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ABSTRACT



This report describes part of a continuing effort both to develop



models for and to augment the performance of humans controlling remote



manipulators. The project plan calls for the performance of several



standard tasks with a number of different manipulators, controls, and



viewing conditions, using an automated performance measuring system; in



addition, the project plan calls for the development of a force-reflecting



joystick and supervisory display system.



Two experiments with different approaches to varying the difficulty



of the task have been devised: a peg-in-hole task and a variable degree­


-of-freedom task. The first uses precision of fit to vary the difficulty



while maintaining four degrees of constraint; the second uses a nearly



constant precision but uses the number of degrees of constrained motion



to control the difficulty.



Experiments with a cable-connected master-slave manipulator (the



MA-il) common to hot cell work have been carried out with both tasks and



are reported here as are experiments with a servo-controlled manipulator



(the MA-23) with and without force feedback. Four experiments with the



Ames Arm to evaluate four different viewing systems (including stereo and



head-aimed stereo displays) were run.



To facilitate man-manipulator interaction, two approaches have been



explored: a force-reflecting control stick and a real-time supervisory



display concept. The control stick has two primary functions: sensing



position and applying forces. It permits the monitoring of both position



and orientation as well as the application of both forces and torques to



the operator's hand. The desk-top design permits him to control a six­


axis manipulator and feel the forces it develops. The computer controlled



display can show the operator how the remote manipulator and its remote



sensors are performing in a single graphic image. Software to interact



with the system via the keyboard and the force-reflecting controller
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has been developed. Perspective displays of three-dimensional objects



can be moved by the controller, as can numeric and analogic displays.
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I INTRODUCTION



A. Performance Evaluation



The first part of this report describes a series of experiments to



develop models for human performance with remote manipulators. The proj­


ect plan calls for the performance of standard tasks with a number of



different manipulators, controls, and viewing conditions, using an auto­


mated performance measuring system. Specifically this report describes



two tasks--the performance measuring system and the preliminary results



of experiments with two manipulators. This work is a continuation of



the first annual reporti* under Contract NAS2-8652.



*The performance measuring system described in Section II uses a



tensioned string to measure the distance between the tip of a tool and



a receptacle into which the tool is to be inserted. The string also per­


mits the progress into the hole to be monitored as the tool is inserted.



From records of string length as a function of time, tool trajectories



as well as velocities and task times can be determined. The system



makes a permanent record of the string length 25 times a second as the



tool is moved to and into the receptacle.



The tasks are the degree-of-constraint experiment described in the



first annual report on this project and the peg-in-hole experiment of



McGovern.2 The experiment boards have been rebuilt to be more precise



and to be incorporated into the measuring system. Both experiments have



been expanded to use three different moving distances (100, 200, and 400



mm) to provide a broader data base for the models. Both are performed



by the same subjects to make the results comparable.



The first of two manipulators chosen for these experiments was the



French MA-il. The MA-lI is a lightweight cable-connected manipulator de­


signed for hot cell'work. It is similar to the Model 8 developed at



References appear on page 113.
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Argonne Labs and is representative of a large class of manipulators in



use throughout the world in radioactive environments. Since there are



thousands of these cable-connected manipulators in use in the world, they



provide a standard for comparison with other types of manipulators. They



provide the operator with a low mass (5 kg) manipulation link to tasks



with only six degrees of freedom. This link essentially removes the



enormous dexterity and tactile sensibility of the human hand and limits



the operator to motion and sensing with the six degrees of freedom pro­


vided.



The second manipulator chosen was the MA-23 force-reflecting servo



manipulator developed by the French Atomic Energy Commission (CEA). This



manipulator system may be run with force feedback turned either on or off.



It is one of a handful in the world with this feature. An attempt was



made to run the experiments with a similar American manipulator, the E-4



manipulator at Fermi*National Accelerator Laboratory, Batavia, Illinois,



but it was not operational at the time scheduled for the experiment.



Manipulators with force feedback capability were sought to characterize



the changes in performance attributable to force feedback.



Sections III and IV describe analyses of the data. Computer programs



for determining task time and time for movement of a given distance to



the receptacle have been developed. Results of these programs are used



to automatically plot several graphs presenting the data. Task times,



accumulated distance, and trajectories showing the distance from the



receptacle as a function of time are presented in these sections. Sta­


tistical tests on the results are described in Section V. This work has



been summarized in a paper presented to the Thirteenth Annual Conference



on Manual Control (Appendix A).



Additional experiments to explore the effects of other manipulators



and viewing situations have been carried out but not analyzed. Experiments



with the Ames manipulator and unaided human hand were carried out at Ames



Research Center to determine the effect of viewing systems on experimental



results. The peg-in-hole tests run with direct viewing, TV viewing,



stereo TV viewing, and the head-aimed viewing system developed at Ames



Research Center are described in Section VI.
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B. Supervisory Control System



The second part of this report describes the initial developments



of a second-generation control system for remote manipulators. The con­


trol system consists of the force-reflecting control stick, described



in Section VII, and a graphics terminal for "looking' into the operations



of the system, described in Section VIII.



The force-reflecting controller permits free motion of the operator's



hand in a working volume 30 cm on a side. An articulated set of linkages



measures the position (X, Y, and Z) and orientation (roll, pitch, and



yaw) of a grip held in the operator's hand. By means of flexible cables,



each of the linkages is back-driven to apply forces along the X, Y, and



Z axes and torques around the roll, pitch, and yaw axes. In the case



of manipulation, the controller can be a force-reflecting master. Other



applications include vehicle control, tracking, man-machine interaction



with a data base, and instructional uses. When the controller is inter­


faced to a computer, there are several new possibilities for simulation



and interaction using modeling techniques.



The graphics terminal is a OT-40 manufactured by the Digital Equip­


ment Corporation. Software for the terminal permits the human operator



to quickly review, through position, velocity, force, tactile, and other



sensors, a variety of visual data presentations concerning a manipulator's



performance. Entire display modules (computer programs) are down-loaded



from the KL-10 host time-sharing computer in a few seconds. The modules



convert the incoming analog sensor data into graphic form and provide



supporting displays of textual, numeric, and analogic information. At



the bottom of the display screen is a permanent "teletype window" that



permits simultaneous interaction between the operator, the graphics ter­


minal, and the host computer(s).
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II PORTABLE DATATAKER
 


A portable data collection system was designed and constructed to



obtain and compare performance of different teleoperators. The system



measures the distance from a tool to a receptacle in which the tool is to



be inserted. The datataker records the distance between the end of the 

tool and the bottom of the receptacle as a function of time. This distance 

is measured by a dacron string of low extensibility to the nearest 2 am 

and is punched on paper tape at the rate of 25 measurements/see. The 

range is calibrated from 0 to 510 mm in 256 steps (8 bits). 

The entire experimental arrangement is shown in Figure 1. The ex­

perimenter operates the tape perforator at the left, while the subject 

manipulates the tool held on the right. The measuring string connects 

the tool and the string puller. Details of the string dispenser and mea­

suring system are shown in Figure 2. This system is similar to that pre­

viously described for measuring the X, Y, and Z coordinates of the 

manipulated tool, except that a single string is used. This simplification 

in measuring was suggested by the results of two previous studies using a 

more sophisticated datataker.2 s In these studies the distance between 

hole and tool as a function of time was the most important parameter in 

explaining the experimental results. This measurement could be used to



divide the task into different therbligs and to proportion a fixed amount



of time for each one.



The new datataker is well-adapted to the Ames Arm and other rigid



manipulators that tend to bump the task board and move it around. In



this case the measuring system is located inside the task board, and even



if it is moved the origin remains the same.



Details of the measuring unit are shown in Figures 3 and 4. There



are four sets of receptacles for the unit: one round hole in a metal plate



for the peg-in-hole task and three irregular-shaped holes for the



5 

Mo flLAI 

http:datataker.2s


SA-4055-71 

FIGURE 1 DATA RECORDING UNIT AND MEASURING UNIT 



TOOL 

STRING 

RECEP 
 ACLEMARKS



100 200 mm400 MM/ 

TORQUE MOTOR, 
WINDER DRUM, AND 

POTENTIOMETER IDLER PULLEY 
SA-4055-72 
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degree-of-constraint experiment. The use of these receptacles is de­


scribed in the parts of the report dealing with the individual experiments.



A. Operation of the Datataker



The block diagram of the tape perforator is shown in Figure 5. The



unit is operated by a set of switches. Trajectories are punched by lift­


ing the DATA switch; the 8-bit code set on the code switches is punched



by momentarily pressing the CODE pushbutton; and blank leader to separate



codes and trajectories is punched by momentarily pressing the LEADER switch.
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Codes used to identify different parts of the experiment are indi­


cated below (numbers are in octal):



Identification Code 	 Definition



Experiment identification 300 + experiment number
 


Subject identification 200 + subject number



Condition identification 100 + distance code + condition code



Distance code 0, 20, 40 for identifying the 100, 200, 400



mm starting distances, respectively



Condition code A number between 0 and 17 for identifying the



peg used or degrees of constraint used



Run identifcation 	 A number between I and 77 increasing by I for
 


each repeated trajectory



The rules for recording identification codes follow:



(1) 	 Blank leader is used to separate each code and trajectory



recording.



