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INTRODUCTION

In ECON Report 76-243-1, we presented the mathematical formu-
lation and the basic results of ECON's optimal decision model of
wheat production and distribution. The present report will serve
to document the computer programs written to implement the model.

The programs were written in APL, an extremely compact and powerful
language particularly well suited to this mbde], which makes extensive
use of matrix manipulations.

Chapter‘1 of this report presents the algorithms used and gives
listings of and descriptive information on the APL programs used.
Chapter 2 gives an account of possible changes in input data.

This report should be used in conjunction with ECON Report 76-243-1,

which gives a complete mathematical description of the model.



1. ALGORITHMS AND NOTATION

1.1 Overview and Stages of Calculations

Essentially, the algorithms used ca]cu]até value of information as out-
put in response to two kinds of inputs: economic parameters such-as elas-
ticities, interest rates and typical production levels; and numerical descrip-
tions of performance of production information systems. The stages involved
in these calculations are shown in Figure 1.1.

For each of two production information syétems, called "current system"
and "improved system," calculations are performed in three stages, dynamic
programming, simulation, and function evaluation.

The first stage is dynamic programming, of which the primary output
consists of the coefficients of the value functions. The dynamic programming
stage requires two kinds of inputs: the economic parameters; and the statis-
tical parameters on inventories of stored and growing crops. These statistical
parameters are mathematically determined by the functional equations solved
in the dynamic programming stage. Ideally, then, they would be only internal
variables to this stage, rather than input variables. However, we have found
no satisfactory means of solving for these variables within the dynamic pro-
gramming calculations, so an iterative procedure is used, in which the decision
rules determined as a by-product in the dynamic programming calculations are
used to simulate the system (the second stage), and then the statistics collec-
ted from the simulation are used as input for a new pass through the dynamic
programming calculations. This alternation is continued until convergence 1is

achieved. The third stage of the calculations (function evaluation) produces
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the optimal mean present value to the United States, and the whole world,
of the produced and distributed wheat, given a specified starting level of
storage and growing inventories.

After finding the optimal mean present value for both the current
information system and the improved information system, we find the value of
the information improvement by taking the difference of these values.

The following (18) steps are involved in performing a complete value of
information caiculation with the model:

1. Initia]ize'economic parameters.

2. Initialize parameters specific to current information system,

3. Dynamic programming--find decision rules and quadratic and
linear coefficients of world value functions.

4. Simulate to find statistical parameters (current information
system).

5. Check for convergence of statistical parameters. If not
converged, update and go to (3).

6. Find quadratic and linear coefficients of U.S. value functions.
7. Find constant terms of value functions.
8. Simulate to collect numerous statistics.

9.. Evaluate world and U.S. value functions for selected starting
conditions. )

10. Initialize parameters specific to improved information system.

11. Dynamic programming--find decision rules and quadratic and
linear coefficients of world value functions.

12. Simulate to find statistical parameters (improved information
system).

13. Check for convergence of statistical parameters. If not
converged, update and go to (11).



14.
15.
16.
17.

18.

Find quadratic and linear coefficients of U.S. value functions.

Find constant terms of value functions.

Simulate to collect numerous statistics.

Evaluate world and U.S. value functions for selected starting
conditions. :

Value of information improvement--form difference of results
of (9) and (17).

1.2 Details on Stages

1.2.1

Initialization

The initialization of the economic parameters consists of the following

steps.

Step 1

(a)
(b)

(c)

(g)

Input
m = number of periods in year.
Ed = annual price elasticity of demand for United States
and rest of world. This is a 2-vector.
Ec - cpst elasticity of production for United States and
rest of world by period of year. This is a matrix of shape
mx 2.
P = average price in United States and rest of world. This
is a 2-vector.
C - average annual consumption in United States and rest
of world. This is a 2-vector.
I = average planting in United States and rest of world by
period of year. This is a matrix of shape m x 2.

n = number of grid points in each dimension of the state vector

for purposes of quadratic approximation of value function.



(h)
(1)

()

(k)
(£)

r = annual discount rate.

&= average annual exports from United States to rest
of worid.

T = quadratic coefficient in cost of transportation

function.

w = linear coefficient in cost of transportation function.

D = dimension of state vector by period. This is a

vector or length m.

Step 2 Compute periodic demand and production function parameters,

and discount factor.

price = B + 2 a x period's consumption.
cost = ¢ + 2 y x period's production.
() a=mP /(2CE,), a 2-vector.
(b) B=P (1 - %—) , a 2-vector.
d
(c) iy < P,/ (2 nij Ec,ij) , 1=1 e ,m; j=1,2.
Y is a matrix of shape m x 2.
= - 1 i = 3 =
(d) Gij ?i s] Ec,ij) s, 1 =1,...,m; j=1,2.
(e) o= (TIF)WQ discount factor for a single period.
Step 3 Definition of period-independent part of constant arrays.

a 0 0 Bl
Al = {0 -t 0 Bl = | -w

0 0 a, 62

a, oy 0 Bl
A2 = o 0 0 B2 = By



Step 4 Initial estimates of value function coefficients and statistical

parameters. Al1l are chosen by rough heuristic procedure. Values are

refined during calculations.

(a) Qijk « =13 i=1, ..., 63 J=1, ...,4; k=1, ..., 4.
Quadratic coefficients of world value functions

() Q¥ «q
ijk

ik Quadratic coefficients of United States

value functions

(c) L_ij
of world value functions

< 0; i=1, ..., 63 j=1, ..., 4. Linear coefficients

(d) LY <« 0. Linear coefficients of United States value
iJ
functions.
(e) 55 350 0 0
45 300 0 0
35 40 250 250

25 40 200 250

15 40 150 250
5 50 100 250

mean values of grid point components in state space.

()

10 30 0 0
10 30 0 0
5 1 25 5

I « ’
X 4 1 25 5
3 ] 25 5
2 1 25 5

standard deviations of grid point components in state space



1.2.2 Current System Initialization

Step 1 Define 2 x 10 array, 22, specifying the performance of the
current information system.

Step 2 If better approximations of Q, QY, L, LY, U,» and L, are
available than those of Section 1.2.1, initialize them accordingly.

1.2.3 Dynamic Programming

Step 1 i = 6, period counter.

Step 2 Define constant arrays specifying state transformation and

incremental value functions.

