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AL ~ I. INTRODUCTION AND SUMMARY
Rk s Y The emission of gravitational radiation by massive bodies
2 / AN GRAVITATIONAL BREMSSTRAHLUNG™
+ poving in high-velocity, low-deflection unbound orbits — gravita-

tional bremsstrahlung — has recently been suggested as a possible

Theoreticel Physics, Department of Physics I " z -
1f niversity, Stanford, California 91305 source of radiation, detectable in principle by doppler tracking of

interplanetary spacecraft (Estabrock and Wahlquist 1975, Thorne and
ABSTRACT Braginsky 197€). Several studies have been made of the nature of
Ke present formulae and numerical results for the gravitaticnal gravitational bremsstrahlung, each starting from a different point
radistion emitted during a low-deflecticn encounter betwecn two of view and making different assusptions. The piomeering analysis
. rassive bodies ("gravitsctional bre. -strahlung"). Our results are is that of Peters (1970), who studied perturbations of the
‘ 4lid through post-Newtonian order within general relativity. We Schwarzschild geometry by test particles moving with arbitrary
discuss in detail the gravitational waveform (transve se-traceless velocities in large-impact-parameter orbits. Matzmer and Nutku
par: of the metric perturbation temsor), the total lus:-osi<v and (1878) frcussed on the high-frequency behavior of the bremsstrahlung
total emitted energy, the angular distribution of emittsd =nergy spectrum of ultrarelativistic test particles in the Scharzschiid .
(antenna pattern), and the frequency spectrum. We also present a geometry using the method or virtual quanta. Smarr (1977) calcu-
method of "boosting” the accuracy of these quantities to post-3/2- lated the zerc frequency limit of gravitational bremsstrahlung pro-
Newtonian order. A mumerical comparison of our results with those dnced by a test particle moving with srbitrary velocity in the
‘ i Peters and of Kovécs and Thorme shows that the post-Newtonian field of a massive body. Perhaps the definitive analysis of gravi-
method is reliable to better than 0.1 percent atv = 0.1 ¢, to a tational bremsstrahlung has been performed by Kovics and Thorne
i few perceat at v » 0.35 ¢, and to 10-20 percent at vyeOSec W (1977a, b, hereafter KTa, KTb) based on the post-linear formalism
2lso compare our results with those of Smarr. developed by Thorne and Kovdcs (1875) end Crouley and Thorme (19;’7)-

i Their analysis treats bodies with arbitrary masses and art itrary
Supported in peart by the National Aeronautics and Space Administra-

tion [NSG 7204 S1] and the National Science Foundation [PHY 76-21454]. relative velocities, while zaintaining the condition of stall-angle
f.ufred P. Sloan Foundation Research Fellow . deflections. Their formal results may be written very elejantly
1TP-580 ; 7/77 (albeit in very lengthy and complex form) in terms of frame -
- - invariant quantities. In the spscial case of test-particle

bremsstrahlung their resultsare in complete nuzericil agreesment




B 400d J0
VNIOHO

ALITYN

g1 4ovd 1

with Peters (see also §I1X). Unfortunately, because of the complex-
ity of both sets of formilae, a direct analytic comparison was not
possible (KTb).

Our goal in this paper is somewhat more modest. We present and

discuss a detailed aralysis of the semi-relativistic limit of gravi-

tational bremsstrahlung, using the post-Newtonian methods developed
by Epstein and Wagoner (1975) and by Wagoner and Will (1976, WW
hereafter). The post-Newtonian technique has a variety of advan-
tages. Like the KT method, it allows particles of arbitrary mass.
Unlike the KT method (or Peters' method), it is very simple; the
form for the transverse traceless components of the mctric perturba-
tion h;% ("gravitational waveform") requires only half a dozen full

lines of Astrophysical Journal type {cf. eq. [16]), #2d makes use of

familiar Newtonian variables. Its limitation, the restriction to
"post-Newtonian" velocities, is only one of principle. For most
astrophysical purposes, a restriction to velocities smaller than
about one-half t! peed of light is undoubtedly adequate, since
potential bremsstrahlung orbits inside bound systems (such as
globular clusters or galactic nuclei) satisfy a virial relation of
the form v> ~ CM/R. On the other hand, stability arguments indicate
that the most relativistic of such systems must satisfy Q&/Rcz =
0.5. Thus we feel the post-Newtonian technique gives more reliable
estimates of the nature of gravitational bremsstrahlung in astro-
physical contexts than can be obtained from a Newtonian aaalysis,
and yet avoids the unnecessary complications of ultrarelativistic

formulae.

¥e begin with a brief summary of the important results. Our

starting point is the post-Newtonian gravitational waveform given
by WW (eq. [97]); in a frame in which the center of mass of the

system is at vest at the origin, it has the gemeral fm'-nl

'we use units in which the speed of light ¢ and the Newtonian

gravitational constant G are unity.

) i) 3 - ¢ Ji T ij

h;.-} = (2n,5,/Rb) [¥ J.Iv_(wz)(ruzxj ’.;v_ e, m
where B, ®, and @ =m, + |, ave the masses of the Ludies and the
total mass of the system, R is the distance between the observer

and the center of mass of the system, b > = is the impact parameter

" of the two-body orbit, v_ is the relative velocity of the two bodies

at infinite separation, and Sm = m - A The terns ll“, ('uz")”
and (P.\i]ij represent respectively the Newtonian, post-1/2-Newtonian,
and post-Newtonian contributions to the waveform. They depend in
general on time, on the reluced mass u = 'l‘zl" and on the orieata-
tion of the crbit relative to the cbserver's divection. An impor-
tant geal of most bremsstrahlung computations is the derivation of
such gravitational waveforms since it is these waveforms that are
detected in spacecraft tracking and in other broad-band detection
schemes. Thus we have evaluated explicitly the two independent
components of h::} detected by distant cbservers, the "plus-polari-
zation", h', and the "cross-polarizetion", h , as functions of timé
(see SII for detailed definitions) for a variety of bremsstrahlung

situations. Figure 1 shows the results for the casc a, >¢1 (see

§IX for an additional imterpretation of this case) for v =0 (the
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Newtonian limit) and for V, = 0.5. The waveforms h, and h, are
plotted in units of {Zulnzlab) for various observer locations
relative to the orbit. Time is plotted in units of the interaction
time T = b/v,, with t = 0 coincident with the moment of closest
approach. Figure 1 indicates clearly the front-back asymmetry of
the waveforms that develops when V. = 0.5; this is a manifestation
of relativistic "beaming” of the radiation. More detailed discus-
sion of these curves is given in 5511 and IX.

We have alsc calculated the gravitational luminosity of the
system; it should be noted that the luminesity has a clear meaning
only when averaged over several wavelengths of the radiation, whereas
the bremsstrahlung process emits a single burst of length At making
such an average impossible. Nevertheless, many interesting features

of the radiation are revealed by a study of the formal luminosity,

given by
ij ij

di _ RZ (Bign. 3 ’ .

@ "sw 5 =) - &

From this luminosity, one can calculate the angular distribution of

the tOtal radiated energy (“"antenna pattern")

e Lae. &)

Figure 2 shows the resulting antenna patterns for various velocities
(v, ™ 0 [the Xewtonian contribution], v, = 0.5) and masses ['2 - B,
=B, * '1) and compares those with the corresponding electr;umtic
bremsstrahlung antenna pattern for v_ = 0.5, =, >ll [Fig. 2(d))

(see SSIX and X for further interpretation of these patterns). For

‘1“2' as v_ increases there is beaming in the direction of
travel of the less massive ojbect [Fig. 2{c)]. If R as v,
increases there is "beaming in both directiors”, i.e. a broadening
of the lobes in the forward and backward directions [Fig. 2(b)].
In all cases (and in the electromagnetic case) most of the energy
is radisted cut of the orbital plane and nearly normal to it.

