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ABSTRACT



In this study, methods of accelerated and abbreviated testing were
 


developed and applied to solar cell encapsulants. These encapsulants must provide
 


protection for as long as 20 years outdoors at different locations within the U.S.
 


Consequently, encapsulants were exposed for increasing periods of time to the



inherent climatic variables of temperature, humidity,- and solar flux. Property



changes in the encapsulants were observed. The goal was to predict long-term
 


behavior of encapsulants based upon experimental data obtained over relatively



short test periods.



To simplify the experimental design, weather conditions throughout the U.S.



were categorized into arbitrary "environmental cells." Each cell covered a dis­


tinct interval of temperature, humidity, and solar intensity. The idea was to



obtain, in accelerated exposure, the values for constants in a generalized rate



equation for encapsulant degradation in each cell. Then it should be an easy



matter to sum the extents of degradation as the weather passes from cell to cell



and so arrive at a prediction for cumulative degradation. Comparison of such



predictions with actual values obtained under outdoor exposure in a specific



locale should verify the mathematical model and prediction methodology.



The first attempts to accelerate degradation under fixed conditions in the
 


laboratory have been made. Changes in encapsulant properties were observed and



correlated with these artificial conditions. For example, increase in chromophore



concentration in the encapsulant (yellowing) was found to be directly proportional



to the cumulative ultraviolet radiation both outdoors and in accelerated exposure.



Such data have proved useful in establishing mathematical models for degradation



processes such as the Weibull and lognormal distributions.



Another innovation was to expose encapsulants "in situ," ie, applied



directly onto miniature solar cell arrays. In this manner, interactions between



the encapsulant and the array components can be identified immediately. Thus, the



electrical output of solar cells is measured and directly correlated with property



changes in the encapsulant.
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SUMMARY



A.. OBJECTIVE AND APPROACH



'Physical properties of materials change upon exposure to the weather, sun­


light being a major factor. Hence, there is concern that solar cell encapsulants



may not provide sufficient protection for 20 years of outdoor exposure. Our objec­


tive is to predict how long and how well encapsulants can perform.



To make predictions for a given property, eg, solar cell power output, it



is necessary to develop a curve of property vs exposure time. The mathematical



model for this curve should simulate the controlling physical/chemical process,



thus giving greater confidence than does an empirical relationship. In principle,



by inserting measured values for degradation rate constants into a suitable equa­


tion, any encapsulant characteristic, eg, transparency, can be predicted as a



function of time.



A considerable part of the degradation vs time curve must be known to



define its shape and identify the mathematical model. Therefore, acceleration



of the weathering process is necessary. For example, samples can be exposed to



the artificial sunlight provided by a xenon lamp. This light remains always at



noontime intensity, thus providing "time-compression." It accelerates degradation



rates by a factor of about 8. Thus, eight years of outdoor exposure would be



simulated by one year of such accelerated weathering. Some other procedures claim,



acceleration factors much higher than 8.



In practice, there are considerable difficulties in making "paper predic­


tions" based on accelerated data alone. One reason is that xenon lamps, or other



artificial sources, give imperfect solar simulation over the important UV range of



the spectrum. In fortunate cases, the specific UV wavelength causing degradation



can be identified and set at a natural level for accelerated exposure. However, a



problem remains. The outdoor level of this critical wavelength must be known, and



UV intensity varies greatly with season and time of day. Reliable data are not



now available, though they will be recorded in the near future for at least one
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test site. Another problem is that property levels must be measured with high



precision to distinguish among possible mathematical models and to allow meaningful



extrapolation. Most property data have been too scattered for this purpose, though



advances are being made with new analytical techniques. Yet another problem is
 


that erratic/dynamic factors such as temperature cycling, air pollution, soil accu­


mulation, or windblown sand may shift encapsulant lifetime below predicted values.



Such factors may be the most important. At present, little factual data are



available.



The 	 experimental work falls into three parts as follows:



(1) 	 Our present program to develop prediction methodology is based on the



principle of measuring degradation rates under 24 accelerated condi­


tions which can be used to define artificial "weather cells" whose



dimensions are insolation, relative humidity, and temperature. Study



2 of the LSSA Program by Battelle (ref 1) has analyzed real weather



at various locations and placed it into such "cells". Thus, accel­


erated exposures were conducted to obtain such rates as well as



to disclose failure modes and to clarify the relative importance and



interactions of light, humidity, and"temperature.



(2) Abbreviated exposures were initiated and tests are continuing. These 

are natural exposures on racks for periods of up to two years. Test 

sites are Phoenix, AZ and Miami, FL. 

(3) 	 Samples at Phoenix also are being exposed on devices which concentrate



sunlight eight times by means of mirrors: EMMA (dry) and EMMAQUA



(with water spray). This approach circumvents the solar simulation



problem by using natural sunlight. It is, so to speak, a hybrid
 


accelerated/natural exposure condition.
 


Some preliminary predictions have been made, but extensive predictions will



be made only after a full year's abbreviated data have been received. These data



_
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will be obtained on samples whose exposure began both in midwinter and in mid­


summer as explained below.



Two type of samples were exposed. One type of sample was unsupported



film: Lexan, Tedlar, or polystyrene. The latter plastic was included because it



degrades rapidly and will provide extensive mathematical modeling data.



The other type was a "Universal Test Specimen." This specimen comprised



three pairs of solar cells and three FET (field effect transistor) chips (A4T4391)



bonded to a 1.0 mm (0.040 in) thick alumina substrate. Ceramic was chosen to



minimize any possible effect that substrate degradation products can have on the



P/N junctions of the devices. If an epoxy board had been chosen, it might yield



ionic contaminants. We want to be confident that we are testing encapsulants and



not substrate materials. To eliminate corrosion problems, the circuitry is thin­


film molybdenum-manganese overplated with nickel and then gold.



The entire board - front, back, and edges - was encapsulated with Sylgard



184 transparent silicone rubber. Since the rubber is soft and tends to collect



dirt rapidly, a transparent "dust cover" completed the encapsulant system. The



cover was one of two thermoplastic films: Lexan (bisphenol-A polycarbonate, with­


out UV stabilizer), or Tedlar [poly(vinyl fluoride)].



B. RESULTS TO DATE
 


Optical transmittance measurements on the films have provided sufficiently



precise data to allow the'trial of mathematical models. Other properties studied



include tensile properties and surface carbonyl group formation. Such properties



often follow dissimilar models. However, if the functional relationship is known,



it should be possible to correlate precisely-measured secondary properties with



critical properties which are measured with difficulty. If this is so, then the



latter can be predicted indirectly.



Abbreviated test procedures have been refined to include initiation of



exposures both in midsummer and midwinter. It is essential to obtain seasonal
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values for model equation parameters because degradation rates are commonly



three to five times higher in summer than in winter. Models which best fit the



data are the Weibull, a special case of which is the exponential, and the log­


normal. An exponential model is often assumed for failure rates of semiconductor



devices. In the case of yellowing of Lexan or polystyrene, this model would
 


represent a photochemical reaction in which chromophore formed is directly pro­


portional to photons received (in the reaction-inducing wavelength region).



In the accelerated exposures, Lexan degraded extremely rapidly. Prelimi­


nary mathematical modeling indicated a change in mechanism of degradation attributed



to abnormal light-stressing; ie, there was a mismatch between the xenon light and



sunlight at the critical UV wavelength of Lexan degradation. Such difficulities



are not unusual in accelerated testing. Tedlar film was negligibly affected by any



exposure except by those accelerated conditions in which the T (glass transition
g



temperature) was exceeded. Above its Tg, a plastic typically becomes rubbery,
 


highly oxygen-permeable, and subject to rapid chemical reactions. A danger in



stressing (raising) temperature of plastic materials is that the T or some reaction


g



energy barrier will be exceeded. Then degradation, such as oxidation, could proceed



rapidly. On the other hand, negligible degradation might occur in 20 years of out­


door exposure at natural temperatures.



Unlike outdoor exposures for limited time, accelerated exposure proved



valuable in disclosing failure modes. For example, solar cells continued to operate



satisfactorily in all the-outdoor exposures. However, high-humidity conditions in



the accelerated program caused moisture-related failures. It was found that conduc­


tive grids, or contacts, deteriorated and lifted from the surface of the solar cells.
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GLOSSARY AND DEFINITIONS 

Term Definition 

A3 6 0 Absorbance of UV light at 360 or 600 nm, which is log1 0 () 
where T is the transmittance 

Abbreviated Outdoor (natural) exposure for considerably less than 20 years 

Exposure 

Accelerated Indoor exposure to light from a xenon lamp, filtered through 

Exposure Pyrex and water to attenuate short wavelength UV and infrared. 

All equipment was contained in a cabinet. 

ATR-IR Attenuated Total Reflectance of IR (analytical method) 

cm centimeters 

Contact Collector, grid, or "finger" of titanium-silver on the upper 

surface of the solar cell 

CUV Cumulative UV light energy received by a sample 

Desert Sunshine Desert Sunshine Exposure Tests, Inc., Box 185 Black Canyon 

Stage, Phoenix AZ 

Drierite Anhydrous calcium sulfate (desiccant) 

DSC Differential Scanning Calorimetry (analytical method) 

EMMA Equatorial Mount with Mirrors for Acceleration, used at 

Desert Sunshine for exposure of samples 

EMMAQUA EMMA with intermittent water spraying of samples 

EMMA(QUA) Both EMMA and EMMAQUA 

ESCA Electron Spectroscopy for Chemical Analysis (analytical 

method) 

FET Field Effect Transistor (A4T4391) 

450 S . Abbreviated exposure outdoors on racks tilted 450 from 

vertical and facing south 
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Term Definition 

IR Infrared radiation, above 700 nm 

ISWPR International Symposium on the Weathering of Plastics and 

Rubber, June 8 and 9, 1976, Institution of Electrical 

Engineers, London WC2R OBL 

IV Curve A plot of current vs voltage for an operating solar cell 

JPL Jet Propulsion Laboratory 

Lexan Lexan No. 8740 polycarbonate film, not UV-stabilized, 

nominally 127 pm (5 mil) thick, from General Electric 

mm millimeter 

mW milliwatts 

Miami or Phoenix Exposure to the weather on racks tilted at 450 and facing 

south in Miami FL, or Phoenix, AZ 

nm nanometers 

OCLI Optical Coating Laboratory, Inc., City of Industry, CA 

Outdoor Exposure Miami, Phoenix, or EMMA(QUA) exposure 

pct percent 

P Property, specifically fraction of original transmittance at 

360 nm in our mathematical modeling 

Polystyrene Biaxially-oriented clear polystyrene film, nominally 127 Pm 

(5 mils) thick, from Catalina Plastics, Glendale, CA 

psi pounds per square inch 

Solar Cell N120C--9, by 0CLI. Responds to light from approximately 

0.4 to 1.2 p 
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V 

Term Definition



Sylgard 184 Transparent silicone rubber, produced by Dow Corning Corp.



Tedlar 	 Tedlar 100BG30 TR [poly(vinyl fluoride)] film, treated on



both sides to improve adhesion, nominally 25 pm (1 mil)



thick, from du Pont



Tg 	 Glass transition temperature



TGA 	 Thermogravimetric Analysis (analytical method)



TMA 	 Thermomechanical Analysis (analytical method)



UTS 	 Universal Test Specimen (described in text)



UV Ultraviolet radiation, 295-400 nm for sunlight at sea level



Volts



Weathered Subjected to either natural or artificial weathering



Weathering Exposure to either natural or artificial weather conditions
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I. INTRODUCTION



This study is one of several dealing with the encapsulation of solar cells.



These studies are being conducted for the Jet Propulsion Laboratory. Encapsulation



is necessary to protect solar cells from natural hazards which can reduce power out­


put. It is important to identify these hazards and to determine how rapidly they



degrade solar cell performance. What actually constitutes a failure or an unaccept­


able level of degradation remains to be defined. However, the overall goal of the



endapsulation task can be summarized as follows:



"To select or develop a cost-effective encapsulation



system which protects solar cell arrays for 20 years



of outdoor exposure."
 


The Rockwell contract has the specific goal:
 


"To develop a methodology for predicting the performance



of solar cell encapsulants for periods of up to 20 years."



Consequently, this report describes the equipment, exposure modes,
 


analytical procedures, and mathematical models which have been used during the



past year to develop prediction methodology. A Summary section and Discussion of
 


Results are presented in the body of the report. However, all details of how the



work was done have been placed in the Appendix. To avoid unnecessary repetition



and to conserve'space, certain items have been abbreviated. It is important to



note that expressions such as "Miami," "accelerated exposure," or "EMMA" have a



specific meaning in the content of this report. Therefore, these abbreviations



are defined in the Glossary.



Weathering studies described in the literature are summarized in ref 1.



In general, the preceding studies are only qualitative and certainly are not suit­


able for prediction purposes. To the best of our knowledge, the present study



represents the first systematic attempt to obtain precise data on the degradation



rates of materials under several outdoor exposure conditions as well as in multi­


condition accelerated exposure in which weather factors are closely controlled at
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fixed levels. There is no question that a scientific study of weathering is very



complex. For this reason, the studies described herein have.been limited to the



"inherent" weather factors of light intensity, temperature, and humidity. These



stresses are common to exposure sites all over the United States and the world.



The results represent baseline weather-resistance of encapsulants. Therefore,



predictions for failure rates of solar cell arrays will tend to be optimistic.



When other factors such-as air pollution are superimposed on the inherent factors,



the predicted failure rates will necessarily be higher and the life expectancy



shorter.
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II. EXPERIMENTAL DESIGN



A. GENERAL DESCRIPTION



Our design includes both abbreviated and accelerated testing.



Abbreviated tests involve truncated outdoor exposure coupled with the use



of sensitive analytical procedures for the detection of incipient degradation.



In accelerated tests, time is compressed by stressing one or more of the



exposure parameters. For plastics, the single most important weathering influence



is the ultraviolet portion of sunlight. Accelerated test procedures have stressed



this parameter three ways: (1) by using a mercury vapor lamp whose spectrum is



rich in UV including wavelengths below 295 nm (the lower limit for sunlight at



sea level), (2) by maintaining simulated noon sunlight continuously vs some few
 


hours/day in nature, and (3) concentrating natural sunlight by mirrors to give an



approximately 8-fold increase-in intensity. Commercial instruments representing



the three procedures are, respectively: (1) the QUV Cyclic Ultraviolet Weathering



Testet (Q-Panel Co.), (2) the xenon-arc Weather-Ometer (Atlas Electric Devices Co.),



and (3) the EMMA or EMMAQUA (Desert Sunshine Exposure Tests, Inc.). In our judg­


ment, the first procedure is not appropriate because high-energy light of wave­


lengths below 295 nm may cause extraneous photochemical reactions. The other two



procedures are possibilities, but they must be evaluated critically. The problem
 


with procedure (2) is imperfect simulation of the spectrum of sunlight. The wave­


length region causing degradation must be known by this case. The problem with



procedure (3) is that unnaturally-elevated light intensities may create new reac­


tion paths and change the course of degradation.



Our test plan encompassed both techniques (2) and (3). Test specimens



were placed in twenty-four individual cells ("miniature Weather-Ometers"), each



of which had a different combination of light intensity, temperature, and humidity.



In addition, specimens were exposed under accelerated conditions using Desert Sun­


shine's sunlight-concentrating devices.



-3­



The conventional approach to artificial weathering has been to simulate



a given site, often South Florida, with a single set of conditions in a Weather-


Ometer. Usually water is introduced in the form of a spray cycle. If the accel­


erated degradation vs time curve has some resemblance to the outdoor curve,



successful correlation is assumed and an "acceleration factor" (typically on the



order of 8) is assigned to the test. The disadvantages of this straightforward



procedure are: (1) it is quite specific (limited to one site and one manner of



exposure), and (2) it gives no knowledge of the relative effect of the variables



(light, water, and temperature). Often, in fact, this attempt to imitate erratic
 


weather conditions does not give an "outdoor-like" degradation vs time curve.



Frequently it gives a different ranking of samples, eg, material A weathers faster



than B outdoors but more slowly than B in the Weather-Ometer. In contrast, our



procedure involved 24 sets of conditions to give a clear indication of the relative



importance of the variables as well as considerable knowledge of their interactions.



This design leads to an understanding of the effect of the basic weathering factors



and is applicable to any site.



