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INTRODUCTION

In ECON Report 76-243-1, we presented the mathematical formu-

lation and the basic results of ECON's optimal decision model of

wheat production and distribution. The present report will serve

to document the computer programs written to implement the model.

The programs were written in APL, an extremely compact and powerful

language particularly well suited to this model, which makes extensive

use of matrix manipulations.

Chapter 1 of this report presents the algorithms used and gives

listings of and descriptive information on the APL programs used.

Chapter 2 gives an account of possible changes in input data.

This report should be used in conjunction with ECON Report 76-243-1,

which gives a complete mathematical description of the model.



1. ALGORITHMS AND NOTATION

1.1 Overview and Stages of Calculations

Essentially, the algorithms used calculate value of information as out-

put in response to two kinds of inputs: economic parameters such as elas-

ticities, interest rates and typical production levels; and numerical descrip-

tions of performance of production information systems. The stages involved

in these calculations are shown in Figure 1.1.

For each of two production information systems, called "current system"

and "improved system," calculations are performed in three stages, dynamic

programming, simulation, and function evaluation.

The first stage is dynamic programming, of which the primary output

consists of the coefficients of the value functions. The dynamic programming

stage requires two kinds of inputs: the economic parameters; and the statis-

tical parameters on inventories of stored and growing crops. These statistical

parameters are mathematically determined by the functional equations solved

in the dynamic programming stage. Ideally, then, they would be only internal

variables to this stage, rather than input variables. However, we have found

no satisfactory means of solving for these variables within the dynamic pro-

gramming calculations, so an iterative procedure is used, in which the decision

rules determined as a by-product in the dynamic programming calculations are

used to simulate the system (the second stage), and then the statistics collec-

ted from the simulation are used as input for a new pass through the dynamic

programming calculations. This alternation is continued until convergence is

achieved. The third stage of the calculations (function evaluation) produces
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the optimal mean present value to the United States, and the whole world,

of the produced and distributed wheat, given a specified starting level of

storage and growing inventories.

After finding the optimal mean present value for both the current

information system and the improved information system, we find the value of

the information improvement by taking the difference of these values.

The following (18) steps are involved in performing a complete value of

information calculation with the model:

1. Initialize economic parameters.

2. Initialize parameters specific to current information system.

3. Dynamic programming—find decision rules and quadratic and
linear coefficients of world value functions.

4. Simulate to find statistical parameters (current information
system).

5. Check for convergence of statistical parameters. If not
converged, update and go to (3).

6. Find quadratic and linear coefficients of U.S. value functions.

7. Find constant terms of value functions.

8. Simulate to collect numerous statistics.

9. Evaluate world and U.S. value functions for selected starting
conditions.

10. Initialize parameters specific to improved information system.

11. Dynamic programming—find decision rules and quadratic and
linear coefficients of world value functions.

12. Simulate to find statistical parameters (improved information
system).

13. Check for convergence of statistical parameters. If not
converged, update and go to (11).



14. Find quadratic and linear coefficients of U.S. value functions.

15. Find constant terms of value functions.

16. Simulate to collect numerous statistics.

17. Evaluate world and U.S. value functions for selected starting
conditions.

18. Value of information improvement—form difference of results
of (9) and (17).

1.2 Details on Stages

1.2.1 Initialization

The initialization of the economic parameters consists of the following

steps.

Step 1 Input

(a) m = number of periods in year.

(b) E, = annual price elasticity of demand for United States

and rest of world. This is a 2-vector.

(c) E - cost elasticity of production for United States and

rest of world by period of year. This is a matrix of shape

m x 2.

(d) P = average price in United States and rest of world. This

is a 2-vector.

(3) & = average annual consumption in United States and rest

of world. This is a 2-vector.

(f) n = average planting in United States and rest of world by

period of year. This is a matrix of shape m x 2.

(g) n = number of grid points in each dimension of the state vector

for purposes of quadratic approximation of value function.



(h) r = annual discount rate.

(i) £- = average annual exports from United States to rest

of world.

(j) T = quadratic coefficient in cost of transportation

function.

(k) a) = linear coefficient in cost of transportation function.

(9.) D = dimension of state vector by period. This is a

vector or length m.

Step 2 Compute periodic demand and production function parameters,

and discount factor.

price = 6 + 2 a x period's consumption.

cost = 6 + 2 Y x period's production.

(a) a = mP / , a 2-vector.

(b) 6 = P (1 - ) , a 2-vector.

(O (2Hij ECf1j), 1 = 1... m ; j = 1 , 2 .

Y is a matrix of shape m x 2.

L_) , i = 1 , ... ,m; j = 1 ,2(d) « . P, (1 -
(e) P = » discount factor for a single period.

Step 3 Definition of period-independent part of constant arrays.

AT =

k
0

1°

0

-T

0

0 \

0 Bl =

/o
-U>

\B*I
A2 =

I al
al

\

al
0

0

0 \

0

0
1

B2 =



Step 4 Initial estimates of value function coefficients and statistical

parameters. All are chosen by rough heuristic procedure. Values are

refined during calculations.

(a) Q^ •*- -.1; i=l, .... 6; j=l, ...,4; k=l , ..., 4.

Quadratic coefficients of world value functions

(b) Qu «- Q..., Quadratic coefficients of United States
ijk 1Jk

value functions

(c) L.. «- 0; i=l, ..., 6; j=l , ..., 4. Linear coefficients
' J

of world value functions

(d) Lu «- 0. Linear coefficients of United States value

functions.

(e)

u «-
X
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1.2.2 Current System Initialization
o

Step 1 Define 2 x 10 array, Z , specifying the performance of the

current information system.

Step 2 If better approximations of Q, Qu, L, Lu, U , and Z are
A A

available than those of Section 1.2.1, initialize them accordingly.

1.2.3 Dynamic Programming

Step 1 i = 6, period counter.

Step 2 Define constant arrays specifying state transformation and

incremental value functions.

