»
A

SO

-
% In
. P

- - .
x ,.‘ ::;*‘;. g%m ’ ’*‘S é é %Q a e -

0
g Beww B &

5

esrion

(NASA-CR-156680) 2 STUDY OF SYSTEMS N78-16671 |
. IMPLEMENTATION LANGUAGES FOR THE POCCNET

SYSTEM (Maryland Univ.) 176 p HC AQ05/MF AOQ1
CSCL 09B Unclas

i 63761 04059

& STUDY OF SYSTEMS IMPLEMENTATION LANGUAGES
' FOR THE POCCNET SYSTEM

Victor R. Basili
James Weo Frankiin
bepartment of Computer Science

University of Maryland

August 27, 1976

Prepared for Goddard Space Flight Center
under Contract HNAS 5-22581

ABSTRACT:

This report presents the resutts of a study of systems
implementation Languages for the Payload Operations &ontroL
Center Network (POCCNET). Criteria are developed for evaluating
the Languages, and fifteen existing languages are evaluated on

the basis of these criteriaes




REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

Te INTRODUCTION

POCCNET Language Study

Table of Contents

Ze CRITERIA AND EVALUATION OF THE LANGUAGES

TR 201, BLISS 11

PN ' [

2eTels LANGUAGE FEATURES
2ele2e CHARACTERISTICS

2.2+ C

2eZ2«T+ LANGUAGE FEATURES
2e2e2¢ CHARACTERISTICS
2.3, CONCURRENT PASCAL
2+3«17+. LANGUAGE FEATURES
2e3+2+ CHARARCTERISTICS
2+bhe [S—-4 Base Language
2ebhels LANGUAGE FEATURES
2elieds CHARACTERISTICS

2.5« FLECS

2¢5e¢1e LANGUAGE FEATURES
2«5.2. CHARACTERISTICS

2.6« HAL/S

2.6eTe LANGUAGE FEATURES
2e6eZ2+« CHARACTERISTICS
2¢7+ INTERDATA FORTRAN V
2e7-s1« LANGUAGE FEATURES
2e7e2« CHARACTERISTICS

2.8. JOSSLE

2.8«1. LANGUAGE FEATURES
‘2.8.2. CHARACTERISTICS

2+9. JOVIAL/IZB

2:9«7. LANGUAGE FEATURES
2+%e2« CHARACTERISTICS

2.10. LITTLE

2+70.7« LANGUAGE FEATURES
2«10.2+ CHARACTERISTICS

2«11« PASCAL

2¢1T1+1. LANGUAGE FEATURES

1-1
2-1

2-5
2-10
2-14
2-14
2-20
2-23
2~23
2-31
234
2-34
2-44
2-47
2-47
2~50
2-53
2-53
2~62
2-65
2-65
2-69
2-72
2-72
2-78
2-81
2-81
2-87
2-91
2-91
294
2-97
2-97



REPRODUCIBILITY OF THE POCCNET Langusge Study
ORIGINAL PAGE IS POOR

2et11e2s CHARACTERISTICS

2e120

PREST4

2.72+«17. LANGUAGE FEATURES
2+12+2« CHARACTERISTICS

2413,

SINPL-T

2+13+«17. LANGUAGE FEATURES
21322« CHARACTERISTILS

2+1h.

SPL f Mark 1V

2eT4e1s LANGUAGE FEATURES
2eVh.2. CHARACTERISTICS

2e15,

STRCHMACS

2¢15+1+ LANGUAGE FEATURES
2.15.2. CHARACTERISTICS

3. POCCHNET

REQGUIREMENTS

4. LANGUAGE FEATURE TABLES FOR THE LANGUAGES

4.1,
4,2,
4.3,
Y A
4a5e
bube
A %
4.8,
4.9,
4.70.
L

INTRODUCTION
HODULARITY
MODIFIABILITY
RELIABILITY
DATA STRUCTURING FEATURES
CHARACTER STRING PROCESSING
BIT STRING PROCESSING
NUMERICAL PROCESSING
EfFICIENCY
SPECTAL SYSTEM FEATURES
ERROR CHECKING AND DEBUGGING

S RECOMMENDATIONS

5%
5.2
5«3,
Sebs
5.5,
5.6,
5.7,

Introducéion

l.anguage Recommendations
Families of Languages
se of a Single Language
Use of Fortran

Remaining Languages

Summary

2-105
2-108
2-108
2-111
2-114
2~114
2-118
2-122
2-122
2-131
2-135
2-135
2-139
31
4=1
4-1
4~2
4~3
b4
4-5
4~6
4-7
4-8
4~9
£~10
411

5-1

51

5-2

5-2

5-8

5-9
5-10
5-11



[BART4A]

[BAST4]

[BASYéa]

CBAS76b]

[BEYT75al]

LBEY75b3

[CHEGE]

LPEC74]

[DES76al

[DES76b3

CFRE75]

POCCNET Language Study
REFERENCES

Barth, . Wrandle, STRCMACS: An Extensive Set of
Macros for Structured Programming in 0S/360 Assembly
Languagey Goddard Space Flight Center, Greenbelt,
Maryland, 1974.

Basili, Ve Res and Turnery A. Jeoy SINPL~T: A
Structured Pr;gramming fanguage, Computer Science
Centery, Univse of Maryland, Computer Note CM?14, 1974,
Basili, Victor R., "The SIMPL Family of Proaramming
Languages and Compilers'", Graphensprachen und
Algorithmen auf Graphen, Carl Hansen Veriag, Munich,
Germany, 1976, L9-85. Also Computer Science
Technical Repart #305, Univ. of Maryland, June 1974.
Basiliy Victor R.y Language as a Tool for Scientific
Programming, Department of (omputer Science, Univ. of
Marylandy 1976.

Beyery Terry, FLECS: User”s Manual, Lomputer Scisnce
Departmenty Unive. of Oregon, 1975.

Beyery Terrys FLECS General Information Letter,
Computer Science Departmenty Univs of Oregon, 1975.
Cheatham: Te. Euy et ales "On the basis for ELF - an
extensible language facitlity®™s Proc. AFIPS 1968 FJICC,
Volbt. 3342, 937-948.

BLISS~11 Programnmer”s Manualy Digital Equipment
Corporation, Maynard, MassSe.s 1974,

desJardinsy Rey and Hahny Jey A Concept for a Payload
Operations Control Center Network (POCCHNET), Goddard
Space Flight Center, Greenbelt, Marytand, 1976.
desJardinsy Richard, Systems befinition Phase Project
Plan for Payload Operations Control Center Network,
Goddard Space Fiight Centery, Greenbelt, Maryland,
1976,

Frenchy Ae.y and HMott-Smiths Je.s Draft of AFSC HOL
Standardization Program - Phase 1 Report, ESD/MCIT,
Hanson Air Force Base, Bedford, Mass.y 1975.



CHANMTS]

CHAN7S2]

LHAN75b]

CHANTSCc

[IEE7S]

CINT?52]

CINT?5b]

LINTE74a]

CINTE74b3

FINTE74c]

CJENT74T

LJOH?73]

EKAF75]

POCCNET Language Study

Hamlet, Richard, SIWPL-XI -~ An Introduction to High
Level Systems Programmingy Department of Computer
Sciencey Unive. of Maryland, tecture Note LN-4, 1976.

Hanseny Per Brinch, CONCURRENT PASCAL Introduction,
Information Science, California Institute of Teche,
1975.

Hansen, Per Brinchy CONCURRENT PASCAL Report,
Information Science, California Institute of Techa,
1975.

Hanseny Per Brinchy The S$0L0 Operating System,
Information Sciencey California Institute of Techey
1975.

Proc. ist National tonference on Software
Engineeringy IEEE Computer Society, Washingtons D«Cey
1975

{S—4 tanguage Reference Manual and C(S-4 Operating

System Interface, Intermetrics Incey; Cambridge,
Mass., 1975.
HAL/S Language Specification, Intermetrics INC ey

Cambridge, Masse.y, 1975,

FORTRAN V Level 1 Reference Manualy Interdata Incaey
Oceanport, Neldey 1974

FORTRAN V tevel 1 User”s Guide, Interdata InNCey
Oceanporty Nede,y, 1974,

FORTRAN V Level 1 Run Time Library Manual, Interdata
Incey Oceanporty Nados 1974

Jenseny Koy and Hirthy Ne.y PASCAL User Manual and
Report: Lecture Notes in éomputer Science Series,
Springer—-Verlag, New York, 1974.

Johnsony, Mark S.y et aley A Basic Guide to JOSSLE,
pbepartment of Computer Sciencey Unive of California
at Santa Barbara, 1973.

Kaffeny; N., and Rodeheffersy Tsy PREST4 - A Highliy
Structured Fortran lLanguage for Systems Programming:
Computer Science Department, Ohio State tUnives
TR=-75-4, 1975.



REPRODUOIBILTLTY oF THE

ORIGINAL

EKER74]

LLIST74]

CMARTA]
[MARTS]

CMEI?S]

CPRE731]
LREI753]
[RICY61]

[RIT743
[RUST6]

LspCc701
CSHIT4]

£s16751]

[SOF75]

PAGE I8 POOR POCCNET Language Study

Kernighany Brian W., "Programming in € - A Tutortal’,
Documents for Use with the UNIX Time-sharing System,
Bell Lazboratoriess Murray Hilly NedJo, 1974,

Liskovs Bey and Zillessy Se, "Programming with
Abstract Data Types"™, Proc. Symposium on Very High
Level Languages, SIGPLAN Noticesy, Vol. 9#4, Apritl
1974,

Martiny Fred He, HAL/S - The Programming Language for
Shuttley, Intermetrics Inc.ys Cambridge, Mass., 1974,
Martins, Fred H., JSC HAL Support Note # 15-75,
Intermetrics Incey Cambridge, Masse., 1975,

Meissner, Loren Pey "0On Extending Fortran CLontrol
Structures to Ffacilitate Structured Programming®,
SIGPLAN Hotices,y Vol. 1049, Sept. 1975, 19-30.
Pressery Loy and Whitey Jey YA Tool for Enforcing
System Structure", Proc. ACH 1973, Atlanta, 114-118.
Reinschmidt, Marlene, JOVIAL/J3B Programmer”s Guide,
SofTech Intey Waltham, Mass.y, 1975

Richmond, GSecrge H., "PASCAL Newsletter', SIGPLAN
Notices, Vol. 11#2, February 1976, 38-42.

Ritchiey Dennis M., "C Reference Manual®™, Documents
for Use with the UNIX Time—-sharing Systems Bell
Laboratories,y Murray Hills Nedoy 1974,

Russelly Dey and Sue,; Jey "Inplementation of 2 PASCAL
Compiler for the IBM 360%; Software Practice and
Experiencey, Vol. 65 1976y 371-376.