(a) New.rows and columns are inserted, depending on the value of i, in
the matrices Al, A2, to create the three dimensional array A. The
insertions are the period-dependent elements. The first component
of A is used to label the two value functions (whole world and
United States). For each fixed value j of the first component, Aj

is a symmetric matrix as follows. If i =2 or i =5, then

a 0 0 0 0
0 -1 0 0 0
Al = 0 0 Y31 0 s
0 0 0 a, 0
0 0 0 0 “Yi,
al al 0 0 0
a 0 0 0 0
A2 = 0 0 -Yil 0 0 ’
0 0 0 0 0



Ifi=1,1=3, ori =4, then

A, = Al, A, = A2.

1 2
If i = 6, then A1 and A2 are just as for Fhe case of i = 2, except the
third row and third column are omitted.
(b) New elements are inserted, depending on the value of i, before

and after element 3 of Bl and B2, to create the matrix B. The first

component of B (row index) is used to label the two value functions.

If i =20ri=25, then

. B, w S B 855
B2 B, 61'2 0 0
If i =1,4=3, 0ori=4, then B is the 2 x 3 matrix given by

()

If i = 6, then B is just as for the case of i = 2, except that

the third column is omitted.

(c) The matrix C is defined, depending on the value of i, for use
in building the quadratic programming tableau.

Ifi=1,1i=3, 0ori=4, then

1 1 0
C =
0 0 1
If i=2, ori=25, then
1 1 0 0 0
C =
0 0 0 1 0
If i = 6, then



(d) State transformation matrices M and N are defined, depending on
the value of i, as follows.

If i =1, then

1 0 -1 -1 0
M= , N =
0 1 0 0 -1
If i = 2, then
1 0 -1 -1 0 0 0
0 0 0 0 ] 0 0
M= ,N=
0 1 0 1 0 -1 0
0 0 0 0 0 1
If i =3o0ori-=4, then
] 0 0 0 -1 -] 0
0 1 0 0 0 0 0
M= ,N=
0 0 1 0 0 1 -1
0 0 0 1 0 0 0
If i = 5, then
1 0 0 0 ~1 -1 0 0 0 0
0 1 0 0 0 0 0 0 0 0
M= , N:
0 0 ] 0 0 ] 0 0 -l 0
0 0 0 1 0 0 0 0 0 1
If i = 6, then
1 1 0 0 ~] -1 0 0
M= , N =
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Step 3 Build a matrix X whose columns are the grid points for
value function approximation. X has Di rows and NDi columns. In
each coordinate j of the state space (of dimension Di)’ a set éj of
n equally spaced points in formed with mean Ux,j and standard devi-
ation Zx .. Each column of X is formed from one of the NDi combi -

N
nations of elements, the first element from )ﬁ ., the second from

3

Step 4 j =1, counter for state points.

,» +--» the Dy th from XDi'

Step 5 Quadratic Programming
(a) S = column j of X, the state point.
(b) E=A +pN QN
(c) F =By + 20 Quq MSN + 0 Ly, N
(d) G = p(S'M Q1+] MS + Li+] MS).
(e) S if Di = 2

4

(s)» s,) if D,
(Note on notation. When i = 6, we take i + 1 reduced mod 6.
That is, for this case, i + 1 = 1. When Di+1 = 2, the matrix
Qi+1 is 4 x 4, but only the upper left block of size 2 x 2
is significant--the other elements are never used nor changed
during the algorithm. For this case, we write "Qi+1” to
mean only this 2 x 2 matrix. Similarly, "Li+1" means only
the first Di+1 elements of the 4-vector.)
(f) Find 1-stage decision vector Y to maximize Y'E Y + Y'F

subject to the constraints

Y>>0, CY <D.
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Step 6 Evaluate the cumulative value function for period i at
point S.
Vi T VE 1+ Gin

Step 7 End of loop on state points.

Y + Y'Fi+

(a) J <3+

(b) Go to Step 5 if J < nDi , Step & otherwise.

Step 8 Find period-i coefficients of cumulative value function
by least squares approximation.
(a) Form the matrix MAT which, when postmultiplied by the
values of a function at the points which are the columns
of X, produces the coefficients of the least squares fit
to the function at those points.
(b) COEFF = (MAT)V
(c) Select Q and L from COEFF
Step 9 End of loop on periods.
(a) i<1-1
(b) Go to Step 2 if i > 1, Step 10 otherwise.
Step 10 End of loop for convergence.
Go to Step 1 if Q and L are unchanged from last iteration; otherwise
stop.
1.2.4 Simulation
The simulation algorithm is an adaptation of the dynamic programming
algorithm. It is run after the value function coefficients Q and L have
been calculated, and uses many of the same variables.
Step 1 Initialization
(a) Input 32 array, a 2 x 10 matrix giving the means of the

LS

squares of the stochastic term ¢, of the state transformation.
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(b) Input n, the number of years of simulation to be performed.

(c) Create standard deviation array SD for use in sampling
values of ¢i by reshaping the 22 array and taking square root.
In its original shape, the first row refers to the Untied States,
and the second to the rest of the world. Each row contains terms
referring to the growing crop before the beginning of the crop
year, followed by terms referring to the same crop during the
crop year, considered to begin June 1. The reshaped array has
shape 4 x m; the growing crop and current crop at a given time
‘of year are represented by different rows in the same column.

Formally, the process is as follows.

2 %
SD.. =1ZL \
where
1 1 1 1 1 1
2 1 1 1 1 2
T = .
0 2 2 2 2 0
0 2 2 2 2 0
7 8 9 10 5
U = ] 2 3 4

10 0

o O o o
~
o
w

2 .
and Zo o is taken to be O.



(d)

(f)
(g)

(h)

13

Select vector ¢ with 4nm elements by random sampling. For each
of the mn periods of the simulation, four successive elements of
% are obtained from discrete uniform distributions with mean 0 and
standard deviations SD, i, where i i§ the index (1 to 6) of the
current period.

Find sfandard deviations SD' over 2n years of the blocks of 4m
adjacent elements of the vector (o, - ¢).

sD « 5D / sD

Repeat step (d). At this point, the sample points comprising
(@,'- ®) have mean 0 and the standard deviations of the original
SD array.

S = first two components of first row of Ux’ the mean inventory

level vector at time 1.

, initialize

O O O O O O
O O O O o O
O O O O O O
O O O O O O

mean and standard deviation of state vector.

Step 2 & « 0, “counter for & vector.

Step 3 i « 6, period counter.

Step 4 Increment grid parameter accumulators.

S
(a) U .=« Ux,i t 5 (1f di 2, add zero components to S).

