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GRAVITATION

I. INTRODUCTION

During the period June 6 to August 19, 1977, investigations were conducted
by the author in the Cryogenic Physics DBranch of the Space Physices Division of
the Space Sciences Laboratory, Marshall Space Flight Center. This branch is
involved in preparing the Stanford gyroscope experiment to detect the gravita-
tional induction fields generated by rotating bodies [1]. These investigations
were, therefore, in the general area of consideration of gravitational fields
predicted by various currently viable, or proposed, theorics of gravitation,

The question of the existence of black holes was treated with the aid of
the symbolic manipulation language MACSYMA in collaboration with Dr, Richard
Pavelle of Logicon Inc,, a consultant to Hanscomb Fields's Air Foree Cambridge
; Research Laboratories and to the Redstone Arsenal, Use of the term "black
1 hole' will be reserved for later discussion, but trapped-surfaces [2], photon
capture orbits, and photon capture impact parameters [3] were indeed found to
exist in the gravitation theories of Einstein (3], Brans-Dicke (4], Rosen [5],
Lightman~Lee [6], and Yang (7). These properties strongly inply the existence
of black holes in any gravitation theory with a Riemannian geometry,

A two-tensor theory of Yilmaz [8-10] with scalar field was completely
and exhaustively studied, It wes determined to be inconsistent, noncovariant,
and completely devoid of gravitationai effects. An earlier argument of
! Kraichnan [11] indicates that the result should be true for a wide class of
: gravitation theorics,

Anisotropic cosmological models were investigated in Rosen's theory
[12,13] of gravitation, It was found that the simple cosmologies become iso=-
tropic much more rapidly than in Einstein's theory, The nine Bianchi classifica-
tions have been extended to Rosen's theory for computations in the spatially
homogencous models.,

Inhomogencous cosmological models were investigated in the Einstein
theory, The approach was to generalize spatially homogeneous models by
raising the dimension of the invariance group by one parameter in the reverse
of Inonu-Wigner's contraction [14|. Three cases are considered:

(8§}
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a. The introduction of a peculiar velocity into self-similar cosmologies
[15] to see what the major changes in observations would be (the generalization
of Bianchi=Type VIIT to the inhomogeneous case).

h. The generalization of Class 111 locally rotationally symmetric
universes [16] to inhomogencous spaces after a method suggested by Wainwright
[17).

c¢. The extension of spatially homogeneous universes to inhomogeneous
ones by adding an inhomogencous nonsynchronous term to the metrie,

The Bianchi groups operate on observer rest spaces which slice through the
inhomogeneous space sections, This is a continuation of earlier work by the
anthor [18] and is a view of cosmologies which has been discussed in a
different form by Spero and Baierlein [19].,

A solution has been found for cosmological models in Yang's theory of
gravitation which is not an Einstein space, The observational consequences are
straightforward to investigate since the metrie is similar to that of the steady-
state spatially homogencous cosmological models,

The Newman=Penrose formalism [20] for Riemannian geometries allows
one to investigate space times characterized by the presence or absence of one
property or another, The use of the formalism to find solutions to any viable
gravitation theory is being investigated, The relevant property is that the
gravitational field propagate on twisting null rays. Thus, it is hoped that the
means may be found for obtaining solutions appropriate to the exterior of a
rotating star and to universes containing circularly polarized gravitational waves,
Progress in these arcas is outlined in this report,

1. EXISTENCE OF BLACK HOLES IN
GRAVITATION THEORIES

Black holes have been an aceepted feature of general relativity for
several years, but only within the last 10 years have they become of widespread
interest in gravitation and astrophysies [3]. Because they contain a singularity
of zero volume and inlinite matter density and, therefore, represent regions
from which light cannot escape, they are a pathology of the theory, Indeed,
many relativists have come to regard their existence as an indieation of a flaw
in general relativity, They believe that black holes have become a symptom of
an intrinsic disease in general relativity itself for which there is no cure,
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This situation has led, in some cases, to attempts to find alternative
theories of gravity which will not predict the existence of black holes [5,6), It
bas also sparked the hope that a proper marriage of general relativity with
quantum field theory would prevent black-hole formation in an evaporative
mass-loss process [21]. The mass-loss rate would conceivably match the
collapse rate in such a way as to avoid the formation of the black hole,

This section will show that the same situation exists in all presently
knowa viable gravitation theories, The eriteria for the existence of black holes
will be presented and then applicd to these gravity theories, Examination of
the two=dimensional collapse scenario with sealar quantum field theory leads
finally to the conclusion that black=hole evaporation will be predieted by all
these theories, implying no distinction between them and general relativity,