SPL / Mark IV Reference Manual, System Development
Corpe.y Santa Monica, Calif., 1970.

Shieldsy Davidy Guide +to the LITTLE Language, New
York Univey, 1974,

Proce International Conference on Reliable Softwarey
SIGPLAN Notices, Vol. 10#6, June 1975,

JOVIAL/J3B Language Specification - Extension 2,
SofTech Incey Walthamy, Mass.y 1975,



POCCNET Language Study PAGE 1-1

1. INTRODUCTION

This report presents an evaluation of systems implementation
tanguages for the Payload Operations Control Center Network
(POCCNET), which is a general hardware/software concept adopted
by GSFC as a means of developing and operating payload operations
control centers in the 19807s. The POCCNET systen
[DEST76a,DESTEDLT will provide harduare and software
resource-sharing via a distributed computer network and a2 package
of standardized applications software. This report develops
criteria for evaluating POCCNET implementation languages, and
then compares fifteen existing languages on the basis of these
criteria.

An attempt was made during this study to examine a wide
range of existing languages, from a low level macro assembler 1to
the wvery Lltarge and high Llevel Llanguage CS-4. The following

firfteen Llanguages were examined 1n detail:

BLISS-11 - A systems implementation Language

- for the PDP-11 series. i

c ~ The Llanguage of the UNIX operating
system.

CONCURRENT PASCAL

A high tevel language for Writing
operating systemse.

CS—4 Base Language - An extensible language being
developed for the Navy.

FLECS ~ & Fortran preprocessor.

HAL/S - -~ The NASA LlLanguage for the Space
Shuttle program.

INTERDATA FORTRAN V - An extension of ANSI Fortran.

JOSSLE - A PL/T derivative for writing
compilerses

JOVIAL/J3B - A close relative of JOVIAL/J3, the

Air Force standard tanguage for
command and control applications.
LITTLE

A Fortran derivative that operates

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR



POCCNET Language Study PAGE 1-2

on bit strings of arbitrary length.

PASCAL - A highly structuredy general
purpose language.

PREST4 — A Fortran preprocessor.

SIMPL-T ~ The base member of a highty

structured family of languages.

SPL / MARK 1V -~ A high Llevel language with many
machine~ortented features.

STRCMACS - A collection of structured
programming macros for IBM 0S/360

assembly language.

The language evaluations in this report are based solely on the
tanguage reference manuals and other papers Llisted 1in the
references. We have immediate access to the compilers for only
two of the fifteen tanguages {(C and SINPL-T).

The criteria for evaluating the Languages and the
preliminary evaluations are presented in the second «chapter of
this report. Each evaluation is composed of two sections. The
first section provides a detailed summary of the following

(1) basic data types and cperators
(2) control structures

(3) data structures

{4) other interesting features

{5} language syntax

{(6) runtime environment .

The second section of each evaluation presents the
{1) machine dependence
(2) efficiency
(3) level of the language
(4) s1ze of the language ana compiler
(5) special system features
{6) error checking and debugging
(7} design support {modularity. modifiability, and



POCCNET tanguage Study PAGE 1-3
reliability)
(8) use and availability of the language .

In the third chapter we give a2 summary of the functionat

subsystems in POCCNET, and then identify the programming

application areas within the network. POCCNET will require a
language or group of lLanguages supporting general system
programmingy real-time processing, data base management,

numerical processing, and data formatting and conversion. As can
be seeny the application areas in POCCNET are diverse.

The fourth <chapter contains a series of tables providing a
cross reference between the Llanguage features and Languages
discussed in Chapter 2. Each table is devoted to one of the
specific POCCNET requirements: each contains the fanguage
features contributing to the POCCNET requirement, and indicates
for each language feature the presence or absence of that feature
in the fifteen languages.

In the fifth and final chapter we give our recommendations
and a discussion of possible candidates for the POCCNETY

implementation language.



POCCNET Language Study PAGE 2-1

Z2e CRITERIA AND EVALUATION OF THE LANGUAGES

In this chapter we give a detailed evaluation of the fifteen
tanguages covered by this study. Each of the Llanguages is
evaluated on the syntactic features of the language (such as
basic data typesy control structuresy and data structures) and on
the chacracteristics of theltanguage (such as machine dependence,
efficiency, and design support)e. The evaluations are based
solely on the language reference manuals and other papers tisted
in the referencesa

The section on language features contains the fellowing

subsections:

(1) A short introduction indicating the source of the Llanguage

and the intended spplication area;

(2} The primitive data types of the tanguage and the operators

and functions for manipulating them;

(3} The control structures in the language. These are described
using 2 simpley BNF-tike metalanguage« syntactic entities
in the LlLanguage are enclosed in the symbols "“<* and ">%,
tanguage keywords are atways capitalized, and any optional
features are enclosed in braces "{", *}". Where a choice is
available between several features they are Listed one above

the othery single spaced. For example:
IF <boolean=-expr> THEN <stmt> { ELSE <stmt> }

SH <boolean—expr> REPEAT <stmt-List> END ;

IL
NTI

E

L
DO <stmt-#> <yar> = <e=1>, <e=2> { ;<e=3> 3}
<stmt-list>

<stmt-#> CONTINUE

{4) The data structures in the language, and the operators for
manipulating them. ALL but one of the {anguages in this

study have arrays, others provide record structures, tablesy



POCCNET Language Study PAGE 2-2

setsy typed pointers, and file types;

i
(5) Any interesting features in the language not covered in the

first four subsections. This typically dJncludes macro
processorsy 1/0 facilities, CONSTANT declarations, and
“include™ statements for <copying source files 1into a
pregram;

{(6) The approximate number o¢f productions 1in the BNF grammar
used to describe the language. Since the grammars used in
the reference manuals vary from syntax charts to the
grammars used by the production compilers, this number only
provides a rough measure of the size and complexity of the
Lanoguages

Any rules containing the BNF OR-operator "“!" are
considered to be multiple productions. Thus, the rule
<loop—-stmt> ::= {(WHILE ¥ UNTIL) <boolean-expr>
REPEAT <stmt-List> END

is considered to be twe productions;

€7) The runtime envirnnment required to support the Llanguage.
For exampley & language that permits recursive procedures
will require a runtime stack, and Llanguages with full
character string processing wiitl require a runtime stack or
dynamic storage area to store temporary results during the
evaluation of string expressions. Other languages require
routines for process manacgementy real-time scheduling, 1I/0,

interrupt handling, and error monitors.

The section on Llanguage characteristics contains the

following subsections:

(1) Machine dependence. Some of the languzges in this report
are truly transportable, while others contain machine or
imptementation dependent features such as inline assembly
language, EQUIVALENCE statements for overlaying data items,
user specified allocation of data dtems in records (word

pesition and bit position within a word), and access to



(2)

(33

(4}

(5

POCCNET Language Study PAGE 2-3

hardware registers;

Efficiency ¢f the Llanguage. tanguages with high Llevel
operators and a structured eontrol structure permit a great
deal of optimization +to be performed. Overlays, user
specified altlocation of records, and packing attributes on
tables can be used to conserve storace space. Some of the
tanguages have compiler directives for requesting that
certain progrem variables be allocated 1in high speed
storagey or to force procedures to be expanded inline at the
point of invocation (rather than generating a calling

sequence);

Level of the language. The languages in this report range
from wvery Llow Level (STRCMACS) to high level (CS-4, HAL/S,
PASCAL). The low lLevel languages are typeless and generally
have many machine-~oriented features. The high level
languagess on the other handy are fully typed and have a
targe number of data typesy, data structuresy and control
structures. Machine dependent features are forbidden or

carefully isclatedy as in CS$-4;

Size of the Llanguage and ctompiler. The size and complexity
of the Llanguage directly influences the effort required to
tearn the language and to implement & compiler for the
language« The Llanguages in this study range from very small
(STRCMACSY to very large (CS=-4). ¥for some of the tanguages
the actual size of the compiler 1in source {anguage

statements is known;

Special system features. Host of the fifteen Llanguages
provide a number of features that would be particutarly
helpful for system dmplementation. These dnclude dnline
assembly lancuage, process management and real~time
scheduling, bit and <character data typess pointers and
record structuresy, +the ability to suppress type checking,
reentrant or recursive procedures, and access to hardware

registers;



POCCNET Language Study PAGE 2-4

(6> Error checking and debugging, Compilers for fully typed
Ltanguages can detect many errors during compilation that can
not be detected wuntil the debugging phase in the typeless
tanguages. Typeless pointer variables are particulaerly
troublesome. Languages that do not provide default
declarations or automatic type conversion <c¢an also detect
more errors at compile time.

A number of the Llanguages provide special debugging
tools, including traces of opregram variables, statement
tabel flow historys execution statistics, timing

inforpnationy and cross reference and attribute Listings;

{7) Design supports. pDesign support is broken down 1into three
categories: modularity, modifiability, and reltiabilitye.
Some of the features contributing toward modularity are a
structured control structure, a datas abstraction facility
{as in (S~4), and independent compilation of procedures and
functions. A mecroprocessor and some fTorm of “"include™
feature for copying source files 1inte a program greatly
enhances modifiability. High Level data structures and
operators atso 1improve modifiabatlity by making programs
shorter and more readable.

Features contributing to reliability are full type
checkings & data abstraction facility, & structured control
structurey a small pumber of compiler-supplied defaults, and

few or carefully isolated system features;

(8) Use of the Language. This section dincltudes information
about the use of the language in large programming projects,
what machines have compilers for the Ltanguage, and how
easily the compiler could be transported to other machines,
Some of this information was found in L[FREY53, the remainder

was found in the language reference manuals.

The remainder of this chapter is devoted to the evaluations

of the languages (listed in alphabetical orderd.



POCCNET Language Study PAGE 2-5

2-10 BLISS"‘11

2.17+.1« LANGUAGE FEATURES

BLISS~11 LDECT74] is a systems programming language for the
PDP~-11 series that was developed by a group at Carnegie Mellon
University with some assistance from Digital Equipment
Corporatione. Although the lLanguage is highly structured, it is
typeless and generally tou—Llevel. BLISS-1T1 differs from
conventional programming languages in several important ways.s
Firsty BLISS-11 is expression orientedy so that all control
structures return a value. For exampley P = C(INCR I FROM 1 TO 10
BY 1 PO IF ATC.I] EGL O THEN EXITLOOP .I1) is a legal BLISS~T1
constructions Secondly, BLISS 1dentifiers evaluate to a pointer
to the named itemy and not to the wvalue of the tem. A dot
operator 1is provided for dereferencing these pointers. For
example, if A is a BLISS didentifier then the expression A
evaluates to the address of item A, «A to the value of item A,

and «eA to the value of the item pointed to by item A

1=
2}
v
2
[o8
1<
i
L
el
u
ﬂ
Q
=
i

bata Iypes
t155-11 i1s a typeless lancuage. All operators operate on

A. Bas
B

16-bit wordssy and it is the user”s responsibility te insure that
the information contained in the operand word{(s) is of the
correct type for the operator. BLISS-11 allows five types of
constants to appear in expressions: character strings, 1integers,
real numbers, octat numbersy and pointers.