X 5
x,i T “x,i T 2n (1f di

2, add two zero components to S).
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Step 5 Define constant arrays specifying state transformation and
incremental value functions. This step is identical to Step 2 of
Section 1.2.3.
Step 6 Quadratic Programming. This step.is identical to Step 5 of
Section 1.2.3, éxcept that 5a is omitted, since S has a1ready been
selected.
Step 7 Apply state transformétion to get next period's state vector.

(3) S < MS + NV + 80,95 9g420 a0 Fgua)

(b) 2«2+ 4 |
Step 8 End of loop on periods.

(a) 1 «i+1

(b) Go to Step 4 if i < 6, Step 9 otherwise.
Step 9 End of loop on years.

(a) k<«k+1

(b) Go to Step 3 if k < n, Step 10 otherwise.
Step 10 End of loop on antithetic variates.

(@) ¢«-0¢

(b) Go to Step 2 if & < 8 mm, Step 11 otherwise.

Step 11 Complete statistical calculations.

1
2

Step 12 Stop.



1.2.5 United States Value Functions

The algorithm of this section is an extension of the dynamic pro-
gramming algorithm (Section 1.2.3) to calculate the United States value
function, as well as the world value function which is maximized.

Steps 1 through 5 Identical to Steps 1 through 5 of Section 1.2.3.

Step 6 Evaluate the cumulative value functions (world and United
States) for period i at point S.

- ! !
V., = Y Ei+1Y + Y Fi+1 + 6

i i+l °
E' = A, + PN'Qi N -
FY' = B, + 2005, MSN + oLY N .
G = p(S'MIQY, M + LY, MS)
Vi= YIEGY YR e el

Step 7 End of loops on state points.
(@) j«3j+1

Di, Step 8 otherwise.

(b) Go to Step 5 if j < n
Step 8 Find period-i coefficients of cumulative value function

(world and United States) by least squares approximation.

(a) New rows and columns are inserted, depending on the value
of i, in the matrices Al, A2, to create the three dimen-
sional array A. The insertions are the period-dependent
elements. The first component of A is used to label the

two value functions (whole world and United States). For

15

each fixed value j of the first component, Aj is a symetric

matrix as follows. If i = 2 or i = 5, then
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o 0 0 0 0
/ 0 -1 0 0 0
Al = 0 0 “Yi1 0 0 s
0 0 0 o, 0
\ 0 0 0 0 Yip |
. [ e 0 00 \
o 0 0 0 0
A, = 0 0 “Yi, 0 0 s
0 0 0 0 0
o o 0 0 o

Ifi=1,1=3,0ri=4, then
Al = Al, A2 = A2.
If 1 = 6, then A1 and A2 are just as for the case of i = 2,
except the third row and third column are omitted.
(b) COEFF « (MAT)V

COEFFU « (MAT)VY

—
(@]
~—

(d) Select Q, L, and KEF from COEFF; QY, LY, and KEFU from
COEFFU.
Step 9 End of loop on periods.
(a) i<«i-1
(b) Go to Step 2 if i > 1, Step 10 otherwise.
Step 10 End of loop for convergence. Go to Step 1 if any of Q, L,

Qu, LY are different from last iteration; otherwise stop.



1.2.6 Constant Terms

The constant terms of the cumulative value functions (world and
U.S.) are most efficiently calculated in this separate algorithm rather
than in the dynamic programming algorithm since convergence is slow and
the results are not needed for the determination of the decision rules,
but only for evaluation of the cumulative value functions.

Step 1 Initialization. Identical to Step 1 of Section 1.2.4.,

except (b) is omitted.

Step 2 i = 6, period counter.

Step 3 Update estimate of period-i constant terms of cumulative

value functions (world and U.S.).

D; |
(a) Ky« KEF; + p[. L 1+1,j,J} ’

J=1
i

y QY
(b) K; « KEFU, + p[ ot 2 (S 1+l,j,;] '

J=1

(Note on notation. When i=6, we take i+ 1 reduced mod 6, as
explained in the note after Step 6 of Section 1.2.3.).
Step 4 End of loop on periods
(a) i<«1i-1
(b) Go to Step 3 of i > 1, Step 5 otherwise.
Step 5 End of loops for convergence. If K or kY has changed since

last iteration, go to Step 2; otherwise Step 6.

Step 6 Stop.

17
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1.2.7 Statistics

The statistical summaries of the operation of the wheat markets are

obtained by simulation; this alogrithm is thus essentially the same as

that of Section 1.2.4, but additional quantities are tracked.

Step 1
(a)
(b)

(c)

Initialization

Input 52 array, a 2x10 matfix giving the means of the
squares of the stochastic terms ¢i of the state transfor-
mation.

Input n, the number of years of simulation to be performed.
Create standard deviation array SD for use in sampling
values of ®i by reshaping the 52 array and taking square
root. In its original shape, the first row refers to the
United States, and the second to the rest of the world.
Each row contains terms referring to the growing crop
before the beginning of the crop year, followed by terms
referring to the same crop during the crop year, considered
to begin June 1. The reshaped array has shape 4 xm; the
growing crop and current crop at a given time of year are
represented by different rows in the same column. Formally,

the process is as follows.

Ny

2
SD.., =|Z ,
ij Tij’bij



MULT «

where
1 1 1
2 1 1
T =
0 2 2
0 2 2
6 8 ¢
6 2 3
U:
0 8 9
0 2 3
2 .
and zo,o is taken to be O.
4 Cglgmns 9 Cglgmns-
“ . o hHh
6 6 6
%. %. %. 1 1 ]
%- %. %. 1T 1...1
< %. %. 1 1 1
R A
T

10

10

o

O”It—- mlt—l ‘”I"‘

o= o=

o O N

o O o

ofss

@l o=

12 Columns
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multiplier to weight tracked quantities for annual mean,

total, or present value calculations.

Select vector ¢ with 4nm elements by random sampling.

each of the mn periods of the simulation, four successive

p

2 2 2
p

3 3 3
p

4 4 4
o)

5 5 5
P

6 6 6
o)

For

elements of & are obtained from discrete uniform distribu-

tions with mean 0 and standard deviations SD 5 where i is

the index (1 to 6) of the current period.



(3)
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Find standard deviations SD’ over 2n years of the blocks
of 4m adjacent elements of the vector (&, -9).

SD «SD%/sp’

Repeat Step (d). At this point, the sample points com-
prising (¢, -®) have mean O and the standard deviations
of the original SD array.