Let a gravitation theory define matter trajectories by the geodesic
equation

b

'allb' -

where Il indicates covariant differentiation and " is tangent to the trajectory,
Then a congruence of trajectories will obey the geodesic deviation equation

relating the connecting vector n" to the Riemann tensor Rabcd:

a e f da b e d
(“ ne' )ur' G o

Let these trajectories be embedded in a Riemannian manifold on which the

Bianchi identities hold, Then the effects of the deviation equation will be
contained in the Newman-Penrose equations [20], These equations connect the
evolution of the geometrical spin coefficients to each other., The spin coefficients,
in turn, contain the information about the physical behavior of the matter
trajectories' congruences,

The spin coefficient of interest is p, the complex expansion cf the
congruence, describing the expansion

ORIGINAL PAGE I+
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andl the rotation

(ali b \1/2
w = (’(aum' )

of the rays (the bracket, [ |, denotes antisymmaetrization)
p= 0+

Lot 'a he tangent to an outgoing null peodesic and n tancant to an incoing il

geodesic, Let the complex vector 1-\_l span the eolostinl sphore

e+ 10
=
™ 2 g °

A
where 32 and e, are unit vectors and the eclestial sphere is treated as an

almost-complex two=dimensional manifold, The set of veetors forms o complex
null tetrad from which the metrice £, 18 composed:

- -2m :
o il s | Nt s T LML
In = nql = =m n'1: = =-mm = =]

(all other inner products vanish; the parenthesis, ( ), denotes symmetrization
and the overbar is complex conjugate), Then




p = l l'ﬂaﬁ‘lb »
alb

and the Nowman=Penrose equation is

p ana = —1)2 "ﬂ.&-nn ’a'h H

o is the shear:

o i . m
bl I ¢

For real p, this indicates that dn/ds ~ -02 - ﬂ'2 =R where s is proper time

along the geodesic, implying that once 0 < 0 it is always so, For a statie
metrie, the region wherein 9 < 0 is bounded by a "trapped surface' within
i which all geodesic congruences converge to a singularity of zero volume,

infinite matter density, and infinite tidal forees (2], This is a black hole,

We consider the statie spherically symmetric metrics in isotropic form

an = -02¢dt2 +o ((lli: + Rz dﬂ2+ Rz uinzﬂdq)z) (1)
where

¢ = o(R)
and

v = Y(R) .

2




We use the isotropie form since mog! closed=form solutions for various gravity
theories are given the i=otvopie form, We translote to a luminosity (retarded-
tinie) coordinate via

o’rlu = c’dt - o'!'dn

to find

2 2 (1

ds = =¢ duz - 20“4

dudR + 02 R2d92 , (2)
where

ds;l2 = dnz + sln20d¢2 .
From the preceding discussion we find

p= (1+4'R)/R (3)

where §'= 0¢/0R . Since there is no rotation, p=0 and 0 <0 if 1+ {y'R <0,
where 0= 0 at the trapped-surface radius Rt ¢ This is elearly so if ¢ can be

represented as an inverse power series in R,

n
h = Zan(lm) »

for integer n and non-pegative constants nn.

Examining geodesies, we must see if particles in orbit or incident from
a great distance are captured by the hole, because a black hole must consume
anything that comes too close, For metric (1) the geodesie equations with
motion in the equatorial plane give

6
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and

two constants of the motion defining the impact parameter A= E/h, We can
then arrive at the equation

2.1/2

522 R% mY)

dr/de = +(R/A) (RZ2U?) 2524 (A (4)

whore ¢ = 0,=1 for null and timelike 'a' Beeause material particles usually

have a more difficult time of it than the photons, we need only look at ¢ = 0,
Then,

2 2(4-0) _,2/1/2 .

drR/de - +(R/A) [Re A7) ; (5)

Orhits are stable down to a eritical radius n gound by solving dR/dé - 0,

The capture impact parameter is A , found fmm d/dR(dR/d®) = 0, For Rc
and A this gives .

14 R('+4) | = O (%)
c

and

Ac = Rc exp{'.!ic,‘h(ltn) - 4'-(llﬂ)l} & (7)

15
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The results ave given in Table 1, The results for the Reissner-Nordstrom

metrie in Einstein's theory are presented first, Listed across the table are the
o I

theory designations e""". c“". "t' and rt. the trapped=-surface radii in isotropic

and schwarzschild coordinates

2 f

ds” = -edt2+ﬂ“dr2+rd92

the two capture radil Rc (isotropie) and 7 (Schwarzehild), and the
coordinate =independent Ac .