The basis of this approach is to concentrate on the "baseline" or inherent



weathering factors and to exclude secondary factors from the current study. These



baseline factors are (1) light striking the material, (2) temperature of the mate­


rial, and (3) moisture in the material. Any sample placed at any location will



always be subject to these influences, and their cumulative effect provides a



measure of inherent weatherability in the form of a baseline curve of degradation



vs time. Baseline factors may be averaged for a given microclimate over a long



period of time so that an accelerated test can hope to give a fair simulation of



them. On the other hand, secondary factors are specific, erratic, and even unfore­


seeable. The secondary factors include mechanical stresses caused by wind or sudden



temperature changes, rain and/or dew cycles, frost, sandstorms, hailstorms, air



pollutants, and various biological agents such as fungus, birds, or vandals.
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B. CONDITIONS FOR ACCELERATED TEST



Three levels of UV light were used, plus an alternating (on-off) condition,



and also three levels of relative humidity. The temperature was intended to be



at either a high or low level; actually several temperatures resulted in practice.



Actual conditions were as follows:



UV Intensity


Relative to Air Relative



Condition Noon Summer Temperature, Humidity,


No. Sunlight 0C (pct)



1 1.00 26.1 0 
2 50 
3 100 
4 60.3 0 
5 50 
6 100 
7 0.66 18.3 0 
8 50 
9 100 

10 55.3 0 
11 50 
12 100 
13 0 40 0 
14 50 
15 100 
16 80 0 
17 50 
18 100 
19 0.----.00 6.7­ 26.1 0 
20 (alternating) (alternating) 50 
21 100 
22 43.9-c--60.3 0 
23 (alternating) 50 
24 100 

Somewhat lower temperatures were desired at the low end to cover the



extreme range in Miami and Phoenix, but experimental exigencies determined the



levels achieved (see Appendix). Rate equation parameters will be extrapolated



as required.
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C. BASIS OF EXPERIMENTAL DESIGN



Battelle have conducted a detailed analysis of environmental variables in



Study 2 of the Encapsulation Task of the LSSA project (ref 1). Statistics were



computed to obtain frequencies, durations, and transitions for the simultaneous



occurrence of various combinations of environmental variables. It was demonstrated



that the simultaneous occurrence of specific levels of air temperature, relative



humidity, and insolation could be represented as an "environmental cell", shown



graphically as a geometric cube:



Relative


Humidity



Insolation



Air Temperature



At any given time, the values of a particular combination of temperature,



relative humidity, and insolation are defined by the coordinates of a point which



lies in exactly one of the environmental cells. When values of the environmental



variables change with time, the point moves from cell-to-cell. Three-hourly



measurements for a given geographic location were used to obtain the list of



successive cell code numbers, 29,216 in number, which can be computerized and



analyzed. Aggregated information is used to provide frequency and duration



histograns.
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Environmental cell statistics are used to generate 20-year forecasts of



the expected number of exposure hours, E, for each cell:



NKT



H



where N = observed number of occurrences of a cell in a historical time period H,



K = 3 hr



T = forecast time period



- Thus, if Autonetics can establish for each cell the generalized rate con­

stants of encapsulant degradation, then the total degradation can be computed for 

20 yr of exposure. The changes in encapsulant properties with time in our accel­

erated test can be related in "environmental cells" in the same manner.



Our plan assumes the basic hypothesis that degradation rates are a unique



function of temperature (T), relative humidity (RH), and ultraviolet light deposited



(UV). Therefore, rates will be determined fdr the 24 static experimental conditions



and then used to calculate the generalized rate constants for any (T, RH, and UV)



condition, ie, for any arbitrary set of environmental cells. The rate constant Ki



for condition i (or cell i) is Ki = f (Ti, RHi and UVi).
, 


The 	 procedure then is to make a prediction of P vs t for the outdoor exposure



by a 	 process of summation of increments of degradation:



P=AP1 +AP 2 n



Assuming a Weibull model, three assumptions are made:



(1) 	 A differential process is assum~ed: dP/dt = f (P, A, 6, a) for some 

f not an explicit function of time. P is a property, and A, 8 , and a 

are parameters in the Weibull model equation:
 


e +


-+7
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(2) 	 The physical/chemical state of the material at any property level



Pi is independent of the material's history (that is, of the values



of X and 0 of the curves of the cells I through i through which the



weather has passed). In other words, the sample does not know how



it has reached any given level of P. This means that we start on



each successive P vs t curve at the value of P at which we ended on



the preceding curve.



(3) 	 All cells have the same a so that data can be adjusted to the scale
 


whereby P = 1 at t = 0 and P approaches 0 as t becomes infinite.



To check assumption (1), film samples have been put on outdoor exposure



starting in winter as well as summer.



Mathematical models are discussed in Section V, below.





III. DISCUSSION OF RESULTS



Since this report covers only the activities and accomplishments of a



12-month study and data collection is incomplete, it is premature to make sweep­


ing statements. Indeed, the exposure data still being gathered may substantially
 


alter current interpretations.



This discussion is divided into two sections. One deals with behavior of



UTS's under abbreviated and accelerated exposures. The other deals with the



behavior of unsupported plastic films. It will be seen that the presence of an



array system affects the performance of the encapsulant or element thereof. For



example, in EMMAQUA exposure the Sylgard pottant reached higher-than-ambient



temperatures and caused the Lexan film cover on UTS's to degrade faster than



unsupported Lexan film.



A. UNIVERSAL TEST SPECIMENS



1. Substrate and Circuitry



The circuit boards comprise gold circuitry on a ceramic substrate and



were visibly unaffected by weathering. Thus, degradation effects were confined'



to the encapsulation system. This result was exactly as planned and demonstrates



an effective design.



2. Solar Cells



After 150 days of outdoor (abbreviated) exposure, including EMMA and



EMMAQUA, the short circuit current and maximum power points of the solar cells



were measured. These electrical performances were essentially unchanged. Only



one random failure occurred. Some degradation was noted atter 300 days.



After 72 days of accelerated (xenon lamp) exposure, the short circuit



current fell to 47-76 pct of the original value for 10 cells, and the maximum



power fell to 31-76 pct of the original value for 19 cells. Twenty-four UTS's,



bearing h total of 144 cells, had been exposed. The performance losses were



moisture-related, since relative humidity was 100 pct in nearly all those



combinations of light, temperature, and moisture which induced failure. The



plastic covers had no significant effect.
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Failure analysis indicated damage to the contacts (grids) on the upper



surface of the cell. The deterioration of Ti - Ag contacts by moisture is well



known (ref 2). The two metals form.an electrolytic cell.



3. Field Effect Transistors



The FET's showed small, moisture-related increases in leakage current.



The absence of large increases indicated that the pottant, Sylgard 184, had



generated essentially no ions as a result of exposure.



4. Pottant



Sylgard 184 was visibly unaffected by any of the exposures. However,



this polymer is not a good moisture barrier, and it permitted the moisture



related solar cell failures mentioned above.



5. Transparent Cover (Lexan or Tedlar)



Lexan yellowed slowly outdoors, and moisture-related loss of gloss



occurred after 90 or more days on the EMMAQUA. Rapid yellowing of Lexan



occurred in the accelerated exposures, with embrittlement and moisture-related



loss of gloss under the more severe conditions.



Tedlar showed no significant color change. It was embrittled only in



those accelerated conditions in which the Tg was exceeded. Such high temperatures



are not normally reached-in natural exposures. A plastic tends to degrade at high



rates above its T . As a surfacing film for polyester panels, 25 Pm (I mil)
g


Tedlar film is claimed to give a "service life of several decades" (ref 3).



Adhesion of covers to the underlying Sylgard 184 was unaffected by 90



days of outdoor weathering, including EMMA and EMMAQUA, or 72 days of accelerated



exposure.



B. UNSUPPORTED FILMS



i. texan



Gradual yellowing proceeded at a rate which decreased in the order:



accelerated test >> EMMAQUA > EMMA > Phoenix =Miami. This color change
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involved transmission loss only at the violet end of the visible spectrum, where



the solar cells respond negligibly. Therefore, yellowing did not affect elec­


trical performance.



In the accelerated exposures, light intensity and temperatures were major



factors determining the rate of yellowing. Moisture was a minor factor.



The wavelength region of sunlight which causes yellowing is about 295-305 nm.



This region is greatly variable with cloud cover, time of day, and season. In the



accelerated test, high light intensity at about 300 nm caused rates of yellowing over



an order of magnitude above outdoor rates. The form of the absorbance vs time curve



was somewhat changed, suggesting some change in the mechanism (cf ref 4). The



"fix" is to avoid over-stressing by the use of light filters.



On the other hand, the rate of chain-scission was not nearly so high as



that of yellowing in accelerated exposure. For example, tensile strength fell by



50 pet after about 85 days on the EMMAQUA vs 35 days of accelerated exposure under
 


comparable conditions. The damaging wavelength for chain-scission was about 330



nm. Seasonal variation in UV intensity can explain why the degradation rate was



higher in accelerated exposure than on the EMMAQUA. The "sunlight" used in accel­


erated exposure has a UV intensity corresponding to summer; however, EMMAQUA



exposure took place in late fall and winter.



As far as polymer degradation during exposure is concerned, chain-scission



was indicated by a loss in tensile strength and by decreased values of T •
g



A moisture-related loss of gloss was observed but only under accelerated



conditions. Unsupported films on EMMAQUA remained glossy, whereas the cover
 


film on the UTS became hotter and lost gloss. Like yellowing, the loss of gloss



did not affect electrical performance of solar cells. The explanation is that



light is scattered but still reaches the silicon surface at about the incident



intensity (less reflection).



Intensely weathered films were brittle, indicating that extensive chemical



reactions, eg., chain-scission, had taken place. ATR-IR measurements showed that
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oxidation had occurred. That is, the carbonyl region of the spectrum changed



significantly after exposure. No hydroxyl band appeared, indicating that



hydiolysis is not a significant degradation mechanism for Lexan exposed to the



weather.



2. Tedlar



No significant property changes occurred. Unsupported Tedlar is extremely



weather-resistant (ref 5).



3. Polystyrene



Samples were exposed at Miami only. The rate of yellowing was similar



to that for Lexan. Prior studies on polystyrene have attributed yellowing to the
 


formation of conjugated bonds in the polymer chain (ref 6).



For polystyrene, the UV wavelength region causing yellowing is said to be



in the vicinity of 319 nm (ref 5). In this region, the intensity of the filtered



xenon light used in accelerated exposure matched that of summer sunlight. There­


fore, the acceleration factor was of the expected magnitude, and the degradation



mechanism seems unchanged by the accelerated conditions.



Like Lexan, polystyrene embrittled under the more intense accelerated



conditions.
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IV. PREDICTION METHODOLOGY



In principle, it should be possible to (1) quantitatively establish the



effects of weather factors in an accelerated test, (2) analyze the weather at a



given site in terms of these factors, and (3) predict weathering behavior at the



given site by means of mathematical models (ref 7). This is an ultimate goal of



our program. However, there are four practical problems in this approach of using



accelerated data alone. These are stated below, along with the solutions which



will be available in the future.



Problems



1. 	 Detailed outdoor UV data are lacking presently. These data are essential



because UV is an important weather factor.



2. 	 Precise property data are needed. Imprecise data give large errors



on extrapolation. Most property measurements are too scattered to be



useful, as mentioned in ref 8.



3. 	 Solar simulators are imperfect in completely matching the UV spectrum of



sunlight. Also, the visible region cannot always be ignored because



visible light assists in degrading some plastics (ref 8).



4. 	Xenon lamps, the favorite solar simulators, show spectral changes with



age.



Solutions



1. 	 Spectroradiometric data will become routine in the future. Desert Sun­


shine is pioneering in this development.



2. 	 New analytical methods are being applied, eg, T by DSC or TMA and surface



carbonyl by ATR-IR. Data from these will give more alternatives for



mathematical modeling and prediction.
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3. 	 EMMA and EMAQUA avoid the solar simulation problem. Alternatively,



knowledge of the most damaging wavelengths for a material enables a



match of light source and sunlight to be made at only these wavelengths.



To illustrate this point, examples can be cited from the present study.
 


Polystyrene was found to yellow at a predictably faster rate in artificial



light than in sunlight. The yellowing reaction for polystyrene requires
 


light at 319 nm, a wavelength at which the xenon lamp and sunlight have



matched intensities. On the other hand, the yellowing reaction of Lexan



occurs at about 300 nm where the xenon lamp is much more intense than sun­


light. Consequently, Lexan yellows much faster under xenon lamps than in



sunlight even though their intensities are matched for most other wave­


lengths in the UV-visible spectrum. It is recommended for the future that



xenon light be attenuated at 300 nm for Lexan yellowing studies.



At longer wavelengths than 300 nm, light promotes a loss in tensile



strength of Lexan. Since the intensity of xenon lamps and sunlight are



matched at these wavelengths, chain-scission occurs at approximately the



same rate.



4. 	 Solarization effects can be measured and the degradation data appropri­


ately corrected. Alternatively, lamp power can be gradually increased to



compensate for solarization. The intensity of the UV wavelength of inter­


est would be continuously monitored. Instrumentation for this continuous



adjustment is available from Atlas Electric Devices Co. for installation



on their Weather-Ometers.



For the present, it is expected that abbreviated testing will be required



as well as accelerated testing. It is expected that prediction of weathering



rates will utilize a combination of:



(1) 	 Normal exposure outdoors for periods of 2 years or less (abbreviated



test).



(2) Accelerated exposure in a light-stressed or time-compressed test.



Examples of the foregoing are sunlight concentrators and xenon lamps, respectively.



TS 
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V. MATHEMATICAL MODELS



A. INTRODUCTION AND SUMMARY



The property that provided the most useful set of degradation data is



UV light transmittance at 360 nm. The transmittance measurements have a small



coefficient of variation (ratio of standard deviation to mean) for any given set



of measurements. Also, any two data sets obtained under similar conditions tend



to follow the same general distribution pattern. Only Lexan and polystyrene data



were modeled since Tedlar showed very little change in any of the exposures.



Empirical longevity functions have been proposed by Langshaw (ref 9) and



by Moder and Stucky (ref 10). Our initial approach resembled the predictive



methodology of Clark-(ref 11 and 12) which uses the Weibull model. However, it



was subsequently conjectured.through an analysis of the abbreviated exposure data



for Lexan that the degradation data might be asymptotically lognormally distrib­


uted with time. This conjecture appears to be true for EMMA and EMMAQUA exposure



of Lexan, which began in September 1976. It is possibly true for all autumn­


initiated exposures. It also appears to hold for both transmittance and percent



weight retention (TGA) data on polystyrene from accelerated exposure. Accelerated



exposure data for Lexan represented a mechanism whose rate was inordinately high



in the early stages of the test and subsequently fell off more rapidly than antici­


pated from outdoor tests. That is, slightly different mechanisms appeared to be



operating for Lexan exposed outdoors and under accelerated conditions. For two of



the four cases in which a 64-day data point was available, however, the lognormal



model seems-appropriate.



Polystyrene behavior outdoors and in accelerated exposure correlated well



and gave relatively precise results. Therefore, it is recommended that polystyrene



be included in future tests.



Though UV light intensity was the most critical factor in degradation in



our tests, humidity also had an effect.
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The lognormal and Weibull models currently seem promising, but judgment



must await more data, including that for exposures begun on both summer and



winter solstices.



B. PRECISION OF THE TRANSMITTANCE DATA



Tedlar has shown small and erratic changes to date, but degradation of



transmittance in Lexan and polystyrene has been continuous and precisely measur­


able under all test conditions. The measurements are quite internally consistent,



with sample standard deviation for any set of 5 or 10 replicates usually less



than 1 pct of the mean. This ratio for tensile strength and elongation measure­


ments is 5 to 30 times as great.



The effect of precision on ability to predict is discussed in ref 13.



Clearly, a prediction model cannot be formulated and validated on the basis of a



few measurements if test data are extremely scattered.
 


C. MATHEMATICAL MODEL TYPES



The following paragraphs describe the mathematical model types which are



possible.



1. The Simple Exponential Model



The equation in this case is:



in (1) = Xt, where P'= a property, t = exposure time. 

