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Introduction

The writing of this paper was motivated by the”belief that the fields
of digital signal processing and control an& estimation theory possess
eﬁouqh similarities and differences in philosophy, goals, and analytical
techniques to merit a detailed joint examination. In order to explore the
relationship between these two fields, I found it essential to coecentrate

| L
on several specific research directions to provide a focus for my investiga-

|
tions. The results of this study were a talk delivered during the 1976 IEEE
Arden House Workshop on Digital Signal Processing, the present paper, and a
far more comprehensive manuscript [Z%].

Although the paper consists of éiécussions of several specific research
directions, the primary emphasis of this paper is noﬁ en'results. Rathe;,
Ifhave been far more interested in underetanding the goals o£ the resea:ch
and the methods and approach used by.Workers in bot@ fields. Underetanding
'the'goale ﬁey~help us to see why the”techniqges'ueeé in the two disciplines
differ. Inspecting the meeﬁeds and approaches may allow one to see axees
in which coneepts in one field ‘may be‘usefullfwapplied in the ctkex. 1In
summary, the prlmary goal of thls study is to prov1de a basis for future
collaboratlon among researchers in both flelds.

It is hoped that the above comments w111 help explain the spirit in IVV
which<th%s paper has been &iitteﬁ. In reading thls paper, the reader may
find meh§ comments -that are either partially or totally unsubstantiated;
These poieﬁs have been included in keeping with the specuiative nature of -

the study. However, I have attempted to provide background for the specula—

tion and have 11m1ted these comments to questlons which I feel represent



exciting opportunities for interaction and collaboration.>AC1ear1y these
issues must be studied at a far deeper level than is possible in this initial
effort. To aid others who may wish to foliow up on some of'the-oirections
d%veloped in this paper, an extensive bibliography has been included. 1In
addition, the interested reader is referred to [21l] in which all of these
research directions are explored iq substantially greater breadth and detail.:
Nowhere in the paper have I made a direct attempt to define the fields
of digital signal processing and control aro estimation. RatherJ I hope
that by examining many of the iesues of importance to workers inithese
fields, the reader will be able to piece together a picture of the dlsc1-

plmnes and their relatlonshlp to each other. As a preface to our examlna-

tion, 1et me ment;on several p01nts concernlnq each fleld.

""In digital signal processing, one of the crucial problems is the design

of an implementable system meeting certaiﬁ'given design specifications such

as an ideal frequency response. Here the emphasxs often 1s on the word

1mplementable, w1th a fair amount of attentlon pald to issues such as the

structure of the digital filtex, its complexlty, in terms of erchltecture

and computatioh time,>the effect of finite wordlength oniperformance,:etc.
Mﬁch of this attentiop is motivated oy the need for extremely efficient
systems to‘per:orm complex signal processing tasks (e. g., the 1mp1ementatlonf
of hlgh order recur51vevor nonrecursive filters) at very high datalrates
(such as those encountered in speech processing, where one runs into sampling
rates. on the order of 10 kHz).

In control and estimation, the emphasis has been far less on implemen-

tation ‘and more on developing methods for determining system design specifi-
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cations for estimation or control systems. At one level these spesifica-
tions are just a particular class of design guidelines which can then be

used to construct an implementable digital system. . However, there are

major differences betweeﬁ the systems arising“%n the control context and the
t%pical digital processing application@"ro: oﬁe thing, the data rates for
céntrol systems are ofteglfsr lower (e.g. in aircraft control systems ' (
sampling retes on the order of;,; kHz are often encountered). More funda-
mentally, however, the signal processing>;e be done in a control system e
c;s;ot be judged by itself, as can other signal processing systems, since
it is part of a feedback loop, andVEEe effect of the processing must be
studieé in the sontext.of its closed ioop effecﬁsssv |

Also, many modern conﬁrol and estiﬁation tesﬂniqﬁes,involve the use

i

of a state space formulation, as opposed to 1nput—output descrlptlons which
aée ‘usually encountered in digital signal processing appllcatlons. Some
of the reasons for this difference will be made clear in the following sec-

tions, but ohe implication is immediately evident. The use of a state-space

description implies that the system under consideration is causal. In

~standard feedback control problems thisiis cleagly the case, and thus state-

space formulations make a great deal of sense. As we'll See, there are . o
dlgltal s1gnal processzng problems involving noncausal systems or systems

causality has no intrinsic‘meanlng. Thus, whlle we will find several places 5'
in which state space concepts fit in naturally in the digital signal pro-
cessing context, we'll also find others in which that is decidedly not the

case.



l, The preceding comments were made in order to provide the reader with
some insight into the perspective I have taken in writing this paper. With
this as background, let us begin our examination of research topics in the

two fields.



A. Syﬁthesis, Realization, and Img;emehfation

In this section we investigate one subjéct area in which some . of the
differences in perspective between the two disciplines are most apparent.
SQecifically, we consider thgrquestion of design.’vHowever, our discussion
wﬁ;; not deal very much with design methods but raéhé;Lwith the question of

trying to pinpoint what researchers in the two disciplines mean by»”desiQn"

and what sorts of problems their féchniques are equipped to handle.

Perhaps the most obvious difference between the fields is in the type

of system representations used. In digital signal processing, the emphasis

is héavily on input/output descriptions, while in control and estimation the

emphasis is more on state space models. The reasons for this difference

stem from the different questions addressed by researchers in the two disci~

i
i .

plihes. iﬁ_digital signal processing one is interested in the issue of
implementation of a system with a specified input-output behavior (heﬁce
the need for an input-output description),--Questiqﬁs such as efiicieﬁt
implementation and number of bits needed to achieve the desired level of
accuracy are of great importance. T

' On the other hand, in control and estiméfion»theoxy‘the issﬁé of
implementation is not cogsidéred to nearlefhe same extent. Realization
techniques do~adbfess the éuestiéﬁ of consﬁrudting a sta?g”spgggireal;za—
tioﬁ'thaﬁriéa%s &o éV#peéiiiedWinput¥output~behavior. ;However:wasiéiééussed
in the folfowiﬁﬁ‘subs;céions, such techniques do not &ddress many of #he
majéréissues involved in implementation, and, in faét; staﬁe space realiza-
tions, when viewed as,impléméhfable algorithms, don't include some of the

most impo:tant_system strﬁctureslthat are used in}digital,system design.
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Neyertheless, state space models do play an important role in control and esti:

“mation system design. Specifically, a state space model for a given physical

syStem, is a necessary ingredient in the application of a number of tech-
|
ﬁiques for the analysis of system performance and for the design of feed-

back control or estiﬁétion‘é&stems“(i.e. the specification of the desired

input-output behavxor of a control or estimation system).
Thus, we see some fundamental dlfferences between the. perspectlves of
researchers in the two dlsc1p11nes. There also clearly ex15t several areas

for interaction between the fields -- to develop useful multl-lnput/multl—

~‘uoh€put structures (a marriage of digital implementation and multivariable
‘reallzatlon concepts), to utilize state space technlques to analyze the

.performance of digital filter structures, and to: cons;der the dlgltal lmple-

mentation of state-space control and estlmatlon system designs.

All of these issues are discussed in detail in this. section.

A.l State Space Reallzatlons and State Space Desmgn Technxques

 The baszc real;zatxop problem is as follows: we are given a (oossmbly

time-varying) description of the input/output behavior of & system
k
y(k) = » T(k,i) u(d) (A.1)
T iZo- -
where u and y may both be véctors. Iﬁ the time-invariant case we have that

the sequence of impulse response matrices satisfies

iy |
TG, 4) = T(k-1,0) S T, o (a.2)

and in this case we may be given an alternative input/output description



of minimal dimension, and any such minimal realization can be obtained

in the transform domain

Y@ =6(2)U(z) , Gz = 3 Tzt (A.3)
i=0 -

The realization problem consists of finding a state space model

x(k+1) = A(k)x(k) + B(k)u(k)
. (a.4)
y(k) = c(k)x(k) + D(k)u(k)

that yields the desired input/output behavior ((A.1l) or (A.3)) when
x(0) = 0.

‘The realization problem has been studied iﬁfdétail in the o bsST

literature, and one aspect that has received a great deal of,gttention

is that'dﬁﬁéetermining¥miniﬁal realizatibns -- i.e. models as in (A.4)

with the dimension of x A#vémall as possible. The basic idea here is that
a minimal realization has no superfluous statesfthatweither cannot.beﬂ
affected by inputs or do not-éffect the oﬁtput. Thesé éoncepts lead
directly t0~yhg pgtions qf ¢Qntrollability and observability. In‘the time-
invariant case, one chtains a rather complete description; Spgcifically,
we find that.the system (A.3), has a finiteadimensi5hal rgalizatipn‘if and
oniy‘ifLQ?z)ii$ rational with each élément{haying no‘more;zeroes than g?Les;

Furthermore, any controllable and cbservable time-invariant realization is

from a particular one by'chapge of basis (see, for examp1e,_[A-4,5,27,30]).
‘The algorithm of HO'LA—2$} and that of Silverman and Meadows [A-5]
provide methods for extracting minimal constant~realizations from the Hankel

matrix determined by the Ti,(see Subsection B.3 and the references for



details of these results). Thus, if we are given a design specification or

‘Plant description in terms of a rational G(z), we can readily determine a

minimal realization. On the other hand, if we are given G in the form (a.3)

as opposed to in rationel form, partial realization algorithms must be used.

We will discuss such algorithms in Subsection B.3.

State space realization algorithms can, in principle, solve certain

questions related to system synthesis. Specifically1 the computation of a

minimal realization allows us to determine the minimal amount of storage
required in any implementation, and one of the most important aspects of

the state-~space approach is that itﬁailows one to consider multiple input/

multiple output systems and timeJVarying systems; Slnce any mlnlmal state
)

space realzzatlon can be obtalned from a glven one by change of coordlnates,

cléarly realization theory allows some flex1b111ty in deslgnlng goed dlgltal

filter structures. But it is far from the complete answer, as we will see

in the next subsection. Not only is memoryxbecoming cheaper (ﬁhus‘reducing

the lmportance of mlnlmallty), but there are other lmplementatlon issues

besides storage that are of 1mportance,

and one also runs into limitations

\
i

in xnterpretlng state space reallzatlons as fllter structures.

A more lmportant aspect of state space reallzatlons comes -from the fact
that they play an extremely 1mportant part in a number of control and estima~

txon de51gn problems, where one uses state space reallzatlons to model the

system to be controlled or the sxgnals tc be filtered. By d01ng this, one -

can bring into play extremely powerful state space techniques for compensator
design {a-2, 6], decoupling of the effects of different input channels [aA-7],

etc., and we refer the reader to the special issue of the IEEE Transactions
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on Automatic Control [A-32] for an overview of many design methods that have

been developed. vThese design algorithms allow one to consider a variety of
'extremely'complicated multivariable system problems within a single framework,
andptpiS‘ability to handle many variables at once is at the heart of the
value of state space concepts.

One important»aspect of,somevof’these technieoes isrthat they aliow one
to solvefquantitative optimization problems. The linear-quadratic optimal
control problem is an examole of tnls, as is tne“de51gn of a wlener fllter
as a steady-state Kalman fll [Afs, 27]. In thls_case, ‘we peg;n-by‘modell;ng
the observed siqnal as the,additive white noise-corrupted outpﬁt50f a linear
state-space model (a shapiAg‘filter) driven by white noise.‘ Having solved :
this realization problem, the determination of the optlmal Kalman fllter is |
reduced to solv1ng a tlme—varylng Rlecatl equatlon‘or a nonllnear algebralc
Rlccatl equation for the steady—state (Wiener) filter. Algorlthms for solvxng :
this algebraic equation essentially solve the Wiener spectral factorization

' problem. :

In addition to providing a framework for the specification of designsu

the state space framework allows one to analyze the performance characterlstlcs

of the overall system after it has been lmplemented. For example, the tech-

nlques descrlbed in Sectlon C can "be used to study the stability characteristics

of -the system.  Another analytlcal tool used to study system performance is

covariance analpsis. Con51der the model
Cx(k+1) = Ax(k) + w(k), y(K) = Cx(k) + v(k)  (A.4)

where w and v are zero mean, independent white ncises, with variances' Q@ and R,



respectively. These noises may represent actual ﬁoise sources §r the
effebtsfgf small non-linearities, unmodeled phenomena, etc. A siméle cal?
culatioﬁi&ields an equation for the covariances P(k) and S(k) of x(k) and
y(k): o o

P(k+1) = AP(K)A' +Q, S(k) = CP(K)C' + R | (a.5)

If A is a stable matrix, we can evaluaté the steady-state covariances P

and S by solving tHe Lyapunov equation

APA'-P = -Q | . (A.6)

A.2 The Implementation of Diéi;alﬂSYStem%ﬂéhd Fiiters

As discussed in fiél], the;design of‘diéital s¥stems consists of ‘ ;
several parts; includingﬂthe géééification of ;hg désiied input/output |
relationship and thevimplementation, using“éiniﬁéyé;égision arithmetic,
of a syétemlﬁhat aéprsximates tﬁié desirea @eh#&ier;r From-this point of
view;  the methods of éﬁé prgqéding secﬁich Aeal with the first issue.
Realization procedures pla§ an indirécﬁ_xgle in these techniéues in pro-
'vidinQ“the state space models oﬂ which the éesign methods are based. But
whap~about\realiZatidns’ffém;thé poiht{of?view~of system synthesis and
implementa;égp?ﬁ A;er shgllysee, s;éte $§ace»realization$ ¢an play some
role, but fhé?’ére far from providiﬂg the éﬁtire solution. | |

A wideVVa;iety éfyd}giﬁal filter design methods have been deveioped to
deél'with the second isgue;ifOne factor that does enter into this design
question is the number of storage elements (delays) in the filter structure,

and thus the issue of minimality is of some importance. Of course, in

{
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deaiing with single-input, single~-output ﬁransfer functions, one can read
off‘the order of a canonic structure and can construct several quite

easily by simple inspection of‘the specified transfer function. The deter-
minetion of the order of a cahogio realization~ana the ability to ooﬁetﬁuct
several minimal reallzatlons without" much dleziculty barely scratches the
surface of the structures problem, however. ' As pointed out in [A—l], the
various filter structures available may be equlvalent from an lnput-output
viewpoint lf one didn't have to worry about ccmoutatlon time, the complexity
of the dlgltal archltecture or algorlthm reqplreé to implement a given
structure, the effect of anxte precos;on.xn representlng filter coeffi-
cients, or the effects of overflow aod quantization. These are the issues

that motivate much of the study of various filter structures [A-1l, 10,11].