(2) 	 Codes are recorded only when a change occurs.
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For example, only when Subject 3 starts manipulating is the code 203



punched. Similarly, only when Experiment 1 begins is 301 punched, and



only for the first insertion is the two-part condition identification



punched. Before each insertion a consecutive run identification number



is punched (1, 21 3, 4, and so forth). Repeating the run identification



number in this fashion permits a run to be repeated if a difficulty de­


velops: when two Run 2s are recorded in sequence, the first punched data



are to be disregarded and the second data kept for Run 2.



The length of the string is calibrated at the beginning of the ex­


periment and whenever the string breaks or is replaced. Calibration is



done in the following manner: the tip of the tool being used is placed



flush with the top of the receptacle (defining the entrance to the hole



as zero distance), and the number 300 (Experiment 0) and the string length



are punched. This is done by setting 300 on the switches and briefly



pressing the LEADER, CODE, LEADER, and DATA buttons in that sequence.



B. Computer Processing of Paper Tape



Integral to the data punching scheme just outlined is the computer



processing scheme for reducing the data. Both must use the same rules.



In addition to keeping track of the various codes for each manipulation,



the data reduction program given in Appendix B also makes a set of mea­


surements on the trajectories. A sample of the measurements is shown in



Figure 6; they represent some of those made by the program.



The measurements made by the program are briefly described below:



Reaction Time--Reaction time is the time after the experimenter


turns on the punch, which is the audible signal for the subject


to begin, until the subject pulls the string 4 mm from its ini­

tial length (time zero).



Zero Length--Zero length is the string length when the tool is


at the entrance to the receptacle. This length is determined


from the calibration recordings (Experiment 300).



Start Distance--Start distance is the difference between the


string distance at time zero and zero length, as defined above.



Task Time--Task time is the time from when the tool is first


moved until it has been inserted 25 mm into the receptacle.
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FIGURE 6 SAMPLE TRAJECTORY MEASURED BY DATATAKER 

In addition to these parameters, the first times to a set of given



distances from the hole entrance are determined in order to plot the aver­


age trajectory. The set of distances are: 350, 300, 250, 200, 150, 100,



90, 80, 70, 60, 50, 40, 30, 20, 10, and 0 m from the hole and 10, 20,



25, and 30 mm into the hole.
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III DEGREE-OF-CONSTRAINT EXPERIMENT



The degree-of-constraint (DOC) experiment was carried out with the



task board previously described and a set of special tools. The task



consists of moving a previously grasped tool a fixed distance and insert­


ing it into a receptacle. The tools and receptacles were designed to



constrain the translational and rotational movements of the fitting task



one by one, making the task progressively more difficult. Tool trajec­


tories were recorded as a function of time, using the data acquisition



system described in Section II.



A. Apparatus



The matching of the receptacles and tools for the six tasks is illu­


strated in Figure 7. Dimensions for the set of four tools and three re­


ceptacles are given in Appendix C. The tools are held, around their cy­


lindrical handles, in the jaws of the manipulator. The grip is secured



by a small C-clamp to ensure that the tool does not slip in the jaws.



B. Manipulators



Two different manipulators were chosen for use in the experiment:



a lightweight master-slave manipulator (MA-lI) of the family used for hot



cells and a heavy duty servo manipulator (MA-23) that has more general­


purpose use. These manipulators are shown in Figures 8 and 9. Technical



descriptions including dimensions, load capability, speed, and backlash


for the MA-lI and MA-23, respectively, are given in Appendices D and E.



Both manipulators were developed by the French Atomic Energy Commission



at Saclay, France, for radioactive handling by Dr. Jean Vertut's Environ­

mental Protection group. The relation between the subject and the task 

boards is shown in Figures lOa and 10b. 
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C. Experimental Design



The basic experiment consists of the 6 X 3 X 8 factorial design shown
 


in Figure 11. The experiment block was run in the sequential order shown



in Table 1 for one subject and in the reverse order for a second subject,



to balance the effect of learning curves on the results. For each of the



distance and DOC combinations of Table 1, eight insertions of the tool



into the receptacle were made.



This design is similar to that previously used, except that three



distances, 100, 200, and 400 mm, are used instead of the single distance



(490 mm) previously used. These distances are chosen to be the same as



those of the peg-in-hole experiment. They also increase by multiples of



two for convenience of using and testing Fitts' law.4



D. Procedure



The experimental protocol was as follows: for each of the sequential



conditions called out in Table 1, a new tool, if called for, was rigidly



fixed inside the manipulator jaws by means of a small C-clamp. A new



receptacle, if called for, was mounted on top of the measuring unit. The



subject was permitted to make a few practice movements, and, if a new tool



or receptacle were being introduced for the first time, the subject was



encouraged to practice a few times. For each of the eight repeated in­


sertions, the subject positioned the tip of the tool over the appropriate



starting mark (100, 200, or 400 mm). The experimenter punched the run



number, waited a second or two. and switched on the punch, which made a



distinct noise. When the subject heard the noise, he proceeded to move



the tool into the receptacle. When the tool tip disappeared inside the



receptacle (about 50 mm) the experimenter turned off the punch and the



subject returned the tool to the starting mark to prepare for the next



insertion.



E. MA-Il Preliminary Results



The DOG experiment was run with two subjects in the manner previously



described and the resulting trajectories treated by computer program to
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FIGURE 11 DEGREE-OF-CONSTRAINT EXPERIMENTAL DESIGN 

obtain task times and details on the trajectories. The data reduction



was automated in view of the large number of manipulators and experi­


mental conditions to be compared in the research program.



As described earlier, task completion time is the time from the be­


ginning of the move until the tip of the tool is inserted 25 mm into the



receptacle. At this point the tool is half way into the receptacle, and



the angular and translational degrees of freedom are constrained as de­


termined by the geometry of the tool ,and receptacle. Averaged task times



for the two subjects are shown in Figure 12. These task times increase



regularly with DOC, as was observed in previous experiments.a This is



true for all three trajectory lengths. The previous experiments used



only one trajectory length, and further comparison cannot be made.



Approach times to different distances to the receptacle were obtained



and are shown in Figure 13. The time to.a given distance is defined as
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Table 1



ORDER OF TASKS USED IN


THE DEGREE-OF-CONSTRAINT EXPERTMENT



Degrees of Distance Octal 

Order. Constraint (mm) Condition- ID 

1 0 100 100



2 0 200 120



3 0 400 140



4 1 400 141



5 1 200 121



6 1 100 101



7 2 100 102



8 2 200 122



9 2 400 142



10 3 400 143



11 3 200 123



12 3 100 103



13 4 100 104



14 4 200 124



15 4 400 144



16 5 400 145



17 5 200 125



18 5 100 105



the time from the beginning of the move to the first time the string



length is less than the given distance. Data are average times for eight



runs each from two subjects. The figure's curves show an increase in



time spent close to the receptacle with the larger number of degrees of



constraint. The amount of time needed to move between 0 and 20 mm into



the hole (0 mm and 20 mm in Figure 13) depends on the trajectory length



as well as the DOC. The curves for the 100-mm trajectory are accelerat­


ing functions and those of the 400-mm trajectories are decelerating func­


tions of the DOC. Previous experiments have assumed that the inserting



times are not a function of trajectory length.
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FIGURE 12 MA-11 TASK COMPLETION TIMES 

Trajectories for the 0, 2, and 4 DOG insertions are shown in Figure 14.



These are averaged trajectories, indicating the first time that a given ap­


proach distance was realized. They are averaged over eight runs each from



two subjects. The curves show the transition from the differing initial



velocities with different starting distances from the hole to nearly identi­


cal behavior when in proximity of the hole. As the degree of constraint



increases, the curves at zero distance steepen, indicating the increased



difficulty-in fitting the tool. On each of the three graphs in Figure 14,



the three curves have the same shape near the origin, suggesting that the



fitting task is independent of initial trajectory length.
 


F. Preliminary Comparison of NM-23 With and Without Force Feedback



In part of a program to determine the advantages of force feedback



in different manipulation tasks, the DOC task was run on an MA-23 manipu­


lator with and without force feedback. The comparison was made with two
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subjects who served in both the force and no-force conditions. The ex­


periment was balanced for practice effects by starting one subject on the



force and the other on the no-force condition and running the two through



the design in reverse directions.



The task times shown in Figure 15 are of the same shape as those of



the MA-Il. Generally the MA-23 is about 30% slower than the MA-1l with



force feedback and about 25% slower without force feedback than with it.



A statistical treatment of the data must be performed to determine whether



these differences are meaningful.