The post-Newtonian method makes errors of order '.3 (post-3/2-

Newtonian terms) in the waveforms h We have made direct

+(x)°
mzerical comparisons between our results and the Kovics and Thorme
results (an analytic comparison was not possible), and have found
complete agresmeat within errors of order 0.1 percent at v, = 0.1,
a few percent at v_ = 0.35 and 10 to 20 percent at v, * 0.5, in
other words errors of Otv_"'). Peters (1977) has examined the post-
Newtonian limit of his fornulae and has found complete analytic
agreement with us for the case =, >ll.

We have alro tested the validity of our results by showing
that the post-Newtonian waveforms ezbody the rather remarkable
"universality" proparty discovered by Kovacs and Thorne (1977a).
They found that they could write the gravitational waveforms b.:.'".
in a form that d;pended upon the masses m, and =, only via the
overall multiplicative factor ®m, that appears in equation (1).
In other words the amplitudes .I;.:.{. = (ltblhlaz)h.g were universal,
i.e., independent of the masses. When specialized to a chosen
fraze of reference for explicit computation, they found the wave-
forms depended only upon the velccity of the chosen frame relative
to the frame located at the mid-point of the separation of the two

bedies (center-of-velocity frne).z We verified this proparty by

G L=t

A ——
J




zrhroughout this discussion, statements such as rest-frame, center-
of-velocity frame snd so on refer to the undeflected, straight-liae

orbits of the bodies.

rederiving the gravitutional waveform in a frame in which the

center-of-velocity moves with velocity V and found that the wave-
=1
crom Sorp

dependence seen in the cmuer-of-mass (CM) system (eq. [1]), is

£ depands eniy on V, not on @, and m,. The apparent mass
merely a consequence of the fact that in that frame, the center of
velocity moves with mass-despendent velocity |V]==3(5mfn}\’.
~
Jniversality has several important consequences. Because h
depends only on the chosen frame, then the waveforms shown in

Figure 1 can also be interpreted as waveforms observed in the rest

frame of body 2 (since the center-of-mass frame = rest frame

of =, for =, > =l} for arbitrary masses ®, and My This additional

interpretation also applies to the antemna patterns shown in
Figure 2(c). The equal-mass antenna patisdn shown in Figure 2(b)
can be reinterpreted as a pattern observed in the center-of-
velocity frame (since the center-of-mass coincides with the center
of velocity). The Newtonian pattern shown in Figure 2(a) is
automatically universal. Although most of the results of this
paper will be expressed in the center-of-mass frame for specific
mass ratioes li/lz, they all have equivalent interprerations as
results valid for arbitrary masses, but viewed from suitably chosen
.

frames (see Table I).

Anotlier consequence of universality is that it provides a

method of izproving the accuracy of the post-Newtoaian results from

b

post-Newtonian order to post-3/2-Newtonian order. In §X we apply
this "trick" to the luminosity ¢L/dfl and to the antenna pattemns;
the patterns shown in Figure 2 were in £act computed using this
trick, and are accurate through O(V.x).

The rest of the paper is devoted to details. In §11 we discuss
the assumptions and nctation of Wi and derive formulae for the
gravitationrl wave forms h_ (%) and h_(t). We also outline the
method for performing a multipole analysis of the waveforms.
Sections ITI-YITI contain detailed discussions of the gravitaticnal
luminosity dL/d@l, the power P, the antenna pattera d(SE)/&l, the
frequency spectrum of radiated energy J(3E)/do and its zero-fre-
quency limit d[SE(0)]/do (SmarT 1977), and the total radiated energy
&E. 1a SIX we analyze the property of universality im detail, and
in §X we use this property to boost the accuracy of the post-
Newtonian method by means of exact Lorentz boosts. We give con-
cluding remarks in SXI. Explicit formulae for the teasor spherical
harmonics necessary for carrying out a multipole analysis of post-

Newtonian bremsstrahlung are given in the appendix.

e o l—



II. GRAVITATIONAL WAVEFORMS

Gravitational bremsstrahlung is the high velocity, low-
deflection encounter between two massive, unbound objects. Speci-
fically, this means that w._2 > .’r-in' where v_ is their relative
velocity at large separations, m is their total mass and Tain their
mininum separation. To Newtonian order the energy per reduced

-

mass, E, is given by
2 ——
¥, = 2E= “‘(e'l)/rnin 5 (4)

so that the bremsstrahlung assumption is satisfied by systems with
large Orbital eccentricity (e » 1). In usual astrophysical situa-
tions U ~ m/r and vz are related by virial theorems that imply
Ua vz. That is not the case here as U A llr-m <v2 ~ v_z. In
the standard post-Newtonian analysis of h.:.-}. (Epstein and Wagoner
1975) quantities are expanded to the same order in U and \rz. For
the bremsstrahlung process we expand h.:.Jr to one order in vz past
Newtonian order, to Newtonian order in U (as U <v2) and to first

order in 1/e. MWagoner and Will {1976) have derived the formula for

h.;::. in the bremsstrahlung process under these assumptions.

iy d TVNIDINO

We shall summarize the main points of their work and thea pro-
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ceed from their expression for h.:.J. Let r be the vector from =, to
T -

®)» v the relative velocity of n with respect to =), b the impact

parameter (= r_. to lowest order in l/e), and v, the magnitude of

vat r = @ to lowest order in 1l/e lv.z = em/b), then the constants

of the motion E (= energy/u) and J (= angular momentum/u) through

post-Newtonian order and to first order in 1/e are

a1 b

E --—;-\r'.2 *%[l-&ul-)v_‘ . o(c'zv_z) A (5)
3= v, s da-swmn > e o) . ® r

The equations of motion through post-Newtonian order and to first

order in 1l/e in the center-of-mass systea of = and m, are ;

=]
i v_e_.vy + e v_(-sinxfl - cosxs’,)

+ v e [-(1+200/88) siny- (u/8m) sin3y] b

+ ¢ [-(-3tw/smcosy + (wimeosix} « 0(e %) , ()

|
&
n/r = o"v_zmsx . 0(-'21-2) . (8) l "
-1 3 -2_3 14
dr/dt = v sinx - e "v_~(4-w/m)cosx + 0(e v) , &) §d
!,
dx/dt = (v /b)cosx + o(e v m) , (10)
$= e cosx + _e.rsinx - (1)

-

-~

A= -e sing + ¢ cosy , 12 f -
where y parametrizes the orbit by
cosy = b“zw.ztz)-m g (13) 8

siny = v_t(bzw ztz}'uz § it




Let the observer be at rest with respect to the center of mass and

ba at #n observation point specified by the direction,

sl sinfcosd + fysinﬁsino - szcose = (15)

and by R, the distance from the -enter-of-mass.

The coordinate system used throughout the calculation is shown
in Figure 3. ©Note: extreme care should be taken when comparing
bremsstrahlung calculations of different authors as almost every
author employs a different coordinate system.

