used to pick

off the energy exponent is not as suitable as the one for displacements,

and for small and large e perhaps an-entirely different form should be

used.	 r

In addition to the exponential response, stresses also may be

compared with the HRR theory.	 Figures (19-23) plot various stresses

at fixed angular positions versus the radial position for a number of

i load levels.	 The purposes of these graphs are to see how far in the
r^

_ radial direction the HRR singularity dominates and to determine which

radial position offers the best comparison with HRR stress results.

The normalizing factor in all these graphs is the maximum effective
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stress. This maximum is found for each r value in the range

0 0 s 6 s 180 0 . Also shown on the plots are the HRR prediction from

the first term of the Hutchinson eigenanalysis and the elastic

prediction from the first two terms of the Williams eigenanalysis.

The first term of the Williams solution is taken from Tada, et.al .

(1973) and the second term is from Larsson and Carlsson (1973).

Figure (19) shows the radial stress at e := '3.75° (measured from

the line of symmetry ahead of the crack tip) The HRR prediction is

constant with respect to r because for a one term solution the sin-

gularity in the stresses is normalized out by aII

	

	 a max term; whereas

in the two term Williams solution the r dependence cannot be totally

negated. SPECEL's results for the elastic step are quite good and

pick up the effect of the second term. As the transition to HRR takes

place the closest Gauss point (r/a = 0.0004) exhibits erratic behavior.

The second Gauss point comes the closest to the HRR prediction while

the rest of the points trail off, perhaps indicating the effect of a:

second term. At 6 = 93.75°, Fig. (20), there is little difference

between the elastic and HRR predictions. Again the first Gauss point'

deviates from the theory but all of the other points show reasonable
I,

agreement with the HRR value at high loads.

).Tangential stress for both 6- values _is shown in Fig (21). The

nearest' Gauss' point for both '6 values must be regarded with suspicion.

At 6	 3.75° there is a clear transition from elastic to the HRR

prediction for the last six Gauss points. At 93.75° the transition

is not that good but again the second Gauss point comes the closest

to the HRR value.

i
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Figures ` (22,23) show the effective stress at 3.75° and the shear

-,	
stress at _93.75°. Both these plots show good elastic agreement for

	 i

all radial positions but the Gauss points nearest the tip, excluding

the first, compare best with the HRR theory.

From these plots it can be seen that results for the first Gauss

P	 regularpoint are often erratic much like re lar finite elements nearest

I
the tip. For some stresses and angular positions the HRR prediction

dominates the entire special element while for :other values SPECEL's

agreement with the HRR theory trails off with increasing distance from

the tip. Keep in mind that the HRR solution is asymptotic in r. Based

on _these observations the complete stress field at the second Gauss

point (r/a	 0.002) from the tip is presented in the next figures.

The effective stress is shown in Fig. (24) for the same load levels

described for Fig. (16) with the addition of a load step with a very

high applied stress, (Q/6y	 1.7). (Note that r^= 1/2 r/a.) There

is very good agreement with the'elastic prediction for all angular

positions. As stated previously, the theoretical elastic result

comes from the first two terms of the Williams analysis. SPECEL gives

6
e max at 36.25 0 and thetheory predicts a  max between 80° and 900;

it is nearly constant in that range. The minimum that occurs before

180 0 is a result of including the second term of the eigenseries.

I'

	

	 Its effect is to cause the radial stress to be zero at the e value
corresponding, to the minimum effective stress rather than at 1800-.

i	 As loading proceeds Qe max drops to 710 but moves back to 93°	 at

a /Qy = 1.7. The HRR prediction for 
6
e 'max is at 95°. For 6 greater

than 90 0 fairly good agreement exists between SPECEL and the HRR theory,

including the value along the crack flank. For angles less than,90'

the numerical results overpredict the analytical results.
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In Figs.	 (25-27) the individual stress components are presented

for the same five load levels.	 The radial stress in Fig. 	 (25) shows

good agreement with the elastic theory and then a slow progression

toward the HRR prediction takes place. 	 At Q/cry = 1.7 quite a bit of

instability in the results is present. 	 This probably indicates that

this loading range is at or exceeds the credibility limit of SPECEL

for this problem.	 It is interesting to note that for e > 135 * there

is not much deviation from the elastic prediction for all load levels.

This is probably due to the fact that yield, progresses most slowly in

this region.

Similar trends can be seen in Fig. 	 (26) for the tangential stress.

A good elastic response, a slow transition to the HRR prediction, and

quite a bit ofinstability at the fifth load level are common to both

normal stresses.	 The pattern of the shear stress, Fig. 	 (27), is some-

what different.	 Although the elastic agreement is good the transition

f to the HRR result is not as observable. 	 SPECEL's peak shear stress

occurs at a smaller e value than the HRR prediction.	 And the shear

stress does not approach zero near the crack flank (e; = 180 0 ).	 But

on the whole the stresses demonstrate a clear transition from an elastic

state to one closely resembling the HRR prediction,

Another comparison with the HRR theory is presented in Fig. 	 (28).'

Both the Hutchinson -and the Rice-Rosengren results are shown. 	 The

_maximum shear angle* is plotted against the angular position around

*The maximum shear direction is found by first using the cartesiam com-
ponents of stress to construct the Mohr circle.	 The angle between the
smaller principal stress, the center of the Mohr circle, and the point
(a ;T	 )'- measuring the angle positive clockwise from the smaller
princ'^al stress - represents the principal stress direction. 	 Add 90°
to 

I
this angle to obtain the angle representing maximum shear.	 Then,

take one-half of this value to get the 'true maximum shear direction
(one-half is 'needed because the Mohr circle angular measurement is
twice the true angle).
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the crack tip. SPECEL's results are shown only for clay 1.09

although the pattern holds (±2°) for A < 135° at an applied stress of

0.52 < a/ay 	 Again, the discrepancy with the HRR theory occurs

for large a values.

Now that the shape of the stress field has been presented, its

amplitude, in germs of J, is studied. Figure (29) plots normalized

J as a function of the effective radius of the J path, r, measured

from the crack tip. The definitions of Y and the effective radius are

given in the figure. Two striking observations are noticeable. Between

the second and third load steps presented Y deviates from the elastic

or small scale yielding results (Y is constant as a function of load

for small scale yielding). And between thesame two load steps a

significant deviation in Y as a function of r is apparent. From Rice's

analytical results (1968) it has been shown that J, and hence Y, is

independent of r for elastic materials and those behaving according

to the laws of deformation plasticity. For the elastic response SPECEL

shows a small deviation in Y. The coefficient of variation for the

e].c-ve-n, Y values in the figure is 3.5% and for J it is 6.0%. But at

the time when a /aY = 1.09 the coefficient of variation for Y is 18.2

and for J it Is 37.4%. These results indicate that at sufficient

loading J is no longer path independent..

Figure (30) follows upon the first of these observations. The

plastic strain intensity (defined in the figure) is plotted as a

function of the applied load. Deviation from small scale yielding

occurs in the range a/ay = 0.6. This compares favorably with the

results of Hilton and Hutchinson `;(1971).
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The more startling observation shows that J is path dependent.

An explanation of this phenomenon is lengthy.	 Goldman and Hutchinson

(1975) argue that as a result of Ilyushin's work (1946) J is propor-

n+1
tional to 

6	
(a is the applied stress, n is the power hardening

exponent) for a body loaded such as this one (traction loaded, loading

direction fixed, magnitude of traction proportional to a single Para-

meter).	 The result of J/ Q
4	 (n=3 for this problem) versus applied

load is shown for J paths outside the special element in Fig.	 (31).

From the point of net section yield (ala y = 0.81) the paths furthest

from thespecial element exhibit a_relationship of the form

J¢a4

to within ±10%.	 For the paths nearer the special element this relation-

ship breaks down.	 This seems to indicate that far field J results

might be following deformation theory.	 --

This indication is confirmed in the next figure. 	 Y values,

normalized on the elastic average, for near and far field J paths are

plotted versus applied load. 	 The near field Y value represents an

average for three J paths within the special element and the far field

Y value is the 'average for three J paths far from the special element.
i

Superimposed on these results are the elastic prediction from'Tada,

et al.	 (1973) and deformation theory results from Goldman and

Hutchinson (1975).	 The far field Y value follows the small scale

yielding (elastic) prediction until ala 	 = 0.6 at which point it begins

to follow the deformation theory prediction, showing agreement to

within 15%.	 The near field Y value shows a deviation (7%) from the

small scale yield result at low loads (a/6y < 0.6)..	 For higher loads

Ynear increases but does not approach the deformation theory prediction.