This obviously disproves the previous elaims that black holes do not exist
in Rosen's theory [ 5] or are not approachable by a geodesie [22] in the Lightman=
Lee theory [G]. Black holes are, indeed, found to exist in the Kilmister=Yang
theory [7]. In another solution for that theory [ 23],

o™ = o = (1-mm)?
and
p= R/AR=-M) ,

which is an impenetrable barricr at R= M or r= 0, The Brans-Dicke (1]
black-hole surface has imaginary radius unless < 0, which is a viable form
of the theory [24], This disproves all prior claims that Brans-Dicke black holes
are like those of general relativity, ""Schwarzschild” [20], Clearly, all these
theories predict static black holes, whether or not their proponents have

claimed so,

For black=hole evaporation we follow the discussions of Davies, Fulling,
and Unruh [26]. We choose the scalar field in a two=dimensional space time
(of signature zero) because the quantum field theory is solvable, The metric of
such a space time may always be written in a conformally flat form
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ds® = C(u,v) dudv ,
where

u = t-fod'-'pdﬂ i

V= t+ fod”dn .
and
C(u|V) = 829‘ .

Using a geodesic point=splitting renormalization procedure, the proponents find
a satisfactory form for the stress-energy tensor. There are several coordinate /
regularization=dependent parts of

de 2
T, =g bR dc/-’lHrrt gnh/Hwa +0

ab a ab

which represent vacuum polarization contributions, where Rdcdc is the
curvature and ¢ is the point-gplitting parameter, The first two terms may be

regarded as hydrodynamic and cosmological constant contributions;

I, -1/2
1232 Cl/.. b

= =( l2‘rr)-1 C )/ax"ax

0. (

is the vacuum=-polarization/sealar partiele-creation contribution,

The appearance of radiation depends on the boundary conditions imposed
on the coordinate system at infinity [27,28], For the collapse situation, this
means that the surface at asymptotically flat infinity must accelerate from the
surface of a thin shell of matter which provides the mass M in the metrie

10




C(u,v) (equivalent to the shell accelerating away from that surface as it
collapses), This implies a coordinate transformation

u = Kin(A =)

where K and A are constants depending on the mass and the particular
collapse dynamics, We then use

0

ds” = C(u,v)didy

inthe T & computation, Pecause such boundary conditions may be found for

any time-=like 2-surfacc [26], the collapse T can be determined by the same

ab
formula for all the gravity theorics previously discussed, We have computed

] and found a constant Hawking flux term of the form -~ 1/I\'2 for all the

ab
maotries discussed, It extraets mass from the black hole as particles are
radiated to infinity [27]. Thus, black=hole evaporation is very likely a common
foature of all gravitation theories.

This establishes that black holes are a ncrmal, not pathological, feature
of a viable gravitation theory, Also, when gravity, thermodynamics, and
quantum field theory are properly married (menage a trois?), static black
holes evaporate, radiating particles, Such a process may even prevent their
formation [21], Thus, it is useless to use the existence and evaporation of
black holes as a test to determine the relative viability of gravitation theorics,

I11. NONVIABILITY OF THE TWO-TENSOR PLUS SCALAR
GRAVITY THEORY OF YILMAZ

A number of scealar=tensor [ 29| and two=tensor [30,31] gravitation
theories are currently viable, In certain of the two=tensor theories, the trace
of one of the tensors plays the role of a sealar field, Alternatively, one could
treat the sealar field of a scalar=tensor theory as the trace of a sccond tensor
and generalize the theory to include the second tensor, One such theory [ 5]
and its generalizations [0, 10] are analyzed in this section, The results of such

ORIGINAL PAGE IS
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generalizations are shown to pose severe problems of consistency, uniqueness,
covariance, and coupling of gravitational fields to matter so that gravitational
effects exist, Thus, unfortunately, we find that this theory and its generaliza-
tions are not viable.

The 195 theory [8] leads to the static metric

2 2M/r
e

s = -2M/r dt2

(h‘2+ r2d¢2) -e

It is essentially a scalar-tensor theory, The results satisfy the three classical
tests, Page and Tupper corrected a Langrangian error for the theory and
showed that the corrected theory possesses non-unique field equations and that
the static metric given previously is not the unique spherically symmetric static
solution, A similar theory of Papapetrou has been shown nonviable, Ni has
shown that it also is in violent conflict with a few experiments, including the
perihelion shift, The subsequent development of the theory to a two=tensor
theory has failed to correct these problems,

The second tensor ha generated from the scalar as its trace is brought

b
into the theory [9,10] via a local Lorentz invariance argument and related to
the stress energy tensor via the equation

lla
Bala T

where || is the covariant derivative. The metric &, is then found from the
relation

. Sl
dg.‘lh o5 (gnhdh-kaidhh) .