The following operators are provided for operating on 16-bit

words:

arithmnetic operators
+y =y *4 [y unary minus
MOD, MAX, MIN
<expr-1> © <expr-2>
Shift operator yielding value of <expr-1> shifted
left or right by <expr—2> bitse. The sign of

<expr-2> determines the direction of the shift.



POCCNET Language Study PAGE

<expr—=1> ROT <expr-2>

Left or right circular shift.

retational operators
EqL, NEG, LSS, LEG, GTR, GEQ
EQLY, NEGU, LSSU, LEQU, GTRU, GEQU
Relational operators for signed and unsigned ("U")

operands. The relational operztors return an integer
result (0 for false, 1 for truel.

logical operators
NOT, AND; OR, XOR, EQV
Bitwise complement,s and, or, exclusive ory and

equivalence.

other
« Sexpr>
Pointer dereferencing operator yielding the object
pointed to by the <expr>.
expr <posyslen>
Partword selector for extracting bits from a word.
<var> = <expr>

Assignment operators. The value of the expression

2~6

is

stored at the location pointed to by the <var>. Thus

.. if A were a BLIS5S5-11 didentifiery the expression A

e A¥T vould 1increment the wvalue of A. Note that the

pointer dereferencing operator must be used

on

right-hand side of the expression, but not on the

left-hand sidee.

Bs Control Structures

e e D e T T —————

~ IF <test-expr> THEN <expr> { ELSE <expr> 2} ;

r

(Standard conditionale.)

~ BEGIN <expr-1>; s+ <expr—k>; <expr~k+1> END ;

r

(Compound expressione)

-~ WHILE <test-expr> DO <expr> ;



POCCNET Language Study PAGE

UNTIL

2=7

(While and repeat loops with test performed before the

body is executed.)
~ DO <expr> WHILE <test-expr> :
UNTIEL

(While and repeat loops with the test performed
the body 1is executed. The body will therefo

executed at teast once.l
- gg%g <var> FROM <e—-12> T0 <e-2> BY <e~3> 10 <expr-body

(For loops. Programmer must choose a count-up

count—~down Loop when the pregram is written.)

— CASE <expr-Listi> OF SET
<expr—1> ;

L]
L

<expr-k>
TES ;
(simple case statements. The expressions in
<expr-List> are evalustedy and then each is us
select some <expr-i> 1in the body of the

expression for executione}

- SELECT <expr-list> OF NSET
<select-expr-1> : <expr-1> ;

<select-expr-k> : <expr—-k>

TESN ;
(Setect statement. The expressions in the <expr-—
are evaluatedy and each one 1is then com
sequentially with the <select-expr-i>. If
expression matches some <select—expr-i> then
corresponding <expr-i> 1s executed. The key
ALWAYS and OTHERHWISE may be used in

<select-expr-i>; ALWAYS forces execution of

after

re be

> i

or a

the
ed to
CASE

List>
pared
an
the
words
the

its



POCCNET Language Study PAGE 2-8

€expr-i>, OTHERWISE sgpecifies that its <expr—i> is to
be executed only if no preceding <expr—-i> is

executed.?

ROUTINE <ident> ( {<parameter-list>} ) = <expr-body> ;
(Standard function tonstructs Since all BLISS-11
constructs return a value, there is no procedure or

suybroutine construct. Functions may be recursive,)

<jdent> ( {<arg-li1st>3} ) <

{Call to a routine.)

LEAVE <label> WITH <expr> ;
{Exit the labeled construct with the value of the

expression <expr>.)

LEAVE <label> ;

L4

(Exit the labeled construct with a value of 0.

EXITLOOP <expr> ;

(Exit the innermost leoop with the value of <expr>.)

RETURN <expr> ;
(Return from body of 2 routine with the value of the
<eXpr>.e 1}

SIGNAL <signal-expr> ;
(Initiates scan of ENABLE blocks for 2 “handler™ for
condition <signal-expr>. The SIGNAL and ENABLE
constructs provide a feature somewhat similar to  user
defined ON-conditions in PL/I. )

ENABLE
<expr—1> : <handler-expr-i> ;

<exp-k> : <handler—-expr-k>
ELBANE
(Used in conjunction with the SIGNAL constructs. On

execution of a SIGNAL <signalw«expr>, control passes to



POCCNET Language Study PAGE 2-~9

the most recently executed ENABLE block. The
<signal—-expr> dis then compared with the <expr~i> in
the ENABLE statement; if some <expr~i> matches the
<signal-expr> then the <handler—expr> is executed, and
control passes out of the block containing the ENABLE
block. If no <expr-i> matches the <signal-expr> then
control will pass to the next most recent ENABLE
block, and the search for a handler centinues. SIGNAL
and ENABLE provide & “software interrupt"™ capability,

although no return from the interrupt is possible.)

C« Data Structures

——— e - —————

Bt.1SS~11 has two constructs for creating more complex data
structures. The first (STRUCTURE) defines a data structure and an
access method for +the data structures and the second (MAP) 1is
used to “map" or ogverlay & structure onto 2 previously
unstructured blLock of core. The declaration
~  STRUCTURE <ident> [<parameter-List>] =

C<structure-size-expr>] <access-method-expr>
defines the structure <ident> by specifying the number of
storage locations required for the structure, and an expression
defining an access method for the structure. The expressions
defining the structure size and access method can use any of the
parameters in the <parameter~lis{> of the structure. The
structure <ident> c¢an then be used to declare ney objects of that
type wusing the the OKN statement, or it can be mapped over some
other variable. The statement

MAP <structure-ident> <identifier—List> <size> ;
maps the specified structure onte the ddentifiers in the
identifier List. The 1dentifiers can then be referenced as if
they had been declared to have been structures of type
<structure>. The MAP statement allows the programmer to access a
bLock of core under a number of different formats.

for exampley the following BLISS-17 segment defines a
lower—triangular byte matrix structure:

BEGIN



POCCNET Language Study PAGE 2-~10

STRUCTURE LTRIAGEILJ] =
EIx(I+1)/27 (WLTRIAG + I * {,I-1)/2 + 4 - 1);
OWN LTRIAG ML5,51;
OWN NLC153;
MAP LTRIAG N;
BE14,13 = NI[1,1] = 16; .

BLISS-11 has a predefined structure called YECTOR that «can
be used to declare one dimensional arrayss and the user can
define arrays with more dimensions by using the STRUCTURE
statement. Finally, the untyped pointers iIn BLISS can be used to

create arbitrary linked data structures.

Do Qther Features

BLISS~11 has several features that would make BLISS programs
easy to modify. The BIND statement

BIND <ident> = <expression> ;

equates <ident> with the text of the <expression?». This text s
used to replace any occurences of the <ident> in the rest of the
source programe. BLISS-11 also has a powerful macroprocessor that
provides simple replacement macrosy parameterized replacement
matros,y and recursive and iterated macros. Source text from a
program Library <¢an be 1ncluded into a BLISS program using the
REQUIRE statement. BLISS-1T has no I/0 facitities.

E. Runtime Envirpnment

BLISS-11 1s a low~level tanguage and will probably run on a
bare machine.

F. Syntax

BLISS-11 has a BNF grammar with approximately 150

productionse.

2eledes CHARACTERISTICS



POCCNET Language Study PAGE 2-11

e e e S D wl e - ——

BLISS~1T is 2 systems programming language for the PDP-11
series and is highly machine dependent. The machine dependent
features include inline assembly Llanguage dnstructions, the
partword operator for extracting bitsy and the TRAP, EMT, WAIT,
and RESET statements for controlling the PDP-11.

B. Efficiency

BLISS-11 s quite efficient, and will compare favorably with
assembly language programse.

. Level of the Langugge

The BLISS-11 language is typeless and low—-level.

Pe Size of the Language and the Lo

12

piler
The lLanguage 1is smabtl, and the compiler should be the same.
£« Special System Features

BLISS-11 provides the tollowing system features:
{a) Assembly language statements can be inserted into a BLISS-11
program using the INLINE statement:
INLINE ("any character string").

The character string i1s passed unaltered to the assember.

(b) The programmer can request that local variables be allocated
in machine registers using the REGISTER statement: REGISTER
<ident>; « The vartable is aliocated in one of the machine

registersy although the programmer has no control over which

register is usede.

(¢} The LINKAGE statement gives the programmer control over the
type of calling seguence genesrated for a function call. The
user can specify that function parameters are to be placed
on the runtime stack or 1in selected registers, and the
language wused to write the subroutine. Six catlbling

Ssequences are available: BLISS {default), FORTRAN,



POCCNET Language Study PAGE 2-12

INTERRUPT, EMT, TRAP;y; and IOT.

(d) BLISS-11 has six functions praviding access to the hardware
on PbP-11 machines:
TRAP(<trap-number>) ~ Generate program interrupts.
EMT{(<trap-number>)
IOT(%trap*number>)

HALT () ~ Halt all execution.
RESET () ~ Reset all devices on the UN1BUS.
HAITCO) ~ Watt for an interrupte

(e) The ENABLE and SIGNAL constructs provide a type of software

interrupt for handling user-defined excepticnal conditionss

(f) BLISS-11 has pointer wverijables, a partword operator for
extracting bits from a wordy character stringss; record
structures, and the MAP feature for accessing & block of

core under several different formatss

A et a A ae —da B A e e e Al AR S ———

Because of the absence of types, there is Little that BLISS

¢can do in the way of compile or runtime errcr checkinge The

BLISS~11 pointers are completely wunrestrictedy and it is
therefore possible to create pointers that wi1ll generate
addressing exceptionss cause branches into the middle of datay
access data under the wrong formaty and so forth.

BLISS-11 has & <compiler option that will provide an
interface for the SIX12 debugging package.

6. Design Support
(a) modularity

Modularity 1in BLISS-11 is good. BLISS~11 supports
independent compitation of routines, and communication via GLOBAL
variables or registers. User control over calling seguences
makes wnterfacing with assembly Language or FDRTRAN routines
fairly easy.



POCCNET Language Study PAGE 2-13

(b) modifiability

8L1SS-11 has a very powerful macro processor and a Llarge
number of control structures. The BIND statement makes it easy to
alter the constants wused throughout a BLISS programe Finally,
the REQUIRE statement allows the programmer to dinclude source

files into @ programe.
{¢) reljability .