^ s
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Why the path dependence in J?

One possible reason may be found by examining the near and far
I

field stress results: A sufficient condition for deformation theory 	 {

to work'(Ilyushin, 194:6) is that all stresses increase in proportion

I	 i
. „	

p	 ppi	 with a ammeter, in this case the a pplied load. It can be seen 	 Ii

from Figs. (25-27) that the shape of the near field stresses is 	 1

changing. A replotting of the near field stresses, this time normalized

on the applied load, is shown in Figs. (33-35),. There is a major re-

distribution of the initial elastic response until some proportional

i
loading pattern (or nearly proportional) is reached around net section

yield

In contrast to this behavior are the far field stresses which are

I

plotted in Figs. = (36-38). Except for a few points a proportional

floading pattern is maintained for loading up to a/Q 	 1.7,
^	 y

Proportional loading is only a sufficient condition for incremental

and deformation theories of plasticity to agree. The necessary

condition for agreement is that the tensor of similitude remain constant

during the loading process (Ilyushin, 1946). The tensor of similitude

is defined as:

S..
. 1

^ 
ê

where sij and Q e have been defined in Chapter II.
i

Figures (39-40) show the tensor of similitude as a function of

I	 "
applied load for near and far field stresses ahead of (near 0°) and

I

above (near 90°) the crack tip. It can be seen that near the tip

there is a nonconstant tensor of similitude, particularly ahead of

the crack. But the far field tensor shows a constant behavior, except

for some small deviations at high loads. This evidence indicates that
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a proportional/nonproportional stress pattern leads to a constant/

nonconstant tensor- of similitude. For future problems only the

proportionality of stresses will be checked to determine whether

deformation theory requirements are satisfied. For this problem it

is expected that far field J_values agree with the deformation theory

prediction. However, no such stipulations can be placed on the near

field J. More discussion about J can be found in the last section of

this chapter.

Figure (4l)-shows the crack opening profile within the special

element. Results are normalized on the displacement of the Gauss

point furthest from the tip, Progressive blunting can be seen up to

gross yield (step 125). At higher load levels there is a resharpening

of the crack shape.

The same information along the entire crack flank can be seen in -	 1

Fig. (42). Again there is progressive blunting until gross yield and
-	 j

then a slight resharpening near the tip. SPECEL's displacement results

are slightly lower than both the ,elastic and power hardening profiles

given by Goldman and Hutchinson.

Figure (43)shows the crack mouth opening as a function of the

applied load'. The mouth opening; is the displacement between the two

crack faces at the center of the panel. There is good agreement'

between the two elastic predictions and SPECEL's result and after net

section yield SPECEL approaches the power hardening prediction. How

4	 ever, the agreement is not as strong as that exhibited by the far field Y.

In summary, SPECEL shows excellent agreement with the predicted

elastic results. For this power law material there is a reasonable

convergence to the HRR theory as elastic strains become relatively

small, but this does not occur until net section yield is approached.
i



40

The major deviation from the HRR theory is the path dependent J, which

will have more discussion. But the unmistakable conclusion is that

the method works.

C. Bilinear Material (BIL)

This problem is identical to the power hardening problem except

for the material :stress-strain curve. The four key steps (elastic,

yield exceeds the special element, NSY, and applied stress exceeds

tensile yield stress) are the same for the two problems.

For this case the inputted stress-strain curve is extended far i

enough so that yielded points never exceed the limits of this curve.

Also, the tangential modulus (2uo) is always substantially larger than

the stresses so small strain theory is unobjectionable Therefore,

results at the final step (clay 2.28) sometimes are presented.

Following the same order as for the PH material the exponential

response will be examined first. Again, there is only one exponent.

The incremental displacement exponent is plotted as a function of

applied load in Fig. (44). Translating these values into accumulated

numbers is done next. Accumulated exponents are computed for a few

load steps. The coefficient of determination for all points is 1.000000.

Results; show that it is reasonable to talk of an average accumulated

exponent. A plot of this average based on the same angular values

used in the PH problem is given in Fig. (45). Hutchinson (1968a)

predicts that the dominant plastic singularity is the same as the

elastic singularity, namely, O.S. SPECEL shows the singularity be-

ginning at 0.5 for the elastic step, dropping to a minimum of 0.24,

and then climbing towards Hutchinson's prediction. It is not clear

t	 if the accumulated exponent will eventually reach O.S. Apparently
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quite a bit of loading is necessary to reach this value.- Remember

that the stress-strain curve is not strictly bilinear. 	 One interesting
I

feature occurs in the range between NSY and gross yield (step 125)

where most points in the special element have an octahedral stress of

2 < Tp/T Lim < 5.	 In this region the PH and BIL stress-strain curves

are reasonable approximations of one another and the accumulated

exponents for the two problems are very close, roughly 0.25.

Figure (46) shows the results of the energy exponent analysis.

The elastic response is identical to the PH material, but the other

steps exhibit a different behavior.	 There is reasonable agreement

with the minus one prediction up to the point of gross yield. 	 All

but two of the points are within 200 of the minus one prediction and

only four have a coefficient of variation less than 0.99997. 	 The

scheme seems 4o break down for step 150.

The stress components in the special element, normalized in

" a	 are plotted against radial position in Figs.	 (47-51).- All. e max'

plots include the elastic prediction and the power hardening, result

for n=3. `	The bilinear and elastic predictions, with the exception

of Q	 , are identical save for the second term of the elastice	 e max'
Williams solution.	 The difference occurs for a /a	 due to the

e	 e max.
fact that for elastic plane strain results

a z	=	 V (ax + a )
Y

but for plastic results

a z	=	 1/2(ax + ay)

and
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a 
	 =	 f (ax ,	 ay , a 2 , Txy)

I^ Yielding appears to take place in two phases. 	 First there is a

shift from an elastic to a power hardening response. 	 Recall that the

I
Gauss points for the BIL material are in that part of the stress-strain

curve that closely approximates the PH material between NSY and gross

yield.	 Then the stresses proceed in a direction back towards -the

elastic results.	 As expected, the points nearest the tip sense this

change in material behavior first.	 It appears that the plastic

singularity dominates the stress results throughout the special

' element, with the possible exception of Qr at 3.75°.	 Occasionally

the first Gauss point exhibits erratic beha vvior but not to the -degree

of the PH material.

It seems most 'sensible to plot the entire stress field for the

second Gauss point.so that a direct comparison can be made with the

i PH material.	 Results for the effective stress, Fig. 	 (52), are similar

j to SPECEL's results for the PH material. 	 There is reasonable agreemen-

. with the HRR, n=3 prediction for e > 90 0 at NSY.	 For e s 90 0 both

i

materials overpredict-the effective stress. 	 At step 150 the effective

stress has moved 'near the elastic (not the bilinear) prediction except

for large and small e .	 Individual, stress components are shown in the

next three figures.	 The radial stress, Fig.	 (53), shows very good

agreement at NSY with the HRR, n=3 prediction for 8 < 165°. 	 At step 150

the results are very rough but the trend is toward the bilinear pre-

diction.	 The behavior of the tangential stress component, Fig. 	 54'

is similar to the radial stress.	 As in the case of the effective stress,_

the shear stress, Fig.	 (55), demonstrates good agreement with SPECEL's

i

results for the PH material at NSY.	 The agreement with the HRR, n=3

1
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prediction at NSY is only modest. Again the trend is towards the

1
bilinear prediction at step 150 except for e > 120°. In general, the

two phase transition is observable for all stresses.

