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DYNAMICAL THEORY OF STABILITY FOR ELASTIC RODS

WTTH NONLINEAR CURVATTJRF AND TWIST

J. Wauer

SUMMARY
	

/161*

Considering non-linear terms In the curvature as well as in

the twist the governtn; boundary value problem for lateral ben-

ding of elastic, transverse loaded rods are formulated by means

of Hamilton's Principle. Using the method of small vibrations,

the associated linearized equations of stability are derived,

which complete the currently accepted relations. The example

of the simplest lateral bending problem illustrate the Improved

effect of the proposed equations.

1. PROBLEM FORMULATION

The stability equations which describe the tipping of elastic

rods have been derived several times recently [1, 2, 3, 4] with

the assumption that the deviation between the undeformed and the

deformed rod axis is so small that differentiations with respect

to the two important position coordinates can be considered to

be identical.

This restriction will be given up here. The Hamilton principle

described in [4] will be the point of departure for our analysis.

Therefore, it is the purpose of this paper to formulate this

variational principle for descrihing; the kinetic tipping; with

more extensive consideration of the rod curvature djr-iip, defor-

mation. Synthetic equilibrium analyses, which is the continuation

*Numbers in margin indicate pagination in original foreign text.
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of the Federhofer analysis, were performed early by Chwalla [5].

However, these have been forgotten. It was only Ziegler [61 who

considered this effect in the case of a compressed and twisted

circular cross section. However, he did not pursue the most

Important aspects of this process. In our paper, it will also

not be possible to derive the consequences for the most general

tipping problem of elastic rods with long1tudinal and transverse

loading. We have to restrict ourselves to cases where the rod

axis does not experience any longitudinal extension.

Using the Hamilton principle, we obtain the nonlinear boundary

value problem from a variation. After this, one can transfer to

the linearized stability equations using, the method of small

oscillations.

In order to focus the reader's attention to the important

aspects of the problem, we will consider the Prandtl tipping

rod with a pure moment load, without referring to a concrete

special case.

2. VARIATIONAL PRI14CIPLE

Let us consider an originally st.rnfight rod without. preliminary 116C,

deformations of length 1. We assume that it has the constant mat,.

bending stiffnesses EJ 1 , EJ 2 (E modulus of elasticity, J 1 2 area

moments of inertia), the constant twisting stiffness OJ T (r shear

modulus, If s- torsion area moment) and the constant mass per unit

of length r , -== C,A (e Density, A cross-section area.)

We will -^ssurju all of the usual assumptions made in classical

technical bending theory, and assume pure Saint-Venant torsion.

We assume that. the shear center and the center of gravity coincide.

Also we will not consi:itr the influences of damping.

The principle of Ham i 1 * -,r.
r,	 i,

Af(T -- V,	 F.)dt+f6Wdt=n	 (1)
a	 6

Is convenien'.1 ,, used fc , r the syst-matic analysis. 	 In order to

evaluate it, we therefcre must fi. , st determine the kinetic energy

T, the elastic potential V 1 , the potential of the external forces

Va , and the virtual work 6W of the potential-free forces.
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The kinetic energy Is given by

7' = ; P f I;f r i , d.I ] ,Is ,	 (2)

where ep is the absolute velocity of a material rod particle P;
S,points along the arc length of the rod which has a curvature ire

its general position.

The elastic potential V i is calculated from the sum of the

shape change Q nerg,y for bending*
r

Vra	 i lif,f t, ds +'i Ej,fr, ds 	(3)
o	 n

and for twisting,

i (;J r f
O

where p ly 2 are the curvatures and q is the torsion of the rod axis

[7, 81.

These relationships can be generalized for the more general

tipping process for both transverse and axial loading, by adding

the following longitudinal extension energy
I

V,L =,huffs ds,	 (5)
O

within the elastic potential V i , where e is the longitudinal ex-

tension of the central line of the rod.

We will discuss the calculation of V  and dW later.