S = first two components of first row of Ux’ the mean

ihventory lTevel vector at time 1.

p=VAR= (27 columns),

o o O O o o
o O o O o o
o O o o

o o

initialize mean and variance by period of 27 quantities to
be tracked for statistics. These are:

(1) U.S. Stock Estimate

(2) U.S. Growing Crop Estimate

(3) R.0.W. Stock Estimate

)
(4) R.0.W. Growing Crop Estimate
(5) U.S. Consumption

(6) U.S. Exports

(7) U.S. Planting

(8) R.0.W. Consumption



(9

1

—t

]

~N

)
-(10)
)
)

S~ W

(
(
(
(1
(1
(

1

(3, ]

(

o~
o 0 N O
~

N
o
~— N s

)
)
)
)
)

P Y e Y

—
Ny
—

n

nN
o

(k) up
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R.0.W. Planting

Random Change in U.S. Stock Estimate

Random Change in U.S. Growing Crop Estimate
Random Change in R.0.W. Stock Estimate
Random Change in R.0.W. Growing Crop Estimate
U.S. Price

R.0.W. Price

U.S. Export Revenue

U.S. Production Cost

R.0.W. Production Cost

R.0.W. Transportation Cost

U.S. Gross Welfare

R.0.W. Gross Welfare

World Net Welfare (all agents)

U.S. Net Welfare (all agents)

U.S. Consumers' Net Welfare

U.S. Producers' Net Welfare

R.0.W. Consumers' Net Welfare

R.0.W. Producers' Net Welfare

< AVAR « (0, 0O, ..., 0), initialize annual means and

variances of above 27 quantities.

(1) Input S, the state vector at the start of the simulation,

time 1.

Step 2 2 « 0, Counter for ¢ vector.

Step 3 1«6,

Period counter.

Step 4 Define constant arrays specifying state transformation and
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incremental value functions. This step is identical to Step 2 of

Section 1.2.3.

Step 5

Quadratic Programming. This step is identical to Step 5 of

Section }.2.3, except that 5a is omitted, since S has already been

selected.

Step 6 Build vector STATi of 27 quantities at time i for statistics.

(a)
(b)
(c)

(i)
Step 7

STAT.., ..., STAT. are taken from S.
il i4
STATis’ cens STAT1.9 are taken from Y.

(STATilO, cows STAT, ) < (@ghqs ~ovs Bppy)

(STAT114, STATilS) « (8l + 2al STATiS’ 82 + 2a2 STATiB)’
prices.
STAT, o + STAT. , x STAT, (export revenue).

(STATi STAT, ) <« (STATi7, STATig) x

17° ils8
(51 + (STAT, STATig)Yi)’ production cost

STAT].lg*—STAT].6 x (w+ STAT].6 x 1), transportation cost.

(STAT,, , STAT.,.) < (STAT,  x (B, + a x STAT,,),

j21
STAT}.8 x (52 +a, STATjs)), gross welfare

..o STAT,

(STAT, i27

- ! !
§22° ) <« Y/AY + Y’'B, net welfare.

Increment Statistical Accumulators.

STATi

M. « p, * s
2n

(STAT.)?

2

VAR, « VAR, +
1 1 n

Step 8 Apply state transformation to get next period's state vector.

(a)
(b)

S« MS + NY + (¢2+1, ces ¢Q+4).

2«2 +4.



Step 9 End of loop on periods.
(a) i+1+1
(b) Go to Step 4 if i < 6, Step 10 otherwise.

Step 10

6
2. STAT. x MULT,
i1 1 1

(a) My < Mgt >
n

2
(2 STAT; x MULT.)

(b) AVAR « AVAR + —= ,

2n

—

calculate annual means and mean squares of tracked
quantities.
Step 11 End of loop on years.
(a) k<« k+1
(b) Go to Step 3 if k < n, Step 12 otherwise.
Step 12 End of loop on antithetic variates.
(a) ¢« -9 .

(b) Go to Step 2 if 2 < 8mn, Step 13 otherwise.

Step 13
2
VAR -~ n
(a) VAR+(__T;I§—) ’
(AVAR = uj)n
(b) AVAR <« - ’

n-"%
complete calculation of periodic and annual variances of
tracked quantities.

Step 14 Print yu, Hp s VAR, and AVAR arrays.
Step 15 Stop.

23
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1.2.8 Evaluations

This algorithm evaluates the quadratic functions giving optimal mean

net present value to the whole world and to the United States, for chosen

arguments (starting inventory estimates). As an option, the algorithm

calculates the mean value of these value functions over the various pos-

sible starting inventory arguments.

Step 1 Input argument S = (sl, 52)

Step 2 If S =0, go to Step 5.

Step 3
(a) Print r[Kl + S'(L1 + QlS)], whole world value.
(b) Print r[K} + S'(L] + Q]S)], United States value.

Step 4 Go to Step 6.

Step 5
. 2 2 [}
(a) Print r[Qlll‘zx’ll + lezzx,l2 + Kl +S (Ll + QlS)J,
whole world mean value.
2

(b) Print r[QY..z. 2 + z

Qu
1117%,11 122
United States mean value.

u 1 U u
X,12 * Kl +3 (Ll * le)]’

Step 6 Stop.

1.2.9 Value of Information

The annual value of the improvement in information in the steady
state is obtained as follows.

Step 1 Do the evaluation of Step 1.2.8 (mean value case) with K,

L, Q, Ku, Lu,andQu corresponding to the current information system
and S obtained from a simulation corresponding to the current infor-
mation system (S is defined in Section 1.2.4, Step 1h). Denote the
results (wc, Vc)'
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Step 2 Do the evaluations of Step 1.2.8 with K, L, Q, KY, LY

, and
QY corresponding to the improved information system and S obtained
from a simulation corresponding to the improved information system.
Denote the results (WI, VI)'

Step 3 The value of the improvement to the world is W; - W., and

to the United States inV, - V

I c’
Step 4 Stop.

1.3 The APL Programs

The dynamic programming algorithm, which is the heart of the model,
is programmed in the APL function VFS (standing for value functions).
The initializations required are handled by the function INITIAL. The
simulation to find the statistical parameters on the state variables is
done by SIMGRID, and the alternation between VFS and SIMGRID required to
obtain convergence of the statistical parameters is performed by ITERATE.
Thus, the user begins a calculation by running INITIAL and ITERATE, with
VFS and SIMGRID called automatically from ITERATE. The quadratic and
linear coefficients of the United States value functions are obtained
-after convergence by USVFS, and the constant terms of the value functions
are calculated by CONTERMS. The statistics are obtained by simulation
in SIMSTATS, and finally, the evaluation of the quadratic value functions
is done by EVAL.