J values, in the form of Y, are presented as a function of the

distance fron. the crack tip in Fig. ,(56). Deviation from small scale

yielding is evident at NSY and a definite path dependence in Y is
i

present at gross yield. The deviation and path dependence are not as

noticeable as for the PH material at corresponding load levels. This

is due to the fact that there is little plastic strain until To > 1.5 TLm

in the BIL stress- strain curve. Consequently elements first yielding

at NSY exhibit very little plastic response so that, in effect, NSY

is delayed somewhat.

Path dependence is examined by plotting near and far field Y

values as a function of applied load in Fig. (57). As with the PH

material the near field value shows a decrease before NSY. Path

dependence is clearly evident after NSY. However, the far field Y

value does not show much resemblance to the Goldman and'Hutchinson

prediction for n=3. Extrapolated curves of the near and far field

values are seen reaching plateaus in this figure. The Y -value for an

elastic material that behaves solely like the secondlirar portion

of the BIL curve is superimposed on. this figure. The far field Y

value of the BIL material might reach this limit but apparently only

at unreasonably high _loads.

Proportionality of the near and far field stresses is examined

in Figs. (58, 59) to determine causes of path dependence in J. Only'

-	 the radial component is examined since the other stresses possess the

same behavior. As expected, no proportional loading pattern is evident

in the near field stresses, even after NSY. However, the far field

1
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stresses exhibit proportional loading for most points; there are some

shifts in the data at step 150. Hence, the tensor of similitude is

I
nearly constant for far field values and deformation theory is

acceptable. The same statement cannot be made for the near field

stresses.
+

Crack opening profiles within the special element, Fig. (60),

show a blunting of the crack tip with continued loading. But after

gross yield a resharpening occurs. Figure (61) shows progressive

blunting along the crank flank until gross yield. At cla y the

transition back to the elastic response has spread through the near

tip area while the crank flank from the tip shows agreement with the

Goldman and Hutchinson n=3 results.

A direct comparison between the PH and BIL materials is made in

the next series of graphs. Differences in the near field octahedral

stress are plotted as a function of e in Fig. (62). The range (maximum

minus minimum) of the BIL octahedral stress at r = 0.001 and corre-

sponding load level is used as a normalization factor. Fluctuations

r	 '	 about the line )0 in the figure coincide well with the relative

magnitude of the two stress - strain curves for equivalent strain values.

Between NSY and gross yield most Gauss points for both materials

are in the range 2 < T o /T< 5 and the PH stress-strain curve has
Lim

greater values. Outside this stress range the BIL curve has larger

stress values at equivalent strains

In contrast, the far 'field octahedral stress values, Fig. (63),

#	 shows no such pattern and the overall agreement between PH and BIL

materials is much greater. Of course, the points of the far field

stress pattern are either onthe linear elastic portion of the stress-

strain curve (which is identical for both materials-) or in the region
I

^k
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of initial plastic yield. At the highest load level shown (ala
y
 1.7)

__. 

the two materials do not have identical stress fields. However, the

t
overall deviation of the far field at this load is not as great as the

deviation in the near field at alay = 1.6. At these instances both
_	

the near and far field points occupy the same region of the stress-

strain curve., It may be argued that the near field stress pattern is

dependent primarily on material type. But far field stress behavior
1

is affected by loading as well as material type.

A comparison of J, both near and far, as well as crack mouth
i

opening is given in the next figure. All three parameters plotted are

the ratio of values for the PH material to the BIL material It is

interesting to note the ratio for all three parameters may be expressed

as a single number, allowing a reasonable amount of scatter (±50)

except for the far field J value in the region of gross yield

n	
(0.8 < a/a <_ 1.3) .

One possible explanation for the fluctuations about unity for

these three parameters might lie in the energy input to the specimens.

J values and displacements should reflect energy input. Since both

specimens have the same geometry and the same loading, the energy

input may be inferred, at least roughly, from the average displacement

at the applied traction (Energy = Force (traction) x Displacement).

6/Qy	 Displacement
PH	 BIL

0.39	 0.0002566	 0,.0002Sb0
G

0.81	 0.0005804	 0.0005472

1 ` .09	 0.0009454	 0.0007914

1.70	 0.0028460	 0.0029398
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It can be seen that the trends in the energy input (displacement) are

mirrored in the values for J and mouth opening.

Although the agreement with the HRR theory is not as good for

the BIL material as for the PH material there are some similarities.

It appears that the displacement exponent and near field stresses -

might reach the HRR prediction, but only after a tremendous amount of

loading. J results again show path dependence. Despite the fact that

the BIL stress-strain curve serves as a reasonable approximation to

the PH curve for T o /TLim ` 5 there are noticeable differences in the

two solutions after small scale yielding, particularly in the J values.

D. A533B STEEL (RS)

Much of the data for this problem is reported by Swedlow and

Karabin (1977). Information is reported for the four key load levels;

elastic, yield exceeds the special element, NSY, and net applied stress

exceeds tensile yield stress (gross yield). Only the pertinent results

of that paper will be discussed here.

Unlike the two previous problems this material has °a real stress-
.	 i-

strain curve and, therefore, does not lend itself to a direct comparison

with the HRR theory. Also, it 'uses two displacement exponents.

Chronologically, it is the first elasto-plastic problem in the sequence.

Due to the fact that the two exponents are relatively; equal and the

fact that this two exponent scheme is not coordinate system independent

all other problems have only one exponent. Figure (7) of the Swedlow

and Karabin report show the incremental displacement exponents `. p and q

f	 represent the radial and tangential incremental displacement values

respectively: The sharp rise of these exponents (step 43} occurs when

the Gauss points closest to the crack tip extend, past the limit of the
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inputted stress-strain curve. 	 As mentioned in the PH problem the

curve extension method is not that exact.	 The largest octahedral

strain within the special element at this point is 0.16.

I
Accumulated values for these exponents are presented here:

Step p*	 a*

1 0.4999	 0.5002
i

38 0.3119	 0.2463

i -
73 0.2321	 0.2404

I

I	 -
93 0.2794	 0.2982

The coefficient of determination for these numbers is typically

I	 ,
0.99999.	 Attempting to characterize this material as a power

hardening type by fitting such a curve through the last s(^gment of the

real stress-strain curve would lead to an expected accumulated ex-

ponent of 0.13 - 0.16. 	 SPECEL's results show _a trend in this direction

until those near tip Gauss points exceed the'inpur.ed stress-strain

curve.	 However, exact agreement with the HRR theory cannot be expected

because the entire stress-strain curve cannot be characterized by a
i

single hardening exponent.

Average values for the strain energy density exponent are given

here:
i

Step s*

1 -0.979

I
38 -0.858I

73 -0.975

93 -1.012

t

V_
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Candidate values for the average are taken for 55° < A < 125° and

I

3

the coefficient of determination for each is in excess of 0.999. 	 The

last two steps use only the six Gauss points furthest from the crack

tip.	 There is some consistency with the minus one prediction of the

HRR model.	 However, there is significant deviation from the above
J 1

figures for large and small 6, indicating that possibly another form

for fitting the strain energy density should be used in these regions.

No attempt will be made to compare the near field stresses with

the HRR theory.	 Instead, the near field cartesian displacements and

principal stresses are plotted in Figs.	 (2a,2b and 3a,3b) of the

Swedlow and Karabin report.	 These quantities are normalized on the

- I applied load (loading produced via displacements, but to within a{
f

few percent this may be represented by net tension) and this informa-

tion is reported at Gauss points with r = 0.0039 as opposed to r = 0.0010

i for the two previous problems. 	 However, the pattern of redistribution,t

of these near field quantities from an elastic to a plastic response is

j unmistakable.	 Displacements remain smooth for all load levels but

roughness develops in the stress data for the highest load shown.

The normalized J parameter is shown in Fig. 	 (65).	 Its response is

Prot unlike the results for the previous two materials. 	 Y is fairly

' path independent for the elastic step.	 As yielding progresses there

is a slight decrease in the near field Y. 	 Then, at NSY, the far field

Y'has increased substantially and the path independence begins to break

down.	 At gross yield no semblance of path independence remains.