The accumulated trajectories shown in Figure 16 also indicate the



general reduction in task time with force feedback. There is a slowing



down near the receptacle entrance (between 0 and 10 mm from receptacle)



when force feedback is absent. The trajectories of Figure 17 confirm



this, the last 10 mm of the 4 DOG insertion taking about twice as long



as that part of the insertion without force feedback. The general in­


crease in time without force feedback is apparent throughout the results;



gross trajectories as well as fitting movements require more time. With



the shortest trajectory (100 mm from the receptacle) gross motion and



fitting are intertwined, and it may be impossible to separate these mo­


tions (or therbligs) from the data without a model.
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IV PEG-IN-HOLE EXPERIMENT
 


This experiment is similar to the DOG experiment described in Sec­


tion III and was run at the same time, in the same manner, and with the



same test subjects. The object of the task was to insert a set of pegs.
 


into a round receptable. The difficulty of the experiment was varied by



using pegs of different diameter. The experimental apparatus is basically



the same as that used by McGovern.2 The same pegs were used but a more



precise receptacle was built, the previous one being found to be 0.33 mm



oversize and 0.2 mm out of round.



A. Apparatus



The apparatus consists of the task board as shown in Figure 3 with



a round receptacle and a set of cylindrical pegs. The dimensions of the



round receptacle and the pegs are given in Appendix B.



B. Manipulators



The MA-il and MA-23, described in Section III, were used in this



experiment.



C. Experimental Design



The experimental design is basically the same as that of the DOC ex­


periment described in Section III, except that seven pegs of different



diameter replace the six different DOC conditions. The design is a 7 X



3 X 8 factorial design similar to that shown in Figure 11. Seven pegs
 


were used (Pegs 2, 4, 6, 8, 10, 12, and 14, which are dimensioned in Ap­


pendix B); three distances were used (100-, 200-, and 400-mm trajectories);
 


and-8 repeated runs were made with each condition. The experimental order



is the same as that shown in Table 1 with the peg numbers (starting with



Peg 2) replacing the ascending degrees of constraint.
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D. Procedure



The experimental procedure was the same as that described in Section III.



E. MA-li Preliminary Results



Basic task times for the peg-in-hole task are shown in Figure 18.



These times increase as the difficulty of the task (peg number) increases.



The times are longer, particularly with the largest pegs, than those of



the DOC task, indicating an increased difficulty. Differences between



the three trajectory distances appear to be constant, all three changing
 


in the same increasing manner with peg number. This indicates that the



times are accounted for by the sum of two functions; one a function of­


trajectory length, the other a function of peg number (difficulty).
 


Since the tolerance of fit of each peg is half that of the preceding



peg, the abscissa on Figure 18 is also a measure of task difficulty as
 


defined by Fitts.4 An interesting feature of the results is their upward



curvature: task time is an accelerating function of difficulty, whereas



Fitts' law predicts a linear function of difficulty. Statistical analyses



to test the linearity of the curves as well as the independence of tra­


jectory length and difficulty (peg number) are planned.



Approach times to different distances to the receptacle were obtained



and are shown in Figure 19. These results are similar to those of the DOC



experiment previously described (see Figure 13). To within 10 mm of the



receptacle, the task time is practically independent of peg size. The



insertion time, the time to move from 0 to -25 mm on the graphs, varies



greatly with task difficulty. Insertion time is about six times longer



with the most difficult peg (Peg 14) than with the smallest peg (Peg 2).
 


Trajectories for Pegs 2, 8, and 14 are shown in Figure 20. The tra­


jectories show a transition between the smooth insertions with Peg 2 to
 


the two-stage insertion with Peg 14, where the insertion is practically.



stopped at the entrance to the hole. Similar transitions between smooth



and two-stage insertions were observed in the DOG experimentas the task
 


difficulty was increased. The peg-in-hole tasks have a wider range of



difficulties, and thus a wider variety of trajectories is observed.
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F. Preliminary Comparison of MA-23 With and Without Force ieecoack



The results of this comparative experiment are very similar to those



of the DOC experiment previously described. The peg results shown in



Figures 21'. 22, and 23 are similar to the D0C results in Figures 15, 16,



and 17, and only the differences will be discussed. 
 The peg results are



based on the average data of two subjects who each made eight insertions



in each experimental condition.



When force feedback is provided to the operator, the task completion



times are reduced 30 to 40% (Figure.21). 
 There are no distinctive changes



as the peg number increases except for the most difficult peg (Peg 14).



Here the insertion time is about double when force feedback is removed.



These same results are also seen 
 in the more detailed presentation



(Figures 22 and 23).
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V 
 STATISTICAL ANALYSIS OF THE PREVIOUS EXPERINENTS



The four experiments described in Sections III and IV were given



statistical analyses to determine whether differences between manipulators



and force-feedback conditions were statistically significant. Analyses



of variance were performed on the total task times to obtain the statistics



for testing these hypotheses. The results are given below.



A. MA-11 Manipulator--6-DOC Task



Task time is a strong function of the degrees of constraint [F(5,252) = 

57.10, p < 0.0011, and there is insufficient evidence to show that it



is not a linear function [F(4,252) = 0.42, p > 0.05]. Similarly, the task



time is a strong function of trajectory length [F(2,252) = 93.08,



p < 0.001] and there is insufficient evidence to show that it is not a



linear function [F(1,252) = 0.01, p > 0.051. Also, there is insufficient



evidence to show an interaction (or dependence) between these two linear



functions [F(10,252) = 1.62, p > 0.05]. With the results of these five



tests, we may assume a linear model of the form



Task time = KI(DOC) + K2 (trajectory length) (1)



where KI and K2 are linear functions. Thus, the total task time may be



broken down into the sum of two linear, independent functions.



B. MA-11 Manipulator--Peg-in-Hole Task



Task time is a strong function of the peg number [F(1,294) = 56.49, 

p < 0.001] and is nonlinear [F(4,294) = 12.4, p < 0001]. As with the 

DOC task, task time is a strong function of the trajectory length 

=
[F(2,294,) 43.80, p < 0.001] but there is insufficient evidence to show



that it is nonlinear [F(1,294) = 0.05, p > 0.05]. The interaction between



peg and trajectory length [F(12,294) = 1.69, p >0.,05] is not statistically
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significant, again suggesting independence between these two parameters.



With this information, we can assume the following model for this task:



Task time = f1 (peg) + K 2(trajectory length) , (2) 

where f is an accelerating function of the peg-number and K2 is the same



linear function we had with the 6-DOC task [Equation (1)].



C. MA-23 Manipulator--6-DOC Task With and Without Force Feedback



Task-completion times with force feedback are significantly shorter



than without force feedback [F(1,504) = 68.91, p < 0.001]. Task-completion



times are also strong functions of the degrees of constraint and trajectory



length, both being statistically significant (p < 0.001). Task-completion



time is not a linear function of the DOC as it was with the MA-ll, since



the nonlinear term [F(4,504) = 26.62, p < 0.001] is statistically signif­


icant. The nonlinear term for trajectory length, [F(1,504) = 3.26,



p > 0.05] is not statistically significant, again suggesting a linear



function of trajectory length. Of the three interactions between these



three variables, force by DOC is significant (p < 0.001), force by tra­


jectory length is not significant (p > 0.05), and DOC by trajectory



length is (p < 0.001).



Because of these interactions, the MA-23 results are more difficult



to interpret than those of the MA-ll.



D. MA-23 Manipulator--Peg-in-Hole Task With and Without Force Feedback



Task-completion times with force feedback are significantly shorter



than without it [F(1,588) = 129, p < 0.001]. Task-completion times are



also strong functions of the peg size and the trajectory length, both



being statistically significant at the 0.001 level. Task-completion



times are nonlinear functions of the peg number, as with the MA-1, be­


cause the nonlinear term is statistically significant at the 0.001 level



,[F(5,588) = 19.16,. p < 0.001]. The nonlinear term in the trajectory



.length [F(1,588) = 0.19, p > 0.05] is not significant, indicating that,
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again, the time is a linear function of trajectory length. Of the three



interactions, force feedback and peg number interact significantly



(p < 0.001), whereas force feedback and trajectory length do not



(p > 0.05) and peg number and trajectory length do not (p > 0.05). These



results indicate that there are two models for MA-23 performance in this



task. With force feedback we have



Task time = ff(peg) + K 2(trajectory length) (3) 

and without force feedback we have



Task time = fj(peg) + K2 (trajectory length) , (4) 

where the two curving functions of peg size, ff and f-, are different,



and the linear functions of trajectory length, I(2, are identical.



E. Summary



One of the interesting results of these anaiyses is that in all



four cases analyzed above, task time is directly proportional to trajectory



length. Thus the distance moved appears to be a basic measure of manip­


ulator performance, independent of manipulator, force feedback, and task.



This basic result is explored further and modeled in the paper reprinted



in Appendix A.
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VI VIEWING EXPERIMENTS WITH THE AMES ARM



A series of manipulation experiments were run using the Ames Arm to



perform the peg-in-hole task described in Section IV. The object of the



evaluations is to distinguish between the abilities to perform the task



(which ranged from low- to high-precision fits) as a function of the



viewing condition. The following different viewing conditions were pro­


vided, all with the viewing point 2 m in front of the task:



* 	 Direct viewing, with the subject sitting in front of the task


area (see Figure 24)



* 	 Single-camera TV viewing (situation shown in Figure 25)



* 	 Stereo TV viewing with split screen (situation shown in Figure 25)



* 	 Head-aimed stereo TV viewing (shown in Figure 26).



