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Introduction

The writing of this paper was motivated by the belief that the fields

of digital signal processing and control and estimation theory possess

enough similarities and differences in philosophy, goals, and analytical
i

techniques to merit a detailed joint examination. In order to explore the

relationship between these two fields, I found it essential to concentrate
j

on several specific research directions to provide a focus for my investiga-

tions. The results of this study were a talk delivered during the 1976 IEEE

Arden House Workshop on Digital Signal Processing, the present paper, and a

far more comprehensive manuscript [ZI].P	 ^P

II'

	

	 Although the paper consists of discussions of several specific research

directions,'the primary emphasis of this paper is not on results. Rather,

Iihave been far more interested in understanding the goals of the research

and the methods and approach used by workers in both fields. Understanding

the goals may help us to see why the techniques usedy	 p	 y	 'qu	 in the two disciplines

differ. Inspecting the methods and approaches may allow one to see areas

r in which concepts in one field may be usefully applied in the other. In

summary, the primary goal,of this study is to provide a basis for future

collaboration among researchers in both fields.

It is hoped that the above comments will _help explain the spirit in

which this paper has been written. In reading this paper, the reader may

find many comments that are either partially or totally unsubstantiated.'

These points have been included in keeping with the speculative nature of

the study. However, I have attempted to provide background for the 'specula-

tion and have limited these comments to questions which I feel represent
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exciting opportunities for interaction and collaboration. Clearly these

issues must be studied at a far deeper level than is possible in this initial

effort. To aid others who may wish to follow up on some of the directions

developed in this paper, an extensive bibliography has been included. In
i

addition, the interested reader is referred to [Zl] in which all of these

research directions are explored in substantially greater breadth and detail.

Nowhere in the paper have I made a direct attempt to define the fields

of digital signal processing and control and estimation. Rather,' I hope

j	 that by examining many of the issues of importance to workers in these,

fields, the reader will be able to piece together a picture of the disci

Alines and their relationship to each other. As a preface to our examina

tion, let me mention several points concerning each field.

in digital signal processing, one of the crucial problems is the design

of an implementable system meeting certain given design specifications such

i
as an ideal frequency response. Here the emphasis often is on the word

implementable, with a fair amount of attention paid to issues such as the

structure of the digital filter, its complexity, in terms of architecture

i

	

	 and computation time,; the effect of finite wordlength on performance, etc.

Much of this attention is motivated by the need for extremely efficient

systems to - perform complex signal processing tasks (e.g., the implementation_

of high--order._recursive or nonrecursive filters) at very high data rates

(such' as those encountered in ,speech processing, where one runs into sampling

rates on the order of 10 kHz).

in control and estimation, the emphasis has been far less on implemen

tation'and more on developing methods for determining system design specifi

t

o
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i
cations for estimation or control systems. At one level these specifica-

tions are just a particular class of design guidelines which can then be

used to construct an implementable digital system.- However, there are

major differences between the systems arising in the control context and the

typical digital processing application. For one thing, the data rates for

(}	 control systems are often far lower (e.g. in aircraft control systems
i

sampling rates on the order of A kHz,are often encountered) More ,funda-

mentally, however, the signal processing to be done in a control system

cannot be judged by itself, as can other signal processing systems, since

it is part of a feedback loop, and the effect of the processing must be

studied in the context of its closed loop effects.!{

Also, many modern control and estimation techniques involve the use

of a state space formulation, as opposed to input-output descriptions which

are usually encountered in digital signal processing applications. Some

of the reasons for this difference will be made clear in the following sec-

tions, but ohe implication is immediately evident. The use of a state-space,

description implies that the system under consideration is causal. In

standard feedback control problems this is clearly the case, and-thus state

space formulations make a great deal of sense. As we'll see, there are

digital signal processing problems involving noncausal systems or systems

in which the independent variable has nothing to do with time and for which

causality has no intrinsic meaning'. Thus, while we will find several places

in which state space concepts fit in naturally in the digital signal pro-

cessing context, we'll also find others in which that is decidedly not the

case.
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A. Synthesis, Realization, and Implementation

in this section we investigate one subject area in which some of the

differences in perspective between the two disciplines are most apparent.

Specifically, we consider the question of design. However, our discussion
j

will not deal very much with design methods but rather with the question of

trying to pinpoint what researchers in the two disciplines mean by "design"

and what sorts of problems their techniques are equipped to handle.

Perhaps the most obvious difference between the fields is in the type

of system representations used. In digital signal^	 y	 g'	 gn processing, the emphasis

is heavily on input/output descriptions, while in control and estimation the

emphasis is more on state space models. The, : reasons for this difference

stem from the different questions addressed by researchers in the two disci-

plines. In digital signal processing one is interested in the issue of

implementation of a system with a specified input-output behavior (hence,

the need for an input-output description). Questions such as efficient

implementation and number of bits needed to achieve the desired level of

accuracy are of great importance.

on the other hand, in control and estimation theory the issue of

implementation is not considered to nearly the same extent. Realization
h

techniques do address the question of constructing a state space realiza-

tion that leads to a specified-input-output behavior. However, as discussed

in the following subsections, such techniques do not address many of the

major :issues involved in implementation, and, in fact, state space realiza-

tions, when viewed as implement-able algorithms, don't include some of the

most important system structures that are used in digital system design.



Nevertheless, state space models do play an important role in control and esti-

oration system design. Specifically, a state space model for a given physical

system, is a necessary ingredient in the application of a number of tech-

niques for the analysis of system performance and for the design of feed-

back control or estimation systems (i.e. the specification of the desired

,;%	 input-output behavior of a control or estimation system).
r

Thus, we see some fundamental differences between the perspectives of

researchers in the two disciplines. There also clearly exist several areas

for interaction between the fields -- to develop useful multi-input/multi-

<...quiput structures (a marriage of digital implementation and multivariable

realization concepts), to utilize state space techniques to analyze the

performance of digital filter__ structures, and to consider the digital imple-

mentation of state-space control and estimation system designs.

All of-these issues are discussed in detail in this section.

A.1 State Spacer Realizations and State Space Design Techniques

The basic realization problem is as follows: we are given a (possibly

time-varying) description of the input/output behavior of a-system

C
k

i	 y(k)	 T(k, ) u(i)	 (A•1)

where u and y may both be vectors. In the time-invariant case we have that

the sequence of impulse response matrices satisfies

T(k,i) = T(k-i,,0) 	 Tk-i	
(A.2)

i

and in this case we may be given an alternative input/output description



1

in the transform domain

ao	
,

	

Y(z)	 G(z)U(z)	 G(z)	 Tiz-1 	(A.3)

i=0

The realization problem consists of finding a state space model

x(k+l) = A(k)x(k) t BWu(k)
(A.4)

Y  C(k)xW + D(k)u(k)

that yields the desired input/output behavior ((A.1) or (A.3)) when

-x(0)	 0.

The realization problem has -been studied in detail in the control

literature, and one aspect that has received a great deal of attention

is that of.. determining_minimal realizations -- i.e .. models as in (A.4)

with the dimension-of x as small as possible. The basic idea here is that

a minimal realization has no superfluous states that either cannot.be

affected by inputs or do not affect the output. These concepts lead

directly to the notions of controllability and observability. In the time-

invariant case, one obtains a rather complete description, Specifically,

we find that the system (A.3), has a finite-dimensional realization if and_

only if G(z) is rational with each element having no more ,zeroes than poles.

Furthermore, any controllable and observable time-invariant realization is

of minimal dimension, and any -such minimal realization can be obtained

from a particular one by change of basis (see, for example, [A-4,5,27,301).

'The algorithm of Ho [A-25] and that of Silvermaa and Meadows [A-5]

provide methods for extracting minimal constant realizations from the Hankel

matrix determined by the Ti (see Subsection B.3 and the references for



details of these results). Thus, if we are given a design specification or

plant description in terms of a rational G(z), we can readily determine a

minimal realization. On the other hand, if we are given G in the form (A.3)

i
as op:osed to in rational form, partial realization algorithms must be used.

We will discuss such algorithms in Subsection B.3.

State space realization algorithms can, in principle, solve certain

1

	

	 questions related to system synthesis. Specifically, the computation of a

minimal realization allows us to determine the minimal amount of storage
rr

required_.. in any implementation, and one rof'the most important aspects of

the state-space approach is that it allows one to consider multiple input/

multiple output systems and time-varying systems'. Since any minimal state

I
space realization can be obtained from a given one by change of coordinates,

'I clearly realization theory allows y 	 some flexibility in designing good digital^ 

filter structures. But it is far from the complete answer, as we will see

in the next subsection. Not only is memory becoming cheaper (thus reducing

the importance of minimality), but there are other implementation issues

besides storage that are of importance, and one also runs into limitations

in interpreting state space realizations as filter structures.

A more important aspect of state space realizations comes from the fact

,that theyplay an extremely important	 number of control and estima--part in a',r	
_

tion design problems, where one uses state ''space realizations to model the

system to be controlled or the signals to be filtered. By doing this, one

can bring into play extremely powerful state space techniques for compensator

I

	

	 design [A-2, 61, `decoupling of the effects of different input channels [A-71,_

etc., and we refer the reader to the special issue of the IEEE Transactions
1
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on Automatic Control [A-32] for an overview of many design methods that have

r been developed. These design algorithms allow one to consider -a variety of

extremely complicated multivariable system problems within a single framework,

and this ability to handle many variables at once is at the heart of the

value of state space concepts.

One important aspect of some of these techniques is that they allow one

to solve quantitative optimization problems. The . 	optimal

control problem is an example of this, as is the design of a Wiener filter

as a steady-state Kalman filter [A-8, 27]. In this case, we begin by modelling

the observed signal as the additive white noise-corrupted output of a linear

state-space model (a shaping filter) driven by white noise. Having solved

this realization problem, the determination of the optimal Kalman filter is

ii

	

	 reduced to solving a time-varying Riccati equation or a nonlinear algebraic

Riccati equation for the steady-state (Wiener) filter. Algorithms for solving

this algebraic equation essentially solve the Wiener spectral factorization

problem.

In addition to providing a framework for the specification of designs,

the state space framework allows one to analyze the performance characteristics

of the overall system after it has been implemented. For example, the tech-

niques described in _Section C can'be used to study the stability characteristics

r of the system. Another analytical tool used to study system performance is

covariance analysis. Consider the model

x (k+l)	 Ax (k) + w(k),  y (k) = Cx (k) + v (k)	 (A.4)

where w and v are zero mean, independent white noises, with variances`Q and R,

i
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respectively. These noises may represent actual noise sources or the

effects of small non-linearities, unmodeled phenomena, etc. A simple cal-

culation yields an equation for the covariances P(k) and S(k) of x(k) and

y(k)

P.(k+l) = AP (k) A' + Q, S (k) = CP (k) C' + R	 (A.5)

If A is a stable matrix, we can evaluate the steady-state covariances P

and S by solving the Lyapunov equation

APA'-P _ -Q	 (A.6)

A.2 The Implementation of Digital-Systems and Filters

As discussed in [A-11, the design of digital systems consists of

several parts; including the spiecification of the desired input/output

relationship and the implementation, using finite precision arithmetic,

1

	

	
of a system that approximates this desired behavior.- From this point of

view, the methods of the preceding section deal with the first issue.

Realization-procedures play an indirect role in these techniques in pro-

viding the state space models on which the design methods are based. But

what--about realizations from the point of view of system synthesis and

implementation?' As we shall see, state space realizations can play some

sole, but they are far from providing the entire solution.

A wide variety of digital filter design methods have been developed to

deal with the second issue. One factor that does enter into this design

question is the number of storage elements (delays) in the filter structure,

and thus the issue of minimality is of some importance. > Of course, in

I
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dealing with single-input, single-output transfer functions, one can read

off the order of a canonic structure and can construct several quite

easily by simple inspection of the specified transfer function. The deter-

-

	

	 mination of the order of a cationic realization and the ability to construct

several minimal realizations without much difficulty barely scratches the

surface of the structures problem, however. As pointed out in [A-1J_, the

various filter structures available may be equivalent from an input-output

viewpoint if one didn't have to worry about computation time, the complexity

of the digital) architecture or algorithm required'to implement a given

structure, the effect of finite precision. in representing filter coeffi-

cients, or the effects of overflow and quantization. These are the issues

that motivate much of the study of various filter structures [A-1, 10,11].

Let us examine some of these issues in the context of a particularly

important structure, the cascade form, obtained by factoring a-transfer

function.H(z) as a product of lower-order transfer functions. Consider the

example
I	 .
,

	Fi(z) -_ 
z2+(b+d)z+bd __ (1+bz-1)(l+dz-1)	

(A.7)
z2- (a+c)z+ac	 (1-az-l)(1-cz-1)

In Figure A.1 we-have realized this filter as, the cascade of two 'first

order filters. Note that the overall filter is minimal.

In Section C we considerthe effects on digital filter performance of

quantization and overflow on system stability. An alternative, approximate
i
;.	 method for evaluating the effect of finite word length on system performance

jis to model each quantization as if it introduced Noise into the system

t	
,



Figure: A.1 A Cascade of Two Fire Order filters
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[A-1). By assuming independence of these various sources -- a rather strong

and sometimes unjustified assumption (as the existence of period effects,

i.e. limit cycles, indicates) -- one can in principle evaluate the overall

noise power at the output, and thus can obtain a measure of the size of

quantization effects. As an example, consider the case {A-1] of fixed-point

arithmetic and roundoff quantization in which the quantization interval q

is 2-b. In this case, the quantization error e introduced by a single mul-

tiplication takes on a value between ±.5q. If one makes the assumption
i

that a is uniformly distributed, we find that it has zero mean and variance

2q /12. Then, for example, in the cascade filter of Figure A.1, one could 	 j

add one such noise source following each of the four multiplications.

Another extremely important issue in filter design is the sensitivity

i	
of filter performance to variation in coefficients. This is quite central

an issue, since one can only represent coefficients up to a finite degree
I

of accuracy,: and hence one cannot obtain filters with arbitrary pole and

i

	

	 zero locations. The allowable poles and zeroes and the sensitivity to

variations in parameters depend quite significantly on the particular struc-

ture under consideration. For example, parallel and cascade structres are

often used because the perturbations in the poles are isolated from one

another.

For the remainder of this section, we wish to examine the relationship

of state space techniques and concepts to some of the questions in digital'

filter design. Let us first examine the use of state space techniques to

determine filter structures. Consider the transfer function (A.7). In this

4
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case, state space techniques yield a variety of minimal realizations of the

form

ffl	 12	 gl
x (k+l) =	 x (k) +	 u (k)

	

f21 f22	 92 (A. 8)

Y (k) = [hl . h2  x (k) + u (k)

If we interpret (A.8) as an algorithm, we must compute the various products

	

f
ij

xj (k), giu(k), hixi (k) (i, j=1,2), and perform the appropriate additions. 	 ti

Note that in general, there are 8 multiplications and 6 additions required.

Now consider the cascade structure of Figure A.1. Interpreting it as
i

an algorithm (a and b multiply xl(k), c and d multiply x2(k), and we perform

the required additions), we see that we require 4 multiplications and 4 addi-

tions, but this is not the most important difference between the two algorithms,

i
since it is possible to obtain realizations (A.8) with some zero elements in

(F,g,h). However, the crucial difference is the following: if one interprets

a state space realization as determining an _algorithm of the type indicated,

then there is no way that the cascade algorithm is of this type! This is not

to say that one cannot find a state- space description of the cascade realiza-

tion. In fact

a	 0	 1

i x (k+l) =	 x (k) +	 u (k)	 -	 (A. 9)
( a+b)	 c	 1

y (k) = [ (a+b) , (c+d) l x (k) + u (k)

is such a realization.

j	 The point made above may, at first glance, seem to be - trivial, but it is

I	 not, ,since it points out that although any (infinite precision) algorithm can
I
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I
beidescribed dynamically in state space terms, direct interpretation of a

state space description as an algorithm does not allow one to consider all

possible algorithms. That is, it is relatively easy to go from an algorithm

i
to!a state-space description, but it is not at all natural or clear how to

go the other way, and hindsight is needed in order to interpret a realiza-

tion of the form of (A.9) as a cascade structure. 	 ---

Thus, we see that state space models have limitations when one considers

the issue of implementation. There are, however, several areas where inter-

action between the two fields may be of use. First of all, the techniques

used in digital signal processing should be of. use in considering the imple-

mentation of control and estimation system designs such as those mentioned

in Subsection A.1. Also, recall that state space realization techniques

allow one to determine minimal realizations for systems with multiple inputs

and outputs. It is possible that this fact, combined with a thorough under-

standing of the relationship between state-space realizations and various

digital system structures will lead to the development of useful filter

structures for multivariable systems.

i--- 	 precedingAlso, as mentioned in the recedin subsection_, the state space frame-

work is particularly useful for the analysis of the properties of dynamical

systems. Thus, it seems natural to ask if these techniques might be useful

in the analysis of various filter structures. In Section C we discuss this

question with respect to stability analysis techniques. Also, it is possible

that state-space sensitivity techniques [A-9] could be useful in the study,

of the sensitivity of various digital filter structures;; but this awaits

further study.



Finally, let us examine the utility of state-space techniques in the

analysis of the effect of quantization noise on filter performance. We do

this by example, although it should be clear that this approach extends to

arbitrary structures. Consider the cascade structure in Figure A.l where

we add quantization noise after each multiplication. A state space repre-

sentation ofithis system can be written. down by inspection:

x (k+1) = Fx (k) + gu (k) + rN (k) .
(A. 10)

Y (k)	 h x (k) + u (k) +	 (k)

where F, g, and h are given in (A.9), N(k) is the 4-dimensional noise vector__;

whose components are the noises contributed by the multiplications by a, b,

c, and d, respectively. Then T _ (1,1,1,1) and

1 0 0 0
r =	 (A.11).