The formula for h;% to post-Newtonian order in v.z, to

Newtonian order in m/h, and to first order in 1/e is (WW eq. [97])
ij » 2.iv. jy 1 2 2
Rep(®) = (Qw/R) |2v, 767877 [1-(sw/m)von o 5 (1-3/m)v_ " (120, ) )

(e-lv.ZJ (d (isj)y- Zcosxfitj )+ (e"v_’w-)

+

®

[cosy(n-2) (2t F 61 _sinye?#).26 6 ()

- ny(lx(iﬁj)y-cosxfifj)]o(e'lv.‘){2[3.(3_sinzx)ul.l£(1‘j)y

4(a-an)cosxﬁiyéjy—J[locoszx(;/n)}cosxfifj

*

4(2-w/mcosysingt 6177+ 1 (1-6u/m) cosy (276

(1-3sin")2 8 -asime 67 Y)e 3 1-30/m)

x

i 220 il
120 (006" 6 o120 6V 2m Zcosye’s!

4n, (n-#)cosy r88(1g3)Y _35inyeiel)

. (g-g)zwsxuui’aj’-sf‘!jolsanzx!‘#
5 sosinxr“s”’n}] o+ (e)

The variables in equation (16) are to be evaluated at “retarded
time"” t - R. The 1T indicates the transverse-traceless part given

by (Epsteir and Wagoner 1975)

ij 1

N <y PP g, PR,

Pik il Gik e WS an
Combining equations (15), (16) and (17) gives

h, =157 = -2 = 1 (ecos’6)cos20 0™ W)

+3 (tecos’8)sin2e 8" - psinen™ ) , (28)
h = h;";, = h.?.‘i. = cos8[cos2¢ b -%smo(h“-h"]l . (19)
When equations (18) and (19) are evaluated we obtain
h, = (3nn,/RO) (N, o}v-(wn)sins(rl_,.zn,
,,:_\,.3("0’} " (u)
B, = (223,/Rb)cose{N,+ 3, (Ex/m)sind (P, N},
vl . (€29

N,(X) is the Newtonian-order contribution to h (h) * 0Q1),

——— T g——— ——®
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| (P12, [(P ) ] is the post-1/2-order contribution to h (h) ~ (P), = 4«%(3*31-)3,-6,*&8;}-2:!-20(!,*3!:,-2!6,)
4 O(v_), and (PN PN is the post-Newtonian-orde tributi '
| (v) ( )'2[( ), ) po an- T con ion ’“hz'{ ““sl._,ss’ss.ms') il
: to h (h) ™~ O(v_ ). The N's, (Pllzh']'s. and (PN)'s are given by )
i i
1
, -5 sindg(2C -1 «ac,)-zeuzo( =-Se) "
i N, = -(1ecos?8){ -;-coszo(crzcs)osinzo(s,o 5)}- 3sia’ec,, (22) ’ o o i
_ + sin29(2C,+3C,-2¢)-5,) , @7 L
E Ny = -200520(S; +5;)+sin29(C, +2C,) , . (23) 4
! where L 3
1 (Py,M, = 3 (+cos?s) {-c0s34(65+55;+125,) e N e (28)

' * sin3802C,-C;+12C, ) +cos¢ (25,-5,)-sing(2C, -C.) } a . i
i{-{ ? o= Jfee s e g e G = cos™y = {1e(2/)%) .’_z . (29) 8
i o
t * sinze{-cosé(zs +35.)+sing (2C,+3C.)} (24)

= S iR b
S, = simxeos™ 'y = (/) (1o /)Py V2 | (30) |
-1 4

‘ Py /oM, = :053¢(2Cl-C3012Cs)+sin3¢[65105$3¢1255) :

g T=b/v, . (31) L

- cosOllCl-Cs)-siM(-'tSl—Ss) ’ (25) 1
3 The constant term (independent of time) in equation (16) has mot £
' i ™), = -21-(l*coszﬁ){ZCOSM(BCl*SACS—ZACs) b-en included in the expressions above since the quantities of

| 2 N physical interest involve the time-changing aspects of b.:.“i..
: - 4sin.‘.‘¢[(3o2u!n)$1-—k§3d§5}}¢sin e{nclogtzs-w-)cs}

We have chosen to express I::.J‘_ as *
e - - 1 ;
*3Asin"8(1+cos"9){ 5 cosa¢(2C, -C -16C, +40C,) i g %

2 2 S e hep = b, (308 - 08 + b (B0 . job) ; (32

E2 B2
The amplitudes A muﬂl u‘mulu«lul’-ll'tyv

8 g * SIn40(45,+35,+25,+205,)-c0s29(2C, #3C4-2C,) one could have chosen to express h.. as a sum of tensor spherical A
; gg Hh 2“"2“251‘53'55)‘%(6":1'553” harwonics (Wagoner 1976; we use the convention introduced by Thorane ' _'_
o i 1 4 s
=y * 7 Asin 6{cos28(2C; -Cgo10c,) 4
Ef:} : R S T o P Py (33) l .
:3 = . JsinZQ(IS‘QSSOSSs)-'}(6(21*5‘-'3)} o (26) pe :
.,.l;
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The “electric” and "magnetic” tensor spherical harmonics, Tum
B2

and T g AT given in the appendix for L = 2, 3, and 4. The

: 4 . ! E2
Newtonian order terms [.\’ and .\x) contribute only toc A v
(electric quadrupole). The post-1/2 order terms [(Puz’“» and

ek (el S B2 JE2 ’ :
_’.234!1 contribute to both A M and A 300 The post-Newtonian-
E2 B2
s A
™

The waveform h;_’_ has the symmetry properties

1P1

-
order term [(PN) and (PN) ] contridute to A e 30 Pad

4n"

h -y 5:"‘9.¢.t) e th +* (a.:’-t) »
) (I)

3 e (35)
h.;.{_(ﬁ-e,ﬂ-@,-t} - h-:-{-(an.lt) »

so that the waveforms h (t) and h'(t) in one gquadrant completely
specify }_111. over the whole sphere of observation. Figure 1 displays
the waveforas h_and h_ (in units of 2-132/Rb} in one quadrant for
m, > =, (by universality = waveforns in rest frame of ) for
arbitrary mass ratio) and vo,=0and v_ = 0.5. The v_-dependence
of the Newtonian order contribution (hluzlnh) is fa;tond out, so
h, and h for v_ = 0 are just the Newtonian contributions (N, and
cosBN ). The waveforas in Figure 1 are displayed at 45° intervals
in the orbital plane, in a plane tilted 45° out of the orbital

plane and intersecting the orbitzl plane along the y-axis,*and ia

a plane perpendicular to the orbital plane and intersecting the

crbital plane alowg the y-axis (the y-z plane). At different

asbservation directions the character of i‘ (or b.) is either step-
like, pulse-like or a linear cosbination of the two. The shape of
h. {or k) in a given direction is somewhat arbitrary. An observer
in the sare direction using a different basis, §' and §'. will see
different compements h ' and h '. The key point is that the wave-
form h..(t) is & combination of a step-shape and a pulse-shape.

The Newtonian and post-Newtonian contributions to h:_{, deperd
on sines and cosines of evea multiples (0, 2, and 4) of ¢, while
ij
T
2dd multiples (1 and 3) of ¢. In the forward (6 = w/2, § = %/2)

the post-1/2 contribution te h . depends on sines and cosines of
and backward (6 = n/2, ¢ = -%/2) directions the Newtonian and post-
Mewtonian contributions are the same, but the post-1/2 contributiom
changes sign. The post-1/2 comtribution is proportiomnal to da/m,
so if 2 . =, there 1s a front-back asymmetry, i.e., beaming; if
a =R, there is no beaming (rore correctly there is beaming in
both directions due to the post-Newtonian term). The beaming is im
the direction of motion of the lighter body. Im Figure 1 where
éa/a = -1 beaning in the forwand direction (¢ > 0) is apparent; the
axplitude of h_ (or h ) is greater for ¢ (> ) and 8 than the
corresponding emplitude for -9 ( < 0) and 6.
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III. LUMINOSITY dL/dQ

The energy emitted in gravitational waves per unit time per

solid angle is given by

(36)

where the brackets indicate an average over several wavelengths.
As noted earlier, in the bremsstrahlung process the energy is
released in a burst of length v 1 ( = b/v. ), so this averaging
process is not possible. Therefore the formal significance of
dL/d0 is not clear. We will present the formula for dL/dQ with
that caveat.