BLISS-11 requires very careful programming because of the
tack of type checking and the unrestricted peinters. It will be
much harder to insure the retiability of a BLISS-11 program than

an equivalent program written in 2 language like PASCAL or HAL/S.
He Use

BLISS~11 has been implemented on the PDP-11 series, and the
language could not be implemented on other machines unless the
special system features for the POP-11 were removed (TRAP, WAIT,
RESETy and so forthd.



POCCNET Language Study PAGE 2-14

2¢2. C

2e2e¢Te LANGUAGE FEATURES

The Llanguage € [RIT74,KER7V4&} 1is a systems programming
tanguage developed at Bell Laboratories by D. M. Ritchie. € is a
structured, medium Llevel Llanguage with a terse syntax and a
profusion of built-in operators. The L(anguage was originally
designed for the ¢PP-11 series, although it has since been
implemented on other machines (HIS 6070 and the IBM 360 and 370
series). The UNIX operating system and a substantial portion of

the softvare in the URNIX timesharing system are written in (.

- — - e S 2 P o

¢ has four basic data types; INT, CHAR (single <character),
FLOAT and 0OUBLE (single anc double precision fleoating pointl.
The Llanguage is fully typedy, although automatic conversion
between the four basic types is provided in many instances. 1In
particutary a CHAR expression can be used anywhere that an INT
expression can be used. Five types of constants are permitted in
expressionss: integersy character <constants of one or two
charactersy; strings of characters {treated as character arraysly
and floating point numbers.

t has a large number of operators for manipulating the basic
datia types. The operators and the data types on which they
operate are listed below:

Llogical operators (INT and CHAR operands only)

' <expr> 1 if <expr> = 0y and 0 otherwise.
<expr> Bitwise complement of <expr>.
<el> & <e2> Bitwise AND of <ei>, <el>.
<el> ! <e2> Bitwise OR.
<et1> = <e2> Bitwise exclusive OR.
<el> << <e?> Left Logical shift of <el> by <eZ2> bits.
<el>» >>» <eg> Right arithmetic shift.

++ <variable> Auto-increment and auto-decrement operators



~— <yariable>

<variable> ++

<variable>

POCCNET Language Study PAGE 2-15
corresponding to the PDP-11 series machine
instructions. In the prefix form the

variable is incremented or decremented by

1 and the vatue of the variable becomes the value of the

expression.

becomes the value of the expression,

In the postfix form the value of the variable

and the variable 1is

then incremented or decremented by 1.

logical coperators (all basic types)

<el>»

<el>:<e3> Selection operator eguivalent to

<el> L& <e2>

<el>
Lel>

<e?>
<e?Z>

S1ZEOF <expr>

arithmetic

<el> %

relational

<y 2y

assignment
C has
= <exprre.

operators
<ez>

operators

operators

a standard assignment operator of the form

if <e1> then <e2> else <e3>.

1 if <el1> and <e2> are non-zeroy
and 0 otherwises

1 if <el1> or <e2> is non~zero, D otheruise.
The expressions <el1> and <e2> are evaluated
from left to right, and <e2> becomes the
value of the entire expression.

$ize of the expression in bytes.

Remainder function {(<el1> modulo <e2>).
The operands <el1> and <e2> must be INT
or CHAR.

Standard arithmetic operatorse.
CHAR,y FLOAT,

The operands
may be INT, or DOUBLE.
Automatic conversion is performed between

the types.

(ALl types?

ALL the relational operators vyield an
integer result (1 or 0}« ALl combinations
cf operand types are permitted, and
conversion is performed between unequal

types.

<variable>

Automatic type conversion is performed if the types do



POCCNET Language Study PAGE 2-16

not match. 1In addition to this standard operator, C combines the
assignment operator with many of the previously discussed
operators. For each of the following operators, <variable> =op

<expr> is equivalent to <variable> = <variable> op <expr>:

=ty =, =k, =7
=33, =<L
=8,y =t, ="

Be Control Structures

— i wE e A . s ——— - a———

- { <stmt=1>; «ee <stmt-k>; 1}
(Compound statement formed by placing statement in
braces. Since € uses the characters { and } as part
of the language syntax, we will use [ and 1 to denote

any optional features in the language.)

- IF (<expr>) <stmt-1>; [ ELSE <stmt—2>; 3
(Conditional statement with optional ELSE part.)

- WHILE {(<expr>) <stmnt>;
PO <stmt> WHILE <expr>;

(Standard while loop with the loop test before and
after the toop body.)

- FOR (<expr=1>; <expr-2>; <expr-3>} <stmt>;
(For toope The expression <expr-1> defines the Lloop

variable and the initial value, <expr=2> the loop

testy and <expr-3> the increment statement. For
exampte:
SUMm = 0

FOR (I=0; I<n; I++) SuUM =+ VECTOR[1];

— SWITCH (<case—expr>)
£ CASE <constant-expr=-1>: <stmt-list-1>;

L] L ] -
- - L
L} * L3

CASE <constant-expr-k>: <stmt-list-k>;



'

POCCNET Language Study PAGE 2-17

[ DEFAULT: <stmt-list>; ]
B

(Case statement with an optional DEFAULT clause, No
two of the <constant expressions may have the same
value. The <case-expr> is evaluated, and the value 1is
compared with the constant expressions in an
unspecified order. If a matching constant expression
is found then +the corresponding <stmt-Llist> is
executed; the DEFAULT <stmt-List> is executed only if
no matching constant expression is found. Note: the
case prefixes do not alter the flow of control within
the SELECT statement. Thus, if <stmi~list-i> 1s
selected for execution by the <case-expr>y, then
control witl flow through <stmt~List-i> into
<stmt~{ist-i+1> unless some statement in <stmt-list—~i>
causes an exit from the SELECT statement.)

BREAK;

{Exit the innermost WHILE, DO, FOR, or SHITCH
statement.)

CONTINUE;
{Continue next iteration of the innermost WHILE,

DOy of FOR statement.)

GOTO <label-expression>;
(Unconditijonal branch to a label within the current

function.)

RETURN [ (<Lexpr>) 1 :
(Return from current function with an optional

resulte}

<type> <ident> {<parameter-Li1st>) <body>
(Standard function definition. For exanple:
INT FACTORIAL (NJ
INT N;
RETURN (N<2 ? 1 : N*FACTORIAL(N-T));



POCCNET Language Study PAGE 2-18

As the example illustrates, functions <¢an be called

recursively, ALl parameters are passed by value.)

€+ Data Structures

———— P T Al e

C has three features for building more conplex data

structures from the basic data types:

1) typed pointer variables
The statement
* <type> <ident>; ‘
declares <ident> to be a pointer to an object of type
<type>. The follouwing operators are provided for
manipulating pointers:
* <pointer—expr> - Yields object pointed to
by the pointer expressione.
£ <yariable> — Yields address of the variable.
<structure—-pointer> —->» <structure-member>
- fccesses the specified member
of the structure pointed to
by the structure pointer.
<pointer> % <integer-expr>
<pointer> - <integer-expr>
- when an integer is added to or
subtracted from a pointer of
type X, The dinteger is first
multiplied by the length of an
object of type X. Thus if P
poitnts 1into an array of record
structures; then P+1 is a
pointer to the next record
structure in the array.
==, I=, <, >, <=, >=
~ Pointers can be <cempared with
other pointers or integers
using the relational operators.

Integers are multiplied by the



POCCNET Language Study PAGE 2-19

object length (as discussed

under the + operator)e.

{2) arrays

The statement

<type> <ident> [<fi-of-~elements>] { [<H-of-elements>] 3} ;
declares <ident> to be an array of <#-of-elements> objects
of type <type>. Arrays c¢an have an arbitrary number of
dimensionse Array indexing begins at 0, and elements of an
array are accessed using standard subscript notation:

<ident> [<subscript>] € [<subscript>] >
Arrays need not be fully dereferemnced by the subscript
operztor. For exampley, if X was declared by the statement
INT XC51L203C8] then X[33 yields a 20x8 dnteger array.
Note: the assignment operator can noi be used to copy an

entire array from one variable to another.

(3) record structures
The statement
STRUCT <i1dent> { <type-declaration-List> };

decfares <ident> to be a record structure composed of the
cbiects Llisted 1in the <type—declaration-list>. The dot
operator ".M" is used to access a member of a structure:
<structure-name>.<member-name>. Note: The address operator
& 1is the oanly other operator that can be applied to an
entire structure. The assignment operator can not be wused
to copy an entire record structurey, 2nd entire structures
can not be passed into functions as parameters or compared
with other structures. A pointer to a structure can be

passed into a functiony howevere.

De Other Features

- —— i - -2

C has an optional preprocessor pass which allows the user to
include source files into the program text, and to use simple
replacement macros. Files are included inte the scurce program
by the statement HINCLUDE "file—name". The statement

HLEFINE <ident> <character—-string”> is used to define simple



POCCNET Language Study PAGE 2-20

replacement macrose ALl occurrences of the identifier in the
source text are reptaced by the character string.
C has no statements for performing 1/0, but the ¢ function

Library contains rocutines for formatted and unformatted I/0.

E. Runtime Environment

-3 P PLE LS. S L PR H. L5 SN

¢ requires a runtime stack because atl functions are

potentially recursive.

Fe Syntax

The BNF grammar for C has approximately 120 productions.

2+2e2+. CHARACTERISTICS

A. Machine Pependence

A

C has no machine dependent features and could be implemented

on almost any machine.

———— . — - —

€ requires a runtime stack. € also converts all FLOAT
expressions to DOUBLE expressions during the evaluation of any
expression or function catl. Vvarious other autematic conversions
are performed if the programmer mixes types in expressions. In
all other respects € should <compare favorably with assembly

tanguage programse.
Co Level of the Language

C is @ medium level language. The Language has records,
arraysy typed pointers, structured control structuresy and many

operators.,

Do $ize of the tanguage and Compiler

— o e B

€ 945 a relatively small language with no complicated control

structures. The compiter should also be fairly small.



POCCNET Language Study PAGE 2-21%

E« Special System Features

€ has typed pointers, record structures, recursive f(and
therefore reentrant) functions. The SIZEOF operator would be
helpful when passing arrays or structures to assembly Llanguage
routines. € also allows the programmer to reguest (via the
REGISTER statement) that certain variables be allocated in
machine registers 1instead of main storage. There is no way to
setect specific registers, howevere

Fe Error Checking and pebugging

e aeal il Ao =B A =

Although the tanguage is fully typed, € provides automatic
type tonversion between most of the data types. This will hide a
number of errors (such as misspelling) unltess the compiler prints
warning messages when conversions are performed.