It is a special case of the Weibull model. If the P vs t curve for all



"weather cells" (see Section II) were of this form, cell i would have associated



with it a Xi or first-order reaction rate constant. The sequence with which weather
 


passes from one cell to another is not significant, and we can use the summation



process:



In )A A t + X2t +... Xt


Poutdoor 11 22 nn



where there is a total of n cells and t+ + .. tn = total exposure time. 
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2. The Weibull Model



a. 0 Constant



The equation in this case is



P =e- oril n4-)] =lnX + 1n t



with 0 constant at some number greater than 1.



Again, by our assumptions, the order in which weather passes from one cell



to another is not significant, and we can use the summation process:



in (1 ) =(Ala/t + X21/at2 +... X 1/ t ) 

1 1 2 n nPoutdoor 

where there-is a total of ncells and t1 + t2 + ... tn = total exposure time. 

b. 0 Not Constant



The equation P = e again applies, but this time a can vary. In



this case, the order of weather passing from cell'to cell must be significant.
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Note that for either P = e or e (where a is fixed) the curves for



various values of A fall into families, and, by our assumptions, the order of



moving from curve to curve makes no-difference. However, when a varies we get a



mixture of curve forms so that the proper sequence must be followed.



This procedure of taking the cells in sequetce can be handled by a computer



program.



c. a Not Constant



If a is estimated to be the same for all cells the equation ln (-)



At0 is applied. This is the case for all the above treatments. However, if a



varies, increments of degradation may be calculated by computer from the equation:



p . e + a or In = At8 1 + a­



As t becomes infinite, P approaches 1 + a so values of P below this



limit will give unreal solutions. Therefore, in the summing of increments, cells



giving unreal solutions (no possible further degradation) are passed over.



d. With an Induction Period



In this case, we can sum across the induction period by adding up the times



spent in each cell (tI + t2 + t3 + ... ti) until the induction period for the next



.cell considered (i + 1) is less than or equal to the time summed through cell i. At



this point we switch to one of the above procedures, as discussed. This involves



the same assumption that the physical/chemical state is dependent only on P level



and independent of curve form.



3. The Lognormal Model



This model has been used for crack growth propagation. Straight lines are



obtained by plotting property vs log of exposure time on probability paper.



4. Mixed Models



The possibility exists that some cells may show, for example, a straight­


line degradation curve P = kt while others follow a Weibull or other model. As



in the case of the Weibull model with 8 not constant, the cells must be taken in



order using a computer program.



D. MODELING OF ABSORBANCE (360 nm) DATA



Weibull plots of data for Lexan exposed in Phoenix, 450S are shown in



Fig 1. The A600 value is subtracted from the A360 value to correct for losses



due to reflection and light-scattering. When the (A3 6 0 - A 600) for a control is



subtracted, the result is the increase or AA due to yellowing. This quantity = 

log1 0 (1) where P = property - fraction of original transmittance. That is, when



AA360 = 0, for the unweathered material, log1 0  ) = 0, .= , and P = 1. As AA3 6 0 

becomes very large, P approaches 0. For Lexan, A3 6 0 - A600 for control = 0.0309.



Note that the plots of A - A - 0.0309 in Fig 1 and 2 are approximately

360 600 -X(CtUv)

straight lines of slope = 1. This represents the exponential model, P = e
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Fig 1. Phoenix A360 Data Plotted By Different Methods
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where P = fraction of original transmittance, X is the intercept on the ordinate



and CUV is cumulative UV radiation. Rewriting the equation,



in q-) = A(CUV) 

( ) =I(CUV)
or 2.3 log 0 
 

That is, the concentration of chromophore, which is directly proportional



to log1 (), is directly proportional to the amount of UV deposited. In other



words, this is a zero-order reaction in which the concentration of chromophore is



equal approximately to the number of photons received. Relative UV at 300 nm is



based on seasonal data from Desert Sunshine Exposure Tests, Inc. A small tempera­


ture correction was applied based on accelerated test results and temperature data



from the Phoenix (Desert Sunshine) test site (see Table 1).



Table 1. 	 Cumulative UV at 300 nm Deposited In Phoenix, Corrected For Seasonal



Temperature Effect On Lexan Yellowing -Rate (Relative Numbers)



(Start September 12)



Cumulative UV x Common Log of



Time, Days Temperature Factor Last Column



1 17 1.23 

2 34 1.53 

5 85 1.93 

10 169 2.23 

15 235 2.37 

30 446 2.65 

60 718 2.86 

90 905 2.96 

150 1380 3.14 

210 2358 3.37 

300 4579 3.66 

420 6619 3.82 

540 	 7660 3.88
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If calendar time is used, the curves swing upward in spring as the UV



intensity of sunlight increases (see Fig 3).
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Fig 3. Absorbance Data for Lexan (Phoenix, 450S)
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Figure 4 shows typical plots for polystyrene from the accelerated test.



The points approximate a line of slope 0.9, nearly the exponential model.
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Fig 4. Absorbance Data for Polystyrene, Accelerated Test
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In many other cases, the lognormal model gave a better fit. Modeling of



the absorbance data requires much further work, and this subject will be treated



exhaustively in the Final Report. Tensile data also were modeled successfully.



E. T DATA (by TMA)
g



The T data for the accelerated exposure of Lexan (see Appendix, Table A24)
g



fitted neither a Weibull nor lognormal model. Other models must be tried.



F. LOGNORMAL PLOT OF TGA DATA



Another property giving measurements stable enough to indicate a



trend was cumulative weight loss of polystyrene as measured by TGA. See the



Appendix for data. Lognormal plots are shown in Fig 5. This is the first



indication that a property other then transmittance appears to follow the



asymptotic lognormal model.
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VI. CONCLUSIONS AND FUTURE PLANS



The 	 conclusions and future plans are as follows:



(1) 	 Our original plan was to expose samples 'in 24 "miniature Weather-


Ometers" each having a different combination of insolation, tempera-.



ture, and humidity. Each combination represents a "weather cell" in



the Battelle sense (ref 1). By relating the accelerated degradation



rate data to an outdoor site via the frequency of occurrence of



"weather cells" at that site (procedure developed by Battelle), it



should be possible to predict outdoor degradation rates. A principal



difficulty at present is scarcity of data for the UV intensity of



sunlight, which is critical for the property (yellowing) we measured



most closely. However, the multicondition accelerated exposure did



disclose the relative importance of weather factors alone and in



interaction. For example, moisture-related solar cell failure was



shown to be accelerated not by light but by heat. The yellowing of



Lexan proved to be hyperaccelerated in xenon lamp exposure and some­


times followed a different mathematical model than it did outdoors.



The 	 reason was imperfect solar simulation in the UV wavelength range



responsible for the photochemical yellowing reaction. Optical filter­


ing of the xenon arc light could correct this problem. The yellowing



of polystyrene, on the other hand, followed a single mathematical



model in both accelerated and outdoor exposure. In this case, the



accelerated test should fulfill its function by predicting the shape



of the degradation vs time curve for many years beyond the practical



limit, perhaps 2 years, of abbreviated testing. Knowledge of the
 


shape of the curve is necessary for confidence in a 20-year extrapo­


lation. This extrapolation is the goal of our developing methodology.



Using available UV data, we will implement our original "weather cell"



prediction plan using '!cells" of one month.
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(2) 	 The design of a Universal Test Specimen (UTS) proved successful.



The ceramic substrate and gold circuitry so far have been inert



to weathering, thus concentrating degradation effects in the encap­


sulant as intended; Electrical measurements on all nine elements



(six solar cells and three FET's) can be made conveniently on UTS's



previously exposed to weather by plugging their edge contacts into



a connector wired to the test equipment. Alternatively, "in situ"



readings can be taken during accelerated exposure via a tape cable.



(3) 	 The level of sophistication for abbreviated exposures was raised.



The 	 use of multisite exposure provides insight into degradation



mechanisms, eg, by showing the role of moisture when a wet and a



dry site are included. Also, tests are initiated both in midsummer



and in midwinter to obtain seasonal values for degradation model



equation parameters. The sunlight-concentrators EMMA and EMMAQUA



have given much useful data. These devices have the advantage of



avoiding imperfect simulation of the solar spectrum.



(4) 	 Mathematical modeling has been especially successful with the UV



light transmittance property of our encapsulants. The big advantage
 


is that data are relatively precise. A decrease in transmittance at



360 nm represents visible yellowing, which is readily measured and



has been found useful in monitoring the degradation of plastics



(ref 14). There was one case of hyperacceleration by light-stressing.



However, in general, the abbreviated and accelerated test data for



360 nm transmittance tended to follow either a Weibull or lognormal



failure model. Interestingly, the quite different property of thermal



stability, which was determined by TGA.measurements, could be.graphed



similarly into a straight line with a lognormal model. Firm conclu­


sions on models must await accumulation of more data and completion



of the outdoor exposure program.
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(5) 	 It appears that prediction methodology should involve three



modes of exposure:



(a) 	 Multicondition accelerated exposure with a solar simulator
 


such as a xenon lamp or fluorescent sun lamp-black lamp



combination (ref 15).



(b) 	 EMMA(QUA) exposure



(c) 	 Natural outdoor exposure, eg, on tilted racks facing south.



Note that the angle of the rack can greatly influence the results



(ref 4). Hence samples should be positioned in the manner expected



for 	 actual arrays. It must be emphasized that only the inherent



weatherability is being evaluated in our present accelerated expo­


sures. Erratic/dynamic factors such as thermal cycling or air
 


pollution have yet to be imposed.



(6) 	 In the next phase of the program, the objective is to extend our



prediction methodology for inherent weatherability to total array



systems including circuitry and substrate. Earlier work has con­


centrated on degradation of one component, the encapsulant.



One must also consider the effects of the possible erratic/dynamic



factors such as temperature cycling, abrasion, and air pollutants.



These effects, as applicable for any given site, must be superimposed



upon the effects of the basic weather factors (insolation, temperature,



and moisture) common to all outdoor exposures. Details of future plans



are given in the Amended Test Program Plan for Add-On Contract 954458



recently submitted to JPL.
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APPENDIX. MATERIALS, METHODS, AND DATA



A. UNIVERSAL TEST SPECIMENS



1. Introduction



The Universal Test Specimens (UTS's) were designed so that encapsulants



can be environmentally tested in their use configuration, ie, in contact with



solar cells. Thus, thermal, mechanical, and chemical stresses affect UTS compo­


nents as if they were part of solar arrays because UTS's are, in fact, miniature



arrays.



There are several possibilities for failure to occur:



(1) 	 Corrosion or short circuits caused by ions produced by degradation



of the encapsulants. Moisture permeation may contribute.
 


(2) 	 Loss of light transmittance by delamination of encapsulants from



the solar cell and substrate.



(3) 	 Entrapment of moisture close to the solar cell.



(4) 	 Reduction in mechanical strength leading to eventual cracking or



other loss of integrity.



Thus UTS's can test both interfacial and bulk properties of materials. Also,



UTS's can disclose interactions or incompatibilities between encapsulants and



substrate, circuitry, or metallization of the solar cells.



Selection of the substrate materials was based on world experience in



outdoor testing of solar cell arrays and materials in general. Many failure



mechanisms have been reported, and it would be impossible to quantify degradation



rates if several mechanisms operated simultaneously. Therefore, a decision was



made to concentrate failure in the encapsulant by using substrates and circuitry



having maximum resistance to weathering. Before UTS's were sent to Miami and



Phoenix for exposure testing, they were subjected to "torture" tests as discussed



subsequently. Thus there was reasonable assurance that UTS's would not fail



suddenly in the outdoor environment. Data from gradual degradation processes are



necessary for mathematical modeling.
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The transparent silicone pottant was known to be weather-resistant, but



plastic films used to surface it were expected to show changes. To ensure that



degradation would occur, UV-unstablized Lexan was chosen as one cover film. 

this first series of tests, the choice of material proved to be well founded. 

other cover film was Tedlar fluorocarbon, which degrades much more slowly. 

For 

The 

These films were specifically: 

(1) Lexan 8740, 0.13 mm (5 mils), non-UV-stabilized, which degrades 

relatively rapidly and provides workable data, and 

(2) 	 Tedlar 100 BG 30 TR poly(vinyl fluoride), 0.025 mm (1 mil)., a weather­


resistant film which is a serious candidate for solar cell encapsula­


tion. This grade is treated by the manufacturer on both sides to



promote adhesion.



2. Fabrication of UTS's



As explained, the object of our UTS design was to encourage failure of the



cover film, not the pottant, substrate, or circuitry. Accordingly, the substrate



chosen was 96 pct alumina because it is chemically inert and not subject to warpage.



Its dimensions were 28.6 x 101.6 x 1.02 mm. The circuitry was thin-film, fire­


metallized molybdenum/manganese overplated with nickel and then gold by Ceradyne,



Inc. This substrateand circuitry are highly resistant to corrosion or other
 


deterioration.



Three pairs of solar cells (see Fig Al) and three FET's were bonded to



each substrate. (Figures and tables of this appendix are placed at the end of the



text.) The solar cells were N/P, shallow-diffused, space cells with cosmetic



defetts. The electrically conducting grid (collectors or "fingers") and bus bar



were vacuum-deposited titanium-silver. The back of the cell was also covered with



titanium-silver. The cell was coated with a silicon monoxide antireflection



coating. Cells were bonded to the substrate with a 0.2 mm layer of Dow Corning



RTV 	 3140 silicone adhesive. The bus bar was wire-bonded using Sn62 solder, and
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contact to the back of the cell was made via a gold-plated Kovar tab, also soldered.



The FET's were bonded to the circuitry with silver-filled, electrically conductive



epoxy. This connected the ghte. Source and drain were ultrasonically wire-bonded



to pass a 2-g nondestructive pull test on the 25-pm gold wires.



The board was then completely encapsulated with Sylgard 184 transparent



silicone rubber after priming with Sylgard primer. Vertical glass molds were used.
 


Lexan and Tedlar film covers, 29 x 29 mm, were also primed with Sylgard primer and



cemented onto the cured Sylgard surface. The Sylgard was abraded with Norton Tufbak



Durite silicon carbide paper No 120-C to give excellent adhesion of the "cement,"



which was a thin layer of freshly-mixed Sylgard. Note that the Lexan film had to



be abraded with No 320-A carbide paper to promote adhesion. Adhesion of films was



good, as discussed elsewhere.



Figure A2 diagrams a UTS; Fig A3 shows a photograph of a UTS, and Fig A4



sketches a UTS in its rectangular tube ready for exposure in the accelerated test.



Note the Teflon-covered tape cables which led through the top of the weathering



chamber for "in situ" electrical readings.



It was desired that continued weathering, and not merely short-term



stress from thermal cycling or moisture-caused warpage, would be necessary for



degradation to occur. Therefore, three prototype UTS's were "torture-tested"



with 50 thermal cycles. One cycle was 15 min at 1000 C, 10 min at room tempera­


ture, 15 min at -400 C, and 10 min at room temperature. There was no change in



the voltage/current output of the solar cells at an arbitrary point (0.52 V,



17mA). The leakage current of the FET's was unchanged.



Two of the UTS's then were suspended in steam for 7 days. Again there was



no change in solar cell performance, while the leakage current of the FET's increased
 


slightly. FET leakage current was observed to be greater in humid vs dry air. and



Sylgard is permeable to water and retains about 0.1 pct when immersed at room tem­


perature. The Lexan cover developed fine cracks during steam exposure, but adhesion



of films was unaffected.
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On completing the "torture tests," 85 UTS's were fabricated. All were



tested individually and found to be electrically acceptable.



3. Temperatures of UTS's During Exposure



Temperature, along with insulation and moisture, is a major factor in



degradation due to weathering. It is especially important to measure encapsulant



temperatures for correlating outdoor and accelerated exposures as discussed below.



a. Outdoor Exposure



A UTS with two embedded Type J (iron-constantan) thermocouples and one



protruding thermocouple, for air temperature, was exposed at Desert Sunshine.



The three thermocouple beads (1 mm diameter) were shaded by strips of aluminum



foil elevated from the UTS surface. Typical data are given in Table Al. With



ambient air at about 200C, UTS temperatures were about 12C higher on the EMMA



than on a rack at 450 S. This would be expected because the EMMA samples receive



about eight times the IR energy received by samples at 45' S. An air blast is



directed over the EMMA samples but cannot remove all the extra heat.



b. Accelerated Exposure



The same thermocouple-instrumented UTS as used at Desert Sunshine (above)



was installed in the accelerated weathering chamber. Readings were taken after



reaching thermal equilibrium. Relative humidity had negligible effect. Data are



given in Table A2. The UV intensity is given to identify the exposure conditions.