Let us examine some of these issues in the context of a particularly

-important structure, the cascade form, obtained by factoring a transfer -

-~

function H(z) as a product of lower-order transfer functions. Consider the

example

2+ (b+d) z+bd _ (1+bz 1) (1sdz )

-1

- H(z) = =1
z - (a+c)z+ac (l=az 7) (l-cz ")

(A.7)

In Figure A-l:ﬁéghaveQreaiizea thie filter as the cascade of two first
‘order filters#_ No;e that the overall’filter is minimal.

ih Section C we.coneider the ef fects on dﬂgxtal fllter performance of
quantlzatlon and overflow on system atabllltj | An alternatlve, approxlmate

method for evaluating the effect of finlte word length on system performance

is to model each quantization as if it introduced noise into the system

R}
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Figure A.l1 A Cascade of Two First Order Filters .
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[A-1]. By assuming independence of these various sources -- a rather strongk.v
and soﬁetimes unjustified assumption (as the existence of period effects,
i.e. limit cycles, indicates) -- one can in principle evaluate the overall
noise power at the output, and thus can obtain a measure of the size of
quantization effects. As an example, consider the case [A-1l] of fixed-point
arithmétig and roundoff quantization in which the gquantization interval q
is 2-b. In this case, the quantization error e introduced by a single mul-
tiplication takes on a value betweeﬁri.Sq. If one makes the assumptién
‘that e is uniformly distributed, we find that it has‘zero meén;éﬁd variance
q2/12. Then, for example, in the cascade filter of Figure A.l, one could |
add one such noise source foiiowing each of the four multiplications.

Another extremely important issue in filter design is the sensitivity
of filter perféfmance to variation in coefficients. Thisvis quite central
an issue, since one can only repfeéent éoefficients ﬁp to a finite degree
of accuracy; and hence one cannot obtain filters witﬁ arbitrary pole and
zero locatiéns. The allowable poles~and zeroes’and the sensitivity to
variations in parameters depend quite‘significantly on théAQarticular strucf
ture under consideration. For example, parallel and cascadé structreérare;
often used because the”pertﬁrbations in the poles are isolated from one
another.

For the rem;inaer bf this section, we wish to examine the relationshi§ 
of state space techniques and concepts to some oféthé questions in digital -

filter design. Let us first examine the use of state space techniques to

determine filter structures. Consider the transfer function (A.7). In this

’;
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case, state space techniques yield a variety of minimal realizations of the

form

(n.8)
y (k) = [hy, h2] x(k)”f u(k)

|
i :
If we interpret (A.8) as an algorithm, we must compute the various products

f;ﬁxj(k), giu(k), hixi(k) (i, j=l,2); ;QE perform the;apgfqgriate additions.

Noté that in general, there are 8 multiplications and 6 additions required.
;': Now consider the cascade structure of Figure A.l. Interpreting it as

a% algorithm (a and b multiply xl(k), c and 4 multiply xé(k), and wg»perfofﬁ '

tLe required additions), we see tﬁ;t we require 4 multiplications aﬁd 4 addi-

tions, but this is not the most important difference between the two algorithms,

'since it is possible to obtain realizations (A.8) with scme zero elements in

(F,q,h). However, the crucial difference is the following: if one interprets

.a state space realization as determining an algorithm of the type indicated,
- " i N\

then there is no way that the cascads algorithm is of this type! This is not

to say that one cannot find a state-space description of the cascade realiza-
tion. In fact
a 0] ‘ 1

i x(k) + u (k) (a.9)
(atb) ¢ o 1 S

x(k+l) =

y(k) = [(a+b), (c+d)lx(k) + u(k)
'is such a réalization. |
The point made above may, at first glance, sesem to be trivial, but it is

not, since it points out that although any (infinite precision) algorithm can -
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be{described dynamically in state space terms, direct interpretation of a
stéte space descriptiph as an g;goritﬁm does not allbw one to consider all
po%sible algorithms. That is, it is relatively easy to go from an algorithm
toE; state-é%ace description, but it is not at all nétural or clear how to
go the othg;_way, and hindsight is needed in order to interprgt a realiza-
tion of the form of (A.9) as a cascade structure. |

Thus, we see that state space mo&eys have lim}tatibn§ when one considers_
the issue cf:implémentation. There are, however, Leveral‘areas where inter-

action between the two fields may be of use. First of all, the techniques

uﬁed in digital signal processing should be of use in considering the imple~

| ) o :
mentation of control and estimation system designs such as those mentioned

in Subsection A.l. Also, recall that state space realization techniques

|

|

a}low one to determine minimal realizations for.systems with multiple ihputs
aAd outputs. It is possible that this fact,.combined with a thorough under-
standing of the relationship between state-space xealizations and various
digital system structures will lead to the development of useful filter

structures for multivariable systems.

""" Also, as mentioned in the preceding subsection, the state space frame-

work is particularly'useful for the gnqusisuoi the propertieé of dynamical

systems. Thus, it seems natural to ask if these fe¢hniques mﬁght be usefﬁl

in the analysis’of various filter;strﬁctures;filngSection C we discuss this
duestioninth‘regééct“touétability aﬁalysis technigues. Aiso, it’is poséiﬁlé
that state-space sensitivity technigues [A-9] could be usefﬁl in the study
of the sensitivity of various digital filter structures, but this awaits

further study.
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'WMFinally, let us examine the utility of state-space techniquesVihwthe
anélysis of the éffect of gquantization noise on filter performahce. We do
this by eiample, although it should be clear that this approach extends to
arbitrary sﬁructures. Consider the cascade structure in Figure A.l where

] ,

we add quantization noise after each multiplication. A‘'state space repre-

sentation of this system can be written down by inspection:

x(k+1) = Fx(k) + gu(k) + I'N(k)'
(A:-10)
y(k) = h'x(k) + u(k) + ¥N(k)

where F, g, and h are given in (A.9), N(k) is the~4-ﬁimensioﬁai noise vector |
whose components are the noises contribuﬁea;By the multiplications by a, b,

, | f
c, and 4, respectively. Then Y = (1,1,1,1), and

- 171 0o o0 0 . A
T = b R (A.11)
[ 1 1 1 0 : ’ : c

|
1f we make the usual independence assumptions concerning the components and
time-behaviox of N, we can directly apply the covariance analysis equations
(A.5), (A.6) to determine the effect of quantizationhnoise on x and y. iote

that (A.S),‘(A.G) yield the effect of noise thrqughout the netéotk. The

utility of an approach such as this for digftal network analysis needs to be

‘examined more carefully, but it appears'thgt it may be computationally

'Supérior to other methods, such as those that use signalvfch graph tech-

niques [A-12] or that require computing a number of partial transfer functions -

i
i

[A-3]. We note that Parker and Girardi[A;lS] used Lyapunov-typgfgqﬁations !

- and analysis quite similar. to our development for the evaluation of output

‘noise power due to correlated quantization errors. In addition, similar
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analyses have been undertaken by Hwang t;;l7]; Mullis and Régérts'[A-la},

agd Sripad and Snyder [A-19,20]. Hwang uses Lyapﬁndv-state space equations
to study the effects of possible structure transfdfmations and state-amplitud;
scalings. Mullis and Roberts have obtained some significant results for

Lo, . . .
digital filter design using a framework similar to Hwang's to study what

they call "minimal noise realizations (see [A-31] for further developments).

. Sripad and Snyder develop conditions under which quantization errors are in

fact white, and they also use Lyapunov-type analysis to compare the perfor-
mance of two different realizations. Within this‘fféméwork, one can pose a
number of other questions. For exam?le) in the c?se of floating point

arithmetic, the guantization error depends on the size of the signal. Can

e

stafé;épace'procedures for analyzihg “étaté¥depéhdent noise" [A-16] be of

value here? Questions such as these await future investigation.

In this section we have seen some of the issues involved in system

design in the two fields. The issue of implementation is at the very heart

of the problems considered by researchers in digital signal procéssing,

while researchers in control and estimation have concentrated more on the

it

developmént ofvgenéfél design procedures for state space models andimgthods
for analyzinégthe charactéristics éézsuch models. We have seen that thére:
are pqints ;f overlap‘and places in ;hichltechniques and concept$ frém,one
discipline’may be ééw;;iue in the other. State séace techniqﬁes may be
useful in the analysis éfimultivériable structures and in the an#l?sis of

sensitivity and quantization noise behavior of different structures. Such

issues remain to be studiéd, but it is in the other direction that there is
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the most to be‘done. The issues involved in the digitalmimplementagi;n of
systems specified by state space design methods rgmgin largely unexplored.
Numerous prob}gms abound. What is the effect of #oundoff noise on closed-
lqoplcontrollef performance; and how many bits must we use to achieve the
désired regulation properties [A—21,22,24,25,28]? It is well known that
“"optimal® cont?éilers and estimators :eqﬁi%e many arithmetic ope;ations and
hence lead to low sampiing rates. Can we improve overall performance by
uéing a simpler "suboptimal" sysﬁem at a higher éamplinqwgate {a-13]1?2 If we
,are‘controllipg a complex system, "optimal" controllers réqﬁiré not only a
great deal of compdtat§9n, but also tha centralized proceég%ng of all infor-
métion, and thé ﬁost of relaying information to a central location may be
prohibitive. Can we devise decentralized control architectures that take
advantage b§£ﬁ of the étructure of the d?gémics of the system being controlled
and the capabilities of the available types ofvdigital processéfé? Here
again, if we include the cost of infd%mation transfer, "suboptimal"’deceh;'
tralized systems may outperform the "optimal" system (see [A-14, 23, 26] for
some results and problems conéerned with parallel and distributed procesSing
and decentralized control). | -
Tﬁg Stﬁdf of problems such asvthese -= i.s,, the interaction of imple-~
" mentation ‘and aréhitectuie iséues and the design of control and estimétibnf
systems -- is still in its infancy, and{ié a;pears to gffer ap eitrémely
promising aQeﬁue‘for research. We notevthat architectural is;ues have

received a great deal of attention in the field of digital signal processing

. {A-10,12], and this, tbgether with the wealth of lite:ature'on}digital filter
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structures, indicates that there is much to be gained from future interaction

and collaboration.
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B. Parameter Identification, Llnear Prediction, Least Squares, and
Kalman Filtering

A problem of great importance in maay dxsclpllnes is the determination -
of the parameters of a model given observations of the physical process
being modeled. 1In control theory this problem is then ca;led the system
ldentlflcatlon problem, and it arises in many contexts.- Tﬁe reader is

referred to the special issue of the IEEE Transactlons on Automatic Control

[B-lOl and to the survey paperxr qf ﬁstremfand Eykhoff [B~11] for detailed
discussions and numercus references.
‘Parameter identification problems also arise in several digital‘eignal

proce551ng applications. Several exannles of such‘problems are given in

the spec1al lssue ot the Proceedlngs of the IEEE [B—33], and one of these,

the analysis, coding,. and synthesis of speech, has recexved a great deal of
at%ention in the past few years [B~15, 21-23]. We will use tﬁis problem as
| i -
the basis for ourf?iscusSion of the>iaentification question. Qur presepta-r
tion is necessafiiyvbrief and intuitive, and the reader is referred to eﬁese
references éer details. As discussed in [B-21] a popular approach is tor
model a discretized speech signal {Y(k)} as the output of a linear system,
which, over short enoggh intervals‘ef time, can be:represented by%a time-
ihvariant trensfer funcgien G(z); ﬁe;e the input ieetaken aS'alperiodic
pulse train (whose period is theiptiﬁ pe;éod) for Qoiced soUndew(eﬁch astJ
vowels) and as white noisemfof QAVQidéd eougde (such as the‘SOueeﬁ“Eh").
Ih‘addition, a ‘common aesumétioneis the£¥G is an all-pole filter, which

leads to an autoregreseive (AR) model

y(k) + aly-(k-l) + a.. 4+ apy(k-p) = u(k) : (B.1)
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|

This assumption has been justified in the liteéééure under many conditions,
although strong nasal sounds require zeros [szi].

The problem now is to determine the coefficianés él,...,ap' Having
tPese coefficients, one is in aiposition to éoiye 2 number of speech analysis
an communication problems. For example, one can»use thg quel (é.l) to
estimate formant frequencies and bandwidths, whsrz the formants are the
resonances bfVEhé Gqéal tract [B-24]. 1In addition, one can use thé modél
(B.i) for effici;nﬁ coding, transmissidn, and swrnthesis of speech [B-é;;.

The basic ideé heré is the following: as the moie& (B.i)jihdicatés; the
speech signal 4 (k) cohiéins highly redundant inZormation, and a straiéht—
forward tfahémiséion of the signal will reguire aigh channel capa;ity‘for
accurate reconstruction of speech; On the othé§ hand,,Qgé éan intgrpret
(B.1) as specifying a ohé;step predictor for y(k)’in terms of precédihgi
values ofky (assﬁﬁing u(k) = 0). A&s discussed in [B-29], one often reqﬁires

‘ : : |
far fewer bit; to code the prediction error u than the:o;iginél signal y. = |
Thus, one aﬁrives at an efficient transmiésion scheme (linéar prédictive |
COdiHG‘;LPC){ngiven Y, éstim;té the a,, compute u, transmit the ai’and u.

At the receiver, we then can use (B.l) to reconstruct y. An alternative

interpretation of this procedure is the;fdllowin;ﬁ givén Y. estimate G,

. it . i ‘ . . .. . 7: : ]
pass y through the inverse, all zero! (moving avsrage -- Ma) filter 1/G(z),'

transmit the coefficients in G and the output oI the inverse filter. At

the receivef,,we;then;pass.the received signal through G to recaver y

. (thus this procedure is causal éﬁé causally invzrtible).