(a) New rows and columns are inserted, depending on the value of i, in

the matrices Al, A2, to create the three dimensional array A. The

insertions are the period-dependent elements. The first component

of A is used to label the two value functions (whole world and

United States). For each fixed value j of the first component, A.
J

is a symmetric matrix as follows. If i = 2 or i = 5, then

a

0

0

0

0

al
al
0

0

0

0

-T

0

0

0

al
0

0

0

0

0

0

~Yii
0

0

0

0

"Yil

0

0

0

0

0

a.
2

0

0

0

0

0

0

0 \

0

0

0

-vi2

1
0

0

0

0

0



If i = 1, i = 3, or i = 4, then

A] = Al, A2 = A2.

If i = 6, then A, and A^ are just as for the case of i = 2, except the

third row and third column are omitted.

(b) New elements are inserted, depending on the value of i, before

and after element 3 of Bl and B2, to create the matrix B. The first

component of B (row index) is used to label the two value functions.

If i = 2 or i = 5, then

B =

If i = 1, i = 3, or i = 4, then B is the 2x3 matrix given by

B -w

6 (3
P-i «12 °

^2

0

If i = 6, then B is just as for the case of i = 2, except that

the third column is omitted.

(c) The matrix C is defined, depending on the value of i, for use

in building the quadratic programming tableau.

If i = 1, i = 3, or i = 4, then

0
C =

If i = 2, or i = 5, then

0 0
c =

0 1

If i = 6, then



c =
1

0

1

0

0

1

(d) State transformation matrices M and N are defined, depending

the value of i, as follows.

If i = 1, then
/ \ /

-1 -1 0

0 0 - 1

on

If i = 3 or i = 4, then

N =

M =

/ 1

0

0

\ 0

0

1

0

0

M =
0 0

0

0

1

0

0

1

0

0

0

\

N =
0

0

\ 0

0

0

1

0

\

I /

N =
0

0

N =

-1

0

1

0

N =

-1

0

1

0

-1

1

0

1
0

0

/-I
0

0

' 0

0

0

0

0

0

-1

0

0

-1
0

-1
0

1

0

0

0

0

0

0

0

-1

0

° \
0

0

0

0

-1

0

0

0

0

\

\
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Step 3 Build a matrix X whose columns are the grid points for

value function approximation. X has D. rows and N ^ columns. In

each coordinate j of the state space (of dimension D.), a set^S- of

n equally spaced points in formed with mean U . and standard devi-x, j
ation Z .. Each column of X is formed from one of the N^ combi-x, j

nations of elements, the first element from J , the second from

JL , ..., the D. th from Hn .2. 1 U-j

Step 4 j = 1, counter for state points.

Step 5 Quadratic Programming

(a) S = column j of X, the state point.

(b) E = A] + p N
1 Q.+1 N.

(c) F = B] + 2p Qi+1 MSN + p l_i+1 N.

(d) G = p(S'M' Qi+1 MS + Li+1 MS).

(e) ,S if D. = 2
D =

/ (Sl, S2) if Di = 4

(Note on notation. When i = 6, we take i + 1 reduced mod 6.

That is, for this case, i + 1 =1. When D..+1 = 2, the matrix

Q.+1 is 4 x 4, but only the upper left block of size 2x2

is significant—the other elements are never used nor changed

during the algorithm. For this case, we write "Qi+1" to

mean only this 2x2 matrix. Similarly, "L..+i" means only

the first D- elements of the 4-vector.)

(f) Find 1-stage decision vector Y to maximize Y'E Y + Y'F

subject to the constraints

Y > 0 , CY < D .
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Step 6 Evaluate the cumulative value function for period i at

point S.

Step 7 End of loop on state points.

(a) 0 <- j + 1

(b) Go to Step 5 if j < n n' , Step 8 otherwise.

Step 8 Fin(j period-i coefficients of cumulative value function

by least squares approximation.

(a) Form the matrix MAT which, when postmulti plied by the

values of a function at the points which are the columns

of X, produces the coefficients of the least squares fit

to the function at those points.

(b) COEFF = (MAT)V

(c) Select Q and L from COEFF

Step 9 End of loop on periods.

(a) i «- 1 - 1

(b) Go to Step 2 if i > 1 , Step 10 otherwise.

Step 10 End of loop for convergence.

Go to Step 1 if Q and L are unchanged from last iteration; otherwise

stop.

1 .2.4 Simulation

The simulation algorithm is an adaptation of the dynamic programming

algorithm. It is run after the value function coefficients Q and L have

been calculated, and uses many of the same variables.

Step 1 Initialization
ry

(a) Input Z array, a 2 * 10 matrix giving the means of the

squares of the stochastic term ^^ of the state transformation.
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(b) Input n, the number of years of simulation to be performed.

(c) Create standard deviation array SD for use in sampling

values of 4>. by reshaping the I array and taking square root.

In its original shape, the first row refers to the Untied States,

and the second to the rest of the world. Each row contains terms

referring to the growing crop before the beginning of the crop

year, followed by terms referring to the same crop during the

crop year, considered to begin June 1. The reshaped array has

shape 4 x m; the growing crop and current crop at a given time

of year are represented by different rows in the same column.

Formally, the process is as follows.

SD,. =

where

T =

1

2

0

\ o

1

1

2

2

1

1

2

2

1

1

2

2

1

1

2

2

1

2

0

0 .
i

u =

6

6

0

\ °

7

1

7

1

8

2

8

2

9

3

9

3

10

4

10

4

5

5

0

0 ,

and I is taken to be 0.0,0
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(d) Select vector $ with 4nm elements by random sampling. For each

of the mn periods of the simulation, four successive elements of

4> are obtained from discrete uniform distributions with mean 0 and

standard deviations SD, i, where i is the index (1 to 6) of the

current period.

(e) Find standard deviations SD1 over 2n years of the blocks of 4m

adjacent elements of the vector ($, - $).

(f) SD <- SD2 / SD1

(g) Repeat step (d). At this point, the sample points comprising

($, - $) have mean 0 and the standard deviations of the original

SD array.

(h) S = first two components of first row of U , the mean inventory
A

level vector at time 1

(i)

U = I =
X X

/ O

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

o /

initialize

mean and standard deviation of state vector.

Step 2 i -«- 0, counter for $ vector.

Step 3 i «- 6, period counter.

Step 4 Increment grid parameter accumulators.
S(a) U . f- U . + | (If d. = 2, add zero components to S).