The experiment was run with two subjects and all four of the viewing



conditions above. The experiment was also run using the unaided human



hand for comparison with Fitts'5 basic study. The data have not yet been



analyzed or plotted. Stereo and mono TV presentations were made with a



closed-circuit TV system utilizing a split-screen technique: half of



the screen was imaged on each eye. Images used in the experiments (photo­


graphed off the TV screen) are shown in Figure 27.



p41
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L4 

(a) SUBJECT VIEWING TV (b) EXPERIMENTER WITH TV CAMERA 

FIGURE 25 MONO AND STEREO VIEWING CONDITION C 



FIGURE 26 SUBJECT WITH HEAD-AIMED STEREO SYSTEM



44





(.1 ENTIRE-TASK USED IN STEREO AND MONO EXPERIMENTS 

(b) CLOSE-UP VIEW POSSIBLE WITH HEAD-AIMED SYSTEM 
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Based on these criteria, the controller shown in Figure 28 has been



designed. The design includes detailed parts drawings, cableing diagrams,



and torque motor specifications. The unique features of the design are



the gimballed hand grip and the telescoping joint. The kinematic design
 


of Figure 29--designating the joints--shows the unit's simplicity. The



first four joints (ql q2, q3, and q4 ) are cable-controlled from four



actuators at the end of the telescopic joint. The cables are all conveyed



through a counterbalanced take-up mechanism in the telescopic joint,
 


enabling the hand grip to move while the actuators remain stationary.



Thus, the actuators also serve as weights for counterbalancing the hand



grip. Detailed specifications on the controller are given in Table 2.



Because of the intersecting axes, the mathematics for transforming



back and forth between the grip and base reference frames of the con­


troller is straightforward.



If the individual joint motions in homogeneous coordinates are rep­


resented by



10 0 0S



Rx(qi) s'i o '. (5) 

00 0 
[ 1 :1 

C. 0 S 0 

0 1 0 0 

Ry(qi) -S. 0 C. 0 (6) 

0 0 0 0 

C. -S. 0 0" o ij 
S. C. 0 0 

R z(qi) =0 0 1 0 (7)
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Table 2



CONTROLLER SPECIFICATIONS
 


(a) Three-Axis Hand Grip



t
Torque, Tmax Friction* Effective Inertia Acceleration Power at Tmax


Joint TTg-cm) (kg-cm) (kg-cm2) (krad/sec2) (watts) Motor



q1 5 0.12 0.76 8.6 62 	 Magtech (40 oz. in)


(NASA spec.)



q2 5 0.12 0.76 8.6 62 Magtech (40 oz. in)


(NASA spec.)



q3 5 0.12 0.76 7.3 62 Magtech (40 oz. in)


(NASA spec.)



(b) Extension Tube and Gimballed Support



Force, Fmax § Friction* Effective Masst Acceleration* Power at Fmax


Joint fg) (kg) (kg) (g) (watts) Motor



q4 1 0.095 0.94 1.25 24 Magtech (170 oz. in)


(NASA spec.)



q5 1-1.65 0.027-0.045 0.49-0.93 2-1.7 67 Magtech (170) 2375-190



q6 1-1.65 0.027-0.045 0.49-0.93 2-1.7 67 Magtech (170) 2375-190



Neglects cable bending losses.



tAt grip, including drive train and structure.



*Maximum theoretical.



Left figure for q4 extended, right for q4 retracted.



C 

http:0.49-0.93
http:0.49-0.93


and



Tx
0 0 0 

T[= 0 0 o (8)



where



C. = cos(qi) (9) 

and



Si = sin(qi) (10)



then the transform from the grip frame of reference to the fixed frame



of reference is



§ = Ry(q6) * Rz(q 5) " T(q4) * Rx(q3 ) *R(q 2 ) Ry(ql) ()



In the matrix below, the letters a through i are the direction cosines



relating grip orientation to the fixed frame, and x, y, and z are the



displacements of the origin of the grip relative to fixed-frame origin:



a b c x



d e -f 

(12)
]g h i 
 

0 
 0 
 0 
 1
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VIII GRAPHICS DISPLAY SYSTEM



A. Basic Description of the Display Monitor



This section describes the development of a software display monitor



for the GT-40 Graphics Display System. Upon completion of the analog-to­


digital interface, this monitor will permit the performance of six-degree­


of constraint step-tracking tasks, Rate and position controllers of various



designs can be used to drive a perspective (and potentially stereoscopic)



CRT display. Static and moving objects can be drawn with a minimum of



overhead computation. The display monitor is designed to become an inte­


gral part of a supervisory control system for manipulator control, as



shown in Figure 30.



The monitor's prime function is to permit a human operator to quickly 

review, through position, velocity, force, tactile and other sensors, a 

variety of visual data presentations concerning a manipulator's performance. 

The GT-40 with range-sensor display is shown in Figure 31. 

By 	 using a rate controller (MIT controller)s or a position controller



(force-reflecting controller, previously described), the operator may



point to and otherwise interact with a three-dimensional scene--that is,



the operator may observe and intervene in an automatic process as well as



assume direct control of manipulators and other positioning devices.



The goal'was to develop for the GT-40 Graphics Display a resident



monitor with the following capabilities:
 


* 	 Constant communication with a host computer (or computers).



* 	 Quick down-line loading of display modules from'the KL-10 computer. 

* 	 Performance of fast coordinate transformations and perspective 
display of objects. 

* 	 Digital and analogic, text, and perspective displays of various 
quantities. 

* 	 Simple keyboard commands to permit rapid display changes. 
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FIGURE 31 DISPLAY CONSOLE SHOWING RANGE-SENSOR OUTPUTS 
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* 	 A structure permitting eventual/future display modules to be


written in a higher-level language and the addition of these new


subroutines to the monitor's repertoire.



a 	 Flexible insertion and deletion of display elements.



The resulting display monitor is centered around the concept of dis­


play modules. The modules are downline loadable program segments, which



control the conversion of sensor data into a useable form and provide



display of textual information. Frequently used display modules can be



loaded as part of the resident display monitor, thus permitting quicker



access to them. The structure of the display monitor is shown in Figure



32.



The monitor's CRT display includes a "teletype window" at the bottom



of the screen that permits simultaneous interaction between the monitor



and the host computer(s). Thus, display modules may be edited, recompiled,



and reloaded even as you watch them in operation. Other types of commu­


nication concerning manipulator performance may occur. The host computer(s)



may send messages to the operator in three ways:



* 	 Messages typed to the teletype window



" 	 Remote starting of resident display modules.



* 	 Downline loading and starting of display modules.



The operator may talk to the host in three ways:



* 	 Text input from the keyboard



* 	 Automatic text typeout via commands typed at the keyboard



* 	 Automatic text typeout initiated by a display module.



The communications interface is fast enough (I character/msec) to



enable the host computer to specify the position and orientation of a



moving object at 50 Hz. Such dedicated use of the serial communications



line is probably not advisable and such data is best transmitted via the



unibus. It does, however, seem quite reasonable for the host to place



static objects in the scene with a message length of 30 characters.
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B. Use of the Display Monitor



Several modules have been written to illustrate a variety of display



techniques possible with the monitor. The modules can be installed with



commands that are explained with a help command (See Figure 33).



The command ";4" (without quotes) currently loads and starts a dem­


onstration program that exercises most of the system subroutines. The



program positions a cube on the screen as a function of six values read



by the analog-to-digital converter. After scaling and offsetting, the



six parameters are used to position the cube via the object transformation



previously given for the grip of the force-reflecting controller. A rate



mode is also available so that the cube may be caused to move the various



linear and angular rates (See Figure 34).



The routine computes the cube position at about 40 Hz. This rate



could be increased by precomputing the elements of several intermediate



transformations rather than by multiplying six rather sparce matrices.



The homogeneous transform representations are used throughout the system.



The demonstration program uses screw transforms to effect the object trans­


formations. This is simply a rotation about, and a translation along,



a specified axis and easily lends itself to homogeneous representation.



It provides an unambiguous specification of relative positions and orien­


tations.



A second target or marker cube is displayed at an arbitrary static



position. This location may be changed by the introduction of the



address of a new transform to the routine. Thus, in a positioning ex­


periment, new target locations can be installed simply. Alternatively,



the target location may be equated to the current grip location, thus



permitting the operator to leave a marker in six-dimensional space and



move it at will. The display of obstacles and points of interest is a



simple extension of these processes (See Figure 35).