A kind of Einstein field equation is then given by

Ga i A8 (Tah 5 tnh/.i ")

12
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e A T — =

where t is the energy tensor for the gravitational field hrl These terms

ab b’
are as given in the references which report the development of the theory [9,10],
A gauge condition

a alb
h bla hb -9
leads to
¢ .d 1 cdle 1 le
t:lb 58 hdlnhclb "2 l'{nbhcdleh *h l:lhlb T2 gahhlch )'

The geodesic equations are imposed to describe matter trajectories, as is usual
in attempts to formulate a gravitation theory embedded in a Reimannian mani-
fold, One finds

i k
du, /ds = uu u, = dx /ds g
j IJ kl i e j

The metric E is related to the Lorentz metric h and sccond tensor h by
E=n- expl2(h 1- 23)] .
The metric E to third order in h is then

4 3 2 a { b
r = - - ‘. 2 - -
85 " 3 (h nyj = 6h"h, + 12hhh %hl_lh"hhj) +n + 2(hn, - 2h )

soln®s - B+ 00D :
i ij i aj
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OF POOR QUALITY

13




SR s A e

Questions of uniqueness, self-consistency, and actual predicted effects
are examined in this theory, First, the field equations involving the Einstein
tensor differ in third order from the previously cited expansion. In fact, we
find on substituting it into the field equation that the field equations do not imply
the relation between g. n, and h given previously to third order, Therefore,
the theory's consistency ends there,

Second, in looking for useful approximations, attempts have been made
to iterate the ficld equation to third and higher order to prove integrability of
the field equation. For parameter A << 1, we substitute

2 3 4
gu = nij + Ap“+ A kij + A Jij +O())

into the field equations and find

S 5 b
gu = n”(l +2h+ 2h") 1hij r-ihhu+ﬁmabhiﬂhj

up to second order consistently for pij and ktj . But we also find

4 2 o - 4 b
J = -(h nj - Gh hij + 1~hh:lhnj "'.{hlahj dh:lb) d

ij 3

showing that the equations arc not integrable to third order, Thus, the equations
can only be consistent and integrable to second order in h ab* However, one
ean go further by rewriting the field equations

W T X +0(h) = 0

-2t =
ij ijll a ij ijla

a :lh a b b .a
T R “( (ilj) * (hh(ilj))+h bl (i) =P (ihjllh) ’

—
—
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To verify, the gauge conditions must be used frequently, E does not

a

ijla
vanish; therefore, the ficld equations are themselves inconsistent to second
order,

Considering tn and using the gauge conditions, we find a large portion

b
of tab vanishes., Therefore, it is not the energy density of a spin-two field and

i
tJ i # 0 ; consequently, Noether's theory is violated, At this stage it is clear

that this is at best second order theory, Continuing, we use the h b field
equation to write the geodesies as -,

2 J B-. -1] j kil a
pdui/da = p{i kI uu” = (4m) Ii kl hj I a

where p is the matter density, The Christoffel symbol to first order is

a
5 3

Insertion of this into the geodesic equation, partial integration, and use of the
gauge conditions consistently leaves

Iijklujuktrﬂ ’

and the equation of motion is

la

aaP |a a

d2xi/d52 ey

Thus, there are no gravitational effects in the theory to all orders, All motion
is simple inertial motion in the theory; therefore, there are no gravitational
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effects, We conclude that one must be very careful in generalizing a scalar
theory to a tensor theory, In particular, gauge conditions must be kept an
auxiliary (not essential) part of the theory,

IV. HOMOGENEOUS ANISOTROPIC COSMOLOG I CAL MODEL
IN ROSEN'S GRAVITATION THEORY

Rosen's theory is a two-metric theory with prior geometry [5). We shall
consider one of the metrics to be the Lorentz metric y =g T The field
equations in Rosen's theory for g > are af “af

M

= & = =Rk
Nul' ZI\gul' r;:v
vhere
1 [ vA 3
Nuv S (g guhlnr)l
and
1/2
(=) .

The slash (1) indicates the covariant derivative with respect to Vo’ and T 5
is the stress density tensor, :

Since g“u is a Riemannian metric, we adopt the Bianchi classification

scheme to the homogencous three spaces [32]. We also wish to express the
field equations in terms of the irreducible parts of the stress tensor which
possess invariant physieal signit’ic 'mco Hence, one desires to have equations

for Too' T i ::, and T -3 (the Latin indices running 1-3).

jrk

16



If the metric is expressed in terms of a basis tetrad

then the affine connection coefficients become

p o ol AB
Cor " "app %, & E
and we have
WV M
Bvla Iunf e ?