& ;  § P . i} g .

We can write ahT%,:t in the same form hT% was written in

equations (20) and (21)

St 3
3h /3t = (2m,m,/R) (v /D )N, *3v, o = sin8(P,N),

. 2 re 1 &m
ah /3: = (.z = /R)Lv‘_;’b )cos-h.\s g smB(P,/z,)

81 4OVd TVNIDNIO

2. _»

v ioh) (38)

where dot {') means 3/3(t/1). The Newtonian, post-1/2, and post-

N}, and (P\) respectively, given by

-

Newtonian terms are N, (p 1/

o st cnadets: o860 Youd g
N, = (lecos™8){ Fcos29(S; 65;) san@(Cs-SCS)}’-z-nn BSS. (39)

B T TTIRRmm———————

74 P I T 3 I 13 e i SIS B | 1 S

= mu(cl-scs)-um(ssosss) . (s0)

®yM, =1 (1+cos78) {cos3¢(4C,+33C;-60C,)-5in39(28-35:+605;)

+ cosd ms-:acs}osino(zss-sss) }

. sinzﬁ{coso(ltl-xs)-sino(zsswss)) 1

(’1}2")x = -c0s3$(25;-35,+60S,) -5in3(4C;+33C5-60C,)
# coso(zss-sssj-sm(aci-scs) ’
(FN), =5 (10c0s70){-200520 (35 +9AS ¢~ 10AS,)
. o A
- 43in2¢(BC;-TACg*SAC,) }-sin eusso(zs-sw-)s,]
-2 2.4
+3Asin"8(1ecos 8){- 3 cos4¢(25,-35-805,+280Sy)
- sia“(zcs- Cs~lIOC.,-llccg)ocosZO(stsss-los.’)
. 1
- 251020 (7C4-5C,)- 3 (284+55,)}

--;-mn‘e{-coszo(zss-sssosos,)-zsmc(zcsoms-zsc,)

+ (355550} (43)

(?'x)‘ = --tcosZé[KZs-nCsOSlﬂ.,)vlsinlo(bssﬂuss-lms.,)
- Asinze{-oosao (ZCS-CSO 1 10;:7- uocg)
" —g- £in49 (25~ 35,-805,0260Sy) - 265526 (7C5-5C;)

- shM(ISSOQSs-IOS’)t(ZCS-JCS)} .
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Combining equation (36) for dL/dQ and equations (37) and (38)

for Bh.}'.‘;./at we obtain

2 2
an"
sl S e :"-,2 PO G TR e i
> Sl ——:3—— v L(h' +cos 8N ")+ = s.ne[h"?lfzsj
o
2 - 2
+ cos ON ipw;“,-‘:"-
* cos“B(P. | .X)_“]+IN (FN) (45)

The "N"-terms" are the Newtonian-order contribution; the “N-(?I,,N}-
/2

terms' are the post-1/2-order contribution, and the "[P:;z.\‘_‘:-
terms" and tle "..\-[:':?\}-tems“ comprise the post-Newtonian-order
contribution to dL/dQ.

Much algebraic strength is required to plug expressions (39)-
(44) into equation (45) for 4L/dR; however, it is a simple task to
evaluate equation (45) for dL/dQ numerically. To illustrate the
result, we show in Figure 4 the time evolution of di/adn in the
orbital plane for %y = ®m, (by universality = the pattern seen in
the ceuter-of-velocity frame) and 5 > 2, { = the pattern seen in

the rest frame of m,) and V.= 0.5. InFig. 4(a) (m, = n,), as

1 -

time evolves. the quadrupole pattern present at t = 0 rotates
counterclockwisze (as T does) and the lobes along the direction of
motion of 2y and Ty become dominant so that the nattern becomes
almost dipole-like. n Fig. 4(b) (uz > m,) the lobes in the
direction of m;'s motion (¢ = 90) are enhanced and are pushegd

forward (beaming) at t = 0; as time evolves this pattern zlso

rotates counterclockwise and the lobe along nl's direction of

motion becomes dominant. Note, dL/dR has the symmetry property :n

the orbital plane that dL/dQ (v-¢.t) = dL/dQ (§,-t); so 4L/¢G for

t <0 can be obtained by reflecting dL/dQ for -t > 0 across the
line ¢ = S0. The results for 5,y > ®, were actually computed using
the “trick" described in 5X. Both luminosity patterns are accurate

through © (v_s} )




IV. POmzR
The energy raciated Per unit time (power) in gravitational

waves is given by
P(t) = [ aL/dn 4o . (46)

Once again the same Caveat regarding the physical meaning of this
Quantity applies. Nhen equation (45) is integrated over solid

angle we find

where A(t) is the Newionian contribution, and B(t) and C(t) are

the pPost-Newtonian contridbutions to P(t). Expression B contains
the i {40 x;:-:e.—;s" and C contains the ".\."f?.x)-terzs". There is
RO post-1/2 comtribution to the power. Expressions A, B, and C are

given by

.
A= (3:-/15)cos*x;:-1xcoszx) 3 (48)

- " - 2 297 4
B= (5129/105)cos x{1+1llcos X* == cos )
4

. (49)

C= .(64m, :uSJcasﬂ( {(33-22'_/u)o(298-.‘.‘78;;/::)«:032);
= (441-168u/2) cos " (50)

Evaluating fquation (47) we find

Pty 8/13Y 7 2 :. 2r 4\, 4-'( 1lc 2 g
(t) = (8/15) ‘ml ®y v, /b )cos Xt (I+1lcos x)
| b ]

g
=Y [-(3.‘-23'..-;‘1:}-{.’3?-234‘.;,’::){:03 X

-

(2062-18605/n)cos*y)) . (s1)

o)

20

In Figure S we have plotted our results [good through 0(v_%))
and the results of Peters (1970) for '2’.1 and v_a= 1, .2, .35,
and .5. Kovics and Thorne (1977b) did mot Compute P(t), but had
they done so they would presumably have agreed with Peters (1570)
to high accuracy. The energy carried off in gravitational waves is
Teleased in a burst of width ~ 1 ( = b/v.). Neither Peters nor
Kovics and Thorne were able to supply us with tabular data, so we
Flo**ed our results on figures supplied by Peters. To within the
&ccuracy of our ability to Tepresent our data on his figures (~ a
few percent) our Computations and his are identical wp to = 35
3T v, = .5 our curve falls below his by & 10 percent. Further
comparisons between the Peters-Kovacs and Thorne works and ours

are discussad in §X.