The guestion remains as to how one estimatzs the a; . The most widely

used technique in the literature is linear prediction. Usinq the inter=-
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pretation of (B.l), as specifying a one-steprpredicto:ffdx the signal y,

. X f s Lol
we wish to choose the coefficients a ,...,ap to minimize the sum of squares

1
of the prediction errors e(n) = y(n)-¥(n), nel. Here we assume that we are |
given y(0),...,y(N-1), while the set I can be chosan ip differenf manners,
and we will see in the following subsections that different choices can
lea@ to different results and to different interﬁretations.

Before beginning these investigations, let us carfyféﬁt~:he miniﬁiiatioﬁ
required in linear prediction. 'T;king the firsérﬁerivative:With respectrté'

the a, of the sum*bf'squared errors, and setting this equal to zero, we

obtain the normal equations

P o o

.z aicik= —'cok' k=l'gav'p . (B.Z)

i=1 ) . .

Cqp™ S y(n-i)y(n=k) . (B.3)
nel

These equations are typical of thertypes of equations that arise in linear,
least-squares problems, and their efficient solution has been the topic of

many research efforts.

B.1 The Autocorrelation Method, Kalman Filterinc for Stationary Process,
' . and Fast Algorithms i '

Suppose we let I =_allxintegg£$b-whe:e‘we define y(n) =0 for n < O,_
| e ‘ .
n > N. In this case, we find that
N-1-|i-3]

= 3 Yy (n+]i-3])
n=0 ‘ B

A

4 e(]i-3]) (B

7

and the normal equations become Ta = d, where a' = \al,...,ap),



a' = (-x(l), -r(2),...,-x(p)), and Tﬁis a symmeiric Toeplitz matrix
{B-37,84,91] (i.e. the ijth element depends cnly on [i-j[) with Tij = cij;
We also no;e {B-15] that if y is a stationary random process with autocorre-

lation

R(1) = Ely(n)y(n+i)) S | ~ (B.5)

and if we want to find the one step prediction coeéficients té minimize
E{ez(n)], we obtain an identical set of (Teeplitz) equations with r(i)
replaced by R(i). This statistical point of view is extremely useful for
obtaining certain insights into the approeen.‘

The solution of such Toepiitz equations nas been the subject of a great

‘deal of attention in the mathematical;‘statistical, and engineering litera~

ture [B—3 4 15,17, 18] An efflc;ent algorlthm was oroposed by Lev1nson
[B—l7], improved upon by Durbin- [B-32], and Stkclﬁd in the speech processing
context by several authors, including Itakura and Saito [B-23]. The method
essentially consists of solVinérforwa:d.ené backward predﬁeﬁion'probienéi |
of increasing size in a recnrsiye mannéi; That is, the algorithm computes
the coefficients a(l]i,...,a(ﬁ]i) for the best prediction of y(n) based on
y(n-1),...,y(n=i) and the coefficients b(1]i,...,5(i]1) for the best pre-
‘diction of y(nel-l) based on y(n-l),...,y(n—l) The algbrithm iterates

on i. As a part of this algorithm, ore" compu es the prediction error (for |

both forward and backward prediction), and thus one can determlne when to

§
i

»

stop\based on the size of thls quantlty Also, we must compute a coeffl-

cient k ' whxch is known as-the partlal correlation ¢coefficient  (see

 [B-15,21,231).
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Let us now examine what this algorithm means Zrom a statistical point

of view. The algorithm specifies estimators o the form

$i) = - Y a@liy(i-3) L (B.6)
j=l

F() = - 2: b(Jll)y(J) ' . (B.7)
]=]_ .

’Thus, we can think of*thewei§orithm as providirz 3= with the time-Varying

>

coefficients of the weighting patterﬁeof:the ozzizmzl one-step predlctor and
e ' _ B .

,of~the optimal initial time smoother. Vote thzt Zhase coeffibients:are; in

,generdl time varying (i.e., a(Jll) # a(j)), sincz tae mechanism of predic-

tion ;s t;me-varylng when one bases the predictizn on only a finite set of

data;

ﬁﬁet does tg;s‘mean as far as a11;§§1e meie;ing via lineer prediction
goes? The anéwee to thet'is not mueh. Ih the 2ll-pole modeling problem,
weiare equivalently only interested in designi:; a FIR filter -- i.e. aﬁ
prediction filter that produces the best estimazz of y(n) given tpe "data
window" y(n-l),...,y(n-p). The. COeeflcﬂents of such a filter are precisely
a(llp),...,a(plp); aAd:it dOesn't matter (excesz< Zrom a computaﬁional point
Vof'view) thatmthesemeeefficients Qere generates 25 zart of a time~varying
fllter welghtlng pattern.-"' |

On. “the other hand, the tlme-vaﬁylné weich+ting pattern interpretafioﬁ
is exereqelyulmportant,from}a etatxetleal 9 _ﬁe;bf,view, especielly if one

wishes to design recursive predictors that are ::‘_sle of incorporating

all past measurements and not just a data window ia the case when y-has a



TR T g

-26=

Markovian representation

, x(k+1) = Ax(k) + w(k), y(k) = c'x(k) (B.8)

]

where x is a random n-vector, A is a constant nxa matrix, ¢ is a constant
N S i : g [

n-vector, and w is a zero-mean uncorrelated secusnce with covariance Q.
The correlation coefficients of y can be computed by direct examination of

(B.8). We note that x and y will be stationary with
R(i) = c'A%ﬁE: i20 (8.9)
if A is stable énarif I, the covariance of x, satisfies the»Lyapun§v equation
A ST -QT R | a0

We ndQ wish to design an optimal predictor for recursively estimating y(n).
This is a Etandard estimation problem, and the solution is the Kalman filter

[B~4]:

&(n) = AR(n-1) + AR(n-1)y(n=1) , §(n) = c'x(n)
' o L , (B.11)
Y(n-1) = y(n-1) - §(n-1)

where the time-varying gain satisfies

_ Plaln-1)c | R ‘
K(n) = ETE%HTE:TTE ; ‘ (B.12)

Here‘P(n[n-l) is the covariance of the predicticn srror x(n) - ¥(n),

- ~t - v
 P(n%1lp) = AP(nln-l)A' +Q - Ap‘nl?P%;*;_ilen 1)a

(B.13)

‘let us make a few comments about these eguazions. Note that the filter

innovations Y(n) is precisely the prediction error e(n), and its variance

is c'P(n!a-l)c. ‘Also, recall that in the all-pole framework, we could alter-
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natzvely view the prediction filter as spec;ry_.t an inverse filtet, which
tookfthe y's as inputs and produced the uneorre;atedxsequence ef predictisn
errots as the output. In the:eohtext of'tﬁe Kal=an filtef, the ehalogous‘
filter is the innovations repgesentattee (se rszrasentation IR-1 of [B-~-27}),
in which we view the output of (B.ll) as being *in). Finally,‘note that
one can compute the predictor coefficients a(j%i) 2s the weighting pattern
of the filter (B.1l).

Examlnlng (B. ll) -(B. l3),rwe see that the coopatation of tﬁe recursive
filter coeff;e;ents requires thevsolutlpn of trnz {Ziscrete time) Riccati
eguetion (B.13). If x is en n-;ector, then (usinz the fact that P is
symﬁetric), (B.13) tepresents;nén+1)/2 equations. TFor reasonabiy lstée
values of n, this can be an extreme computationzi load, especially given
that all that is heeded for thé”filter is the nx= zain matrix‘K (when y is

m-dimensional). Thus when m << n, the queStio;‘of computiné K without P

arises quite naturally, and this issue -- 'in bezn continuous and discrete

- time, in statiéﬁéry’and in some nonstationary cases -~ has been ‘the subject

of rnumerous papers ln the recent past [B -1- 5] ! Ths2 underlying cencegts that

have led to these "fast algorlthms" (at least ;: <he stationary case) are

the same as those that lead to .the Levinson alco:itﬂn for some historical

'and mathematlcal perspectlve on this subject, ws rzfer the reader to (B-3,4].

In part;cular, the extenSLOn of the Levinson algszithm to the multivariable

'case is dlscussed in these papers (see also re;er-n ce [3-18]). In this

“case. the matrix T in the normal equations is Blsck-Toeplitz, and the exten-

sion to this case is decidedly nontrivial.

'Therevare'a,number:of deep mathematical and shvsical insights that can
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be obtained by the examination of these fast glgo?ithms. As di#éuséed in 
(B-~15,21], the Levinson algorithm involves an aux;liary pargial corrélétion
coefficient ki' which has an interpretation as z rsilection coefficient,
and‘this fact has been utilized in speech processing, in which these‘coeffi-
cients specify cer;;in parameter;Aip an acoustic :odel’of.the speech process
(B-15,21]. fIn addition Casti and Tse [B-20], Xailath ([B-1,4] and Sidhu and
Casti [B-8) have shown that the fast Kalman‘gaiiial;ofithms are closely
related to the work of certain astrophysiciéts, in ;arti;ular Chandrasekhar

arising in radiative transfer. Also, relationskizs bestween linear filtering

and scattering theory have been brought to lighz in the recent papérs [5-34,35].
And finally, for a goocd overview of s¢me of the mathematical relationships,

including'some with the theory of orthogonal zpel:mzzmials, we refer the

cr

reader to [B-4,42]. These ideas are of interes= iz that seeing these
algorithms from several perspectives allows us <2 g2in insight into their
properties, potentials, and limitations.

B.2 The Covariance Method, Recursive lLeast Sguarzs Identification, and
Kalman Filters

Consider aéain the normal equations (B.2), {3.3). We now consider the
range of n to bé only as large asvthe actual da=z allowg -~ i.e., in‘eqﬁa;
tion (B.l) we will require that k, k-1,...,k-p 211 & within the ragge
O,...;N—l. This leads to the restriction‘éif_: < W-1. Also, in ﬁhis case
cij is not in general a function of i-j, the matriz T is symmetric but not
Toeplitz, and the fast methods of the preceding s:hs2ction don't carry over

quite so nice;y.' Recently, however, Morf, et zl1. [3-30] have obtained fast
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algdrithms for the covariance method by explo*:-:c ZThe factythét, although
T is not Toeplitz, it is the product of Toepliz:z :aﬁrices.

Let us take a look at the covariance method frén a slightly different:
point of view. Recall that the algorithm mentionz2 above and fhe onejinltﬁe

precedlng subsection involve recursions on tne order of the filter given-a:

fixed set of data. Suppose now we consider a rez:rsion for updating coeffi-

cients of a fixed order filter given more and =cors <ata. To do this, we

refer to [B-1l], where the covariance method

=
n

iiszussed. Given the data

v(0),...;Y(N-1), the covariance method attemgz ‘ <z Zit a model of the form

-

of (B.l) by finding a least sguares fit a(N) tc hz 2cuation

LN-la = fN-l-, S i (B.14)

l
Jhere a' = (al,..., ap), £'

i = {y{p),+.., v(%-1}}, and L has various y(i)

N-1

coh C SR T
ﬁs its elements. Suppose we have &(N-1) and wsz now obtain the new.data

point y(N). We would llke to u,date our est m=<s in a'manner mdreiefficient

than re-solvzng (B.14) from scratch. Followin ing 3t aard recursive least

squares (RLS) procedures [B-ll}, we find that (hzrs L'(N) is the last row

of LN):

A = A1) £ KM (Y- Ma-13] F A1) + KOz
: w (B.15)
x - pREDAL L | .10
?(N) - (L&LN);l ; é(N'1) _ P(§+i)?(?;;ilj;j§:31) (8.17)
Examinin§ these equatlons, we see tnat thsy cant pe interpreted as

~defining a Kalman‘filter (see.[B-lZ]). In fac:, rsiferring to [B-14], we
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see that these are preciSely the Kalman filter equations usédrby Melsa, et al.
in speech processing. Specifically, they consider the dynamic equations

‘alk+l) = atk),  yk) = L' (K)ak) + vik) - (B.18)
!

wﬁere v(k) is a zero-mean, white process with variance ¥. If ¥ is set to 1,
we obtain (B.15)-(B.17). Also, in this formulation, P(N) has the‘interpre—
tation as the covariance of the estimation error a-a(N).

Let us note some of the properties of the recursive solution (B.;S)f
(3.17). Examining (B.15), we see that the increﬁent'iqusur estimate & is
proportional to‘tﬁs error (innovations) 'in pré&icting’éhé?iétestsvalue of y
using preceding values and our previous estiﬁats of a;;;Tﬁis suggests thé#?
a moniforing of thevinnovatioﬁs r(N) ésh be used to help detect absupt
changes in thezp:edicﬁor coefficients or'theA;fesenCe“sfvgiostsl excitatidhf“

mation of a. Whether such a procedure would be of value is a matter for

-_:futuggﬁstudy. Also, it is Qossible to make the filter more responsive to

. .

changes in the cdoefficients by using one of several methods available for

adjusting Kalman filter [B-41]. These include sxéénéntially age-weighting
old data infﬁsVéf of the more recent pieces of information'dr"thé msdeling

of a as a slo&ly—varying Markov process.  In addition, the formulation (B.18)
providss a methsd for deveioping}an analysis system for noise-degraded’speech
(i.e.,jthe case Wh¢é1y7>‘ly7,5 |

Wist us noﬁ sonsider the s6mpu§atioﬁal;comp;e%ity of (B;lS)-(B.l7); Fi;st
note that one doés’not hsveVis computé the correlation coefficients. However,

one does have to calcualte K(N) at every stage, and if one solves for the gain
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from the Riccati equation (B.62), one ﬁas‘on the order of pg;multipiicat;ons
per stage. However, Morf, et al. [B—éb] and Morf and Ljuhg [B~40] have
éxploitedAthe structure of the equations to obtain fast algorithms for the
direction computation of K. Combined with the fast algorithms ment;gngd
earlier, one now has efficient reéuzsive p:ecedures for the covarianée method
a;‘bne,increases either the order p of the predictor or the number N of data

points.