Then Rosen's tensor Nuv may be constructed in terms of the affine connection,

v 1 vA A = 1 A M v A
NP + -4l ¢ SR r +
U 2“ (run’ln IMI(y ) 2 ( ey rM )( Aoy rva-)'

and the field equations written in terms of the connection coefficients implied by
a particular set of symmetries chosen for the spacetime, The Bianchi classi-
fications may then be used,

A suitable metric would be given by the line element

R | e IR S [ W R o
ds = e dt -e eijEAEde dx ’

where Q, o, and BU are functions of the time. The metric is similar to a

form widely used now in Einstein's theory [ 32].
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The Bianchi case

will now be considered, The dynamical field equations are then

3 .2 . . i
-2 -6 28,8, = -8T

. . . l
”13+8&ﬂ11+4(ﬂu 3 i]ﬂklﬂkl) ooy B

where =«

iy are the trace-free stresses, For a diagonal ﬁ“ , the fluid shear is
Ui’ = ﬂil .

The shear field equation
T, = =AC0 "

ij ij

where A= viscosity is then
do  /dt+ 4 |0, o --1-6 02 = -87Ao, =8ao
ik kj ij i

1j

and for small shear (02 << 1) we find

18
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~8mA(t=t ) =8(a=o )
0 o
o = |[const,) e e .

1

Anisotropy damping is much more rapid in Rosen's thcory than in Einstein's
theory,

For a dust source, the hydrodynamic conservation law gives the energy
density as

P = Py e ’
as in Einstein's theory., Then, we have

3 .. 2 2 "’lﬁn' -&Y
Erx-ﬁﬁt’r +2"nc =-Hmoc ’

and from the 'I‘: equation ¢ may be eliminated to find a Friedmann-like

equation, The Bianchi classifications are being investigated in this context,
The most interesting aspect of this is the isotropization question: Will Rosen's
theory provide a better key to the isotropy of the universe ?

V. INHOMOGENEOUS COSMOLOGICAL MODELS
IN EINSTEIN'S THEORY

A. Tilted Self-Similar Cosmologies

Self-similar cosmologies are models that admit a group of similarity
transformations; i.e., an invariance under changes of length scale [15], There
is defined a homothetic vector by the relation

o0 Kl NAL PAGE 15
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where A is a scalar and vu is a covariant derivative, Tilted models are

those in which the fluid flow vector is tilted away from the time-like vecto:
normal to the space~like hypersurfaces 'l“ by an hyperbolic angle g [33).

We combine the two formalisms in search of interesting models, The particular
question is; Are there tilted universes with submanifolds, invariant under the
Bianchi 1 group (translations), with those manifolds submanifolded to ones
invariant under a similar group and with the fluid flow shear free? Eardley has
mapped out the self-similar formalism [15], and King and Ellis describe the
methods needed for tilted models [33]).

The equations of Eardley were modified to include a tilted flow vector and
specialized to the case with Bianchi I submanifold, The undefined quantities
are those given in Eardley's paper. The metric is

ds’ = o [-dz2+ g (2) 0" nb]

where z labels invariant submanifolds and dy = baaa (ba is a vector related
to the structure functions of the similarity group "3)' The o" generate a G
subgroup characterized by the Bianchi classification, and

2

and

"
<
.

g
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For Bianchi I submanifolds invariant under Gz (the field with shear-free
flow), the ficld equations are:

_M2+b2 e To 0-21# <
o
3 . (4] -2d'

2bk°’ = 'I‘ko >

65 - 96 + B° = T:o-zu- :
and

o -_2_ 2 = '2"'

Db, =3%% = 7,0 :
where 3

i = dX/dz .

Reducing T,uv to its irreducible parts, a perfect fluid source,

TLW = (p+p) uﬂu”+ pgpl' ’

is obtained, With further specinlization, the field equations and fluid conserva-
tion laws (shear free — B ™ 0) are:

AL PAGE 15
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- - - = >
l [ s . row—.

-2 b = =" (o) mul

-6 - 967+ 37 bp' = g™,

bb -—6 bkb] -—- (p+p)uu —6“uku -
p+3(p+p)a =0 ,

(p+p)u = "kukplo

(p+p) iy = -uktlop|o .

‘The equation of state is p - yp and the equation for flow normalization is

ulf“ -1.
m

For the hydrodynamic equations,

p = p,expl-3(1+y)al

~0)
iy unexpl hwij

and for the trace~free stress equations

22
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b, = ['ﬁf(l +9) pm/z]l/2 oV N1t Mer

The Friedman-like equation for o is solved after the substitution o = fn a
to give

(3y +1)/2 | a g Fid
2n -
0 0

The density, p, can be arbitrarily specified as a function of the space coordinates
at time zo. " po(x) . Since these are self-similar models [34), 2z = tnxm,

where n and m are real numbers and x is any space coordinate, The function
¢ is fixed by the condition <dy|vz>= 0 [15]).