X $ 1 X j 1 c.\\ \

= 2' ac'c' ^wo zero COmP°nents to S).
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Step 5 Define constant arrays specifying state transformation and

incremental value functions. This step is identical to Step 2 of

Section 1.2.3.

Step 6 Quadratic Programming. This step is identical to Step 5 of

Section 1.2.3, except that 5a is omitted, since S has already been

selected.

Step 7 Apply state transformation to get next period's state vector.

(a) S <- MS + NY + ((J).^, 4>£+2' ^+3' *£+4^

(b) i «- H + 4

Step 8 End of loop on periods.

(a) i «- i + 1

(b) Go to Step 4 if i < 6, Step 9 otherwise.

Step 9 End of loop on years.

(a) k «- k + 1

(b) Go to Step 3 if k < n, Step 10 otherwise.

Step 10 End of loop on antithetic variates.

(3) dj •*• — (b

(b) Go to Step 2 if £ < 8 mm, Step 11 otherwise.

Step 11 Complete statistical calculations.
h

n - 0.5

Step 12 Stop.
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1.2.5 United States Value Functions

The algorithm of this section is an extension of the dynamic pro-

gramming algorithm (Section 1.2.3) to calculate the United States value

function, as well as the world value function which is maximized.

Steps 1 through 5 Identical to Steps 1 through 5 of Section 1.2.3.

Step 6 Evaluate the cumulative value functions (world and United

States) for period i at point S.

EU = A2 + pN'Qj N .

FU =

Step 7 End of loops on state points.

(a) j <- j + 1

(b) Go to Step 5 if j < nDi , Step 8 otherwise.

Step 8 Find period-i coefficients of cumulative value function

(world and United States) by least squares approximation.

(a) New rows and columns are inserted, depending on the value

of i , in the matrices Al , A2, to create the three dimen-

sional array A. The insertions are the period-dependent

elements. The first component of A is used to label the

two value functions (whole world and United States). For

each fixed value j of the first component, A. is a symetric
J

matrix as follows. If i = 2 or i = 5, then
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A, =1

a

0

0

0

0

AO =2

a
1

a1
0

0

0

0

-T

0

0

0

a11
0

0

0

0

0

0

-Y-
Tl

0

0

0

0

-Y-
1 1

0

0

0

0

0

<*2

0

0

0

0

0

0

0 \

0

0

0

-^
\

0

0

0

0

0

If i = 1, i = 3, or i = 4, then

A1 = Al, A2 = A2.

If i = 6, then A and f\2 are just as for the case of i = 2,

except the third row and third column are omitted.

(b) COEFF <- (MAT)V

(c) COEFFU «- (MAT)VU

(d) Select Q, L, and KEF from COEFF; Qu, Lu, and KEFU from

COEFFU.

Step 9 End of loop on periods.

(a) i «- i - i

(b) Go to Step 2 if i > 1, Step 10 otherwise.

Step 10 End of loop for convergence. Go to Step 1 if any of Q, L,

Qu, Lu are different from last iteration; otherwise stop.
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1.2.6 Constant Terms

The constant terms of the cumulative value functions (world and

U.S.) are most efficiently calculated in this separate algorithm rather

than in the dynamic programming algorithm since convergence is slow and

the results are not needed for the determination of the decision rules,

but only for evaluation of the cumulative value functions.

Step 1 Initialization. Identical to Step 1 of Section 1.2.4.,

except (b) is omitted.

Step 2 i = 6, period counter.

Step 3 Update estimate of period-i constant terms of cumulative

value functions (world and U.S.).

(a) K. <- KEF1 + p

(b) K" - KEFU. + p
D
-1 2+ Z (sô r Q

j=l J

(Note on notation. When i = 6, we take i + 1 reduced mod 6, as

explained in the note after Step 6 of Section 1.2.3.).

Step 4 End of loop on periods

(a) i «- i - 1

(b) Go to Step 3 of i > 1, Step 5 otherwise.

Step 5 End of loops for convergence. If K or Ku has changed since

last iteration, go to Step 2; otherwise Step 6.

Step 6 Stop.
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1.2.7 Statistics

The statistical summaries of the operation of the wheat markets are

obtained by simulation; this alogrithm is thus essentially the same as

that of Section 1.2.4, but additional quantities are tracked.

Step 1 Initialization

(a) Input I array, a 2*10 matrix giving the means of the

squares of the stochastic terms <j>. of the state transfor-

mation.

(b) Input n, the number of years of simulation to be performed.

(c) Create standard deviation array SD for use in sampling

values of <J>. by reshaping the I array and taking square

root. In its original shape, the first row refers to the

United States, and the second to the rest of the world.

Each row contains terms referring to the growing crop

before the beginning of the crop year, followed by terms

referring to the same crop during the crop year, considered

to begin June 1. The reshaped array has shape 4xm; the

growing crop and current crop at a given time of year are

represented by different rows in the same column. Formally,

the process is as follows.
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MULT

where

T =

U =

/

\

/

\

1

2

0

0

6

6

0

0

1

1

2

2

7

1

7

1

1

1

2

2

8

2

8

2

1

1

2

2

9

3

9

3

1

1

2

2

10

4

10

4

1

2

0

0

5

5

0

0

\

/

\

/

and Z is taken to be 0.0,0

Ai
1
6

1
6

\

_1_

|

4 Columns-̂
i
e
i
6

i
6

1
T

1
6

1
e

i
6

1
6

1
6

1
6

1
6

1
e

9 Col<•
1 1

1 1

1 1

1 1

1 1

1 1

umns«̂ \
1

1

... 1

1

1

1

i
e
i
e

i
6

1
6

1
6

1
e

e
i
6

1
6

T

i
e
i
6

12

P

P2

P3

P4

P5

P6

Columns

P
2
P

p3...

P4

P

6
P

P

P2

P3

P4

P

P6

multiplier to weight tracked quantities for annual mean,

total, or present value calculations.

(e) Select vector $ with 4nm elements by random sampling. For

each of the mn periods of the simulation, four successive

elements of <3> are obtained from discrete uniform distribu-

tions with mean 0 and standard deviations SD ., where i is
i >

the index (1 to 6) of the current period.
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y = VAR = (27 columns),

(f) Find standard deviations SD' over 2n years of the blocks

of 4m adjacent elements of the vector ($, -<f>).