B.3 Design of a Predictor as a Stochastic Realization Problem

A problem that has attracted a great deal of attention in theicontrol

and estimation literature is the stochastic realization problem {Bi4,8-10,

13,27]. Briefly stated, the stochastiéfrealization problem asks the
following: given a stationary Gaussian random process y with correlation
function R(n), find a Markovian,representation,,.
x(n+l) = Ax(n) + w(n), y{n) = q{#(ﬁ) - : (B.ié)
'7 - ‘ B i .
where w is a zero mean white noise process with covariance Q. Referring
o ‘ ,
to (B.8)-(B.1l0), we see that this is equivalent to finding a factorization:
. N S ‘ o
R(i) = ¢'A'b i>o : (B.20)
b=%Pc, APA'-P=-9 - | - (B.21)
Examining (B.20), (B.21), we see that the'éfébtithm‘fallé naturally into
two pieces: (1) find a triple (A,b,c) satisfying (8.20); (2) find P and Q

satisfyiﬁgE(B;Zl);' Onegof?ﬁﬁe best-known studies of this problem is that of

Faurre [B-13,25]. Aswhe peinted out, the first step of the algorithm is

simply the well=known deterministic realization'problém when one is given

(
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the "weighting pattern” R(0), R(1l), R(2),... .V Tﬁis problem has been widely
studied in the literature {A-30, 31, B-6,9] and we will make a few comments
about this aspect of the proﬁlgm_in a few moments. Before discussing the
numerical aspects of the fi;st;étep or the details of the second, let us

see what the first péxt yields in the frequency domain [B-26]. Let

s (z) = 3 Rz © (8.22)
e L& .
Thén, we see that the factorization (B.20$ yiéldsw
: o -1 S N : aa
Sy(z) = c'(zI~-A) “zb + c¢'(z "I-A) "Ab (B.23)

I -
Noting the form of (B.23), and defining a(z) = det(zI-A) we see that the

first step in the‘algorithm yields

8 (z) = -T_JQLEL:E_. SRR o e -~ (B.24)
a(z)a(z ™)

‘That is, we have obtained a factorization:of the denominator of Sy; If we

can also factor the numerator we will have determined the desired transfer
function B(z)/a(z), which, when drivéhiby white noise, yields the spectrum
Sy(z). It is clear from (B.19) that it is this éetdnd part of tﬁe spectral

factorization that is accomplished by the second step of the stochastic

poles and zeroes. - Co : ‘ o

There are several methods for performing the second step of the

algorithm. Faurre [B-13] showed that (B.21) could be solved for values

of P inside a given range, and he identified the smallest such covariance,

*I

as that arising from an innovations representation of y -- i.e., a steady-
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state Kalman filter. Thus to complete the second step we can either solve
an algebraic Riccati equation or can use the "fast algorithms", as described
in Subsection B.l to compute the time-varying XKalman gain. Letting the

transients die out, we then obtain the desired steady-state filter. Although'
1 , ' !

this approach involves solving for the entire gain time history, this proce-

dure may be faster than direct solution of the algebraic Riccati equation.
lLet us now turn to the numerical aspects of the first stage -- i.e. the
|

computation of the factorization (B.20). The algorithﬁs of Rissanen ([B-8]

‘and Ho [A-29] are based on the examination of the Hankel matri&

| r(0) R(1) R(2) .... R(N-1)
7 = g(l) R(2) . R(3) e - R(W) (B.25)
:;R(N-l) R(N) ‘ R(N+L).... R(2N=2)

It is well-known [B-36] (see also Subsection A.l) that R admits a factoriza-
tion (B.20) if and only if there is some ihteger n such that

‘rank B <n  forallN , . (B.26).
Ho's original algorithm-yielded a minima;jrealizatioh {i.e. dim A-in (B.20Q)
is as small as possible) if a bound n was known in advance. A far more

critical queétion (from a practical point of view) is the partial realization

question. Here we take into account that we only have available a gihite

nuﬁber of correlationS‘R(b), R(l)} ;.., R(N-l}; and one would like to obtain -

1

thelminimal factorization that matches these. ne can use Ho's algorithm
for this, but it is not recursive =- i.e. if we incorporate R(N), we must

re-solve the whole problem. Fortunately, Rissanen [B-8] and Dickinson, et al.
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[3-6] have developed efficient, recursive procedurss (the latter of which
is based on the Berlekamp-Massey algorithm [B-?], wnich was developed for

i
the scalar case). We note that these algorithms sssentially solve the Pade

approximation problem, and we refer the reader to th2 references for details.’'

' Thus, efficient algorithms exist for spectral Zfactorization and one

[ o
would expect good results if the process y trulwv zzs a Markovian representa-

tion and if one has the exact values of the corrzlations. This points out

a conceptual difference between linear prediction and the above stochastic
realization procedure. 1In linear prediction, no fzatense is made about
b

| ‘
exactly matching a model. All that is wanted is leastesquaresmfit, and

o

tﬁus one would expect this procedure to be relat;felv robust when one uses.
a finite record of real data to generate an estimaze of the‘correlation
function which is then used in the linear prediz=ion p:ooedure. on the
other hand, iﬁ can easily be seen that an infinieesinal perturbation ofVHN
in (B.25) canjmake it have full'rank. In this case; the partial fea;izaoioﬁi
procedures ﬁ;%whicb in essenee are looking to maﬁch,a model exactly == will
yield a sYstem of extremeiy higﬁraimenSioh. Thus, it appears‘that these
algorlthms arehanherently sensitive to Frrofs in estimates of the correlation
coefficients. --In addition, if y'hae_nomMarkoviaebeepresentation, the‘lineafa
prediction approach will still work fine,bbut tha partial realiaation‘pro-
cedure may ve*y Well run- ae£fay as itﬁgries‘to fit thes data “tooxclosely"
Does thls mean that the,above procedure is of no use in identifying
parametefs in‘a speech model? The answervto that is perhaps not. ’What‘is

needed is a modification of the first step of ==a s*ochastic realization

algorithm. As the version described here stands, iz is too sensitive and
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iﬁ>fact, DeJong [B-37] ha$ shown that theéé‘meﬁhods areﬁnumeiically unstable
in that the inexact minimal realization supplied by these algorithms, as
impiemented on a finite'wordlengthvécmputer, may notvbe a "numerical neigh-
bor" of the sequence {R(i)} that is to be factored. By rephrasing the
algorithm in terms of €-rank -- the least rank of all systems within an
"g-neighborhood" of the given sééuéﬁde'—- DeJong obtains a sloﬁer algorithm
that is similar to Rissanen's but is numerically stable.‘ This approadhras
extremely appealing for two reasons: (1) We gah, within ﬁh;s.framework, seek
minimal realizations in the £-neighborhood ofmé sequenéé{{R(i)} thaﬁ itself
is éggvrealizable by a finite dimensional system; (2) ﬁe cah.;eek the "nearest"
reduced-order realization of given dimension of a giveh‘éysiém. :
=In addition to the work of Defoﬁg, a number of other methods have been
?roposed for "approximate" Pade approximatianf[§r31,38,39].- One inﬁé:estinq

possibility is the all-pole approximations ~- i.e., we perform linear predic-

" tion on the R(i). This would require computing the correlation of the R(i)!

I
B e N X . .
(Note that an all-pole assumption here would not necessarily lead to an all-

pole‘model in"(B.lé));

" 'One of our goaIS'in>this section has been to point out a number of simi-
larities betweéh the goals and techniques of theftwo disciplines. We have
alsb seen some of the differences, but others havs not been discussed. 1In

particular, in this section we have treated identification for identifica-

| ‘ ' ' . : s e
tion's sake. As pointed out in [B-11] in control system design, identifica-

tion is often éimpiy:a means toward the goal of sfficient control. Thus, in

many control applications, the value of identification is not measured by
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the accuracy of the parameté} estimates, but rather}SQ the performance of
the overall system. 1In addition, in cﬁﬂﬁrol there are several types of
%dentification problems, since one has the opporzunity to excite the system
through inputs. Different problems ???59 if ths syétem is operating open
1oob, in a time-invariant clgsedvloop mode, or inkan ad;ptive closed loop i |
Aode. We refer the reader to [B-10,12] for morg‘éﬁxthis subject and for
further refeﬁenug;. in'additibn,‘iﬁ many on-liza control problems the
numbexr of.paraméﬁérs to 5e‘iaentified'i5~not vé:y large -~ four ;; fivé.
In fact, one of’the key problems in practic%ihédapt;yg contro;r;s the care-
ful choosing of which few parameters to identify. " .

On the digital filtering sidé, one is often interested iﬁ*the,acéuiacy
df the parameter estimates. = This is Qf importance, for example, if one ié

o [ L -
attempting to design an all=pole filter that matches a given impulse response

in a least squares sense, or if one is attemptinc to estimate formants from

-

Qn,all-pole speech modgl. On the other hand, for linear prédictivg coding;

the accuracy. of the parameters may be of secondary interest, while the

primary concern is mofé efficient éﬁding of spe;;hudaté., In this case, o
accurééj-iSAof‘importance only in so far as it aaiesvthe coding schemé more
efficient. ~Also, in the speéch probiem, we are usuaily deaiing with many
unkno&n parameters == bétwééﬁ twelve.ahd sixteen [3-21].

~With regard-to the speech problem, we note that linear. prediction has

. proven to be a pérticulaily appropriaté tool for a variety of reasons, ;angidgg'

from the fact that the all-pole model is often 2 realistic one to the property

that the linear prediction procedure tends to match the spectral envelope of

the data [B-15]. 1In this section we have descrizesd a number of related
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identification concepts (see‘[z-ll for more), soﬁa of which may be useful

%n solving problems in speech analysis, such as enhancement of noise-degraded
speech. We have also pointedrbut a number of questions concerning some of
these methods, such as the need for detailed numéfgéal ahéifses of’the many
li'fa.st:“ algorithms, and the necessity of further analysis and experimentation

to assess whether ény of these techniques can improve‘upon the performance

achievable in speech processing using linear prediction.
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€. Stability Analysis

] In the field of digital signal processing, stability issues arise

| E ~

, . TR

when one considers the consequences of finite word length in digital® .

[ . R —- P ' : N T

ﬁilters. On the one hand, a2 digital filter necsssarily has finite range,
|

and thus overflows can occur, while on the other, one is inevitably faced

with the problem of numerical quantization =- roundoff or truncation.

Since the filter has finite range, the questiop of the state of the filter

T ,
. . A SR S U A . ‘i . -
growing without bound is irrelevant. ~Howevez, the nonlinearities .in the
filter, introduced by whatever form of finite arithemtic is used, can

cause zero-input limit cycles and can also lead to discrepancies between

%he ideal and actual response of the filter to}tértain inputs. Following

the discussions in [C-3, 9], the typigal Situation can be described as

follows
x(n+1) = Ax(n) + Bu(), = y(m) = Cx(n) (c.1)

S X)) = N(x(n))

'

where N is a nonlinear, memoryless function that accounts for the effects
| ; : -
|

overflow and quantization. If one assumes that the associated linear
b .

Pt s Al i . : e : e s
system (i.e., N = identity) is designed to mee: certain specifications,

one would like to know how the nonlinearity N affects overall performanée.-
- For example, filter~aesigners are interested in determining bounds on the

- magnitudes of Iimit cycles and in finding out how many bits one needs to

keep the magnitudes'of stuch oscillations within tolerable limits.

On the other'side, a typical feedback control system is described by

Yy f,Gl(e), e = u-Gz(y), o : L (c.2)

v
P
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where the input u, the output y, and the error e are functions of time,
; R | B . g

and Gl and G

respectively. In control theory one is interested either in the f”;; E

5 represent the dynamiés of the forward and feedback paths,

analysis oxr the sthhesis of such systems. In the synthesis problem we

1

system G2 such that theyovera%l system has certzain desirable stébility

are given an open loop ;ysteﬁ G, and are asked to design a feedback
properties.- Infthe case of stability analysis, éne may be intefesﬁed
either in the dfiven or the undriven characteristics. In the driven
case the problem involvesrdetermipiqg if bounded inputs lead to bgunded
outputs and if‘smdlirchanges in u‘leadﬂtq small changes in!théwy. In
the undriven éase,‘we are interested in seeing iZ the sygtém response
decays;“remainSjboﬁ;ded;'or diverges when ﬁhe only perturbing influences
are initial conditions. ”

it is‘clea; that the:prpblemg of interest to resea;uher§ in both dis-
ciglineé havq a;good,deal!in:commba; and, as we shall see, wo:kers in each
area have ob;gined”résulté by draﬁiﬁg from very siﬁilargbags of;mathématféal
'trick$. However, thef§ §#§;§if§§féﬁces between the methods use§ and results
obtaiﬁea ih the two areas. 1In ﬁhe analysis of digital filﬁers éhe work has
been charactérized by the study of systems contzining qdifé specific non-
liheaiitieé. ?Iﬁ additipn, much of the work has desalt withkspecific'filter
kstructurg. In,particulér, second-order filters have received a great deal
ofgattention {c-2,3,7,9]1, since more complex filters‘can be'bg%lt out of
seres‘-’parallel interconnections of such section$.  Also, the‘élass of

‘wave digital‘filtérs [c-5,6] have been studied in some detail. Studies in
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these é#eas have yiel&ed extremely detailéd descriptions of regions of
stability in éé;ameter space and numerous upper and lower bounds on limit
cycle magnitudes (see [C-3,4,13,24-26]). -

In control theory, on the otherﬁhand, the recent trend has been in the
developmen£ of f#ghéf generai‘theories, concepts, and technigues for sta-
bility analysis. & numbe: of rather powerful mathematical technigues have

been developed, but there has not been as much attention paid to obtaining

tight bounds for specific problems. In addition, problems involving limit

T . NI CE el ‘ SRR
cycles have not received nearly as much attention in recent years as isstes

such as bodﬁdedeinput, bounded-output stability and global asymptotic sta-

bility (althoﬁgh there clearly is a relationship between these issues and

limit cycles).

C.1l The Use of Lyapuno& Theory

The techniQue of constructing Lyapunov functions to prove the stability
of dynamical sYstems hastbeen used by researchers in both fields (see [C-22]
forf&etails.and further discussions). Consider a system with state x(k) and

with equilibrium point x = 0. A Lyapunov function V(x) for this system is

a scalar function for which V(0) = O and which is nonincreasing along system

trajectories (i.e. V(x(k)) is nonincreasing as a Zfunction of time).