1 1 1 0
i

If we make the usual independence assumptions concerning the components and

time-behavior of N, we can directly apply the covariance analysis equations

(A.5), (A.6) to determine the effect of quantization noise on x and y. Mote

that (A.5), (A.b) yield the effect of noise throughout the network. The

utility of an, approach such as this for digital network analysis needs to be

examined more carefully, but it appears that it may be computationally

superior to other methods, such as those that use signal flow graph tech-

niques [A-12] or that require computing a number of partial transfer functions

[A-31. We note that Parker and Girard [A-151 used Lyapunov-type equations

and analysis quite similar-to our development for the evaluation of output

noise power due to correlated quantization errors. In addition, similar



I
analyses have been undertaken by Hwang [A-17]; Mullis and Roberts [A-181-,

i

and Sripad and Snyder [A-19,201• Hwang uses Lyapunov-state space equations

to study the effects of possible structure transformations and state-amplitude

scalings. Mullis and Roberts have obtained some significant results for

digital filter design using a framework similar to Hwang 's to study what

they call "minimal noise realizations (see [A-311_ for further developments).

Sripad and Snyder develop conditions under which quantization errors are in

fact white, and they also use Lyapunov-type analysis to compare the perfor-

mance of two different realizations. Within this framework, one can pose a

number of other questions. For example, in the case of floating point

arithmetic, the quantization error deaends on the size of the signal. Can

state-space proceduresprocedures for analyzing "state-dependent noise" [A-161 be of
i

value here? Questions such as these await future investigation.

In this section we have seen some of the issues involved in system

design in the two fields. The issue of implementation is at the very heart

of the problems considered by researchers in digital signalprocessing,

while researchers in contro11'and estimation have concentrated more on the

development of general design procedures for state space models and methods

for analyzing the characteristics of such models. We have seen that there

are points of overlap and places inwhich techniques and concepts from one

discipline may be of value in the other. State space techniques may be

useful in the analysis of multivariable'structures and in the analysis of

sensitivity and quantization noise behavior of different structures. Such
i

issues remain to be studied, but it is in the other direction that there is
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the most to be done. The issues involved in the digital implementation of
i

systems specified by state space design methods remain largely unexplored.
j

Numerous problems abound. What is the effect of roundoff noise on closed-
.

loop controller performance, and how many bits must we use to achieve the

desired regulation properties [A-21,22,24,25,231? It is well known that

"optimal" controllers and estimators require many arithmetic operations and

hence lead to low sampling rates. Can we improve overall performance by

using a simpler "suboptimal system at a higher sampling rate [A-13]? If we

are controlling a complex system, "optimal" controllers require not only a
i

great deal of computation, but also the centralized processing of all infor-

mation, and the cost of relaying information to a central location may be

prohibitive. Can we devise decentralized control architectures that take
i

advantage both of the structure of the dynamics of the system being controlled

and the capabilities of the available types of digital processors? Here.

again, if we include the cost of information transfer, "suboptimal decen-

tralized systems may outperform the "optimal" system (see [A-14, 23, 26] for

some results and problems concerned with parallel and distributed processing

and decentralized control).

The study of problems such as these 	 i.e, the interaction of imple-

mentation and architecture issues and the design of control and estimation

systems -- is still in its infancy, and it appears to offer an extremely-

promising avenue for research. We note that architectural issues have

received a great deal of attention in the field of digital signal processing

[A-10,12], and this, together with the wealth of literature on digital filter

i
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B.

	

	 Identificatlo , Linear Prediction	 ,t Squares, and
Fii

A problem of great importance in many disciplines is the determination

of the parameters of a model given observations of the physical process

being modeled. In control theory this problem is often called the system

identification problem, and it arises in many contexts. The reader is

referred to the special issue of the IEEE Transactions on Automatic Control

[B-101 and to the surveypaper of Astrom'and Eykhoff [B-11] for detailed

discussions and numerous references.

Parameter identification problems also arise in several digital signal

processing. applications. Several examples of such problems are given in

the special issue of the Proceedings of the IEEE [B-33], and one of these,

the analysis, coding,•and synthesis of _speech, has received a'great deal of

attention in the past few years [B-15, 21-23]. We will use this problem as

the basis for our discussion of the identification question. Our presenta-

tion is necessarily brief and intuitive, and the reader is referred to these;

I	
references for details. As discussed in [8-211 a popular approach is to

model: a discretized speech signal {y(k)} as the output of a linear system,

i which, over short enough intervals of time, can be ,represented by ',a time

invariant transfer function G(z). Here the in put is taken as a periodic

pulse train (whose period is the pitch period) for `voiced sounds (such as

j

	

	 vowels) and as white noise for unvoiced sounds (such as the sound "sh").

In addition, a common assumption is that G is an all-pole filter, which

leads to an autoregressive (AR) model
i
i	

y(k) + aly(k-1) +	 + aPy(k-p) = u(k)	 (B.1)

i



i

This assumption has been justified in the literature under many conditions,

although strong nasal sounds require zeros [B721],

The problem now is to determine the coefficients al . ... ,ap . Having

these coefficients, one is in a'position to solve a number of speech analysis

and communication problems. For example, one can use the model (B.1) to

estimate formant frequencies and bandwidths, where the formants are the

resonances of the vocal tract [B-24]. In addition, one can use the model

(3.1) for efficient coding, transmission, and synthesis of speech [B-29].

i The basic idea here is the following: as the modal (B.1) indicates, the

speech signal y(k) contains highly redundant information, and a straight-

forward transmission of the signal will require high channel capacity for

accurate reconstruction of speech. on the other :nand, one can interpret

(B.1) as specifying a one-step predictor for y(k) in terms of preceding

values of y ( assuming_u(k)	 0). As discussed n [B-29], one often requires

far fewer bits to code the prediction error u than the original signal y.

Thus, one arrives at an efficient transmission scheme (linear predictive

coding--LPC)-s given y, estimate the ai , compute u, transmit the ai and u.

At the receiver, we then can use (B.1) to reconstruct y. An alternative
j

interpretation of this procedure is the following: given y, estimate G,

pass y! through the inverse, all zero:(moving average	 CIA) filter 1/G(z),

transmit the coefficients in G and the output of the inverse filter. At

the receiver, we thenpass. the received signal tarough G to recover y

(.thus this procedure is causal and causally invertible)

The question remains as to how one estimates the ai . The most widely

used technique in the literature is linear prediction. Using the inter-
I
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pretation of (B.1), as specifying a one.--step predictor . for_the signal y,

we wish to choose the coefficients al ,...,ap to r' nimize the sum of squares

of the prediction errors e(n) = y(n)-y(n), nel. Here we assume that we are

given y(0),...,y(N-1), while the set I can be chosen in different manners,

and we will see in the following subsections that different choices can

lead to different results and to different inter:retations.

Before beginning these investigations, let is carry out-the minimization

required in linear prediction. Taking the first derivative with respect to
i

the ai of the sum -of squared errors, and setting ".. .is equal to zero, we

obtain, the normal equations

P
acik =_-cOk,	 k=1,.:.,p	 (B.2)

i=1

C	 _	 y(n-i)Y(n-k)	 (B.3)
ik

nEI

These equations are typical of the types of equations that arise in linear,

least-squares problems, and their efficient solution has`been'the topic of

many research efforts.

B.`1 The-Autocorrelation Method, Kalman filtering for Stationary Process,
and Fast Algorithms

Suppose we let I = all--integers;, where we defile y(n) `= 0 for n < 0

n > N. In this case, we find that

t
N-1- i-j!

C.. _	 n h+ i-	 r	 -	 B.4
i^	 Y( )Y(	 I^ j1) ^	 (f 	 jI)	 (	 )

n=0-

and the normal equations become Ta = d where a' _ (al....,ap),

i
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I

i

i

d' _ (-r(1), -r(2)...... r(p)), and T is a symmetric Toeplitz matrix
ri

[B-37,84,91] (i.e. the ijth element depends only on li-jl) with ,Ti = cij.
E	 ^

We also note [B-15] that if y is a stationary random process with autocorre-
i
t	 lation 

R(i) = E [y (n)Y (n+i) ]	 (B.5)

and if we want to find the one step prediction ni	 ..o,__fcients to minimize
I	

2E[e (n)],, we obtain an identical set of (Toeplitz) equations with r(i)

replaced by R(i). This statistical point of vi_W is extremely useful for

obtaining certain insights into the approach.
r	 i	 "

i

The solution of such Toeplitz equations has been the subject of a great
I

deal of attention in the mathematical, statistical, and engineering litera-

ture [B-3,_4,15,17,18]. An efficient algorithm was proposed by Levinson

[B-17'], improved upon by Durbin [B-321, and studiedin the speech processing

context by several authors, including Itakura and Saito (B-231. The method

essentially consists of solving forward and backward prediction problems

of;_increasing size in a recursive manner. That is, the algorithm computes
I

the coefficients a(lli,...,a(i,li) for the best prediction of y(n) based on

y(n-1),-..,y(n-i) and the coefficients b(11i,...,b(il) for the best pre-!

diction of y(n-i-1) based on y(n-i),...,y(n-1). The algorithm iterates

on i. As a part of this algorithm, one computes the prediction error (for

both forward, and backward prediction), and thus one can determine when to

stop, base

	

1	 d on the size'of this quantity. Also, we must compute a coeffi

cient kl, which is known as the partial correlation coefficient (see

IB-15,21,231).
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I

I
Let us now examine what this algorithm means from a statistical point

of view. The algorithm specifies estimators o_.e form

Y(i) _ -	 a ( j i)y(i-j)	 (B.6)
i-	

J-1	 1

i :I

Y(0) _	 b ( j li)y(j)	 (B.,7)
j=1

i
Thus, we can think of the algorithm as provid i ng s with the time-varying

i

coefficients of the weighting pattern, of the o__- 1 one-step predictor and

of he optimal initial time smoother. vote th=_._sz coefficients are, in

I	 general, time varying (i.e.,, a (j l i)	 a (j)) , s-. :c_ the mechanism of predic-

tion is time-varying when one bases the predic_i-- on only a finite set of

data.

What does this mean as far as all -pole r,.o_._::g via linear prediction

goes? The answer to that is not much. In the all-pole modeling problem,

we iare equivalently only interested in designin g a FIR filter -= i.e. a

prediction filter that produces the best estima:_ of y(n) given the "data

window" y-(n-1) , ... ,y (n-p) . The coe :̂ ficients o= uch a filter are precisely

a(lJp),..., a (p,p), and it doesn't matter (exce._ from a computational point

of view) that-- -these coefficients were generated- as part of a time varying

f filter weighting pattern.

On-the other hand, the time -varying weigh _ 	pattern interpretation

is extremely important from a statistical point: -` view, especially if one
i	 -

wishes to design recursive predictors that are	 of incorporating

all past measurements and not just a data window 	 the case when y has a

i
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Markovian representation

x(k+l) = Ax(k) + w(k), 	 y(k) _ c' x(!	 (B.;8)

where x is a random n-vector, A is a constant nxn. matrix, c is a constant

n-vector, and w is a zero -mean uncorrelated secaence with covariance Q.
i

The correlation coefficients of y can be computed by direct examination of

i

(B.8). We note that x and y will be stationary with

R(i) = c' A1IIc	 i > p	 (B. 9)

if A is stable and if II, the covariance of x, satisfies the Lyapunov equation

I ATIA'	 II = _Q	 (B.10)

we now wish to design an optimal predictor for recursively estimating y(n).

This is a-standard estimation problem, and the `solution is the Kalman filter

[B-4]

R(n) = Ax(n-1) + AK(n-1)y^ n-1)	 y(n) - c'x(n)
(B.11)

y (n-1) = y (n-1) - y (n-1)

where the time-varying gain satisfies

P(n n-1)c	 (B.12)^.	 K(n)	 c'P(n n-1,)c

Here P(nin-1) is the covariance of the prediction error x(n) - x(n),,

I
AP(nln-1)cc'P(nln-l)A'

P(n+lI n) = AP (nIn-1)A' + Q'-	 c I P n	
(B.13)

Let us make a few comments about these e_1a=ions. Note that the filter

innovations y(n); is precisely the prediction error e(n), and its variance

is c' P (n In-1) c. Also, recall that in the all-Pole framework, we could alter

y.
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natively view the prediction filter as specify_:-; an inverse filter, which

took',the y's as inputs and produced the uncorreia_ed sequence of prediction

errors as the output. In the 'context of the KaL-a.z filter, the analogous

filter is the innovations representation (see r-;resentation IR-1 of [B-271),

in which we view the output of ( B:11) as being y tn). Finally, note that

one can compute the predictor coefficients a(j _} as the weighting pattern

of the filter (B.11).

Examining ( B ill)-(B..13), we. see that the c=p_tation of the recursive

filter coefficients requires the solution of t o ;discrete time) Riccat

equation (B.13) . If x is an n-vector, then (usin g the fact that P is

symmetric), (B.13) represents n(,n+l)/2 equations. For reasonably large

values of n this can be an extreme computation__ load, especially given

that all that is needed for the 'filter is the 	 gain matrix iC -(when y is

m-dimensional). Thus when -m << n, the question_ r_" computing Y, without P

/ -

	 arises quite naturally, and this issue -- in bc_ continuous and discrete

t	 time, in stationary and in some nonstationary cases -- has been the subject

of numerous papers in the recent past [B-1-5]. .a underlying concepts that 	 -

have led to these "fast algorithms" (at least =r. _ze stationary case) are

the same as ` those that lead to the Levinson alc^_i_-ri: For some historical

and mathematical_ perspective on this subject,,;e refer the reader to [B-3,4].

in particular; the extension of the Levinson a1g:,r_thn to the multivariable

case is discussed in these papers (see also red__=_ ce [3-181) 	 In this

case, the matrix T in the 'normal equations islxti'-Toepltz, and the exten-

sion to this case is decidedly nontrivial.

There are a number of deep mathematical an- _hysical insights that can
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be obtained by the examination of these fast al,o_i*zs. As discussed in

[B-15,211, the Levinson algorithm involves an auxiliary partial correlation

coefficient ki , which has an interpretation as _;reflection coefficient,

and this fact has been utilized in speech processing, in which these coeffi

cient4 specify certain parameters in an acoustic yodel of the speech process

[B-15,211. In addition Casti and Tse {B-201, X_al ath [B-1,41 and Sidhu and

Casti [B-81 have shown that the fast Kalman gai- algorithms are closely

related to the work of certain astrophysicists, n :articular Chandrasekhar

[B-191, who devised algorithms for solving finite __-e Wiener-Hopf equations

arising in radiative transfer. Also, relation=::_s between linear filtering

and scattering theory have been brought to lig;.	 the recent papers [B-34,351.

And finally, for a good overview of some of the _ thematical relationships,

including some with the theory of orthogonal _cl ync_ials', we refer the 	 j

i

	

	 reader to [B-4,421. These ideas are of interest in that seeing these

algorithms from several perspectives allows us ts gain insight into their

properties, potentials, and limitations.

B.2 The Covariance Method, Recursive Least Squa-res Identification, and
Kalman Filters

Consider again the normal equations (B.2), (B.3). We now consider the

range of n to be only as large as the actual rata allows -- i.e., in e qua-

tion (B.1) we will require that k, k-l,...,k-_ a__ he within the range

0,...,N-1. This leads to the restriction p < n < ::-	 Also, in this case

cij is not in general a function of i-j, the 	 ix T is symmetric but not

Toeplitz and the fast methods of the preced_n g s•_..^s-action don't carry over

quite so nicely. Recently,` however, Morf, et al_. [B-30] have obtained fast

_ J	 ^
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algorithms for the covariance method by exploiti n g the fact that, although

T is not Toeplitz, it is the product of Toeplitz matrices.

Let us take a look at the covariance method frpn a slightly different

point of view. Recall that the algorithm mentioned above and the one in the
;_	

f

preceding subsection involve recursions on the o_.r of the filter given a

fixed set of data. Suppose now we consider a r__ •_rsion for updating-coeffi -

cientsof a fixed order ,filter given more and _or_ data. To do this, we

f refer to [B-11), where the covariance method is --':-̀ s=ussed.  Given the data

y(0),...,y(N-1), the covariance method attem__s 	 =_t a model of the form
i

of (B.1) by finding a least squares fit a(N) to - ._ =,uation

LN-1a - f
N_1 	(B.14)

There a' _ (al...... P) , f, N-1	 (y(p ) , .. , _: (;:-:) 	 and L has various y(i)

as its elements. Suppose we have a(N-1) and we now obtain the new data

point y(N). We would like to update our esti.mame i n a manner more efficient

than re-solving (B.14) from scratch. Following _andard recursive least

squares (RLS) ' procedures ( B-11] we find that ( hare '-,'(N) is the last tow,

of IN)

a (N) '= a (N-1) + K (N) [y(N) -Z' (N) a (?• -!)	 a (N-1) + K(N)r(N)

 -(B.15)
I

P (N-1)' 2 (N)
K(N) (B.16)

= 1+9,' (N)P(N-1) SZ(N)

P (N) _ (LN NL) 1 = P ( N-1)	 l+z' ( IN) ^ (^;-1) .. (N)	 {B. 17)

Examining these equations, we see that th ey can be interpreted as

defining a Kalman filter (see (B-121`). In fact, referring to (B-141, we
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I
see that these are precisely the Kalman filter equations used by Melsa, et al.

in speech processing. Specifically, they consider the dynamic equations 	 -

a (k+l)	 a (k) ,	 y (k) = Q' (k) a (k) + v (k)	 -	 (B.18)

I
where v(k) is a zero-mean, white process with variance T. If T is set to 1,

-;	 we obtain (B.15)-(B.17). Also, in this formulation, P(N) has the interpre-

tation as the covariance of the estimation error a-a(N).