Since

a a
dy = b“a = b“dx .

suppose we choose b,’ # 0; then we do, indeed, have the solution

3a(37+ l)“/ (3y+1) - X, 0 “tx, .

B. Universes with Nonsynchronous Time

Now, let the metric be of the form

da’ v = (dt tu 23)2 + ﬁuzirj ’ ORIGINAL PAGE l‘:
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where the forms

2" = A BJ() B '

= 0 06 .0 ’

aj

and where
e un(t,x) ’

is a function of time and the space coordinates,

In this system, the velocity form is

and the "time'" coordinate is

dxo = dt-u‘za .

a

This makes a very convenient system for computations; i.e., the projection
operator is simply

hl»’__ 6v+60
u iy

v

& .
o

The convective derivative, u“va, is given as Vo and, in the case of scalars,

is given as 8 /8 xo . The kinematical gradients of the fluid velocity are also

24




easy to compute since the r;k (purely spatial) rotation coefficients do not
appear in the computations when s -6: .

In terms of acceleration a5 expansion smr' rotation wmr’ reference

frame spin tmr , and group structure functions C{( g0 we find

-
n
L]

00 TR

r:'no = Smr+wsm' .
r;m -« -tmr ’

r;k ; Eiid+tikuj '

and

= 1 ED k il
Cyi = 2 (Cik+cji ij)

for the rotation coefficients, Interms of the metric functions, these kinematical
quantities are:

ORIGINAL PAGE
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" i j[mur] o Yy mr

= + i
mr = Y[mlr] u[mur]
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a, = O +8

i i ij )
where
“mr © ﬁk(n‘n r) (eﬁ)k(m(. p)r) '
=1 =
tor = Bk[th'] k- (Ga)ft[m(e ﬂ)r]k '
and

Ymr © Bk[m r] k (eﬁ)k[m“ B)r] t
1f we write the shear tensor Zmn as

1
Z:mn 4 smn-sbmno

and the expansion scalar ¢ as

m
0=Sm.

then the field equations for submanifolds of Bianchi I are:

26




((“km) d z‘km) Utom * tmim = B

-66-902-%2:” ):m,-%r - % ,

z‘hk+30 Z\k" “"”nk”nk";' 6’ * "

where 3'r= dy/o xo; the spatial curvature r is caused by the tijuk term in the
rotation coefficients; g ’ and LA are the momentum=density flux and trace-free

stresses, The hydrodynamic equations are
pt(p+p)o = 0

and
(ptp) i = -hnmpm .

The reader may have realized by now that the purpose of this discussion
is to demonstrate the triviality of finding inhomogeneous solutions, Therefore,
we immediately specialize to the seemingly most unpleasant case: Perfect fluid
(rrnk= g, 4 0), diagonal ﬂmn’ and dust (p= 0)., Then, the acceleration

equations read
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A O=f

o m
- um(x) e

A
where u;( x) is a function of the space coordinates. Now, o and ﬁm are

functions of x*, a(xo). and ﬁm(xo) . Let a = Ina and the Friedman-like
cequation is

1/2
2
(4] pO GO [¢] -ﬂm
da/dx” = | == + = a-u e »
3 6 mim

where
1 A
¢ = Z,nnon(X)

and a is a constant determined by the boundary conditions inserted into the

usual Fourier-Bessel integrals
a_ = [f(x) O (x)dx

A
and On(x) is any set of orthogonal functions consistent with a chosen symmetry

for the flat=space Laplacian implied by

‘E"’n"u::1 :qux = 0




An implicit integral is easily found for u(xo). The explicit dependence of

ﬁm(x' ) is found from the shear equations,

C. Extended Locally Rotationally Symmetric
Class 111 Cosmologies

Wainwright and Szafron [17,35,36] have extended the locally rotationally
symmetric (LRS) universes [16] to inhomogeneous models of the Sekeres [37)
type. They suggest a general adaptation of these techniques to study large
classes of solutions to Einstein's equations with a dust source [17,36]., Rather
than concentrate on a hack-type duplication of Class 11 results for Class 111 LRS
(although we shall do so eventually), refer to Paragraphs V. A and V, B,

Finding outrageous, inhomogencous solutions is not a very formidable
task, as previously revealed in Paragraphs V. A and V,B, The arbitrariness
allows any density's spatial dependence to presume spatial hypersurfaces.,
Therefore, inhomogeneous and single solutions are neither very challenging
nor very informative,

Szafron, Wainwright, and Eardley have suggested a solution to the pre-
viously mentioned problem, Rather than groping solution-by=-solution through
Einstein's equations, group structures should instead be used to give an elegant
classification to families of solutions and relate those families to each other
mainly as each other's subsets in the group parameter space,