If this function has'some%ad?itional proparties, we can prove stability

y . [ L
or instability. Basically, we think of V as an "energy" function. One then

~ obtains results dependiﬁ§7upén how energy behaves along trajectories.  In-
ttiti&ely,;iflv iséever&whéfe positive ekcept at x = 0 and V(x(k));dgpféases‘
mbnotonically, the system dissipates energy and is stable. On thebother
hand, if V(xo) <'Q for some Xq then'thé‘system canhot bevasymptotically



-41-

stable; since the oonincreééing nature‘ of V(x(k{)'gﬁarantees that the
system can't approach the zero energyrstate if;starced at xo.;,One'advan—
tage of Lyapuno§—type results is that the hypotheses for results such as
thosewjust mentioeed can be checked without the corstruction of explicit
solutions to difference or differential equations. Howevex, the majar
problem with ﬁhe,theory is the difficulty in finding Lyapunov functions
in general. B o

: Wlth respect ‘to the .;mlt cycle problem, Willsen [C-2, 8] has utllzzed
Lyapunov functlons to determlne conditions under which second order dlgltal

fllters will not have overflow limit cycles and will respond to "small"

\
|
l

inputs in a manner that is asymptotlcallytclose to the 1deal response.
Parker and Hess {Cc-13] and Johnson and Lack [C-25,26] have used Lyapunovlr
func;ions'to o;tain bounds on the magnitude ofv;imit cflces, In eech of;H;
these chewiQapcnov function used was'a éuacratic form whicﬂ in fact psoved

asymptotlc stablllty for the 1dea1 linear system. In Willson's work [C~8],

he’ was able ‘to show that his results were in some sense tight by constructlng

' counterexamples when his condition was‘violated, In [C-13,25,26] the bounds

are not as good as others that have been fouﬂd,sand, as Parker and Hess
state, this may be due to the difficglty of determining which quadratic
Lyapunov function_co use. As pointed out by Claasen, et el.; fc-3],‘it

i

appears to be difficult to find appropriate Lyapunov functions for the

discontinuous nonlinearities that characterize guantization.

There is a class of digital.filters -- wave digital filters (WDF)
[C‘5,6]'f—,for which Lyapunov technigues are particularly useful. Sﬁch £il-

ters have been developed by Fettweis so that they possess many of the‘prof'
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perties of classical analog filters. Motivated ¥ these analogies, Fett-
weis [C-5] defines the mnotion of "instantarieous ;seudquwer", which is a
particular quadratic form in the state of the'WD?.: By defining}the notion
of "pseudopassivity" of such a ﬁ;lter, Eettweis inéroduces:the pg;ion of
dissipativeness. ﬁith this framewdrk,'tﬁe’pseudopower becomes a ﬁatural
candidate for a Lyapunov function, and in tC-é],f?ettwe;s ana Meerkotter
are able to appiy standard Lyapunov arguments o obtain’conditigns on the
arithmetic used;that guarantee the asymptotic stability of pseuéopaSSive
WDF's. Théminttoduction of the cdn¢¢pﬁ4of Qissigativeness in tﬁerstudy qf
stability is an oftep-used idea (sée the note of Dsoser {C-14]1), énd,a |
number of importantustability results have és tbeir basis some notion éf
passivity. We also note that the uée'bf passivity concepts and the tools
of Lyapunov theory appear to be of some value in the development of new
digital filter structures that behave well in the presence of quantization
[Cc-71. | |

Lyapunov concepts have found numerous applications in control theory.
The constructivn of quadratic Lyapunov equations for linear systems is well
understood and is described in detail in [C-22]. The key result in this

area is the following. Consider the discrete-time system
x (k+1) = Ax(k) {C.3)

This system is asymptotically stable if and onlylif for any positive definite -

matrix I, the solution Q of the (discrete) Lyapunov equation
A'OA - Q = ~L e (C.4)

is alsokpositive definite. In this case the function x'Qx is a Lyapunov



function that proves the asymétotic'stability of (C.3); Note that thls
result provides a variety of choices for Lyao nov functions (we can choose
D
any L >0 in (C.4)). Parker and Hess [c-13] oo:a*n their bounds by choosing
L= I {here (C.3) represents the ideal llnear =odel). Tighter bounds might
be possible with other.choices of L, but, as thsy mention, it is not at all
clear how one would go about finding a "better" choice (other than by trial
and‘error).

In addition‘to their direct use in specifis applications,‘one of the
most importent uses of Lyapunov concepts is as zn lntermedlate“step in the
development of other more explicit results. Tcor example, the stability of
optimal 11near regulators w1th quadratlc critsriz and of optimalviinear
eLtimators can%be provenﬂby constructlng partr:tlarlf natural otadratic
‘Lyapunov functions:tB;4l; ¢—32]. A further ﬁse of~Lyapunov’theory has been
to provxde a framework for the ﬂevelopnent of any more eXplicit'stabilityf
criteria. Examplesﬁof these are a number of tas irequency domain stability

criteria that have been developed in the last 13 to 15 years‘(see [C—lO—lZ,

15,16,20,211). These results are the subject oI the next subsection.

C 2 Frequency Domain Crlterla, Passivity, £ Lyapunov Functions

We have already mentioned that the notwo: ol oass;v1ty is of lmpor—'
tance in stabrllty theory and have seen that Tz=twels and Meerkotter‘have
been!eble to utilize passivity notions to stusz certain‘digital'filters
via Lyapunov techniques. The relationship bezwzen passzvxty, Lyapunov

~functions, and many of the frequency domain c_;--rla of stablllty theory

is quite deep, and in this'subSection we wish to‘illustrate some of these
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ideas. We refer the reader to the work of J.C. Willems {c-19,23,30], in
i ! .

particular, for a detailed development. The genefal development in these
references is beyond the scope of this paper, bu:_wef&ill indicate some
| ==
oﬁ the basic ideas for .a discrete-time system, denoted by the symbol G,
with input u anggoutputiy. In this case, one can define input/out?qt (L/0)
; , | : [ : '
stability as
m’ 2 ‘,..,;._ e o : .

- z u, < ® =A>[“ E Y. < @ : ) (C.S)

. i . ,

i=1 A=
i.e., if the input has finite energy, so ﬁoes the output. If we can make

the stronger statement

' o ) ’ L
| .

R 1/2 ® 1/2 : i : ‘
. (z Yi) 5_1((2 ui)/. ‘ S (C.86)

V=1 i=1 7/

we call K the I/O gain. A system is called passive if (strictly passive‘
if there is 'an €>0 such that)

!

JON e ; N 5\ - L
S wy, >0 (>'e > u.), for all u,, N - N (3
s 171 - - : i1/ 1l

i=1 31 .

' The motivétion'fdr the défihition (C.7) stems from the interpretation 6f
the leftfhaﬁdﬂside of (C.7) as-the total energy input to the system. Thus
‘ R : ‘ I P

a passive system always requires, a positive amount of energy to be fed into

it. fTHis notion has extéemely strong ties to the usual notions of passivity
and dissipativeness for electrical networks and is, in fact, a natural
generalization of these concepts [C-30,34).

Having this framework, one can derive imgortant results on the stability

~and passivity of feedback interconnections of passive systems (see ([C-30}),



-45-

ﬁuch like the results of Fettweis for his pééﬁdopassive blocks. As out-
lined by Willems in [C-301, théreuare three basic'stability principles.
Thé first invclves the interconnection of passive systems as mentioned
avae, while the second is the small loop gain theorem (st;?ility agises
if ﬁhe gain around the loop is less théﬁ unity -- a'résult uséd.in the
éigital filter context in (C-31]). The third result invbléeéﬂnotiéﬁg b%

Passivity and of sector nonlinearities. a nonlinearity is inside {strictly

inside) the sector [a,b], if its graph is bounded by‘(strictlyrcontained"

+ithin) the lines y = ax and y = bx. Thus, the effective gain of this non-
| : LT
linearity is between a and b. As an example, the operation of roundoff

is inside the sector [0,2] (see [C-3,9] for the sector characferistics of
other quantizers). To indicate how sector nonlinearity conditions can be

?sed, consider (C.2) with G, specified by a stable discrete time transfer

1

function G(z), and G, a memoryless nonlinearity, £, assumed to be inside

2

the sector [0,k]l. 1In this case, the general sector I/0 stability theorem -

.reduces to .showing that (Gl + %0 is a'passive system, and, as developed

" in [c-19,30], this will be the case if and only if G(z) + % is positive

real.

 Rre(gte?)) + il-gvo | we [0, 2m ~ (c.8)

which ‘is Tsypkin's stability cﬁitérion‘lc;33].

‘A vériantrof this type of result involves the use of multipliers [A-19]
in which one modifies the feedback system of (C.2) by inserting a second

system in the forward path and its inverse in the feedback path. One can

' - then apply the basic stability results to therquifiéd G, and G.,. . In this

1 2
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manner one obtains Popov's stability condition [C-16] and the discrete-
ﬁime analog due to Tsypkin [C-12, 20]: suppose f is nondecreasing and is
strlctly 1nsmde the sector [0,k]. Then the feedback sysfem is finite gain
I/0 stable if there exists an a > 0 such that.

Re[(1 + a(l - ¢ %) g + -}t—g 0 ¥ we [0, 27] (C.9)

Claasen, et al. [C-9] have obtained direct analogs of (C.8) and (C.9)
for the absence of limit cycles of period N:

( j2nd/N

Re [G(e 1+ i— >0, + &£=0,1, «.., N=1 (C.10)

or the existence of ap 2> 0 such that
N-1

Re .
{1+ Z o @€ -
p=1

gznzp/N)]G( JZTrl’/N,.} + %. >0 (C.11)

Here ffis inside the sector [0,k] and is also nondecreasing in the case of

(Cc.11). The proofs given in [C-9] rely heav;ly on the paSSlVlty relatlons

(C 10), (cC. 11) and an appllcatxon of Parseval's eheorem 1n order to contra-

dict the ex;stence of a limit cycle . of perlod N. Thls last step involves

the assumea-periodlclty in a crucial way, but;tne application of Parseval
and the use of the positive real relationship'(CLlO) is very remihiscent
of stablllty arguments 1n feedback control theory {c-19]. In the proof

of (C ll) the monoton1c1ty of £ is used 1n conjunctlon w1th a ver51on of

the rearrangement inequality [C 18.19] which has also been used to study
stability of feedback control systems.
As mentioned aﬁ the end of the preceding subsection, many fregquency

iy

domain results can be derived withTLyapunov-type arguments. We have also
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seen in this subsection that many of these resul“s can be derived via
péésivity arguments. Clearly the two are related, and the crucial fésult
gbat leads to this relationship is the Kalman-Yacubcv;ch-Popov lemma
{c-27,28,30], which relates the positive realnsss of éertain transfer

- functions to the existence of solutions to particular matrix equalities

and inequalities. Kalman ([C-28] utilized this rssult to obtain a Lyapunov-
T :

type proof of the Popov criterion, and Szego [Z-27] used a discrete-time
version to obtain a Lyapunov-theoretic sroof 05M§S};kin's criterion. We

also note that the positive real lemma zlays a~:£ucial role in several

lother,problem‘areas including the étochastié rzzlization and séectf;l
factorizgtiéﬁiproblem [B-13] and the s;udy of alzabraic Riccaﬁi equation
[c-29].
Finally, we note that many ofAthese passiTiéy-Ly;punov results havé -

instability céﬁhféiparts'(E.g., see [C-1,17]). Such results may be useful

in developing ‘Sufficient conditions for the exizitznce of limit cycles.

In this section we have’consié;red somémcéigﬁe aspects of stability
theory thap poin; out thé relationship amoné tﬁa techﬁiéﬁés}"goals, and
restlts ofﬂiééeArchers in poth disciplines. &35 w2 héve seen, méhy of thef
feéultS’in théwﬁwo discipiihes involve the use :f’very’éimilar mathematical
~tools;: bn éhg othgrlhéha; the perSpectiveS'ani goals of%?ééé;rcﬁezs in. -
_the| two field;'ére‘soﬁewhat diﬁfefen;.; The §§valc;ment~$fja @utual.undey-
standing;of these perspectives and goals can onl: penefit researchers in |

both fields and is in fact absolutely crucial Zor the successful study of

certain ptoblems{ For example, in the implemznzztion of digital control
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systems one must come to grips with problems introduced by guantization.
Digital controller limit c¢ycles at frequencies nsar the resonances of the
piant being controlled can lead to serious problems. In addition, the use
of a digital filter in’'a feedback control loop creates ggg_quantization
anai&§i§wprobleﬁ§{ Finite arithmetic limit cycles can occurjanly ipwgecur;
siye‘(infinite impulse responsei filters. Howeve:ivifvafnonrécursive (finite
iﬁpuise response) filter is used in a feedback control'sy;tém,vquantization
errofélit produces can lead to Iimitjcycles of the closed-looprsystem [c-311.
How ﬁan~ene analféé'tﬂis situation, énd how does one take quanﬁiéation
eé%ééts i;;; account in digital control system design? Questions such as

these await: future investigation.
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D."Multiparameter Systems, Distributed Processes, and Random Fields
A growing interést has developed over ths past few years into

problems involving signals and systems that depend on more than one

indepeﬁdent variable. 1In this section we consider several problem

areas involving multiparameter signals and systems in order to examine

- some of the key issues that arise. For an us~to-date view of some of

; e ‘ oo .
the research in this area, we refer the reader to the recent special

issue of the Proceedings of the IEEE [D-49].
|

|
D.1 Two Dimensional Systems and Filters

|

In analogy with the 1-D case, a 2-D linsar shift invariant (LSI)
sysfem can be desé€ribed by a convolution of the input x(m,n) and the

unit impulseﬂ;eSponse L(m,n). Alternatively, taking 2-D z—transforms;

‘we obtain

Y(zl.zz) = H(zl,zz)X(;i,zz) ‘.(D.l)
Of special interest are the rational system functions, H=A/B, which

arise from 2-D difference equations such as

2 bk, Uy(mk,n-8) = 2  alk,)x(m-k,n-2)  (D.2)
(k,z)ezz;;g (k,R)e1,

Here Il, Iz,are finite sets of pairs of integers.
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- Let us first discuss the problem of recursion. Given the equation

(D.2), we want to use it t¢ calculate the next output given previous outputs
and the input. Unlike the 1-D case, in which &he index n has the interpretation
of time, in the 2-D case, in general, it is nct clear what "next" or

"previous" mean. In fact, just given (D.2) it is not clear that there
I e

is any definition of next or previous that will allow us to compute y(m,n). .
i Lo |

recursively. Dudgeon [D—lj,Pis£§r.[DfngL and Ikstrom and Woods [D;28]
have studied this probleﬁ ih.gre§t de§aiﬁ. Le< us consider one of the
most“;@pgytapt special cases of (D,éi%in which 2=1 and b has its
suppogt a$ iﬁdicated in Figgf%wsgl. We then hzve

ymn) = - === 3 3 bk,Aym-k,n-2) + oy X(mn) (D.3)
b(0,0) Koo 150 - ‘ b(0,0) )
e (R, 2IFEL0,0)

]

Note that from (D.3) and the figure;uit is evidentlthatEWeEmastlstore
values of y(k,g) for (k,%) to the south and west of the domain over which
we wish té calculate ygwr;fwthisrdﬁmain is infinite in either direéﬁion,
the fequirgémstOrage'is al;%ﬁihfinite. In ‘fact the reguired storage
grows l:';L;1e"atlzy? as we increase the domain in either direction (see [D-1]

for details).  Thus storage requirgments in 2-D dspend on far more than

the order (M,N) of the filter.
We also fihdéﬁhat.thé Stgfage requirements dependkon the sequencing

- of tﬁé #ecﬁrsidn.. sévg;a} directions of’recursion are indicated in

'Figurg D.2. Eachf;e;ursioh calls for its oyn,saquenée offdét;,acéessing .

and discarding. The N and E recursions appear to have particularly



HE

TR T

Sy

-51-

Figure D.1  Support of a First Quadrant or "Northeast" (NE) Function.