C. 	 Display Mathematics



T,. The world coordinates of all displayed objects are generated as a



result of the display process and may be used for testing (i.e., collision,
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avoidance, velocity determination, target 'acquisition). By simply looking



at the transfoimation matrices of two different objects, we-may find .the



distance; d, between their origins to be



d[(x2 .- 2 2Y (z - z-)j
d x)2 +I(Y2_y)2 + -2 Z ]2 

where



b-.l c. xi
ai 
 

d. el f. y. 

g.= h t (1 = 1,2) 

0 0 0 1



and the angles between the various basis bectors as



e = cos- (a * a2 + dl * d2 + gl * g2 ) 

e = Cos- (bI * b2 + e1 * e2 hi* 
 h2



ez = cos-l(cl * c2 + fl * f2 + i1 2)



More detailed point-by-point comparisons could be made directly in



world coordinates, or by transforming the cube to target coordinates. The



transformation relating cube points to the frame of reference fixed in



the target is-obtained by premultiplying the cube's object transform by



the inverse of the target's object transform:



The inverse of a homogeneous matrix is relatively easy to compute:,



-nx Ox 
 ax 
 Px­
n o a •py­


n o 
 a- p

y y y p 
n o1 a p 

y y y z 

.0 0 0 1



(footnote continued on next page)
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§= -1



where 01 is the object transform given for the controller grip in the
 


previous report2 and 02 is the object transform of the target. For a



given static target, may be computed and used until the target is



moved.



D.- Display of Three-Dimensional Objects



1. Background



Displays for supervisory control (man-machine interaction) have been



primarily based on printed messages or simulated instruments displayed



on the screen of a cathode ray tube (CRT). Manipulation tasks entail



operation in six dimensions--three displacements and three rotations.



The feedback information for manipulation is inherently six-dimensional.



We have been implementing a method to include such six-dimensional infor­


mation on the supervisory display screen along with the usual text messages



and two-dimensional graphic displays. The six-dimensional information



is needed for several different purposes:



* 	 Displaying the position and orientation of the-manipulator along


with the surrounding environment. This is the way prediction


for inertial loads, arm springiness, and time delay can be included


in the control system.



* 	 Displaying the position and orientation of the end-effector.



* Force-feedback display (three forces and three torques).



" Range-sensor display oriented in hand coordinates.



" Tactile-sensor display oriented in hand coordinates.



where n, o, a, and p are vectors; then



n n -p n



x y z



nx 
 

o a o -11.0 
-= x y x 

ax ay a z - a 

o o 0 1 ORGINpGIS 

OF PVONOR QF
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Reconstruction of the external world scene based on range,


force, and tactile information: a three-dimensional scene com­

posed of each point ranged or touched during exploratory nianip­

ulations.



A general method for'preseating perspective views of three-dimensional



objects on the display screen has been implemented. The first use of



this program will be to display two simple three-dimensional objects



(cubes) for a tracking evaluation using rate and position controllers.



In this evaluation, six-axis tracking (both step and compensatory track­


ing) will be investigated for the first time, enabling tracking models



that were developed for pilots and drivers to be applied to manipulation.



2. Three-Dimensional Display on the GT-40



An item to be displayed is first described in a fixed image space.
 


It is then transformed to object space using a series of homogeneous co­


ordinate transforms (object transformation). A list suitable for immediate
 


display by the display processor is created by the view transform, which



includes a perspective transform. This process is illustrated in Figure



36. Displayed objects may include various combinations of solid and



dashed lines and intensities.



Rigid bodies to be displayed on the GT-40 are initially described



in an image reference frame (Frame C in Figure 37). After undergoing a



series of transformations (scaling, rotation, and translation), together



called the object transform (e), each image point is placed into the



object reference frame (Frame B of Figure 37). Several differently



transformed images may be concatenated to build the object. The object
 


points are then subjected to a series of translations and rotations



together called the view transform (V), to place the object into world



coordinates (Frame A of Figure 37). The world origin (0) is fixed in



the center of the CRT screen with the X-axis to the right, the Y-axis



up, and the Z-axis into the screen. Assuming the observer (E) to be



located on the world m axis a distance Z from (0), we may use a simple
z e 

perspective transform to project each world point P to screen coordinates
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Typically, the view transform is a constant transformation used to



place the objects in the proper location relative to the observer. The



object transform will usually vary from moment to moment reflecting changes



in the command inputs. It will be used to make objects or elements of



objects move in a prescribed manner.



In summary,



Spi= fp[V][e]IPi 

where



x.
1 

Yi



P.1 = Z. = homogeneous coordinates of P. in image reference frame, 

1 

Js = screen coordinates of , 

fp the perspective transform that yields 
 screen coordinates



4 1 from world coordinates,



[V] = homogeneous view transform,



and



[0] = homogeneous object transform.
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TWO MEASURES OF PERFORMANCE IN A 
PEG-IN-HOLE MANIPULATION TASK WITH FORCE FEEDBACK 

John W. Hill 
SRI International 
Menlo Park, CA 

ABSTRACT



This paper describes the results from two manipulators on a peg-in­

hole task, which is part of a 'continued effort to develop models for


human performance with remote manipulators. 'Task difficulty is varied by


changing the diameter of the peg to be inserted in a 50 mm diameter hole.


An automatic measuring system records the distance between the tool being


held by the manipulator and the receptacle into which it is to be inserted.


The data from repeated insertions are processed by computer to determine


task times, accumulated distances, and trajectories. Experiments with


both the MA-il cable-connected master-slave manipulator common to hot cell


work and the MA-23 servo-controlled manipulator (with and without force


feedback) are described. Comparison of these results with previous re­

sults of the Ames Manipulator shows that force feedback provides a con­

sistent advantage.



INTRODUCTION



The task investigated in this paper is the peg-in-hole experiment



previously examined by McGovernI and'Hill.2 The experiment board has been



rebuilt to be more precise and to be incorporated into the measuring sys­


tem. The experiment has been expanded to use three different moving dis­


tances (100, 200, and 400 mm) to provide a broader data base for the



models.



Two manipulators were chosen for these experiments. The first was



the French MA-Il, a lightweigbt cable-connected manipulator designed for



hot cell work. Similar to the Model 8 developed at Argonne Labs, it is



This work was supported by the National Aeronautics and Space Adminis­

tration under Contract NAS2-8652 with Stanford Research Institute.
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representative of a large class of manipulators in use throughout the



world in radioactive environments. With about 30,000 cable-connected



manipulators in use in the world, they provide a standard for comparison



with other types of manipulators. They offer the operator a low mass



(5 kg) manipulation link to tasks with only six degrees of freedom. This



link essentially removes the enormous dexterity and tactile sensibility



of the human band and limits the operator to motion and sensing with the



six degrees of freedom provided.



The second manipulator chosen was the MA-23 force reflecting servo



manipulator developed by the French Atomic Energy Commission (CEA). This



manipulator system may be run with force feedback either turned on or



off. It is one of about 20 manipulators in the world with this feature.



An attempt was made to run the experiments with a similar American manipu­


lator, the E-4 manipulator at Fermi National Accelerator Laboratory,



Batavia, Illinois, but it was not operational at the time scheduled for



the experiment. Manipulators with force feedback capability were sought



to characterize the changes in performance attributable to force feedback.



The performance measuring system is based on a tensioned string that



measures the distance between the tip of a tool and a receptacle into



which the tool is to be inserted. The string also permits the progress



into the hole to be monitored as the tool is inserted. From records of



string length as a function of time, tool trajectories as well as veloc­


ities and task times can be determined. The system makes a permanent



record of the string length 25 times a second as the tool is moved to and



into the receptacle.



PORTABLE DATATAKER



A portable data collection system was designed and constructed to



obtain and compare performance of different teleoperators. The system



measures the distance from a tool to a receptacle in which the tool is



to be inserted. The datataker records the distance between the end of



the tool and the bottom of the receptacle as a function of time. This



distance is measured by a dacron string of low extensibility to the
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nearest 2 mm and is punched on paper tape at the rate of 25 measurements/



sec. The range is calibrated from 0 to 510 mm in 256 steps (8 bits).



The entire experimental arrangement is shown in Figure 1. The ex­


perimenter operates the tape perforator, while the subject manipulates



STRING TOOL 

REP L A C E A B L E S A I 

RECEPTACLE 

A K



100 MM 200 mm 400 mm 

TORQUE MOTOR,


WINDER DRUM, AND 

POTENTIOMETER IDLER PULLEY 
SA-4055-72 

FIGURE 1 TASK CONFIGURATION WITH MEASURING UNIT-AND ACCESSORY TABLE 

the tool. The measuring string connects the tool and the string puller.


2 

This system is similar to that previously described for measuring the



X, Y, and Z coordinates of the manipulated tool, except that a single



string is used. This simplification in measuring was suggested by the


1,3 

results of two previous studies using a more sophisticated datataker.



In these studies the distance between hole and tool as a function of time



was the most important parameter in explaining the experimental results.



This measurement could be used to divide the task into different therbligs



and to proportion a fixed amount of time for each one. Detailed descrip­


tions of the equipment including dimensions of the task boards and opera­

tion of the datataker are given in a technical report. 4 

73 Of e0





A data reduction program reads the paper tapes and makes a set of



measurements on the trajectories. The measurements, a sample of which



is shown in Figure 2, are briefly described below:



Reaction Time4Reaction time is the time after the experimenter 
turns on the punch, which is the audible signal for the subject 
to begin, until the subject pulls the string 4 mm from its ini­
tial length (time zero). 

