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DYNAMICAL THEORY OF STABILITY FOR ELASTIC RODS
WITH NONLINEAR CURVATURE AND TWIST

J. Wauer

SUMMARY /161%

Considering non=-1linear terms in the curvature as well as 1n
the twist the governing boundary value problem for lateral ben-
ding of elastic, transverse loaded rods are formulated bty means
of Hamlilton's principle, Using the method of small vibrations,
the assoclated linearized equations of stability are derived,
which complete the currently accepted relations, The example
of the simplest lateral bending problem 1llustrate the improved
effect of the proposed equations.

1. PROBLEM FORMULATION

The stability equations which describe the tipping of elastic
rods have been derived several times recently [1, 2, 3, 4] with
the assumption that the devlation between the undeformed and the
deformed rod axis 1s so small that differentiations with respect
to the two important position coordinates can be consldered to
be identical.

This restriction will be given up here. The Hamilton principle
described in [4] will be the point of departure for our analysis.
Therefore, 1t 1s the purpose of this paper to formulate this
variational principle for describing the kinetiec tipping with
more extensive consideration of the rod curvature duriig defor-
mation, Synthetic equilibrium analyses, which is the continuation

#Numbers in margin indicate pagination in original foreign text.
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of the Federhofer analysis, were performed early by Chwalla [5].
However, these have been forgotten, It was only Zlegler [6] who 1
considered this effect in the case of a compressed and twisted i
¢ircular cross section, However, he did not pursue the most
important aspects of this process. In our paper, it will also
not be possible to derive the consequences for the most general
tipping problem of elastlc rods with longltudinal and transverse
loading. We have to restrict ourselves to cases where the rod
axis does not experience any longitudinal extension.
Using the Hamilton principle, we obtain the nonlinear boundary
value problem from a verlation. After this, one can transfer to
the linearized stability equations using the method of small
osclllations.
In order to focus the reader's attention to the important
aspects of the problem, we will consider the Prandtl tipping
rod with a pure moment load, without referring to a concrete
specilal case.

2. VARIATIONAL PRINCIPLE

Let us consider an originally straight rod without preliminary /162
deformations of length 1. We assume that it has the constant mai'.
bending stiffnesses EJI’ EJ2 (E modulus of elasticity, Jl, , area
moments of inertia), the constant twisting stiffness GJT (G shear
modulus, JT torsion area moment) and the constant mass per unit
of length p=eAd({@ Density, A cross-section area.)

We will assume all of the usual assumptlions made in classical
technical bending theory, and assume pure Salnt-Venant torsion.
We assume that the shear center and the center of gravity coincide.
Also we will not consider the influences of damping.

The principle of Hamilton

dhf"'(T—-V,-V,)dl+'{dedt-o i

is convenlentliy used for the systematic analysis. In order to
evaluate it, we therefcre must fiist determine the kinetic energy

T, the elastie potential V the potential of the external forces

ii

Va, and the virtual work 6W of the potential-free forces.
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The kinetic energy is given by
T= %p.f'Hfo}M]a ) (2)
where ¢p 1s the absolute velocity of a material roud particle P;
S, points along the arc length of the rod which has a curvature in
its general positlon.

The elastic potential V, 1s calculated from the sum of the

i
shape change energy for bending
I '
Vi Y ERS Pds + L EL S prds (3)
and for twisting,
I
V,,--}Gj,!g‘a (4)

where pl’ » are the curvatures and q i1s the torsion of the rod axis
(7, 8].

These relationships can be generalized for the more general
tipping process for both transverse and axial loading, by adding
the following longltudinal extension energy

Vn,--}l'df'c'h. (5)

within the elastlec potential V1
tension of the central line of the rod.

» where € is the longitudinal ex-

We will discuss the calculation of Va and W later,

3. ANALYSIS OF THE STATE OF DEFORMATION

Two coordlinate systems shown in Figure 1 are used to describe
the rod deformations. A first, space-fixed x, y, z reference
system (unit vectors e,e,e )1is attached to one of the rod ends,
where the z-axls coincides with the undeformed rod axis. A second
body-fixed £, n, ¢ system (unit vectors e,e,®& ) is established
at an artitrary point z. It points along the maln moments of in-
ertla of a cross-section and is rotated with respect to the space=
fixed system, and 1t 1s also tangentlal to the central line of the
rod.