: (Possible nonzero locatiocns ars indicated by solid dots.)
*3 | lf4 S

2 1 | —— ®2 o5

1 R 12 3 |
e . : . e cl ‘§—~7§.
i
(a) North . -~ (b) EBest (c)NE

Figure D.2 Several Possible Directions of =2ecursion for (D.9)
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simple sequencing rules, bué the dété'must bs processed seria11§;’ On

the other hand, the NE regursion‘has a;mbre complex sequencing but

leads to the possibility of parallel compﬁtation, since, for example,
points.4, 5, and 6 can be calculated'simultaneousl%. The éoésible directions
foi recursion and potential use of parallel cgmputaEion can be determined
with the aid of a conceptual device-—the"pfecedencéVrelation [D-26],
which_partially orders poin;s_with the rule (z,n) << (2,k) if y(m,n)

must be calcﬁiéie§~before‘wé één calculate v (~,k).

Lgt us ?oémréturn to the question of resursibility. Clearly the
picture is symmetric;¥i;e;, we can have NW, 32, and sSW recursions; with
b(k;l) restricted to be a fuhcﬁidn on ;he ccr-espondiﬁg quadran£."chever,
as shb&n by Dudgeon [D?li,rﬁhis by‘ho means sxhausts the possibilities
for récursion. ~In addition to thé'one quadrant functions, we can obtain
:ecursive differeﬁce;équations withfb(k,i)'gwéhat are one—éidediID;li;

In this case the support of b is as in Fiqurs D.3, and we can calculate
| R P

" y(m,n) column by column, fecursing to the north and then shifting to the

next column to the east.
Let us make anothér connection with 1-D grocessing. Suppose that

one of the two indices, say m, has the interzrstation as time. Then

one might ‘think of y(m,n) and x(mﬁﬁ) as»(l-D)fspatially;diétfibuted

prbcesses_that evolve in time. Témpqral‘causality might thenlébrrespond.'

to,fhe support of b in Figure D.3 being modiZisd by deleting the points
on the positive n axis, yielding a "strictly" one-sided function. 1In

i

i that‘tﬁis "state" will be finite dimensional only if the range 6f n is
. bounded, which is precisely when the required storage for the 2-D

- recursion is finite.
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Support of a One-Sidzd Function

Figure D.3
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' As mentioned eariiér, the ability to solvé a 2-D differengg equation
recursively leads directly'tOftbe ﬁefinition of a‘éa;tiai ogder on the
part of the 2-D grid évér which we wishwto sélve the eéuatién, Given
thi%“precedence relation, one then has somejfreéGOm“in%deciding hqw“té;i
sequence th;‘ealculations;-_Specifically, if we think of a éequence of
caléulations as determining a'3é35£ §rder on-the part of thé 2-D grid '

- of interest, all we require is that this total order be compatible with
the precedé;;§°rélétion.- Once we have such a total ;tder, we can either
view this as transfé;ﬁing 1-D filters into 2-D filters or vice versa

[D=15)}. One widely used order is the line-scan (D-1,5,151:
(i,3) < (2,k) if i<Q or i=2 and j<k

AssﬁﬁipgNwe are interested only in lines of finite extent, we can
readily see one df/;he problems with this;ggder ahd?wiﬁh orders in
general. If we attempt~£oipr;ééss the order’input data with a l—Dg
LSI system, the resulting 2-D processing is not SI, essentially becéuse‘
. our orgerinéwﬁas placéd the last point on one line "next"™ to the first
point pn:thgvnext.

wé éioée our discussion of 2-D orders and precedsnce relations
by notiné tﬁgé these ;ery same issues arise néturally in certain feedback
coﬁ?;ol problems; ho"and ¢hu {D-21} consider optimai control problems
' in which one has a set of decision makers who base their decisions

on certain observed data. Ho and Chu define a precedence relation
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among deoisions: <4 if tﬁeraeoision of j affects the ooee:vation of
i. @hey assume that this is a partial order--i.e. that if j<€i, we N
cannot have i<j (this is éﬁecieelv the condition needed for recursibility
' I

of 2D filters). Then,:under'a‘"partially'oested information condition"--
if ]<i, then i's observatlon includes knowledge of j's obser&ation--they
solve an optimal control problem. Wltsennausen {D-22] has also. studied
this partlal order and has pomnteo out that iZ one totally, oraers the
set of decision makers in a way compatible with the preoedence relation,
one can then define .the state evolution of the system. Hence we see
-that there may bewman1 possxble sets of states corres*ondlng to dlfferent
compatible total orders (just as storage reguirsments wary with the cho;ce
of,recureion);"€ |

Inkthe preoeding discussion wes have seen that the presence of a
partSaleorder es opposed to1the gsuei‘i-b total order leadefeo some
complications. New diffioulties areralso encountered in the;study of
the stap?lity of’recursive 2-D filters [D;1,13].' As in the 1-D case,
the sfabiiity of the filter‘depends on the direction of recursics,

. o ,

and there are many more possibilities in 2-D. 1In addition, although
there'arefanelogs’of results such as those in 1-D that test to see
if al; poies are inside”eoe unit circle [D~1,9], tne reguired calculatlons
are fer-mo;e copp%exo %This increase in complexity also arises in the
krelat?dﬂprobieh of tﬁe'stabilization of a given 2-b~sysaeﬁ function
“while keéeping the magnitude of the frequency response~uncﬁanged. Ink

1-D this is done easily by shifting those poles that lie outside the

unit circle, but this cannot be done that easily in 2-D, sinca we cannot

S il



factor 2-D polynomials;*

Anothéf sfabilization appreoach in 1-D is spectral factorization--
i.e. we write a given rational H(z) as the product of two pieces,
HE(z) and Hw(z), where HE has all its polés‘inside the unit circle (and
hence is stable if used to process inputs in the eastemdirection) and
Hw has all its poles outside the unit circle (stable to the west).-
Thus, in 2-D, one is tempted to seeklfactorizations into four stable
quadrant filters [D-12] or into two stable half-plane filters [D-1,16,28]
much like éhe 1-D case. Such technigues have bzen developed using
2-D cepstral analysisf gnd we refgr the readzx to the references. 'Wei
do note that the lackzof é fundamental theorsem of algebra does mean
that the factors in these factorizations will not in general have
finite order denominato:s.

A final stabilization procedure is basad on the guaranteed stabi;ﬁ
lity in 1-D of least sguares inversaes. The l=ast sguares inverse (LSI)
is obtained using exactly the methodology one brings into play in
performiné,linear prediction of speech. Given the denaminatér B and
its inverse transform b, one seeks a finite sxtsnt impulse response p
that approximates the convolutional inverse oi b by choosing the
coefficieﬁts in p to minimize thes sum of ths scuares of the difference
between b*p ana the unit impulse. In 1-D, onz has the guarantee that
p is minimum phase (i.e. thaﬁ the all polé model 1/p is stable). 1In
[D-13] Shanks, et al., conjectured that this minimum phase property holds

in 2-D. - Under this assumption, they proposed the use of a double least

squares inverse to stabilize and unstable éenominator of a NE filter.

*This is often referred to as the "absence ofkthe fundamental theorem
of algebra" for multivariable polynomials (see, for example, [D-1]).
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Using this design procedﬁre, numerous 2-D filters have been desigﬁéd.

Unfortunately, Genin and Xamp [D-53] have recsntly shown that this

conjecture is false in 2-D if cne constrgins §neself to quarter—piagé
( , filters (although it is true in certain reétricted cases [D-501). o©n
the other hand, Marzetta (D-43] haskshown that the desired minimum
phase property does hold if £Ag least sgquares inverse problem is posed
in.termé of half-plane filters. We will return to this point again

later.

P

UAs in:the_l-D case, a critical question in %he design of Z-DEIié
fiiters is'ﬁﬁe e*}stencé éf limit cyélés andé tha effect‘bf‘rgundoff
2 ' noise on the filter output. vfﬁe results in [2-12] on the existence of
horizOntal,kverﬁiéél,.aﬁd¥ﬁ§§interacting diagonal limit cycles paraliel
1-D results. Openﬁquestiéns ihvo}ve the intriguing question of whétﬁer
one;can‘éxtend any of the othe; techniques discussed in Section C.
Do ;he passivity-TSypskin-positive real-fteéuency domain results of
| Claasen, et~él., [C-9]_énd others extend to the 2-D case? What about
the Lyapﬁhév tecﬁniqﬁesiof Willson [C-2]12 ' CZ coursé in this case one
would neéd 2-D state space models and a 2-D Lyzzunov theory, which' in
%ﬁ itself might be of interest in providing a method to test for stability
| ~of 2-D Lsi systems_evéﬁﬂwith perfect arithﬁetic.

The analysis of,foundoff noise in 2-D filtsrs can be carried out

| much‘aé for‘l-b fiiters, but anéthér open questioh coﬁcerns the exten-
sion of the covariance noise analysis method Jescribed ih Section A
for ;4D roundoff analysis. Again one woulé n==d a state spaéé model

i . in order to ¢consider this question.
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D.2 Two-Dimensional State Space Models

r

s

In addition to 1-D' state space descripﬂions for r%cdrsively
ordered 2-D systems [D-26], some work has been done on the analysis

of 2-D state space models. Roesser [D-27] considers the NE model

v(lfl,J) \Alv(llj) +'A2h(l,3) + BlX(l,])

B(1,3+1) = Av(i,3) + Ah(5,3) + Byx(i,9) (D.4)

y(i,3) = € v(i,3) + Ch(i,3) + Dx(i,§)

here x is the'input, y is the output, and v ani h together play the

role of a "state" variable, "camping" vertical and horizontal information,

‘respectively. Given this model, Roessar considsrs several issues,

including a variation of constants formula to solve (D.4), a Z;D
version of the Cayley-Hamilton Theorem, whickh in turn is used to obtain

an efficient method for computing the transition matrix, and the notions

of contfollability and observability. 1In obtaining his algorithm for

..

recurSively'computing the transition matrix wia the Cayley-Hamilton

thelorem, Roesser used the notion of 2-D eigenwvalues in a crucial manner,

and in the usual nonfactorizable case the calculation of zeroes of a

characteristic polynomial is extremely difficulx. This not bnly

. complicates his transition matrix algorithm, but it makes stability tests

more difficult, as we have already mentioned. furthermore, the model
{D.4) is l;mited to guaddrant~-causal systems. nis is perfectly reasonable
for the study of quadrant-recursive filters, but its value for the

analysis of other 2-D signals is unclear. Tor example, Roesser mentions
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the possibility of a 2-D filtering theory, whers (D.4) plays the role

of a "spatial shaping filter." As Ekstrom and Woods;[64§8] point-out,

‘one cannot obtain arbitrary spectra from a NI shaping filter. Hence,
one may need two such filters, as well as a2 msthod for modelling the

" spectra of the signal field. Finally, wz nots that Roesser's "state"

(v(i,3),h(i,3)) might better be termed a "loczl state" [D-24]. As we
saw earlier, in recursivei&‘sdlving 2~2 ecuzticns, the,requiiéa amount
of storage in general depends on the size of tnhz arrays of interest,

while dimensions of v and h corresponi to <hs sxdsr of the system, as

‘in (D.3)..

_ Issues of this type have also bsen consiizred by Fornasini and

*

Marchesini [D-24]. They consider local NI stizts space descriptions of

the form

x(m+l,n+l) = on(m,n) + Ajx(m+l,n) + A x{z,n+l) + Bu(m,n)

y(m,n) = Cx(m,n) v . : - (D.5)

They;é@ow;that a NE IIR filter can be xezlizsZ as 'in (D.S)‘if and

only if the transform of the iﬁpulse raszconss 13 rational. The "if"

part of this résult involves the construction oFf a reaLizatianthat

is a generélizatioﬁ:of the 1-D "standard co:tr:liable éormt" Having
such realizations,‘attention natﬁraily foziss2s on minimality. Thié
leads directly to the notions of {local} conzrzllability and observability,'
with fihité rank conditions fof these zressrtiss béiné developed in a

manner analogous to that of Roesser. The main minimality result of

e ——— M
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Marchesini and”Fornasini is that minimality imglies local cdhtrollability

g}andﬂobservability but that local controllability and observability do not

imply miﬁimality.