Heating is due largely to IR radiation, of course. The IR content of the xenon



lamp is discussed elsewhere in this report.



Subsequently, a UTS with fine-wire (0.13 mm) thermocouples was prepared



(see Fig A5). The shaded results (see Table A3) agree well with the previous



results (Table A2) using thermocouples with a large (1 mm) bead. Temperatures



were similar to those observed in commercial arrays in JPL work (ref Al). Tempera­


ture uniformity was high throughout the cross section. There was some experimental



error; the value of 45.00% in Table A3 seems obviously low.
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B. ACCELERATED EXPOSURE EQUIPMENT AND PROCEDURES



1. Accelerated Weathering Chamber



a. Chamber Construction
 


The accelerated weathering system is shown in Fig A6. The power supply



is shown in the foreground, the control panel is above it, and the weathering



chamber is the white box. An exhaust blower and exit duct on the top remove



hot air. The material of construction of the chamber was 0.75 inch (1.91 cm)



exterior-type plywood, painted with white fire-resistant paint. The inside



dimensions were 1.06 m wide, 0.57 m shelf to roof, and 0.61 m deep. Fig A7 shows



the chamber interior with a detail of the 2500-W, ozone-free, xenon lamp (Type
 


975C2980, Canrad-Hanovia, Inc.). Efficient cooling is required, especially of the



large upper electrode (anode). Consequently, the inlet ducts from a second blower



behind the chamber direct air down onto the lamp as well as across its lower part.



The igniter produces a 20,000-V surge to ignite the lamp; it can be seen on the



lower right under the shelf on which the quartz tanks were placed. As a precaution



against overheating, a thermostat was placed inside the chamber set to turn off the



iamp at 660C (1500 F). Similarly, a pressure sensor-in the duct turned off the lamp



in the event of blower failure.



Thermal control of UTS's was achieved by circulating deionized water on all



sides of the rectangular cross section Pyrex 7740 tube (15 x 35 mm I.D., 27 cm high,



1.8 mm wall) containing ,each UTS to absorb infrared-radiation. The tubes were



prepared from R-1535 rectangular tubing from Vitro Dynamics, Inc. Three of the



Pyrex tubes were contained in each of six quartz tanks as diagrammed in Fig A8



(top view) and sketched in Fig A9. The tank wall was 3.2 mm thick. Figure AlO



-shows the tanks in place in the chamber, with water hoses (0.75 inch and 1 inch,



or 1.91 and 2.54 cm, I.D. Tygon) attached. The instrumented UTS (with fine-wire



thermocouples) is included in this photograph. Water entered the bottom of each



tank through the 0.75-inch tubing and exited near the top through the 1-inch tubing.
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The three tanks on the left were cooled with water at 2 to 30C (refrigerated by



means of a Blue M Model PCC-24SSA-3 Portable Cooling Unit). The three tanks on



the left were cooled with water at 40 + 10C from a reservoir whose temperature



was balanced by passing tap water through a submerged heat exchanger and applying



heat with a Blue M Model TH-2004 (300 W) thermostated immersion heater. Tops of



the tanks were sealed with cast silicone rubber.



The shutter, visible in Fig A10, shaded the middle two tanks when lowered.



It was raised and lowered by a linear actuator to provide 12-h periods of alternate



.light and shade.



b. Lamp Characterization



The xenon lamp was characterized by means of an EG&G Model 580 Spectro­


radiometer which had been calibrated, for both spectral and total irradiance,



against a 1000-W standard quartz-iodine lamp supplied by an NBS-designated agency.



The slit width was 2.5 nm. The Eppley 12-couple thermopile, used for total irra­


diance measurements, was calibrated in the same way. These instruments are shown



in Fig All.



The thermopile data follow. Lamp distances are from arc to thermopile.



Total Incidence
Source 
(mW/cm2 )



Sun, 6/30/76, 1:15 p.m., 32°C (900F), 103.0



relative humidity 20 pct, Anaheim



Xenon Lamp at 25.4 cm (10 inches) 249.4



Same at 50.8 cm (20 inches) 78.6



Same at 76.2 cm (30 inches)



Xenon Lamp, light passed through a



water-filled cell (3.2 mm quartz,


14 mm deionized water, and 2.0 mm


Pyrex 7740)



Lamp at 26.0 cm (10-1/4 inches) 129.2



Same at 50.8 cm (20 inches) 44.3



Same at 76.2 cm (30 inches) 21.3



-35­




The value of 129 mW/cm2 is exactly that given by Atlas Electric Devices



Co. (ref A2) at 25 cm from a similar lamp with a quartz or Pyrex water-jacket.



Obviously, considerable infrared radiation was absorbed by the water-filled cell.



Data obtained using the cell are shown in Fig A12. By this graph, the distance from



the lamp corresponding to our measured value for the sun (103 mW/cm2) is determined



to be about 30.5 cm (12 inches). However, we wish to match the integrated incident
 


UV energy of the sun, not the total incident radiation.



Spectra in the UV-visible range for the sun, the xenon lamp, and the xenon



lamp screened with a water-filled cell (quartz and Pyrex, as above) are shown in



Fig A13 and A14). The supplier's data (ref A3) indicates that the ozone-free lamp



has the same spectrum as the standard lamp down to 300 nm. Below this, the ozone­


free lamp's irradiance decreases rapidly.
 


Integrated energies over the 300-400 nm (UV) range were determined by



making rectilinear plots of Incidence vs wavelength (as in Fig A14) and comparing



relative areas. Results are as follows:



Relative Area Incidence


Source of 300-400 nm Trace (mW/cm2 )-


Sun 1.000 6.07



Xenon Lamp at 25.4 cm 1.181 7.17



(10 inches)



Xenon Lamp with water- 1.103 6.70


filled cell (as above)


at 25.4 cm



2


Since the total incidence at 25.4 cm is 133 mW/cm (Fig A12) and the UV



2


incidence is 6.70 mW/cm , the desired total incidence for a UV incidence of 6.07



2 22
mW/cm is 120 mW/cm . From Fig A12, the appropriate distance from lamp to sample 


is 27.5 cm (10.8 inches).
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Two of the tanks were placed at 36.0 cm (14.2 inches) from the lamp and



received 79 mW/cm2 . The purpose was to study the relative effects of two levels



of light intensity.



The spectrum of the lamp changed as the lamp aged.



After 35 days of continuous operation, the spectrum of the lamp through



the same water-filled cell (representing the light reaching the samples) was


7.74 mW/cm2



checked again. The integrated UV intensity (see Fig A15) was similar: 
 

for the 300-400 nm range at 25.4 cm from the lamp vs 6.70 found when the lamp was



new.



At the short-wavelength end of the spectrum, the results were:



Incident Energy, mW/cm2/nm



Wavelength (nm) Lamp, New Lamp Operated 35 days



300 4.0 x 10-3 0


- 3 - 3306 3.9 x 10 1.8 x 10


10 - 3 5.4 x 10 - 3

310 3.8 x 
 

320 1.8 x 10-2 4.0 x 10-2


330 4.5 x 10-2 4.8 x 10-2


The cut-off for the used lamp was 304 nm.



These data suggest that Lexan degradation should be less rapid with the



aged lamp, because intensity below about 310 nm has decreased because of solariza­


tion of the lamp envelope (ref A2 and A4). This proved td be the case,, as discussed
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below. The most damaging wavelength for polystyrene has been found to be 319 nm



(ref AS); and, according to the data, the lamp output has not decreased at this



wavelength.



See the description of results on film transmittance at 360 nm for data on



the effects of lamp aging on degradation efficiency.



2. Accelerated Exposure Procedure
 


The midpoints of the UTS's were positioned in the rectangular tubes at the



height of the xenon arc. Samples of the three plastic films (1.6 x 7.5 cm for



Lexan and Tedlar, 1.8 x 6.3 cm for polystyrene) were attached to the UTS with



Teflon tape. The Lexan and Tedlar films hung at the bottom of the UTS, and the



polystyrene film was attached just above the upper pair of solar cells (see Fig A4).



Humidity control was achieved with 2 cm of blue (indicating) Drierite in



the bottom of the tube for 0 pet relative humidity, a glycerol-water solution of



refractive index 1.444 (with 0.1 pct CuSO4 to prevent microbiological growth) for



50 pet relative humidity (ref A6), or deionized water for 100 pct relative humidity.



The shutter provided l2 h of "day" and "night" alternately. Exposure



periods were 6, 24, 120, and 768 h. Each exposure began with fresh films. A few



of the 768-h films were exposed an additional 768 h, for a total of 1536 h.



During the 6-h exposure, the shutter was raised for the first 3 h, then lowered



for 3 h. This procedure provided samples, from the two tanks behind the shutter,



exposed to light for 3 h. Similarly, the samples behind the shutter in the 24-h



exposure were given 12 h of light.



Samples in darkness were thermally controlled by immersion of the Pyrex



tubes in agitated baths at 400 C (water bath) and 80C (silicone oil).
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C. 	OUTDOOR WEATHERING EQUIPMENT AND PROCEDURES



For each of the items shown in column 1 below, 14 samples were exposed



under three conditions, at two locations, and with different start dates, as


follows:



Items Exposed 
 

UTS's, Lexan film, 
 
Tedlar film



Lexan film 
 

Lexan film 
 

UTS's, Lexan film, 
 
Tedlar film



UTS's, Lexan film, 
 
Tedlar film



UTS's, Lexan film, 
 
Tedlar film



Lexan film 
 

Lexan film 
 

Polystyrene film 
 

Location 


Phoenix 


Phoenix 


Phoenix 


Phoenix 


Phoenix 


Miami 


Miami 


Miami 


Miami 


Conditions 
 

450 S 
 

450 S 
 

450 s 
 

EMMA 
 

EMMAQUA 
 

450 S 
 

450 S 
 

450 S 
 

450 s 
 

Exposure Started



September 12, 1976



December 22, 1976



June 21, 1977



September 12, 1976



September 12, 1976



September 1, 1976



December 22, 1976



June 21, 1977



October 20, 1976



Sizes of the film samples were 10 x 14 cm for Lexan and Tedlar, and



20 x 25 cm for polystyrene.



Samples 	were returned according to the following schedules:



Cumulative Exposure Time (days)


450 S EMMA, EMMAQUA


5 1


10 
 2


15 
 5


30 
 10


60 
 30


90 
 90


150 
 150 

210 
 210
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The Miami site was South Florida Test Service Inc., 9200 N.W. 58th Street,



Miami, FL 33178. The Phoenix site was Desert Sunshine Exposure Tests, Inc.,



Box 185, Black Canyon Stage, Phoenix, AZ 85020. Both services provide extensive



weather data.



Ultraviolet sun hours have been reported'for some test sites. An "ultra­


violet sun hour" is a total of 60 min when the solar radiation intensity exceeds



0.823 Langleys/min. (Note: One Langley is 1 g calorie/cm2). This light intensity



has been used as a rule-of-thumb value above which degradation of plastics occurs.



It is reported that UV sun hours correlate better with degradation than does expo­


sure time (see ref A7). However, recent opinion is that UV sun hours show "general



non-relevance to weathering" (ref AS). Desert Sunshine has ceased to report UV sun



hour data because more sophisticated UV intensity criteria are being developed.



Satisfactory mathematical modeling requires that



(1) 	 The most damaging UV wavelength region be known for a



particular material



(2) 	 The intensity of this specific region be known daily or



even hourly.



The 	 EMMA and EMMAQUA are "dry" and "wet" sunlight-concentrators, respece



tively. The EMMAQUA has nozzles (visible in Fig A16). These are used to spray



distilled water on test samples for 8 min every hour in the standard cycle, as we



used. The 10 aluminized mirrors reflect 70 to 80 pct of UV radiation down to the



cut-off point of about 295 nm for terrestrial sunlight. Thus, total UV radiation



is seven or eight times that on an equatorial mount without mirrors. Samples are



cooled by air flow; the blower is seen at the upper right of the device in Fig A16.
 


The machine has a solar-energized guidance system which keeps the mirrors at 900



to the sun throughout the day. The samples, facing downward, are exposed on a



13 x 140 cm target area. In general, data obtained on the EMMA correlates with



that obtained in dry desert climates. On the other hand, the EMMAQUA gives more



or less successful correlations with Miami and European locations.
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In the 450 S exposures, the samples were mounted on racks with noncorrosive



fittings and without backing. The racks were tilted 45' and faced south. Although



this is the conventional arrangement for natural weathering, diffuse UV from the



sky constitutes up to 70 pct of total UV radiation. UV radiation from the direc­


tion of the sun contributes down to 30 pet of the total incident UIV (ref A9).



D. ANALYTICAL METHODS



1. Applied to Films



a. Optical Transmittance



A Cary 16 Spectrophotometer was used for measuring optical changes in the



films. The absorbance was read at 360 nm-(slit width 0.63 nm) and at 600 nm (slit



width 0.07 mm), using the tungsten-halogen light source.
 


It is assumed that A6 0 0 represents light lost by reflection and scattering.



To check this assumption, a Lexan control which gave A360 = 0.0824 and A600 = 0.0580 

was abraded with carbide paper. The new readings (also means of 5 replicates) were 

A360 = 0.7902 and A600 = 0.6370. The value A360 - A600,was 0.0244 before abrasion 

and 0.1532 after abrasion. The sample then was abraded further to give A3 60 = 

1.266 and A600 = 1.142, so'that A360 - = 0.122.A6 0 0 
 

It appears that abrasion caused greater light-scattering at 360 nm than



at 600 nm but in an erratic ratio. Clouding and/or surface-dulling of samples



may have the same effect,-making it impossible to know precisely the A360 due to



yellowing. However, this uncertainty does not change the general trend of data



plots. In fact, A600 is low and approximately constant except for very severly­


weathered samples.



The photometric accuracy of the Cary 16 is specified to be 0.00024 absorbance
 


units near absorbance = 0 and 0.001 units near absorbance = 1.



The accelerated data from 1536 hours accelerated exposure (Table A4) include



typical examples of replicates. The standard deviation was approximately 1 or 2 pct



of the mean.



-41­




The values in the tables are means of 10 replicates for outdoor exposure



samples (including EMMA and EMMAQUA) and of 5 replicates for accelerated exposure



samples.



b. Attenuated Total Reflectance Infrared Spectroscopy (ATR-IR)



The instrument was a Beckman IR 4240 Spectrophotometer. A KRS-5 crystal



(approximately 2 x 5 cm) was clamped against the film with beam entry at 45'. To



improve contact of film and crystal, a rubber spacer was placed under the film



before clamping. Weak spectra had been obtained before using the rubber spacer.



The depth of penetration of the IR radiation into the sample is on the order of



3 to 50 pm (ref A10). This analytical method was one of the few found useful for



following the degradation of weathered polyvinyl chloride (ref All).



c. Tensile Tests



Using a paper cutter, the Lexan and Tedlar films from outdoor exposures



were sliced into 0.20 x 5 inch (0.5 x 13 cm) strips. These were pulled on an



Instron testing machine at a crosshead speed of 2 inches/min (5 cm/min). Clamp



separation was 3 inches (7.6 cm). The average thickness of the films was 1.1 mils



(0.028 mm) for Tedlar and 5.3 mils (0.13 mm) for Lexan. Percent elongation was



determined by dividing the absolute elongation by only that portion of the strip



which elongated. The number of replicates was 8 to 10. For Lexan, controls



(unweathered samples) were run at the beginning and end of the test series and



then averaged. The final control showed 98 pct of the breaking stress and 101 pct



of the ultimate elongation of the initial control.



For accelerated test specimens, only three replicates could be cut because



the film strips were only 16 mm wide. Lexan and Tedlar were pulled at 2 inches/min



(5 cm/min) crosshead speed; polystyrene was pulled at 0.2 inch/min (0.5 cm/min).