Besides the functions mentioned above, there are various subordinate
functions which they call. The following sections contain a glossary of
the main global variables, and a 1isting and discussion of each APL

function.



1.3.1 Global Variables
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With each APL variable, we give the shape, algebraic name used in

this report, a brief description, and the step in the algorithm where

the variable is defined.

APL Name and Shape

Algebraic Name and Description

A, 244

ADR, 1

A, 244

AFLAG, 1

AIN, 2 3 3

ALPHA, 2

APRD, 2

B, 24

BETA, 2

BIN, 2 3

CNSMPTN, 2

CUR, 2 10

A

Al, A2

B1, B2

Quadratic coefficients of incre-
mental value functions, Section
1.2.3, Step 2a.

Annual discount rate, Section
1.2.1, Step 1h.

Quadratic coefficients of incre-
mental value functions, Section
1.2.3, Step 2a.

Flag used in function NOTESHIFT.

Period-independent part of A,
Section 1.2.1, Step 3.

-%s Slope of demand function,
Section 1.2.1, Step 2a.

Average annual production.

Linear coefficients of incremental
value functions, Section 1.2.3,
Step 2b.

Intercept of demand function,
Section 1.2.1, Step 2b.

Period-independent part of B,
Section 1.2.1, Step 3.

Matrix of left hand side coef-
ficients in quadratic program-
ming problem, Section 1.2.3,
Step Z2c.

Average annual consumption,
Section 1.2.1, Step le.

Description of current informa-
tion system, Section 1.2.2,
Step 1.



APL Name and Shape
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Algebraic Name and Description

DELTA, 6 2
DIMX, 6

E, 44
EXPRTS, 1
F, 4

Gamma, 6 2
GE, 2 10

IMAX, 1
KEF, 6
KEFU, 6
KON, 6

KONU, 6

S

KEF

KEFU

Intercept of production cost
function, Section 1.2.1, Step 2d

Dimension of state vector by
period, Section 1.2.1, Step 1%.

Quadratic coefficients in expan-
sion of value functions in powers
of Y. Section 1.2.3, Step 6b.

Average annual exports from United
States to rest of world. Section
1.2.1, Step le.

Linear coefficients in expansion
of value functions in powers of
Y. Section 1.2.3, Step 6c.

% Slope of cost function for pro-
duction. Section 1.2.1, Step Zc.

Description of improved information
system.

Number of state points at which
value functions are evaluated,
nDi. section 1.2.2, Step 8b.

Part of the constant terms of the
world cumulative value functions,
Section 1.2.5, Step 9c.

Part of the constant terms of the
U.S. cumulative value functions,
Section 1.2.5, Step 9c.

Constant terms of the world cumula-
tive value functions, Section 1.2.6,
Step 3a.

Constant terms of the U.S. cumula-
tive value functions, Section 1.2.6,
Step 3b.

Linear coefficients of world cumula-
tive value functions. Section 1.2.3,
Step 9b, and Section 1.2.1, Step 4c.

Linear coefficients of U.S. cumula-
tive value functions. Section 1.2.5,
Step 9c, and Section 1.2.1, Step 4d.
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Algebraic Name and Description

M, 22

N B
£ N

MEANX, 6 4

NN
DWW

NGRID, 1

NPERIODS, 1
OMEGA, 1

PRDCTN, 6 2

Q, 644

QUu, 6 4 4

QPREV, 6 4 4

QPREVU, 6 4 4

RHO, 1

STDX, 6 4

M

State transformation matrix.
Section 1.2.3, Step 2d.

Mean values of grid point com-
ponents in state space. Section
1.2.1, Step 4e.

State transformation matrix.
Section 1.2.3, Step 2d.

Number of gird points in each dimen-
sion of the state vector. Section
1.2.1, Step 1g.

Number of periods in year.

Linear coefficient in cost of trans-
portation function. Section 1.2.1,
Step 1k.

Average planting in United States
and rest of world by period of year.
Section 1.2.1, Step 1f.

Quadratic coefficients of world
cumulative value functions. Section
1.2.3, Step 9b., and Section 1.2.1,
Step 4a.

Quadratic coefficients of U.S.
cumutative value functions. Section
1.2.5, Step 9c, and Section 1.2.17,
Step 4b.

Stored value of Q for convergence
check. Section 1.2.3, Step 11.

Stored value of Qu for convergence
check. Section 1.2.5, Step 11.

Discount factor for one period.
Section 1.2.1. Step Z2e.

Standard deviations of grid point
components in state space. Section
1.2.1, Step 4f.
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TAU, 1 T Quadratic coefficient in cost of
transportation function. Section
1.2.1, Step 1j.

TOL, 1 -- Tolerance factor for convergence
of value function coefficients.
Defined from keyboard.

X, 29 X Matrix of grid point coordinates.
4 81 Section 1.2.3, Step 3.

Y, 3 Y 1 stage decision vector. Section
4 1.2.3, Step 6f.
5

1.3.2 Function INITIAL

Function INITIAL is listed in Figure 1.2. If a new calculation is
desired in which demand or cost parameters are changed, or the discount
rate, or the degree of resolution (NGRID), the appropriate changes
should be made in lines [2] through [13] of INITIAL. Then INITIAL
should be run, followed by VFS or ITERATE.

INITIAL is quite straightforward, but some explanation of line [6]
is in order. Planting of wheat is aSsumed to take place in the United
States in the second and fifth periods, and in the rest of the world
in the second, fifth, and sixth periods. Thus, the production cost
function parameters, y and 6, are used only in these periods (by
function STRUCTURE). The elements of the array PRDCTN corresponding
to the non-planting times, therefore, have no effect on the calculation,
but if they are zero, numerical problems are encountered in line [16].

To avoid this, we have put 0.1 in these positions.