Near and far field stresses; are compared to determine the degree

of proportionality.	 As mentioned above the near field stresses,

normalized on applied load- stress	 show non ro orti.onal loading.PP	 ('	 ),	 P	 P	 g•
I

i
The far field stresses, although not shown here, exhibit a proportional
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loading pattern. This"demonstrates that the tensor of similitude is

independent of load and the deformation theory of plasticity is

acceptable in the far field region.

Although this stress-strain curve is not of the power hardening

variety a couple of approximations to the curve are shown in Fig. (66).

They are of the form
j

7.74

(1) E^ eLim - 3.11 (T/TLim)

10

(2) a/£ Lim - "g + 0.514-
y

where the two curves are in octahedral and effective quantities

respectively. (The second curve is used in the next problem.) The

first curve characterizes the total strain in a power hardening form

while the second curve just characterizes the plastic response in

this form. Figure (67) shows the near and far field 'Y in comparison

with the Goldman and Hutchinson results using these two curves.

Although the far field Y agrees with neither of the Goldman and

Hutchinson predictions it does have the same shape and relative

magnitude after NSY. The near field Y is clearly different. It is

interesting to note that even though stress-strain curves (1) and (2)

are a reasonable approximation of one another, their Y responses, via

Goldman and Hutchinson, are substantially different (more than 50% at

gross yield). Comparison of J with laboratory experiments will be

given later in this chapter.

I.
Crack opening profiles, both within the special element and along

the entire crack flank, are shown in the next two figures. Within

the special element a-progressive blunting of the tip can be seen

G	 until NSY. The same is true along the entire crack flank. But after
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NSY the crack flank deforms dramatically. 	 Near the tip the profile

resharpens while further away the crack is still blunting. 	 This re-

sharpening of the tip has been seen in all three center cracked

specimens.	 Figure (70) offers 'a comparison of the crack mouth opening

_ from SPECEL with the Goldman	 and Hutchinson results for the two power

hardening apprc:cimations.	 Note the disparity between the two Goldman

and Hutchinson results. 	 For this reason the degree of agreement

- i tcbetween, SPECEL 's response and the Goldman. and Hutchinson results for

curve (2) is considered somewhat of a lucky_ coincidence.

There is a number of similarities with this problem and the other

center crack problems:	 near versus far field stresses, Y and its path

r
dependence, crack flank opening, among others.	 Some agreement can be

-- with the deformai:ion theory "'	 .results for J and crack mouth opening.seen	 Y	 P	 g

^ This is so despite the fact the accumulated displacement exponent

does not behave as the HRR theory_ predicts.

E. E-24 Task Group Problem - Round Robin (Bend)

As stated in the previous chapter this problem has been solved in
i

accordance with the ASTM E-24 committee guidelines. 	 These guidelines

include the reporting of specific results. 	 The format for this problem

will be to study some of this required information first and then pro-

ceed with the results that are inherent to SPECEL.

The elastic stiffness for this problem is given in terms of the

ratio of force per unit thickness (P/B) to the applied displacement (uA)

P	
0.0216

EBuA

where E is the elastic modulus.	 This is 10-15o higher than results for
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six other finite element solutions of the same problem. So the finite

element map that is used by SPECEL is too stiff due to an insufficient

number of constant strain triangles. Force versus applied displacement

in Fig. (71) exhibits this extra stiffness throughout the loading

process (as compared to the finite element results of other analysts,

Wilson (1977)).

Stresses and strains are plotted along the symmetry line ahead of

the crack tip. The hydrostatic stress is shown in Fig. (72) as

a function of distance from the tip for a number of load levels.

Large nonzero values of this parameter occur both near the tip and

near the pinned node (x/(W-a) = 1.0) though with different signs. At

x/(IV-a)	 0.45 the hydrostatic stress is zero which agrees with other

analysts findings, Wilson (1977). One result peculiar to SPECK is	 {

the 10% discontinuity that occurs between the special element_ and the

adjacent regular element at an applied displacement of 0.0020 inches.

Accompanying this result is a rise in the stress for subsequent

regular elements. It appears that the built -in incompatibility is

-	 causing some problems. However, the limit for the parameter study,

excluding the ASTM required plots, is uA = 0.0015 inches. This is a

sufficiently high load - it is more than twice the applied displacement

.	 at net section yield.' A check of this incompatibility is done for one

of the center crack panels '(PH) in the next figure. A slight dis-

continuity (about 5%) develops at 7/a
y
 = 1.7. The accompanying_ rise

i
in the stress develops about four regular elements away from the

r

discontinuity. Therefore, it appears that SPECEL can handle fairly

high loads before this incompatibility becomes noticeable.

Effective stress is plotted in Fig. (74). Although no dis-

continuity develops as for the hydrostatic stress a relative maximum

V_
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occurs at the interface of the special and regular =dements

(x/(W-a) = 0.016). The peak near the pinned node is an accident of

the finite element map. 	 Since the pinned node acts as a loaded point

a rise in the stress is expected.	 The element along the symmetry

line that shares this node shows a slight drop in the stress because

the regular element with the same diagonal side (both elements are

right triangles) absorbs most of the load. 	 This is typical of constant	 j

strain elements in bend problems.

' J, normalized on the square of the applied displacement, is

plotted in Fig.	 (75) as a function of distance from the crack tip. 	 The

elastic step shows quite a bit of scatter in J - a coefficient of

variation of 9% exists.	 By contrast the PH problem has a coefficient

of variation of only 6% for the corresponding range of effective radius.

This can be attributed to the relatively poor job constant strain

t elements do in bending.	 Other analysts do not show this scatter in

I
i

elastic J values but SPECEL's average J agrees to within a few percent

(t3) of their results. 	 Notice that J remains proportional to applied

displacement squared for paths with R /(W-a) >.0.1 up to u 	 = 0.005.

But the near field J exhibits a marked decrease.	 Average J*, plotted

as a function of the applied displacement,._is shown in the next figure.

It is evident that J is proportional to applied displacement squared

for lower loads and then a linear relationship develops for A > 0.01

inches.	 Other graphs required by the E-24 Committee will not be dis-

cussed or will be commented upon later (i.e. crack openin)).

*Average J is taken from the four paths in the special element furthest
from the tip and the 'four paths in the regular 'elements.
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Turning to the exponential discussion, a typical incremental displace-

ment exponent response can be seen in Fig.	 (77).	 The value drops

from the inputted one -half for the elastic step to a minimum at

I ' uA = 0.005 inches.	 Here the octahedral strains at the nearest Gauss

points are as high as 0.47. 	 In terms of the McMeeking-Rice criterion-

for small strain theory limitations this means that the stressias at

i these Gauss points are more than twice the tangential modulus.	 Yet

the trend in the exponent is correct.	 In the subsequent load steps

the yielded points exceed the limits of the inputted stress-strain

curve and the exponent begins to rise.	 This seems to indicate that

it is primarily the unfaithful representation of the stress-strain

curve past the input limits rather than large strains that cause a

rise in the exponent.	 The limit of the inputted stress-strain curve 	 {

g for this problem is y0	 (octahedral strain)	 =	 0.66,,	 {

- Accumulated exponents are calculated for a few steps at a nLmber

of angular positions.	 The response shows a fairly constant exponent

although slightly higher values are found near the symmetry line.

However, it does seem reasonable to take an average exponent as a

representation and this is shown in the next figure. 	 In view of the

incremental plot the result is not unexpected.	 The,HRR theory predicts

a displacement exponent of 0.09 for fully plastic behavior whereas

r SPECEL exhibits higher values.	 Still the transition from elastic to

plastic behavior is expected.

The strain energy density exponent shows agreement (to within 100)
p

with the minus one prediction for the first three load levels -plotted

^
in Fig.	 (79).	 There is a bit of discrepancy for small and large 8.`

All values for these first three steps use all seven Gauss points in

#} a curve fit and the coefficient of determination is 0.99997 or better.