(g) SD +SD2/SD'

(h) Repeat Step (d). At this point, the sample points com-

prising (0, -<J>) have mean 0 and the standard deviations

of the original SD array.

(i) S = first two components of first row of U , the mean

inventory level vector at time 1.

(j)

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 /

initialize mean and variance by period of 27 quantities to

be tracked for statistics. These are:

(1) U.S. Stock Estimate

(2) U.S. Growing Crop Estimate

(3) R.O.W. Stock Estimate

(4) R.O.W. Growing Crop Estimate

(5) U.S. Consumption

(6) U.S. Exports

(7) U.S. Planting

(8) R.O.W. Consumption
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(9) R.O.W. Planting

(10) Random Change in U.S. Stock Estimate

(11) Random Change in U.S. Growing Crop Estimate

(12) Random Change in R.O.W. Stock Estimate

(13) Random Change in R.O.W. Growing Crop Estimate

(14) U.S. Price

(15) R.O.W. Price

(16) U.S. Export Revenue

(17) U.S. Production Cost

(18) R.O.W. Production Cost

(19) R.O.W. Transportation Cost

(20) U.S. Gross Welfare

(21) R.O.W. Gross Welfare

(22) World Net Welfare (all agents)

(23) U.S. Net Welfare (all agents)

(24) U.S. Consumers' Net Welfare

(25) U.S. Producers' Net Welfare

(26) R.O.W. Consumers' Net Welfare

(27) R.O.W. Producers' Net Welfare

(k) y. *• AVAR «- (0, 0, ..., 0), initialize annual means and

variances of above 27 quantities.

(1) Input S, the state vector at the start of the simulation,

time 1.

Step 2 i •*- 0, Counter for <J> vector.

Step 3 i «- 6, Period counter.

Step 4 Define constant arrays specifying state transformation and
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incremental value functions. This step is identical to Step 2 of

Section 1.2.3.

Step 5 Quadratic Programming. This step is identical to Step 5 of

Section 1.2.3, except that 5a is omitted, since S has already been

selected.

Step 6 Build vector STAT. of 27 quantities at time i for statistics.

(a) STAT. , ..., STAT. are taken from S.

(b) STATi5, ..., STAT..g are taken from Y.

(O (STAT.10, .... STAT113)

(d)

prices.

(e) STAT.1C «- STAT., _ x STAT.. (export revenue).
1 16 1 14 I o

(f) (STATU7, STAT.18) - (STAT i7, STAT.g) x

(6i + (STAT, STATi9h.jK production cost

(g) STAT . . _ • * - -STAT . c x (co + STAT.- x T), transportation cost.
I 19 I O ID

(h) (STAT i2Q, STAT.21) - (STAT i 5 x (^ + ^ x STAT i 5) ,

STAT.0 x (a + a0 STAT. . ) ) , gross welfare
1 o 2 2 lo

(D (STAT
i22 ' ••" STATi27^ *" Y / A Y + Y / B ' net We1fare"

Step 7 Increment Statistical Accumulators.

STAT.

2n

VAR. * VAR. +
(STAT.)2

i " i 2n
Step 8 Apply state transformation to get next period's state vector.

(a) S ̂  MS + NY

(b) £ «- i + 4 .

(a) S - MS + NY + U£+1, ..., 4>£+4).
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Step 9 End of loop on periods.

(a) i «- i + 1

(b) Go to Step 4 if i < 6, Step 10 otherwise.

Step 10

6

(a)

(b) AVAR «- AVAR +

STAT. x MULT,
i i

2n

6
(£ STAT. x MULT.)2_• _ i i i

2n

calculate annual means and mean squares of tracked

quantities.

Step 11 End of loop on years.

(a) k «- k + 1

(b) Go to Step 3 if k < n, Step 12 otherwise.

Step 12 End of loop on antithetic variates.

(a) * * - * .

(b) Go to Step 2 if i < 8mn, Step 13 otherwise.

Step 13

VAR <-

(b) AVAR
(AVAR = yi?)n

n - h

complete calculation of periodic and annual variances of

tracked quantities.

Step 14 Print y, u., VAR, and AVAR arrays.

Step 15 Stop.
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1.2.8 Evaluations

This algorithm evaluates the quadratic functions giving optimal mean

net present value to the whole world and to the United States, for chosen

arguments (starting inventory estimates). As an option, the algorithm

calculates the mean value of these value functions over the various pos-

sible starting inventory arguments.

Step 1 Input argument S = (s , s )

Step 2 If S = 0, go to Step 5.

Step 3

(a) Print r[K + S'(L + Q S)], whole world value.

(b) Print r[Kj + S'(lJ + Qjs)], United States value.

Step 4 Go to Step 6.

Step 5

(a) Print rCQ̂ ^ + Q122ZX>1
2
2 + ̂  + S'U, + Q.S)].122X>12

whole world mean value.

(b). Print rtQĵ i + Q̂ J, + % + S'dJ + qjs)].

United States mean value.

Step 6 Stop.

1.2.9 Value of Information

The annual value of the improvement in information in the steady

state is obtained as follows.

Step 1 Do the evaluation of Step 1.2.8 (mean value case) with K,

L, Q, Ku, Lu,andQU corresponding to the current information system

and S obtained from a simulation corresponding to the current infor-

mation system (S is defined in Section 1.2.4, Step Ih). Denote the

results (W , V ).c c
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Step 2 Do the evaluations of Step 1.2.8 with K, L, Q, Ku, Lu, and

Qu corresponding to the improved information system and S obtained

from a simulation corresponding to the improved information system.

Denote the results (W., V,).

Step 3 The value of the improvement to the world is Wj - W-, and

to the United States in Vj - Vc>

Step 4 Stop.

1.3 The APL Programs

The dynamic programming algorithm, which is the heart of the model,

is programmed in the APL function VFS (standing for value functions).

The initializations required are handled by the function INITIAL. The

simulation to find the statistical parameters on the state variables is

done by SIMGRID, and the alternation between VFS and SIMGRID required to

obtain convergence of the statistical parameters is performed by ITERATE.