Clamp separation was 0.5 inch (1.3 cm) in all cases. Controls (5 replicates) were



run before and after the weathered samples. The means were close: 9691 and 9764



psi breaking stress for Lexan and 11,554 and ll,318'for polystyrene.
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d, Thermogravimetric Analysis (TGA)



A Perkin-Elmer TGS-l Thermobalance was used in conjunction with the DSC-2



unit for temperature programming. The heat-up rate was 10*C/min, with the sample



under nitrogen.



e. Thermomechanical Analysis (TMA)



The instrument used was a Perkin-Elmer Thermomechanical Analyzer TMS-l,



with quartz penetration probe Part No. 219-0209. The heat-up rate was either 5



or 100C/min and the penetration force was varied from 12 to 20 g to give the



sharpest transition on the recorder plot. Two plies of the Tedlar film were used



because of its thinness (25 Um, 1 mil).



f. Differential Scanning Calorimetry (DSC)



A Perkin-Elmer DSC-2 Differential Scanning Calorimeter was used. This was



calibrated with indium (transition point 156.60C) and K2CR04 (transition point



670.50C). The heat-up rate was 400 C/min, with a recorder chart speed of 4 cm/min



and a sensitivity of 5 meal/sec.



g. Electron Spectroscopy for Chemical Analysis (ESCA)



The Lexan film exposed for 30 days on the EMMAQUA was examined by Electron



Surface Chemical Analysis (ESCA). The weathered sample showed two new carbon lines



and at least two new oxygen lines, with a much higher oxygen signal; This represents



a marked change, but interpretation was difficult.



ESCA analysis of polystyrene films from accelerated exposures will be



reported later. The data are in percent oxygen and follow a Weibull or lognormal



model. ESCA has been useful in plastics weathering studies, eg, for carbonyl



formation in epoxy resin (ref A12).



2. Applied to UTS's



a. Electrical Properties



IV curves for the solar cells were determined by OCLI using standard



illumination (tungsten lamp,'2800 K, 100 mW/cm2). The short circuit current is



-43­




the amperage at 0 V. The maximum power, or power point, was determined by OCLI.



This is the point on the IV curve where the product of current and potential



is at a maximum. In the course of failure analysis, IV curves were also



plotted in our own laboratory using an arbitrary tungsten lamp source. "In situ"



readings were taken with no applied resistance on the 18 UTS's placed in the



accelerated weathering chamber. The current was in the 50-120 mA range, and the



voltage was in the 50-150 mV range. On the IV curve, these values are on the



short circuit current "plateau" at low voltage, so the measured current is consid­


ered approximately the short circuit current. Readings were normalized by means



of a "standard cell" encapsulated with glass and a heavy layer of Sylgard 184.



See Table A5 for results.



. The leakage current is that which flows into the connected drain and source



and out the gate of an FET chip when a potential of 20 V is applied.



b. Peel Strength of Cover Films



The 	 plastic covers were scored with a razor blade and five strips 5 mm



wide were peeled off. With the UTS clamped in the horizontal position, each strip



was peeled at 900 by pulling upward at 2 inches/min (5 cm/min) with an Instron



testing machine. The strip was held in a small clamp and pulled with a nylon tie­


cord, ie, a flexible connection. The chart speed was 1 inch/min (2.5 cm/min).



Tension varied somewhat during pulling, and an average value was estimated visually



from the graph.



E. EXPERIMENTAL DATA



1. Films



a. Absorbance



(1) 	 Outdoor Exposure - Data for A360 and A 60 0 are given in Tables A6



through A10.



Tedlar showed only small changes (Table A10). There was no yellowness



detectable by eye. Greater light scattering at 360 nm than at 600 rm



could explain all of the observed increase in A 3 60 - A6 0 0 on weathering.
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For Lexan, abrasion gave an A360 - A600 of 0.15 vs 0.02 for a control,



and the largest value of A360 - A600 for weathered Tedlar was 0.09



vs 0.04 for a control.



Increase in yellowness due to "dark reaction" after the end of outdoor



(or accelerated) exposure was checked on samples which had been stored



in the dark. Table All shows increases of 8 to 12 pct in A360 after



15 weeks storage. This result indicates only minor error introduction



if samples are measured promptly, as they were, when mailed back from



the exposure sites.



(2) Accelerated Exposure - Data for A360 and A600 are given in Tables A12



through A15. Data at 600 um, where absorbance became significantly



large only for exposures longer than 24 h, are given in Tables A16



and Al7.



Figure Al7 shows complete UV spectra for unweathered Lexan and polystyrene



vs samples exposed at the high light intensity, 60.3C air temperature, and 100 pct



relative humidity for 5 days. At 360 nm, we are measuring on the side of a broad



UV absorption, which is shifting toward the visible as the sample degrades. Tedlar



showed little spectral change.



The rate of spectral change is higher for accelerated weathering than for



outdoor exposure. The explanation is that light near 300 nm degrades Lexan fastest.



General Electric's data give 295 and 330 nm as the most damaging wavelengths for



Lexan. Although the filtered xenon lamp light and sunlight are very similar in



intensity over nearly all of the 300 to 400 nm region, they do differ at 300 nm b( a


-5



factor of 43 for the new lamp. Our determination of noon sunlight gave 8.0 x 10
 

mW/cm2nm vs 3.4 x 10-3 at 300 nm for the xenon light as it reaches the sample. A



log ( ) x 104 value of 278 Lexan was attained in 30 days outdoors in Phoenix.



However, this value was reached in 2.3 h in the accelerated test, equivalent to an



acceleration fadtor of 313. This result can be explained by multiplying 43 by the



time-compression factor of about 8 to give 344. The assumption that light in the
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300 nm vicinity is responsible for degradation was supported by a separate



experiment. The spectral change of Lexan was twice as rapid behind quartz



(90 pct transparent over the 300 to 400 nm region) as behind Pyrex 7740 (1.0 mm



thidk). The latter transmits about 40 pct at 300 nm vs 80 pct at 330 nm.



Incidentally, the decrease in transmittance at 360 nm for Lexan proceeded



at about the same rate under argon as under air. Yellowing of polystyrene is



reported to proceed under nitrogen (ref A13).



In interpreting the data, it is important to note that solarization of the
 


lamp envelope and/or fPyrex tubes caused decreased UV intensity below about 310 nm



as discussed abnv&. To check the efficiency of the lamp in degrading Lexan (in



terms of transmittance at 360 nm), Lexan samples were exposed for 24 or 16 h when



the lamp had operated for 0, 40, and 69 days.



Results are given in Table A18. In terms of AA360 (the increase in the



value of A360 - A600 over that of a control), the efficiency of the lamp in yellow­


ing Lexan had fallen to 27 pct after 69 days of operation.



In contrast, lamp aging had little effect on the rate of polystyrene



yellowing (Table A19). An explanation is that polystyrene is degraded by UV



wavelengths higher than the wavelength range which is affected by solarization.
 


Polystyrene degrades especially at 319 nm according to the literature (see ref A5).



b. ATR-IR ---

Changes in the carbonyl region occurred with Lexan in the form of ambigu­


ous band broadening. There was no evidence of hydroxyl'groups. This suggest



oxidation without hydrolysis.



The Tedlar film exposed for 30 days on th EMMAQUA was examined by Fourier



transform ATRIR by Digilab Inc. (Cambridge, MA). An absorbance subtraction plot



of the weathered film vs a control indicated that chemical changes had occurred
 


due to weathering. However, there was no carbonyl peak (region of 5.9 p or



1700 cm-)
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ATR on polystyrene films from accelerated exposure clearly showed



development of a carbonyl band at 5.9 p (see Table A20.) An aromatic peak at



6.7 p was used as the internal standard. The control result of 4 pct was sub­


tracted from all the experimental values to give the percent data in the table.



The carbonyl concentration was 22 times higher on the side facing the xenon lamp



than on the reverse side in a 768-h sample (see Table A20).



The polystyrene films were very brittle after 768 h exposure.



c. Tensile Tests



Data are given in Tables A21, A22, and A23 for outdoor exposure and Tables



A24 through A26 for accelerated exposure. Some of the data are plotted in Fig A22



and A24. A loss of 50 pct in tensile properties often is considered failure (see



ref A14).



c. TGA, TMA, DSC



Data are presented in Tables A27 through A29. Note that the experimental



values for the T of Tedlar were 500C by TMA and 570C by DSC. A literature value
g



is 40'C (ref A15).



The T of Lexan fell progressively with accelerated exposure (Table A29).
g


A similar progressive decrease was found for the T of epoxy resin during weather­
g


ing (ref A12).



2. UTS's



a. Electrical Properties



Short circuit current data are given in Tables AS, A30, and A31. Short



circuit current is a measure of encapsulant light transmittance (ref A16). Maximum



power data are given in Tables A32 and A33. See the section on failure analysis



below.



FET leakage current data are given in Tables A34 and A35. The higher



values in accelerated exposure (Table A35) seem associated with moisture because



they did not occur under the 0 pct relative humidity conditions.
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b. Peel Strength of Cover Films



Data are given in Table A36.



c. Surface Deterioration of Cover Films



With no cover, Sylgard 184 picked up some fine dust in the accelerated



test, more on EMMAQUA, and larger particles on EMMA (see Fig A20). Presumably,



the lack of washing by water-spraying allowed retention of larger particles in



the EMMA case.



In
Tedlar accumulated a little dust on EMMA and EMMAQUA (see Fig A21a). 
 

the accelerated test, only the highest UTS temperature (71.1
0 C), measured just



under the film cover, was associated with wrinkling (Fig A21b), presumably due to



contraction. Embrittlement also was observed.



The Lexan cover showed no deterioration at 400X after 150 days EMMA



exposure, but the corresponding EMMAQUA exposure gave a dull surface with a



The 90-day EMMAQUA
vermiculated appearance when magnified (Fig A21c and A21d). 


sample also showed severe loss of gloss.



For accelerated exposure, the effects of temperature and moisture on gloss,



and on other properties, are summarized in Table A37.



d. Failure Analysis on Solar Cells



In world experiencq with various solar cell array systems, moisture permea­


tion has been a major factor in failure by causing corrosion of metallization, con­


tacts, and leads. Degradation in properties by UV light has been less of a problem



than expected, though exposure times have been only up to 4 years at present (ref



A17).



Five of six solar cells on a UTS exposed to 100 pct relative humidity at



800C in the dark showed 42-53 pct power losp (see Fig A22 and A23, in which the



numbered curves are for the individual cells). The five low-power cells were



examined after peeling off the Sylgard pottant. The contacts were visibly



deteriorated when viewed under magnification. Deterioration of contacts was



responsible for reduced electrical performance, as clearly demonstrated by coating



the contacts with conductive paint and restoring power output of the cell (Fig A24).
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Fig A2. 	 Diagram of Universal Test Specimen,



Top View
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: Fig A3. Universal Test Specimen (UTS) 
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Fig A4. Diagram of UTS in Rectangular Tube
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- - Plastic Film 
- - (0.025 mm Tedlar 

or 0.127 mm Lexan)



- 9 ­

(Back) 	 "



-- '.. 1.3 mm Sylgard 184



1.7 m - 0.4 mm Solar Cell 
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Position of fine-wire thermocouples:



A - just under plastic film cover



B - midway in Sylgard encapsulant layer



C - behind solar cell via hole in ceramic



D - forced under solar cell



E - at back surface of ceramic



Fig A5. Diagram of UTS with Fine-Wire Thermocouples,



Cross-Section



-53­



Fig A6. Artificial Weathering Chamber
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Fig A8. 	 Diagram of Artificial Weathering Chamber, 
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Fig A9. 	 Quartz Tank Used in Accelerated


Weathering Chamber
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Fig AIO. Interior of Accelerated Weathering Chamber 
Showing Quartz Tanks



-58-	 ORIGINAL PAGE IS 
OF pooR QUALXfl 



I-M 

'03 

n4K L 

Fig All. Spectroradiometer and Thermopile 



0.5 

j 

0.4 

~ 0.3 
Sun II 

, 0.2 

300 

Fig A13. 

Lamp with Water-Filled 

Cell as Filter Lamp 

400 500 600 

Wavelength (nm) 

Incident Radiation of Sun vs 2500 W Xenon Lamp at 25 cm 

700 



1.0 

Sun i 

0.1



Xenon Lamp 

0.01 

r
0.00 

U. U 

0.0001 	 ORIGINAL PAGE IS 

OF POOR QUALITY 

500 600 700 800


Wavelength (nm)



300 400 


Fig A14. 	 Incident Radiation of Sun vs 2500 W Xenon


Lamp through Water-Filled Cell at 25 cm
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Fig A16. ENMA&QA, on the Desert Sunshine Test Site
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Fig A19. Retention of Tensile Strength by Weathered Lexan 



b. 1.00 Relative UV Intensity, 71.10C, 

aExposure for 72 Days 

c. EMMA for 150 Days d. EMMAQUA for 150 Days



Fig A20. Particle Accumulation on Uncovered Sylgard on UTS, Magnification X200
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l~b. Tedlar Cover, Accelerated Exposure 

a. Tedlar Cover, EMMAQUA for 
(.00 Relative UV Intensity, 71.1C, 
50 pet Relative Humidity) for 72 Days, 
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d. Lexan Cover, EMMAQUA for


c. Lexan Cover, EMMA for 
 

150 Days, X[400 15 as, X400 


UTS Plastic Covers After Exposure
Fig A21. 
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Fig A23. 	 I vs E Curves for the Solar Cells in the UTS After Exposure


to 80C and 100 pct Relative Humidity in the Dark for


72 Days
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Fig A24. Restoration of Power of Moisture-Degraded Solar Cells by Application 

of Conductive Paint to Contacts 
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Table Al. UTS Temperatures Recorded at the Phoenix Test Site



450 8 

Total Temperature (Shaded Thermocouple) (0C)


Solar Radiation'


Date Time at 450 S, Air Next Sylgard 184



(Langleys/min*) Ambient Air to UTS over Solar Cell



3-18-77 11 AM 1.48 20 20 32



1 PM 1.52 21 21 31



EMMA



Radiation, Temperature 
Date Normal Incidence, (Shaded Thermocouple) 

(Langleys/min) (0C) 
Solar 
Time 

Direct** Total* Ambient 
Air 

Air Next 
to UTS 

Sylgard 184 
over Solar Cell 

3-16-77 1 PM 1.44 1.64 23 27 48 

3-17t77 11 AM 1.46 1.64 15 18 42 

1 PM 1.46 1.58 20 21 44



*Hemispherical measurement of direct plus sky radiation with



Eppley 8-48 pyranometer.