Let us note some of the properties of the recursive solution (B.15)-

(B.17). Examining (B.15), we see that the increment in our estimate a is

proportional to the error (innovations) in predicting thejlatest value of y

using preceding values and our previous estimate of a. This suggests that

a monitoring of the innovations r(N) can be used to help detect abrupt

changes in the predictor coefficients or the presence of glottal excitation

ii	 in voiced sounds. In this manner one may be able to improve upon the esti-

mation of a. Whether such a procedure would be of value is a matter for

future study. Also, it is possible to make the filter more responsive to
i

changes in the coefficients by w=ing one of several methods available for

adjusting Kalman-- filter [B-41). These include exponentially age-weighting

old data in favor of the more recent pieces of information or the modeling

j of a as a slowly-varying Markov process. In addition, the formulation (B.18)

provides a method for developing an analysis system for noise-degraded speech

U . e . , •; the case when Y > 1)!.

Let us now consider the computational complexity of (B.15)-(B.17). First

note that one does not have to compute the correlation coefficients. However,

one does have to calcualte K(N) at every ,stage, and if one solves for the gain

t
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from the Riccati equation (B.62), one has on the order of p2 multiplications

per stage. However, Morf, et al. [B-30) and Morf and Ljung [B-40] have
i

e xploited . the structure of the equations to obtain fast algorithms for the

direction computation of K. Combined with the fast algorithms mentioned

earlier, one now has efficient recursive procedures for the covariance method

as one _increases either the order p of the predictor or the number N of data

points.
i

B.3 Design of a Predictor as a Stochastic Realization, Problem

A problem that has attracted a great deal of attention in the ',control

and estimation literature is the stochastic realization problem [B-4,8-10,

13,271. Briefly stated, the stochastic realization problem asks the

following: given a stationary Gaussian random process y with correlation

y	 function R(n), find a Markovian representation
I

I	 x(n+l) = Ax (n) + w(n) , y(n)	 c'x(n)	 (8.19)

where -w is a,zero mean white noise process with covariance Q. Referring

to (B.8)-(B.10), we see that this is equivalent to finding a factorization:

R(i) = a'A'b	 i > 0	 (B. 20)

b =.Pc,	 APA'-P = -Q _	 (B. 21)

Examining (B.20), (B.21), we see that the algorithm falls naturally into

two pieces: (1) find a triple (A,b,c) satisfying (B,20); ('2) find P and Q

satisfying (8.21). One of the best-known studies of this problem is that of

Faurre [B-13,25] As he pointed out, the first step of the algorithm is
,

, simply the well-known deterministic realization problem when one is given
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i

i

i

the "weighting pattern" R(0), R(1), R(2),... 	 This problem has -been widely
i

studied in the literature (A-30, 31, B-6,9] and we will make a few comments

about this aspect of the problem in a few moments. Before discussing the

i
numerical aspects of the first step or the details of the second, let us

see what the first part yields in the frequency domain (B-26]. Let

S (z) _	 R(i) z- '-

G	 _.

Then, we see that the factorization (B.20) yields

i

_.--	 S (z)	 c' (zI-A)
-1zb + c" (z-lI=A) -lAh	 (B.23)y

Noting the form- of (B.23) , and defining a (z) = det (zI- A) we see that the

first step in the algorithm yields
I	 -

Sy(z) =	 P (zZ-1	 (B. 24)
a(

Z
 )a(

That is, we have obtained a factorization.of the denominator of S y. If we

I	 can also factor the numerator we will have determined the desired transfer

function SW/a(z), which, when driven by white noise, yields the spectrum

Sy W. It is clear from ('B.19) that; it is this second part of the spectral

factorization that is accomplished by the second step of the stochastic

realization algorithm.,` Finally, note that the model obtained contains both

poles and zeroes,	
-

There are several methods for performing the second step of the

algorithm.	 Faurre [B-13] showed that (B.21) could be solved for values

of P inside a given range, and he identified t^e smallest such covariance,

P* as that arising from an innovations representation of y -- i.e., a steady

►a 	 -	 ^'	 "



state Kalman filter. Thus to complete the second step we can either solve

an algebraic Riccati equation or can use the "fast algorithms", as described

irk Subsection B.1 to compute the time-varying Kalman gain, Letting the
I

transients die out, we then obtain the desired steady-state filter. Although

this approach involves solving for the entire gain time history, this proce-

dure may be faster than direct solution of the algebraic Riccati equation.

Let us now turn to the numerical aspects of the first stage -- i.e. the

computation of the factorization (B.20). The algorithms of Rissanen [B-8]

and Ho [A-29] are based on the examination of the Hankel matrix

i
_R(0)	 R(1)	 R(2)	 R(`:-1)

HN -	 R(3)	 R(_ )(1)	 R(2)	 (B.25)
R	

_

ICI 	

i	 I.

R(N-1)	 R(N)	 R(N+l).... R(2N-2)

it is well-known [B-36] (see also Subsection A.1) that R admits a factoriza

r
ton (B.20) if and only if there is some integer n such that

rank HN < n for all N	 (B.26)

Ho's original algorithm yielded a minimal realization (i.e. dim A in (B.20)

is as small as: possible) if a bound n was known_ in advance. A far more

critical question (from a practical point of vie:) is the partial realization

question. Here we take into account that we only have available a finite

number of correlations R(0), R(l),	 R(N-1), and one would like to obtain

the minimal factorization that matches these. One can use Ho's algorithm

for this, but it is not recursive -- i.e. if we incorporate R(N), we must

re-solve the whole problem. Fortunately, Rissanen CB-81 and Dickinson, et al.
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(B-6] have developed efficient,_re-cursive procedures (the latter of which

is based on the Berlekamp-Massey algorithm (B-7], Which was developed for

the scalar case). We note that these algoritluns essentially solve the Pade

approximation problem, and we referthe reader to the references for details.'

Thus, efficient algorithms exist for spectral. actorization and one

would expect good results if the process y truly ^as a'Markovian representa-

tion and if one has the exact values of the corr_lations- This points out

a conceptual difference between linear prediction and the above stochastic

i
realization procedure. in linear prediction, no __e_ense is made about

exactly matching a model. All that is wanted is 'a least-squares._.fit, and i

thus one would expect this procedure to be relati vely robust when one usesP	 P	 _

a finite record of real data to generate an estimate of the correlation

function which is then used in the linear prediction procedure. on the

other hand, it can easily be seen that an infinitesimal perturbation of HN

'

	

	 in (B.25) canlmake it have full rank. In this case; the partial realization

procedures --'which in essence are looking to Latch a model exactly -- will

yield a system of extremely high dimension. Thus, it ap pears that these

algorithms :are inherently sensitive to errors in . esti_-iates of the correlation

' coefficients. -In addition;, if y has no Markovian re presentation, the linear

prediction approach will still work fine, but te .a_•-tial realization' pro-

cedure may _ve y well run astray as it tries to =it 	 data "too closely".

Does this mean that the above procedure is of no use in identifying

parameters in a,speech model? The answer to t--at is perhaps not. What is

needed is a modification of the first step of -. a stochastic realization

algorithm. As the version described here stands,	 is too sensitive and

___
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in fact, DeJong [B-37] has shown that these methods are numerically unstable

in that the inexact minimal realization supplied by these algorithms, as

implemented on a finite wordlength computer, may not be a "numerical neigh-

bor" of the sequence {R(i)} that is to be factored. By rephrasing the

algorithm in terms of E-rank -- the least rank of all systems within an

"E-neighborhood" of the given sequence - DeJong obtains a slower algorithm

i	 that is similar to Rissanen's but is numerically stable. This approach is

extremely appealing for two reasons: (1) We can, within this framework, seek

minimal realizations in the E-neighborhood of a sequence'{R(i)} that itself

is not realizable by a finite dimensional system; (2) We can seek the "nearest"

reduced-order realization of given dimension of a given system.

In addition to the work of DeJong,, a number of other methods have been

proposed for "approximate" Pade approximations [t-31,38,39]. One interesting

possibility is theall .-pole approximations	 i.e., we perform linear predic-

tion on the RU). This would require computing the correlation of the R(i)!
I	 _

(Note hat an all 	 assumption here would not necessarily lead to an all

pole model in (B.19))

one of our goals in this section has been to point out a number of simi-

larities between the goals and 'techni ques of the- two disciplines. We have

also seen some of the differences, but others have not been discussed. In

particular, in this section we have treated identification for identifica-

ton 's sake. As pointed out in,__[B-11],in control system design, identifica-

tion is often simply a means toward the goal of efficient control. Thus, in

many control applications, the value of identification is not measured by
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the accuracy of the parameter estimates, but rather by the performance of

the overall system. In addition, in control there are several types of

identification problems, since one has the opportunity to excite the system

through inputs. Different problems arise if the system is operating open

loop, in a time-invariant closed-loop mode ., or in an adaptive closed loop

mode. We refer the reader to (B-10,12] for more on this subject and for

further references. In addition, in many on-1_ 9 control problems the	 j

number of.parame^ters to be identified is not ve=y large -- four or five.

In fact, one of the key problems in practical ada ptive control is the care-

ful choosing of which few parameters to identify.

on the digital filtering side, one is often interested in the accuracy

of the parameter estimates. This is of importance, for example, if one is

attempting to design an all=pole filter that matches a given impulse response

in a least squares sense, or if one is attempti-V to estimate formants from

an all-pole speech model. on the other hand, for linear predictive coding,

the accuracy.of the parameters may be, of secondary interest, while the

primary concern is more efficient coding of speech data. In this case,

accuracy is of ,importance only in so far as it makes the 'coding ̀scheme more

efficient. Also, in the speech problem, we are usually dealing with ' many

unknown parameters - between twelve and sixteen: (B-21].

With regard to the speech problem, we note _: gat linear prediction has

proven to be a particularly appropriate tool for a variety of reasons, ranging.

i
from the fact that the all-pole model is often _a realistic one to the property

that the linear prediction procedure tends 'to_ratch the spectral envelope of

the data (B-15]	 In this section we have described a number of related

__	 _	
:.
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identification concepts (see [Z-1] for more), sore of which may be useful

in solving problems in speech analysis, such as enhancement of noise-degraded

speech. We have also pointed out a number of questions concerning some of

these methods, such as the need for detailed numerical analyses of the many

"fast" algorithms, and the necessity of further analysis and experimentation

to assess whether, any of these techniques can improve upon the performance

achievable in speech processing using linear prediction.,

7 7,i.....
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C. Stability Analysis

In the field of digital signal processing, stability issues arise

when one considers the consequences of finite *.turd length in digital'

f
ilters. On the one hand, a digital filter necessarily has finite range,

and thus overflows can occur, while on the other, one is inevitably faced	
^.

i

with the problem of numerical quantization -- roundoff , or truncation.

j	 Since the filter has finite range, the question of the state of the filter
j

growing without bound is irrelevant. However, 'tae nonlinearities.in the

filter, introduced by whatever form of finite arithemtic is used, can

cause zero-input limit cycles and can also leadi to discrepancies between

he ideal and actual response of the filter to certain inputs. Following

the discussions in jC-3, 91, the tygi,, al `&it,a ation can be described as

follows

x(n+l) = AX (n) + Bu (n) ,	 y (n) = Cx (n)	 (C'.1)

X (n) ___ N (x (:n) )

where N is a nonlinear, memoryless function that accounts for the effects

of loverflow._and quantization. If one assumes tat the associated linear

system (i.e., N identity.) is designed to meet certain specifications, -

one would like to know how the nonlinearity N afects overall performance..

For example, filter designers are interested in determining bounds on the

magnitudes of- limit cycles and in finding-out;-ow many bits one needs to

keep the magnitudes of such oscillations within tolerable limits.

On the other side, a typical feedback control system is described by

y = G1 (e) ,	 e = u-G2 (y)	 (C.2)'

UL_ _
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where the input u, the output y, and the error a-,are functions of time,

and G1 and G2 represent the dynamics of the forward and feedback paths,

respectively. In control theory,one is interested either in the

analysis or the synthesis of such systems. In the synthesis problem we

are given an open loop system Gl and are asked to design a feedback

system G2 such that the overall system has certain desirable stability

properties. In !!the case of stability analysis, one may be interested

either in the driven or the undriven characteristics. In the driven

case the problem involves determining if bounded inputs lead to bounded

outputs and if small changes in u lead to small changes in`the y. In

the undriven case, we are interested in seeing if the system response

decays, remains bounded, or diverges when the only perturbing influences

are initial conditions.

It is'clear that the problems of interest to resear:'`.ers_in both dis-

ciplines have a'good deal in common and, as we shall see, workers in each

area have obtained results by drawing from very sinilar bags of'mathematical

tricks. However, there are differences between the methods used and results_

obtained, in the two areas. In the analysis of digital filters the work has

been characterized by the study of systems containing quite specific non-

linearities. In addition, much of the work has dealt with specificfilter

structure. In particular, second-order filters have received a great deal

of attention [C-2,3,,7,9], since more complex filters can be built; out of

seres - parallel interconnections of such sections.- Also, the class of

wave digital filters (C-5,61 have been studied in some detail. Studies in

n
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these areas have yielded extremely detailed descriptions of regions of

stability in parameter space and numerous upper and lower bounds on limit

cycle._magnitudes (see [C-3,4,13,24-261).

In control theory, on the other hand, the recent trend has been in the

development of L:.: :he_ general theories, concepts, and techniques for sta-

bility analysis. A number of rather powerful matzematical techniques have

been developed, but there 'has not been as much attention paid to obtaining
I

	tight bounds for specific	 ^g	 p	 problems. In addition, problems involving Limit

cycles have not received nearly' as much attention in recent yearn as issues

such  as bounded-input, bounded-output stabilit y ^.d global asymptotic sta-

bility (although there clearly is a relationship between these issues and

limit cycles),

i

C.1 The Use of Lyapunov Theory

The technique of constructing Lyapunov functions to prove the stability

of dynamical systems has been used by researchers in both fields (see [C-22]

for details and further discussions) Consider a system with state x(k) and

with equilibrium point x 0. A Lyapunov function VW for this system is

a scalar function for which V(0) = 0` and -which is nonincreasing along system

trajectories (i.e. V(x(k)) is nonincreasing as a :unction of time).
i	 -

If this function has some additional properties, we can prove stability

j or instability. Basically, we think of V-as an "energy" function.`` one then

obtains results depending ,upon how energy behaves along trajectories. In

tuitivel, if'V is. everywhere positive except at x = 0 and-V(x(k)) decreases	Y r .	 Yw	 P	 P

monotonically, the system dissipates energy and is stable. On the other-

hand, if V(xa) < 0 for some x0 , then the system cannot be asymptotically
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stable, since the nonincreasing nature of V(x(k)) guarantees that the

system can't approach the zero energy state if started at x0 . One advan-

tag  of Lyapunov-type results is that the hypotheses for results such as

those just mentioned can be checked without the construction of explicit

solutions to difference or differential equations. However, the majpr

problem with the.theory is the difficulty in finding Lyapunov functions

in general

With respect to the .imit cycle problem, Willson. [C-2,8) has utilized

Lyapunov functions to determine conditions under which second order digital

filters will-not have overflow limit cycles and will respond to "small"
f

	

	
_

inputs in a manner that is asymptotically close to the ideal response.11
I

Parker and Hess [C-131 and Johnson - and Lack CC-25,26] have used Lyapunov

functions to obtain bounds on the magnitude of limit cylces. In each of

these the Lyapunov function used was a quadratic form which in fact proved

asymptotic stability for the ideal linear system. In Willson's work [C-8], 	 j

he'was able-to show that his results were in some sense tight by constructing

i counterexamples when his condition was violated. In [C-13,25,26] the bounds

are not; as good as others that have been found, ; and, as Parker and Hess
i

state, this.may be due to the difficulty of determining which quadratic

Lyapunov function to use. As pointed out by Claasen, et al., CC-31, it

appears to be difficult to find appropriate Lyapunov functions for the

discontinuous nonlinearities that characterize quantization.

There is a class ofdigital filters - wave digital filters (WDF)

[C=5,61 -- for which Lyapunov techniques are particularly useful. Such fil-

ters have been developed by Fettweis so that they possess many of the `pro-o

l
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perties of classical analog filters. Motivated b'° these analogies, Fett-

weis [C-5] defines the 'notion of "instantaneous =seudopower", which is a

particular quadratic form in the state of the :ID	 By defining the notion

of "pseudopassivity" of such a filter, Fettweis introduces the notion of

dissipativeness.. With this framework, the pseudo:ower becomes a natural

candidate for a Lyapunov function, and in [C-6], Fettweis and Meerkotter

are able to apply standard Lyapunov arguments to obtain conditions on the

arithmetic used'that guarantee the asymptotic stability of pseudopassive

WDF's. The introduction of the concept of dissipativeness in the study of

stability is an often-used idea (see the note.of Deoser ( C-141), and a

number of important stability results have as their basis some notion of

passivity. We also note that the use of passivity concepts and the tools

of Lyapunov theory appear to be of some value in the development of new

digital filter structures that behave well in the presence of quantization

M	 [c-71

Lyapunov concepts have found numerous applications in control theory.