Thus, the user begins a calculation by running INITIAL and ITERATE, with

VFS and SIMGRID called automatically from ITERATE. The quadratic and

linear coefficients of the United States value functions are obtained

•after convergence by USVFS, and the constant terms of the value functions

are calculated by CONTERMS. The statistics are obtained by simulation

in SIMSTATS, and finally, the evaluation of the quadratic value functions

is done by EVAL.

Besides the functions mentioned above, there are various subordinate

functions which they call. The following sections contain a glossary of

the main global variables, and a listing and discussion of each APL

function.
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1.3.1 Global Variables

With each APL variable, we give the shape, algebraic name used in

this report, a brief description, and the step in the algorithm where

the variable is defined.

Algebraic Name and DescriptionAPL Name and Shape

A, 2 4 4

ADR, 1

A, 2 4 4

AFLAG, 1

AIN, 2 3 3

ALPHA, 2

APRD, 2

B, 2 4

BETA, 2

BIN, 2 3

C, 2 4

CNSMPTN, 2

CUR, 2 10

A Quadratic coefficients of incre-
mental value functions, Section
1.2.3, Step 2a.

r Annual discount rate, Section
1.2.1, Step Ih.

A Quadratic coefficients of incre-
mental value functions, Section
1.2.3, Step 2a.

Flag used in function NOTESHIFT.

Al, A2 Period-independent part of A,
Section 1.2.1, Step 3.

a -% Slope of demand function,
Section 1.2.1, Step 2a.

Average annual production.

B Linear coefficients of incremental
value functions, Section 1.2.3,
Step 2b.

B Intercept of demand function,
Section 1.2.1, Step 2b.

Bl, B2 Period-independent part of B,
Section 1.2.1, Step 3.

C Matrix of left hand side coef-
ficients in quadratic program-
ming problem, Section 1.2.3,
Step 2c.

& Average annual consumption,
Section 1.2.1, Step le.

Z Description of current informa-
tion system, Section 1.2.2,
Step 1.
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APL Name and Shape

DELTA, 6 2

DIMX, 6

E, 4 4

EXPRTS, 1

F, 4

Gamma, 6 2

GE, 2 10

IMAX, 1

KEF, 6

KEFU, 6

KON, 6

KONU, 6

L, 6 4

LU, 6 4

Algebraic Name and Description

6 Intercept of production cost
function, Section 1.2.1, Step 2d

D Dimension of state vector by
period, Section 1.2.1, Step 1£.

E Quadratic coefficients in expan-
sion of value functions in powers
of Y. Section 1.2.3, Step 6b.

Average annual exports from United
States to rest of world. Section
1.2.1, Step le.

Linear coefficients in expansion
of value functions in powers of
Y. Section 1.2.3, Step 6c.

h Slope of cost function for pro-
duction. Section 1.2.1, Step 2c.

Description of improved information
system.

Number of state points at which
value functions are evaluated,
nDi. Section 1.2.2, Step 8b.

Part of the constant terms of the
world cumulative value functions,
Section 1.2.5, Step 9c.

Part of the constant terms of the
U.S. cumulative value functions,
Section 1 .2.5, Step 9c.

Constant terms of the world cumula-
tive value functions, Section 1.2.6,
Step 3a.

Constant terms of the U.S. cumula-
tive value functions, Section 1.2.6,
Step 3b.

Linear coefficients of world cumula-
tive value functions. Section 1.2.3,
Step 9b, and Section 1.2.1, Step 4c.

Linear coefficients of U.S. cumula-
tive value functions. Section 1.2.5,
Step 9c, and Section 1.2.1, Step 4d.

KEF

KEFU
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APL Name and Shape

M, 2 2
4 2
4 4
2 4

MEANX, 6 4

N, 2 4
2 3
4 5
4 3
4 6

NGRID, 1

NPERIODS, 1

OMEGA, 1

PRDCTN, 6 2

Q, 6 4 4

QU, 6 4 4

QPREV, 644

QPREVU, 644

RHO, 1

STDX, 6 4

Algebraic Name and Description

M State transformation matrix.
Section 1.2.3, Step 2d.

Mean values of grid point com-
ponents in state space. Section
1.2.1, Step 4e.

State transformation matrix.
Section 1.2.3, Step 2d.

Number of gird points in each dimen-
sion of the state vector. Section
1.2.1, Step Ig.

m

OJ

Number of periods in year.

Linear coefficient in cost of trans-
portation function. Section 1.2.1,
Step Ik.

Average planting in United States
and rest of world by period of year.
Section 1.2.1, Step If.

Quadratic coefficients of world
cumulative value functions. Section
1.2.3, Step 9b., and Section 1.2.1,
Step 4a.

Quadratic coefficients of U.S.
cumulative value functions. Section
1.2.5, Step 9c, and Section 1.2.1,
Step 4b.

Stored value of Q for convergence
check. Section 1.2.3, Step 11.

Stored value of Qu for convergence
check. Section 1.2.5, Step 11.

Discount factor for one period.
Section 1.2.1. Step 2e.

Standard deviations of grid point
components in state space. Section
1.2.1, Step 4f.
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TAU, 1 T Quadratic coefficient in cost of
transportation function. Section
1.2.1, Step Ij.

TOL, 1 — Tolerance factor for convergence
of value function coefficients.
Defined from keyboard.

X, 2 9 X Matrix of grid point coordinates.
4 81 Section 1.2.3, Step 3.

Y, 3 Y 1 stage decision vector. Section
4 1.2.3, Step 6f.
5

1.3.2 Function INITIAL

Function INITIAL is listed in Figure 1.2. If a new calculation is

desired in which demand or cost parameters are changed, or the discount

rate, or the degree of resolution (NGRID), the appropriate changes

should be made in lines [2] through [13] of INITIAL. Then INITIAL

should be run, followed by VFS or ITERATE.

INITIAL is quite straightforward, but some explanation of line [6]

is in order. Planting of wheat is assumed to take place in the United

States in the second and fifth periods, and in the rest of the world

in the second, fifth, and sixth periods. Thus, the production cost

function parameters, y ar>d <$ , are used only in these periods (by

function STRUCTURE). The elements of the array PRDCTN corresponding

to the non-planting times, therefore, have no effect on the calculation,

but if they are zero, numerical problems are encountered in line [16].

To avoid this, we have put 0.1 in these positions.