**Radiation in a 6' solid angle centered upon the sun with an


Eppley pyrheliometer.
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Table A2. Temperatures of UTS in Accelerated Weathering Chamber



UV Intensity (300-400 nm)UV Itenity(30-40nf) 

Relative to Typical 
Noon 

Sunlight (6.07 mW/cm 2) 

-1 

Temperature 
(Shaded Thermocouple with mm bead) ( 0 C) 

Sylgard 184 
Air over Solar 

Cell 

1.00 26.1 42.2 

1.00 60.3 72.8 

0.66 18.3 29.4 

0.66 55.3 62.8 

0 40 40 

0 80 80 

Alternating (1.00 ind 0) 
12-h periods 

26.1 (light) 
6.7 (shade) 

42.2 (light) 
6.7 (shade) 

Alternating (1.00 and 0) 

12-h periods 

60.3 (light) 
43.9 (shade) 

72.8 (light) 
43.9 (shade) 

-74­




___ 

Table A3. Temperatures of UTS in Accelerated Weathering Chamber,



Using Fine-Wire Thermocouples



UV Intensity


(300-400 nm)

Relative to
Repil toon 
 

Typical Noon 
 

Sumer Sunliiht 
 
(6.07 mW/cm ) 

Air 
 A 
 

1.00 
 26.1 
 46.1 
 
(42.2 
 
shaded) 
 

1.00 
 60.3 
 72.2 
 
(71.1 
 
shaded) 
 

0.66 
 18.3 
 28.9 
 
(26.7 
shaded) 
 

0.66 
 55.3 
 65.6 
 
(64.1 
 
shaded) 
 

*See Fig A5


Temperature (0C)


Thermocouple Position*



B C D E



47.2 47.8 45.0 47.8


(42.8


shaded)



73.8 73.3 73.6 73.3


(71.7


shaded)



28.9 29.4 30.6 29.4


(28.0 
shaded)



64.7 65.8 64.4 65.6


(63.6


shaded)
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Table A4. Accelerated Weathering Results, 1536 h Exposure,



0 pct Relative Humidity



Air 
UV Intensity Temperature, 0C 

1.00 26.1 


1.00 60.3 


0.66 18.3 


0.66 55.3 


1.00 26.1 


1.00 60.3 


0.66 18.3 


0.66 55.3 


Absorbance, Means



Lexan Polystyrene
 
600 nm
360 nm 600 nm 360 nm 


1.117 0.0661 1.204 0.0937



1.339 0.0589 1.447 0.1431



0.8506 0.0615 1.115 0.2465



1.059 0.0567 1.155 0.1096



Absorbance, Replicates



1.134 
 0.0661 
 1.254 0.1091 


1.087 
 0.0684 
 1.215 0.0882 


1.105 
 0.0618 
 1.182 0.0915 


1.120 
 0.0708 
 1.191 0.0937 


1.140 
 0.0630 
 1.178 0.0862 


1.357 
 0.0633 
 1.450 0.1546 


1.359 
 0.0587 
 1.430 0.1411 


1.334 
 0.0589 
 1.436 0.1420 


1.337 
 0.0582 
 1.460 0.1409 


1.308 
 0.0552 
 1.460 0.1367 


0.8603 
 0.0618 
 1.045 0.1872 


0.8580 
 0.0618 
 1.142 0.2711 


0.8600 
 0.0613 
 1.168 0.2813 


0.8446 
 0.0617 
 1.133 0.2569 


0.8301 
 0.0608 
 1.089 0.2361 


1.103 
 0.0558 
 1.240 0.1345 


1.080 
 0.0572 
 1.176 0.1027 


1.070 
 0.0520 
 1.132 0.0896 


1.048 
 0.0562 
 1.129 0.1105 


0.993 
 0.0624 
 1.096 0.1108 
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_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

Table A5. UTS Short Circuit Current, Percent of Original after 29 Days


in Accelerated Weathering Chamber (in Situ Data)



UV Intensity 
(300-400 nm) Temperature of 
Relative to Sylgard 184 

Noon Sunshine over Solar 

(6.07 mW/cm2) Cell (0 C) 
 

42.2 
 

1.00 
 

72.8 
 

29.4 
 

0.66



62.8 
 

42.2 (light)


6.7 (shade) 
 

Alternating 
 
(1.00 for 72.8 (light)


12 h, 0 for 43.9 (shade) 
 
12 h) 
 

Relative 
 

Humidity 
 

(pet) 
 

0 
 

50 
 

100 
 

0 
 

50 
 

100 
 

0 
 

50 
 

100 
 

0 
 

50 
 

100 
 

0 
 

50 
 

100 
 

0 
 

50 
 
100 
 

Short Circuit Current



(Percent of Original)



Tedlar Cover No Cover Lexan Cover



104, 108 116, 109 112, 114



110, 112 118, 114 ill, 108



109, 104 112, 105 106, 108
 


105, 100 109, 100 84, 105



95, 93 103, 98 104, 101



64, 97 55, 85 103, 88



98, 90 95, 94 100, 97



102, 102 102, 114 106, 106



81, 92 98, 100 101, 103



98, 97 100, 97 99, 98



86, 92 83, 86 96, 90



92, 92 97, 92 98, 94



106, 108 114, 98 108, 108



98, 97 103, 100 107, 106



99, 105 104, 105 109, 106



108, 95 107, 102 105, 106



100, 92 107, 102 112, 110



51, 64 73, 89 107, 100
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Table A6. Absorbance at 360 nm and 600 nm for Lexan Weathered


at Phoenix, 450S



Exposure Start 9-12-76 Start 12-22-76 Start 6-21-77


Time days 360 nm 600 nm 360 nm 600nm 360 nm 600 nm



5 0.0902 0.0547 0.0799 0.0545 0.1032 0.0683



10 0.1011 0.0586 0.0860 0.0570 0.0963 0.0572



15 0.1074 0.0596 0.0882 0.0563 0.1152 0.0648



30 0.1208 0.0628 0.0944 0.0587 0.1352 0.0704



60 0.1342 0.0631 0.1360 0.0827 0.1681 0.0706



90 0.1588 0.0678 0.1402 0.0699 0.2450 0.0730



150 0.1759 0.0678 0.2212 0.0745



210 0.2610 0.0724 0.4377 0.0921



300 0.5991 0.0869
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Table A7. Absorbance at 360 nm and 600 unm for Lexan Weathered


at Miami, 450S



Exposure Start 9-1-76 Start 12-22-76 Start 6-21-77



Time, days 360 nm 600 nm 360 nm 600 nm 360 n 600 nm



0 0.0947 0.0638 - - - ­

5 0.0922 0.0568 0.0820 0.0561 0.1102 0.0720 

10 0.0990 0.0582 0.0934 0.0619 0.1230 0.0820



15 0.1142 0.0613 0.1105 0.0723 0.1112 0.0655



0.1202 0.0624 0.1261 0.0783 0.1262 0.0651
30 


- 0.1486 0.0837 0.1681 0.0706
 

90 0.1710 0.0749 0.1668 0.0775 0.1906 0.0640



150 0.2003 0.0712 0.2432 0.0781



210 0.3014 0.1009 0.3852 0.0713



300 0.5209 0.0916



379 0.8895 0.1593



60 
 

* Sample embrittled; test ended. 
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Table A8. 	 Absorbance at 360 nm and 600 nm for Lexan Weathered


on the EMMA and EMMAQUA



Start 9-12-76



EMMA 	 EM1AQUA



Exposure 360 nm- 600 num - 360 nm 600 nm 
time, days 

1 0.0900 0.0539 0.0940 0.0614



2 0.1063 0.0603 0.0912 0.0565



5 0.1043 0.0561 0.1031 0.0622



10 0.1522 0.0842 0.1334 0.0747



30 0.2128 0.0803 0.2352 0.0854



90 0.4622 0.1234 0.6341 0.1791



150 0.6359 0.1513 0.9084 0.2417



210 1.3240 0.2458 1.9190 0.6512



300 2.3380 0.5331 2.6780 1.5230
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Table A9. 	Absorbance at 360 nm and 600 nm for Polystyrene


Weathered at Miami, 45OS



Exposure 	 Start 10-20-76


time, days 	 360 nm 600 nm



0.0679 0.0540



5 0.1351 0.1096



10 0.1228 0.0978



15 0-0934 0.0659



30 0.1179 0.0771



60 0.1525 0.0873



90 0.1669 0.0734



150 0.3656 0.0919



210 0.9381 0.1286



300 1.2842 0.1376



0 
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Table A10. Absorbance Values for Exposed Tedlar



Exposure Conditions 
 

Unexposed 
 

Miami, 45S, 300 days, 
 

start 9-1-76



Phoenix, 450S, 300 days 
 

start 9-12-76



EMMA, 300 days 
 

start 9-12-76



EMMAQUA, 300 days 
 

start 9-12-76



Accelerated test,



1.00 	 rel. UV, 60.30C 
 

air, 	 0 pet rel. hum.,



32 days



Same, but 100 pet, 
 

relative humidity



A360  A600 

0.1297 0.0807 

0.1501 0.0926 

0.1501 0.0921 

0.1501 0.0914 

0.2048 0.1143 

0.1161 0.0715 

0.1375 0.0734 
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Table All. 	 Increase in Yellowness of Samples Stored in


Darkness After Weathering



Exposure


Condition Days From End


(Exposed of Exposure A360 A600



Plastic 210 Days) When Measured



Polystyrene 	 Miami, 	 5 0.9381 0.1286


450S



(start 	 ill 1.0507 0.1316


10-20-76) 

Lexan 	 Phoenix, 9 0.2610 0.0724



450S



(start 	 116 0.2876 0.0757


9-12-76) 

Lexan EMMA 9 1.324 0.2458


(start


9-12-76) 116 1.424 0.2435



Note: Readings are means of 5 to 10 replicates.
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Table A12. Accelerated Weathering Results, Lexan (Unstabilized), A3 6 0
 


Lexan (unstabilized) 
Relative Air Relative 

UV Tempera- Humidity 
Intensity ture CC (pct) 3 6 12 

A3 6 0 

24 120 768 

26.1 

0 

50 

0.1160 

0.1208 

0.1498 

0.1553 

0.2474 

0.2651 

0.3522 

0.3868 

0.6316 

0.6237 

1.002 

1.023 

1.00 

100 0.1208 0.1714 0.2972 0.4045 0.6975 1.139 

60.3 

0 

50 

100 

0.1319 

0.1283 

0.1173 

0.1539 

0.1664 

0.1812 

0.3835 

0.3826 

0.3410 

0.5228 

0.5385 

0.5169 

0.8229 

0.7741 

0.8851 

1.196 

1.127 

1.701 

18.3 

0 

50 

0.1127 

0.1408 

0.2694 

0.3204 

0.4511 

0.5387 

0.7655 

0.7608 

100 0.1257 0.3008 0.5198 0.9541 

0.66 

0 0.1174 0.3590 0.6165 0.9930 

55.3 50 

100 

0.1469 

0.1460 

0.4288 

0.4755 

0.6585 

0.6962 

1.232 

1.250 

40 

0 

50 

0.0850 

0.0791 

0.0701 

0.0730 

0.0693 

0.0679 

100 0.0800 0.0711 0.0685 

0 

80 

0 

50 

100 

0.0761 

0.0777 

0.0723 

0.0674 

0.0698 

0.0729 

0.0599 

0.0682 

0.0808 

Alternatin 
(1.0-for 
12h, 
0 for 
12 h) 

26.1(light) 

6.7(shade) 

60.3(light) 
43.9(shade) 

0 

50 

100 

0 

50 
100 

0.4653 

0.4838 

0.5281 

0.6711 

0.6286 
0.5972 

0.8102 

0.8544 

1.010 

1.042 

0.9414 
1.058 
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Table A13. Accelerated Weathering Results, Lexan (Unstabilized), A6 0 0



Lexan (Unstabilized) 
Relative Air Relative 

UV Tempera- Humidity 

Intensity - ture °C (pct) 3 6 12 

A600 
As0 0 

24 120 768 

26.1 

0 

50 

0.0543 

0.0504 

0.0537 

0.0545 

0.0526 

0.0541 

0.0520 

0.0544 

0.0540 

0.0550 

0.0562 

0.0552 

100 0.0497 0.0535 0.0505 0.0565 0.0569 0.0854 

1.00 

0 0.0509 0.0518 0.0530 0.0572 0.0559 0.0516 

60.3 50 

100 

0.0498 

0.0489 

0.0513 

0.0508 

0.0522 

0.0502 

0.0518 

0.0477 

0.0510 

0.0545 

0.0979 

0.3567 

18.3 

0 

50 

100 

0.0540 

0.0566 

0.0530 

0.0572 

0.0538 

0.0512 

0.0505 

0.0512 

0.0512 

0.0634 

0.0586 

0.0584 

0.66 

55.3 

0 

50* 

100 

0.0513 

0.0585 

0.0509 

0.0586 

0.0507 

0.0551 

0.0496 

0.0491 

0.0536 

0.0530 

0.0756 

0.1825 

0 0.0590 0.0491 0.0501 

40 50 0.0534 0.0527 0.0494 

100 0.0588 0.0515 0.0497 
0 

0 0.0539 0.0485 0.0437 

80 50 0.0537 0.0503 0.0501 


100 0.0518 0.0527 0.0550 


Alter-Ater­
nattng 

26.1(light) 
6.7(shade) 

0 

50 

0.0489 

0.0505 

0.0514 

0.0856 

(1.0 for 100 0.0514 0.0735 

12 h, 

0 for 
12 h) 60.3(light) 0 0.0509 0.0533 

43.9(shade) 50 0.0533 0.0641 

100 0.0502 0.1189 
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Table A14. Accelerated Weathering Results, Polystyrene, A360



Polystyrene 
Relative Air 

UV Tempera-

Intensity ture 'C 

Relative 
Humidity 

(pct) 3 6 

A360 

12 120 768 

26.1 

0 

50 

0.0813 

0.0711 

0.0778 

0.0769 

0.0867 

0.0839 

0.0975 

0.0956 

0.1606 

0.2454 

0.7458 

0.7494 

1.00 

100 

0 

0.0714 

0.0764 

0.0805 

0.0747 

0.0839 

0.0874 

0.1034 

0.1108 

0.2402 

0.3850 

0.7093 

1.030 

60.3 50 0.0739 0.0746 0.0964 0.1925 0.3547 1.087 

100 0.0723 0.0757 0.0984 0.1281 0.3308 1.070 

18.3 

0 

50 

0.0829 

0.0823 

0.0863 

0.0889 

0.1272 

0.1143 

0.7353 

0.5713 

0.66 

100 0.0864 0.1053 0.1527 0.6021 

55.3 

0 

50 

0.0757 

0.0742 

0.0963 

0.1028 

0.2182 

0.1808 

0.9564 

0.9822 

100 0.0719 0.1040 0.2497 0.9578 

0 0.0743 0.0695 0.0692 

40 50 0.0716 0.0712 0.0671 

0 
100 0.0807 0.0708 0.0703 

0 0.0711 0.0885 0.0674 

80 50 0.0756 0.0986 0.0682 

100 0.0682 0.0980 0.0797 

Alter­
nating 
(1.0 for 
12 h, 
00 forfo 
12 h) 

26.1(light) 

6.7(shade) 

60.3(light) 
43.9(shade) 

0 

50 

100 

0 
50 

100 

0.1077 

0.1156 

0.1291 

0.1275 
0.1532 

0.1444 

0.6238 

0.5790 

0.5825 

0.8253 
0.8490 

0.8998 
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Table A5. Accelerated Weathering Results, Polystyrene, A6 0 0
 


Polystyrene 
Relative Air 

UV Tempera-
Intensity ture 0C 

Relative 
Humidity 

(pct) 3 6 

A6 00 

Exposure Time (h) 

12 24 120 768 

0 0.0589 0.0545 0.0565 0.0572 0.0513 0.0642 

26.1 50 0.0517 0.0537 0.0542 0.0534 0.0575 0.0943 

100 0.0511 '0.0564 0.0544 0.0589 0.0546 0.0819 
1.00 

0 0.0558 0.0529 0.0560 0.0555 0.0557 0.0750 

60.3 50 

100 

0.0519 

0.0525 

0.0526 

0.0519 

0.0592 

0.0592 

0.1005 

0.0672 

0.0578 

0.0533 

0.0807 

0.1447 

0.66 

18.3 

0 

50 

100 

0.0602 

0.0580 

0.0627 

0.0539 

0.0582 

0.0621 

0.0503 

0.0502 

0.0527 

0.1612 

0.0851 

0.0719 

55.3 

0 

50 

100 

0.0585 

0.0522 

0.0511 

0.0548 

0.0557 

0.0532 

0.0541 

0.0571 

0.0503 

0.0658 

0.1304 

0.1190 

0 

40 

0 

50 

100 

0.0573 

0.0536 

0.0611 

0.0526 

0.0548 

0.0550 

0.0544 

0.0525 

0.0547 

80 

0 

50 

100 

0.0542 

0.0566 

0.0523 

0.0638 

0.0764 

0.0688 

0.0536 

0.0524 

0.0609 

26.1(light) 0 0.0509 0.0559 

6.7(shade) 50 0.0506 0.0771 
Alter­
nating 100 0.0570 0.0606 

1.0 for 
12 h, 60.3(light) 0 0.0539 0.0609 
0 for 43.9(shade) 50 0.0589 0.0843 
12 h) 

100 0.0522 0.0739 
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Table A16. Accelerated Weathering Results (Lexan)
 


PLASTIC: Lexan log (1) x 104, where P = fraction of 

original transmittance at 600 nm 

UV Intensity 
(300-400 rim) Air Relative Exposure Time (h) 

Relative to 
Noon Sunshine 

(6.07 mW/cm2 ) 

Temperature 
(0C) 

Humidity 
(pct) 

6 12 24 120 768 

0 -27 31 34 

26.1 50 -3 41 24 

1.00 100 18 60 326 

0 25 59 -12 

60.3 50 -29 1 279 

100 -70 36 3039 

0 25 -4 106 

18.3 50 -9 3 58 

0.66 100 -35 3 56 

0 39 -13 2 

55.3 50 -40 -18 228 

100 4 27 1297 

0 43 -18 -27 

40 50 -13 18 -34 

0 100 41 6 -31 

0 -8 -24 -91 

80 50 -10 -6 -27 

100 -29 18 22 

26.1 0 -21 -20 -14 
(light) 50 -6 -4 328 

Alternating 6.7 
(1.0 for 
12 h, 0 forI 

(shade) 