The constructi un of quadratic .Lyapun v equations for linear systems is w^11

understood and is described in detail in [C-22]. The key result in this

area is the following. Consider the discrete-time system

x(k+l) = Ax (k)	 (C.3)

This system is asymptotically stable, if and onI_ if for any positive definite

matrix L, the solution Q of the (discrete) Lyap^*^ov equation

A'QA - Q	 -L	 (C.4)

is also positive definite. In this case the function x'Qx is a Lyapunov



-43

_:	 I

function that proves the asymptotic'stability of (C.3). Note that this

result provides a variety of choices for Lyap =ov functions (we can choose

any L > 0 in (C.4)). Parker and Hess [C-13) c'r ain their bounds by choosing

L = I (here (C.3) represents the ideal linear yodel). Tighter bounds might

be possible with other.choices of L,--but, as ,they mention, it is not at all

clear how one would go about finding a "better choice (other than by trial

and error)_

In addition to their direct use in specif_. a pplications, one of the

most important uses of Lyapunov concepts is as _n intermediate step in the

development of other more explicit results. =o_ exam ple, the stability of

optimal linear regulators with quadratic crit__ a and of optimal linear

estimators can be proven by constructing partizalarly natural quadratic

Lyapunov ,functions [B-41, C-321. A further use of Lyapunov theor y has been

to provide a framework for the development of r^-iy more explicit stability

criteria. Examples of these are a, number of _ha frequency domain stability

criteria that have been developed in the last 13 to 15 years (see [C-10-12,

15,16,20,21]). These results. are the subject of the next subsection.

C.2 Frequency Domain Criteria, 'Passivity, and L_tanunov Functions

We have already mentioned that the notion of passivity is of.impor-

tance in stability theory and have seen that = _ :t eis and Meerkotter have

been-able to utilize passivity notions to stu dy cartain digital filters

via Lyapunov techniques. The relationship be_o.sen passivity, Lyapunov

functions, and many of the frequency domain criteria of stability theory

is quite deep, and in this subsection we wish to illustrate some of these



i

-44-

i
ideas. we refer the reader to the work of J.C. -lillems [C-19,23,30], in

particular, for a detailed development. The general development in these

references is beyond the scope of this paper, but we will indicate some

of the basic ideas fora discrete -time system, denoted by the symbol _G,

with input u and ,output , y. In this case, one can define input/output,: (1/0)

I	 stability as

u2 	 co	 _>	 y < co	 (C.5)

^	 z
	i=I	 =1

i.e., if the input has finite energy, so does the output. If we can mace

the stronger statement

	

a, 
2 1/2	 ^ 2 1/2

Y
iJ	

< K(
	 ui/	

(C.C)

we call K the I/O gain. A system is called passive if (strictly passive
I

if there is ah_ E>0 such that)

N	 N
u
iy. > 0 > E	 u2i) ,, for all u. a	 (C.7)

The motivation for the definition (C.7) stems from the interpretation of

the =left-hand _ side- of (C.7) as the total energy input to the system.- - Thus
i

a -passive system always requires, -a positive anount of energy to be fed into

it. This notion has extremely strong ties to t^e usual notions of passivity

and dissipativeness for electrical net .;orks and is, in fact, a natural

generalization of these concepts [C-30,34].

Having this framework, one can derive important results on the stability

and passivity of feedback interconnections of passive systems (see [C'-30]),

777W -7,rr 77
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.	 ^ much like the results of Fettweis for his pseudogassive blocks. As out-

lined by Willems in [C-30], there are three basic - stability principles.

The first involvez the interconnection of passive systems as mentioned

i
above, while the second is the small loop gain theorem ( stability arises

if the gain around the loop is less than unity -- a result used inthe

digital filter context in [C-311). The third result involves notions of

passivity and of sector nonlinearities. A nonlinearity is inside (strictly
i

inside) the sector [a,b], if its graph is bounded by (strictly contained

within) the lines y = ax and y bx. Thus, the effective gain of this non
i
I	 _

linearity is between a and b. As an example, the o peration of roundoff

is 'inside the sector [0,2] (see [C-3,9] for the sector characteristics of

other quantizers). To indicate how sector nonlinearity conditions can be

used, consider (C.2) with Gl specified by a stable discrete time transfer
I

function G(z), and 
G2 

a memoryless nonlinearity, f, assumed to be inside

the sector [O,k]. In this case, the.eneral secto I/O stabilityg 	r	 y 	 .
i

reduces to showing - that (Gl + k) is a-passive system, and, as developed

in [C-19,30], this will be the case if and only if`G(z) + k is positive

i
real.

Re (G (e 3W}) + k -> 0	 w e [0, 270	 (C.8)

lwhich is Tsypkin's stability criterion [C-33].

!	 A variant of this type of result involves the use of multipliers [A-19]

in which one modifies the feedback system of (C.2) by inserting a second

system in the forward path and its inverse in the feedback path. One can

!	 then apply the basic stability results to the modified Gl and G2. In this

I

,^	 ^:



manner one obtains Popov ' s stability condition [C-161 and the discrete-

time analog due to Tsypkin [C-12, 201: suppose f is nondecreasing and is

strictly - inside the sector [O,k] Then the feedback system is finite gain

I/O stable ; if there exists an a >0 such that.

r

Re( (1 + a ll	 a jw)) G(ejw) ] + k > 0	 ^ w e [0, 27r]	 (C.9)

Claasen, et al. [C-9] have obtained direct analogs of (C.8) and (C.9)

for the absence of limit cycles of period N:

Re- EP(e
j27TZ/N

]_ 
+ k 

> 0 1	Q	 0, 1, ... , N-1	 (C.10)

or the existence of a > 0 such that
P

N-1 	 j 2Tr2.p/N	 j 2TrZ/N ,	 1
Re{ [l + I P (1 - e	 ) ] G (e	 ) t + k > 0	 (C.11)

p=1	 -

Here f is inside the sector [O X and is also nondecreasing in the case of

(C.11) The proofs given in -[C-9] rely heavily on the passivity relations

(C.10), (C.11) and an application of Parseval's theorem in order to contra -

dict the existence of a limit cycle of period N. This last--step involves

the assumed periodicity in a crucial way, but the ap plication of Parseval

and the use of the positive 'real relationship (C;.10) is very reminiscent

of stability arguments in feedback control theory [C-191. In the proof

of (C.11) the monotonicity of f is used in conjunction with a version of

the rearrangement inequality [C-18.191 which has also been used to study

stability of feedback control systems.

As mentioned at the end of the preceding subsection, many frequency

domain results 'can ,be derived withi Lyapunov-type arguments. We have also

. ;	 ^•^^^.



seen in this subsection that many of these results can be derived via

passivity arguments.	 Clearly the two are related, and the crucial result

that leads to this relationship is the Kalman-Yacubovich-Popov lemma

f
(C-27,28,30], which relates the positive realness of certain transfer

I

functions to the existence of solutions to paxt i cular matrix equalities

And inequalities.	 Kalman [C-28] utilized this result to obtain a Lyapunov-

type proof of the Popov criterion, and Szego [_- 27] used a discrete-time

version to obtain a Lyapunov-theoretic proof of ­srpkin's criterion. 	 We

I, also note that the positive real lemma plays a c=scial role in several

I other problem areas including the stochastic realization and spectral

factorization'problem [B-13] and the study of a .:ebraic Riccati equation

[C-29J

i
Finally, we note that many of these pass .___-Lyapunov results have

instability counterparts (e.g., see [C-1,171). 	 Such results may be useful

in developing sufficient conditions for the ex--ranee of limit cycles.
I

t In this section we have considered some-o_ the aspects of stability

I

theory that point out the relationship among the techniques , , goals, and
_.

results of researchers in both disciplines. 	 ^.s we have seen, many of the

r

results in the two disciplines involve the use -.f very similar mathematical
__

tools.- on the other hand, the perspectives an! goals of researchers in

'two field	 different.	 dam-:elocment of.	 a mutual under-.	 i the,	 s are somewhat	 The	 - 

standin	 of these	 ers ectives and	 ._benefit researchers ing	 perspectives	 goals can o_

both fields and is in fact absolutely crucial for the successful study of

certain problems.	 For example, in the implem_.._etion of digital control

7	 ..



-48-

systems one must come to grips with problems introduced by quantization.

Digital controller limit cycles at frequencies near the. resonances of the

plant being controlled can lead to serious problems. In addition, the use
r

of a digital filter in`a feedback control loo p creates new quantization

analysis problems. Finite arithmetic limit cycles can ;occur only in recur-

sive (infinite impulse response) filters. However, if a nonrecursive (finite

impulse response) filter is used in a feedback control system, quantization

errors it produces can lead to limit cycles of the closed-loop system [C-31].

How can one analyze this situation, and howdoes one take quantization

effects into account in digitalcontrol syste::, design? Questions such as

these await future investigation.
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D.	 Multiparameter Systems, Distributed Processes, and Random Fields

A growing interest has developed over the past few years into

problems involving signals and systems that de pend on more than one

I;
independent variable. 	 In this section we consider several problem

I areas involving multiparameter signalsg	 p 	 and. systems in order to examine

{ some of the key issues that arise. 	 For an up-to-date view of some of

the-research in this area, we refer the reader to the recent special

issue of the Proceedings of the IEEE (D-491.

^ I

D.1	 Two Dimensional Systems and Filters 	 -

In analogy with the 1-0 case, a 2-D lin ear shift invariant (LSI)

system can be described by a convolution of the input x(m,n) and the
i

unit impulse response L(m,n). 	 Alternativel y , taking 2-D z-transforms,

i
we obtain

I
I

I:

Y(zl,z2) = H(zl ,z2 ) X(zl.z2 )	 (D.1)

of special interest are the rational system functions, H=A/B) which
I

4
arise from 2-D difference equations such as

b(k,Q)y(m--k,n-Q)	 _	 a(k,;.)x(m-kn-Q)	 (D.2)
(k, Z) EI 2 	-	 (k, Z ) ClIl

4

Here I1, I2 are finite sets of pairs of integers.



Let us first discuss the problem of recursion. Given the equation

(D.2), we want to use it to _calculate the next output given previous outputs
I
i

and the input. Unlike the 1-D case, in which the index n has the interpretation

i
of time, in the 2-D case, in general, it is not clear what "next" or

"Previous" mean. In fact, just given (D.2) it is not clear that there
1

j	 is any definition of next or previous that wil1;311ow us to compute y(m,n)_,

recursively. Dudgeon [D-1. ], pistor [D-12], and Zkstrom and Woods [D-28]

k
have studied this problem in great detail. Le= us consider one of the

most important special cases of (D.2)jin whio.._.=1 and b has its

support as indicated in Figure D 1. We then "n-ave

M ccN
y (m , n)_ - b(p10)

	

	 G	 b(k,Z)y(m-k,n-^) + b(0,0) x(m,n) 	 (D.3)
k=0 Z=0

(k,2).# CO, 0)

Note that from (D-3) and the figure, it is evident that we must store

values of y(k.,.1Z) for (k,Q) to the south and west of the domain over which

we wish to calculate! y If this domain is in__.nite in either direction,

`	
the required storage is also infinite'. In fact the required storage 	 j

grows linearly as we increase the domain in either direction (see [D-1]

I	 for details) Thus storage requirements in 2-D 3epend on far more than
1

the order (M,N) of the filter.

We also find;that.the storage requirements depend on the sequencing

of the recursion. Several directions of recursion are indicated in

Figure D.2. Each recursion calls for its own se quence of data accessing

i and discarding. The N and E recursions appear to have particularly
I

..
L	 u	 `:
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Figure D.1 Support of a First Quadrant or "Northeast" (NE') Function.
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I

simple sequencing rules, but the data must be processed serially. on
i

the other hand, the NE recursion 'has a more complex sequencing but

leads to the possibility of parallel computation, since, for example,

points 4, 5, and 6 can be calculated simultaneously. The possible directions
I	 ,

for recursion and potential use of parallel com putation can be determined

with the aid of a conceptual device--the precedence relation [D-26],

whichartiall orders points with the -rule (...,n)P_	 y	 'po'	 -< (Z,k) if y(m,n)

must be calculated--before we can calculate y ( %-,k) .

Let us now return to the question of recursibility. Clearly the

picture is symmetric--i.e., we can have NW, S_, and SW recursions, with

b(k,Q) restricted to be a function on the corresponding quadrant. However,

as shown by Dudgeon [D-11, this by no means exhausts the possibilities

for recursion. in addition to the one quadrant functions, we can obtain

recursive difference equations with b(k,l) s ^zat are one-sided [D- 11.

I
In this case the support of b is as in Figure D.3, and we can calculate

i
y(m,n) column by column, recursing to the north and then shifting to the

next column to the east.

Let us make another connection. with 1-D c_ocessing. Suppose that

one of the two indices; say m, has the inter_r_tation as time. Then

j	 one might think of y(m,n) and x(m,n) as. (1-D).spatially distributed
i

processes that evolve in time. Temporal causality might then correspond

tothe support of `b in Figure D.3 being mod- isd by ,deleting the points

on the- positive n ` axis yielding a "strictly" one-sided function .. In^	 P-	 Y	 g

i

this case, one could define the "state" of the system, and it as clear
i

that this "state" will be finite dimensional only if the range of n is
I

bounded,''which is precisely when the required storage for the 2=D

recursion is finite.

° ,^ _.vim ..,,,
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1

As mentioned earlier, the ability to solve a 2-D difference equation

recursively leads directly to the-definition of -a partial order on the

i
	 part of the 2-D grid over which we wish:-to solve the equation. Given

j	 this precedence relation, one then has some freedom inldeciding how to

sequence the calculations. Specifically, if we think of a sequence of

j	 calculations as determining a total order on the part of the 2-D grid'
C	

of interest, all we require is that this total order be compatible with

i
	 the precedence relation. once we have such a total order, we can either

view this as transforming 1-D filters into 2-D filters or vice versa

j	 (D-15]	 One widely used order is the line -scam

i

(i,j) < (1,k) if i<2 or i=2 and j<k

i
1	 ,

'	 Assuming we are interested only in lines of finite extent, we can

freadily see one of the problems with this order and with orders in

general. If we attempt 'to process the order input data with a 1-D

LSl:system, the resulting 2-D processing is not SI, essentially because

our ordering has placed the last point on one line "next" to the first

point on the next,

We close our discussion of 2-D orders and precedence relations

by noting that these very same issues arise naturall y in certain feedback

control problems. Ho and Chu (0-211 consider optimal control problems.
j

in which one has a set of decision makers who base their decisions

on certain observed data. Ho and Chu define a precedence relation

1

1
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among decisions: j-<i if the decision of j affects the observation of

i. They assume that this is a partial order- i.e. that if jAi, we
I

cannot have i-<j (this is precisely the condition needed for recursibility

of 2D filters)	 Then, under a ' "partially nested information condition"--

if j-<i, then is observation includes knowledge of j's observation--they

solve an optimal control problem. Witsenhausen [D-221 has also studied

this 'partial order and has pointed out that'if one totally orders the

set of decision_ makers in a way compatible with the precedence relation,

one can then define the state evolution of the system. Hence we see

that there may be l! many possible sets of states corresonding to different

compatible total orders (just as storage requirements v ary with the choice

of recursion).,

In the preceding discussion we have seen t-at the presence of a

partial order as opposed to the usual 1 -D total order leads to some

complications. New difficulties are also encountered in the ;study of

the stability of recursive 2-D filters [D-1,131. As in the 1-D case,

the stability of the filter depends on the direction of recursi^i,
i

and there are many more possibilities in 2 -D. In addition, although

there are analogs of results such as those in 1-D that test to see

if all poles are inside the unit circle [D-1,91, the required calculations
r

are far more complex. This increase in complexity also arises in the

related problem of the stabilization of a given 2-D system function

while keeping the magnitude of the *frequency res ponse nchanged. In

1-D this is done easily by shifting those poles that lie outside the

unit circle, but this cannot be done that easily: in 2- D, sinc.a we cannot

A :.A	 r	
"°



factor 2•-D polynomials.*

Another stabilization approach in 1-D is spectral factorization--

i.e. we write a given rational H(z) as the product of two pieces,

HE (z) and Hw (z), where HE has all its poles inside the unit circle (and

hence is stable if used to process inputs in the eastemdirection) and	 -

HW has all its poles outside the unit circle (stable to the west)

Thus, in 2-D, one is tempted to seek factorizations into four stable

quadrant filters (D-12) or into two stable half- plane filters [D-1,16,287

much like the 1-D case. Sum:- techniques have been developed using	 i

2-D cepstral"analysis, and we refer the readez to the references. ;•7e
IIi

do note that the lack of a fundame al theorem of algebra does mean	
i

that the factors, in these factorizations will not in general have

finite order denominators.

_A final stabilization procedure is based on the guaranteed stabi-

lity in 1-D of least squares inverses. The least squares inverse (LSI)

is obtained using exactly the methodology one brings into play in

performing linear prediction of s peech. Given the denominator B and

its inverse transform b, one seeks a finite extent impulse response p

that approximates the convolutional inverse of b by choosing the

coefficients in p to minimize the sum of the squares of the difference

between b*p and the unit impulse. In 1-D, one has the guarantee that

p is minimum phase (i.e. that the all pole :iodel l/p is stable). 'In

[D-13] Shanks, et al_., conjectured thatthis ::minimum phase property holds

in 2-D. Under this asaumption, t"per proposed the use of a double least

squares inverse to stabilize and unstable denominator of a NE filter.