— - B e— - _4=m-mv—-~¢—m




TR Bl £ 1 I . | e e

V. ANTENNA PATTERN d(4E)/dR

A useful and interssting quantity is d(8E)/dR, the angular
distribution of total radiated gravitaticnal wave emergy. It is
easily obtained (in symbols) by iategrating dL/dR (given by egua-

tion [45]) over time,

4 - 5
Rt o PR | - 0 3 s Koo
d(8E)/dQ = (8w) (m"m, v /b ;;Rl--i\m(cmfn)kz

+3% [g Ga/m Ry eR I} (s3)

1/2
2

II”N; dt" contribution

(post-Newtonian order), and R.% is the ",-' Ne (P’-.\')at" contribution

1 r o2 . L
Rl is the "] Ndt" coatributiom; Rz

bution (post-1/2 order); R. is the "[ (P

is the "f Ne (P, ).N)dt" comtri-

(post-Newtonian order). Expressions R,, R,, RS’ and R, are given
A - [ 4
by

2 > > -
R, = (7/128){4cos™8(73+50c0os " 2¢)+(1+cos"3)" (73-5051:2.'e)

. - >
+ 8sin B+32sin“8(l+cos“8)cos2¢} , (54)

R, = (3/256)siné{4cos 8(-1137sin3¢cos2¢+93c0s29sind
b ]
-'.‘STcosSos:nza-.‘sinzéccsa)‘(locos‘alz(lchas!QsinZa
- §3sin2{cos$-787sin3écos2¢+Tcos29sing) L

a
. sin"a(loc.oszﬁj {394sin2¢cosé-420cos2dsing-154sin3é

- « 2sing)+sin B(-108sind)} , (55)

R, = (3/128)sin28{cos28(9416+2450sin>3¢+110sin"¢- 1254sin3esing

>
+ 34cos3gcosg)+ } (lﬂ:cszé) 2(9416-2&50::;'10-110:“20
- lZSdco:S@cosQ-ousia}osiM)vsiala(hcoszﬂ (-ZS-IIZcos:’

+ 2823c0s36c08¢+25155in39sing) +sin 6 (72334sin"¢)}, (56)

2

R, = (7/256)(2cos ™[ (1620+18761/2) - (2424447 2u/m) - 527 28]
+ 2Acos“Bsin“3(210+420cos  2¢-2187cosddcos2d-1662sintgsin2g
y >
+ 107cos23)+(lecos 8) “[(810¢738:/m)- (1212 236p/m)cos” 2¢)

v ] -

2 e dan &, o
* sin"8(lecos™8) [(-1296+500/m)cos2d ] +sin 6(-262+88/n)

.
- A(l‘c:s'&j"sinz:‘-:‘.Cj-.‘i.“-,::'-.‘2;—.'-9.S:os?:-SSI:osJ;Cos!Q
SR Tt 4 2o g5 2,
- 1093.55%.49sin29)+Asin €(l+cus"8)(-675-2108in"2¢

+ 186c0s2¢ 147cosdg)eAsinta(36-129cos2¢) } (57)

Form.la (53) for d(8E)/4Q is accurate through post-Newtonian
order (errors of o[v_’}]. In 5X we show how this accuracy can be
increased to post-3/2 order (errors cf 0{--_. 1) with the use of
a "trick™. Therefore, if one wishes to compute d(SE)/40 the pro-
cedure in 5X should be followed to obtaim the best accuracy.

Figure 2 shows the antemna patterns for v_ = 0 (the v_-
dependence has been factored out; this pattern represents the
Newtonian contribu-tion), “®e 0.5 and n, =m, and v =0.5 and
=, > =, (the pattern for = > B, was computed using the procedure
in § X). For comparisom the antenna pattern for electrozagnetic
bremasstrahlung, v_ =0.5 and 5, > s, (e.g. an e=lectron passing a
heavy nucleus), is also shown in Figure 2. The differeace between

dipole and quadrupole radiation is very appareat. A comparison of

the radiation pattern in the orbital plane to the corvesponding

e SR fa—
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-
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results of Peters (his only availble results are in the orbital

plane, 1970) is presented in 5X.

VI. RADIATED ENERGY SPECTRIM d(SE)/do

The total energy radiated per solid angle can be writtem as

TR
. ga- B GRS o8
If we write
NG R R B X Dt (59)
ah (t)/3t = (7)) [.pfx(u} ST, (60)

then equation (58) can be writtem as

een)/a = @nert) | (w17 o¥ @) @, (si,
0

by the use of Parseval's theorem. Defime ¢ (dimensionless fre-

quency) by ¢ = wt and integrate equation (61) over solid angle.
Then d(8E)/do can be written as

f

e A e G 3 St o P 2 "
d(SE)/do = (4x) {1x =, v/ }{E;osv_ [3["./') EEOES, (82)
EL is the Newtonian contribution to the spectrum; Ez and E, are
=y 2
= ":_.‘.:_ the post-Newtonian contributions give by
_— =
% > USRI i L e e 2 N
<5 E, = (Smla){l.i._s-ics] -3(53-655) .71, _(e3)
o
=3
)
. &
=37

§ (6a/m) E, o8, = {sa:/:cs;{[-(97-43;/.:E3‘.{azs-sssajn)isf-

- - - 2 Al - -
- (IOS-!N;II}CSC.‘,- (S&.b".!u,‘l)cs —{Sll.‘b-..’.OSujl)CsC,

g (Sﬁl.S-”SOujn}E12]o[-(32-183/&)53:-(22’-234HISF§5

{cont'd)
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il - - = i
S (;2.5-19511!&]8357-(182.25-522;.-/;)5520(33.75—45:.;/:)55 - squared terms. These contributions are,
A (552.6—2250;;/n)§.,2]} . (64) = ,2 £2 i
o2 3 7) B
Te gn and En are related to the S and C [eqs. [29], [307" by W e -
> {‘ - (E2,B2) . I i
C,= 2] € cos(ot/1)d(t/7) where | 4 ) represent the various multipole comtributions,
’ 0
(l’&-l) ~ \
= r0/2) { (nl’z Ky(n 1)(°} » (65) ’ Ez 327
l -E, - 15 & {[(!09-96ul::).. -(u 5401:/;\
I La2! i
_:;_1 =2 [ s _sin(or/nd(E/n) +30aC,C, 2524, -90Ac C,)+[(33-22u/m)S v(zzz-zmm333§, ;
5 0
g GRS R
o 1,.(_,,)1 “'”[I‘WZ)I = 3)( s (66) - 15A5 (5,4 207AS -90aS.5.]} ) i
23 un
where K_(0) is the modified Bessel function of the second kind, of -5 {{2(‘ - s) 0{15 ) ! (72) i
' L=2 ;
osrder n, and I(n) is the gamma function.
E2
: i 128%
The energy radiated and its spectrum can also be described by ( \- {( +430C 0207(13 -900C.C.-74
L e = 328 eas0l g &7t .

its sultipole distribution,

.s7soc7 )ouzss «sos,s,qsss -s7ssss,o67sos,1)} . (™)

G Sl - (1 2 AE2 2 2
& 327 LLM I_“‘I at $ LH[ ) lat LH] bae, (67 Figure 6 shows the energy spectrum d(3E)/do for v_ = 0 (the
Newtonian v_-dependence is factored out, so this curve corresponds
or
to the Newtornian contribution only), and v_ = 0.5 for m ==, and
I f 1’0.22 (uH > ]QBZ W] " éw , (68) » mn,. The primary effect of the post-Newtonian contributions
321- LM i e
is to flatten the spectrum near 0 = 0. Figure 7 exhibits the
where a(EZ.Bz)(u) is given by
M multipole structure of the emergy spectrua. The “electric” snlti-
Qe ., . I- 2 ,(E2,B2) ) iwt . P poles dominate the "magnetic" multipoles, and even at v_ = /.5 the
e = i " L = 2 “electric" contribution is the dominant one.