Zero Length--Zero length is the string length when the tool is


at the entrance to the receptacle. This length is determined


from the calibration recordings.



300 REACTION



TIME 

TASK TIME 

200 
E


E 

START



2g DISTANCE 
Z 

aa 
_J 

100 

7 INSERTION * 

DEPTH, 25 mm 
ZERO " 
LENGTH " 

0 1 2 
TIME - see 
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FIGURE 2 SAMPLE TRAJECTORY MEASURED BY DATATAKER 
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Start Distance--Start distance is the difference between the


string distance at time zero and zero length as defined above.



Task Time--Task time is the time from when the tool is first


moved until it has been inserted 25 mm into the receptacle.



In addition to these parameters, the first times to a set of given
 


distances from the hole entrance are determined in order to plot the aver­


age trajectory. The set of distances are: 350, 300, 250, 200, 150, 100,



90, 80, 70, 60, 50, 40, 30, 20, 10, and 0 mm from the hole and 10, 20, 25,



and 30 mm into the hole.



PEG-IN-HOLE EXPERIMENT



The object of the task was to insert a set of pegs into a round re­


ceptable. The difficulty of the experiment was varied by using pegs of



different diameter. The experimental apparatus is basically the same as


1



that used by McGovern. The same pegs were used but a more precise re­


ceptacle was installed on the taskboard. Tool trajectories were recorded



as a function of time, using the data acquisition system.



Manipulators



Two different manipulators were chosen for use in the experiment:



a lightweight master-slave manipulator (MA-Il) of the family used for hot



cells and a heavy duty servo manipulator (MA-23) that has more general



purpose use. These manipulators are shown in Figures 3 and 4. Technical



descriptions including dimensions, load capability, speed, and backlash 

for the MA-Iland MA-23, respectively, are given in a technical 
report. 4 

Both manipulators were developed by the French Atomic Energy Commission



at Saclay, France, for radioactive handling by Dr. Jean Vertut's Environ­


mental Protection group.



Experimental Design



The basic experiment consists of the 7 X 3 X 8 factorial design shown



in Figure 5. For each distance and peg combination, eight insertions of



the peg into the receptacle were made. Seven pegs were used (Pegs 2, 4,
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FIGURE 3 MA-11 CABLE-CONNECTED MASTER-SLAVE MANIPULATOR 

(a) 	 MA-23 FORCE-REFLECTING MASTER I5 kg) (b) MA-23/200 HEAVY DUTY SLAVE 125 kg) 
SA-4055--78 

FIGURE 4 MA-23 SERVOMANIPULATOR ORINM-T PAGRB IS 



two, and switched on the punch, which had a distinct noise. When the



subject beard the noise, he proceeded to move the tool into the receptacle.



When the tool tip disappeared inside the receptacle (about 50 mm) the



experimenter turned off the punch and the subject returned the tool to



the.starting mark to prepare for the next insertion.



MA-lI RESULTS



The peg-in-hole experiment was run with two subjects in the manner
 


previously described and the resulting trajectories analyzed by computer



program to obtain task times and details on the trajectories. Task com­


pletion time is defined as the time from the beginning of the move until
 


the tip of the tool is inserted 25 mm into the receptacle. At this point



the tool is first inside the 25 mm thick receptacle, and the angular and



translational degrees of freedom are constrained as determined by the



geometry of the tool and receptacle.



Basic task times for the peg-in-hole task are shown in Figure 6.



These times increase as the difficulty of the task (peg number) increases.



Differences between the three trajectory lengths appear to be constant,



all three increasing with peg number. This suggests that the times are



accounted for by the sum of two functions; one a function of trajectory



length, the other a function of peg number (difficulty).



Since the precision of fit of each peg is double that of the preceding



one, the abscissa on Figure 6 is also a measure of task difficulty as


.7 

defined by Fitts. An interesting feature of the results is their upward



curvature: task time is an accelerating function of difficulty, whereas



Fitts law predicts a linear function of difficulty. Analyses of variance



were performed on the total task times to obtain the statistics for testing



hypotheses about these functions.
 


Task time is a strong function of the peg number [F(1,294) = 56.49,



p < 0.001] and is nonlinear [F(4,294) = 12.4, p < 0.001]. Task time is



also a strong function of the trajectory length [F(2,294) = 43.80, p <
 


0.001] but there is insufficient evidence to show that it is nonlinear



[F(1,294) = 0.05, p > 0.05]. The interaction between peg and trajectory
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FIGURE 6 MA-11 TASK COMPLETION TIMES 

length [F(12,294) = 1.69, p > 0.05] is not statistically significant,



suggesting independence between these two parameters. With this infor­


mation we can assume the following model for this task:



Task time = f1 (peg) + KI(trajectory length) (1)



where f is an accelerating function of the peg number and K I is a linear



function of trajectory length.



Trajectories for Pegs 2, 8, and 14 are shown in Figure 7. The tra­


jectories show a transition between the smooth insertions with Peg 2 to
 


the two-stage insertion with Peg 14, where the insertion is practically



stopped at the entrance to the bole. Similar transitions between smooth



'2
and two-stage insertions were observed in previous experiments1 as the



task difficulty was increased. Note that the initial trajectories for



the three pegp shown in Figure 7 have the same slope even though the



scale change makes it appear that Peg 14 is inserted faster.
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MA-23 RESULTS



In part of a program to determine the advantages of force feedback



in different manipulation tasks, the Peg-in-hole task was run on an MA-23



manipulator with and without force feedback. The comparison was made



with two subjects who served in both the force and no-force conditions.



The experiment was balanced for practice effects by starting one subject



on the force and the other on the no-force condition and running the two



through the design in reverse directions.



The task times shown in Figure 8 are of the same shape as those of



the MA-il. Generally, the MA-23 is 30 to 40% slower without force feed­


back than with it. There are no distinctive changes as the peg number



increases except for the most difficult peg (Peg 14). Here the insertion



time is doubled when force feedback is removed.



An analysis of variance of the MA-23 task times shows that times 

with force feedback are significantly shorter than without it [F(1,588 = 

129, p < 0.001]. Task completion times are also strong functions of the



peg and the trajectory length, both being statistically significant at



the 0.001 level. Task completion times are nonlinear functions of the



peg number, as with the MA-Il, because the nonlinear term is statistically



significant at the 0.001 level [F(5,588) = 19.16, p < 0.001]. The non­


linear term in the trajectory length [F(1,588) = 0.19, p > 0.05] is not



significant, indicating that, again, the time is a linear function of



trajectory length. Of the three interactions, force feedback and peg



number interact significantly (p < 0.001), whereas force feedback and



trajectory length do not (p > 0.05), and peg number and trajectory length



do not (p > 0.05). These results indicate that there are two models for



MA-23 performance in this task. With force feedback we have



Task time = ff(peg) + K2 (trajectory length) (2)



and without force feedback we have



Task time = ff(peg) + K2 (trajectory length) (3) 
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where the two curving functions, ff and fE of peg size are different, and



the linear functions of K2 of trajectory length are identical.



The trajectories shown in Figure 9 also indicate the general reduc­


tion in task time with force feedback. There is a slowing down near the



receptacle entrance (between 0 and 10 mm from receptacle) when force feed­


back is absent, and the insertions take about twice as long without force



feedback as with it. The general increase in time without force feedback



is apparent throughout the results; gross trajectories as well as fitting



movements require more time. With the shortest trajectory (100 mm from



the receptacle) gross motion and fitting are intertwined, and it may be



impossible to separate these motions (or therbligs) from the data without



a model.



SUMMARY



The formulation for the peg-in-hole task with the two manipulators



(Equations 1, 2, and 3) shows that task time is a sum of two independent



functions--a nonlinear function of peg number and a linear function of



trajectory length.



Task times as a function of peg are illustrated in Figure 10 for



several situations. Shown are data from the 400-mm trajectories performed



with £he MA-ll and MA-23 taken from this experiment and data from McGovern.



(406 mm trajectories) using the Ames Arm and the unaided human hand. The



same set of pegs was used in each experiment. Nearly identical functions



were obtained under the two force feedback and the two no force feedback



conditions, although different manipulators and test subjects were used.



Two functions explain the results of all the manipulators: one for force



feedback (fl, from Equation I, and ff from Equation 2), the other for no



force feedback (fl from Equation 3). It thus appears that the task time



can be predicted from the geometry of the task (peg number) and the



presence or absence of force feedback.