1.3.3 Function ITERATE

This function, listed in Figure 1.3 performs the iterations of dynamic

programming and simulation leading to convergence of the statistical
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Figure 1.3 Listing of APL Functions ITERATE and NEWGRID
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2
parameters. Its left argument is the array £ (Section 1.2.4, Step la)

describing the performance of the information system. Its right argument

is 1/2 the number of years to run the simulations. After running SIMGRID

to determine the simulated statistical parameters, ITERATE calls NEWGRID

to form the new parameters as a linear combination of the old ones and

the simulated ones. The relaxation coefficient, STEP, is a global vari-

able defined from the keyboard. Values of STEP between .05 and .5 have

been found suitable. The variable MUM is also defined from the keyboard

and is used as the argument of VFS to limit the number of dynamic pro-

gramming cycles before SIMGRID is rerun. N U M = 1 has been found most

often suitable for speedy convergence.

1.3.4 Function VFS

The listing of this function is in Figure 1.4. The following is a

glossary of important variables used in VALUEFUNCTIONS and not discussed

in Section 1.3.1.

APL Name and Shape Algebraic Name and Description

CLOOP, 1 -- Label for start of loop for
convergence of value function
coefficients.

COEFF COEFF Receives results of least squares
(Vector,length varies) approximation of value fi.-nction

coefficients. Defined in Function IS.

D, 2 D Right hand side of constraint
4 inequality on decision vector Y

in quadratic programming problem.

' i+i Dimension of state variable in
next period.

G, 1 G Constant term in expansion of
value functions in powers of Y.

1,1 j Counter for state points.
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V VFS ITERS

ClU F I L U X < - 6 4 f 1 0 1 0 .1. 0 1 0 J -16F1
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Figure 1.4 Listing of APL Function VFS



API Name and Shape

INEXT, 1

IPER, 1

ITERS, 1

K, 1

LLTD, 4
2

NC, 1

NCY, 1

NR, 1

NRY, 1

PERLOOP, 1

QLTD, 4 4
2 2

R
(vector,size varies)

S, 2
4

STATELOOP, 1

VAL, 9
81

Algebraic Name and Description

Index of next period of the year.

Counter for period of the year.

Maximum number of iterations in
seeking convergence.

Counter for iterations in seeking
convergence.

Row of L referring to next period

Number of columns in quadratic
programming tableau.

Dimension of decision vector,
number of columns in constraint
matrix C.

Number of rows in quadratic
programming tableau.

Number of rows in constraint
matrix C.

Label for start of loop over
periods of year.

Submatrix of Q referring to next
period.

Indices of basic columns in qua-
dratic programming algorithm.

State point.

Label for start of loop on state
points.

Vector of values of cumulative value
function at state points.

34

The function VFS is a direct implementation of the dynamic program-

ming algorithm, as presented in Section 1.2.3. It calls the subordinate

functions DRAW, STRUCTURE, BUILDX, TABLEAU, MAXIMIZE, LS, and CONVERGE.
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DRAW is called at the beginning of execution to select the random

sample of values of $• .

STRUCTURE is called at the beginning of the loop on periods of the

year to set up the arrays A, B, C, M and N. Thus, it covers Step 2 of

Section 1.2.3.

BUILDX covers Step 3, the formation of the array of grid points.

TABLEAU prepares the initial tableau for the quadratic programming

calculations, which are actually carried out in MAXIMIZE.

LS performs the least squares fit to obtain new Q and L.

CONVERGE compares the new Q array with the one stored in the last

iteration, and takes the value 1 when convergence has been achieved.

1.3.5 Function SIMGRID

Figure 1.5 gives a listing of this function. The following is a

glossary of important variables used in SIMGRID and not discussed above.

APL Name and Shape Algebraic Name and Description

ANTLOOP, 1 — Label for start of loop on
antithetic variates.

FILLP, 64 -- Array of flags to expand $ to
maximum dimension of state space.

FILLX, 64 -- Array of flags to expand S to
maximum dimension of state space.

KNT, 1 -- Pointer for array of random terms.
Locates starting point for this year
and period.

ND, 1 -- Dimension of state space next
period, number of rows of M.

PH (vector, length -- Random terms selected in DRAW,
depends on ITERS)

PHI, 2 4> Random term in state transformation.
4
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r:27:i N K * . ( f T f t B ) [ : i :
L283 Hc<-i.+ (f T f t&) i;;23
C!293 R<-NC::Y+IK'R
L 3 0 3 P' <- K! I." 1 ? 3 + |:;: H ° x ( ( 2 x « i- T D + 4 x ( M '-=i <• • M + , x s ) ) + 1... i... T i:> ) .f v v i-!
II 3 1 3 G <•• P: !••! o x ( i... L. 7' n .». o i... T i:> + „ x M s ) •*• 4 x M ̂
[.'323 Ni:.v(fM) [;;| 3
r 3 3 3 p 1-1 1 f. F- 1-1 1;; K f •( T 4. i N P 3 x s G w
C 3 4 3 K '•' T <•• K ''' T ••;• f'-' I:'
11353 xp.;..r:n...L..xr:i:p!:!:R; ;;i\s
C3i3 x:'f.xx::r ;i 3 3
C 3 7 3 x:' <•• 0 v 0 0 0 0 .1. 1" D

C3S3 MAXIMIZE
E 3 9 ::i ^ i- ( M •*• <. x s ) -f < f-: .*- „ x 'I' ) -f f- i-i :r
II 4 0 3 ••> |::' ||:" |:;: '• • ° ° P x t 6 .>. :|: P n:; R <•• :i: P ''" |:;: -;• 1
C 4 1 j ••? 'r' |;:: A P: '••• t:) (:) '"' >'• \ :i: T |;;: P: !:i .?. K <•• K -v 1
C 4 2 3 "> A '"! 'T' '- ° (- '"' X \ B G f'( :::: "" ||

[; 4 3 3 - ''" r' ; ; <- ( ( -;; T I:' '•' - M E: fl '•' -•' ft 2 ) x 1 7' n;: R s •- :i: r r: R s .... 0 t 5 ) A 0 « 5

Figure 1.5 Listing of APL Function SIMGRID
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SGN, 1 — Multiplier (+1) to fix sign of
random terms to achieve antithetic
variates.