-

The energy spectrum consists of a L = 2, "electric" component, from

the Newtonian and the Newtonian-post-Newtonian cross terms, and al=3

"Electric” and a L = 2, "magnetic" component, both from the post-1/2
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VII. TOTAL ENERGY RADIATED G6E

The total energy released in gravitational radiation can be

computed by integrating the power over time. The result (also

given in WW, egs. [13] and [14]; note the correction of the original

result) jis

" S
e W, W
§E = %-‘-5; —ITE-V. {l ’%Vﬁz ﬂ(uj‘)} » 2 (7‘}
b

where

glu/m) = 4047259 + 3 (w/m)?
= (1/1036){2393-3108u/m} , (75)

and

1.56 < g(u/m) < 2.31 . (76)

Figure 8 shows &E plotted as a function of v_ for ny > m -
Three curves are shown: the Newtonian result, the Newtonian + post-
Newtonian result (equation 39), and the Peters-KT result. For

small v_ all three curves coalesce; at v =0.25 the Newtonian
result begins to deviate significantly ( "~ 10%) from the Peters-KT

curve, and finally at v_ = 0.5 the post-Newtonian result of this

paper begins to deviate significantly { ~ 15%). Neither Kovacs and

Thorne nor Peters wore able to supply us with tabular data. Peters

kindly supplied us with a figure (from Peters 1970) and we plotted

our results on this figure. Note: the energy scale was labeled

too small by a factor of 10 when it appeared in Peters (19'70).
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VII1. THE ZERO FREQUENCY LIMIT

Using a quantum-mechanical technique, Smarr (1977) has
evaluated the zero-frequency limit (ZFL) of the gravitational
bremsstrahlung spectrum for =, > = and arbitrary velocities. In
our post-Newtonian formalisam, this limit may be evaluated by noting
that the quantities that determine the IFL are ¥ (0) and ¥ (0),

(cf. egs. [59] and [60]). These quantities are simply the

differences in the corresponding h's between t = -= and t = +=,
that is,

¥ 0@ =M@ - R0 . )
Combining equations (20)-(31), (61) and (77) we obtain
i 2.22
ﬂ%d&gll - '!i —-'-'—b!—- v _{l-—sinzesinzt) {ﬂI -V 4‘.5 suﬂz
b |

v 23 (%f sin’oR + &1} , os)
where

& = cosgesin’esin’y , &, = sing(2-3sin"0cos9) ,

2

& = le3sin2¢=9sin0sin¢cos 9 ,

“‘ = (3+2u/m) (eoszeoslnzﬂsinzﬂ
- 2(1-3u/a)sin20sin ¢ 1-2sin2Bcos9) . (79)

Integration over solid angle yields

e[eE®))/e0 = s e v pHa B v . (80)



For the case 2, > 2. these results are in complete agreement with
the post-Newtonian limit of Smarr's equations (2.12) and (2.13)
(after reconciling our different ccordinate systems), However,
Smarr goes on to use equation (2.13) to estimate the total
bremsstrahlung energ; by defining a cut-off frequency .

2.-1/2

3.8(1-v.") ,» and writing
iC = o, 4[8E(0))/do . (81)

The factor 3.8 was chosen to fit the low-velocity, Newtonian
results. But for ultrarelativistic velocities, Smarr and Peters-KT
disagre. on the velocity dependence of SE. KT interpret the dis-
agreement as being due to Smarr's incorrect use of an angle-
independent cut-off frequency. Because of beaming effects,
different frequencies dominate the spectrum in different directions;
our frequency spectra shown in Figure 7 illustrate this dependence
of cc on angle (or multipole) even at low velocities. Furthermore,
our equations (74) and (80) may be combined to yield an effective

Jverage cut-off frequency, given by

Coc) = SEalee())sdo)™” = 5800 - 07 2) (82)

This average cut-off frequency, (Uc)' does not agree with the post-
Newtonian limit of Smarr's O, mor does it have an obvious inter-
pretation as the post-Newtonian limit of a relativistic expression

of a simple form envisioned by Smarr.

IX. UNIVERSALITY OF GRAVITATIONAL BREMSSTRAHLUNG
Using the post-linear formalism, Kovics and Thorne (1877)
discovered that the general gravitational bremsstrahlung waveform

could be written as

R =(2/R) (mym,/b) B (83)

where E.g is a function of frame-invariant quantities a2ssociated
with the straight-line unperturbed orbits (such as particle four-
velocities, proper times measured aleng particle world lines, ete.),
but is not a function of the masses m, and 5,y Thus , E;T is a
“"universal" function of orbital parameters. On the other hand, the
post-Ncwtonian form of h:.i. given in equation (16) contains explicit
mass dependence (terms involving &m/m and W/m). This is simply
because we chose to locate the origin of our coordinates at the
center-of-mass of the system. Our post-Newtonian waveform does

in fact obey the universality predicted by KT. To show this, we
have rederived the post-Newtonian equations of motion and the
gravitational wavefornm, using a more general coordinate origin,

in which the center of mass of the System moves according to

-

Xeu(®) = 3 (8a/m + &) xo(2) 84

where _l:o(t] - ng * '-tfy' Since the use of a moving center of
mass will affect only post-Newtonian teras, we can use Newtonian
variasbles to describe it. The origin of this coordinate systea

lies along the line joining the unperturbed positions of the two
bodies. Following KT, it is useful to define the lidpoint. or the

center-of-velocity of the orbit by

A Nt



1 X
Xv = 7@+ 1) Vo= 30y o), (8s)

where L3t ‘Ez] and \_rl(yz) are the position and velocity of ll(lz).
Then in our new coordinate system, the center of velocity moves
according to

o IE 5
}.CV 23 L SY * (86)

If a = 1 (-1), the coordinates are centered on and at rest with
respect to particle 2 (1); if a = 0 the coordinates are centered
on the center-of-velocity; if a = -ém/m, the coordinates are
centered on the center of mass. To keep the resulting formulas
simple we have not considered an arbitrary velocity V, for the
center of mass or an arbitrary constant shift !o in its location.
Universality can be verified even in this more general case. The
use of a moving center of mass (eq. [84]) produces modifications
in the post-Newronian corrections to the equations of motion (WW
eq. [38]) and additional contributions to the waveform given in
WW, eq. (97). After dropping the constant terms from h;%. and

caking use of the relation v'z/e = m/b, we obtain the final result

Rpp(t) = (2n,3,/Rb) [(d“ﬁ””-zcosxf-*ijj
- av_[3cosx(n-8) (2261 _sinye'¥) .26 6 (n-1)
- n (4208 cosxplsly)
o v (3 15-sin?yea’ (3-sin?0 1067 - (a5va) cosysiTedY
-3 [4+(1-a%) cosPy] cosyp 8 « (7+a?) cosysinge (1sd)Y
- % il—hz)cnsxluiyé”-(l-!sinzxjfi?’-lsinx‘?(iﬁj }y]

(cont'd)

. uou’)[m,(n-i)s"c".m”i(‘o’”-h”mxf‘t’
. 45(3-3)«:(«“6’”-3.1::9‘0’)
- (a-$)%cosx (146761 381 e 15sin et e

- soshxf“d”’)l}] ol (7

The only mass dependence in equation (87) is in the overall 3=,
factor and the waveform depends on the velocity of the center of
velocity in the chosen frame (a), hence our result does satisfy
the universality property found by KT. The waveform given in §II
equation (16) is merely eguation (87) evaluated in the center-of-
mass frame, where a = -fm/m and uz = 1-4p/m.