Task times as a function of trajectory length are shown in Figure



11. The linearity of the results as well as the similarity of the two



force feedback conditions are obvious for the MA-i1 and MA-23 (no force
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feedback) experiments. A statistical analysis of the results indicates



show that the slopes of the two
that there is insufficient evidence to 
 

This suggests that a
lines are different [F(1,488) = 1.76, p > .051. 
 

common linear function describes the trajectory times of the task for



from Equation 1 equals K 2 
 from Equations 2 and 3).
both manipulators (KI 


In conclusion, the functions for peg number and trajectory length 
offer



a mathematical basis that there are two independent parts of the 
task,



fitting part, which substantiate the results of

a trajectory part and a 
 

Hill and Matthews2 with a degree-of-constraint task, and the 	 industrial



time-and-motion studies with additive transport and positioning times.



which assumes an inverse re-
These results do not agree with Fitts' Law, 
 

lation between trajectory length and precision. 
 Thus, the distance moved
 

and the type of force feedback appear to be basic measures of manipulator



performance, independent of manipulator.
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Appendix B



COMPUTER PROGRAM FOR REDUCING PAPER TAPE DATA





PROGRAM PFOR (TAPEILiOUTPbTTAPE2=OUTPUT) 

C PFARV 11/27/76 J.W. HILL 
C 

C MAIN PAOGRAM 10 ()TAIN PERFORMANCE DATA FROM 
C PAPER TAPE RECORDINGS 

CONSTANTS FOR NIH SUHROUTTNE 
INTEGER IPTHRTDAIA(i6) 
COMMON IPTRTDATANLINES 

C


CONSTANTS FOR MAIN PROGRAM



INTEGER TPAJ(400)


INTEGER ZEROFLAG,COND.SUJ,RUN,EXP


INTEbER RTSDISTTRAJL.TSUM'.TOIF


INTEGER TIPE(2),LTINETRIDISTTDIST.NLOW


INTEGER DIST(2O)


DATA DIST /3EO.J0o,2E0.200,.I.,100,


1 *0,20,706O,SO,40.3(,AO,1,U0

2,-1 U,?0,-?5,-:io/ 

LTIME=20


IPTR=o


ZEO=O 
ZFLAG=0


COND=O


EXP=o 
SUHJ=0



RtJN=O 
NLINL5=6



C 

C 
C STARTING POINT -- INPUT A STRING 
C 
100 CAL. SIN(THAJ,tJCHpNCOINtNlCNDECNRAR)



MCHR=4


MDEC=12


vCOIN =I 

C IS IT A ?E4O SET (EXP 300) 
IF(ZFLAG.EO.I) bOT0 140 

C IS IT LUNG ENOUbH+ 
IF(NCHR.LT.MCHR) OOTO 120 

O IS IT A CONSTANT * 
IF((NCHR-NCON),LE. MCOIN) GOTO 300 

C IS IT A TRAJECTORY , 

IF(NOfC.GT.mDEC) SOTO 400 
C ITS NONE OF ABOVE. 

WRITE(2,110)fNCOIN.MOEC 
110 FORMAT(* STRING NOT CONSTANT, NCHR-NCOIN .LF.4,



I 13,/* 5TRING NOT TRAI, NOLC.GT.*,13)


GOTO 200



120 WRITE(2.L30)MCHR


11O FORH1A1(4 STRING TOO SHORT, NCHR.LT.*,I3)



O00 200 
140 ZFRO=NHAR 

RT(,150)14HAR 
1b0 FORIAT( * /ENO nO, 13) 

7FI.AO=n


6OTO 100



200 CONTINUE



C 
C ERROR INDICATION - - -
C OuTPLJI TIE COUNTS AND THE DATA STITNG 
C 

WRITF(2.d2O) NCRNCOININC.NDECNBAR 
?20 FORMHI(lXIb. 0 CHR*,I6, (O0l,*,b, IN*,16,* OEL*,I(,*=bAR*, 

* LINE*,I5)
0 

WRITE(2?30) (TRA.f(I)I=INCHR)


30 FORMAl(20(1X,03))



(30 TO 100



ORIGINAL PAGE IS 
OF POOR QUALI 

91 



C


C



C STRING IS PRETTY CONSTANT 
C 
300 CUNTINUE 
C IS IT A RUN+ 

yF(NRAR.GT.0.AND.NBAR.LT.16) GnTO 320



C IS IT A CONDITION+


IF(NBAR.GE.64 tAND. NBAR.LT.12i) 
 GOTO-330
 

C IS- IS A SUBSZECT+


IF(NBAR.GE.128 AND. NEJAR.LT. 148) aUTO 340



C IS IT A CALIBRATION


IF(NBAR.EQ.192) GOTO 350



C IS IT AN EXPERIMENT+


IF(NHAH.GT.192 .AND. NBAR.LT.202) GOTO 360



C ITS NONE OF ABOVEV


WRTTE(2,310) NAAR



310 FORHAT(IX.13.* NOT A PERMITTED CONSTANT*)


GOTO 200



320 RUH=NAR


OTO 100



330 COND=NiIAR-64


GO6D 100



340 SUBJ=NBAN-128


GOTO 100



350 ZFLAG=L 
GOTO 100 

360 EXP=NBAR-192 
GOTO 100 

C


C STRING LOOKS LINE A TRAJECTORY


C


400 CONTINUE


C


C DETERMINE REACTION TIME (AT IN R5 THS OF SECOND)


C AND STARTING DISTANCE( SDST IN MtA)


C


c BY PEELING OFF CONSTANT tUNBERS


C



PRT=2


TRA.JI=TRAJ(I)


TSUM=TRAJ1


00 410 I=2,NCHR


TDTF=TRAJI-TRAJ(I)


IF(TDIF.GT.MRT) GOTO 425


TSUN=TSUM-TDIFTRAJI



410 CONTINUE

WRITE( ,420) HAT


4?0 FORMAT(* BAD TRAJ, NO CHANGES .GT.p,13)

GOTO 200 

425 RT=I-1 
SDIST (TSUMTSUM TSIJ)+TSUMHT)/(RT RT) - ZERO-ZEhO 

C

C ZERO TIME ARRAY

C


00 430 1=1,LTIME

430 TIME(I) O

C 
C SLAPCH THROUGH DISTANCE ARRAY TO FIND



C FIRSr APPROPRIATE DISTANCE


C



RTUIST=2*(TRA)(RT)-ZERO)


00 440 I=I.LTIME,


IF(DIST(1I.LE.PTDIST) GOTO 4bO



440 CONTINUE


WRITE(2,445) RTDISTRT,SVIST



445 FORMAT(* HAD TRAJ. PTDIST=*,I3.
 TOO SMALL./

1 16,*=AT*,16,OZSDST*)



GOTO 200


450 CONTINUE
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C


C FILL IN TIME TABLE


C



NLOW=RT


00 480 ,J=ILTIME



-TDIST=UIST(J)


C



DO 460 K=NLOWNCHR


IP((TRAJ(K)-ZERO)*2,LE. 1DIST) GoTO '70



460 CONTINUE


C ERROR HANOELING



WRITE(2,465)TDIST 

0


465 FORMAT(* AT END OF TRAJ, DID NOT GO 8ELO4 .I3,0 	 PH)

DO 468 JJ=J.,LTIME 

468 TIE(JJ)=NCHR-RT 
GOTO 490



C END OF TRAJ ERROR


470 NLOW=K 
 

TINE(J)=K-RT


4O 	 CONTINUE


490 	 CONTINUE


C


C


C OUTPUT THE DATA


C


C



wRITE(2,50)EXPSURJCOND,RUNRTSDIST,(TIE(I)*IzlLTIE) 
500 	 FORMAT(12,*E*,I2,tS*,12,*C*,I2,*R *9 2213)



6OTO 100


END



C INPUTS A SINGLE NUMBER FROM INPUT FILE


C



SUBROUTINE NIN(X)


INTEGER X.TOATA(16),PTR


COMMON PTRTDATANLINES



NNAX=16 
Ip(PTR.GT.O.AND.PTR.LT.NMAX) GO TO 100


NEOF=l 

40 	 READ(1,5O)(TOATA(I), 1=1.NMAX)

50 FORMAT(03, 15(04)1 

IF(EOF(1l)NE.O) ,GOT0 150 
- NLTNES=NLINES 1 
PTR=O 


100 	 PTR=PTR*1


X=TDATA(PTP)


RETURN



150 	 WRITE(2,155) NLINES


155 	 FORMAT(* EOF --------------
*,I6, LINES RLAA*) 


NEOF=NEOF.1


IF(NEOF *GT. 10) STOP 1


GOTO 40


END 
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SURROUTINE SIN(TRAJNCHRNCOINtNINCNDECNSUM)


INTEGER THAJ(1)


INTEGER XXL,XT



C 

C SUBROUTINE TO PLACE A LINE OF NMRERS SLPERATED 
C BY ZERO INTO ARRAY TRAJ 
C 
C FIRST DETECT NON-ZERO START- THROW AWAY FIRST NONzERO NUMBER


C 

XL=O 
10l X=XL 

CALL NII (XL)


IF (X.EO. 0 ) GO TO 100



C INITIALIZE, XL = LAST X


C NCOIN=O



NDEC=O


NCHR=O


NStIM=O 

C 

C INPUT NUMHER STRING TO TRAJ ARRAY 
C LAST NONZERO LOST 
C 
200 	 CALL NIN(X) 

IF(NCHH.GE.400)GOTO 300 
XT=X-XL 
IF(XT.GT. 40) GUTO 300 
IF(XT.LT.-40) GOTH 300


IF{X.EQ 0) 60 TO 300


NCHR=NCIHR-1


IF (X.EU. XL) NCOJN=NCOIN4I


IF IX.LT. XL) NOEc=NDEC+1


TRAJINCHA)=XL


NSIM=NSUM+XL


XL=X


60 To 200



300 NINC=NCHR-NCUIN-NDEC


NSUM=(NSUM+NSUMtNCHR)/(NCHR+NCHR)



C 
RETURN 
END
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Appendix C



DIMENSIONS OF THE RECEPTACLES AND TOOLS





38.38.1S38.1 

(a) RECEPTACLE 0 	 (b) RECEPTACLE 1 

(c) RECEPTACLE 2 	 (d) RECEPTACLE 3 

NOTE: 	 All four receptacles are cut from 25.4 mm (1,000-inch) thick aluminum plate 127 mm (5 00 inches) in diameter. 