Figure 1:



Figure 2: Description of deformation using Euler angles,

Consequently, the coordinate origln S' of the body-fixed system
is therefore the geometric locus of all deformed cross-sectional
centers of gravity. In the general case, it is displaced by the
coordinates u, v, with respect to the initial point S. These
aquantities are measured in the space=-fixed x, y, 2z system, The
second coordinate system, whose rotation with respect to the
(x, ¥y, 2) system, 13 described using the Euler angles wv.0,¢ ac-
cording to figure 2, describes the stiffnesses EJI. 5 ard GJT,
Primes will refer to derivatives with respect to the arc length
S. From the Kirchhoff gyroscope analogy [9], one finds the
kinematic relationships

Py sindsing 4 0 cosg, py=y sindcosg —Vsing, ¢g=y cosd 4 ¢’ (6)
between the characteristics p sy @ of the rod axis and the Euler

angles v 0,9
As can be seen from Figure 2, the differential quotients

¥ =sinfsing, 3 = —sindcosy, 2’ =cosf (7)

relate the space-fixed coordinates x, y, 2 and the Euler angles
v o

This means we are now in the position of formulating the
Hamilton principle (1) as a function of the deformation quanti-
ties vw? ¢ . In order to specify the boundary conditions, however,
it 1s necessary to transfer from the Euler angles v.d ¢ to the
center of gravity displacements u, v and the efrective rotation

of a cross-section r.




We will assume small deformations, and therefore in (6) and
(7) we will assume a small inclination of the central line of
the rod with respect to the space-fixed z-axis, However, we will
not linearize with respect to ¢ as was done in [2], but we will
expand up to quadratic terms. Then, from (6), we obtain

pr=y'Osing + ' cosp, py=y'dcong - 0aing, f-v'(l-$)+9' (8)
and from (7) we find
' = fsing, ¥y = —=fcosy, ﬂjy-t‘-::-. (9)

The two first equations in (9) also apply for the derivatives of
the dependent variables u, v 1in the x and y directions [10]., If
we differentiate with respect to the arec length s, we then find

Wi 0'sing 4 Op'cony, Ve —0'cosy 4 My ainyg, (10)
If we formulate the expressions

Wsin (p 4+ g) — v cos [y + ), W' cos(y + g) + v sin (v + o) } (11)
(p+ @) = (w" = v'u"), oy

we can see that they coincide with pl, 5» 4 according to (6) 1f

we use an addition theorem, where we take into account the "Quad-

ratic approximation". According to figure 2, the effective ro-

4
tation angle of a rod cross-sectlon angle 1is /16
t=y+o (12)
for small inclinations. Therefore, the curvatures Py 5 and the
torsion q can be written in the form
po=u'sint —v"cosr,  pyev"cost 4 w'sineg, (13)
g=1t — 4 (W' —v'u") (14)
which only contain the usual quantities u, v, v and thelr deriva=-
tives.
If we also assume a small twist angle 1, then in addition to
the torsion q (14) we can write the curvatures P1. > in the fol-
b
lowing form
plm_"ll+'“lj. ﬁ.ﬂ"+ﬂ’" (15)

up to and including quadratlc coupling terms. Therefore, we have a

consistent approximation for the quantities Pq q which are based
»

2’
on the theory of elasticity, and which 1s not found in the literature



according to research by the author, There, one usually finds
h-""v"+"". "-:.u+”n' '-'l (16)

[2, 4]. This is a consequence of the initially formulated assump=-
tion that derivatives with respect to 8 and z can be considered to
be identical., The coupling terms in (14), (15) have the same order
of magnitude, and therefore only the approximation given here will
be completely satisfactory, even though in practice the original
relationship (16) will remain useful,

When calculating the absolute velocity, there are no speclal
features compared with [4], We find

vp=(u—ni)e + (v+E)e,, (17)
where £, n are the coordinates of P' 1iIn the local systems and dots
are derivatives with respect to time,

This means that the potential V1 and the kinetic energy T for
the tipping support can be formulated without the longitudinal

extension of the rod axis, and without even considering a specific
problem. If we introduce the radlus of inertia ks

I
r-%f(i'+i'+i:i')a (18)
L]
which 1s known from the literature [4], as well as
i I 1
1
v, -l.jlf(—v" + ') ds + '—:’-f{n” + o) ds +?-‘-:1f[t'f-‘:-(- ’-v'n”)] ds (19)

i1f (14), (15) are substituted in (3), (4).

4., TIPPING ROD WITH MOMENT LOAD

In order to calculate the external potential Va in the virtual
work 8W, one must specify the problem. We will consider a bending
rod loaded by discrete end moments. We will not consider contine
uous bending moments, or continuously distrivuted forces and
torsion moments.