3. 1'iNALYSIS OF THE STATE OF DEFORMATION

Two coordinate systems shown in Figure 1 are used to describe

the rod deformations. A first, space-fixed x, y, z reference

system (unit vectors e,.e,,,e, ) is attached to one of the rod ends,
where the z-axis eo{ncides with the undeformci rod axis. A second

body-fixed ^, n, C system (unit vectors epeq , et ) is established

at an arbitrary point z. It points along' the m.,_,in moments of in-
ertia of a cross-section and is rotated with respect to the space-

fixed system, and it is also tangential to the central line of the

rod.	 _	 t,

Figure 1: Deformat{nn state of a rod, cross section.
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1

A
dt	 t

Figure 2: Description of deformation using Euler angles.

Consequently, the coordinate origin S' of the body-fixed system 	 ^lr
is therefore the geometric locus of all deformed cross-sectional

centers of gravity. In the general case, it is displaced by the

coordinates u, v, with respect, to the initial point S. These

quantities are measured in the space-fixed x, y, z system. The 	 +

second coordinate system, whose rotation with respect to the

(x ) y, z) system, 13 described using the :ruler angles y►, fl, q' ac-
cording to figure 2, describes the stiffnesses EJ 1 2 a Y d GJT.

Primes will refer to derivatives with respect to the arc length

S. From the Kirchhoff r^yroscope analogy [9], one finds the

kinematic relationships

p,'_ V'' sin 0 sin q, 4-O'cog q, , tg=y1'sinAcosT—O'^inq, , q=yp ' rng 64-q1 '	 (6)

between the characteristics p l 2 , q of the rod axis and the Euler

angles *r, fl, q

As can be sEen from Figure 2, the differential quotients

X , — sin fl Sill y,, y' = —Sin it cns V, , s' = cos fl	 (7 )

relate the space-fixed coordinates x, y, z and the Euler angles

y fl, 4r.

This means we are now in the position of formulating the

Hamilton principle (1) as a function of t.hc deformation quanti-

ties v, i), T . In order to specify the boundary condItt:)ns, however,

it is necessary to transfer from the Euler angles Vr,O,T to the

center of gravity displacements u, v and the effective rotation

of a cross-section T.
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We will assume small deformations, and therefore in (6) and
(7) we will assume a small inclination of the central line of

the rod with respect to the space-fixed z-axis. However, we will

not linearize with respect to 0 as wNs done In [2], but we will

expand up to quadratic terms. Then, from (6), we obtain

Tt -a y ' '0 sin it	 O' crn, q, ,	 y'0 cos 9, - 0' %in m ,	 q - y' (t -- g-	 q•'	 ( ^ )

and from (7) we find

X , - 0 sin Y.	 y'	 -0 cos p,	 (9)

The two first equations in (9) also apply for the derivatives of

the dependent variables u, v in the x and y directions [10). If

we differentiate with respect to the aro length s, we then find

u" — d'siny , 4-Oy+'cosp, to" d-0' Cos y++0}n'•inp. 	 ( i0)

If we formulate the expressions

u" fln (p } a,) — v" cos (y, + 4') ,	 u" cos (p -4- p) .+. v" sin (yr + Y') l	 ( 11 )

we can see that they coincide with pl 21 q according to (6) if

we use an addition theorem, where we take into account the "Quad-

ratic approximation". According to figure 2, the effective ro-

tation angle of a rod cross-section angle is	 /16

T	 Y' -+-T	 (12)

for small inclinations. Therefore, the curvatures p ly 2 and the

torsion q can be written in the form

/I, ^ /t" ci11 T — U" cnc T ,	 'is	 v' roc T + b" Kin r,	 ( 1 ^ )

q	 T' — i ("'v" — Wit")	 (14)

which only contain the usual quantities u, v, T and their deriva-

tives.

If we also assume a small twist angle T. then in addition to

the torsion q (14) we can write the curvatures p l 2 in the fol-

lowing form

Pi	 - V IP 
+v#", 	 /'s - it" 4- T

v"	
(15)

up to and including quadratic coupling terms. Therefore, we have a

consistent approximation for the quantities p l 2 , q which are based

on the theory of elasticity, and which is not found in the literature
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according to research by the author. Ther a , one usually finds

p, - -d' 4 rn" ,	 P,	 W, + rr,"	 9 s to	 (16 )

[2 9 41. This is a consequence of the initially formulated assump-

tion that derivatives with respect to s and z can be considered to

be identical. The coupling terms in (14), (15) have the same order

of magnitude, and therefore only the approximation given here will

be completely satisfactory, even though in practice the original

relationship (16) will remain useful.