The manual does not 1indicate that any special debugging

features are availablee
6. Design Suppert
(a) modularity

C allows independent compilation of programsy and provides
communication through external variables. The language also has a

number of control structures.
(b) modifiability

€ has a primitive macro processory the HINCLUDE statement
for idnctuding source files 4¥nto & programey and the basic

structured programming control structurese.
{¢) reliabitity

C programs are very difficult to read because of the terse
syntaxe Many operators are used boeth as binary and unary
operatorsy with no vrelation between the operations being
performed (es.gey & is used to take the address of a variable and
as the logical AND function.) Spaces around operands are critical

in some situations. The statements I=~J and I = -J perfornm



POCCHWET Language Study PAGE 2-~22

completely different operations, for example.

The auvtomatic type —conversion performed by C can hide a
number of errors caused by jmproper use of variables. Finaliy,
the pointer variables in C regquire careful use. 1t is possible
to generate pointers that will cause addressing errors when used,
or to branch into the middle of the program”s dats area by using

the GOTO statement with a pointer expressiocne
He Use

€ has been implemented on the PDP-11 series, the HIS 6070,
and the IBM 360 and 370 series. The compiler is written in C
ittselfs so the itanguage could he implemented on other machines
using standard bootstrapping techniguese. € has been wused
extensively in the UNIX operating system and the software for the
UNIX timesharing system.



POCCNET Language Study PAGE 2-23

23+ CONCURRENT PASCAL

2e3.7« LANGUAGE FEATURES

CONCURRENT PASCAL [HAN75a,HAN7Sb HAN75¢l ds a high level
tanguage developed by Per Brinch Hansen at the California
Institute of Technology for use in writing operating systemse.
The language extends the PASCAL tanguage with three facilities
for concurrent programming: concurrent processesy, monitors for
providing controlled access to data structures shared by a group
of processes, and data abstractions called «classes. CONCURRENT
PASCAL has all the basic data types and control structures of
PASCAL,; although some of the data structures have not been
incltuded. In particular, CONCURRENT PASCAL does not have the
pointer or file type of sequential PASCAL.

A. Basic Data Types and QOperators

== A e e ae mh m B e m—

CONCURRENT PASCAL has four basic data types: INTEGER,y REAL,
BOOLEAN, and CHAR (single characterl. Full type checking is
performed at compile time, and no automatic conversions are
performed between the basic types. The following types of
constants are permitted in expressions: integer, real, boolean,
charactery; and string (treated as an array of characters).

The operators and the data types on which they operate are
tisted below:

arithmetic operators and functions (INTEGER and REAL operands)
~ Standard arithmetic operators for
INTEGFR or REAL operands.

- pDivision operator for REAL operandse.

bIvy HKOD ~ pivision and modulus operators for
INTEGER operands.
ABS (Kexpr>) - Absolute value of REAL or INTEGER

expression.
SUCC(<expr>) =~ Functions yielding successor and

PRED (<expr>) predecessor of the INTEGER expression.



POCENET Language Study PAGE 2-24

Conv(<expr>) - Converts INTEGER expression to REAL,
TRUNC(<expr>} - Truncates a REAL expression to INTEGER.

logical operators (BOOLEAN operands)
ANDs ORy NOT - The BOOLEAN operators yield a BOOLEAN

resutt.

relational cperators (all basic types)
=y K2y Ky >y €=, 2=
~ The two operands must have the same
type. The relational operators yield
a BOOLEAN result.

character operators
SuUcc, PRED ~ Successar and predecessor functionse.
CHR(<expr>) ~ Yields i-th character in the character
sety tvthere i is the value of <expr>.
ORD (<char>> -~ Ordinal position of the character in the

character setes

Be Control Structures

—— o w e A e e e

BEGIN <stmt—~list> END

(Compound statement.)

~ IF <boolean—expr> THEN <stmt> { ELSE <stmt> 3}

(Standard conditional with optional ELSE clause.)

- WHILE <boolean-expr> DO <stmt>
(Hhile {oope«?

~ REPEAT <stmt-Llist> UNTIL <boolean-expr>
(Until Loop. The body of the Lloop will be executed

at lLeast once.)

— CYCLE <stmt-list> END};
(Unbounded repetition of the <stmt-tist>.)

=~ FOR <var> := <expr~1> T0 <expr-2> p0 <stmt>
DOUNTO

(For Loops with implied increments of +1 and ~1.)



POCCNET Language Study PAGE 2-25

~ CASE <scalar~expr> OF

<constant~List~1> : <stmt-1>

*
L]
L] .

<constant~-{ist-k> : <stmt—-k>

END

(Case statement. The <scalar—-expr> c¢an be IRTEGER,
CHARy BOOLEAN,; or any user—defined scalar or subrange
type (scalar and subrange types wuwill be described
tater 1in Section C). The constant Lists must contain
constants of the same type as the <scalar-expr>, The
<scalar-expr> is evaluasted, and the ctonstant Lists are
scanned to find & constant ecual to the expression.
If a match 1s found then the corresponding statement
js executed; 1if no match is found then the effect of
the CASE statement is undefined.)

— WITH <vartabtle-list> DO <stmt>

(Executes <stmt> using the record variables in the
<vyariabie~Llist.> Any expression in <stmi> may refer to
subcomponents of the records without fully quatifying
the subcomponent. For example; 1f X is a record with
subcomponents Ay By and C, then
WITH X DO BEGIN
A == A + 7.0;
B8 == A <€ 10.0;
¢ 6
END
is equivalent to
Xeh 2= XoA + 1.0;
XoB = Xeh < 10.0;
X.C 2= “G7;

L1

It

— PROCEDURE {ENTRY} <proc-name>

{ (<parameter—-list>) }; <proc~body>



POCCNET Language Study PAGE 2-26

FUNCTION { ENTRY 2} <func-name>

{ (<parameter—-Li1st>) 2} : <type> ; <func-body>

(Procedure and function definitionse. Neither may be
recursive., If the ENTRY attribute is specified then
the procedure or function may be caitled by an external
PROCESS, MONITORs oF £LASS <(see Section D for a
discussion of these system types). The wuser can
request that procedure parameters bhe passed by value
or by reference, but all function paraneters are

passed by wvalue.)

-~ <func-name> { (<argument-list>) 1}
<proc-name> { (<argument—-i{ist>) %

{invoke & function or procedure.?’
Cs bData Structures

CONCURRENT PASCAL has seven constructs for creating more

complex data siructures from the basic data types:

(1) scaltar type
° The scalar type statement

TYPE <type-ident> = (<object-1>y ¢ass <object-k>) ;
defines an ordered set consisting of <object=1>y eecos
<cbject-k>. For example:

TYPE MONTH = (JAN,FEByMARyAPRsHAY JUNyJUL,AUG,

SEP,0CT+NOVsDEC) ;

The set is orderedy so the relaticnal operators =y, <>y <4
>y =y >=, the assignment operator :=, and the functions
S54C¢t, PRED, and ORD can be applied to any scalar typeo
Note: the basic types INTEGERy (HARy and BOOLEAN are

predefined scalar types.

(2) subrange types
Subrange types are subranges of scalar types, and they
also form oraered sets of objects. The statement
TYPE <type~ident> = <object~1> .. <object-m> ;
defines a subrange type. There must be a scalar type



POCCNET tanguage Study PAGE 2-27

centaining both objectsy and the first object must be less
than the second. ¥For example:

TYPE SPRING = MAR s+ MAY;

TYPE DIGIT 07 o 797;

TYPE INDEX 0 .. 100;

ALL the operators for scalar types can be applied to

i

"

subrange types.

(3) arrays

The statement

TYPE <type—id> = ARRAY [<dimension-Llist>] OF <type> ;
defines an array type. Arrays can have an arbitrary number
of dimensionsy and the <type> can be any type except a
system type. The dimensions are specified by subrange
typess. For example:

TYPE MATRIX = ARRAYL1..3, 1..31 OF REAL;

VAR VECTOR : ARRAY[C1..101 OF REAL;

VAR JOBSRUN @ ARRAYL1968..1973; JAN.eDECI OF INTEGER;
Array elements are referenced by tisting the subscripts 1in
brackets:

<ident> [<subscript-List>] .

The relational operators = and <> can be use to compare

twe arrays of the same type,y, and the assignment operator :=

can be used to copy an entire arraye.

(4} sets
The statement
TYPE <type-i1dent> = SET OF <base-type> ;
defines a type consisting of all possible subsets of the

<base-type>,y; which must be a scalar or subrange type. For

example:
TYPE DAY = (MeTsWsTH,FsSA,8); {befine scalar type}
VAR DAYSOFF = SET OF DAY; {Now use it for a setl

VAR DIGLITS : SET OF 0..9;
The following operators are available for manipulating set
types:

[ <element-List> 1 =~ Set constructor yijelding set.


http:ARRAY1o.10

FPOCCNET Language Study PAGE 2-28

The tist may be empty.

OCRs -9 AND - Set union, difference, and
intersection.

<=y >= -~ Tests on set inclusion.

IN - Membership operator yijelding

true if element is in set.

(5) record structures
A record type is declared with a statement of the form
TYPE <type-ident> = RECORD
<member-1> : <type-1>

»
L] »

<member-k> 1 <type-—-k>
END ;
Records can contain an arbitrary number of members, and
each member can be of any type except a system type. The
following operators are provided for manipulating record
types:
<record-var> . (member*name;
- Dot operator for accessing member of a record.
=y <> ~ Tests for equality (records must bhave same
typel.
~ Assignment operator for copying an entire
record.
The WITH statement discussed in Section B can be wused to

avoid qualifying each member of 2 record with the record

Name .

(6) queues
Queuesy which are used within HMONITORs to suspend and
resume processesy are declared with a statement ofithe form
TYPE <type-ident> = QUEUE ;
A queue can only hold a2 single PROCESSy but arrays of
queues c¢an be defineds The following queue functions are
available:

EMPTY(q) — Returns true 1f the gueue is emptye.



POCCNET Language Study PAGE 2-29

DELAY(Q) - Delay the currently executing process in
the queue (execution of the process is
suspended and the MONITOR is freed for
uuse by other processes).

CONTINUE{g) ~ Reactivate a stalled proeess. The
currently executing process returns from
the MONITOR. If the queue contains a
process then that process resumes
execution in the MONITOR routine that
DELAYed 1ite.

[

(7) system types

System types are defined with & statement of the form

TYPE <type—ident> = Eggg;gg { (<parameter-list>) 2

CLASS

<private-sector> <routine—-entries> <initial-stmt>
The pearameter List of a system type defines the constants
and other system types which the system type can access.
pata dectlared in the <private-section> is accessible only
within the system typey and the <routine-entries> define a
set of routines that may be called by other system types.
The <initial-stnt> specifies any initialization to be
performed when the system type is first activated.