Although equation (87) allows one to detemmine h:.‘; in any
frame, the two-body system does select three “preferred” frames,
the rest-frame of one body (a = :1), the center-of-velocity frame
(ax = 0) and the center-of-mass frame (a = -&a/m) in which the
gravitational bremsstrahlung has special characteristics. These
characteristics are summarized in Table 1. One conclusion that
can be drawn from the pranty‘ of universality is that Peters’
formulae, while derived assuming ny > = (test-body perturbations
of Schwarzschild), are actually valid for arbitrary mass ratios,
with the observer in the rest frame of one body. The numerical
comparison that KT made with Peters eaployed KT's waveforms eval-
uated in the rest-frame of ome body. Our numerical comparison with
KT also used rest-frame formulae and universality makes our
agreement with their results completely general.

u




X. BOOST

The universality discussed in the previous section provides a
means of improving the accuracy of the post-Newtonian formalism,
from errors of G(q.s) to errurs of o(v_f]. Because the waveform
ﬂ;% depends only on the velocity of the coordinate system relative
to the bodies, its form in different frames may be obtained by
Lorentz transfo! sations (because we work to first orxder in m/R),
plus a possible additionzl gauge transformation to preserve the TT
cauge. In the center-of-velocity frame {a = 0), h;; has complete
front-back symmetry, thus contains no terms of odd order in v_,
and so the post-Newtonian method makes errors of O[vﬂ‘) instead of
O(vms}. Thereiore, an exact Lorent: boost to a frame of arbitrary
a will yield h;% (modulo gauge transformations) correct through
Otv_s). for arbitrary mass ratios. We have tested this improved
accuracy numerically by a comparison with the Peters-KT results.
However, because of the possible gauge complications involving
hi%. we have performed a boost only on the luminosity dL/dQ and the
antenna pattern d(8E)/dQ (both are gauge invariant quantities).
Consider the bremsstrahlung process in the center-of-velocity frame

and perform a boost along the orbital direction with velocity

3 Bvﬂsy, then

§E' = ySE(l-u*n), dqr = Y-z(l-g-g)-z aQ ,

dt' =y (euen)t ae (88)

-1/2

where n is the direction to the observer, and v = (l-uzj In

the new frase, the relative velocity at infinite separation v '

has the form

v e L0rye8v ) (-Bv vy HetvpeBv ) (esv v N,
- vy la-1eh 9t . (s9)

To the necessary order O(v.‘). we may write in place of equation
(89)

v - v_'(ltﬁzv_'z) . (50)

Then we find that

avse], - v'a-avp)’ aveal, . (=1)
3 3

d(SE")/en*] , = ¥ (1-Bv 4(8E) /40 . (92

/8], , = Y (-8 )" d(ee)/anl, )

where v_ and v_' are related by equation (90) and dL/dQ and
4(4E)/dQ are to be evaluated in the center-of-velocity frame.

Since dL/dR and 4(6£)/dA in the center-of-velocity frame (obtained
from equations [45) and [53] with m = m,) are accurate through
O(V.?). the "doppler-shift expressions" (equations [91] and [92])
generate the correct O(vﬂs) tems in the boosted patterns dL'/dqa’
and d(8E')/dQ'. By boesting to the rest frame of particle 2,

g =- %-, we can compare the boosted antenna patterns with those
presented graphically by Peters (1970), and with the standard rest-
frame or "m, - =" post-Newtonian patterns evaluated from equations
(53) with éa/m = -1 and wm = 0. Th-~t comparison for patterns in
the orbital plane, and for velocities up to v_ = 0.5, is shown in
Figure 9, and demonstrates the improved agrecment with the exact
results of Peters-Kovics and Thorne. The luminosity showm in
Figure 4(b) was zlso calculated using this method. -




Finally, one further verification of the universality of
gravitational bremsstrahlung may be made by integrating equation

(92) over solid angle, to obtain (dropping primes)

3.2
m., mn
7 1
se = (3 ————‘bsz v, eiv i@, (o3)
where
404 2

The quantity &E is the total energy radiated as seen in a frame
moving at velocity u = B'-ey with respect to the center-of-velocity
frame. In the center-of-mass frame, B = %Wl. 32 --i—(l-&uln) and

we recover equations (74) and (75).

XI. CONCLUDING REMARKS

We have presented a detailed analysis of gravitational
bremsstrahlung at the post-Newtonian level, and have compared our
results with those obtained using more accurate, although more
complicated, techniques. In making these comparisons, we have
found as 2 rule that the post-Newtonian method alone is most relia-
ble when dealing with equal masses in the center-of-mass frazme
(or equivalently when working with arbitrary masses in the center-
of-velocity frame) and least reliable when desaling with test r
masses {nz > -l) in the center-of-mass frame (or with arbitrary
masses in either rest frame). (In this sense, the numerical com-
parisons that we discussed in 5II represent a worst case for errors.)
There are essentially three ieasons for this (i) for equali masses
or in the center-of-velocity frame the waveforms are automatically
pore accurate, with errors of O(v_’) instead of 0(v_’), (ii) the |
velocities of the individual particles in the center-of-velocity
frame are each one half their relative velocity v_, so for a given
v_ the system is mot as mrelatiyistic” as might have been expected,
and (iii) the absence of strong beaming in the center-of-velocity
frame is well suit2d to the post-Newtonian method which contains
only a limited number of multipoles (L = 4), and so has difficulty
"mocking up" strongly beamed radiation. For this reasonm, the
property of universality is crucial to obtaining the best accuracy,
by permitting exact Lorentz boosts of center-of-velocity formulae,

and yielding results automatically accurate through Olv_sj. We

have atterpted to exploit this feature wherever possible.
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APPENDIY
Th'clmﬂc"ﬂﬁmch“tm*tu]“um
given by (Wagoner 197¢)

T = Ay (88-38)-18 (86438) (A1)
(e) 88-88)- £ae2d
Tie = By (8-39)-ia  (33:35) (x2)

The functions Au' and .ul are

_&'l).“ (A3)
A = 261 =5 o |
By = - L;ﬁ,(,’,-uu} s (A%)

where € = [2L(Le1) (L-1)(L02)) V2 g Y, ®Te scalar spherical
harmonics (Jackson 1962). Recently Thorne (1977) has proposed a
new generalized notation for tensor spherical harmonics. We shall
adopt his notation. Thorne's tensor spherical harmonics, T2 and
Iﬁ are related to Wagonmer's by

2.

(=)
e ™ Lo

(e)
. T T - (4s)
Froa the identity; ¥, = (-13'9;". it follows that

7(52 B2) - (’”l !&R.IZ) L

(as)
~L-M

So that it is sufficient to give the tenscr spherical harmonics
oaly for M> 0. For L = 2 they are

r§§ = (5/128m) Y3 (10c0s %) (B6-83) 210050 (83+38) }e 2% | (a)

e (/320 /231080058 (88-35) e istne (8538 e 10 _ - (A8)

R o e R ——— -

.-




ﬁg = (]5’“!) uz{sinzﬂ (ﬁ"“) } »
2 . (5/128m) Y3 (21cos8 (88-33) - (1+cos8) (3+83) }e23? ,

T = (5/32m) /{15100 (86-89)-sintcose (3+50) e’

?.'Bgo o -(15/647) Y/ 25in%6(89+40) .