It seems that these inhomogeneou. models are of little use individually,
Also, the solutions seem too easy to obtain, An "easy' way out would be to
compute the ohservational ealeulations in each case, Then, one would test for
the allowed inhomogeneous cosmological models by comparison with observations,
However, this procedure scems ledious and unrewarding.,

It seems better to study the structure of various generalizations from the
homogeneous cases to the inhomogeneous cases. One then can treat the problem
as the consideration of successively larger classes of solutions. The main con-
sideration is the alteration of the group structure of the submanifold isometric
under the lower dimensional group. One wants to know what physics there is
corresponding to the choice of the higher dimensional group of which the addi-
tional free parameters will allow characterization of the enveloping inhomogeneous
models, The only available method would be the reverse of the Inonu-Wigner
contraction [14].
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In outline, if we have a group of generators 1_ with a particular

algebra g

1k
I 1v, 1 11k

and the group is not compact, it may be possible to find a larger-dimension group
to which the llv group is a continuous subgroup, We seek a group of generators

J = which are found from 1I_ by a singular transformation

1 v

2 H
le llv ¥ ‘vuv l1

sz 5 dzu

where Vuv is a matrix representation of the group and as ¢ — 0,

S " Ny,

Then the larger algebra is

|=c1" 3. s tg™ TR

[J v, 1u "1k W, 1u "2k [1u. M

1v'Jlu
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and as ¢ - 0 we recover the subalgebra, There is as yet no elegant way of
performing this reverse process. Possibly, examination of the group parameters
rather than guessing at the reprosentation V  of the higher dimensional group
might work, For this method e

v blv 5 cvm Hi -

and

These parameters are directly related to certain relative tensors which define

the structure constants C] of the algebra [32]. At the same time they

ik
directly specify the vector fields in the manifold which generate the algebra,

Spero and Baierlain [19] have suggested a variational approach which
may lead to techniques for solving this problem, They treat the inhomogeneous
metric as possessing an approximate symmetry. However, the following
question should be considered when applying this solution: Under what conditions
is this a "subsymmetry' of a higher-dimensional symmetry characterizing the
inhomogeneous model ?

The Class Il LRS models offer the most challenging testing ground and
shall be considered in a future publication,

Vl. HOMOGENEOUS COSMOLOGICAL MODEL IN YANG'S
THEORY OF GRAVITATION

Yang [7] has presented a gauge gravitation theory which is a rederivation
of Kilmister [38]. In this section, a cosmological solution is investigated,

A metric is chosen in the form

l) 2 ‘ ¥ L}
ds2 = dt° = Adx" - ;‘\xzd_v‘2 - szain2ydz2

and implemented in the MACSYMA symbolic manipulation system as the matrix
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-A 8 5 "
8 -AX® 8 8
H x -Ax2 smz(\') 8
H 8 8 1
- -

where A is a functionof t and x,

The Kilmister-Yang equations R
surviving four components (9A/8t = A

i1 k) = 0 then have the following

pr OA/BK = A)

(D5) [uzATAnxz - 2a%A A X% 4 2A'A X - 200 A X
+ GAzATAxx - 4A3A,rxx :

4 3 3 3 2,33 4 3 5 3
4A Axxxx - 14A AH(AXXX + 9A Axx + 4A ATTAXX - 4A ATTXx
+ 8A4Axx)(2 - lﬁAanzxz - 8A4Axx ’

2

sA:’ATAnxz - 9A2ATAX2 + sasATxAxxz HANTA X 4A4ATATTX2

4 2 3 4 4 2 3 2
4A A,nmx + 18A ATAxx - 4A A,rxx. 2A ATTxx - 2A ATTAXX g
2A%0K - 4AA. _ X + 3A.2X + 6AZA_X - BAA
X Axx X TT X
24X
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Assuming C is the constant scalar curvature, A(t.x) is separable, and
A= P (X) Q (t), the equations take the form

2 3. (.3 3 2
(p6) | 2r°Q”x (p QQpppX = PQ QX + PP Q X - PLQ X + ppxo,r) .