A program 1in CONCURRENT PASCAL consists of an
arbitrary number of independent,; <concurrently executing
PROCESSes. Each PROCESS defines a data structure and a
sequential program for coperating on the data structure. A
PROCESS <can only communicate with another PROCESS by
calling a MONITOR: MONITORS are used for synchronization
and date sharing. A MONITOR also defines a@ data structure
and an arbitrary number of operations that can be performed
on the data structure by concurrent PROCESSes. A CLASS is
similar to 2 MONITOR, except that a CLASS may only be
accessed by a single PROCESS.

System types are initially activated with the INIT

statement:



POCCNET Language Study PAGE 2-30

INIT <sytem—type> { (<parameter-List>) 2} ;
The INIT statement defines the access rights (the other
system types whith can be accessed) by the system type, and

executes the initial statement of the system types

— s ma m am w W -

CONCURRENT PASCAL requires the declaration of all variables,
functions, and procedures prior to their use. The language has a
declaration of the form CONST <ident> = <expr>;
for declaring program constants. The didentifier can be wused in
any expressiony but the value of the identafier can not be
altered, CONCURRENT PASCAL does not support the pointer type,
the "variant field®™ in records, or the dynamic storage allocation
provided by sequential PASCAL. CONCURRENT PASCAL does not
provide dynamic arrays or even array dimensions as parameters,y as
in the folleowing FORTRAN segment:

SUBRQUTINE XYZ(ARRAY N.M)

INTEGER N+M+ARRAY(N,M)
Thuss it is not possible to write a CONCURRENT PASCAL progran
that manipulates ar.ays of arbitrary sizes. Finallyy the
language does not permit external functions or procedures: a
CONCURRENT PASCAY program consists of @& main program and an
arbitrary number of nested functions and procedures, and the

entire program must be compiled as a unit.

Eeo Runtime Environment

————

CONCURRENT PASCAL does not require @ runtime stack, since
recursive procedures and functions are not permitted. The
language does not require a dynamic storage allocator either,
since the pointer type and the NEW statement of sequential PASCAL
have been eliminated. However, CONCURRENT PASCAL does needs a

runtime executive for time-siicing concurrent processeses
Fo Syntax

CONCURRENT PASCAL has & BNF grammar with approximately 150

productionse.



POCCNET Language Study PAGE 2-31

2e3¢2« CHARACTERISTICS

e e e h el DL

The UNIV attribute on procedure and function parameters can
be wused to write machine dependent programs. 1In all other
respects CONCURRENT PASCAL is not machine dependent, and could be

implemented on almost any machine.

- SEAPLAY AFLE- ) &

CONCURRENT PASCAL s an efficient programming ftanguage. The
tanguage requires po runtime stack or dynamic storage allocation,
and the Language features have been carefully selected to permit
efficient implementation of the language. Sets can be represented
by bits strings; the set wuniony; intersection, and difference
operators ctan then be implemented in just a few instructions.
Scalar and subrange types are equivalently simples The
structured control structures alsao permit better code
optinizatione.

The manuat for the PDP-11/45 implementation of CONCURRENT
PASCAL containg tables indicating the execution times for many of
the operators and control structures. These tables c¢an be used by
the programmer to minimize the number of expensive constructs in
a2 program (for example, the DELAY and CONTINUE statements causing
process switching take approximately 100 times as leng to execute

2as an integer assignment operationl.
Co Level of the Language

CONCURRENT PASCAL s a high level language.
bo Size of the Lapauage and (ompiler

The CONCURREWNT PASCAL Llangusge is moderate in size. The
compiter (whteh 1is written 1in seguential PASCAL) s only 8500

statementsa.

E. Special System Features

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR



POCCNET Langquage Study PAGE 2~32

CONCURRENT PASCAL has record types, the set type (which <can
be wused as bit strings)y, and the system types PROCESS, MONITOR,
and CLASS for concurrent programming.

Another usefut feature 1s UNIV parameters in procedures and
functions. beclaring @ parameter to be UNIV suspends the normal
type checking that would be performed for the parameter, and thus
allows the programmer to access a block of core under a number of
different formats. For example, an array of characters could be
passed inte & procedure 1in which the corresponding formal
parameter was declared to be an array of 1integers. W®ithin the
procedure body the formal parameter would be treated as an array

of integers.

Fe Error Checking and Pebugoing

CONCURRENT PASCAL performs full type checking at compile
time for any program not wusing UNIV parameters. The CONST
feature permits the declaration of “Yread only" variables.
CONCURRERT PASCAL also has a hierarchical structure that forces
the programmer to specify the access rights of all system types,
and the compiler enforces these access rightse The subrange
types also allow the ifmplementation to perform runtime checks on
variables to 1insure that the wvalues are within the subrange,.
Such a feature would be very helpful In a diagnostic compiler.

The manual for CONCURRENT PASCAL does not indicate that any

special debugging tools are available.

—_— e

(a) modularity

Modularity in CONCURRENT PASCAL s faire. The tanguage has a
full set of structured control structures, and dnternatl
procedures and functions are provided. However, CONCURRENT PASCAL
does not permit external procedgures or functions. This makes it
costly to wuse existing programs (in a system tibrary, for
example), since the programs must be recompiled each time they

are useds



POCCNET Language Study PAGE 2-33

(b} modifiability

As discussed previously, CONCURRENT PASCAL has no provisions
for external procedures or functions. This would be a serious
weakness in large systems (10,000 lines), where the most trivial
medification 1in one of the programs would require the
recompilation of +the entire system. However, CONCURRENT PASCAL
does have the CONST feature for declarine preogram constants, high
tevel data structures and operators, the subrange type, and the
controt structures for structured programming. The CLASS and
MONITOR types also provide a data abstraction Facility. ALL

these features make programs easier to read and modify.
(c) reliabitity .

CONCURRENT PASCAL performs complete type checking at compile
time (including procedure and function parameters). CONCURRENT

PASCAL 15 also & high level and well structured language,y; so that

programs should be smaller and more self-documenting than
programs written in Llanguages with fewer data or control
structures. It should be considerably easier to write reliable

programs in CONCURRENT PASCAL than in a language Like FORTRAHN.
He Use .

CONCURRENT PASCAL has been implemented on the PDP-11/45.
The compiler i35 written 1in sequential PASCAL, so the Language
could easily be transported to other machinese CONCURRENT PASCAL
has been used to 1mplementi part of tﬁe SO0LO coperating system (a

single—~user operating system for the PDOP-11/45).



POCCNET Language Study PAGE 2-34

2+bhse C[S-4 Base Language

2ehele LANGUAGE FEATURES

€S~4 [INT75al 4¢ a Llarge,s geperal purpose language currently
being developed by Intermetrics for the Navye. The language s
fully typedy block structured, and offers many of the features
found in PLfI and HAL/S. CS-4 is an extensible languagey and
many of the high level features in the language are constructed
from lower level features wusing the (€S-4 data abstraction
facilitye.

Because (CS-4 49s currently under development, only the C5-4
base Language will ke examined in this report (in the remainder
of this section the C(S-4 base language will be referred to as
CS~4),

CS-4 has ten basic data types: INTEGER, REAL; FRACTION,
COMPLEXy VECTOR (vector of REALs)y MATRIX (NxM matrix of REALS),
BOOLEAN,; STATUSy SET,; and STRING (fixea and varying length ASCII
tharacter strings). The STATUS type is equivalent to the PASCAL
scalar typee Mixed mode arithmetic expressions are permitted,
but in general no automatic type conversions are performedes Five
types of Literals can appear in (S—4 expressicns: integer, real,
boolean; status, and string.

The operators for manipulating these data types =are listed

below:

arithmetic operators (INTEGER, REAL, FRACTION, and COMPLEX

operands?)
by =y ¥y [y ER
IpIVv ~ lnteger division for integer operands.
ABS - Absolute value.
SGH ~ Sdgnum functione.
SARrT ~ Square root function for real and

fraction operandse.



POCCNET tanguage Study PAGE 2-35

FLOOR, CEIL - Floor and ceiling functions for real

operands.

Egit-ﬁg - Variable precision comparison functions
REAL-LT for real operands. The relational
REAL-GT
REAL-LE operators can be used for fixed
REAL-GE o
precision comparisonse.

FRACTION~-EQ — Similar functions for fractions.

[

*
FRACTION-GE

COMPLEX-EQ - Similar functions for complex operands.
COMPLEX-NE

REALPART, IMAGPART
~ Real and imaginary part of a complex

operand.

CONJUGATE - Complex conjugate.

ANGLE - Angle in polar coordinates of a complex
operand.

MAG - Magnitude of a complex operand.

Logy exponential, and normaly 1inversesy hyperbolicy and
inverse hyperbolic trigonometric functions are available for

real operands.

boolean operators
NOTy ANDy, ORy XOR: NAND,y NOR,y EQV
~ ALL the boolean coperators yi1eld a boolean

result.

relational operators

ok Zy <y >y <=y 2T

- ALL the relationzl operators yield a
boolean result. The operands being
compared must have the same type. The
operators = and "= tan be applied to any of

the basic data typesy but <y >y <=4 »= can
only be used with INTEGER, REALy FRACTION,
or STATUS operands.



POCCNET Languace Study PAGE 2-36

status operators
PREDECESSOR, SUCCESSOR

= Successor and predecessor functionse.

string operators

FLAVOR ~ betermines string type (fixed or varyingl.

LENGTH -~ Returns length of @ fixed Length string.

CURRENT-LENGTH — Returns iength of a varying string.

MAX-LENGTH - Returns maximum Length for a varying
string.

<string-~var> (<subscript>)
—~ Pseudo operatar for accessing single
characters in a2 stringe.

SUBSTR - pPseudo-variable for accessing substringse.

¥

Concatenation.

ASCII - {onverts 2 string of characters to an array
of integers.

PAD — Pads btanks onto the end of a string.

vector operators
<vector-var> {(<subscript®>)
— Accesses elenent of a vector.
— Element—-wise addition and subtraction.

-~ Vector dot product.

CUTER — VYector outer product.

{ROSS -~ VYector cross product.

VECTOR-SIZE -~ Returns lencth of a vector.

MAG ~ Wagnitude of a vectors

UNTT -~ Unit vector.