At step. 93 six, or even five, of the Gauss points are used in the curve

fitting to find the few values shown. Some s* values are not found

and for those that are, the coefficient of determination is worse than

before. Tangential stress distribution in the radial direction for

certain angles is shown in Fig. (80)	 Other stress components have

similar_ behavior. Tlhe.two term Williams solution as well as the HRR

prediction for a material with a hardening exponent of thirteen are

plotted. The two term Williams solution appears constant in r because

the second term is practically negligible in bend problems. Although

the bend problem has an exponent of ten, both types of power law

materials have little strain hardening and there should be some degree

of agreement between the two. As before, the normalization factor is

a  max` 
Note the load is given in terms of applied stress via applied 	 ^I

force. There is good agreement for all stresses throughout the special-

element . with the elastic prediction indicating the elastic singularity
I

dominates this region. As yielding progresses there is a transition

to some new state. Some agreement with the HRR, n=13 result can be

seen. The plastic singularity does not snow the same dominance

exhibited in the elastic step - the stress values are not constant

with r. Erratic behavior can be seen for the first, and in some

instances, the second Gauss point. But since for all other materials

the full stress field for the second Gauss point is presented the

same is done here. The results are shown in Figs. ,(81-84)

The effective stress, Fig. '(81), shows excellent agreement with

the elastic prediction. Note that the rise near 180° has disappeared.

This is due to the fact that there is no buildup of radial` compressive

stress for the bend geometry on the crack flank. Transition is

evident as yield exceeds the special element, step 40, and a fair
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agreement with the power hardening case (n=13) can be seen at NSY,

step 77.	 There is some discrepancy in the range 30° < A < 80°.	 At

step 93 the stress field at r = 0.001 deteriorates so the stresses

at r = 0.0023 are plotted.	 This shows the same degree of agreement

with the power hardening (n=13) result as the closer Gauss point

does at NSY.

Components of stress exhibit the same trends as the effective

stress.	 The radial stress, Fig.	 (82), is greater than the HRR pre-

diction at NSY but it does have a peak (maximum) for small 8 and a

valley is almost achieved for large 6.	 At higher loads the smoothness

of the stress field vanishes at r = 0.0010 and at r = 0.0023 only

^. the peak is visible.	 Tangential stress demonstrates excellent

-; correspondence with both elastic and plastic predictions (except for

very small 8).	 The plateau predicted for the shear stress in the mid-8

-- range is found in,SPECEL's result but near the crack flank the numerical

values do not approach the analyticallimit. 	 However, there is a very

clear overall transition from elastic to plastic behavior.

Some of the J behavior that has been seen in the E-24 required

graphs is replotted in other 'forms in the next few graphs. 	 Normalized

J, in terms of Y, versus the effective radius of the J path is shown

in Fig.	 (85).	 The two J values furthest from the crack tip (r > 0.5)

are ignored because they show an unnatural rise in J, even for the

elastic step.	 These J paths include that portion of the boundary with

singular (point) loading which is not accurately represented by the

large constant; strain elements comprising these paths. 	 The remaining

J paths, although not that constant for the elastic step, do not show

much increase in scatter' between Ynear 
and Yfar as the center crack

4
panels.

.n..urearocw.wri	 —...u.^^ tRe =
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The usual comparison of the proportionality of near and far field

stresses has been done but is not shown.. As expected, the near field

stresses exhibit a major redistribution. The far field stresses are

proportional up to step 93 except for a few points in front of the

crack tip. During the period of near field stress redistribution the

^r
scatter increases between near and far field J as was seen in Fig. (75).

Crack opening profiles are shown in Figs. (86 and 87). As with

	

-	 the center crack panels there is a progressive blunting at the tip.

Unlike the center crack panels resharpening at the tip does not occur

until very high loads (at u 	 0.05, roughly seven times the applied

displacement at NSY} and the profile is nearly linear along the entire

profile. This linearity will be exploited to obtain a projected crack

	

_	 opening displacement.
x W'

Despite the fact that the model for this problem is crude relative

_. r

to those used by other analysts some interesting results have been

shown. Although the exponent did not reach the HRR prediction the

near field stresses exhibited reasonable agreement with the HRR model

	

`i	 for a low strain hardening material J and the displacements along

	

i	 the crack flank show a marked difference from the center crack geometry

which will be explored further in the next section.

F. J, COD, SM
as,

Another procedure for measuring J is given by Rice, et al. (1973).

It is based on the definition

ap

z

	

=r	J 	 U0

	

a^	 which relates J to the rate of change of the area under the load versus

i
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Toad-point displacement curve (P-S) to the crack size (a) . 	 For an
I'

internally notched plate in tension this reduces to	 I

plastic
J = J	 +	 2	

p	
(P/b)dd- (P/b)S

fo,
elastic plastic	 plastic

1

where P/b is the load per unit thickness for each ligament of the center

crack panel and S is the total displacement between load points.	 In

the case of a deeply notched plate subject to bending by forces the

formulation reduces to

scrack
J	 =	

2fo

(P/b)dS
crack

where S	 is that part of the total displacement due to the crack
crack

alone.	 Unfortunately for this exercise it would necessitate rerunning

the Bend problem with the crack zipped up.	 The return/investment-ratio

makes this prohibitive. 	 However, it is a trivial matter to find the

plastic component of displacement required for the center crack

i
specimens.

Figures (88-90) show the Rice estimate for J in comparison with

~ i the near and far field J from SPECEL. 	 For the RS problem there is

excellent agreement between the far field J and Mice's estimate.	 It

^I
should be noted that Rice's procedure is based upon the deformation

theory of 'plasticity.	 This ignores plastic' dissipation that is

r	 , significant near the crack tip. but not as important in the far field.

Rice's estimates of J for the PH and BIL problems do not show this

i
good agreement with the far field J of_SPECEL_but they do overestimate

all the J values within the special element.

A possible explanation of why the good correlation between Rice's

't
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procedure and far field SPECEL J values exists for the RS.problem but

not for the BIL and PH materials may involve the type of loading. 	 Dis-

placement loading of a finite element map has more energy input than a

real specimen due to the extra stiffness of the map, whereas the

applied traction loading of a finite element map underpredicts the

energy input to a real specimen.	 And a tensile load applied with
i

constant displacements results in loading by a moment in addition to

a constant stress. 	 This hypothesis could be checked simply by running

one of these three problems with the other type of loading.

J is plotted as a function of crack mouth opening (SM) in Figs.

(89-92),	 In all four problems the near field J has a near linear

relationship with the mouth opening after NSY.	 The worst case of

this relationship is the Bend problem. 	 Goldman and Hutchinson predict

Xi that J, based on deformation theory, should be related to d	 by

n+1

i
J	 =	 C SM n

for tension loaded center crack panels.	 Cis a constant and n is the

hardening exponent.	 For the PH case, Figs.	 (89 and 90), the far field

J behaves Like 
6M. 

SS as opposed to the dM"33 dependence predicted by

- Goldman and Hutchinson.	 Although not in close agreement, SPECEL's far

' field J values behave quite unlike the near field J with respect to 6M.

The BIL material exhibits the same type behavior in Figs.	 (89 and 90).

In the case of the RS problem, Fig.	 (91), the hardening exponent has	 -

{ been estimated between seven and ten. 	 It can be seen how the;laroe

exponent flattens out the far field. J,d
M
 relationship.

Much in the literature has been devoted to finding a relationship

between J and crack opening displacement (COD).	 A number of definitions

V

o	 _
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for COD have been proposed and two of them will be used in this

discussion. Both are employed in Fig. (93) for the Bend problem.

One definition of COD is twice the displacement perpendicular from

the crack plane at positions along the-crack flank. These points

are close to thecrack tip, either within or near the specialelement.

The second definition involves the linear extrapolation of the crack

flank displacement to the tip using displacements at the crack mouth

and halfway along the crack flank. This second definition is used only

for bend, specimens. Also shown in the figure is Wells' result (1971)

using extrapolation. SPECEL's and Wells' extrapolations show reasonable

agreement and are considerably larger than COD based on near tip Gauss

point displacements (radius of special element is 0.0076 inches).