1.3.3 Function ITERATE

This function, listed in Figure 1.3 performs the iterations of dynamic

programming and simulation leading to convergence of the statistical
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Listing of APL Functions ITERATE and NEWGRID

31



32

parameters. Its left argument is the array £ (Section 1.2.4, Step 1la)
describing the performancé of the information system. Its right argument
is 1/2 the number of years to run the simulations. After running SIMGRID
to determine the simulated statistical parameters, ITERATE calls NEWGRID
to form the new parameters as a linear combination of the old ones and
the simulated ones. The relaxation coefficient, STEP, is a global vari-
able defined from the keyboard. Values of STEP between .05 and .5 have
been found suitable. The variable NUM is also defined from the keyboard
and is used as the argument of VFS to 1imit the number of dynamic pro-
gramming cycles before SIMGRID is rerun. NUM=1 has been found most
often suitable for spéedy convergence.

1.3.4 Function VFS

The 1isting of this function is in Figure 1.4. The following is a
glossary of important variables used in VALUEFUNCTIONS and not discussed
in Section 1.3.1.

APL Name and Shape Algebraic Name and Description

CLOOP, 1 -- Label for start of loop for
convergence of value function
coefficients.

COEFF COEFF Receives results of least squares

(Vector,lengthvaries) approximation of value function
coefficients. Defined in Function LS.

D, 2 D Right hénd side of constraint

4 inequality on decision vector Y

in quadratic. programming problem.

i+1 Dimension of state variable in
next period.
G, 1 G Constant term in expansion of

value functions in powers of Y.

I, 1 J Counter for state points.



L1
£21
[N
47
£al
L83

3

rr -

CVFET e

¢ VS ITERS

FILLXe 6 4 £ 1 01 0 1 01 0
Ké ’
CLOOF ¢

IFER&&
L.QOQF ¢
GT RSO TURE IPER'
Erf B d Lol HGRID

T

THEMT & 4 HFERTOOG . TRER
TMEHe(FHYLDR]

ViEMe D IMH T HENTT

CLYNGC(DIM  BDIMYAQR[THENTS 7

LI TGO T MA L [ THENT § 7]

B[ 1488 14RHOY (MY 4+, X0LTD¢ i
”ﬂWv(FC)E“

HETE (PO ]

THELEAMAW

Hﬁe(meﬁ)[lj

NP(|+ FTOEYD2T

Fige PICTY . MR

VL 4 M ()
BTOTELOOMS

GL DI MM AT

Fra B[] 5 - Fr0y ({23 CLT I,
G&W;WVILLTD+G'1ﬁ\ YME Y 4
MEeFTLLY[TF
LTI ES N G R 1

Le 0L QOODLT

MM T

e (FHEL 0T )3 1T
SGT ATELODE XYUEMAMY T¢I+
DEMED T MM TP

1.4

Wi f g VMo , {VE TITM)

To (LEM DM ) P US (=DM

vy 1671

CSNE I YFLLTOY e X

Figure 1.4 Listing of APL Function VFS
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APL Name and Shape Algebraic Name and Description

INEXT, 1 i+] Index of next period of the year.

IPER, 1 i Counter for period of the year.

ITERS, 1 -- Maximum number of iterations in
seeking convergence.

K, 1 -- Counter for iterations in seeking
convergence.

LLTD, 4 L Row of L referring to next period

2

NC, 1 -- Number of columns in quadratic
programming tableau.

NCY, 1 -- Dimension of decision vector,
number of columns in constraint
matrix C.

NR, 1 -- Number of rows in quadratic
programming tableau.

NRY, 1 -- Number of rows in constraint
matrix C.

PERLOOP, 1 -- Label for start of loop over
periods of year.

QLTD, 4 4 Q Submatrix of Q referring to next

22 period.

R -- Indices of basic columns in qua-

(vector,size varies) dratic programming algorithm.

S, 2 S State point.

4

STATELQOOP, 1 -- Label for start of loop on state
points.

VAL, 9 v Vector of values of cumulative value

81 function at state points.

The function VFS is a direct implementation of the dynamic program-
ming algorithm, as presented in Section 1.2.3. It calls the subordinate

functions DRAW, STRUCTURE, BUILDX, TABLEAU, MAXIMIZE, LS, and CONVERGE.



DRAW is called at the beginning of execution to select the random
sample of values of ¢1.

STRUCTURE is called at the beginning of the loop on periods of the
year to set up the arrays A, B, C, Mand N. Thus, it covers Step 2 of
Section 1.2.3.

BUILDX covers Step 3, the formation of the array of grid points.

TABLEAU prepares the initial tableau for the quadratic programming
calculations, which are actually carried out in MAXIMIZE.

LS performs the least squares fit to obtain new Q and L.

CONVERGE compares the new Q array with the one stored in the last
iteration, and takes the value 1 when convergence has been achieved.

1.3.5 Function SIMGRID

Figure 1.5 gives a listing of this function. The following is a
glossary of important variables used in SIMGRID and not discussed above.

APL Name and Shape Algebraic Name and Description

ANTLOOP, 1 - Label for start of loop on
antithetic variates.

FILLP, 6 4 -- Array of flags to expand ¢ to
maximum dimension of state space.

FILLX, 6 4 -- Array of flags to expand S to
maximum dimension of state space.

KNT, 1 -- Pointer for array of random terms.

' Locates starting point for this year

and period.

ND, 1 - Dimension of state space next

period, number of rows of M.

PH (vector, length - Random terms selected in DRAW.
depends on ITERS)

PHI, 2 ¢ Random term in state transformation.
4

35



CHIMGRIDIIY

¢ SIGER SIMGRID ITERS
£11 FItl¥¢ & 4 F 1 0 1 0 1 0 1 0 »16r1
£21 FILLFe & 4 pC L 0O 1 0 )s(1ér1)y 1010
[3] HLlXVA/(TITERS y , STGESR) = (S5TITERS, ,55I65Q)
£47 NrEaw
[51 13
L& STETOTELDAMESMNI] 17
71 MEOMMGBTOMNe & 4 pO
[e1  s6M-q
[e ANTL OO KNTLO
£10l
C11l
C137
ri3il
147 IFER ]
C1571 FERLOOF ¢
[16] MEGHMHITIFER; JeMEAMHIIFENR] |+ (445 )T TERS LD
ri1713 ST IFERE TeSTUH[T P A ATE DY S TTER
rie: GTRUCTURE TFEER
L1971 THENT & | 4 ERLONS . TFER
0T DIMADTMME THEMT
LTI (D IMy MY A4 QT
LT X XM L T 8
LR MO (M) A XL T
HOTe (FUYLR]
ME e Oy
T E AL
M pTARYD] ]
MO (TR [27]

i s

FeX " § T4+RHOx ( {D2¥QAL.TOGE |y (MSBEME , XEYYHLLTNY 2 yi!
(5 ¢ PO Y L LT QLT wddS Yyl
R (MY ]

FrH T e F KT 4 RO xS EH

KT Y 0

Sx 3

T

IRES I R

bLXT Y FHT
g R g
AL
AOMTL OO Y { 506G
GV e (BT D0 ME D

o
o9

MME DY TTERS 2 ETERE-0, 5 80

e
Ao

P

‘

Figure 1.5 Listing of APL Function SIMGRID



37

SGN, 1 -- Multiplier (+1) to fix sign of
random terms to achieve antithetic
variates.