*This is often referred to as the "absence of the fundamental theorem
of algebra" for multivariable,polynomials (see, for example, ED-11).
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Using this design procedure, numerous 2- D filters have been designed.

Unfortunately, Genin and Kamp (D-53] have recently shown that. _this

conjecture is false in 2-D if one constrains oneself to quarter-plane

filters (although it is true in certain restricted cases (D-50]). On	 +

the other hand, Marzetta (D-43] has shown -:hat the desired minimum

phase property does hold if the least scuares inverse problem is posed

in terms of- half-plane filters. we will return. to this point again

later:

As in the 1-D case, a critical question in the design of 2-D!IIR

filters is the existence of "limit cycles and t o effect of roundoff

noise on the filter output. The results in l:-101 on the existence of

horizontal, vertical, and noninteracting diagonal limit cycles parallel

' 	 l-D results. Open-questions involve the intri-sing question of whetheri

one can extend any of the other techniques discussed in Section C.

Do the passivity-Tsypskin-positive real-fre quency domain results of

Claasen, et al., [ C-91 and others extend to the 2-D case? ;That about

the Lyapunov techniques of Willson_ (C-2]? Gf course in this case one

would need 2-D state space models and a 2-D Lya_ounov theory, which in

itself might be of interest in providing a mazhod to test for stability
+

of 2-D LSI,systems even with ,perfect arth_^etic.

The analysis of roundoff noise in 2-D filters can be carried out

much as for 1-D filters, but another open question concerns the exten-

sion of the covariance noise analysis method described in Section A

for 1-D roundoff analysis. Again one would need a`state space model

in order to consider this question.
i



i

D.2 Two-Dimensional State Space Models

In addition to 1-D state space cescr tions roar recursp	 'p	 -	 vely

ordered 2 -D systems {D-261, some work has been done on the analysis

of 2-D state space models. Roesser (D-271 considers theNE model

I
v(i+1,7) = Alv(i,7) + A2h(l,j) + Blx-(i,j)

h(i,j +1) = A3v(i, j ) + A4h(i,j) + B2x(i,j)	 (D.4)

Y( i , j ), = Clv(i, j ) + C2h (i,j) + Dx(i,j)

here x is the input, -y is the output, and v and h together play the

role of a "state" variable, "camping" vertical and horizontal information,

respectively. Given this model, Roesser considers several issues,	 1

including a variation of constants fornula to solve (D.4), a 2--D

version of the Cayley-Hamilton Theorem, whic_-, in turn is used to obtain

an efficient method for computing the transition matrix, and the notions
I

of controllability and observability. In obtaining his algorithm for

recursively computing the transition matrix via the Cayley-Hamilton

theorem, Roesser. used the notion of -2-D eigen alues in a crucial manner,

and in the usual nonfactorizable case the calculation of zeroes of a

characteristic polynomial is extremely difficult. This not only

complicates his transition matrix algorithm, but it makes stability tests

more difficult, as we have already mentioned.' 'urtnernore, the model

(D.4) is limited to quadrant-causal systems. T^is is perfectly reasonable

for the study of quadrant-recursive filters, but its value for the

analysis of other 2-;D signals is unclear.` For example, Roesser mentions
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the possibility of a 2-D filtering theory, where (0.4) plays. the role
i

of a "spatial shaping filter." As Ekstrom and ;roods [D-28] point out,

one cannot obtain arbitrary spectra from a	 shaping filter. Hence,

one may need two such filters, as well as a r._thod for modelling the

spectra of the signal field. Finally, we note that Roesser's "state"

(v(i,j),h(i,j)) might better be termed a "local state" [D-24]. As we

saw earlier, in recursively solving 2-D e_..a__ons, the required amount

of storage in general depends on the size of a arrays of interest,

while dimensions of v`and h correspond to _:__ order of the system, as

in (D. 3-Y..
i

Issues of this type have also been co..___=red by Fornasini and

Marchesini [D-24]. They consider local tiE s _e space descriptions of

the form

'	 x(m+l,n+1)	 Apx(m,n) + Alx(m+l,n)	 i2
x'-,n+1) + Bu(m,n)

y (m, n)	 Gx (m, n)	 (D.5)

They show that a NE _IIR filter' can be real-J --ea as in (D.5) if and

j only if the transform of the impulse repcnse___ rational. The "if"

part of this result_ involves the construction of a realization: that

is a generalization of the 1-D "standard controllable form. Having

such realizations, attention naturally =o_uss_= on minimality. This

leads directly to the notions of (local) o_ __v_labiiity and observability,

with finite rank conditions for these troy trees being ,developed ̀in a
i

manner analogous to that of Roesser. The	 ninimality result of
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Marchesini and Tornasini is that minimalit_.: iaplies local controllability

and observability but that local controllability and observability do not

;;imply minimality.

Attasi [D-23] has studied a special case of (D.5), in which

AO _ -A
1 A2
 -A2 Al	 (D.6)

In this case, the system transfer functio n is separable (H(z1,z2)=H1(zl)H2(z2)),

and, as shown in [D-25], this is the only case in which the global
i

state is finite dimensional. As any FIR _i==_r can berealized by

(D.5), (D.6), any stable impulse response Can be approximated arbitrarily

closely by a system of this form. This, of course, is neither startling

nornecessarily very useful,, since the dimension of the resulting state-

space system may be extremely large. Having cas framework, Attasi defines

dual notions of local controllability and ob==rvability and derives

conditions somewhat simpler than in [D-24,21] because of the assumed

separability. Attasi also considers minimalrealizations, obtains a

state space decomposition result and minim_ realization algorithm much

like those in 1-D and shows that minimalit y implies controllability and

observability. He also proves the converse of this last result, but

this is only true if one looks for the min-̀ =a: realization in the
i

class of models satisfying (D.6). the refer *'-= reader to ED-241 for an

example illustrating these points.

Undoubtedly the major contribution of A__asi l s work is that he

did somethingwith his models, and we will discuss his filtering

results in the next subsection. He also -:eloped a 2-D Lyapunov

equation, which he used in a; generalization_ Of the "invariance principle,
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ED-451. The exact implication of this resu__ for 2-D stability theory
i

and its potential utility in such areas as li--z t cycle analysis remain

as questions for further work. Attasi also considers systems as in

L, (D.5) , (D.6) which are driven by ,WZile noise, Again he obtains a 2-D

Lyapunov equation for the state covariance, _.-_ this result may be of
i
i

some value in performing roundoff noise anal •:s 4 3 for 2-D filters. In

addition, he develops a_stochastic realization. _heory that exactly

parallels the 1-D"case'with ; one rather su -:si ng exception, in that,

unlike the 1-D !case, in the 2-D case the stc -= tic realization is
I	

i	 _

_essentially unique. This is due primarily	 additional constraints

imposed by the 'fact that we use a single cua_rant sha ping filter.

Another, novel feature of Attasi's developme_n_ 's the necessity for

using non-square factors--i.e. to perform t ne required factorization
t

-1 -1

'	 S(zlrz2) = H(`i'z2)H' ( z1 ,z2 )	 (D.7)
I

where H is NE causal and of the form (D.5),	 one must consider

rectangular factors. For example, if y_is a 	 process, then

H in general must be lxm,- and, in fact, the aforementioned uniqueness

result fixes the value of m.'
I

Recently, Morf, et al., (D-311 have ma'::_ Several noteworthy

contributions to 2-D state space theory. , T'e • =onsider the properties
;

of polynomial and 'rational matrices i n two -. _r _ab es in 'order to

generalize the scalar 2-D polynomial results of -Bose [D-30] and the

i

matrix 1-D polynomial results of _Rosenbroc'.{	 -321 ;and Wolovich [D-33].

i
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I

The concepts of local controllability and observability for the Roesser

model are explored in [D-311, and the authors point out that these

conditions neither imply nor are implied by the'mnimality of the

realization (this is done with several instructive examples). To obtain

notions of controllability and observability that are equivalent to

to minimality, Morf,et al., generalize the a_proach of Rosenbrock,

and this leads to the notions of modal controllability and_dbservability

and a related concept of minimality. In this setting the existence of

minimal realizations becomes a di-fficult =robl s, and one may not even

exist if we restrict ourselves to s ystems i real parameters .. In

related work, Sontag [D-29] has also found realizations of lower

dimension than those proposed by Forrasini and Marchesini, and he has

shown that minimal realizations reed not be uni que up to a change of

,
basis. All of these facts indicate 'hat thee 2-D state s pace model is

'

	

	 an extremely complex one and offers some ex_remely difficult mathematical

and conceptual problems. It remains to be seen whether any of these state

models and realization theories can nrovid- a useful framework for

j	 solving 2-D analysis and synthesis problems.

D.3 Image Processing, Random Fields, and S_ace-Time Processes

Digital processing of images for data com pression, noise removal,'"

or 'enhancement is one of the major areas o= acolications of 2-D digital

signal processing techniques. In addition, image processing has spurred

a great deal of work in the analysis, of spatially-distributed stochastic

variables random fields. Let,g(i,j) denote the image radiant energy

ID

i
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as a function of two discrete spatial; variables, where, for the time

being, we will assume that the system is free o° noise. The image

results from an image formation process that transforms the original

radiant energy f(i,j) into the observed imac . A general model that

is often used for the ,image formation pro'ces_. _s

N
g (i ,7)	 h(i,j,k,2)f(k,Q)

k, Q=1

where h is the point-spread function (PSF), 	 mo-4els the smoothing

and blur that takep lace in the image forma=_o- process (D-4,19,461.

Note that one important case ofShi ft — invariant,(D.8) is the 	 case, in

which h depends only on i-k and j-Q. In this case (D.8) is a 2-D

convolution.

In addition to the image formation process one must take into

account the process of image recording and Storing. Several noise

corrupted nonlinear image models have been -'s7eLoped (D-19,46] for

this; however, as discussed in (D-46], often one may be able to justif y

the use of an additive noise model

q(i,j)	 g(i,j) + v'(i,j)	 (D.9)

where v is an additive noise process. We -_ow =urn our attention to

the analysisi of this model.'

At various points in this development, it will be more convenient

to view f,g,q and_v as vectors; by performing a scan (lexicographic)
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ordering, in which case we write q=Hf + v, were H is an N2xN2 matrix

formed from. the PSF. Examination of (0.8) yields that H is an NxN

matrix of NxN blocks {Hij }, where the (m,n) , el-ment of H.. is

h(i-,m,j,n). If the imaging system is shift-ir. ariant, it is readily

seen that H is block Toeplitz, and, in fact, each of the blocks is

itself 'a Toeplitz matrix. Note also that if is separable, then

h (i, j , m , n ) _ hl (i,m)h2(i,n) and H = A1 Q 2
i
i

where Q denotes the tensor or Kronecker product, and ai is an

NxN matrix obtainable from h1

It is evident from!the preceding development that probabilistic

and'statistical methods must play some role in image processing. In
i

this context, f,g,v,,'and perhaps h are random fields.. For now we

consider such a random field s(i,j) to be characterized by its mean

s(i, j ) and its covariance

!	 r(i,j,m,n)	 E{[s(i,j) s(i,j)] [s(m,n)- ((m,n)l}	 (D.10)

i

The field-will be called (wide-sense) stationary if

I

r(i,j,m,n) = r(i-m:,j-n) 	 (D.11)

Note that if s is ordered lexicographically, then its covariance R

!

I

-.,_
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is the N2 x N2 matrix obtained from r in the same manner that H is

obtained from the PSF h. We also observe that R is block Toeplitz

with Toeplitz blocks if s is stationary.

One important problem in image processing is the efficient repre-

sentation of images for storage or transmiss_on (D-46,47]. One well-

known method for obtaining a less redundant re:r:sentation of an image

is the Karhunen-Loeve transform (D-46], whiz: i nvolves the diagonalization

of R. However, in general, this transform _-:o':es exorbitant amounts

of computation. There are, however, several s._ciai cases in which this

transform can be calculated efficientl y . :ne of these, motivated by

similar analysis performed by Hunt (0-46] a^.d n.drews and Hunt (D-191,

is quite instructive. Suppose that s is stationary, and that any

particular pixel is uncorrelated with ores some distance d away. Then

the block Toeplitz covariance matrix is nonzero only near the

:Hain diagonal (and the same can be said for ssc': of t^e blocks)

We now modify R and its blocks, to :Hake R block circulant with circulant

blocks. A block circulant matrix is block :oeclitz with each row a

cyclic shift to the right of the preceding o.^._, where the last block

on the right of one row becomes the first blockon the left in the

next row. This merely means replacing some of the zeroes in R with

nonzero entries. Intuitively, imagining t::e image as a flat array, we

have connected opposite edges, first to crea-e a cylinder, and then a

torus. The reason for making this ap_roximation is that the matrix

o' eigenvectors of Rc , the circulant modification of R, can be computed

efficiently using the fast Fourier transform (see (D-19, Z-1]), and



thus the Karhunen-Loeve expansion can be performed quickly,.

As discussed in Section B, one of the most widely used coding or

compression schemes for 1-D time series, s1=_- as speech, is linear

prediction, in which we design a one-step pre--ictor or inverse whitening

filter for the time series. This method has several appealing features

in 1-D--it is efficient (if one uses the Levinson algorithm), it leads

to recursive coding and decoding algorithms, and it yields excellent

performance. In 2-D the situation is not as =lea-. what direction do

we predict in and what old data do we use *_c _o the prections? At this

time, answers to thess questions are beginning to be formed. Genin

and Kamp (D-53) have shown that NE predictors need not be minimum

phase, and Marzetta (0-43] has provided an arc.--.ent for why this is

in fact the case. Specifically, in 1-D, we are Guaranteed that the

optimal predictor for y(n) based on y(n-1), :(n-2),...,y(n-r) is

necessarily minimum phase; however, 	 we sc_G some points in the

past--e.g., if we predict y(n) based on y(n-1),y(n-2), and y(n-4)--

the optimal predictor may not be minimum _base. Marzetta points out

that NE predictors do skip points	 For exar. le, consider the predictor

of y(m,n) based on y(m-1,n), y(m,n-1), and y(=-l,n-1). If we totally

order the points in the plane in a fashion compatible with the partial

order for calculating points recursively to the :=, then (m-1,n),

(m,n-1), and (m-l,n-1) will never be the three _J =ediate predecessors

of (m,n). Thus, just as in 1-D, there is no mason to expect the

optimal predictor to be minimum prase. Marzetta then points out that

if we don't skip points--i.e. if we use a full half-plane predictor--

we do get the minimum phase properties, Levinson-type algorithms
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involving reflection coefficients, etc. Note that this predictor is

primarily of conceptual interest, since the predictor involves the

incorporation of an entire, infinite extent col =m before any points in

the preceding column may be included. We refer the reader to (D-43]

for details and for practical, suboptimal met=ocs which also have the

minim= phase property. : •1e also refer the reader to (0-51] for another

generalization of the Levinson algorithm to 2-D.

We now turn our attention to the problem of restoring blurred and

noise-corrupted images (0-4,19,46]. A number o= nonrecursive methods

have been developed for the removal of bl ,-- an! for noise rejection--

inverse filtering, 2-D minimum mean-square error (,101SE) Wiener filtering,

etc., and we refer the reader to the survey 	 for more on these

methods and for further references. we merel•. =oint out here that

techniques such as the Wiener filter have some difficulties and limitations

as image processing systems. To a great extent this is due to the

fact that the :L`-LSE criterion is not particularly well-suited to the

way in which the human visual system works (:)-2C]. In particular, the

Wiener filter is overly concerned with noise s-_::ression. in addition,

in order to make the filter computationally =eas'-:,le, one often assumes

stationarity. This in turn leads to a filter to*_ is insensitive to

abrupt changes--i.e. it tends to smooth edges and reduce contrast. On

the other hand, in high contrast regions, t -e human visual system

will readily accept more noise in order to obtain greater resolution.

Several schemes have been proposed that are aimed at trading-off between

the potentially high-resolution, poor noise =er-formance of the inverse

filter and the lower-resolution, good noise p erformance of the Wiener
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filter. One of these is the constrained _	 scuares filter, [0-4,19].

Several other observations can be ma'-. ::-n:erning the processing

systems mentioned so far. As mentioned ea_:_e: they are nonrecursive and in

principle require the block processing of the antire image or subs-

tantial sections of the image. Hance the =..-_utational burden of

these schemes can be quite high. In 1-D, one find that recursive

methods are often preferable to nonrecurs'_ •:_ ones because of their

computational advantages. As discussed in ;2-19J the 1-D Kalman filter

offers great computational savings over nonra_-.:_sive methods, and an

appealing question is the extension of suc*- f_:=ers to 2-D. Anyone

fsmiliar with 1-D Kalman filtering theor1 realizes  that the design of

the filter relies heavily on a dynamic re_resentation of the received

signal. Hence, to develop such techni ques -- 2-0, we need a more

complex model of an image than that _rovide_ ^Dy the meat, and covariance.

The need for the use of such models is an o:-:-ous drawback to this

approach, but the potential gains in com putational efficiency represent

a distinct advantage.

One approach to recursive processing of :-ages involves the 1-D

processing of the scan-ordered image (see s-.:'_-section 0.1). This work

has been developed by Nahi, Silverman, 	 colleagues [D-2,5,7,34].