2 5 2 2 : 2 33 2 2 2
PQX (4p Pxxxx ”pr'xxx + 9pxx + 8p pxxx mppxx 8p px) .
P3Q4X 41'3QQ X - 4p30 Q. X+2PP. QX = p2Q X+ 6PP_Q 8

IT B w3 XX T T - s 2 WY el

3 3 2
) 2CP QX - -
6P QTTx +2CP QX ﬂ’PxxX + 3Px)( BPPX

2P3QX

The second of the equations involves only the function P (X) . A solution is

p=x-"lo

Upon substitution, the following eouations for @ survive

3 4
2" (Qppy = 9y Q(QQ . = 9 Q.0)

18 p % 20
X X

each component separately equal to zero,

The equation involving the curvature scalar is

18
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Upon differentiation, we find

which identically satisfies the remaining field equations, Thus, we find

Q = QooxpN-Chtl .
The metric is then

s . mz_Qno C73t g ax? + x%d0?)

which can be easily transformed to
9 a9
ds2 = dt” - Qo exp| v =C/3 t) |dr2 + r"dﬂzl F

A similar metrie has been found as a cosmological solution in a modified version
of Yilmaz' theory [39]. It is also similar to the metric in the steady-state
theory [3]. Therefore, we refer to the solution as the Yang=Yilmaz universe,

The value of the scalar curvature C determines the large-scale behavior
of the solution. For C > 0 the universe is an oscillating one, and for C < 0 it
expands forever. This is a solution which is not an Einstein space,

The observations in the Yang=Yilmaz universe for C < 0 would be very
similar to those in the steady-state universe [3]. For C > 0 we have a curious
mixture of flat spatial scetions with a elosed universe, For real solutions we can
arrange so that

Q = QO cos Kt
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K = A "C;E .
Then the universe oscillates in volume with the evolutionary period
27/K = 2sN3 /N-C .

Present observational evidence seems to indicate an open universe (the C > 0
case) [40], Nevertheless, observations would seem to be inconsistent with
either choice of C; and, of course, for C = 0 we have only Minkowski space,

VII. TOWARD FINDING THE ROTATING SOLUTIONS
FOR GRAVITATION THEORIES

The gyroscope experiment [41] was proposed to test whether an indue-
¢ on field (caused by rotating sources) exists in gravitation. This experiment
is considered the "Faraday' experiment of relativistie gravitation theories, In
the weak=-field limit, this test of the existence of such fields is essential, The
existence of the binary pulsar allows extension of the gyroscope experiment's
results to strong gravity ficlds; therefore, it may be of use in testing gravitation
theories, To do this the ficlds exterior to rotating stars must be found for each
viable gravitation theory, This may be posed as the problem of determining the
axially symmetrice, stationary asymptotically flat solutions for empty space for
these gravity theories, Since most of these theories possess a Riemannian
geometry, one possible technique would involve use of the Newman=-Penrose
identities in finding the solutions in which the gravitational field's directions of
propagation are expanding and twisting, They may not be shear free, and,
therefore, there may be no analogue of the Kerr [3] solution in Einstein's
theory. An alternative and more meaningful approach might involve the use of
the "Killing'' vectors of the static spherically symmetric solution to extend to
the "Killing'' vectors of the stationzry axially symmetric case as has been done
in Einstein's theory [42], Relying on that, one may make use of the tetrad
vectors E from which a metric b is composed,

o
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and try to extend them,

The solutions for the statie spherieally symmetric case in the viable
gravitation theories are in the form

2, 2y 2

. 9
+e" 'R dnz+e"d :

2 2.2 N 2.3
ds” = -n"‘”dl ‘e "dll It sin odp

where
¢ = #(R)
and
y = ¥(R) .

The appropriate basis of differential forms ! are

(«‘Il\n2 = nu,,w“w") W - e"dt ’

w = e Rdn ’

’ ed Rsinodyp

£
]
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We can immediately extend these forms to the staronary axially symmetric case
by writing [43]

e® [dt+ 1(p)do)

E
1

wl = den ’

. euRdn .

€
i

o'Rsinody .

E
il

The contravariant basis dual to these forms is
(<w"'. e > = 6") ;0 = e™0/0t ’
v v 0

-
e, = e 0/0R ,

e, =e R 9/00 ,
and

e, « le'R sino) 10 /0% - 8(n) [e'Rsing) e s /0t .

ORIGINAL PAGE 8
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o i (o -3 n/nx‘).
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From this we have

and

n

i

ed‘Rsino

for the covariant basis, and

J

o ©
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J: = (e'R sing)”? ,

J: = ~2(0)2/16"R sino] .

It is this vector decomposition that should be inserted directly into the field
equations of the particular gravity theory and the solutions found for the functions

E‘: and J:l . The Newman-Penrose identities can then be used to investigate

| the properties of the solutions. In view of the fact that for all the alternative
theories of gravity Rlu 3 # 0, it may not be possible to find the solution with

shear-free expanding and twisting rays; hence, there is no analogue to the

i Kerr [44] or Newman=Tamburino-Unti [45] solutions in Einstein's theories.
These solutions are presently being worked out, and it is expected that they

will be obtained systematically and with facility.

i The equivalent in matter-filled spaces would be shearing universes with
i twisting rays. These solutions also will be investigated using the algorithm

j previously mentioned,
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