When calculating; the absolute velocity, there are no special

features compared with [41. Wo find

	

r p -- (u — gr)r,+ (i+ f,Oe" 	 (17)

where E, q are the coordinates of P' in the local systems and dots

'ire derivatives with respect to time.

This means that the potential V i and the kinetic energy T for

the tipping support can be formulated without the longitudinal

extension of the rod axis, and without even considering; a specific

problem. If we introdii^e the rarll is nf inertia k 

T=^i I (us+ vs-4-k;i1 )ds 	 (18)

e

	

which is known from the 1 iterature [4 ], 	 w^_-, i as

	

t	 i	 r

	

V - Fs' r (- a„ + r11„)S ds +'j(^'W' _^ ri ,") , ds + ^I f	 a	 ds	 (19)

	

 I
T

, _r - ,'")l
J	

r
I

	

o	 ^	 a

`.f (l ea), (15) are substituted in (3), (4).

4. TIPPING ROD WITH MOMENT LOAD

In order to calculate the external potential V  in the virtual.

work 6W, one must specify the problem. We will consider a bending

rod loaded by discrete end moments. We will not consider contin-

uous bending;	 moments, or continuously distriuuted forces and

torsion moments.

In addition to the constant direction moment pairs

,11n,(s = o) - 111,r, ,	 111 1,,(1	 1) -- -411.r,	 ( 20)

ate will assume the associated loads
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,1l„r(i ,t o) - Alter(l) ,	 111„' (!:	 1)	 - Alrer(I)
	

(21)

/165

Together they bend the rod in the b •isic state around the prin-

cipal axis which is stiffer (bending stiffness )~J 1 ), before the

stability limit is reached.

According to the Kirchhoff analogy, we car. then use the reln-

t ionshi p

.!N - ( '11 1 Pr I Al' t, I Al q) A.e	
(22)

for calculating the work [9]. The curvatures p l 2 and the torsion

q are known as a function of u, v, t from (14), (15). MC Mn , Mr

are the components of the moment vectors (20), (21) in the &, q,

system. Therefore, we must only decompose the constant direction

moments (20) into body-fixed coordinates. If we carry out this

decomposition, then M B can be written in the form

Al l,.(o) = Af jej — re j 4- 14 'et)6.	 AIn.U) = Al,(— et -} re, - Wrt)jr	 (23)

id according to (22), we finally fret

All , - A1,01' - u' Ar)j; + Al r (Al" - r hr,')I:.	 (211)

It is found that a moment load which follows the rod as well as a

constant direction moment load does riot have a potential. Therefore,

we have

1''	 n	 (25)

and the virtual work is finally 'ven by (24).

The variations spocifled in (1), can then be evaluated using;

	

(18), (19), (24), and (25).	 The results are the coupled and non-

linear motion equations for tipping in space of an olastic rod,

with constant direction and following mom:a nt loads and nonlinear

boundary conditions. We find the following for the bending; defor-

mations

/i 	 f ( F h - F Ir) (rr 
„) „ %.fir [ (i 'v")" ♦ ( r r'')") ♦ 111e = o I

EJr...... + (1'.11 — F'Jr) (T11")" -- =r f (r"fr") 
+- (r'a .)") + it" - o I}	 (26)

where
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FI/ 11 " + (FI/ — Fll) r1l" - t- TS'r' + AffI W o f)r	 w' 0,

	

FJ/u .,r 4_ 
(FI/ — FJf) 

(TTr„ ). + r'T (T'v')' — o or	 u - 0,

	

FJIv" + (FJg — F./1)TU" - T 
T"M (^!, 1tl^) O >r	 vs,  O ,

	

F rfl,rrr + (FI/ — EI I) (TI/")' — ` ! T (T'fl')" = O Or	 v — O

s 
a 0	 (27)and 1

(28)