Suppose we have an image f(m,n) (assumed to bs zero mean for convenience)

with stationary covariance r(k,Q), and we o:serve q=f+v where the

additive noise v is, for simplicity, 	 _o be zero mean and white,

with variance R. We now take the scan ordering of the NxN grid on

which q, f, and v are defined. Le*_ us use _.. same symbols to denote

z
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the resulting 1-D processes. We then have

E (f (k) M ) = S AJ)	 k,%-1, ... pY
	

(D. 12)

where S(k,Z) can be calculated from knohle:__ of r(m,n). Note that

the scanned image f(k) is not stationary due to the abrupt change that

occurs when the scanner reaches the and of one __n_ and begins the

next. we wish to use Kalman fitterin; t_zhn:=ns in order to supozess

the noise. In order to do this, we need a s=ans s pace model for f.

Unfortunately, as pointed out in ED-5 1 , S h,. toes not have the

required separability that is needed in orAr for such a realization

to exist. Hence, some sort of approximation is needed, and several

have been developed. The simplest of these involves finding a

stationary approximation R(k) to (D.12), 	 as :tarry and Aggarwal

found shift-invariant approximations to the s-._==-varying scanning

filters they studied in (D-15). Having R(k;, zne can then use some

realization procedure to find a harkov model Oa_ realizes or approximates

the given correlation function.

we can now obtain an image restoration z: sns by direct appli-

cation of Kalman filtering. Several comment= are in order. We first

note that the filter has an artificial ca_s&::ny--only the points below

and to the left on the same line affect to estimate of a given pixel.

This can be partially removed by the use sf srs:mhing. with the model

we have developed, this can be done e:_i=:en=:_ with two Kalman filters,

scanning in opposite directions and star ::n7 ;n opposite ends of the

image. The resulting estimate still has i_f:i:-Ivies because of the
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effects at the ends of lines. In this case, one can -emove some of

these difficulties by transposing the image a^.d perfor.mirg the same

type of processing again--we then have NE, ::w, SE, and SW Kalman

filters.

The recursive methods discussed so far ave assumed that there

is no blurring due to a nontrivial PSF. If *-ere is such blurring,

essentially we must develop a scan-ordered, 1-D dynamical model for

the effect of the blur and then incorporate t:,is model into our

Kalman filter. The simplest example of this--notion blur along the

direction of the scan--was considered by abo:=aiib and Silverman (D-7]

(see (D-54] for consideration of more genera_ :.lurs). Aga i n this

system offers computational advantages over nonrecursive schemes, but

the restoration system may be very sensitive to errors in the knowledge

of the PSF.

The previous technique did not d:.rectly _se a 2-0 recursive model

for the image. The first work along this Uns was that of Habibi (D-6]

who considered a 2-D, recursive, auto-regress'_ve sha ping filter

x (k+1, 41) - P2 x (k+1, ti) + A 1 x (k, Z+1) - 01 -- 2 x (k, 1 ) + ► (1-01) (1-P2)wk' , ^)

(D.13)

where w(k,2) is a white, zero mean, unit var_an=e process. assuming

measurements of the form }-x+v, Habibi then de%eloped a suboptimal

estimator to estimate x(k+1,2-+1) based on {	 ^.) im <)c, n < z}. The

suboptimality of Habibi's estimator arises essentially because x is



only the local state, and one needs to es:i=.a== =:^.e global state for

optimal filtering. The most complete st:'_: --f sctimal 2-D Kalman

filtering has been performed by Woods and R_-dz_•..;an (D-41]. We assume

that we have a one-sided causal dynamic trod=: for the random field

M +M
x(m,n)	 L	 b(k, x(m-k,n -%•)

k=1 :=-M
(D.14)

14

+ j b(O,Z)x(m,n-1) y w(
Z=1

Suppose we want to estimate x(m,n) g_-:en a:: :=_ gas o' q=x+v in the

past, where past is defined relative :o he t__ =ction of recursion

in (D.14). Woods and Radewan point o •-t :ha= ::.s can be done op-

timally with an extremely high dimensional %__._. filter to estimate

the global state of the system, which in this :ase has dimension on

the order of MN (M=order of the filter, 	 __: of the image).

optimal line-by-line Kalman filtering f:_ -4 -ages has also been

considered by Attasi [0-23] using a s*_ochas___ •:ersion of the model

discussed in Subsection D.2. S?ecif-:a1:1 ::_ -mace is assumed to be

generated by a separable rector analog of : e =d:el used by Habibi (D-6)

x(i,j) = Flx(i-1,j) + F 2x(i,j-1) - ? 1F 2x(i-	 -I) + w(i-l,j-1)

(D.15)
q(i,j) = f(i,j) + v(i,j) = Hx(i,:)

We wish to obtain the optimal esti.ma:_ x (-,n ' _f x (n,n) given q (i, j )

for i<m and all j. The optimal esti-a p e in ==.s case consists essentially
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of two 1-D operations. Suppose we ha;a ;(m-1,n) for all n. We first

predict ahead one line to obtain

x(m,n) = F 1z(m-1,n), for all n
	

(D. 16)

Cote that each of these estimates is calculated independently. tie now

observe the new line of measurements q(m,n) for all n, and we create

the error orocess and the error mess•.:-ement

e(m,n) = x(m,n) - x(m,n)
	

(D. 17)

y(m,n) = q(m,n) - Hx(m,n) = He(m,n) + v(n,n)
	

(0.18)

Thus we have a 1-D estimation problem--estivate e(m,n) for all n,

given y(m,n) for all n. Attasi shows that one can obtain a finite

dimensional 1-D realization for e(m,n) as a function of n. Hence,

this estimation problem reduces to the usual I-D smoothing problem.

The solution consists of two 1-D Kalman filters starting at opposite

ends of the line. Furthermore, the octim..al smoother can again be

implemented with two filters of the type devised by Attasi--one

sweeping the columns in order of increasing m, and the other in order

of decreasing m. This is reminiscent of the iecomcosition of

zero phase filters into two half-plane filters (0-12,28].

The method of proof used by Attasi i !ol-:es the taking of z-trans-

forms along the n direction and the trea t-ment o= m as a time variable.



Essentially we regard the 2-D system as a high-dimensional (infinite

if the domain of n is unbounded) 1-D system, where we use a spatial

transform "along" the 1-D state vector in order to simplify the

calculations. The key step in Attasi's dev:i:pment is a derivation

of a set of kiccati equations, parametrized by the transform variable

z, for the power :spectral density S
m 
(z) of * W,n) considered as a

function of n. One can then factor these syeztra to obtain the 1-D

realizations of the e's.

Methods which transform the data in one direction in order to

simplify or to study recursion in the other =aTs also been used

in several other image processin g scheme,. :cr example, a method

very similar to Attasi's was used in (0-521• =n addition, Jain and

Angel [0-11] have considered fields descric_d by a nearest neighbor,

interpolative equation [0-31

x(m,n) = a1 [x(m,n+l) + x(m,n-1)1 + a2 [x(m+I,n) + x(m-1,n)1 + w(m,n)

(D.19)

Following D-111, let us consider the vector sca" process--i.e. we

process an entire line of observed data, :-.. 	 at a time. Defining

the resulting 1-D vector processes xm , ym , W0 1 and vm , we can write

(D.191 as

}(QX - X + w	 (0,20)
;,,+1	 m	 m-1	 m
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where Q is a symmetric, tridiagonal, Toealitz -_:rix. Jain and Angel

point out that the diagonalization of Q, .._:" Y::, Can be performed

with the aid of the FFT without any approxir.=:ion. Thus, if we

define the transformed quantities xm , gym , et=., (x^ _ M'xm) we obtain

a set of N decoupled estimation problems, i.._=::__'_ by j (which indexes

the components of the transformed vectors):

^.	 -	 +
xm+l,j	

X	 X
J m,j 	m-1,J	 wm,j	

(D.21)

y
m,j	 m,j

= x	 + v m,j (D.22)

Each of these problems can be solved using a ?a:,az filter, and we obtain

an extremely efficient implementation-- transf= the observations,

solve the low-dimensional decoupled estimation problems (perhaps in

parallel), and transform back.

As we have seen, optimal 2-D Kalman fit= ring algorithms require

large amounts of storage and computation. 7_-_ --:3, she study of suboptimal

estimators that require less computation is z: i_portance. One suboptimal

filter developed in (D-41] is the reduced ur;a:e Kalman filter. Examining

the optimal filter of Woods and Radewan, we sea that the predict cycle

is computationally straightforward--one sim_I-.- -=ses the recursion (0.14)

assuming no noise and using preceding estimat e-S. The measurement update

part of the optimal filter, on the other h ana, involves updating the

estimates of all of the compcnents of the s:a:=. Assuming N »M, we

expect that a given pixel is most correlated enly with a small percentage
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of the elements of the state vector. Theraff sre, it seems reasonable only

to update the estimates of those components Df the state that are within

a certain distance of the point being proce_sa 4_--i.e., we constrain many

of the gain elements to be zero and essentiall y allow only "near neighbor

updates."

we have now surveyed a number of nonr ors=:? and recursive esti-

mation methods. The recursive techniques :=e with many of the same

criticisms that were made concerning nonrec •.:_s_-:e filters. They require

detailed models of the image statistics and =&;* formation pzocess, and

they are essentially based on the M-MSE cri=e=:=-. Hence, they in general

will sacrific resolution in favor of noise = __ression. In addition,

these recursive techniques necessarily affec= ==a image because of the

assumed model structure. Some of the recursive techniques allow the

inclusion of image blur, while in other cases ==e extensions to include

blur have yet to be developed. Also, we ha •:e S-e en that in some cases

optimal Kalman filtering is extremely complax, anal suboptimal, but

intuitively appealing, recursive filter	 must be used. In

other cases we have observed that the use of =e structure of the

assumed model can lead to extremely efficie	 =ima1 estimation algo-

rithms (with the aid of transform techniques'. _n addition, although

work in this area has been limited in exter.= '.:-7,34],  the recursive

techniques are directly amenable to the ana:_ • s:s of space-varying and

nonstationary models. Thus, in spite of th-_	 _ qualifications, we find

enough positive attributes to warrant cont_4n-_=-_ study of recursive

techniques for image restoration.
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One important area for future work ir•rol:•=_= - -.e re1 4_ance on a priori

information. As mentioned earlier, one oft	 =a.-. ass ,:_me knowledge of

the PSF or can determine it by observing known -=3t scenes through the

imaging system. In other cases, we na- not -a':=	 information and

must estimate the PSF as well as the irate. _- •_s one important question

concerns the robustness of these techniques _n = :_ _aca of -.odelling

errors. As mentioned in Section A, techri .'.:_s	 exist for the

sensitivity analysis of 1-D state-spa==_ -cd__s 	 1-0 Kalman filters.

Can we extend these methods to the 2-:) case, a:._	 well do the 2-D

algorithms perform? In addition, me*_:^.ods a..==.;	 1-0 for on-line

parameter identification and adaptive ss= ira__=.. _n the presence of

unknown parameters. Can we apply these ^e. cds	 any success to

the 2-D problem?

A second area of concern is the resolution-n:^:se suppression

tradeoff. As mentioned earlier, the human 	 System is willing

to accept more noise in certain regions, suc= as edges, in order to

improve resolutions.	 Thus, in relatively s1ow -y .:_^:ing regions of

the image, we would like to remove noise,	 :^___	 -_re there are abrupt

scene changes or other high frequency fl_===:_=-s cf interest, we

would prefer to forego noise suppression in '=.=r :,= resolution [0-4J.

In this context an important problem is the d_:____... of edges or

boundaries between different regions ir. an :_.=-_.	 = also note that

in many applications the determination o_' t:. :c_-._aries theiseives may

be the key issue (D-35J. In recent years a 	 c= techniques have

been developed for detecting and recoanizi-;	 =_s types of boundaries
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in 2-D data (as an example, see [D-48]). in 1-D, a variety of recursive

techniques have been developed for the esti-.=tion and detection of abrupt

changes in signals [D-44]. These techniques -ave been successfully applied

in a wide variety of applications, and an important question then is

the extension of methods such as these to the 4-e_ection of boundaries

in images (see [D-8,35] for some work along: = =s= lines).

Throughout this subsection we have seen se---=rat examples of 2-D

signal processing problems in which good use _= -ade of the transformation

of the signals obtained by considering then =c *= 1-D vector time signals,

in which the other indevendent s:a_ial var a:'--e :s used to index components

of the vectors. There are, of course, man-,- : 	 =ems in which the

processes to be studied truly are space-time processes (Z-11, and in

many of these the use of 2-D concepts can o=__- be of great value. One

of the best examples of this type arises in =rsblems of seismic signal

processing [D-17,18,42] in which we observe =..= time response of the

earth using a spatial array of sensors. Ot:=r a pplications plus several

specific problem formulations are discussed _n [Z-1]. In addition, [Z-1]

contains a brief discussion of results and :_ ulations that utilize both

1-D and 2-D tools of stochastic calculus ani -,r_ingale theory [ D-36,37].

Such techniques are in their infancy and :ao=e continues to determine their

utility and limitations. We note only that _..e ?roblem of the lack of

a natural total order in 2-D causes di fficulties in extending 1-D

stochastic calculus concepts to 2-D. This is not surprising, given the

several complications that we have already 4-iscussed.
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Given the several examples described ear:._er in this section, it

is our contention that there is potentially	 to be gained by uti-

lizing both the perspective of 2-D signals a_^.= systems as well as that

of 1-D space-time systems in studying problems of either type. As a

final example of ho..; this concept might be _s_:, consider the study

of large interconnected systems. In this _as_ ::e let the spatial

variable index subsystem variables which ma y b= vector quantities

themselves. A general linear model then is .=a recursive 2-D model

x(k+l,i) = j Aij x(k,j) + j Bij u(k,j) - ::'.:.;)	 (0.23)

y(k,i) _	 Cij x(k,j) + v(k,i)	 (D.24)

Much as in the analysis of 2-D Kalman _°ilter3 -411, the off-line

analysis of such systems (solution of Lyapunc-: or Riccati equations,

for example), as well as the on-line inpleme-ration of centralized

optimal controllers or estimators, may beco-.= =rohibitively complex.

Indeed the analogy extends farther, as to "-aa__st neighbor"

constrained filter of Woods-Radeo:an involves =_=cisely the same philosophy

as is used in many decentralized control and estimation problems (A-26,

D-38).

Let us note that there may be many other -useful insights to be

drawn from this type of analogy. For exar..pla,	 the model (D.23),

(D.24) falls into the class considered by y..a	 then the optimal
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centralized Kalman filter can be efficiently implemented using Attasi's

line-by-line optimal filter, which involves dynamics in the transmission

of information among subsystems (Attasi's 2 filters "along" each "line").

As a second example, in the case in which (D.23), (D.24) are spatially

b
irvariant, Melzer and Kuo [D-39] and Chu (D-407 made good use of the

i
	

struc l,ure by taking spatial transforms in studying centralized and

decentralized optimal controllers. Similar analysis is contained in (Z-1)

for the case of a finite string with circular symmetry. Much as in

the case of block circulant approximations [0-19], this allows us to

use FFT techniques to reduce the complexity of the on and off-line

calculations for centralized controllers in a manner very similar to

that of Jain and Angel (D-11). In addition, the use of spatial windowing

techniques (A-1) to obtain nearest neighbor decentralized control

algorithms may allow us to develop useful designs for such circularly

symmetric systems.

.o



Concluding Remarks

In this paper we have examined a number	 :road rosearch areas

that have attracted workers in two discipline:-Digital signal processing

and control and estimation theory. The goal c= =_s examination has

been the acquisition of some perspective on relationships among the

questions asked, methods used, and general : :-:=ss; ies adopted by

researchers in these disciplines. U_on under making th i s study it was

my feeling that such perspective would be ex_r_7sly valuable in pro-

moting collaboration and interaction among r===ar===.s in tha two

fields. Upon concluding this study, = think that 	 initial feeling

has been thoroughly substantiated. No= only are there numerous

examples of questions in one discipline that 	 __nefit from the point

of view of the other, but also we have found _ 	 of new issues

that naturally arose from combining the two t=in=s of view.

Each of the disciplines has its own dis 	 == =harac:.er, and

clearly these will and should be maintained. on to other nand, each

discipline can gain from understanding the o=er. State space methods

have their limitations, such as in sys=ifying usWul digital algorithms

and structures. on the other hand, s=ate s:_=: methods provide ex-

tremely powerful computer-aided algorithms f-- n =ise analysis, optimal

design specification, etc. State seaze idea= =-s= allow one to con-

sider multivariable and time-varying systems. All sf these aspects of

state space theory may prove of value to peo; A in7s!7ed in digital

signal processing. on the other side, resea====rs in digital filtering

have answered many crucial questions related in n ninq design specifi-

cations into implementable designs. =e dee=	 r3tanding that workers



in digital signal processing have concerning :=e problems of digital

implementation is something that researchers in c3ntrol and estimation

would do well to gain. Thus it seems clear	 a mutual understanding

will prove beneficial to all concerned.

Numerous questions have been raised and s=svilation on various

possibilities has been made throughout this =-___. Whether any of these

issues has a useful answer is a question for 	 '•sture. It is my

feeling that many of them do, and it is my 	 =^at others will think

so as well.