/ Attasi [D-23] has studied a special cass of (D.5), in which

I

A, = =-AA_ = -A_A _ (D.6)
) T P '

In this case, the system’transfer‘fuhction i3 separable (H(zl;z2)=Hl(zl)Hz(22)),
and} as shown inﬁ[D-25], this is ﬁhé only czs= in which the glob;l
state is finite dimensional. As any FIR fil%sr can be realized £y  m
(D.5), (D16), ;£y éggblé impulse responsebci: be approxiﬁatéd;arbitrarily
clo§ely by a éystem éf this form. Tﬁié, 'f sourse, i; nei;her staftling
nor?necessarilyive#y;useful, since the dimension of the resulting state-

spa?e system may be extremely large. Having zhis framework, Attasi defines

|
L

dual notions of local controllability and ozsarvability and derives

conditions somewhat simpler than in [D=24,27] because of the assumed

separability. Attasi also considers minimal realizations, obtains a

'y

state space decomposition result and mini

~ realization algorithﬁfmuch
like those in l-D; and shows that minimalit: implies contréllabiiity and
observability. He also proves the converss oI thiS last result, bﬁt
this is only true ifiche looks for the minizal realization in the
cléss‘gfkmodels satisfying (D.6). We refer =nhe reader to [D-24] for an
exémple illustrating these points.

’Undoubtedly the major contribution 6f az:tasi's work is that he
aid something with his modsls, énd we will Ziscuss hié filtering k
‘results in thé next subsection. He also dé?eloped a 2-D Lyapunov

equation, which he used in a generalizatiorn oI the "invariance principle,”
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[D;45]. The exact implication of this resulz for 2-D stability theory
and %ts pétentialvhtility'in such areés as lizit cycle analyéis remain
as questions'fdf further work. Att?;iwalso considers systems as in

(D;S),.(D.6) which are driven by 'white noiss. 3again he obEains a 2=D

Lyapunov equation for the state covariance, 2% this result may be of

'some value in performing roundoff noise analisis for 2-D filters. 1In

addition, he develops a.stochagﬁic realizatisrn zheory that e*aqtly
parallels the l-D’case;withione rathsr surprising exception, in that,
unlike the léﬁxcase{_iﬁ tﬁewz—D case tﬁe stcfhaétic realizatioh is
essentially unigge. This is”due primarily << zzs additional constgéints
imposed by thé%fact that we use a single quaifa:t shaping filter.
Anbther,noﬁél féatﬁie of Attasi's developmen= is ths necessity for
using non-square factors--i.e. to perform thz rsguired factoriéaéioﬁ 
S(z,,2.) = H(z,,2)H' (z. *,z. ) (D.7)*’”
1" 2 : 1 2 1 2 -
where H is NE causal aédvof the form (D.3), (.3}, one must consider

recténgular factors. For example, if v is & sczlar process, then

L1
[

H in general must be lxm, and, in fact, the zZoresmentioned uniqueness

result fixes the value of-m.

Recently, Morf, et al., [D-31] have mad

th

several noteworthy

contributions to 2-D state space thsory. Théy:onsider the properties

of ‘polynomial andgrational matrices in two vzxrizdles in order to
generalize the scalar 2-D polynomial results oI 3ose [D-30] and the

matrix 1-D polynomial results of Rosenbrock i2-32] and Wolovich [D-33].
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The concepts of local controllabilitv and observability for the Roesser
model are explored in [D-31]; and the authors point out that these

conditions neither imply nor are implied by the minimality of the

realization (this is done with several instructive examples). To obtain

|
notions of controllability and observability that are equivalent to
to minimality, Morf, et al., generalize ths agproach of Rosenbrock,ﬂ

and this leads to the notions of modal controllability and observability

:

‘and a related concept of minimality. 1In this setting the existence of

minimal realizations becomes a difficult sroslzm, and oné may not even
exist if we restrict ourselves to systems with real parameters. In
related work, Sontag [D-29] has also Zounéd rsalizations of lower

dimension than those proposed by Fornasini and Marchesini, and he has

i

shown that minimal realizations need not be unicue up to a change of

basis. -Allrbf these facts indicate that the 2-D staté space model is

an extremely complex one and offers some extrenely difficult mathematical
and éoﬁceptualgyrbb%emé. It remains to be ssen whether any of these state
models ané realization theories can provids z useful framework for

solving 2-D analysis and synthesis problems.

D.3 ‘Image Processing, Random Fields, and Szaca-Time Processes

Digital processing of images for data comgression, noise removal,

h
j]

or ‘enhancement is one of the major arszas o splications of 2-D digital

signal processing techniques. 1In addition, image processing has spurred

a great deal of work in the analysis of spatizlly-distributed stochastic

Variables--random fields. Let g(i,j) denote the image radiant energy
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| ,
as a function of two discrete spatial variablas, where, for the time

- being, we will assume that the system is frss of noise. The image

results from an image formation process that transforms the original

i

radiant energy £(i,j) into the observed imags. A general model that

is often used for the image formation process is

N
> n(i,i.k, V£, i,9=1,...,N " (D.8)
=1 -

g(i,j) =
s l R

k,

where h is the point-spread Zfunction (PSF), w=ich modals the 'smoothing

and blur that take place in the image formati:zn oprocess [D—4,19;4€j;

. ‘Note that one important case of (D.8) is ths shiZt-invariant case, in

which h depends only on i-k and j-%. In this cass (D.8) is a 2-D
convolution.

In addition to the image formationjprccess, one must take into
accoﬁnﬁ the ptdcess of image recording ;nd szoring. Several noise-
corrﬁpted nonlinear imggé models have been &zv2loped [D-19,46] for

this; however, as discussed in [D-46], often o=z may be able to justify

the use of an additive noise model
Cali,g) = gld,d) + vid, P | | (D.9)

where v is an additive noise process. We rnow zurn our attention to

the analysis of this model.

At various points in this development, iz will be more convenient

to view £,g9,9, and v as vectors by performing z scan (lexicographic)
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ordering, in which case we write g=HI + v, where H is‘an N xN* matrix

formed from the PSF. Examination . of (D.8) yislds that H is an NxN

matrix of NxN blocks {Hij}’ where the (m,n) elgment of Hij is
h(i;m,j,n). If the imaging system is shiftein%ariant, it is readily
seen that H is block Toeplitz, and, in fact, sach of the blocks is

i . R
itself a Toeplitz matrix. Note also that if n is separable, then

_h{i,j,m,mn) = hl (Vi,m)hz(j /n) and H = A e3)] A,

i
¥

where ® denotes the tensor or Kronecker product, and Ai is an
NxN matrix obtainable from hi.

It is evident from the preceding development that probabilistic

4

. : i . X
and statistical methods must play some role in image processing. 1In

.

. ; o s . -
tth context, f,g,v, and:'perhaps h are randon fields. For now we

consider such a random field s(i,j) to be characterized by its mean

s(i,j) and its covariance

-

r(i,j,m,n) = E{{s(i,3)-s(i,3)] (s(m,n)-s(n,n)1} , (D.10)
The field will be called (wide-sense) stationary if
r(i,§,mm) = r{i-m,3-n) o o (D11

S

Note that if s is ordered lexicographically, then its covariance R
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is the Nz x Nz matrix obtained from r in the same manner that H is
obtained from the PSF h. We also observe that R is block Toeplitz
with Toeplitz blocks if s is stationary.

One important problem in image processing is the efficient repre-
sentation of images for storage or transmission [D-46,47]. One well-
known method for obtaining a less redundant rezresentation of an image
is the Karhunen-Loeve transform ([D-46], which involves the diagonalization
of R. However, in géneral, this transform involves exorbitant amounts
of computation. There are, however, several sc-:zcial cases in which this
transform can be calculated efficiently. Crns of these, motivated by
similar analysis performed by Hunt [D-46] ani Andrews and Hunt (D-19],
is quite instructive. Suppose that s is stationary, and that any
particular pixel is uncorrelated with ones soms distaﬁée d away. Then
the block Toeplitz covariance matrix is nonzero only near the
main diagonal (and the same can be said for 2azh of the blocks).

We now modify R and its blocks, to make R block circulant with circulant
blocks. A block circulant matrix is block Toezlitz with each row a
cyclic shift to the right of the preceding ons, where the last block

on the right of one row becomes the first 5lock on the left in the

next row.b This merely means replacing some o the zerces in R with
nonzero entries. Intuitively, imagining the izmzge as a flat array, we
have connected opposite edges, first to create 2 cylinder, and then a
torus. The reason for making this approximation is that the matrix

of eigenvectors of Rb' the circulant modification of R, can be computed

efficiently using the fast Fourier transform (s22 [D-19, Z-1]), and



thus the Karhunen-Loeve expansion can be performed quickly,.

As discussed in Section B, one of the most widely used coding or
compression schemes for 1-D time series, such as speech, is linear
prediction, in which we design a one-step predictor or inverse whitening
filter for the time series. This method has several appealing features
in 1-D--it is efficient (if one uses the Levinson algorithm), it leads
to recursive coding and decoding algorithms, and it yields excellent
performance. 1In 2-D the situation is not as clear. What direction do
we predict in and what old data do we use to 2o the prections? At this
time, answers to thesz questions are beginning to be formed. Genin
and Kamp [D-53] have shown that NE predictors need not be minimum
phase, and Marzetta [D-43] has provided an argument for why this is
in fact the case. Specifically, in 1-D, we are guaranteed that the
optimal predictor forny(n) based on y(n-l), v(n=2),...,y(n-r) is
necessarily minimum phase; however, if we 3xi: some points in the
past--e.g., if we predict y(n) based on y(n-l1l),v(n-2), and y(n-4)--
the optim;l predictor may not be minimum zhass. Marzetta points out
that NE predictors do skip points For examzle, consider the predictor
of y(m,n) based on y(m-1,n), y(m,n=1), and v(m-1,n-1). If we totally
order the'points in the plane in a fashion compatible with the partial
order for calculating points recursively to thes Y2, then (m-1,n),
(m,n-1), and (m-1,n-1) will never be the three immediate predecessors
of (m,n). Thus, just as in 1-D, there is no reason to expect the
optimal predictor to be minimum phase. Marzetta then points out that
if we don't skip points--i.e. if we use a full half-plane predictor--

we do get the minimum phase properties, Levinson-type algorithms
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involving reflection coefficients, etc. Note that this predictor is
primarily of conceptual interest, since the predictor involves the
incorporation of an entire, infinite extent column before any points in
the priccding column may be included. We refsr the reader to [D-43]
for details and for practical, suboptimal metzods which also have the
minimum phase property. We also refer the reader to [D-51] for another
generalization of the Levinson algorithm to 2-D.

We now turn our attention to the problem of restoring blurred and
noise-corrupted images [(D-4,19,46]. A numbsr 27 nonrecursive methods
have been developed for the removal of blur ani for noise rejection--
inverse filtering, 2-D minimum mean-square error (MMSE) Wiener filtering,
etc., and we refer the reader to the survey [D-42] for more on these

methods and for further references. We merely soint out here that

techniques such as the Wiener filter have some difficulties and limitations

as image processing systems. To a great extent this is due to the

fact that the MMSE criterion is not particularly well-suited to the

way in which the human visual system works [2-22]. 1In particular, the
Wiener filter is overly concerned with noiss suzpression. 1In addition,
in order to make the filter computationally Zsasible, one often assumes
stationarity. This in turn leads to a filter that is insensitive to
abrupt changes--i.e. it tends to smooth edges and reduce contrast. On
the other hand, in high contrast regions, the human visual system

will readily accept more noise in order to obtain greater resolution.
Several schemes have been proposed that ars aimed at trading-off between
the potentially high-resolution, poor noise carformance of the inverse

filter and the lower-resolution, good noise rerformance of the Wiener



filter. One of these is the constrained least squares filter, ([D-4,19].

Several other observations can e mads zoncerning the processing

systems mentioned so far. As mentioned earlisr they are nonrecursive and in

principle require the block processing of ths sntire image or subs-
tantial sections of the image. Hence the ccmzutational burden of
these schemes can be quite high. In 1-D, ons find that recursive
methods are often preferable to nonrecursives ones because of their

computational advantages. As discussed in [Z-12] the 1-D Kalman filter

appealing question is the extension of such filters to 2-D. Anyone
familiar with 1-D Kalman filtering theory rsalizes that the design of
the filter relies heavily on a dynamic representation of the received
signal. Hence, to develop such technigues in 2-D, we need a more
complex model of an image than that zrovidaé b7 the mean and covariance.
The need for the use of such models is an ozvious drawback to this
approach, but the potential gains in computa<ional efficiency represent
a distinct advantage.

One approach to recursive processing 9% inages involves the 1-D

processing of the scan-ordered image (see suzssction D.1l). This work

Suppose we have an image f(m,n) (assumed to zz zero mean for convenience)
with stationary covariance r(k,%), and we c:zszrve g=f+v where the
additive noise v is, for simplicity, assum2d <o be zero mean and white,
with variance R. We now take the scan ordsringz of the NxN grid on

which q, £, and v are defined. Let us use <z same symbols to denote
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the resulting 1-D processes. We then havs

E[£(K) £(0)] = S0k, L) KB (D.12)

where S(k,%) can be calculated from knowleizs 22 r(m,n). Note that
the scanned image f£(k) is not stationary <ias <> the abrupt change that
occurs when the scanner reaches the end of zrn: line and bigins the
next. We wish to use Kalman filtering ta2zihni:z:ss in order to suppress
the noise. In order to do this, we nesd 2 s:z2:s space model for £.
Unfortunately, as pointed out in [D=-3], 3/4,. Zoes not have the
required separability that is needed in oxier Zcr such a realization
to exist. Hence, some sort of approximatis: i3 nseded, and several

have been developed. The simplest of thess involves finding a

filters they studied in [D-15]). Having R(X}, s2ns can then use some
the given correlation function.

We can now obtain an image restoraticn s:hams by direct appli-
cation of‘Kalman filtering. Several commsnzs ars in order. We first
note that the filter has an artificial ca:szlizr--only the points below
and to the left on the same line affect trhs z=:3:imate of a given pixel.
This can be partially removed by the use cf s-2cthing. With the model

we have developed, this can be done efficisnzl: with two Kalman filters,

scanning in opposite directions and startin: z2: opposite ends of the

image. The resulting estimate still has 2iZZic:lties because of the
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effects at the ends of lines. In this case, one can ~emove some of
these difficulties by transposing the image and performing the same
type of processing again--we then have NE, W, SE, and SW Kalman
filters.

The recursive methods discussed so far nave assumed that there
is no blurring due to a nontrivial PSF. If there is such blurring,
essentially we must develor a scan-ordered, l-D dynamical model for
the effect of the blur and then incorporate t:is model into our
Kalman filter. The simplest example of this--motion blur along the
direction of the scan--was considered by Abcu::alib and Silverman ([D-7]
(see [D-54] for consideration of more general zlurs). Again this
system offers computational advantages over nonrecursive schemes, but
the restoration system may be very sensitive %o errors in the knowledge
of the PSF.