(29)

For the twist, we find

r, /
r 1 T ' _ 1 ( fl r Tr rr 	 ,r r f/ rr)^r — ( F^f/ — f=J1) /1""T ^ "I — ^Ik^T

where

GJT[T" _ -; 
(fl .^rr _ f,u)) + 111,u'	 o or, 	 T ! o ,	 i _-o -ind I

Here we will investirate the stability basic stat, , which here

is a pure bending deformation v  around the stiffest bending

principle axes. On top of this, we superimpose the infinitesimal

additional displacements

f/ =0 +i, v=ve4•v, r=•o+T	 (30)

which are the components of the basic motion. These trial solu-

tions (30) are substituted into the nonlinear boundary value prob-

lem (26) to (29). For the zero-order terms in the u, v, T we

find a boundary value problem whose nolution can be given in the

form
M, 	 ntf	At, 4 Mi l 	!)	 ^'( )vo e— cowit, , no - 1 .4 1-,	 X41	 !

The first order terms in the dashed quad?.it.ies (we leave the dash

	

off) results in the differential equations 	 /106

^;, tl ^l .rrr 
.f_ (I: J, — r.11) ( t '' T ) " + (-fir ^(TroT )' -^ ( r '^ T ) " ) 4- off/ .. „'I/	

(32)
1 1

Gjl L T" — _ ( T 'o u" — voN"" )
J — ( FI/ — f:.11) T!of/ " — rl k;T m r,

and the boundary conditions

	

Fj1 1/" 1 ( (F I/ — F.II) +
", + 11lTl T +' l rTr o 	 or	 u'	 o,

s	 0	 (33)
F^lTl nr { 

(1 J! _ E' fl) (T'nT)' + ^ T (f'„T ')'	 n	 r	 fl = O ,	
and 1

G	 T' —	 (T'oW — T"oft") i + .11 , 1" = O	 t	 O

which are the linear stability equat-ion:r. A comparison shows

that the nonlinear initial problem (26) - X29) and the stability

(31)
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equations (32), (33) are a furtner continuation of the relationships
g1ven in [4], causod by the torsion q which has been expanded by

the nonlinear terms q (14).

As a specific example, we will first consider a rod which is

supported by forks. Just like a ,Joint, such i attachment cannot

take up any bending, moment; however, it does prevent the transverse

displacement and the twisting of the end cross-section. The stabi-

lity equations are subotantially simplified and the interesting

difference between the foilow.ng and the constant direction end

moments Is lost. Both are conservative and we will simply write

M for their sum (Mr + M f ) in the future. For the theory, this

deficiency is not very serious, because the more complete consi-

deration of rod torsion (1 4 ) is still in effect. There only exist

a number of experimental 1• .cults for r, tipping support supported

by forks.

This means that the Inertia terms in (32), (33) do not have to

be carried along for this special case. The tipping moment .^f

Interest is the smallest load in which the non-trivial equllibrium

position exists. This means that it is the lowest branching point

of the eigen value problem (32), (33) which does riot involve time.

Because of the fact that the coefficients partially depend on

time according to (31), it is not poss'_ble co rigorously calculate

the corresponding elgen values. An approximat, calculation must

be used. In order to avoid special rod dimensions, it is appro-

priate to make the system (32) and the corresponding boundary

conditions (33) dimensionless. In addition to the position coor-
dinate

l	
( 34)

we will introduce the nondir,unsional variables

	

v=r, r=t,	 (35)

the stiffness ratios

	

Ei'	 GJr	 ( 36)

	

Yt a It/ ► 	 Y2 = I:J ►
and the eigenvalue

(37).►^r

9



1,5

tc

1,00
0.1	 0.1	 0.3	 0A	 0,5

t /h -

If we use the new -nordinates and parameters, we find that

U,,,, _ (t — y,) AT" +	 y,a. T -} (a — -') T'," .. o . I
38)

V17
' + ( t — VI) All"	 ^YiA l tl —(a—	 U"J ..0 I

with the boundary condi', ! ins 	 10 7

tl — o, U"+ -^(a-- ^,y,^11' - 0, Tin, n z A;lPld t. 	 (39)

This dimensionless eit-env-! UC problem can then be as.iociated
with the variation problem, so that the connection with one -)f

the direct methods of variational calculus has been ,	iblished.