SIGSQ, 2 10 E2 Input array describing performance
of information system. See
Section 1.3, Step la.

XB, 4 X State variable expanded to maximum
dimension.

The function SIMGRID is a direct implementation of the simulation

algorithm presented in Section 1.2.4. It uses some of the same subor-

dinate functions as VFS, namely STRUCTURE, TABLEAU, and MAXIMIZE. It

uses the subordinate function DRAW to select the random terms.

1.3.6 Function USVFS

The listing of this function is in Figure 1.6. It does all the

calculations of VFS, and simultaneously calculates QU, LU, KEF, and

KEFU, as discussed in Section 1.2.5 For the least squares fit, USVFS

calls the function LSU, and for the convergence check, it calls

CONVERGEU; otherwise, it uses the same subordinate functions as VFS.

1.3.7 Function CONTERMS

This function is listed in Figure 1.7. It is a straightforward

implementation of the algorithm described in Section 1.2.6.

1.3.8 Function EVAL

This function is listed in Figure 1.7. It is a straightforward

implementation of the algorithm described in Section 1.2.8.

1.3.9 Function SIMSTATS

Figure 1.8 gives a listing of this function. The following is a

glossary of important variables used in SIMSTATS and not discussed

above.



V SIGSO USVFS ITERS

[ 1 ] FILLX<- 6 4 F 1 0 1 0 1 0 1 0 r !6 f l
[ 2 ] F I L L F < - 6 4 F 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
C33 •«-!
C4D CLOOF-J
[5] IPER<-6

C63 PERLOOF •
[7] STRUCTURE: IF-ER
[8] IF-ER FUIUT'X WGRIIi

C93 K-l
C 10D I W E X T < - l + W F - E R I O L i S T I F E R

C123 t'IMf -DIMXC IWEXT]

C133 a u T D < - < r u M , D i M ) t«[ INEXT
t 14] L.l.TD<-tiIMfL.[; INEXT J ]

C16] QLTDU«-(riIM,DIM)

C183
C19]
C20D
C213 TABLEAU

C223

C233
C24D

C25D
C263 VAI_U<-VAL.
C273 STATELOOP;
C28J S«-ri.tMXfIF-E-R]tX|: J I]

C29] F«-&[:i J]+RHOX( (2X«LTt.+ , X(MS<-M.f , XS) ) +LL.TD ) + , X W

C30D
C31 J FU«-B[;2; ] + RHOX ( (2XCJLTE1U+,

C323 GUf.RHOx<LUTDU + QUTrtU+,XMS

C33D XB<-FIL.L.X[.IF-ER;]\S
[34] D*.XBCI 3]
C35.1 r'«-0. 00001 F*
C36D MAXIMISE

C37] VALE; i ]«-&+( F- + ET+. XY) + ,XY
C38D VftLU[;i]f.GU+(FU4-EU+» XY) + , X "I

[393 -»STATELOOF'X I I MOX_>_ I <- 1 + 1

[40] D I Mf-ru MX [ I PEP:]

[41] LSUS

C423 u<-( ̂ o.jt.Vf-xr.iM)
C43D T«-(DIM,riIM)pU\<-DIM+l)4,COEFF

[44] Q[IPERJ ( t (f T)[l]) f ( t (fT)[2])

C45] L[IPER} I pT]f.T<-DIMf (-IHM.fi ) f COEFF

[46] KEF[IPER]<--ltCOEFF

[47] TUf.<r'iM,niM)f u\(-niM.f i ),(,COEFFU
[48] OU[IF"ERJ ( x (fTU)[l]> J ( ̂ <f TU)[2])]f-0.5XTU4-«S}TU

[49] i_u[ IF-ER;
C50D KEFU[IF-E

C51D -»PERI_OOF'X I 1 <.IPER<-IF-ER-1

C52D -»( (COWVERGEU K)=zl)/0

C53D -»CUOOF-X\ ITERS >.

Figure 1.6 Listing of APL Function USVFS
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t 1 3

C2H
[33
[43
C5H
[63
[7]
C8D
[93
[10]

CUD
[12]

C133
[143

C153
C16D

<? SIGSO COMTERMS ITER5

Sr«2«-<-OSSSH«PE RESHAPE SIGSK

CLOOF-J
iPER<-6

PERL. OOP;

2C j IPER]

Qi_Tr i<-( rnM, D I M ) f Q[] :MEXT j j ]
QLTDU«-(DIMftiIM)tQU[IMEXT; ; ]

KOM[; IPER]<-KEF[ IPERU + RHOx KON[
KO»-<U[ IPER]f.KEFU[IPER3+R

^PERUOOPx \ 1 iIPERf-IPER-1

^ DSD+ , QLTD

GLTIMJ

12
12
V

[13

[23

EVAL. ORG

KON[ 1 3+ARG+ . XU[ 1

+, XL.U[1 J

, XO[ 1 J ; 3

Figure 1.7 Listings of APL Functions CONTERMS and EVAL
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APL Name and Shape Algebraic Name and Description

AMN, 10 y. Annual means of 27 quantities
listed in Section 1.2.7, Step Ij.

AVAR, 10 AVAR Annual variance of 10 quantities
listed in Section 1.2.7, Step Ij.

FILLP, 64 -- Array of flags to expand $ to
maximum dimension of state space.

FILLX, 64 -- Array of flags to expand S to
maximum dimension of state space.

FILLY, 65 -- Array of flags to expand Y to
maximum dimension of decision space.

GRS, 2 STAT(i20,i21) Gross welfare this period to
United States and rest of world

HD, 27 6 -- Heading for printout.

MN, 6 16 \i. Accumulator for mean values by
period of 27 quantities listed
in Section 1.2.7, Step Ij.

MULT, 6 27 MULT Multiplier defined in
Section 1.2.7, Step Id.

ND, 1 — Dimension of state space next
period, number of rows of M.

NET, 5 STAT(i22,... ,i27) Net welfare each of six categories
this period.

PCST, 2 STAT(il7,il8) Cost to producers of production
planted this period in United
States and rest of world.

PHI, 2 <f> Random term in state transformation.
4

PHB, 4 -- Expansion of <J> to maximum
dimension of state space.