5%%%82:5% -~ Variable precision comparison functions.

matrix operators
<matrix—var> (<subscript>,<subscript>)
— Element-wise addition and subtraction.
- Mattix dor product. The * operator can
also be used to form the dot product of

compatible matrices and vectors.,

REPRODUCIBILITY (pr
B It
ORIGINAL PAGE IS POORE‘



POCCNET Language Study PAGE 2-37

TRACE, TRANSPOSE, DETERMIMNANT, INVERSE
- Standard matrix operators.
MATRIX-SIZE - Returns Llength of first or second
dimension.

MATRIX-EQ, MATRIX-NE
-~ Variable precision comparison functions.

set operators
NOTy, AND, ORy NAND, NOR, XOR
~ Set complement, intersections union,
complemented intersection and union, and
exclusive union.
SUBSET - Determines if a set s a subset of another.
EMPTY = Determines if a set is empty.
<set-var> ({<set-member>)
—~ Returns TRUE 1f the member is contained

~

in the set,.

Bs Control Structures

———— i — -

-~ BEGIN <stmt-list> END
(Compound statement. Any data declared within the
BEGIN statement is local to the BEGIN statement.}

— 1F <boolean—expr> THEN <stmt—tist> { ELSE <stmt-laist> } FI
(Conditional statement with optional ELSE part.)

~ CASE <case—expr>
OF <constant-List> :: <stmt-~List>

-3 -
- -
[ -

0f <constant-Llist> :: <stmt-list>
{ OTHERMISE <stmt-list> }
END
(Case statement. The <case-expr> can be an INTEGERs
STRINGy, or STATUS expressions and the constant Llists
must ceontain tonstants of the same type as the

<tase—expr>ae The <case-expr> 1is evaluated, and the



POCCNET Language Study PAGE 2-38

constant Llists are scanned to find a constant equal to
the expression. If a match is found then the
corresponding statement list 15 executed; if no match

is found then the OTHERWISE clause is executed.)

~ HHILE <bootean-expr> REPEAT <stmt~List> END

(Standard while Laope.)

- FOR { <var> IS > INTEGER (RANGE: <expr> THRU <expr>}

STATUS (<status-Literal-list>)
{ WHILE <boolean-expr> } REPEAT <stmt-List> END
(For loop specifying a number of 1terations of a
statement List. Ko loop variable is required if the
loop body does not need one. If a loop wvariable 1is
specified then dits value may not be altered by the

Lcop body.)

—~ UPDATE (<shared-variable-List>) <stmt-List> END

(Update block for controlling access te shared
variables by concurrent tasks. A variable declared
with the SHARED(PROTECTED) attribute may only be
referenced in an update bleck: and a task executing an
update block will be stalled wuntil the locked
variables in the update block are no longer being
accessed 1n an UPDATE block of any other task.)

GOTO <label>

(Unconditional transfer. The <label> c¢an not be the
tabel of a statement located outside of the procedure
that contains the GOTO statementa.)

EXIT <label>

{Exits the BEGIN blocky UPDATE blocky WHILE or FOR
Loop having the specified Llabel.)

RETURN { <result-expr> 2

(Return from a procedure or function.)

<handlLer-name> : PROCEDURE ({ <parameter-List> 2})

ATTR C(HANDLES (<signal-name-—-{list>}):



POCCNET Language Study PAGE 2-39

<stmt-list>

END <handler-name>
{(peclaration of a signal handler. Signals and signal
handlers are similar to PL/I OHN-conditiens and
ON-units, respectively. A signal can be genperated by
a hardware interrupt, runtime error~checking ctode, or
2 SIGNAL statements Signals generated with the SIGNAL
statement can pass parameters to a signal handler.
Signal handlers c¢an handle an arbitrary number of

signals.?

- SIGNAL <signal-name> { (<parameter-Llist>) }
{Raises the specified sigmal. If there is an active
signal handler for the signal then it will be invoked.
The parameter List can be wused to pass additionat

information to the handler.)

~ RESIGNAL
(Can only appear in a signal handler. The RESIGNAL
statement raises the signal that caused the siagnal

handter to be invoked.?

— ABORT to <label>
(Can only appear in a signal handler. The <laghel> must
be the label of a2 statement in the block containing
the signal handler. The ABORT statement transfers
control to the tLabeled statement, thereby terminating
exectution of the handler and all dynamically
intervening procedures between the handlter and the

origin of the signal.)

~ <proc—-name> : PROCEDURE ({ <parameter—list> 1})

OPEN
{ <type> 2 ATTR (CLOSED) ;
MOPEN
<stpmt-List>
END <proc-name>
(befinition of a procedure or a function. The

<parameter-list> defines the procedure parameters and



POCCNET Language Study PAGE 240D

indicates for each parameter the method used to peass
the parameter (call by value, reference, or namel) and
whether the parameter is to be wused as an 1input,
outputsy or fnput/output parameter. Parameters can be
declared to be optional by specifying a keyword to
identify the optional parameter and a default value to
be used when the parameter is not supplied.

If the procegure 1is declared with the OPEN
attribute then the procedure body will be substituted
intine whenever it 1is invoked: no calling sequence
will be generated. A normal procedure caltl is
generated whenever & C(CLOSEd procedure 1is invoked.
Finallyy, procedures declareg as MOPEN are both OPEN
and "“mode-unresolved", that isy the type information
used in the declaration of procedure parameters and in
the body of the procedure need not be complete, When
the procedure is substituted inline at the point of
invocationy the type of the actual arguments is  used
te specify the type information for the prceocedure
body. The MWOPEN attribute provides a macro-like
capability.

Procedures and functions can not be recursive.)

Ce Data Structures

e e e i T e e ——

CS—4& has four constructs for c¢reating more compiex data

structures from the basic data types:
(a) data abstractions .

The MODE statement for defining ($-4 data abstractions
requires the user to specify the data representation for the
new mode and a set of procedures (operators) for

manipulating the data representation.

<mode-name>: MODE ({ <parameter—-list> })
ATTRC CAPABILITY( <proc-name-List> ));

<data-representation>



POCCNET Language Study PAGE ?2-41

<proc-definition>
»

<proc—definition>

END <mode-name>

The <mode~name> can then be used in type declaraticons to
define objects with the new type. The <parameter—{i1st> 1s
used to "tailor'"™ the new type to the needs of the program
referencing the type. The parameters can be constants to be
used 1n array declarations or elsewherey or types to be used
in type declarationse. For exampley we could define a new
mode catled STACK with two parameters =-- one indicating the
size of the stack, and one indicating the type of objects to
be stored in the stack. The mode STACK could then be
invoked to define a stack of integersy or reals, or boolean
data.

The data represention section defines the actual
representatton used for the objecty and the CAPABILITY
section Lists all of the procedures (operators) that can be
used to manipulate the object. The data defined in the
representation tection can only be accessed by these
procedures.

The assignment operator := and the relational operators
=y, %= ¢an be wused to copy or compare entire data

abstractions, as long as the two ocperands are compatible.
(b) arrays

Arrays are declared with a statement of the form

VARIABLE <jdent> IS ARRAY( <dimension~list>, <type> )
Arrays can have an arbitrary number of dimensions, and each
dimension is specified by a subrange of the i1ntegers or a
STATUS set. For example;

VARIABLE XYZ IS ARRAY( [0 10 7, STATUSCTAY™,"BY,"C")],

BOOLEAN)

Array elements are referenced using the subscript operator



POCCNET Language Study PAGE 2-42

<ident> {(<subscript-Llist>). The type of the subscripts nust
match the type of the corresponding dimension. For example,
XYz(3:"B") 15 a legal array reference for the array in the
previous example. As in PL/I and HAL/S, a * can be used as
a subscript to reference all of the corresponding dimension.

The assiagnment operator and the relational operators =,

= can be used to copy or compare compatible arrays.

{c) structures

1

CS5~4 structures are delared with the statement

VARIABLE <ident> IS STRUCTURE (<member—~list>)}
The identifiers used to define the members need not be
distinct from identaifiers used elsewhere in the program.
The dot operator 1s used to access members in a structure:
<structure-var> . <memberpr> « The assignment operator and
the relational operators =, “= can be wused to copy or

compare compatible structures.

(d} unions

The declaration of wunion variables 1s simitlar to the
declaration of structured variables:
VARIABLE <ident> 1S UNIONC <member-tist> >

The <member-list> defines the set of possible types that the
union variable can represents. A union variasble has a “field
tag" dindicating which member of the <member-list> is
currently being storedy and the value for that member. The
field tag of a union variable can be read using the buiit-in
function TAG, which returns a STATUS titeral indicating the
name of the member. The value of a union variable can be
accessed using the $ operator and the current field tag:

<unjon-var> $ <field-tag> . For example;

{befine U as a union of integers stringy and boolean.}
VARIABLE U 15 UNION (I IS INTEGER(RANGE: 1T THRU 103,
STR IS STRING(ZO,"VARYING™),
B 1S ARRAY(O THRU 3, BOOLEAN))



POCCNET lLanguage Study PAGE 2-43

ESTR: “A B 7] {Initial value for U.}
{At this point we have TAGI(U) = “STR" >
{and USSTR = “A B €7 . )

*
-

CASE TAG(U)
OF "“I" :: US$I = U3I+1
OF "STRY™ ¢z US$SSTR = 727
OF "B"™ :: U$B(3) == FALSE
END

The relational operators =y "= can be used to compare two
union variables, and the assignment operator can be used to
change the value of 2 union variable. However, the only way
to change the field tag of a union variable 1s to assign it
another union variable that already has desired field tage

This seriously restricts the usefulness of the UNION type.

be Other Features —~

e W e e i Sy o

ts-4 1is a block structured and fully typed Llanguage.
Complete type checking (including procedure parameters) s
performed a2t compile time. The Llanguage altso has a CONSTANT
attribute for declaring program constants.

CS—-4 has an operating system interface that provides I/0 and
process management capabilities. The I/0 system dncludes a
bierarchical file systemy, file protectiony and sequential,y direct
accessy and indexed seguential fites. The process management
system provides features for scheduling processes, terminating
processes, and communicating between processes. No additionatl
language statements are required to support the operating system
tnterface: the (S-4 WKODE declaration 1is wused *to define data

abstractions for files and processes.

F« Rupiime Envirooment

LR L N Y LY ST P LR

CS~4 needs routines for process managementy interprocess

communicationy I/0y and interrupt handlinges A runtime siack or



POCCNET Language Study PAGE 2-44

d¥nanic storage area will also be reguired to support the string

concatenation pperator '!.

The BNF grammar for the (S—-4 base language has approximately
500 productions.