60.3 
100 

0 
-42 

-17 

5 

0 

207 

5 
12 h) (light) -25 24 113 

43.9 50 

(shade) I00 -45 -7 661 
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Table Al7. Accelerated Weathering Results (Polystyrene)



PLASTIC: Polystyrene 	 log (r) x 104, where P = fraction of 

original transmittance at 600 nm 

UV Intensity


Air Relative Exposure Time (h)
(300-400 nm) 
 

Relative to Temperature Hutidity



Noon Sunshine (C) (pct)


6 12 24 120 768


(6.07 mW/cm2) 	 3 
 

0 	 32 -17 	 102



26.1 	 50 -6 35 403 

49 6 279100
1.00 
0 	 15 17 	 210 

38 439 

100 132 -7 907 

0' -1 -37 

60.3 50 
 

42 -38 
 312
18.3 	 50 


81 -13 179
0.66 	 100 

0 8 1 118 

17 31 764 

100 -8 23 650 

0 33 -14 4 

40 50 8 

55.3 50 
 

-4 -15



71 10 7


000 
 

0 2 98 -4



80 50 
 26 224 -16



100 -17 148 69



25 -31 19
26.1 0 
(light) 	 50 2 -34 231 

6.7
Alternating 
 
(1.0 for (shade) 100 4 30 66 

12 h, 0 for 60.3 0 20 0 69 

12 h) (light) 50 52 49 303 

52 4__ 0
43.9 50 

(shade) 100 52 -18 199 
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Table Al8. Effect of Lamp Age on Lexan Yellowing



UV 
Intensity, 

Rel to Noon 
Summer 

Sunlight 

Tem­
pera­
ture 

A3 60  

0 

A600 

Lamp Operated, -Days 
40 

A360 A600 A3 6 0  

69 

A600 

0.66 18.3 0.2694 0.0572 0.1460 0.0503 0.1362 0.0514 

1.00 26.1 0.3522 0.0520 0.1989 0.0498 0.1814 0.0529 

1.00 60.3 0.5228 0.0572 0.2277 0.0515 0.1882 0.0532 

0.66 55.3 0.3590 0.0586 0.1492 0.0489 0.1409 0.0515 

Means: 0.3759 0.0563 0.1805 0.0501 0.1617 0.0523



Lamp Age, Days A360 - A600 - 0.0309 Efficiency, pct



0 0.2887 100



40 0.0995 34



69 0.0785 27



Note: Samples were exposed 24 hours at 0 pct relative humidity.
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Table A19. Effect of Lamp Age on Polystyrene Yellowing



UV Intensity, Lamp Operated, days


Rel to Noon 
 

Summer 
 
Sunlight Temperature 
 

1.00 26.1 
 

1.00 60.3 
 

0.66 18.3 
 

0.66 55.3 • 
 

0 to 1.00, 6.7 to 26.1 
 
(alternating) (alternating) 
 

0 to 1.00, 43.9 to 60.3 
 
(alternating) (alternating) 
 

Lamp Operated, Days 
 

8 to 40 
 

40 to 72 
 

Relative 
 
Humidity 
 
(pet) 
 

0 
 

50 
 

100 
 

0 
 

50 
 

100 
 

0 
 

50 
 

100 
 

0 
 

50 
 

100 
 

0 
 
50 
 

100 
 

0 
 
50 
 

100 
 

Means: 
 

A360 - A600 ­

0.7066 
 

0.6839 
 

8 to 40 
 40 to 72


A 
 A6 
 A6 A0


360 
 600 
 360 600



0.7458 
 0.0642 
 0.8051 0.0614



0.7494 
 0.0943 
 0.7930 0.0926



0.7093 
 0.0819 
 0.8742 0.1451



1.030 
 0.0750 
 0.9438 0.0673



1.087 
 0.0807 
 1.082 0.0840



1.070 
 0.1447 
 1.039 0.0998



0.7353 
 0.1612 
 0.5914 0.0625



0.5713 
 0.0851 
 0.5682 0.0558



0.6021 
 0.0719 
 0.6659 0.0578



0.9564 
 0.0658 
 0.8816 0.0784



0.9822 
 0.1304 
 0.9239 0.1306



0.9578 
 0.1190 
 0.9120 0.0798



0.6238 
 0.0559 
 0.6259 0.0593


0.5790 
 0.0771 
 0.5459 0.1074



0.5825 
 0.0606 
 0.5046 0.0582



0.8253 
 0.0609 
 0.6628 0.0636


0.8490 
 0.0843 
 0.8025 0.0853



0.8998 
 0.0739 
 0.7991 0.0705



0.8087 
 0.0882 
 0.7789 0.0811



0.0139 
 Efficiency, pet



100



97
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Table A20. Accelerated Weathering Results



PLASTIC: Polystyrene Carbonyl Peak Height (about 5.9 microns)


as Percent of Aromatic Peak Height 

(about 6.7 microns) 

UV Intensity 
(300-400 nm) 
Relative to 
Noon Sunshine 
(6.07 mW/cm2) 

Air 
Temperature 

(OC) 

Relative 
Humidity 
(pct) 

3 

Exposure Time (h) 

6 12 24 120 768 

0 4 8 380 

26.1 50 5 50 415* 

1.00 100 5 7 6 3 44 431 

0 7 63 280 

60.3 50 3 48 434 

100 7 5 9 8 28 729 

0 5 2 344 

18.3 50 3 4 287 

0.66 100 

0 

1 

-1 

8 

9 

358 

552 

55.3 50 3 9 1246 

100 6 17 613 

0 3 

40 50 3 

0 _______ 100 

0 

1 

1 
80 50 1 

100 7 

Alternating 
(1.0 for 
12 h, 0 for 
12 h) 

26.1 
(light) 
6.7 

(shade) 
60.3 
(light) 

0 

50 

100 
0 

50 

355 

204 

349 
298 
248 

I 

*19 

43.9 
(shade) 

on unweathered side 

100 286 
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Table A21. Tensile Test Results on Lexan After Outdoor Exposure



Sample, Days 

Yield 
Stress 
(psi) 

Breaking 
Stress 
(psi) 

Ultimate 
Elongation 

(pct) 

Fraction of 
Original 
Breaking 
Stress 

Fraction of 
Original 
Ultimate 

Elongation 

Control for 
samples 
marked with 
asterisk(*) 0 7951 8861 86 1.00 1.00 

Control for 
other samples 0 8672 9525 81 1.00 1.00 

Phoenix 450 S 5* 7682 8666 87 0.98 1.01 

(start 
9-12-76) 

10* 
15* 

8372 
8305 

9008 
8181 

82 

79 

1.02 

0.92 

0.95 

0.92 

30* 8076 8048 80 0.91 0.93 

60* 8112 8042 79 0.91 0.92 

90* 7879 7667 79 0.87 0.92 

150* 7770 7411 75 0.84 0.87 

210 7981 7651 74 0.80 0.91 

300 -­ 2585 0 0.27 0 

Phoenix 450 S 30 8226 8822 78 0.93 0.96 

(start 

12-22-76) 

60 

90 

150 

8127 

8163 

8127 

8897 

9082 

7865 

85 

82 

78 

0.93 

0.95 

0.83 

1.05 

1.01 

0.96 

210 8336 7419 57 0.78 0.70 

Phoenix 45 "S 30 8295 9105 85 0.96 1.05 

(start 
6-21-77) 

Miami 45' S 

60 

5* 

8034 

7961 

8103 

8458 

76 

85 

0.85 

0.95 

0.94 

0.99 

(start 
9-1-76) 

10* 

15* 

30* 

8130 

8209 

7977 

8482 

8363 

7678 

82 

80 

81 

0.96 

0.94 

0.87 

0.96 

0.93 

0.94 

90* 7850 7088 74 0.80 0.87 

150* 7762 7041 75 0.79 0.87 

210 8229 7599 73 0.80 0.90 

300 -­ 2297 0 0.24 0 
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Table A21. (continued) 

Fraction of Fraction of 

Yield Breaking Ultimate Original Original 
Stress Stress Elongation Breaking Ultimate 

Sample Days (psi) (psi) (pct) Stress Elongation 

Miami 450 S 30 8867 10,042 87 1.05 1.07 

(start 60 8484 8,969 84 0.94 1.04 

12-22-76) 90 8382 8,398 72 0.88 0.89 

150 8255 7,720 74 0.81 0.91 

210 8781 8,058 43 0.85 0.53 

Miami 450 S 30 8049 8,265 73 0.87 0.90 

(start 60 8220 8,005 79 0.84 0.98 

6-21-77) 

EMMA 1* 7932 8,557 85 0.97 0.99 

(start 2* 8114 8,827 85 1.00 0.99 

9-12-76) 5* 8027 8,524 84 0.96 0.97 

10* 8048 8,181 77 0.92 0.89 

30* 7807 7,016 73 0.79 0.85 

90* 7 7,181 7.7 0.81 0.09 

150* - 2,402 0 0.27 0 

210 - 644 0 0.068 0 

300 (too brittle to test) 

EMMAQUA 1* 7753 8,284 83 0.93 0.97 

(start 2* 7894 8,757 87 0.99 1.01 

9-12-76) 5* 7721 8,252 83 0.93 0.96 

10* 7950 8,404 81 0.95 0.94 

30* 7749 6,945 70 0.78 0.81 

90* - 4,174 0 0.47 0 

150* - 2,732 0 0.31 0 

210 - 728 0 0.076 0 

300 (too brittle to test)
I I 

Note: 	 To convert to megapascals, the values in psi are multiplied by


0.00689476. For example, the control breaking stress of 8861 psi


is 61.1 megapascals.
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Table A22. Tensile Test Results on Tedlar After Outdoor Exposure



Condition 

Yield 
Time Stress 
(Days) (psi) 

Breaking 
Stress 
(psi) 

Ultimate 
Elongation 

(pet) 

Fraction of 
Original 
Breaking 
Stress 

Fraction of 
Original 
Ultimate 

Elongation 

Control, for 
150 days 0 4939 11,741 47 1.00 1.00 

Control, for 
210 and 300 
days 0 3855 8,937 60 1.00 1.00 

Phoenix, 450 S 150 4924 12,520 49 1.07 1.04 

(start 
9-12-76) 

210 
300 

3677 
3546 

8,961 
7,277 

49 
45 

1.00 
0.81 

0.82 
0.75 

Miami, 450 S 150 5364 10,041 42 0.86 0.89 

(start 
9-1-76) 

210 
300 

3660 
3943 

7,721 
8,277 

59 
51 

0.86 
0.93 

0.98 
0.85 

EMMA 150 4899 12,470 63 1.06 1.34 

(start 
9-12-76) 

210 
300 

3243 
3538 

7,125 
7,599 

41 
51 

0.80 
0.85 

0.68 
0.85 

EMMAQUA 150 4841 10,414 38 0.89 0.81 

(start 
9-12-76) 

210 
300 

3280 
3312 

7,419 
6,408 

51 
42 

0.83 
0.72 

0.85 
0.70 

ORIGINAL PAGE IS 
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Table A23. 
 

Exposure 
 
Time (Days) 
 

0 (Control) 
 

5 
 

10 
 

15 
 

30 
 

60 
 

90 
 

150 
 

210 
 

300 
 

Tensile Test Results for Polystyrene After


Weathering in Miami (450 S) 

Fraction of 
Breaking Stress Original 

(psi) Breaking Stress 

10,244 1.00



8,878 0.87



8,903 0.87



9,069 0.89



8,851 0.86



8,842 0.86



9,050 0.88



8,636 0.84



4,037 0.39



2,284 0.22
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Table A24. Tensile Test Results on Lexan After Accelerated Weathering



Conditions: 1.00 UV Intensity (see Table A3), 26.10c



Fraction of Fraction of


Exposure Relative Yield Breaking Ultimate Original Original


Time (h) Humidity Stress Stress Elongation Breaking Ultimate



(pet) (psi) (psi) (pct) Stress Elongation



0 (Control) 8779 9728 84 1.00 1.00



3 0 8384 . 9255 83 0.95 0.99 
3 100 8145 9082 85 0.93 1.01 

6 0 8425 9658 87 0.99 1.03


6 100 8525 9292 77 0.96 0.92



1 12 0 8418 8881 78 0.91 0.93


%D 12 100 8082 8487 76 0.87 0.90 
I4 

24 0 8381 7296 66 0.75 0.79 
24 100 - 8079 0 0.83 0 

120 0 - 7988 0 0.82 0 

120 100 - 8192 0 0.84 0 

768 100 - 5101 0 0.52 0 

, 1536 0 - 6553 0 0.67 0 

Note: The control breaking stress is 9728 psi or 67.1 megapascals.





Table A25. 	Tensile Test Results on Tedlar after 768 Hours


Accelerated Weathering 


Conditions: 1.00 UV Intensity (see Table A3) 

Relative 	 Ultimate

Humit Yield Stress Breaking Elngat
Temperature	 tes(s) Elongation
(00) 	 Humidity (pi
(pct) (psi) Stress (psi) (pct) 

Control - 6145 12,618 40 

60.3 0 6705 11,205 45 

26.1 100 5591 12,624 38 

Note: The control breaking stress is 12,618 psi or 87.0 megapascals



Table A26. Tensile Test Results on Polystyrene After


Accelerated Weathering



Conditions: 1.00 UV Intensity (see Table A3), 26.10 C



Fraction of
 
Relative Breaking 
 Original
Exposure


Exposure Humidity Stress Breaing 
Time (h) (pct) (psi) Stress 

0 (Control) 	 11,318 1.00



3 0 11,017 0.97


3 100 9,943 0.88



6 0 11,625 1.03


6 	 100 8,960 0.79



12 0 10,927 0.97


12 100 9,563 0.84



24 0 10,167 0.90


24 100 9,897 0.87



120 0 10,293 0.91



120 100 8,607 0.76



768 	 100 5,665 0.50



1536 0 3,647 0.32



Note: The elongation was too low to measure readily. The control


breaking stress is 11,318 psi or 78.0 megapascals.
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Table A27. TGA Daeea on Lexan and Tedlar 

Conditions: 1.00 simulated noon sunshine, 60.30C, 100 pet relative 
humidity 

Cumulative Weight Loss (pet) 

Temperature Lexan Tedlar 

(0C) Unexposed Exposed Exposed 
768 h Unexposed 768 h 

30 0 0 0 0 

50 0 0 0 0 

70 0 0 0 0 

90 0 0.02 0.03 0.04 

110 0.03 0.03 0.07 0.07 

130 0.03 0.04 0.07 0.09 

150 0.09 0.09 0.10 0.13 

170 0.13 0.16 0.14 0.18 

190 0.22 0.24 0.17 0.22 

210 0.29 0.32 0.21 0.26 

230 0.36 0.41 0.28 0.31 

250 0.47 0.48 0.31 0.35 

270 0.56 0.57 0.34 0.44 

290 0-.67 0.69 0.38 0.53 

310 0.84 0.85 0.41 0.64 

330 1.04 1.10 0.48 0.75 

350 1.29 1.38 0.55 0.92 

370 1.56 1.83 0.66 1.08 

390 1.80 2.52 1.38 1.36 

398 

410 2.09 3.37 3.93 2.02 

420 5.0 

430 2.49 4.43 7.0 5.28 

431 7.0 

435 8.8 

450 3.42 5.73 

470 5.47 8.12 

480 8.89 

-99­



Table A28. TGA Data on Polystyrene



Conditions: 1.00 simulated noon sunshine, 60.30C, 100 pet relative


humidity 

Cumulative Weight Loss (pet) 
Temperature Exposed Exposed Exposed Exposed Exposed 