These near tip Gauss points have displacements that behave in a quadratic

	

r	 ,

_fashion with &M for low load levels. However, in the region (before

	

--	 and after) NSY the entire crack flank displacementsare linear with

	

{	 respect to 6M`

Plotting J with COD does not yield a pure linear relationship for

the Bend problem as seen in Fig. (94) 	 The J COD relationship is of

the form

m+1

J a (COD) n
	 m> 1

Here m is not the power hardening exponent, but the relationship is of

the form predicted by Goldman and Hutchinson. For materials with little

strain hardening (large, exponent) the Goldman and Hutchinson relationship

is nearly linear. And for this problem a straight line for the J - COD

relationship is not a bad approximation after 6
E
^ > 0.6. Also shown 	 -

Y

is the straight line which relates J to COD by the factor 2ay. -2ay
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represents the knee in the stress-strain curve and is the same

proportionality factor used by Hayes and Turner (1974).	 There is

modest agreement with this relationship and near field COD.

Extra olated COD cannot be found for center crack s ecimensP	 P

due to the nature of the crack flank`.	 However, near and far field J

are plotted against COD using the first definition of COD for the

PH problem.	 In Figs.	 (95 and 96) the PH specimen has a nearly linear

J - COD relationship but, actually, it is more like the power law

relationship given above.	 The same may be said of the RS problem.

Assuming J is related to some crack flank opening another possible

explanation for J path dependence can be given. 	 Figures (97-=99) plot

crack flank opening (6) against 6M for the center crack panels. 	 The

striking feature common to all three is the near bilinear 6-6 r1 relation-

` H ship for near tip points.	 The knee in these "bilinear-" curves occurs

near NSY, except it is delayed slightly for the BIL material due to

the insignificant amount of plasticity in the stress-strain curve until

yield has been greatly exceeded (T 0 /T Lim ' 
1.5).	 The sharpness of

the knee is greatest near the tip and dies out at further distances.

It is still evident at r = 0.0176 ,, more than twice the radius of the

special element, but cannot be seen at 	 _ 0.0705 or less than 15% of

the crack length. 	 This is another manifestation of the crack tip

"resharpening" itself that was 'seen in the previous sections. 	 If one

were to extrapolate a COD using the crack flank information far from

the tip (r > 0.0705), the value would overestimate the actual COD.

The sense of the resharpening has been lost outside the near tip area.

Employing the assumption that J`is proportional to COD (not necessarily

linear) far field J, using far field crack flank opening to sense a

COD, would overestimate J.	 Near field J are affected by this resharpening

r^

-	 _
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of o er redi.cand don	 v	 p	 t J.

Remember this resharpening is not present in the bend , problem.	 i

The entire crank flank is proportional to d M for nearly all load

levels.	 This would suggest that resharpening is not a factor in J

path dependence for the bend specimen.	 Consider the coefficient of 	 i

variation for the 'Bend and PH p 	 alems for nine identical J paths

0.0010 < r < 0.2821:

BEND	 PH

I
elastic	 0.09	 0.06,.^

NSY	 0.17	 0.21

E GY	 0.22	 0.31

GY denotes gross yield - step 93 for the Bend, step 125 for the PH.

At GY the applied displacement is 2.03 times the displacement at

NSY for the Bend; for the PH the ratio between the two displacements

i is 1.63.	 It is evident that the rate of path dependence is growing

' much faster for the PH problem.	 This wouldsupport the claim that

the resharpening of the crack tip in center crack panels causes a

path dependence in J.	 So path dependence may be dependent upon the

_
amount of plastic dissipation and tip resharpening in the near field.

Finally, it is possible to compare the near versus far field J

against actual laboratory results for the RS problem.; The information

r is prrvided by Riccardella and Swedlow (1974) and is shown as vertical

and horizontal lines in Fig. 	 (88).	 Two values of J IC are plotted as

horizontal lines. The largest JIr' is the result of thirty-six standard

JIC tests (Fig. 6 of Riccardella and Swedlow).	 However, most (thirty)

r of the specimens are an inch thick or Less. 	 There does seem to be

something of a size effect for thicker specimens and the second J
IC

GY
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estimate represents the average for two four 'inch thick specimens.

It should be noted that J IB is determined from the load displacement

curve of compact tension specimens.	 The compact tension is essentially

I
a bend specimen so resharpening should not be a factor in J path

dependence, but the method of computing J uses far field parameters.

T" The two vertical lines in the figure represent initial fracture

predictions at given applied displacements. 	 The one on the left

represents the applied displacement when an average J reaches the JIC

predicted by the thirty-six specimens.	 This average J is determined

from a numerical analysis by Riccardella and Swedlow using an average of

ten J paths (some of whichmay be considered near field).	 On the

right, the initial fracture is determined by laboratory experiments.

It corresponds to the applied displacement when an actual four inch

thick center crack -specimen begins to fracture.	 This fracture pre-

i -diction is based on acoustic emission results which can be seen in

Fig.	 (19) of the Riccardella and Swedlow report. 	 Fracture initiation

corresponds to an enormous increase in acoustic emissions occurring

at an applied displacement of 0.015 inches or an applied stress of

53,300	 Although the acoustic technique has 	 beenpsi.	 not	 calibrated

with respect to crack growth this prediction does fall within the

scatter band of the other fracture prediction. 	 It is evident that the

far field J shows better agreement than the near J with the fracture

initiation point predicted by the thirty-six specimen JIB test and

numerical result of Riccardella and Swedlow. 	 However, the fracture

initiation point predicted by the four inch thick JIC tests and acoustic

emissions from_a four inch thick center crack panel show good agreement

with SPECEL's near field J.	 The far field J overpredicts this point
f
j by a factor of three whereas the near field J is twenty percent less
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CHAPTER V

PROPOSAL FOR EXPERIMENTATION

In this chapter an experiment will be proposed whose purpose is

to determine whether or not the difference between near and far

-field J is real.	 A flow chart for the experiment can be seen in

Fig. (100).	 Unfortunately, the only apparent method of measuring J

^r
near the crack tip is by numerical techniques.	 Far from the tip J can

- be determined by energy as well as numerical methods.

It has been suggested earlier that J'path dependence is caused

by two factors:	 1) significant dissipation of energy near the tip

due to plastic deformation; and 2) a resharpen'ing of the crack tip in

center crack specimens
..
	 Quantitative measurement of the energy

expended for plastic deformation is not possible. 	 But displacement

measurements near the tip would detect resharpening.	 Therefore, the

proposed experiment will place more emphasis on this aspect of path

dependent J.

'	 -.: 
t

As was seen in the previous chapter materials with `little strain

I

-' hardening cause difficulties with the incremental exponent technique

if the stress-strain curve is not extended far ,enough, at least in

light of the HRR model.	 At least on the first pass of the experiment

a material with high strain hardening and ductility characteristics

- should be selected to increase the confidence in the numerical results.
A

The material. stress-strain curve will be determined from a number of

F tensile tests analogous to the procedure used by Riccardella and

Swedlow (1974).

The most important material parameter to determine accurately is

a GIC , or the energy ;made available per unit increase in crack surface
,c
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area at fracture initiation. 	 Thisuantit	 is determined such thatq	 Y

it is independent o£ specimen thickness.	 To determine GIC two

independent series of tests will be run - KIC and J IB tests - on

three point bend specimens.

Standard KIC test procedure is given in ASTM E399-74 (1974).

K is related to G by

KIC (1 v2)

GIC	 E

where-E and v have been determined from the tensile tests.	 This test

has the advantage of measuring K (which is directly related to G and

J) in an essentially elastic material. 	 In such a material J (and

G	 has been	 be	 independent (Rice, 1968).hence	 and K)	 shown to	 path

Although there may be a small plastic zone around the tip the size of

the zone is such that J is still path independent as seen from SPECEL s,
i

results.	 However, it does have the disadvantagethat KIC is measured

at 2% crack growth.

is	 by Landes and	 (1974) andJ 
I
- C testing procedure	 given	 Begley

modified by Clarke, et al.	 (1976). „J and G are equivalent.	 Care

should be taken so that the specimen size effect seen in the RS report

is eliminated.	 This test determines J by using, the area under the load--

displacement curve of a bend specimen.	 It is a change in energy/change

in	 far field	 From thecrack area method which uses 	 parameters.	 previous

chapter it :1as shown that the change in energy/change in crack area

method always overpredicts near field J and sometimes agrees with far

field J from numerical analyses of center crack specimens. 	 However,

the 
JIC 

test procedure does seek to measure J at no crack growth and

when the	 has'attained	 And by using aspecimen	 significant yield.
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bend specimen the crack resharpening does not come into play after NSY. -

Hopefully, these two numbers should agree with one another - to

within 10-200 - indicating that GIc is unique. 	 In that case let

iJ GIC = JIC,	
If the G value computed from KI C is significantly lower

j than JI C denote GLC ="f(KI C) and GIC - JI C .	 The reason for denoting

two G's for this case is that the difference between the two may be

the result of path dependent J values. 	 GIB is measured from far field

parameters when significant yield is present, whereas G IB is path

'	 ? independent.	 If the J IC ;test leads to significantly lower G values

_ then GIC = iIC.