For L = 3 they are

r§§ = -(21/2567) Y 25in0{ (1+cos8) (65-39)

+ 2icosd (88+88))e31? |

[ ]

1/2

= (7/1287) Y %{cost (3cos6-1) (85-39)

t e
e m

+ 2i (2:0529— 1) (%*%J }02“ »

E2

152 = (35/256m) "/ 2sind{ (3cos’e-1) (88-33)

. 2icos&{§a¢$5)}ei‘ k

b A A~
T§§ = (105/64m) Y 2cos0sin®e(88-39) ,

- -(21/2567) 1/ 25in8{2i cos8 (65-8%)

- (1+cos’8) (Bo+38))e1® |

2 o (212871 2(21 (2c0s%0-1) (53-9)

- cosﬂ{Scosze-l)(aa*sa) }02“ "

13; o (35/256m) 1/ 254n0{21cos6 (55-69)

ad ¥00d 10
NIDIHO

g1 4ovd TV

o (Scosze-l)(aa'aa)h“ .

Ig; o -(105/647) /2 cossin’a (8a+¢8) . .

ATV

Finally, for L = 4 they are

(A9)
(a10)
(a11)

(A12)

(A13)

(A14)

(A15)

(a18)

(a17)

(A18)

(A19)

(a20)

- (63/5127) Y 25in%8{ (10cos8) (68-33)
+ Zicoso(83+36)Je*1? |
oo - (63/2567) Y 25in8{2c05"0 (86-99)

+ 1(3cos 6-1) (58+08))e>3® |

£

(9/1287) 13 { (7cos*e-6c0s7801) (88-83)

+ icosd(Tcos20-5) (89+98)}e2? |

1/2

T = (9/256m) sind{2cos8(7cos 26-4) (86-4¢)

[ ]

o i(Tcos?e-1) (Ba+e8))ei? ,
= - (45/256%) /2 (7cos*0-8cos?0e1) (65-88)
22 o (6375121 %sin%e{2icos8 (88-33)

- (1+cos’8) (Be+38)}e'i? ,

Tos = -(63/256m) " 2sine{i (3c0s%8-1) (85-34)
- 2cos 8(Ba+48) }e>i? |

The = (9/128m) " {icost (7cos’s-5) (88448

- (7cos*6-6cos e+1) (89-68))e23® |
2 . (97256m) 2sindli(7cos’s-1) (36-33)

- 2cos8(7cos 6-4) (B3+38))e'?

B2 o (@s/256m) /% (7c0se-8cos 641 (3335) .

(a21)

(A23)

(A24)

(A25)

(a27)

(A28)




TABLE 1

CHARACTERISTICS OF GRAVITATIONAL BREMSSTRAHLUNG

IN SPECIAL FRAMES

Characteristics of

value of o  Frame Post-Newtonian "?::;
Bremsstrahlung S
«1 (-1) Rest Frame Results universal (i.e. Peters (1970)

-fm/m

of :::(ml)

Center-of-
Velocity
Frame

Center-of-
Mass Frame

h independent of m, and
m ). Front-back asymmetry
2 )

(beaming). Identical
to results in CM frame if
=y » (€) m, -

Results universal (i.e.
h independent of =y and

:2). No front-back
asymmetry. NoO O(v.),
O(v, ) terms - results
correct to O(v-‘). Saze
as results in (M frame if
B, = By
Waveform h depends on =
and m,. 1f m =2y,
a=0. If nzb- <) =
a=+1 (-1).

Kovdcs and
Thorne (1977b)
Smarr (1977)

Kovacs and
Thorne
(1577b)

Fig. 2.

Fig. 3.

FIGURE CAPTICSS

Fig. 1. The waveforns b (%) and B (t) displayed in three i.

observation planes (the orbital piane, a plane tilted 25°
out of the orbital plane, and a plane nommal to the orbital
plane) at 45° intervals for =, >u,. The graphs labeled
o= 45°, ¢ = *45° ave in the plane tilted 45° and are halfway

between ¢ = 0 and & = +90. The orbit is shown for reference.

Each scale mark represents (hiszlnh] on the h-axis and 5T on

the t-axis. The solid surves are for v, = 0.5 and the broken

curves v, = 0. By universality, these are also the wavefomms

seen in the rest fraze of n, for arbitrary mass ratio.

Antenna patterns, d(sE) /40 (momlized}-. the smallest

lobes lie in the orbital plane and the arrow represents the

direction of m,'s velocity. In (a) the Newtonian pattern is *
pictured ™ 0). In (b) the antenna patterr forv, * 0.5

sminthoﬂlfrﬂforn,asl(ﬁpltteﬂ

seen in the center-of-velocity frame for arbitrary mass ratie)
is shown. Note the front-back symsetry and broadening of the
lobes relative to {a). pictured in (c) is the pattern for

v, " 0.5 seed in the CM frame for n2>-1 ( = pattern seen in
the rest frame of 2 for arbitrary mass rctio). Note the
strong besming in the direction of l"l travel. For coamparison,
the antenna pattern from electrozagnetic bremsstrahlung is
shown in (d) for -1'-’-1 and v = 0.5 in the rest frame of

my (-2 is indicated by the dot).

The coordinate system used throughout this paper. The

xy-plane is the orbital plane, 0 is the observation direction,

m§m3mmt Lasis vestoTs.



2. 2. 2.4

Fig. 4. The luminosity, (dl.ldﬂ)f[-l a v /b ]. shown at

t = 0.0 (solid), 0.25 1 (broken), and 0.50 T (dotted) for

v, = 0.5. The patterns for t = -0.25 T and t =-0.50 T can be
obtairned by reflecting the patterns for t = 0.25 T and

t = 0.50 1 across the verrical axis. In (a) the luminosity
is shown in the CM frame with 2, =8, ( = luminosity seen in
the center-of-velocity frame for arbitrary mass ratio). In
(b) the luminosity is shown in the CM frame with "y >nl

{ = lunminosity seen in the rest frame of my for arbitrary mass
ratio). The curves drawn in (b) were obtained using the
"trick" described in §X.

S. The power in units of nlznzsz‘ plotted as a function of
t/T in the OM frame for , > 2y ( = power seen in the rest
frame of . for arbitrary mass ratio) and v, =0.1, 0.2, 0.35,

and 0.5. The curves are the post-Newtonian results; the Sym-

bols represent Peters' results. Up to v, = 0.35 the

plotted in umits d-lznzzv‘lb’ as a function of o ( = w1).
Note that each multipole has a different frequency dependence.
8. The total energy radiated i units of =, ’s, /b as a
function of v for =, )-‘. The Newtonian results begin to
deviate from Peters-Kovacs and Thorne at v_ = 0.25 and our
post-Newtonian results (equation [74]) begia to deviate at

v, = 0.5. The Newtonian and post-Newtonian results were
plotted on a figure supplied to us by Peters.

9. The antenna p‘ttera.[d{ﬂE)/dﬂ]/[IlzlzvabS], in the
orbital plare with 5, >I1_Md v, =0.2 (a), v, = 0.35 (b),
and v_ = 0.5 (c). The dotted curves represent Peters' results.
The broken cruves are the post-Newtonian results from equation
(S3) and are accurate through O(v_’)j. The solid curves are
the results obtained by the boost described in §X and are
accurate through 0('.3). The boost significantly improves
the accuracy.

differences are too small to show graphically. We have plotted
our results on a figure supplied by Peters,
Fig. 6. The energy spectrum, d(8E)/do, plotted in units of

alzlzzv-/bs as a function of dimensionless frequency o ( = wr).

o

! The solid curve represents the Newtonian result (v_ ™ 0). The gg
‘ broken and dotted curves represent our post-Newtonian results =
i
0 for v_ = 0.5 and for ", > 2, and &, = =, Tespectively. The F

post-Newtonian contributions tend to flatten the spectrum near 8%
4 .
4! o=0 EH
E
& Fig. 7. The multipole structure of the energy spectrum E

for v_ = 0.5 and ", > - Each multipole comtribution is

s |

=5
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