PRC, 2 STAT(il4,il5) Price of wheat this period in
United States and rest of world.

REV, 1 STAT(il6) Revenue to United States for
exports shipped this period.
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API Name and Shape Algebraic Name and Description

SIGSQ, 2 10 Z2 Input array describing perfor-
mance of information system.

TCST, 1 STAT(il9) Transportation cost this period.

VAR, 6 16 VAR Accumulator for variances by
period of 27 quantities listed
in Section 1.2.7, Step Ij.

XB, 4 STAT(il,... ,i4) State variable expanded to
maximum dimension.

YB, 5 STAT(i5,... ,i9) Decision variable expanded
to maximum dimension.

The function SIMSTATS is direct implementation of the statistics

algorithm presented in Section 1.2.7. It does not change the arrays

MEANX and STDX as SIMGRID does, but simply prints out means and standard

deviations of the 27 tracked quantities.

1.3.10 Subordinate Functions

The remaining functions are listed in Figure 1.9 through Figure 1.15.

BUILDX builds the grid of points as described in Section 1.2.3,

Step 3. In case the grid so built includes any points with negative coor-

dinates, it is shifted to avoid this condition, and NOTESHIFT is called

to print a warning. This does not happen in the normal workings of the

algorithm, but when the statistical parameters MEANX and STDX are very

far from their final values, it may occur. Unless it persists in itera-

tions close to convergence, there is no problem.

The function PIVOT is called from the quadratic programming algorithm

MAXIMIZE, to do the pivot operation for each iteration. The left argument

is the pivot row index, and the right argument is the pivot column index.
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C43
C53

n c o N v F.." R G i::: u r n "I •;/
K

[13 ' AT ITERATION1 5. 4 0 •*•'<

[23 z*' (D<- ( TV I r (° p <3tJ>- (QPREV,QF'P:EVU) ) ) <TOL_xr/ I 7° pTOL

NOTE:si-iiFT

[23 NEXT* 'GRID SHIFTED DURING PERIOD1 j, 4 0

[3^ AFLAGf-O

<? I PIVOT J J I R J T

H2I1 MATRIX[; I ; ̂f Tf.MATF;:IX[; I f '|.fMATRIX[; I f J"|
L'33 MATRIXf-MATRIX- ( MATRIX^ J J^ X t'jt- \ NR ) « , XT

Figure 1.10 Listing of APL Functions CONVERGEU, NOTESHIFT
and PIVOT
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Figure 1.13 Listings of APL Functions STRUCTURE and TABLEAU
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Figure 1.14 Listing of APL Function DRAW
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Figure 1.15 Listings of APL Functions LS and LSUS



Function DRAW is called from SIMGRID and SIMSTATS to select the vector

of random terms as described in Section 1.2.4 d.

Functions CONVERGE and CONVERGED simply determine whether convergence

has been achieved in VFS and USVFS respectively.

Function LS calculates the least squares fit described in Step 8

(a and b) of Section 1.2.3. Function LSUS does the same calculation for

the United States value functions as described in Step 8 (a and b) of

Section 1.2.5.

Function NEWGRID calculates the new statistical parameters after a

run of SIMGRID. It is called from ITERATE.
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2. VARIATIONS IN INPUT DATA

As shown in the diagram of Figure 1.1, there are two categories

of input data used for the value of information calculations. There

are the economic parameters (discount rate, elasticities, timing

assumptions) used in both the dynamic programming calculations and

the simulations. Then there are the data describing the information

systems used directly in the simulations, but also used indirectly in

the dynamic programming calculations, since these require the statistical

parameters (MEANX, STDX) calculated by the simulations.

Changes in the economic parameters are easily made by replacing

the appropriate lines of INITIAL. To correctly make changes in the

description of either the current or the improved information system,

one must understand how these descriptions are related to the assumed

production estimate accuracies.

This relationship is portrayed in Figure 3.1. The Z2 array

describing an information system is formed by a difference operation

from the mean squared errors in production estimates by time of

year, together with the mean squared error of the a_ priori production

estimate. Let i = 1 for the United States, i = 2 for the rest of the

world. Let e.. , j =1, 2 , ... , 12 , be the mean squared errors
I J

in production estimates for the United States and the rest of the

world at two month intervals from June before planting (j = 1) .to

April after harvest (j = 12). We assume e. 2 =0, since regardless

of what is published, the "market" must discover the truth as the

supply is exhausted.
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A Priori Accuracy

Vector of Accuracies
by Period of Year

Difference

Operator

Z array

Figure 2.1 Calculation of £ array—Either
Current or Improved System

In the case of the current system, we have obtained estimates

of the e.. 's from a study of published statistics. But these
' J

estimates are not based on the assumption that the true annual

production is ever known with perfect accuracy. Built into our

e... 's is the assumption that a certain residual mean squared er-ij t

ror r.2 , i = 1 , 2 remains in the final published estimates. If

we were to replace this assumption with the assumption of another
2 *P

value (r.' ) for the residual error, then the e.. 's would be
I IJ

replaced with

2

with e. remaining 0.
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For the first few periods, e.. gives the mean squared error
' J

of the a priori estimate, since there is no information available

specific to the crop about to be planted. For our wheat calcula-

tions, this applies up to j= 6 . Now we form

o.., i = l ,2 ; j = l ,10, by

2 2 2e "

Since e...2 = e^2 for j = 1, 2 6, the first few ô .2 's are 0,

namely for j = 1, 2, 3, 4 .

Notice that if the residual error assumption is changed from

Vr.. to r.' , each o. .2 remains the same except for a.. , i = 1 , 2 ,
f\ O

which are simply increased by (r.') - r. , i = l ,2 .

In the case of an improved information system, the mean squared

error estimates e..2 are not based on published statistics, but on

an analysis of the sampling and measurement methods used. Thus,

the above concept of "residual error" does not apply, except as it

affects the a priori mean squared errors e..2 for the first few j .
' J

In advance of the system's measurement of the growing crop, for
f̂j < J (some appropriate J), we have the same e.. as for the cur-

' J

rent system. Therefore, if we change the residual error assumption

of the current system from r. to r..' , a^j changes (i = l,2) , being
O * 5 0

increased by (r.') - r. . The other a., 's are unchanged.
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