In addition to the constant directlon moment pairs

Mp,(s = 0) = Me,,  My(s=1) = ~Me, (20)

we will assume the associated loads




Mpy(s = 0) = Mpy(l),  Mpyls = 1) = —~Mge(l) (21)

/165
Together they bend the rod in the basic state around the prin-
cipal axis wiilch 1s stiffer (bending stiffness EJI)' before the
stability limit is reached.
According to the Kirchhoff analogy, we car. then use the rela-
tionship
@AW = (Mypy + M py + Meg) ds (22)

for calculating the work [9]. The curvatures P, , and the torsion

n’ Mc

are the components of the moment vectors (20), (21) in the £, n, ¢

]
q are known as a function of u, v, v from (14), (15). M&’ M

system. Therefore, we must only decompose the constant direction
moments (20) into body-fixed coordinates. If we carry out this
decomposition, then MB can be written in the form

Mp(0) = M (e, —re, 4 we)ly,  Mp(l) = M(—e, 4 re, — w'ey), (23)
and according to (22), we finally get
AW M (3" — ' dr)[, + M (" — 1 du)[, . (24)

It 1is found that a moment load which follows the rod as well as a
constant directlon moment load does not have a potential. Therefore,
we have

V=0 (25)

and the virtual work 1s finally given by (24),.

The variatlions specified in (1), can then be evaluated using
(18), (19), (24), and (25). The results are the coupled and non-
linear motion equations for tipping in space of an elastic rod,
with constant direction and following moment loads and nonlinear
boundary conditlons. We find the following for the bending defor-
mations

EJw"" + (EJy — EJ) (rv")" + E{! ((r'v") + (r'v)") + piv = 0,

(26)
EJw™ 4 (EJy = EJ) ()" = T ey 4 o)) 4 b = o

where




EJw’ + (EJy— EJy o +Tov 4 Mg mo OF weo,

Elw + (EJy = EJ) () 457 @v) =0 O wwo, s*0 (21
EJw' + (EJy = EJyow = “Lovw— (M, 4 M) 0 OF v=o, o

EJw" + (EJy = EJ) (w") =TT (wwy mo or veo,

For the twist, we find

Gl v = 4 (W — v'u")) - (EJy — EJ,) w''v" — pkiT = o0 (28)
where

Glalt = (W' —v'u")| + M@ =0 Or tmo, smo Andl (29)

Here we willl investigate the stablility basic state which here
is a pure bending deformation Vo around the stiffest bending
principle axes. On top of this, we superimpose the infinitesimal
additional displacements

=0+, V=4V, T=O04T (30)

which are the components of the basic motion., These trial solu=-

tions (30) are substituted into the nonlinear boundary value prob-

lem (26) to (29). For the zero-order terms in the U, Vv, T we
find a boundary value problem whose solution can be glven in the

form

. MM P R 5 P
i S e conat,, o Ko (s — 1) i) (31)

The first order terms in the dashed quantities (we leave the dash
off) results in the differential equations /16¢€

EJp™ + (EJy = EJ)) (vor)" + G—f’- ((v5r') + (var') ") + pe = 0,

Gle|v = 5w = )| = (Egy = EL) v = ke = o =
and the boundary conditions
EJ" & [(E]y — EJ) vo + M) x +§%—!v;‘!' =0 Or W =0, A
Efoe 4 (EJy = ER) (65 + *FxY =0 O7  weo, g1 Y
Gy [t' - : (vou' — t-.',u”)] + My =o i r=0,

which are the linear stabllity equations. A comparison shows

that the nonlinear initial problem (26) = (29) and the stability




equations (32), (33) are a further continuation of the reliationships
given in [4], caused by the torsion q which has been expanded by
the nonlinear terms q (14),

As a specific example, we will first consider a rod which is
supported by forks. Just like a joint, such 1 attachment cannot
take up any bending moment; however, it does prevent the transverse
displacement and the twisting of the end cross-section., The stabi-
lity equations are substantially simplified and the interesting
difference between the following and the constant direction end
moments 1s lost. Both are conservative and we will simply write
M for their sum (Mr + Mf) in the future, For the theory, this
deficiency is not very serious, because the more complete consi=
deration of rod torsion (14) is still in effect., There only exist
a number of experimental 1rcsults for & tipping support supported
by forks,

This means that the inertia terms in (32), (33) do not have to
be carried along for this special case. The tipping moment of
interest is the smallest load in which the non=-trivial equilibrium
position exiats. This means that it 1s the lowest branching point
of the elgen value problem (32), (33) which does not involve time.