The next step in the experiment is to conduct numerical analyses

i
of the three point bend and center crack specimens with SPECEL for

this material.	 It was seen that the bend problem had a significant 	 {

amount of path dependence in J for the elastic step due to an insufficient

number of constant strain elements. 	 Therefore, enough elements, should

I
be included in the analysis to eliminate most of this effect. 	 Also,

it is advisable to run the bend problem with the crack zipped up in

r
i

order to measure J by the change in energy/change in' crack"area method

and compare, with the far field J results of SPECEL. 	 When the numerical

far field J reaches JI C the numerical near field J should be noted.

Call this value GICN .	 For the case when GIC does not equal GIB agreement

} between near field J and G IB should be checked at the time far -field'J

equals G IB .	 If near field J and`GIC are close let GL^ = GI B .	 This is

an indication that the GIC I s found by the K Ic and JI B tests reflect near

and far field quantities respectively. 	 If near field J (equal to G 	 )
LCN

` and GI C are not approximately equal to one another then this indicates

- I that GIB found by the elastic K 1C test does not have any relation to the

J in a plastic analysis.

U-



67

The numerical analysis of_a tension loaded center crack specimen

of the same material is to be done next.	 Loading may be induced by

tractions or displacements, whatever is easier to replicate with an

actual specimen.	 The applied load should be noted when the far field

J reaches G IG and when the near field J reaches G IC and GICN'	 Denote

the corresponding loads LP LNb' LN1 (LF < LNl ,,L	 )'	
There should be

' a substantial difference between these far and near field quantities.

But if L	 = L, disregard L	 and G	 concept since G	 parallels
F	 Nl	 Nl	 ICN	 ICN

GIB.

The final step of the experiment is to reproduce the numerical
a

center crack problem in the lab with an actual specimen.	 The point of

fracture initiation is to be determined and the corresponding load

is L*.	 There may be a problem determining precisely the initial of

crack growth.	 Acoustic emission tests, like those used by Riccardella

and Swedlow (1974), might be employed. 	 Assuming that L* is obtained by

this method the credibility of SPECEL's results can be tested. 	 If

3
L* agrees with LF this indicates `SPECEL's J path dependence is not real

but a result of the numerical modelling. 	 However, if L* and LNG are

relatively close this indicates that the path dependence in J is real,

at least for the center crack specimens. 	 And it probably means that

the dependence is caused by resharpening near the tip. 	 This resharpening'

can be confirmed by taking displacement measurements along the crack

flank.	 If P agrees with LN 1 this again indicates that J is path

I-
dependent.	 More importantly, fracture initiation is associated with a

f
G near field parameter, GICN' for two specimen types.	 GICN is affected

by dissipation of plastic energy near the tip and accounts for re-

sharpening in center crack specimens.	 Different specimen tests would
I _

be needed to confirm that GI N is truly a material property.	 Near
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field J, although not a measure of change in energy input /change in

crack area, may be a measure of

A(EI DE) / AA

where EI is energy input, DE is dissipation energy, A is crack area, and

A's represent change. The problem with this formulation is that no

apparent method of measuring DE is available. i

If the acoustic technique is not acceptable for measuring fracture

initiation another, more costly, less exact method is proposed. This

method probably will not be able to distinguish between 
LNO 

and LNl` since

they should be relatively close and the margin of error in this technique

is large. Take a number of center crack specimens, save five, and apply

the following loads: LF, L  + A/4, L  + 3A/4, LN, L  + A/4. L 

represents an average of LNO and LNl and A is the difference between

L  and LF. After loading heat tint the specimen and then break them

open to measure any crack growth. If fracture initiation occurs between

L  
and L  + A/4 or earlier then no real path dependence in J is present;

between L  + A/4 and L  + 3A/4 the results are inconclusive; between

L  + 3A/4 and LN,+ A/4 J path dependence is real but the contributing

factors are not that easy to separate and identify.

This proposal will either confirm or refute the path dependent

J behavior found in SPECEL. The accompanying computational problems

should use very refined finite element maps to diminishelastic J

variation (noise). Although it was suggested that a material with a

large amount of strain hardening be chosen first other materials might

be used provided the stress-strain relationship is extended far enough,

even approximately, on input to SPECEL. The most critical part of the

exercise is the laboratory work on the real specimens. Without good

experimental numbers the purpose of the proposal is defeated.
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- CHAPTER VI

SUMMARY, CONCLUSIONS AND SUGGESTIONS

Through this series of problems it has been shown that SPECEL

adds a new dimension to fracture analysis.	 Bounded by fully plastic

and fully elastic theories SPECEL offers a reasonable bridge between

these two.	 Although somewhat more expensive than conventional finite

element solutions of elasto-plastic problems SPECEL is able to provide

' well behaved data much closer to the crack tip, thus _shrinking the

zone of blindness there.

The method itself is based on an analog to the theorem of minimum

x
potential energy, the same as other finite element techniques. 	 It

includes the singularity within the special element as a degree of

freedom.	 However, the minimization is carried out in an iterative

i manner unlike the usual procedure. 	 First, the energy is minimized

with respect to the regular degrees of freedom, then the exponent. 	 9

The change in energy of the body is checked before and after exponent

minimization to safeguard the iterative method, 	 Also unlike conventional

finite element analyses there is a built-in incompatibility between the

special element and surrounding regular elements.	 But with the current

model this proves not to be a problem till well after net section yield.

j Despite these two deviations (iterative minimization, incompatibility)

from usual finite element procedure SPECEL''s results indicate the method

works

In all elasto-plastic problems the incremental exponent shows a

trend in the direction expected.	 But the incremental exponent itself
i

' is meaningless until translated into an accumulated value by functional

j fitting techniques.	 The typical coefficients of determination demonstrate



that the accumulated exponent procedure works quite well. For the power

hardening material the accumulated exponent eventually agrees with the
r

GGGCCC	 i

HRR prediction, The exponent for the bilinear material approaches the
r	 I

analytical value but appears it only wild reach it for enormous load

xr	 levels. Materials with little strain hardening, RS and Bend, near

j	 their theoretical predictions then deviate sharply. It has been showni

a +	 that the unnatural sharp rise in the displacement exponent is caused
i 4

primarily by stresses and strains exceeding the limits of the inputted
i

material curve. The method for tracking points on the inputted curve

i
r	 is self-correcting and provides excellent results. But the curve

extension method only provides the correct slope at a given stress and

t
once the material gets off the intended curve the errors accumulate.

Therefore, it is suggested that on input the material curve be extended

i
far past sensible limits.

Attempts at characterizing the strain energy density exponent

meet with modest success. There is decent agreement with the minus one

prediction of the elastic and plastic analytical theories for the

central 6 range. Keep in mind that 'the ;inverse r singularity is

pre,:;'cted not for each angular value, but only in the average angular
r

sense. In light of this, SPECEL's results are very reasonable.

Near field stresses show a major redistribution between elastic

4	 and plastic responses. All four problems have excellent agreement

with the elastic prediction. With the possible exception of the shear

component the stresses of the PH problem reach the HRR, n=3 prediction.

The Bend problem exhibits decent agreement with the HRR, n=13 'pre

I diction although the two stress-strain curves are slightly different.