SA-4055-95 

FIGURE C-1 DIMENSIONS OF THE FOUR RECEPTACLES 
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I FTOOL TOOL 2 TOOL 3 TOOL 4 
38 

133 

Co 

6.59 
22.22 22.10 6.40 22 .28 6.472.0 

-H-H 
22.70 

52.30 5. 

NOTE' Dimensions In mnilimeters. 

SA-4055-21 

FIGURE C-2 DIMENSIONS OF THE FOUR TOOLS 



PEG PEG 

NUMBER DIAMETER 
(mm) 

1 12.70 

2 25.40 

3 31.75 

4 38.10 
88 mm 

5 41.28 

6 44.45 

7 46.03 

8 47.62 

9 48.41 
10 49.23 

11 50.01 6-32 TAPPED 

12 50.39 HOLE FOR D 

13 50.60 ATTACHING STRING 

14 50.70 

15 50.75 

SA-4055-93 

FIGURE C-3 DIMENSIONS OF THE PEG SET 
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Appendix D



THE MA-I1 MANIPULATOR 

The MA-lI data sheet prepared by the French Atomic Energy Commission


(CEA) is reproduced as Figure D-i. Performance measurements (both joint­

by-joint and overall) made by the CEA6 are,given in Tables D-I and D-2.
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The MA-1I is a light and highly sensitive 5 kg manipulator with motorised depth displacement. It can reach the ceiling 
of the hot-cell, and is designed for cells of 0.9 to 1.5 meters depth, with lead or cast iron shielding. It may be fitted 
exceptionally to concrete-shielded enclosures. -

TYPICAL CELL OF 
USUAL 5 
DIMENSIONS 

1 Manipulator 7 4


2 Window


3 Penetration and



gamma shielding


4 Standard frame (140 mm ­


in diameter)


5 Protecting booting


6 Tong


7 Tong exchange fixture.



SA-4055-97 

FIGURE D-1 DESCRIPTION OF MA-11 
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OBSERVATIONS 

S , n 

I/Working level at 1 meter above floor. 

2/ a is the distance between shielding and contain­
ment enclosure : generally 50 m. 

3/ Items not indicated in the drawing are 

L = width of work-p6st 
E = between-centers of two manipulators. 

4/ G is a step provided for convenience. 
5/ varieswith shielding thickness (5,10 or 20cm 

lead), the same applying to LT. 

F-­ ----­' A 

dimensions in mm. 	 DIMENSIONAL DATA 

OF SYSTEM OF MANIPULATORSOF CELL 
MA-Il P1 P2 L H D1 02 Hp E Al A2 Alm A2r 

MANIPULATORS 

normal range t000 1250 250 x 250 1500 1300 900 400 1900 700 400 650 400 650 

long range 1200 1500 300 x 300 	 2000 1400 900 500 1900 a00 510 740 400 650 

COVERAGE



The coverage is exceptionally extensive, particu­
larly towards the top of the cell. 

~DESIGN 	 : 

Service Technique d'Etudes de Protection 
Centre d'Etudes Nuclaires de SACLAY 

3 BP n0 2, 91- GIF-SUR-YVETTE 

MAKERS: 

Working he , /d 4France : La Calh~ne 
volum reach 5. rue Emile Zola 

95- BEZONS 
pec-tive. U.S A : Central Research Laboratories 

Redwing (Minnesota). 

(at wrist) isometric per­

1- celing-­
2- penetration axis, right hand manipulato 	 C E.A. Licence 
3. far wall 
4. 	 containment wall
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FIdURE D-1 DESCRIPTION OF MA-11 (Concluded) 
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Table D-I



MA-li PERFORMANCE JOINT BY JOINT



Forearm Wrist Wrist


Lateral Elbow Shoulder Rotation Tong Tong



K Y Z Azimuth Elevation Rotation



Inertia (kg) 2-5 1 6



Friction (N) 3.1 0.8 3.5 0.6* 0 .9t 1.2*



Deflection (mm daN ) 4.4 13.5 3.7 20 17 15


(Master to slave)



Full load (mm) 25 70 20 100 85 75



Backlash (m) 8 8 0 0 10 2*



Limited by operator fatigue = 1 kg with one hand (3 kg with two hands)


tAt tong tips


tAt one fingertip, tong opened at 80 mm.



Table D-2



MA-i1 PERFORMANCE OVERALL



Mass capacity permanent 1-3 kg (limited by operator fatigue) 

Mass capacity 60% duty cycle 5 kg any direction any position (mdvable by the index­
ing electric actuator) 

Maximal force 8 kg against gravity 

Rupture force 20 daN 

ORIGINAL PAGE IS
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Appendix E



THE MA-23/200 MANIPULATOR 



Appendix E



THE MA-23/200 MANIPULATOR



The manipulator MA-23 developed by the Atomic Energy Commission of



France is servo-controlled. It has electronic control with a bilateral



servomotor that has reverse power action, i.e., feel. Its dimensions



appear in Figure E-1. The controls of the various movements are actuated



by D.C.-coupled motors, and the mechanical movements are actuated by
 


systems of stainless steel cables and tapes, thus eliminating backlash.



The manipulator is of the articulated type, resembling the human



arm. The hand has only two fingers or tongs. The MA-23 allows an



operator to easily carry out complex movements in rapid sequence. The



load capacity is 200 N (41 ib) with a possible overload of 10 to 20%.



Working volume is shown in Figure E-2.7 The no-load response is within



0.5-1.0 m/sec for 1 to 4 g; with load, the performance is slightly slower.



For manipulator type MA-23/200 N, arm weight is 180 kg. System perfor­


mance for the three versions is given in Table E-1.8 The 200 N, or



heavy duty slave, was used in the experiments.
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- ~2200 a 

0 5 

COMSSRA 
B2-BR5EQ,~q V "NRI 

-- O-MBAT 

U,9i, 

SA-05-9 

FIGUREE-1MA23 SLAE.WORKNGSVOLMEI(2 AkLgE)I 



650 , 400 - 404,5 , 80 

"4 

1800 

- o -o808 

SLAVE135 

, 700 

175 

FIGURE E-2 DIMENSIONS 

MASTER 

OF THE MA-!23 MASTER AND SLAVE 
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Table E-l 

MA-23 SYSTEM PERFORMANCE



Master Arm and


Light Duty Slave Standard MA-23/100 Hdavy-Duty MA-23/200



Force-Feedback Ratio


1/1 to 1/2 1/1 to 1/2 2/5 to 1/4 

Mass capacity
Maximal 20-30 minutes temporary load 
Pay load 60% duty cycle 
Permanent load 100% duty cycle 

6 kg 
5 kg 
3.5 kg 

12 kg 
10 kg 
7 kg 

24 kg (30) 
20 kg (25) 
14 kg (17.5) 

Maximal force 
Guaranteed in any direction, in any position 6 daN 12 daN 24 daN (30) 

Inertia 
At arm terminal 
Reflected to master in master slave mode 

2 to 5 kg 
3 to 7.5 kg 

2 to 5 kg 
3 to 7.5 kg 

5 to 12 kg 
3 to 7.5 kg 

Acceleration 
With no load 
With pay load horizontal 

Over 10 ms 2 
6 to 8.5 ms - 2 

Over 20 ms­ 2 

8 to 10 ms "2  
Over 20 ms 
7 to 10 ms "2 

- vertical 1 ms "2 1.3 ms -2 1.3 mg "2 

Maximum velocity Over 1.5 ms - I 0.85 to I ms-1  0.5 to 1 ms " 

Friction 
At arm terminal - when off 
Reflected to master - when on 

1.5 to 3 N 
2 to 6 N 

2 to 6 N 
2 to 6 N 

5 to 10 N (6 to 
2 to 6 N 

12 N) 

Deflection 
Arm alone 1 to 4mm dan "I  1 to 3 mm dan"1  0.4 to 1.4 mm dan "1 

Full load master to slave 10 to 30 mM 14 to 56 mm 10 to 50 mm 
Peak power <500 watts 500 watts 1000 watts 
Total mass (one arm) 90 kg 90 kg 180 kg 
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