SIGSQ, 2 10 22 Input array describing performance

of information system. See
Section 1.3, Step 1la.

XB, 4 X State variable expanded to maximum
dimension.
The function SIMGRID is a direct implementation of the simulation
algorithm presented in Section 1.2.4. It uses some of the same subor-
dinate functions as VFS, namely STRUCTURE, TABLEAU, and MAXIMIZE. It
uses the subordinate function DRAW to select the random terms.

1.3.6 Function USVFS

The 1isting of this function is in Figure 1.6. It does all the
calculations of VFS, and simuitaneously calculates QU, LU, KEF, and
KEFU, as discussed in Section 1.2.5 For the least squares fit, USVFS
calls the function LSU, and for the convergence check, it calls
CONVERGEU; otherwise, it uses the same subordinate functions as VFS.

1.3.7 Function CONTERMS

This function is listed in Figure 1.7. It is a straightforward
implementation of the algorithm described in Section 1.2.6.

1.3.8 Function EVAL

This function is listed in Figure 1.7. It is a straightforward
implementation of the algorithm described in Section 1.2.8.

1.3.9 Function SIMSTATS

Figure 1.8 gives a listing of this function. The following is a
glossary of important variables used in SIMSTATS and not discussed

above.



C11l
[21
L33
£41]
L3l
L6]
£L71]
£8l
£Le1
£101]
L1113
121
£133
[14]
151
[161]
£171
£181
[191
£L201
£211
£221
£2313
L2417
[253]
[26]
£271
£281
[29]
£301
£311]
£321
[3313
L34]
L3551
£L361
£371
£381
[391]
£L401
C411
£421
431
[44]
£451
L4467
L4771
£481]
L4913
L5013
£S113
5217

£531

QUSVFS[IQIv

v SIGSR USVFS ITERS

FILLXe & 4 £ 1 01 01 01 0 s16f1

FILLF¢ 46 4 71 01 0111111111111
Kedl
CLOOF ¢

IFEFR ¢4

FEFRLOOF §

STRUCTURE IFEFR

IFER EUILIN HGRID

I}

INEXNT&] +MFERIQUS . IFEF
IMAXE(FXIL2]

DIMeDIMMEIMENT)
QLTDE(DIM,DIMYPQI ITHEXT ;]
LLTDeDIMALLIMHENT ]

EcAL] sy J4+FHOX (M) + , XQRLTDY , X
QLTOUE(DIM,DIM)AQUL IMHENT §
LLTOUEDIMALULIMENT ;]

EUCAL25 3 J+FRHOX (QM) 4+, XQLTDU4 , X
MCTE(pC)L2]

HET«(pCHLC1]

TARLEAU

HE« (FTAERYL1]

HCe1+(FTAE)[2]

FeMOTY 4\ ME

VAL« IHMAXPD

VALU«VAL.

STATELOOF ¢

SEDIMN[IFERTIANLy I ]
FeR[15J+FHOX ((2XQRLTDY X (MSEeM4 , XS) y4+LLTD) 4, xM
GeFRHOX (LLTDHQLTDG , XM5 ) 4+, X MS

FUCELD23 J4+FHOX ((2xQLTRU4  XMS) 4LLTOU) ¢, xi
GUERHO X (LLTDUSQLTU4 XME) 4, XMS
HMEFILLM[IFEFR; J\S

DeXHEL1 3]

0¢0,00001TD

MANIMIZE

VALLIJ 6O+ (F4E+, XT)+, X7
VALULIJeGU (FULEU4 XTI 4, XT
3STATELOOF X\ IMAMY T¢T 41

DIMCDIMN[IFERT]

LSUS

Ue(yVo AV DIM)
TE(DIMDIM)pU\(-DIM4])JCOEFF

QRLIFER; (W (FrTHLL1D) s (W (FTHIL2TITE0EXTHET
LEIFER\PTIeTEDIMA(~-DIME] )ACOEFF
KEF[IFER]J¢ 1 4COEFF
TU(DIM,DIM)pU\ (-DIM4+] )JCOEFFU

QRULIFER; (\(FTUHLI) 5 (V(PTULZTD) 160, OxTU+RTY
LUFCIFEFR\pTUJTUDIMSL (~DIML] )YFLCOEFFU
KEFU[ IFEF ¢ {14COEFFU
HFERLOOF Y| {IFERIFEFR -]

A ((COMVERGEU K)=1)/0
FCLOOFX\ITERS2 K&K+ ]

A4
¢ Figure 1.6 Listing of APL Function USVFS
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C113
£21
£33
£al
ts1
L6l
€71
£81
21
£101
£111
£121
£131

£143

L1513
[161

£il
£21

GCOMNTERMS[ 11V
Y SIGSR COMTERMS ITERS
SHD¢LOSSSHAFE RESHAFE SIGSEK
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CLOOF ¢
IFER &G
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Uty ((DIM)o =\ DIM
QLTDE (DIMyDIMYAQRL IMEMT; 57
QLTDUE(DIM,DIM) QUL IMENT; 5]
KOM[IFERJ¢KEF[IFERJ4+FRHOXKOMN IMEXNT]4DSI¢ , XU/ ,QLTD
KOMULIFERJe¢ KEFULIFERJ4+RHOXKOMULINEXT 40804 XU/, RLTDU
SFERLOOF X1 (IFEF¢IFER-]
SCLOOF XV ITERS)KeK+]
12 2 AR XKOM
12 2 +AURXKOMU
\%
*
vEVALTIDY
v EVAL ARG
ADFXKONE 1 144G+, xL[ 17 1+RARG+ ., xQ[1s5]
ADFRXKOMUL ] J+AFRGY , XLUL 1§ J+ARGH , xQUL L1545 ]
v

*

Figure 1.7 Listings of APL Functions CONTERMS and EVAL
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APL Name énd Shape

Algebraic

Name and Description

AMN, 10
AVAR, 10
FILLP, 6 4
FILLX, 6 4
FILLY, 6 5
GRS, 2

HD, 27 6
MN, 6 16
MULT, 6 27
ND, 1

NET, 5

PCST, 2

PHI, 2
PHB, 4
PRC, 2

REV, 1

STAT(i20,121)

STAT(i22,...,127)

STAT(i17,118)

STAT(i14,i15)

STAT(i16)

Annual means of 27 quantities
listed in Section 1.2.7, Step 1j.