The previous technigue did not directly =se 2 2-D recursive model
for the image. The first work along this lins was that of Habibi ([D-6]

who considered a 2-D, recursive, auto-regressive shaping filter

- 2 - 0. 2xx, 2 + Y(1-0%) (1-0%)w L2

x(k+l, 441) = Pox(k+l,%) + O x(k, 1) = 0,2 x(k, %) + V(1-0)) (1=-P)wi &)
(D.13)
where w(k,%) is a white, zero mean, unit variance process. Assuming

measurements of the form y=x+v, Habibi then Zz2veloped a2 suboptimal

-
de

estimator to estimate x(x+l,%+l) based on {v(z,n) ImSk, nS2}. The

suboptimality of Habibi's estimator arises sssz=ntially because x is
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only the local state, and one needs tc estimzzz the global state for
optimal filtering. The most complete study 2Z oztimal 2-D Kalman
filtering has been performed by Woods and RaZswan [D-41l]. We assume

that we have a one-sided causal dynamic modsl Zor the random field

M +M
x(mm) = > 3  b(k,2)x(m=k,z=5)
k=1 I=-M

(D.14)
M
+ 2 b(0,2)x(m,n=%) + w(=,=.
=1
Suppose we want to estimate x(m,n) given all wzlues of g=x+v in the
past, where past is defined relative =25 thes Zirsction of recursion
in (D.14). Woods and Radewan point out that z2is can be done op-
timally with an extremely high dimensional ¥a2l-an filter to estimate
the global state of the system, which in this zase has dimension on
the order of MN (M=order of the filter, N=wiizh of the image).
Optigal line~-by-line Kalman filtering Z5r images has also been
considered by Attasi [D-23] using a stochasti: version of the model
discussed in Subsection D.2. Specificzlly =zz image is assumed to be
generated by a separable vector analcz of =iz =ciel used by Habibi [D-6]

x(i,3) = le(i-l,j) e F2X(i,j-l) - sz(i-L,j-l) + wii=1,3-1)

&

q(i,3) = £(1,3) + v(i,3) = Bx(i,3) + »(<,3:

We wish to obtain the optimal estima<se %(=,=) =2 x(m,n) given q(i,j)

for i<m and all j. The optimal estimate in this case consists essentially
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of two 1-D operations. Suppose we have X(m-1,n) for all n. We first

predict ahead one line to obtain
x(m,n) = F,%(n-1,n), for all n (D.16)

Note that each of these estimates is calculated independently. We now
observe the new line of measurements g(m,n) for all n, and we create

the error process and the error measuremen

e(m,n) = x(m,n) - x(m,n) (D.17)

y(m,n) = g(m,n) = ﬁ;km,n) = He(m,n) + v(m,n) (D.18)

Thus we have a 1-D estimation problem--estimate e(m,n) for all n,
given y(m,n) for all n. Attasi shows that one can obtain a finite
dimensional 1-D realization for e(m,n) as a function of n. Hence,
this estimation problem reduces to the usual 1-D smoothing problem.
The solution consists of two 1-D Kalman filtsrs starting at opposite
ends of the line. Furthermore, the optimal smoother can again be
implemented with two filters of the type devised by Attasi--one
sweeping ihe columns in order of increasing m, and the other in order
of decreasing m. This is reminiscent of the decomposition of
zero phase filters into two half-plane filters [D-12,28].

The method of proof used by Attasi i -olves the taking of z-trans-

forms along the n direction and the treatment of m as a time variable.
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Essentially we regard the 2-D system as a high-dimensional (infinite
if the domain of n is unbounded) 1-D system, where we use a spatial
transform "along"” the 1-D state vector in order to simplify the
calculations. The key step in Attasi's devslcoczment is a derivation
of a set of Riccati equations, parametrizedé 2 the transform variable
z, for the power spectral density Sm(z) of e(z,n) considered as a
function of n. One can then factor these scactra to obtain the 1-D

realizations of the e's.

simplify or to study recursion in the other -z2ve also been used

in several other image processing schemes. Izr examrle, a method
very similar to Attasi's was used in (D-32]. In addition, Jain and
Angel [D-11] have considered fields descri:zZ =y a nearest neighbor,

interpolative equation [D-3]

x(m,n) = qllx(m,n+1) + x(m,n-1)] + azlx(m+l,n) + x(m=1,n)] + w(m,n)
(D.19)

Following (D-11], let us consider the vector scan process--i.e. we
process an entire line of observed data, v=x-v, at a time. Defining

the resulting 1-D vector processes xm, Ym' w_», and vn, we can write

.

(D.19] as

= D, 20
xm+1 = me xm-l = wm ( )
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where Q is a symmetric, tridiagonal, Toeplitz =atrix. Jain and Angel
point out that the diagonalization of Q, /\=M'(M, can be performed
with the aid of the FFT without any approxirz<icn. Thus, if we
define the transformed quantities ;;, ;;, stc.; (;; = n'xh) we obtain
a set of N decoupled estimation problems, indsxsd by j (which indexes

the compcnents of the transformed vectors):

AR R (D.21)
Ym,5 = *m3 " Vm,3 (D.22)

Bach of these problems can be solved using 2 Xz2lnan filter, and we obtain
an extremely efficient implementation--transZcrm the observations,
solve the low~dimensional decoupled estimation problems (perhaps in
parallel), and transform back.

As we have seen, optimal 2-D Kalman filtesring algorithmsrequire
large amounts of storage and computation. Txus, the study of suboptimal
estimators that require less computation is <Z importance. One suboptimal
filter developed in [D-41] is the reduceéd ugdzze Xalman filter. Examining
the optimai filter of Woods and Radewan, we s=2 %that the predict cycle
is computationally straightforward--one simzly uses the recursion (D.1l4)
assuming no noise and using preceding estimazss. The measurement update
part of the optimal filter, on the other han3, involves updating the

estimates of all of the compcnents of the stz2:tz. Assuming N>>M, we

expect that a given pixel is most correlated cnly with a small percentage



of the elements of the state vector. Therasiors, it seems reasonable only
to update the estimates of those components oI the state that are within
a certain distance of the point being processsi--i.e., we constrain many
of the gain elements to be zero and essentizll: allow only "near neighbor
updates."”

We have now surveyed a number of nonrscursive and recursive esti-
mation methods. The recursive technigues ccmz with many of the same
criticisms that were made concerning ﬁonrecursi?e filters. They require
detailed models of the image statistics and -r-aze formation process, and
they are essentially based on the MMSE critericn. Hence, they in general
will sacrific resolution in favor of noise suz:zrsssion. In addition,
these recursive techniques necessarily affecz :hg image because of the
assumed model structure. Some of the recursive techniques allow the :
inclusion of image blur, while in other cases the extensions to include
blur have yet to be developed. Also, we have ssen that in some cases
optimal K;}man filtering is extremely complex, and suboptimal, but
intuitively appealing, recursive filter structuires must be used. In
other cases we have observed that the use ¢ tha structure of the
assumed model can lead to extremely efficien< z-ztimal estimation algo-
rithms (wiﬁh the aid of transform technigues!. In addition, although
work in this area has been limited in extent [2-7,34], the recursive
techniques are directly amenable to the anal:sis of space-varying and

nonstationary models. Thus, in spite of the —an gualifications, we find

techniques for image restoration.
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One important area for future work invelwss the reliance on a priori
information. As mentioned earlier, one often zan assume knowledge of
the PSF or can determine it by observing knowm <sst scenes through the
imaging system. In other cases, we mav not =2vs siach information and
must estimate the PSF as well as the imacgs. 7This one important gquestion
concerns the robustness of these technigues In tzz face of modelling
errors. As mentioned in Section A, technizuss Z: 2xist for the
sensitivity analysis of 1-D state-space moésls zn:i 1-D Xalman filters.
Can we extend these methods to the 2-D case, anZ -ow well do the 2-D
algorithms perform? 1In addition, methods zzzunZ iz 1-D for on-line
parameter identification and adaptive sstimazizn in the presence of
unknown parameters. Can we apply these methods with any success to
the 2-D problem?

A second area of concern is the resoluticn-nsise suppression
tradeoff. As mentioned earlier, the human wvisuzl system is willing
to accept more noise in certain regions, suck zs eiges, in order to
improve'resolution. Thus, in relatively slcwly wirving regions of
the image, we would like to remove noise, whils whzsre there are abrupt
scene changes or other high frequency fluctuzzizsns of interest, we

would prefer to forego noise suppression in Zzvzr 52 resolution [D-4].

In this context an important problem is the Z=s:sction of edges or
boundaries between different regions in an izzzs. We also note that

in many applications the determination of thz zZcunmizries themselves may
be the key issue [D-35]. In recent years 2z ~wzrizzr ¢f techniques have

been developed for detecting and recognizing waris:s types of boundaries



in 2-D data (as an example, see [D-48]). In 1-D, a variety of recursive
techniques have been developed for the estimation and detection of abrupt
changes in signals [D-44]. These techniques have been successfully applied
in a wi&e variety of applications, and an important question then is

the extension of methods such as these to the dstection of boundaries

in images (see [D-8,35] for some work along these lines).

Throughout this subsection we have seen ssveral examples of 2-D
signal processing problems in which good us2 is made of the transformation
of the signals obtained by considering them =2 zs 1-D vector time signals,
in which the other independent spatial variat:ls is used to index components
of the vectors. There are, of course, many zr=zlems in which the
processes to be studied truly are space-time srocesses [Z-1], and in
many of these the use of 2-D concepts can oi:ten be of great value. One
of the best examples of this type arises in ctrcblems of seismic signal
processing [D-17,18,42] in which we observe thes time response of the
earth using a spatial array of sensors. Other applications plus several
specific problem formulations are discussed in [2-1]. 1In addition, [(2-1]
contains a brief discussion of results and Zor—ulations that utilize both
1-D and 2-D tools of stochastic calculus ani martingale theory [D-36,37].
Such techniques are in their infancy and worx< zontinues to determine their
utility and limitations. We note only that <iz problem of the lack of
a natural total order in 2-D causes difficulziss in extending 1-D
stochastic calculus concepts to 2-D. This is nct surprising, given the

several complications that we have already Ziscussed.



Given the several examples described sariier in this section, it
is our contention that there is potentially =uch to be gained by uti-
lizing both the perspective of 2-D signals ani systems as well as that
of 1-D‘space-time systems in studying problems of either type. As a
final example of how this concept might be ussi, consider the study
of large interconnected systems. In this cass we let the spatial
variable index subsystem variables which may z= vector guantities

themselves. A general linear model then is =h2 recursive 2-D model

x(k+l,i) = 2 A, x(k,3) + 3 B, u(k,3) + w’%,3) (D.23)
3 13 3 43
y(k,i) = Zcijx(k,j) + v(k,d) (D.24)
j

Much as in the analysis of 2-D Kalman filters [D=-41], the off-line
analysis of such systems (solution of Lyapuncw or Riccati equations,
for example), as well as the on-line implemerntation of centralized
optimal'c;ntrollers or estimators, may beccrms trohibitively complex.
Indeed the analogy extends farther, as the "nzarsst neighbor"
constrained filter of Woods-Radewan involves crscisely the same philosophy
as is used in many decentralized control ané sstimation problems [A-26,
D-38].

. Let us note that there may be many other :s2ful insights to be

drawn from this type of analogy. For examcls, i1Z the model (D.23),

(D.24) falls into the class considered by At:z3i, then the optimal
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centralized Kalman filter can be efficiently implemented using Attasi's
line-by~line optimal filter, which involves dynamics in the transmission
of information among subsystems (Attasi's 2 filters "along" each "line").
As a second example, in the case in which (D.23), (D.24) are spatially
invariant, Melzer and Kuo [D-39] and Chu [D-40] made good use of the
structure by taking spatial transforms in studying centralized and
decentralized optimal controllers. Similar analysis is contained in [Z-1]
for the case of a finite string with circular symmetry. Much as in

the case of block circulant approximations [D-19], this allows us to

use FFT techniques to reduce the complexity of the on and off-line
calculations for centralized controllers in a manner very similar to

that of Jain and Angel [D-1ll]. In addition, the use of spatial windowing
techniques [A-1l] to obtain nearest ne}ghbor decentralized control
algorithms may allow us to develop useful designs for such circularly

symmetric systems.
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Concluding Remarks

In this paper we have examined a2 number zZ %road research areas
that have attracted workers in two disciplines--32izital signal processing
and control and estimation theory. The goal ¢Z txis examination has
been the acquisition of some perspective on rslationships among the
questions asked, methods used, and general philcsczhies adopted by
researchers in these disciplines. Ugon underzazing this study it was
my feeling that such perspective woulZl be extramszl: valuable in pro-
moting collaboration and interaction among rsssarczhess in the two
fields. Upon concluding this study, I think =22z = initial feeling
has been thoroughly substantiated. Not only z2rsz <hsre numerous
examples of questions in one discipline that can zz2nefit from the point
of view of the other, but also we have founé z nucter of new issues

that naturally arose from combining the two =cinzs of view.

clearly these will and should be maintained. <= tZe other hand, each
discipline can gain from understandinzs the otzzr. State space methods
have their limitations, such as in spscifying :s22:l digital algorithms

and structures. On the other hand, s<tate szgz:z: =sthods provide ex-

design specification, etc. State spacs ideas 21sz 2llow one to con-
sider multivariable and time-varying svstems. =11 2% these aspects of
state space theory may prove of value %o peozlz Invslved in digital
signal processing. On the other side, resesarc-zrs in digital filtering

have answered many crucial questions rzlateé =3 turning design specifi-

cations into implementable designs.



in digital signal processing have concerning ths problems of digital
implementation is something that researchers in zontrol and estimation
would do well to gain. Thus it seems clear that a mutual understanding
will prove beneficial to all concerned.

Numerous questions have been raised and sgeculation on various -
possibilities has been made throughout this pzzer. Whether any'of these
issues has a useful answer is a question for <izs future. It is my
feeling that many of them do, and it is my nhc:ss that others will think

so as well.
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