A two phase transition is evident in the stresses of the bilinear

material. First, a migration from the elastic step to a response
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resembling the HRR, n=3 prediction occurs. 	 This happens when points

within the special element are on that portion of the stress-strain

curve that closely approximates the PH curve. 	 Such agreement, as

{ well as the similarity between the Bend and HRR, n=13 results, indicates

that specimens with like stress-strain curvos produce, under mode I

loading,;the same pattern of near field stresses. 	 However, the

f
amplitude, or J, of the near field stresses is highly sensitive to

material type.	 The second phase of the transition for the BIL problem

takes the stresses from the n=3 toward the bilinear prediction.; 	 It

-, is evident that quite a bit of loading is necessary to reach a true
1

- bilinear stress field.	 The crack would probably grow before the

material behaved in a bilinear f^shion. 	 Therefore, expecting a

bilinear response from a material is probably unreasonable.
^

The most surprising of SPECEL's results involve J and COD.

i J shows an increase in path dependence as yield spreads through the

I	 ^^
'
 1

specimen and a dramatic growth in the vicinity of net section yield.

t
A certain amount of path dependence may be due to the fact that the

finite deformation definition of J is not used. 	 Atluri,,et al.'(1977a,b)

show that such a definition reduces path dependence near the tip.

However, this explanation would not totally account for the degree of

tt-
J :variation seen by SPECEL..'

Far field J results show some agreement with other analyses

(Goldman and Hutchinson, change in energy input/change in crack length)

which are based on the deformation theory of plasticity. 	 Near field

J values are always less than their far field counterparts'.	 Two reasons

for- path dependence in SPECEL's results have been suggested:

1) dissipation of plastic energy near the crack tip which results from

I use of incremental as opposed to deformation theory of plasticity;
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2) resharpening of the crack tip after net section yield in center

crack specimens. The Bend specimen does not exhibit the resharpening

which leads to a smaller increase in path dependence for this case.

This problem also possesses a linear crack flank from which a COD

is extrapolated. J and COD are not linearly related in any specimen.

Rather, their relationship has a slight curvature typical of the form

suggested, by Goldman and Hutchinson. Some credence is given to the

near field J in predicting fracture when the laboratory results of

Riccardella and Swedlow are analyzed.

In order to demonstrate the fact that J path dependence is'a

real phenomenon an experiment is proposed. It involves the use of

numerical solutions in conjunction with actual material tests.	 By

x using two types of specimens, the bend and the center crack, the

m
path dependence of J due to resharpening can be detected easily.	 1

And it may be possible to determine the effect of plastic energy

dissipation nearthe tip.	 Of course, if the experiments disprove the

J path dependence then SPECEL must be reexamined in terms of its 	 {

numerics.

But assuming the experimental evidence supports SPECEL's findings

a number of problems are worth investigation. 	 Mode TT or mixed mode

loading might be applied to another power hardening material. 	 The

results could be compared to the analytical work of Shih (1974)`. 	 The

effect of unloading ;,sight be checked. 	 This would be important in

single specimen J IB, tests.	 Net tension loading versus net extension

- loading could be studied for their effect on far field J and change in

energy/change in crack_ length as discussed in Chapter IV.	 Many

different specimens of the same material would provide a geometric

study.	 SPECEL might be used to obtain a near field JI C or predict



:
73

"- the fracture of an actual specimen.

Regardless of the outcome of the experiments SPECEL has proved to

be a useful and interesting tool.	 It has shown that some aspects of

I
the HRR theory are applicable to problems which use the incremental

ra theory of plasticity.	 Materials that are characterized as bilinear

do not behave as such until enormously high loads are applied;

Similar materials have similar variations in near field stresses

but the amplitude of the stresses is sensitive to material type.

T Advanced applications of the variable exponent technique (Marino, 1978)

may shed additional light on these findings.•
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Figure 3 - Flow chart for SPECEL
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FIG. 30: Plastic Strain Intensity Factor VS. Applied Stress (PH)
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FIG. 62:	 Octahedral Stress Comparison of Power Har^.;ning
and Bilinear Materials at r = 0.001 (BIL and PH)
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FIG.	 72: Hydrostatic Stress along Crack Ligament (Bend)
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FIG. 85: Normalized J VS. Distance from the Crack Tip (Bend)
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FIG. 88:	 J VS.	 Applied Displacement (RS)
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FIG.	 89: J VS.	 Crack Mouth Opening (PH and BIL)
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FIG.	 100: Flow Chart for Proposed Experiment
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APPENDIX

The problem is to determine the accumulated exponent, p*, from 	 {

the accumulated displacements, u. After N increments of load u is

assumed to have the form

N	
N

u=	 du. _	 (A .+A .r A .rPl^	 C'+C-r+C'rp	 (Al)l	 2i	 3i.	 l 2	 3

where 6u1 , pi are the incremental displacements and exponents
i

respectively; Ali ..., C1,..., are constants, and r is the distance

from the crack, tip. This procedure is done at a fixed angular position

using known values of displacement at seven Gaussian integration points

within the special element. In cases where data near the tip are not

credible these points may be omitted from the scheme but it is recom-

mended at least five points be used. In order to find p* through

linear regression analysis the functional expression of u must have
iG

the following form:,

Y - a l + a? X	 (A2)

where Y represents a known value, X is the variable, and a l ,a2 are

constants to be determined.

" In order to achieve the desired form the fact that Ci is known is

utilized. Ci represents rigid translation which is found from dis-

placements at the crack tip. If uO is the horizontal displacement;

at the tip (the vertical component is fixed at zero) then

i

C1 = u 0 ;cos e	 for u = ur
(A3)

C1	 up sine	 for u = ue
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A nonessential, but simplifying, step is to normalize the r variable

on the radius of the special element, r0.

u - C1	 C2 Z + C3 Zp* (A4)

j where Z	 r/r o , Cl 	C1, 'CZ = CZro, C 3 = C3r0*.	 Dividing by Z yields
I^

u-C1	 p* 1

Z	
=	 C2 + C	 Z (A5)

where the left side of the expression is known at the Gauss points.

This is almost in the form of (A2). 	 Next, let

X	 -	 Zp*-1 (A6)

by selecting some value of p*. 	 Then

u-C

l
Y	 =	

r/r	
=	 C2 + C3 X (A7)

, 0

and the desired form is achieved. 	 For a particular Gauss point,

j xj	 (	 j	 =	 1, ... , 7)

i U.	 - Cl
f	 ..

Y^	 =	 rJ	
r	

=	 C2 + CS Xj (A8)
0

C2 and C3 are found by linear regression techniques and are expressed

by the following equations:

if

i

i

I	 `'

I
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i

where n is the number of points used in the process. The closeness

of the fit of the actual 0-Ita to the functional form determined by

selecting a p* is expressed by zh-- coefficient of determination, t:

	

n	 n`	 2

1 x.2	 l ^lXj	 /n
t	 C2 '	

2 —
	 (A10)

	

n	 n
Y. 2 -	 I Y.	 /n

	

j = 1	 j= j^

t ranges from 0 to 1'; the closer t is to 1, the better the fit.

Actually,`

t = t (p-)	 (All)
I
i

and the best fit of the data is found by maximizing t(p*). The process

is done by searching the range of p* until the maximum value of t(p*)

is found between two values of p* which differ by less than 0.000002.

The search procedure is actually done four times with a new starting

value of p* each time. Usual starting values are 0,5, 0.4, 0 3, 0.2,

and only in rare cases do the four final p* values differ by more than



0.002. The reliability of the method may be judged by the coefficients

r	 of determination which are reported in Chapter IV.

I	 ^'

i

ADDENDUM

i

dur. y'= (uo cose + vo sine) + r(C1 cos 2 6 + C2 singe
i

+ (C 3 + C4) sine cose) + rp (C5 + C 6 e)

Sve = (-u O sine + vo sine) + r((-C 1 + C2 ) sine cos8

-C3 singe + C4 cos 2 e) + rp (C6 + Cie)

I
where C 1 ,...,C 8 s u 0 , vo are coefficients to be determined; uO vo are

the cartesian rigid translations of the element; p is the variable

incremental exponent.

I

i

I