P(^„^ + Y1	 do	 J [2(1 - Y^) Tl1,. )_ y,[7"fl' — Ca - 1 / T'[I"ll da l -	 (40)

o ,-,	 l	 /	 11 J

..^ order to approximately calculate the eigenvalues using; the
Ritz method, the variational problem (40) is stated in algebraic

terms. For this purpose, we w'll use a single term trial solution

for the calculation discussed here

U(a) — ai 171(a) .	 T(a) - h, T,(a) .	 (41)

We will use the eitren functions

17, = 7't w- vin;ra	 (42)

as position functions, which are the elven functions of the tipping
support for which the nonlinear parts in the torsion 9 (14) can be

Ignored [h]. These satisfy all of the geometric boundary conditions

In (39) as required.

Figure 3: Critical tipping moment of a rectangular cross—section
profile support.

After carrying out the variations )liven in (40), we obtain a

10



homogeneous oquation system for • +ha free coefficients a I , b l in

(41). If the associated determinant. is set equal to 0, then w,

(36) and (37) we find the corresponding critical tippin g. moment,

with the lowest order to be
 ̂

k!l '041
If, as in [41, we had ignored the rod inclination during the

differentiation, wo would have obtained

	

X Y(:1r^ 1,	 ( 4 4 )
•^ 1 K1 —	 r J,

J,
On the other hand, from r', )rous nonlinear equations we would

hav,- obtained
^lr^I^	

,45)
F1

[9].	 ',jr EJ 2 << EjI and GJ T << 1• J l , all of the formulas ( u 3) to

(45) lead to the Prandtl tipping moment

We will. qualify our, result using-; the example o f a rectangular

steel strip (Height h, width b, G a 0.385E). The nondimensional

tipping; moments Mki/Mko (i = 1, 2 9 3) are plotted as a function of

the width-height ratio h/h in the range 0 < b/h < 112, bee Figure

3). It is known that the oritioal moment can increase oonsiderably

with incroasing width. Comparison of the result shows the useful- /168

nest of the approximation (43) and (44). It seems that (44) is

even more suitable in practice, because in this way we have a

certain safety margin. By using a multiple-term trial solution

(41) it would be possible to improve the result (43). From the

theoretical point of view, (43) is better than (44).

SUMMARY AND DVFRVIEW

Tipping problems of elastic rods are of theoretical and prac-

tical. interest. Usually, one has to deal with complicated boundary

value problems. This means that it is advantageous to derive the

11
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differential equations and boundary conditions from a variational

principle.

One of the main assumptions in this process up to the present

was a very small deviation between the undeformed and deformed

rod axis, so that differentiation with respect to the position

coordinates could be considered to be identical. Here this re-

striction is disregarded. If the central line does not experience

any longitudinal extension, then from the analogy between the motions

of a gyroscope and the elac3tic behavior of a rod, one can derive

nonlinear relationships for the curvatures and for the torsion.

These compliment previously known 	 relationships because non-

linearities occur in the torsion which are of the same order of

magnitude as in the other characteristics of the rod axis.

Using the method of small oscillations of smail expanded

boundary value problem, we derive the corresponding, stability

e q uations. Using the simple example of a bendir-g-tipping problem

we demonstrate the improved perfo rtancE. of the suggested equations.

Among other things, we find that the -.-onstant dir-ection moment

and 'he following; moments are not conservative [10], a fact

whir.h is known from twisted rods.

If it is desired to extend our results to the compressed

tipping rod, then a nonlinear longitudinal extension will be

added to the previously mentioned nonlinear quantities. We may

assume that the expressions (14) and (15) for p ly 2 and q will

remain unchanged and that the expression

P — to y + -VI (11 '2 + ti ll f k',T'I)

11 be used for the extension of the rod longitudinal axis, Just

lke in [4].
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