-82-

Acknowledcements

I wish to express my deepest appreciation to Prof. Alan Oppenheim

of M.I.T., who got me started on all this, who provided a great deal

of the insight that forms the backbone of this raper, and who engaged

with me in innumerable hours of delightful debate on just about

everything said in this paper. There also are many other colleagues

who have played important roles in :Helping me Piece together the picture

I've painted in this paper. Particular thanks r.;sst go to Prof. James McClellan,

Mr. David Chan, and Prof. Nils Sandell of 3i...=., Dr. Wolfgang Mecklenbrauker

of Philips Research Laboratory, Prof. Thomas 'Ka i-lath and Prof. martin Morf

of Stanford University, Prof. Bradley Dickinson of Princeton University,

Prof. Thomas Parks of Rice University, Prof. Wilfred °ettweis of the

University of Bochun, and Prof. Hans Schussler of the University of

Erlangen. This paper was a great deal of work, but interaction with

people such as these has made it a wonderful experience.

c



-83-

Pafar="t-ac

A-1. A.V. Oppenheim and R.W. Schafer, Digital Signal Processing,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.

A-2. C.-T. Chen, Introduction to Linear S_.-s =e-i Theory, Holt, Rinehart
and Winston, Inc., New York, 1970.

A-3. R. Yarlagadda, "Network Synthesis--A State-Space Approach,"
IEEE Trans. Circ. Th., Vol. CT-19, .`3: 1972, pp. 227-232.

A-4. R.E. Kalman, "Mathe-matical Descriptisn of Linear Dynamical
Systems", SIAM J. Contr., Vol. 1, 1:5:, p?. 152-192.

A-5. L.M. Silverman and H.E. Meadows, "Eq-:'_:•alerce and Synthesis of
Time-Variable Linear Svsta_ns," Proc. 4th Allerton Conf. Circ.
and Svs.	 Th.,	 1966, pp.	 776-734.

A-6. J.C. Willems and S.K. Mitter,	 "Contrz:lability, Observability,
Pole Allocation, and State Reconstr___ion," IEEE Trans. Aut,
Contr., Vol. AC-16, No. 	 6, December -3-71, pp .	 582-595.

A-7. A.S. Morse and Q.M. Wonham, 	 "Status o' !Noninteracting Control,"
IEEE Trans. Auto.	 Conti., Vol. AC-1:, `Io.	 6, December 1971,
pp.	 568-581.

A-8. I.B. Rhodes, "A Tutorial Introduction to Estimation and Filtering",
IEEE Trans.	 Aut.	 Contr., Vol. AC-16, N.o. 6,	 December 1971, pp.
688-706.

A-9. T.B. Cruz,	 Jr., ed., Feedback Syste-s, ..cGraw-Hill, New York,
1972.

A-10. R.E. Crochiere, "Digital Net::ork The° ry and Its Application to
the Analysis and Design of Digital =--ters," Ph.D. Dissertation,
M.I.T.,	 Cambridge,	 _•lass.,	 acril 1974.

A-11. L.R. Rabiner and B. Gold, theory ar._ 	 ___lication of Digital
Signal Processing, Prentice Hall Inc., Englewood Cliffs, New
Jersey,	 1975.

A-12.

A-13.

R.E. Crochiere and A.V. 0_?enzeim, 	 of Linear Digital
Networks", Proc. IEEE, Vol. 63, No. 	 1975, pp. 581-595.

G.K. Roberts, "Consideration of Co-::::r Limitations in Imple-
menting On-Line Controls", M.I.T.	 Fe=t. ESL-R-665, Cambridge,
Mass., June 1976.



-84-

A-14. NASA Langley Workshop on Realizing the Potentials of Micropro-
cessors for Aircraft Avionics Systems, NASA Langley Research
Center, Hampton, Virginia, Jan. 22, 1976.

A-15. S.R. Parker and P.E. Girard, "Correlated Noise Due to Roundoff
in Fixed Point Digital Filters," IEEE Trans. Circ. and Sys.,
Vol. CAS-23, No. 4, April 1976, pp. 204-211.

A-16. D.L. Kleinman, "On the Stability of Linear Stochastic Systems,"
IEEE Trans. Aut. Contr., Vol. AC-14, August 1969, pp. 429-430.

A-17. S.Y. Hwang, "Roundoff Noise in State-Space Digital Filtering:
A General Analysis", IEEE Trans. on Acous.. Speech, and Sig. Proc.,
Vol. ASSP-24, June 1976, pp. 256-262.

A-18. C.T. Mullis and R.A. Roberts, "Synthesis of Minimum Roundoff Noise
Fixed Point Digital Filters," IEEE Trans. on Circ. and Sys.,
Vol. CAS-23, No. 9, Sept. 1976, pp. 351-562.

A-19. A. Sripad and D.L. Snyder, "Steady-State, Roundoff-Error Analysis
in Digital Filters Realized with Fixed-= pint Arithmetic," Proc.
Allerton Conf., Urbana, Illinois, Oct. 1976.

A-20. A. Sripad and D.L. Snyder, "A Necessary and Sufficient Condition
for Quantization Errors to be Uniform and White," IEEE Trans.
Acoust., Speech and Sig. Proc., Vol. ASS?-25, No. 5, Oct. 1977,
pp. 442-448.

A-21. R.E. Rink and H.Y. Chong, "Performan=e of State Regulator Systems
with Floating-Point Computation," submitted to IEEE Trans. Aut.
Control.

A-22. R.E. Rink, "Optimal Utilization of Fixed-Capacity Channels in
Feedback Control," Automatica, Vol. 9, 1973, pp. 251-255.

A-23. N.R. Sandell, "Information Flow in Decentralized Systems,"
in Directions in Large Scale Systems, Y.-C. Ho and S.K. Mitter,
eds., Plenum Press, New York, 1976.

A-24. J.B. Knowles and R. Edwards, "Effect of a Finite word-Length
Computer in a Sampl_.d-Data Feedback System," Proc. IEE, Vol. 112,
1965, pp. 1197-1207.

A-25. J.P. Slaughter, "Quantization Errors in Digital Control Systems,"
IFEE Trans. Aut. Control, Vol. AC-9, 1964, pp. 70-74.

A-26. N.R. Sandell, P. Varaiya, and M. Athans, "A Survey of Decentralized
Control Methods for Large Scale Systems," IEEE Trans. Aut. Control,
April 1978, to appear.



-85-

A-27.

A-28.

A-29.

A-30.

A-31.

M. Athans, ed., "Special Issue on Linear-Quadratic-Gaussian
Problem," IEEE Trans. Aut. Control, Vol. AC-16, No. 6, Dec. 1971.

R. Curry, et al., "State Est Lnation with Coarsely Quantized,
High-Data-Rate Measurements," IEEE Trans. Aerospace and Elec.
Sys., Vol. AES-11, 1975, pp. 613-620.

B.L. Ho and R.E. Kalman, "Effective Construction of Linear State
Variable Models from Input-Output Functions", Regelungstechnik,
Vol. 14, 1966, pp. 545-548.

L. Silverman, "Realization of Linear Dynamical Systems", IEEE
Trans. Aut. Control, Vol. AC-16, Dec. 1971, pp. 554-567.

L.B. Jackson, A.G. Lindgren, and Y. Kin, "Synthesis of State-
Space Digital Filters with Low Roundo=' Noise and Coefficient
Sensitivity," Proc. 17° Internat. - 	 Circ. and Sys.,

Phoenix, Arizona, 1977.



-86-

I

B-1. T. Kailath,	 "Some New Algorithms for Recursive Estimation in
Constant Linear Systems,"	 IEEE Trans.	 Inf. Th., Vol.	 IT-19,
No.	 6, November 1973, pp. 750-760.

A. Lindquist, "A New Algorithm for Optimal Filtering of Discrete-
Time Stationary Processes," SIAM J. Control, Vol. 	 12, No. 4,
Nov.	 1974, pp.	 736-746.

B-3. A. Lindquist, "On F'redholm Integral Equations, Toeplitz Equations
and Kalman-Bucy Filter i ng," Applied Math. and Opt., Vol. 1, No. 4,
pp.	 355-373.

3-4. T. Kailath, "A View of Three Decades of Linear Filtering Theory,"
IEEE Trans.	 Inf. Th., Vol.	 IT-20, No.	 2, march 1974, pp.	 146-181.

B-5. J. Rissanen,	 "A Fast Algorithm for Optimum Linear Predictors",
' IEEE Trans.	 A,it.	 Conti., Vol.	 AC-13, No.	 5, October 1973, p.	 555.

B-6. B.W. Dickinson, M. Morf, and T. Kailath, "A Minimal Realization
Algorithm for Matrix Sequences," IEEE Trans. Aut. Conti., Vol. AC-19.
No.	 1, February 1974, _p.	 31-38.

B-7. J.L. Massey, "Shift Register Synthesis and BCH Decoding," IEEE
Trans.	 Inf. Th., Vol.	 IT-15, January 1969, pp.	 122-127.

B_C J. Rissanen, "Recursive Identification of Linear Systems", SIAM
J.	 Contr.,	 Vol.	 9,	 No.	 3,	 1971, pp.	 420-430.

B-9. J. Rissanen and T. Kailath, "Partial Realization of Random Systems",
Automatica, Vol. 8, No. 4, July 1972, pp.	 389-396.

	

-3-10.	 T. Kailath, D.Q. !Mayne, and R.K. Mehra, eds., "Special Issue on
System Identification and Time-Series analysis," IEEE Trans. Aut.
Contr., Vol. AC-19, No. 6, December 1974.

	

B-11.	 K.J. Astrom and P. Eykhoff, "System Identificaticn--A Survey,"
Automatica, Vol. 7, 1971, pp. 123-162.

	

3-12.	 T. Soderstr6m, L. Ljung, and I. Gusta ysson, "A Comparative Study
of Recursive Identification Methods," Report 7427, Lund Institute
of Technology, Dept. of Aut. Contr., Lund, Sweden, December 1974.

	

B-13.	 P. Faurre, "Representation of Stochastic Processes," Ph.D. Disser-
tation, Stanford University, 1967.

	

-14.	 J.D. Gibson, J.L. Melsa, and ,,.K. Jones, "Digital Speech Analysis
Using Sequential Estimation Techniques," IEEE Trans. Acous., Speech
and Sig. Proc., Vol. ASSP-23, August 1975, pp. 362-369.



-87-

B-15.	 J. Makhoul, "Linear Prediction: A Tutorial Rev:ew", Prow. IEEE,
Vol. 63, No. 4, April 1975, pp, 561-580.

8-16.	 F. Itakura and S. Saito, "A Statistical Method for Estimation
of Speech Spectral Density and Forman= Fre quencies," Electron.
Commun. Japan, Vol. 53-A, No. 1, 1970, pp. 36-43.

3-17.	 N. Levinson, "The Wiener RMS Error in Filter Design and Predic-
tion," App. B in N. Weiner, Extrapolation, Interpolation and
Smoothing of Stationary Time Series, M.I.T. Press, Cambridge,
mass., 1942.

B-0.	 R.A. Wiggins and E.A. Robinscn, " Recursive Solutions to the Multi-
channel Filtering Problem,," J. Geoph s. Res., Vol. 70, 1965,
pp. 1885-1891.

8-19.	 S. Chandrasekhar, Radiative Transfer, Oxford University Press,
1950.

B-20. J. Casti and E. Tse, "Optimal Linear Filtering Theory and Radia-
tive Transfer: Comparisons and Interconnections," J. Math. Anal.
and Aool., Vol. 40, October 1972,	 45-54.

B-21. J.D. Markel and A.H. Gray , Jr., Linear Prediction of S_oeech,
Springer-Verlag, New York, 1976.

8-22.	 B.S. Atal, "Speech Analysis a:d Synthesis by Linear Prediction
of the Speech Wave," J. Acoust. Soc. Amer., Vol. 47, 1970, p. 65.

B-23.	 F. Itakura and S. Saito, "Speech Analysis-Synthesis Based on the
Partial Autocorrelation Coefficient," Acoust. Soc. of Japan
Ieeting, 1969.

S-24.	 J.D. Markel, "Basic Formant and Fo Taranster Extraction from a
Digital Inverse Filter Formulation," =E Trans. Audio and
Electroacoust., Vol. AU-21, 1973, p_. 154-160.

B-25. P. Faurre and J.P. Marmorat, "Un Al g cri tma de Realization Sto-
chastique," C.R. Acad. Sci. Paris, S__. A, Vol. 268, 1969, pp. 978-
981.

B-26. B.W. Dickinson, T. Kailath, and M. Mar=, "Zanonical Matrix Fraction
and State-Space Descriptions for De=errinistic and Stochastic
Linear Systems," IEEE Trans. Aut. Contr., Vol. AC-19, No. 6,
December 1974, pp. 656-667.

3-27.	 M. Gevers and T. Kailath, "An Inrova:ions :approach to Least-
Squares Estimation - Part VI, Discrete-Time Innovations Represen-
tations and Recursive Estimation," ---E Trans. Aut. Contr.,
Vol. AC-18, December 1973, pp. 588



-88-

B-28. M. Morf, T. Kailath, and B. Dickinson, "General Speech Models
and Linear Estimation Theory," in S=eech Recognition, Academic
Press, Inc., New York, 1975.

B-29. B.S. Atal and M.R. Schroeder, "Adaptive Predictive Coding of
Speech Signals," Bell Sys. Tech. J., 1970, pp. 1973-1986.

B-30. M. Morf, B. Dickinson, T. Kailath, and A. Vieira, "Efficient
Solutions of Covariance Equations for Linear Prediction," IEEE
Trans.. Acoust., Speech, and Sic. Proc., Vol. ASSP-25, No. S, Oct.
1977, pp. 429-433.

B-31. R. Parthasarathy and H. Singh, "On Suboptimal Linear System Reduc-
tion," Proc. IEEE, Vol. 63, November 1975, pp. 1610-1611.

B-32. J. Durbin, "The Fitting of Time-Series Models," Rev. Inst. Internat.
Statist., Vol. 28, 1960, pp. 233-244.

B-33. A.V. Oppenneim, ed., "Special Issue on Digital Signal Processing,"
Proc. IEEE, Vol. 63, No. 4, April 1975.

8-34.	 L. Ljung, T. Kailath, and B. Friedlander, "Scattering Theory and
Linear Least Squares Estimation--Part I: Continuous Time Problems,"
Proc. IEEE, Vol. 64, No. 1, January 1976, pp. 131-139.

B-35. B. Friedlander, T. Kailath, and L. L.Jung, "Scattering Theory and
Linear Least Squares Estimation--Part II: Discrete-Time Problems,"
J. Franklin Inst., January 1976.

B-36. R.E. Kalman, P.L. Falb, and M.A. Arbib, ToQics in Mathematical
System Theory, McGraw-Hill, Yew York, 1969.

B-37. L.S. DeJong, "Numerical As pects of Realization Algorithms in
Linear Systems Theory," Ph.D. Dissertation, Technical University
of Eindhoven, The Netherlands, July 1375.

B-38. R.N. McDonough and W.H. Huggins, Oes= Least-Squares Representation
of Signals by Exponentials," IEEE Trans. Aut. Contr., Vol. AC-13,
No. 4, August 1968, pp. 408-412.

B-39. C.S. Burrus and T.W. Parks, "Time Dcmain Design of Recursive
Digital Filters," IEEE Trans. Audio and Electroacoustics,
Vol. AU-18, No. 2, June 1970, pp. 137-141.

B-40. M. Morf, L. Ljung, and T. Kailath, "Fast Algorithms for Recursive
Identification," IEEE Trans. Aut. Control, to appear; also, Proc.
1976 IEEE Conf. on Decision and Control, Clearwater Beach, Florida,
Dec. 1976.



-89-

B-41. A.H. Jazwinski, Stochastic ProczsseS and-Filtering Theory,

Academic Press, New York, 1970.

B-42. G. Szego, Orthogonal Pol-nx^ials, . -.__. Math. Soc. , New York, 1959.

-MW



-90-

C-1. E. Noldus, "On the Instability of Nonlinear Systems," IEEE
Trans. Aut. Control, Vol. AC-18, No. 4, august 1973, pp. 404-405.

C-2. A.N. Willson, Jr., "Limit: Cycles Due to Adder Overflow in Digital
Filters," IEEE Trans. on Ciro. Th., Vol. CT-19, No. 4, July 1972,
pp. 342-346.

C-3. T.A.C.M. Claasen, W.F.G. Meclenbrauker, and J.B.H. Peek, "Effects
of Quantization and Overflow in Recursive Digital Filters," IEEE
Trans. Acoust., Speech, and Sig. Pro:., Vol. ASSP-24, No. 6,
Dec. 1976, pp. 517-529.

C-4. I.W. Sandberg and J.F. Kaiser, "A Bound on Limit Cycles in Fixed-
Point Implementation of Digital Fiize=s," IEEE Trans. on Audio
and Electroacoustics, Vol. AU-20, No. 2, June 1972, pp. 110-112.

C-3.	 A. Fetal eis, "Pseudopassivity, Sensitivity, and Stability of
Wave Digital Filters," IEEE Trans. Ciro. Th., Vol. CT-19, Nov.
1972, pp. 668-673.

C-6. A. Fettweis and K. Meerkotter, "Suppression of Parasite Oscilla-
tions in :Dave Digital Filters," IEEE -raps. on Circ. and Sys.,
Vol. CAS-22, No. 3, March 1975, pp. 239-246.

C-7. K. Meerkotter and W. Wegener, "A New Second-Order Digital Filter
Without Parasitic Oscillations," Archi" Ar Elektronik and hertrag.,
Vol. 29, July-Aug. 1975, pp. 312-314.

C-8. A.N. Willson, Jr., "Some Effects of junatization and Adder Over-
flow on the Forced Response of Digital Filters," Bell Sys. Tech. J.,
Vol. 51, No. 4, April 1972, pa. 863-337.