Annual variance of 10 quantities
listed in Section 1.2.7, Step 1j.

Array of flags to expand ¢ to
maximum dimension of state space.

Array of flags to expand S to
maximum dimension of state space.

Array of flags to expand Y to

maximum dimension of decision space.

Gross welfare this period to
United States and rest of world

Heading for printout.

Accumulator for mean values by
period of 27 quantities listed
in Section 1.2.7, Step 1j.

Multiplier defined in
Section 1.2.7, Step 1d.

Dimension of state space next
period, number of rows of M.

Net welfare each of six categories
this period.

Cost to producers of production
planted this period in United
States and rest of world.

Random term in state transformation.

Expansion of ¢ to maximum
dimension of state space.

Price of wheat this period in
United States and rest of world.

Revenue to United States for
exports shipped this period.
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APL Name and Sﬁgﬁe Algebraic Name and Description

SIGSQ, 2 10 52 Input array describing perfor-
mance of information system.

TCST, 1 STAT(i19) Transportation cost this period.

VAR, 6 16 VAR Accumulator for variances by

period of 27 quantities listed
in Section 1.2.7, Step 1j.

XB, 4 STAT(i1,...,i4) State variable expanded to
maximum dimension.

YB, 5 STAT(i5,...,i9) Decision variable expanded
to maximum dimension.

The function SIMSTATS is direct implementation of the statistics
algorithm presented in Section 1.2.7. It does not change the arrays
MEANX and STDX as SIMGRID does, but simply prints out means and standard
deviations of the 27 tracked quantities.

1.3.10 Subordinate Functions

The remaining functions are listed in Figure 1.9 through Figure 1.15.
BUILDX builds the grid of points as described in Section 1.2.3,
Step 3. In case the grid so built includes any points with negative coor-
dinates, it is shifted to avoid this condition, and NOTESHIFT is called
to print a warning. This does not happen in the normal workings of the
algorithm, but when the statistical parameters MEANX and STDX are very
far from their final values, it may occur. Unless it persists in itera-
tions close to convergence, there is no problem.
The function PIVOT is called from the quadratic programming algorithm
MAXIMIZE, to do the pivot operation for each iteration. The left argument

is the pivot row index, and the right argument is the pivot column index.
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Figure 1.10 Listing of APL Functions CONVERGEU, NOTESHIFT

and PIVOT
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Function DRAW is called from SIMGRID and SIMSTATS to select the vector
of random terms as described in Section 1.2.4 d.

Functions CONVERGE and CONVERGEU simply determine whether convergence
has been achieved in VFS and USVFS respectively.

Function LS calculates the Teast squares fit described in Step 8
(a and b) of Section 1.2.3. Function LSUS does the same calculation for
the United States value functions as described in Step 8 (a and b) of
Section 1.2.5.

Function NEWGRID calculates the new statistical parameters after a

run of SIMGRID. It is called from ITERATE.
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2. VARIATIONS IN INPUT DATA

As shown in the diagram of Figure 1.1, there are two categories
of input data used for the value of information calculations. There
are the economic parameters (discount rate, elasticities, timing
assumptions) used in both the dynamic programming calculations and
the simulations. Then there are the data describing the information
systems used directly in the simulations, but also used indirectly in
the dynamic programming calculations, since these require the statistical
parameters (MEANX, STDX) calculated by the simulations.

Changes in the economic parameters are easily made by replacing
the appropriate lines of INITIAL. To correctly make changes in fhe
description of either the current or the improved information system,
one must understand how these descriptions are related to the assumed
production estimate accuracies.

This relationship is portrayed in Figure 3.1. The 52 array
describing an information system is formed by a difference operation
from the mean squared errors in production estimates by time of
year, together with the mean squared error of the a priori production
estimate. Let i = 1 for the United States, i=2 for the rest of the

world. Let €. 2,j =1, 2, ..., 12, be the mean squared errors

ij
in production estimates for the United States and the rest of the
world at two month intervals from June before planting (j=1) to
April after harvest (j=12). We assume €i1;2= 0, since regardless
of what is published, the "market" must discover the truth as the

supply is exhausted.



A Priori Accuracy

Difference
2
L” array

Vector of Accuracies Operator
by Period of Year

Figure 2.1 Calculation of 52 array—tEither
Current or Improved System

In the case of the current system, we have obtained estimates
of the eijz's from a study of published statistics. But these
estimates are not based on the assumption that the true annual

production is ever known with perfect accuracy. Built into our

2 . . . .

eij 's is the assumption that a certain residual mean squared er-
(

2

ror r.=, i=1, 2 remains in the final published estimates. If

we were to replace this assumption with the assumption of another

value (ri’)z for the residual error, then the £..2's would be

1]
replaced with

. 2 . .
i . remai ]
with €412 emaining 0
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For the first few periods, eijz gives the mean squared error
of the a priori estimate, since there is no information available
specific to the crop about to be planted. For our wheat calcula-

tions, this applies up to j=6. Now we form

.. = « . - . .
i3 €i,j+1 T &i,j+2

. 2 _
Since Eij €41

namely for j=1, 2, 3, 4.

2
~'sare 0,

2 for j=1, 2, ..., 6, the first few JF

Notice that if the residual error assumption is changed from

' 2 .
r to ri’s each oij remains the same except for %i10°
2 2
)

-t i=1,2 .

i=1,2,

which are simply increased by (ri’

In the case of an improved information system, the mean squared

2

error estimates Eij are not based on published statistics, but on

an analysis of the sampling and measurement methods used. Thus,

the above concept of "residual error" does not apply, except as it
L 2 . .

affects the a priori mean squared errors Eij for the first few j.

In advance of the system's measurement of the growing crop, for

2

j < J (some appropriate J), we have the same €55 s for the cur-

rent system. Therefore, if we change the residual error assumption

of the current system from r, to r,’, om2 changes (i=1,2), being

i i
increased by (ri')2 - riz. The other oijz’s are unchanged.
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