Because of the fact that the coefficients partially depend on
time according to (31), it 18 not possible to rigorously calculate
the corresponding eigen values. An approximate calculation must
be used. In order to avold special rod dimensions, it is appro=-
priate to make the system (32) and the corresponding boundary
conditions (33) dimensionless. In additlion to the position coore
dinate

0= (34)
we will introduce the nondimensional varlables
U=l Tmr, (35)
the stiffness ratios
E] GJf
- gl - 36
n=% " ?f: (36)
and the eigenvalue
] (37)
A Ely




If we use the new coordinates and parameters, we find that

U™ = (1 = p) AT" 4 %y.z[r +{o =) r']" -0,

; (38)
%r"+(‘_",‘u"-%rﬂlv'-‘ '__:_')U"] ..‘
'with the boundary conditions /38
v-o.v"+%@-}ﬁgr-o.r-n.a-oamn; (39)

This dimensionless eipenvalue problem can then be associated
with the variation problem, so that the connection with one of

the direct methods of variational calculus has been established.

4:f@W+:TﬂM—:fhﬂ*NT”“Hdrw"k";)rwﬂhl'" ol

In order to approximately calculate the aipgenvalues using the
Ritz method, the variational problem (40) 1is stated in algebraie
terms. For this purpose, we w'll use a single term trial solution

for the calculation discussed here

Ulg) = a,Uyle),  T(a) = hT,(o) . (41)
We will use the eipgen funetions

U|-"T|-"linﬂd (“t’))

as position functions, which are the eiren functions of the tipping
support for which the nonlinear parts in the torsion q (14) can be
ignored [/1]. These satlisfy all of the geometriec boundary conditions
in (39) as required.

0 01 02 03 04 0S5

Figure 3: Critical tipping moment of a rectangular cross=section
profile support.

After carrying out the varlations given in (40), we obtain a




A —

homogeneous equation system for tna free coefficlients Ay b1 in |
(41), If the assoclated determinant 1s set equal to 0, then w!'} |
(36) and (37) we find the corresponding critical tipping momeni
with the lowest order to be

My, = U
If, as in (4], we had ignored the rod inclination during the
differentiation, we would have obtalned

. Varekl,
My, = 0000 (4h)
&t 1
On the other hand, from rigorous nonlinear equations we would
have obtalned

GlrEJy ,
V.-.ﬂn ..._7: (45)

1 T<< EJ T all of the formulas (43) to
(45) lead to the Prandtl tipping moment

My = 7G] E ]y (46)

We will qualify our result using the example of a rectangular
steel strip (Height h, width b, G = 0,385E), The nondimensional
tipping moments Mki/mko (1 =1, 2, 3) are plotted as a function of
the width-height ratio b/h in the range 0 < b/h < 1/2, Bee Figure
3). It is known that the critical moment can increase considerably
with increasing width. Comparison of the result shows the useful- /168
nesg of the approximation (43) and (44). It seems that (44) is
even more sultable in practice, because in this way we have a
certain safety margin., By using a multiple-term trial solution
(41) it would be possible to improve the result (43). From the
theoretical point of view, (U43) 1s better than (U4),

5. SUMMARY AND OVERVIEW

Tipping problems of elastic rods are of theoretical and prac-
tical interest. Usually, one hags to deal wilth complicated boundary
value problems. This means that 1t 1s advantageous to derive the

L B




differential equations and boundary conditions from a variational
prineciple,.

One of the main assumptions in this process up to the present
was a very small deviation between the undeformed and deformed
rod axlis, so that differentiation with respect to the positicn
coordinates could be cons‘dered to be identical, Here this re-
striction 1s disregarded, If the central line does not experlence
any longitudinal extension, then frcm the analogy between the motions
of a gyroscope and the elastic behavior of a rod, one can derive
nonlinear relationships for the curvatures and for the torsion.

These compliment previously known relationships because non-
linearities occur in the torsion which are of the same order of |
magnitude as in the other characteristics of the rod axis.

Using the method of small oscillations of smail expanded
boundary value problem, we derive the corresponding stability
ecuations, Using the simple example of a bending-tipping problem
we demonstrate the improved performance of the suggested equations.
Among other things, we find that the 2onstant direction moment
and the following moments are not conservative [10], a fact
which 1is known from twisted rods.

If 1t 1s desired to extend our results to the compressed
tipping rod, then a nonlinear longitudinal extension will be
added to the previously mentloned nonlinear quantities. We may
assume that the expressions (14) and (15) for Py, 2 and q will
remaln unchanged and that the expression

poe ' oy (0 0 k)

will be used for the extension of the rod longitudinal axils, Just
like in [4],
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