C-9. T. Claasen, W.F.G. Necklenbriuker, ani J.B.H. reek, "Frequency
Domain Criteria for the Absence of Zero-Input Limit Cycles in
Nonlinear Discrete-Time Systems with Applications to Digital
Filters," IEEE Trans. on Circ. and 	 Vol. CAS-22, No. 3,
March 1975, pp. 232-239.

C-i0. Ya.Z. Tsypk'_n, "Frequency Criteria for the Absolute Stability of
Nonlinear Sampled Data Systems," Automat. Remote Contr., Vol. 25,
'.larch 1964, pp. 261-267.

C-11. Ya.Z. Tsypkin, "Absolute Stability of a Class of Nonlinear Auto-
matic Sampled Data Systems," Automat. Fenn to Contr., Vol. 25,
July 1964, pp. 918-923.

C-12. Ya.Z. Tsypkin, "A Criterion for Absolute Stability of Automatic
Pulse-Systems with Monotonic Characteristics of the Nonlinear
Element," Sov. Phvs. Dokl., Vol. 9, October 1964, pp. 263-266.



-91-

C-13.	 S.R. Parker and S.F. Hess, "Limit Cycle Oscillations in Digital
Filters," IEEE Trans. Circ. Th., Vol. CT-18, Nov. 1971, pp. 687-
697.

C-14.

C-15.

C-16.

C-17.

C.A. Desoer, "On the Relation Between Pseudo-Passivity and Hyper-
stability," IEEE Trans. on Circ. and Svs., Vol. CAS-22, No. 11,
November 1975, pp. 897-898.

V.M. Popov, Hyperstability of Control Systems, Springer-Verlag,
New York, 1973.

R.W. Brockett and J.L. Willems, "Frequency Domain Stability Cri-
teria: Parts I and II," IEEE Trans. on Auto. Contr., Vol. AC-10,
1065, pp. 255-261 and 401-413.

R.W. Brockett ani H.B. Lee, "Frequency Domain Instability Criteria
for Time-Varying and Nonlinear Systems," Proc. IEEE, Vol. 55,
1967, pp. 604-619.

C-13.	 J.C. Willems and R.W. Brockett, "Some New Rearrangement Inequali-
ties Having Application in Stability Analysis," IEEE Trans. Aut.
Contr., Vol. AC-13, No. 5, October 1968, pp. 539-549.

C-19. J.C. Willems, The Analysis of Feedback Systems, The M.Z.T. Press,
&	 Cambridge, Mass., 1971.

C-20. R.W. Brockett, "The Status of Stability Theory for Deterministic
Systems," IEEE Trans. Aut. Contr., Vol. AC-11, July 1966,
pp. 596-606.

C-21. G. Zames, "On the Input-Output Stability of Nonlinear Time-
Varying Feedback Systems, Part I and II," IEEE Trans. Aut. Conti.,
Vol. AC-11, April 1966, pp. 228-238 and July 1966, pp. 465-477.

C-22. J.L. Willems, Stability Theory of Dynamical Systems, John Wiley
and Sons, Inc., New York, 1970.

C-23. J.C. Willems, "Dissipative Dynamical Systems Part I: General
Theory," and "Part II: Linear Syste:zs with Quadratic Supply
Rates," Archive for Rational Mechanics and analysis, Vol. 45,
No. 5, 1972, pp. 321-343.

C-24. S.R. Parker and S. Yakowitz, "A General Method for Calculating
Quantization Error Bounds Due to Roundoff in Multivariable Digital
Filters," IEEE Trans. Circ. and Svs., Vol. CAS-22, No. 6, June
1975, pp. 570-572.

C-25. G.W. John=on, "Upper Bound on Dynamic Quantization Error in Digital
Control Systems Via the Direct Method of Liapunov," IEEE Trans.
Aut. Contr., Vol. AC-10, No. 4, October 1965, pp. 439-448.



-92-

--26.	 G.N.T. Lack and G.W. Johnson, "Com^_n_s on 'Upper Bound on
Dynamic Quantization Error in Digital Control Systems Via the
Direct Method of Liapunov;" IEEE Trans. Aut. Contr., Vol. AC-11,
April 1966, pp. 331-334.

C-27. G.P. Szego, "On the Absolute Stabilit y of Sampled-Data Control
Systems," Proc. Nat. Acad. Sci., Vol. 256, No. 49, 1963.

C-28. R.E. Kalman, "Lyapunov Functions for the Problem of Lur'e in
Automatic Control", Proc. Nat. Acad. Sci., Vol. 49, 1963,
pp. 2017205.

C-29. J.C. Willems, "Least Squares Stationary Optimal Control and the
Albebraic Riccati Equation," IEEE Tans. Aut. Control, Vol. AC-16,
December, 1971, pp. 621-634.

C-30. J.C. Willems, "Mechanisms for the S al iiity and Instability in
Feedback Systems," Proc. IEEE, Vol. :t, No. 1, January 1976,
pp. 24-35.

C-31. A. Fettweis and K. Meerkotter, "On ==rasite Oscillations in
Digital Filters under Looped Condit''-:ns," IEEE Trans. on Circ.
and Sys., Vol. CAS-24, No. 9, Sept. 1377, pp. 475-481.

C-32. P. Dorato and A.H. Levis, "Optimal linear Regulations: The Discrete-
Time Case," IEEE Trans. Aut. Contro_, Vol. AC-16, December 1971,
co. 613-620.

C-33. Ya.Z. Tsypkin, "Fundamentals of the heory of Non-linear Pulse
Control Systems," Proc. of 2nd IFrC, 3asel, Switzerland, 1963,
pp. 172-180.

C-34. B.D.O. Anderson and R.W. Newcomb, '=_::ear Passive Networks:
Functional Theory," Proc. IEEE, Vol. b4, No. 1, January 1976,
pp. 72-88.



-93-
i

D-1. R.M. Mersereau and U.E. Dudgeon, "T:.o-Dimensional Digital Fil-
tering," Proc. IEEE, Vol. 63, No. 4, April 1975, pp. 610-623.

D-2. S.R. Powell and L.M. Silverman, "Modeling of Two-Dimensional
Covariance Functions with Ac=lication to Image Restoration,"
IEEE Trans. Aut. Contr., Vol. AC-19, No. 1, Feb. 1974, pp. 8-13.

D- 3.	 J.W. Woods, "Two-Dimensional Discrete Karkovian Fields," IEEE
Trans. Inf. Th., Vol. IT-18, No. 2, March 1972, pp. 232-240.

D-4. M.S. Sondhi, "Image Restoration: The Removal of Spatially Invariant
Degradations," Proc. IEEE, Vol. 60, No. 7, July 1972, pp. 842-853.

D-5. N.E. Nahi, "Role of Recursive Estimation in Statistical Image
Enhancement," Proc. IEEE, Vol. 60, ::o. 7, July 1972, pp. 872-877.

D- 6.	 ;. Habibi, "Two-Dimensional Bayesiar. Estimate of Images," Proc.
IEEE, Vol. 60, No. 7, July 1972, pa. 378-883.

D-7. A.O. Aboutalib and L.M. Silverman, "Restoration of Motion Degraded
Images," IEEE Trans. Circ. and Sys., Vol. CAS-22, No. 3, March 1975,
PP• 278-286.

D-8. N.E. Nahi and A. Habibi, "Decision-Directed Recursive Image
Enhancement," IEEE Trans. Circ. and Sys., Vol. CAS-22, No. 3,
March 1975, pp. 286-293.

D-9. D.D. Siljak, "Stability Criteria for Two-Variable Polynomials,"
IEEE Trans. Circ. and Svs., vol. CAS-22, No. 3, March 1975,
pp. 185-189.

D-10. G.A. Maria and M.M. Fahmy, "Limit Cycle Oscillations in a Cascade
of Two-Dimensional Digital Filters," IEEE Trans. Circ. and Sys.,
Vol. CAS-22, No. 10, October 1975, 	 826-830.

D-11. A.K. Jain and E. Angel, "Image Restoration, Modelling, and Reduc-
tion of Dimensionality," IEE= Trans. Cc-1o., Vol. C-23, No. 5,
May 1974, pp. 470-476.

D-12. P. Pistor, "Stability Criterion for recursive Filters," IBM J.
Res. bevel., Vol. 18, No. 1, Jan. 1974, p p . 59-71.

D-13. J.L. Shanks, S. Treitel, and J.H. J:.stica, "Stability and Synthesis
of Two-Dimensional Recursive Filters," IEEE Trans. Aud. Electr.,
Vol. AU-20, No. 2, June 1972, pp. 115-128.

D-14. J.M. Costa and A.N. Venetsano_oulos, "Design of Circularly Symmetric
Two-Dimensional Recursive Filters," I=EE Trans. Acous., Speech,
and Sig. Proc., Vol. ASSP-22, No. 	 Dec. 1974, pp. 432-443.



^. .....mss

-94-

D-15. M.T. Manry and J.K. Aggarwal, "Picture Processing Using One-
Dimensional Implementations of Discrete Planar Filters," IEEE
Trans. Acoust., Speech and Sig. Proc., Vol. ASSP-22, No. 3, June
1974, pp. 164-173.

D-16. P. Whittle, "Stochastic Processes in Several Dimensions," Bull.
Int. Stat. Inst., Vol. 40, 1963, pp. 974-994.

D-17. R.L. Sengbush and M.R. Foster, "Design and Application of Optimal
Velocity Filters in Seismic Exploration," IEEE Trans. Comp.,
Vol. C-21, No. 7, July 1972, pp. 648-654.

0-18.	 J.M. Davis, "Velocity Analysis: An Application of Deterministic
Estimation to Reflection Seismology," IEEE Trans. Como_., Vol. C-21,
No. 7, July 1972, pp. 730-734.

D-19. H.C. Andrews and B.R. Hunt, Digital Image Restoration, Prentice
Hall, Inc., Englewood Cliffs, N.J., 1977.

D-20. T.G. Stockham, "Image Processing in the Context of a Visual
Model," Proc. IEEE, Vol. 60, No. 7, July 1972, pp. 828-842.

D-21. Y.C. Ho and K.C. Chu, "Team Decision Theory and Information Struc-
tures in Optimal Control Problems: Part I," IEEE Trans. Aut.
Contr., Vol. AC-17, No. 1, Feb. 1972, pp. 15-22.

D-22. H.S. Witsenhausen, "Some Remarks on the Concept of State," in
Directions in Large Scale Systems, Y.-C. Ho and S.K. Mitter,
eds., Plenum Press, New York, 1976.

D-23. S. Attasi, "Modelling and Recursive Estimation for Double Indexed
Sequences," in System Identification: Advances and Case Studies,
R.K. Mehra and D.G. Lainiotis, eds., Academic Press, New York, 1976.

D-24. E. Fornasini and G. Marchesini, "State-Space Realization Theory
of Two-Dimensional Filters," IEEE Trans. Aut. Contr., Vol. AC-21,
No. 4, Aug. 1976, pp. 484-492.

D-25. M. Fliess, "Series Reconnaissables, Rationnelles et Algebriques,"
Bull. Sci. Math., Vol. 94, 1970, pp. 231-239.

D-26. B.S.K. Chan, "A Novel Framework for the Description of Realization
Structures for 1-D and 2-D Digital Filters, Proc. Electronics and
Aerospace Systems Conf., Sept. 1976, Arlington, Virginia; also,
Ph.D. Dissertation, M.I.T. Dept. of Elec. Eng. and Comp. Sci.,
in progress.

D-27. R.P. Roesser, "A Discrete State-Space Model for Linear Image Pro-
cessing," IEEE Trans. Aut. Control, Vol. AC-20, No. 1, February
1975, pp. 1-10.



-95-

D-28. M.P. Ekstrom and J.W. Foods, "Two-Dimensional Spectral Factoriza-
tion with Applications in Recursive digital. Filtering," IEEE
Trans. Acoustics, Speech, and Sig. Proc., Vol. ASSP-24, No. 2,
April 1976, pp. 115-128.

D-29. E.D. Sontag, "On Linear Systems and Noncommutative Rings," Mathe-
matical Systems Theory, Vol. 9, No. 4, 1976, pp. 327-344.

D-30. N.K. Bose, "Problems and Progress in :.ul_idimensional Systems
Theory," Proc. IEEE, Vol. 65, No. 6, June 1977, pp. 824-840.

D-31. M. Morf, et al., "New Results in 2-D Systems Theory, Part I:
2-D Polynomial Matrices, Factorization, and Coprimeness," and
"Part II: 2-D State Space Models - Realization and the Notions
of Controllability, Observability, and Minimality," Proc. IEEE,
Vol. 65, No. 6, June 1977, p p . 361-872, 945-961.

D-32. H.H. Rosenbrock, State-Space and Multivariable Theory, J. Wiley,
New York, 1970.

5

D-33. W.A. Wolovich, Linear Multivariable Svstems, Springer-Verlag,
New York, 1974.

D-34. M.S. Murphy and L.M. Silverman, "Image Nbdel Representation and
Line-by-Line Recursive Restoration," 1976 IEEE Conf. on Dec. and
Control, Clearwater Beach, Florida, Dec. 1976.

D-35. N.E. Nahi and S. Lopez-Mora, "Estimation of Object Boundaries in
Noisy Images", 1976 IEEE Con-. on Dec. and Control, Clearwater
Beach, Florida, Dec. 1976.

D-36. E. Wong and M. Zakai, "Martingales and Stochastic Integrals for
Processes with a Multidimensional Parameter", Z. Wahrscheinlich-
keitstheorie, Vol. 29, 1974, _ p . 109-122.

D-37. A.S. Willsky and P.Y. ?Cam, "Recursive Estimation of Signals Sub-
ject to Random Propagation Celays," submitted to Appl. Math. and
optimization.

D-38. D.P. Looze, P.K. Houpt, N.R. Sandell, and M. Athans, "On Decen-
tralized Estimation and Control with Application to Freeway Ramp
Metering," IEEE Trans. Aut. Control, Aril 1978, to appear.

D-39. S.M. Melzer and B.C. Kuo, "Optimal Regulation of Systems Described
by a Countably Infinite Sumher of Ob _cts," Automatica, Vol. 7,
1971, pp. 359-366.

D-40. K.C. Chu, "Optimal Decentralized Regulation for a String of
Coupled Systems," IEEE Trans. Aut. Contr., Vol. AC-19, June 1974,
pp. 243-246.



D-41. J.W. Woods and C.H. Radewan, "Kalman Filtering in Two-Dimensions,"
IEEE Trans. Inf. Th., Vol. IT-23, No. 4, July 1977, pp. 473-482.

D-42. L.C. Wood and S. Treitel, "Seismic Signal Processing," Proc. IEEE,
Vol. 63, No. 4, April 1975, pp. 649-661.

D-43. T.L. i•,arzetta, "A Linear Prediction Approach to Two-Dimensional
Spectral Factorization and Spectral Esti.=a*_ion," Ph.D. Dissertation,
M.Z.T., Department of Elec. Eng. and Con..:. Sci., Jan. 1978.

D-44. A.S. Willsky, "A Survey of Failure Detection Methods in Linear
Dynamic Systems," Automatica, Vol. 12, Nov. 1976, pp. 601-611.

D-45. J.P. LaSalle, "An Invariance Principle in the Theory of Stability,
Differential Equations and Dynamical Systems," in Differential
Equations and Dynamical Systems, J.K. Hale and J.P. Lasalle, eds.,
Academic Press, 1967, pp. 277-286.

0-46.	 B.R. Hunt, "Digital Image Processing," Proc. IEEE, Vol. 63, No. 4,
April 1975, pp. 693-708.

D-47.	 A. Habibi and G.S. Robinson, "A Survey of Digital Picture Coding,"
Computer, Vol. 7, No. 5, May 1974, pp. 22-34.

0-48.	 R. Bajcsy and M. Tavakoli, "Computer Recognization of Roads from
Satellite Pictures," IEEE Trans. on Sys., Man, and Cyb., Vol. SMC-6,
No. 9, Sept. 1976, pp. 623-637.

D-49. N.K. Bose, "Special Issue on Multidimensional Systems," Proc. IEEE,
Vol. 65, No. 6, June 1977.

D-50. E.I. Jury, V.R. Kolavennu, and B.D.O. AnOrson, "Stabilization of
Certain Two-Dimensional Recursive Digital Filters," Proc. IEEE,
Vol. 65, No. 6, June 1977, pp. 887-892.

D-51. J.H. Justice, "A Levinson-Type Algorithm `-or Two-Dimensional
Wiener Filtering Using Bivariate Szego Polynomials," Proc. IEEE,
Vol. 65, No. 6, June 1977, pp. 882-886.

D-52. F.C. Schoute, M.F.ter Horst, and J.C. Willems, "Hierarchic Recursive
Image Enhancement," IEEE Trans. Circ. and Sys., Vol. CAS-24, No. 2,
Feb. 1977, pp. 67-78.

D-53. Y. Genin and Y. Kamp, "Two-Dimensional Stability and Orthogonal
Polynomials on the Hypercircle," Proc. :=E, Vol. 65, No. 6,
June 1977, pp. 873-881.

D-54. A. 0. Aboutalib, M. S. Murphy, and L. A. Silverman, "Digital
Restoration of Images Degraded by General Motion Blurs,"
IEEE Trans. Aut. Control, Vol. AC-22, No. 3, June 1977,
pp. 294-302.



f- A-1 !:)

♦ 	 -97-

Z-1.	 A.S. Willsky, Digital Signal Process-, n annd Control and Estima-
tion Theory--Points of Tangency, Ar°z:s of Intersection, and
Parallel Dirscticns, .7he M.I.T. Press, ':x bridge, Mass., to appear.