(°C) Unexposed 6 h 12 h 24 h 120 h 768 h 

30 0 0 0 0 0 0 

50 0 0 0 0 0 0 

70 0 0 0 0 0 0 

90 0 0.07 0.07 0.04 0.04 0.06 

110 0 0.11 0.10 0.08 0.08 0.08 

130 0 0.15 0.13 0.12 0.08 0.14 

150 0 0.15 0.17 0.21 0.15 0.25 

170 0 0.18 0.20 0.25 0.23 0.39 

190 0.04 0.19 0.26 0.29 0.34 0.56 

210 0.09 0.22 0.33 0.33 0.46 0.73 

230 0.18 0.30 0.36 0.41 0.61 0.95 

250 0.22 0.37 0.43 0.46 0.72 1.40 

270 0.31 0.41 0.46 0.54 0.88 1.62 

290 0.36 0.48 0.56 0.58 1.03 2.01 

310 0.44 0.55 0.66 0.70 1.22 2.40 

330 0.60 0.66 0.73 0.87 1.45 2.91 

350 0.85 0.85 0.86 1.12 2.06 3.91 

370 1.27 1.26 1.26 1.70 3.59 6.43 

390 2.80 2.44 1.98 4.22 5.64 11.19 

398 7.0 

406 15.26 

410 8.71 5.42 14.40 
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Table A29. Glass Transition Temperature by DSC and TMA



Conditions: 1.00 simulated noon sunshine, 60.30 C, 100 pet relative humidity



Tg9



(Glass TransitionMaterial Exposure
Time (h) Temperature) (°C)



By TMA By DSC 

Lexan 0 151.3 152.5



6 149.2 

12 148.2



24 147.0 

120 145.6 

768 144.2 L44.8 

Polystyrene 0 100 109



768 96 104



Tedlar* 6 52 57 

768 57 

*Heat of Fusion: 7.24 cal/g for control


7.50 cal/g for sample exposed 768 h



ORIGINAL PAGE IS 
OF POOR QUALITY 
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Table A30. Short Circuit Current of Solar Cells in Weathered UTS's



Exposure 
 
Condition 
 

EMMA 
 

(start 9-12-76) 
 

EMAQUA 
 

(start 9-12-76)



450 S, Phoenix 
 

(start 9-12-76) 
 

Time 
 

(days) 
 

1 
 

2 
 

5 
 

10 
 

30 
 

90 
 

150 
 

210 
 

300 
 

1 
 

2 
 

5 
 

10 
 

30 
 

90 
 

150 
 

210 
 

300 
 

5 
 

10 
 

15 
 

30 
 

60 
 

90 
 

150 
 

210 
 

300 
 

Percent of Original Short Circuit Current



Lexan Cover 
 

102, 100 
 

97, 99 
 

99, 99 
 

100, 101 
 

101, 102 
 

95, 105 
 

100, 98 
 

96, 103 
 

98, 107 
 

102, 101 
 

101, 100 
 

96, 97 
 

103, 102 
 

101, 97 
 

99, 102 
 

98, 100 
 

98, 101 
 

101, 103 
 

99, 99 
 

98, 97 
 
100, 100 
 

98, 98 
 

95, 98 
 

97, 100 
 

95, 98 
 

100, 102 
 

103, 104 
 

No Cover Tedlar Cover



88, 99 100, 99



96; 96 97, 97



-98, 96 101, 97



98, 96 100, 100



98, 99 96, 101



96, 114 96, 101



95, 95 96, 101



90, 95 96, 100



95, 95 83, 96



100, 100 100, 99



99, 99 99, 100



94, 96 97, 97



101, 101 101, 101



9Y, 97 98, 96



92, 95 ill, 99



91, 96 94, 99



92, 94 96, 97



93, 94 94, 96



98, 99 96, 97



101, 96 99, 97


99, 98 100, 98



94, 94 99, 96



94, 92 89, 104



78, 82 96, 102



95, 95 96, 101



75, 92 83, 95



91, 93 96, 96
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Table A30. (continued)



Exposure 
 Time 

Condition (days) 

450 S, Florida 
 5 

(start 9-1-76) 10 

15 

30 

60 

90 

150 

210 

300 

of Original Short Circuit Current

-Percent
 

Lexan Cover No Cover Tedlar Cover



99, 98 


100, 99 


100, 99 


99, 97 


96, 99 


96, 96 


97, 99 
 

99, 101 


92, 94 


98, 98 99, 98


99, 97 99, 100


98, 97 90, 97


98, 96 98, 97


91, 
 96 92, 98
 

94, 95 94, 100


91, 97 90, 98


89, 90 94, 95


92, 93 
 92, 92­

ORIGINAL PAGE IS 
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Table A31. Short Circuit Current of Solar Cells in UTS's After 72


Days Accelerated Weathering



UV Intensity 	 Short Circuit Current,


(300-400 nm) Air Relative Percent of Original 
Relative to Temperature Humidity 
Noon Sunshine ( 0 C) (pct) Lexan No Tedlar 
(6.07 mW/cm2) 	 Cover Cover Cover



0 100, 	 99 95, 102 95, 101 

26.1 50 99, 100 97, 85 94, 101 

100 102, 102 89, 102 95, 101
1.00 

0 99, 	 92 95, 103 94, 104



60.3 50 96, 99 95, 98 94, 100 

.100 89, 98 96, 47 93, 57 

0 98, 101 96, 102 94, 100 

18.3 50 98, 100 95, 100 93, 100 

0.66 	 100 101, 101 97, 101 95, 96 

0 99, 103 97, 102 95, 102 

55.3 	 50 97, 102 76, 70 94, 80 

100 98, 98 76, 101 95, 101 

0 96, 104 101, 105 100, 102 

40 50 101, 105 100, 105 98, 105 

0 100 101, 103 97, 54 96, 102 

0 94, 104 98, 103 100, 104 

80 	 50 99, 103 97, 101 98, 100 

100 85, 105 80, 65 70, 93 

26.1 0 98, 95 96, 104 95, 102


(light) 50 98, 101 95, 98 96, 105



Alternating 6.7



(1.0 for (shade) 100 97, 100 98, 100 98, 102


12 h, 0 for 60.3 0 95, 100 98, 100 95, 100


12 h) (light) 50 101, 102 96, 99 96, 101



43.9



(shade) 100 97, 112 92, 60 93, 49
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Table A32. Maximum Power of Solar Cells in Weathered UTS's



Exposure 
 

Condition 
 

EMMA 
 

(start 9-12-76) 
 

EMMAQUA 
 

(start 9-12-76) 
 

450 S, Phoenix 
 

(start 9-12-76) 
 

Time 
 

(days) 
 

1 
 

2 
 

5 
 

10 
 

30 
 

90 
 

150 
 

210 
 

300 
 

1 
 

2 
 
5 
 

10 
 

30 
 

90 
 

150 
 

210 
 

300 
 

5 
 

10 
 

15 
 

30 
 

60 
 

90 
 

150 
 

210 
 

300 
 

Percent of Original Power (Watts) at


Power Point on IV Curve



Lexan Cover 
 

95, 99 
 

100, 103 
 

94, 104 
 

100, 102 
 

97, 102 
 

96, 105 
 

98, 88 
 

87, 94 
 

77, 95 
 

100, 104 
 

98, 101 
 

101, 98 
 

101, 99 
 

103, 101 
 

99, 102 
 

99, 104 
 

95, 103 
 

93, 96 
 

100, 105 
 

107, 107 
 

102, 103 
 

107, 106 
 

89, 86 
 

93, 99 
 

101, 90 
 

97, 101 
 

96, 99 
 

No Cover Tedlar Cover 

81, 98 97, 101 

101, 106 93, 101 

97, 101 104,.105 

101, 88 103, 101 

96, 101 71, 100 

91, 98 102, 107 

91, 100 100, 106 

65, 93 95, 96 

86, 88 59, 94 

98, 104 101, 101 

99, 105 99, 99 

98, 92 98, 96 

101, 101 103, 101 

96, 100 101, 100 

92, 97 93, 101 

86, 101 100, 105 

84, 97 96, 98 

88, 91 91, 94 

100, 112 96, 105 

111, 106 107, 108 

101, 101 104, 103 

91, 107 101, 105 

86, 75 92, 94 

55, 99 92, 102 

93, 78 98, 101 

76, 97 66, 100 

94, 99 79, 103 
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Table A32. (continued)



Percent of Original-Power (Watts) at 

IV Curve -Exposure Time Power Point on 
 
No Cover Tedlar Cover
Condition (days) Lexan Cover 
 

97, 94 98, 118 
 96, 98
450 S, Miami 	 5 


(start 9-1-76) 	 10 99, 102 101, 104 102, 92



15 99,-100 99, 102 84, 99



30 96, 91 98, 99 99, 102



60 96, 97 84, 93 92, 98



90 100, 99 97, 94 98, 104



150 103, 105 94, 97 93, 101



210 84, 102 82, 91 76, 77



84, 86
300 58, 69 82, 89 
 

ORIGINAL PAGE IS 
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Table A33. Maximum Power of Solar Cells in UTS's After 72 Days


Accelerated Weathering 

UV Intensity Percent of Original Power (Watts) 
(300-400 nm) Air Relative at Power Point on IV Curve 
Relative to Temperature Humidity 
Noon Sunshine (C) (pct) Lexan No Tedlar 
(6.07 mW/cm2) Cover Cover Cover 

0 97, 96 94, 99 94, 101 

26.1 50 103, 102 100, 88 96, 95 

1.00 100 103, 104 90, 100 99, 104 

0 104, 63 85, 101 99, 104 

60.3 50 116, 114 101, 93 106, 109 

100 74, 82 70, 39 95, 37 

0 -93, 102 97, 104 98, 102 

18.3 50 98, 102 93, 95 95, 102 

0.66 100 103, 104 95, 105 100, 79 

0 100, 100 98, 99 94, 102 

55.3 50 109, 103 60, 74 81, 68 

100 95, 83 66, 88 76, 99 

0 100, 102 100, 101 101, 99 

40 50 101, 102 98, 98 95, 101 

0 100 85, 74 95, 33 56, 83 

0 100, 99 99, 101 98, 108 

80 50 98, 93 93, 89 89, 98 

100 52, 87 58, 47 50, 50 

26.1 0 105, 105 101, 103 99, 105 
(light) 50 104, 104 99, 106 101, 110 

Alternating §.7 
(1.0 for (shade) 100 102, 105 98, 102 100, 107 
12 h, 0 for 60.3 0 103, 105 102, 105 96, 105 
12 h) (light) 50 102, 107 98, 96 88, 104 

43.9 
(shade) 100 87, 82 73, 57 45, 31 
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Table A34. 	 Field Effect Transistor (FET) Leakage Current Ratios After


Outdoor Exposure of UTS's



Ratio of Final to Initial Leakage



Exposure Time Current (measured at 20 V)



Condition (days) Tedlar Cover No Cover Lexan Cover



Phoenix, 450S 60 	 0.4 	 1..0
 0.8



90 1.1 1.3 1.0



150 0.6 0.1 0.2



210 >4000 0.7 0.7



300 0.6 1.7 0.9



Miami, 450 S 60 	 0.7 	 0.6
 1.3



90 0.3 0.8 1.0



150 0.5 1.0 0.5



210 0.05 0.2 0,3



300 0.2 0.4 1.4



EMMA 	 90 	 1.2 
 1.7
 1.0



150 
 0.7 0.4 0.3



210 0.08 0.4 0.3



300 0.05 0.1 0.1



EMMAQUA 	 90 	 0.5 	 0.5 0.5


150 1.0 1.3 1.2



210 0.2 
 0.3 0.3



300 0.1 0.1 0.1



ORIGINAL PAGPIS 
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Table A35. Field Effect Transistor (FET) Leakage Current Ratios



After 72 Days Accelerated Weathering of UTS's



UV Intensity 
(300-400 nm)

ReatvetoRelative to 
AirTemperature 

Noon Sunshine 
(6.07 mW/cm2) 

(OC) 

26.1 

1.00 

*60.3 

18.3 

0.66 

55.3 

40 

80 

26.1 
(light)-

Alternating 6.7 
(1.0 for (shade) 
12 h, 0 for 60.3 
12 h) (light) 

43.9 
(shade) 

Relative
Humidity



(pet) 
 

0 

50 
 

100 
 

0 
 

50 
 

100 
 

0 
 

50 

100 

0 
 

50 

100 

0 
 

50 

100 

0 

50 

100 

0 
 
50 

100 
 
0 
 

50 
 

100 
 

Ratio of Final to Initial 
Leakage Current 

(measured at 20 V) 

Tedlar No Lexan


Cover Cover Cover



0.5 1.2 1.5 

0.6 1.0 1.0 

0.7 1.8 0.7



0.6 0.6 0.6



0.4 0.5 0.4



1.2 4.7 3.3



0.8 0.2 0.2



3.7 4.4 2.4 

2.8 11.5 4.3 

0.7 0.6 1.7



2.7 3.0 2.5 

0.9 3.0 4.0 

0.6 0.8 0.8



0.3 1.7 1.5 

0.8 1.5 1.0 

0.1 0.2 0.8 

2.0 1.7 2.5 

0.2 0.2 0.3 

0.8 1.0 1.0



0.4 2.5 3.0 

1.5 7.0 4.0 

- 0.7 0.2 
0.9 1.0 0.3



1.0 4.2 4.0
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Table A36. Peel Strength of Plastic Covers on Weathered UTS's



Tedlar Lexan 

Exposure Conditions Time(days) MeanForce* Fractionof MeanForce* Fractionof 

(ib) Control (ib) Control 

Control 0 0.30 1.00 	 0.10, 1.00 
0.35** 

Accelerated test, 1.00 noon 72 0.25 0.83 0.36 1.03 
sunshine UV light intensity, 
26.1'C, 100 pct relative 
humidity 


Accelerated test, 1.00 noon 72 (too brittle to 0.14 1.4 


sunshine UV light intensity, pull strips; 


60.3°C, 100 pct relative adhesion seemed 

humidity good) 


Phoenix, 450 S 90 0.27 0.90 	 0.35 1.00 


Miami, 450 S 90 0.30 1.00 	 0.38 1.09 


EMMA 90 0.30 1.00 	 0.38 1.09 

EMMAQUA 90 0.29 0.97 	 0.39 1.11 

*To peel a 5 mm wide strip at 900 angle at 2 inches/min, mean of


5 replicates.


**The control failed sometimes adhesively (0.10 lb), sometimes cohesively 

(0.35 lb). 

The only adhesive failure on weathered samples was for Lexan from the 60.3C 
accelerated test. All other Lexan failures and all Tedlar failures were


cohesive. 

ORIGINAL PAGE IS 
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Table A37. Temperature and Moisture Effects in Accelerated Exposure



72 Days Exposure 
 
UV Intensity Solar Cells


(300-400 nim) Air Rel.
(040Aim Re.Solar 	 Cells with Short 
 
Relative to Temp. Hum. Tedlar Sola Ce wihSot 
 

Noon Sunshine (SC) (pct) Embrittlement with Bower Circuit 
 
<75 pct of Current
(6.07 	 mW/cm2) 	 (on UTS) 
 
Original <85 pat of 
 

Original



0 
 

26.1 50 
 

100 
 
1.00



0 X 1 
 

60.3 	 50 X 

100 X 4 2 

0 

18.3 50 
 

100 
 
0.66



0 

55.3 	 50 3 3 
 

100 1 1 
 

32 Days Exposure



FTswt
FTaihSevere Loss


Leakage Severe Loss Se loss
for
Current of Gloss for 
 
>2.0 x Lexan (Film) Polystyrene



Original



X 

X 

X X 

X 

X X 

2 X X 

(not 

available) 

3 X 

3 X 

X 

3 X X 

2 X X 



Table A37. (Continued)



72 Days Exposure 32 Days Exposure 
UV Intensity Solar Cells 
(300-400 nm) Air Rel. FET's with Severe Loss 
Relative to Temp. Hum. Tedlar with Power Circuit Leakage Severe Loss of Gloss



Noon Sunshine (0C) (pot) Embrittlement wit o Crcuit Current of Gloss for for


(6.07 nW/cm2) (on UTS) Original <85 pet of >2.0 x Lexan (Film) Polystyrene



Original Original



0



40 50



100 3 1



0 
l0



80 50 2



100 5 3


26.1 0



Alternating (light



light)
(1.0 for 
 
6.7
12 h, 
 

0 for 12 h) (shade) 100 
 2 X



60.3 0 X


(light)



50 X*


43. 9 
(shade) 100' 4 2 2 X X 

*Slightly embrittled
 

Q*Tube flooded with water accidentally
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