Z2eho2e CHARACTERISTICS

———— v e Al e D

The language has several machine dependent features,
including user specified allocation of data 1{tems, Jnline
assembly language codes and user control over calling sequences.
Howevery atll of the machine dependent features have been
carefully isolated. Inline assembly languagesy for exampley is

restricted to a special class of procedures called WPROCEDURES,

B. Effaciency

A B A

CS~4 should be moderately efficient. It has many high-level
operators and a structured control structuresy so a great deal of
optimization can be performed.s The user can alsc reouest that
procedures be expanded inline, so that there will be very Little

overhead in the use of data abstractions.
C. Level of the Language
€CS~-4 is a high level language.

De Size of the Language and Compiler

P e -1

The {S-4 base lLanguage 1s large and witl reqguire a Llarge
compilere The Tfull ¢S-4 language will require a very large
compiler.

E. Special System Features

L T g

The language has a large number of specizl system features.

The MPROCEDURE statement permits the user to declare structures



POCCNET Language S$Study PAGE 2-45

that include information about the allocation of the structure
members (bit or byte position within a wordy and storage
alignment). The MSTRUCTURE can also speci1fy the absolute storage
Location at which the structure is toc be allocated,

The MPROCEDURE statement provides the capability of writing
procedures which contain assenbly lanauage code. User c¢ontrol
over calling sequences 1is provided by the EPROCEDURE {(external
procedure) declarationy, which permits the user to specify which
registers will be modified by the called procedure and how
parameters should be passed.

£5—4 also has the data abstraction faeility. When combined
with the WSTRUCTURE statement, data abstractions can be created
for bit strings and pointerss. The Llanguage alsoc has recordsy
arrayss character stringssy si1gnal handlers for processing
exceptional conditions, the UPDATE block for controlling access
to shared data, and the operating system dnterface (uhich

inctudes 1/0 Tacilities and real-time process schedulingl).

Fe Error Checking and Debugaing

(s-4 performs complete type checking at compile time
{including procedure parameters)y and provides no default
declarations or auteomatic type conversion. This will allow many
program errors to be detected during compilation.

Runtime checks are performed for many conditions (such as
array subscript errorsy CASE statementsy and division by zero)d
uniess the programmer wuses compiler directives to disable the
checkingsa The signal handlers also provide the user a means of
intercepnting runtime errorse.

The tanguage manual does not indicate that any special

debugging tools are available.,
Ge Design Support
{a) modultarity

€s5~-4 is a modulary, block structured lLanguage. The Llanguage

has a structured control structure, the MODE declaration fer



POCCNET Language Study PAGE 2-46

defining abstract data typessy procedures can be separately
compiled, and BEGIN blocks can be used to declare local data.

(b} modifiability

{S-4 programs should be easy to modifye. The tanguage is
well structuredy with a large number of data types, and a data
abstraction facilyty. Status variables can be wused +to 1improve

the readability of programs.

(c? reliability .

The language has a number of features that would sid in the
writing of reliable programs. It'is well structured, many data
types are providedy full type checking is performed, declaration
of wvariables 1is mandatory, no automatic type conversion is
performed (other than mixed-mode arithmetic)y and there are only

five compiler-supplied defaults for the entire base language.
He Use

C5-4 is currently under development and has not been wused

for any major programming projects.



POCCNET Language Study PAGE 2-47
2.5, FLECS

2e5+1s LANGUAGE FEATURES

FLECS [BEY75a,BEY?5bl is =& preprocessor for Fortran
developed by T. Beyer at the University of Oregon. FLECS supports
all features of ANSI standard Fortran IV, and provides a large
number of structured programming constructs. NoO special
tharacters (ecge $y ¥%) are wused to delimit the structured
programming constructss In the remainder of this section, the
FLECS language 1is <considered to be Fortran IV augmented by the
FLECS preprocessor.

A Bagic Data Type

—_—

and Uperators

FLECS supports the five basic data types of Fortran 1IV-:
INTEGERy REALs DOUBLE PRECISION, COMPLEX, and LOGICAL. The
language permits mixed-mode expressions and will automatically
convert between dintegery real, and double precision numberse.
Constants used in expressions can have the following types:
integery real; double precisicn, complex, togical, and character
stringse.

The eoperators and the data types on which they operate are
Listed belowu:

arithmetic operators C(INTEGERy REAL, and DOUBLE
PRECISION operands)

+y =y kg [y ok

logical operators {LOGICAL operands)
.NOT', OAND-' IOR-

relational operators
eEQey oNE ALl types.
eLTey eLEecy «GToy oGEw INTEGERy REAL, or DOUBLE
PRECISION operands only.

Bs Control Structures

el Al s g SR AL s e i A e e



POCCNET Language Study PAGE 2-48

Note: In all the foitowing control structures the symbol

<body> may be replaced by <stmt> or <stmt=1> sse <stmt-k>

FINe For example:

WHEN (I .LT. MAXVAL) CALL PROCESST(I,J)
ELSE CALL BADVAL(I)

I = MAXVAL

RETURN

FIN

1f (<{ogical—expr>) <body>
(Simple if statement.)

WHEN (<logical-expr>)
<body>

ELSE
<body>

(Compound if statemente)

UNLESS (<logical~expr>) <body>
(Equivalent to IF (,NOT. <Logical-expr>) <body>; the

<body> 1is executed if the <logical-expr> is false.

WHILE (<togicat—expr>) <body>

UNTIL

(¢hile and until loops with test performed before
executian of the <body>.)

REPEAT WHILE (<logical-expr>) <body>
UNTIL

(While and until loops with tests performed after
execution of the <body>. The <body> witl therefore be

executed at least once.)

CONDITIONAL
(<togical-expr>) <body>

(<logical-expr>) <body>
{ (OTHERWISE) <body> 2

FIN REPRODUCIBILITY OF THE

ORIGINAL PAGE 1S POOR



POCCHNET Language Study PAGE 2-50

the simple, ASSIGNed, and computed G60T0, and FUNCTIONS and
SUBROUTINES. The section in this chapter concerning

Interdata fFortran V gives a detailed description of these

constructs.

., bData Structures

e = L ———

FLECS has only one feature fTor building more complex data
types: arrays of up te 7 dimensions. The declaration
DIMENSION <ident> (<dimension~List>)
declares <ident> to be an arraye. Elements of an array are
accessed using standard subscript notation <jdent>
(<subscript-List>).

—— —— — e e ——

FLECS is essentially & Fortran language with some additional
constructs for structured programming. The language has no block
structure or recursione FLECS provides statement functions,
EQUIVALENCEs COMMON, and DATA statementsy; and the Fortran I/0
statements. Comments are denoted by a *¢€" 1in the first column
of the input carde FLECS also produces a "prettyprinted™ output
lListing - statements are automatically indented to show program
structure.

E+ Runtime Environment

—— . SR T M A e A M e —

FLECS has no dynemic storage allocation or recursion, s¢ no
stack or heap 15 needed. Except for I/0 and type conversion
routinesy FLECS should run on a bare machinee.

F« Syptax

Fortran IV {(and therefore FLECS) has a BNF grammary; but a
comptler would probably not use it. Fortran compilers tend to use
ad hoc compiling techniques.

2+5.2« CHARACTERISTICS



POCCHNET Language Study PAGE 2~49

(LISP-Like conditional statement. The
<togical-expr>”s are evaluated sequentially until some
expression evaluates to «TRUE.; and the corresponding
<body> is5 then executed. The <body> of the optional
OTHERWISE clause 1is executed only if all preceding
<iogical-expr> evaluated to «FALSE.

~ SELECT {<select-expr>)
{(<expr>} <body>

-
L ]
.

(<expr>) <body>

{
FIN

(OTHERWISE) <body> }

(Case statemente. The <select—expr> is compared
sequentially with the <expr>“s 1in the body of the
SELECT statement. The first <body> whose <expr>»
matches the <select-expr> is executed,y, and all
remaining bodies are skipped over. The <body> of the
OTHERWISE clause 1is executed only 1if no preceding

<expr> matched the <select-expr>.)}

- b0 (Kyariable> = <expr-1>; <expr-2> {y, <expr-3>2}) <body>

(For lLeoop with optional increment.)

- T0 <internal-subroutine-name> <body>

(A parameterless, internal subroutine. The subroutine
name c¢an contain any number of letters,y digits, or
hyphenss as long as 1t begins with & letter, and
centain’s at least one hyphen. For example:
INITIATE-VEHICLE-TRACKING )

<inteprnal-subroutine-name> (catll of an internal

subroutine. Note that no parameters can be passed to

the subroutine.)

FLECS also supports the c¢ontrol structures of standard

Fortran: the logical and arithmetic IFy the DD statementy



FOCCNET Language Study PAGE 2-51

—— e e —

ANSI standard Fortran IV {(and therefore FLELS) dis fairly
machine independents Fortran programs can usually be transported
to different machines with onty minor modifications (e.g.
different 1I/0 unit numbers).

Be Efficiency

- ———_— - —_—

Fortran 1V formatted 1/0 must be performed interpretively
and is therefore guite slows In all other respects Feortran IV
and FLECS are efficent progremming langueagess. We note, howevery
that the additional structuring of FLECS programs that would be
very helpful to a code optimizer is not availtable to the Fortran
compiler; alt the structured statements are converted to IF and

GOTOD statements before reaching the compiler.

. Level

— S

. Size of Lapnguage and Compiler

Because of the EQUIVALENCE statementy the unstructured
nature of Fortran programs (optimization js difficutt), and the

preprocessor passy FLECS will require a fairly large compiler.

E. Special System features

Fo Error Checking and Debugging

Fortran compilers have traditionally had very poor compile
and runtime diagnosticss so FLECS diagnostics will probably be
poor. The preprocessor phase of FLECS does print error messages

vhen iilegal FLECS statements are detected,

G. bPesicn Support

(a) modularity

FLECS supports independent compilation of subroutines and



POCCNET Language Study PAGE 2-52

functionsy and communication through COMMON blocks.
(b} modifiability

FLECS has a Llarge number of structured programming
constructse. Howevery the language has no macroprocessorsy no
feature Like the PASCAL constant statement for declaring progranm
constants, no signhificant features for constructing complex data

structures, and no “include®™ statement for copying source files.

(g} reliability

The structured programming constructs make FLECS a great
tmprovement over Foritran IV. However, FLECS has no charscter or
string operators and data typesy and does not have sufficient
data structuring capabilities. The Llack of these features
requires FLECS programs to simulate any character processing,
List processingy or record processing with Fortran code. FLECS
preograms will therefore tend to be Longer than necessary and more
difficult to understand.

H» Use

The FLECS preprocessor 1is written in Fortran and could be
implemented on almost any machine. FLECS is available on the CDC
6000y 7000: and Cyber seriesy the IBM 360 and 370 seriesy, the PDP
&y 10y and 11y and the UNIVAC 1100 series. The source code for

FLECS is available from its author (T. Bever) at a nominal cost.



POCCNET Language Study PAGE 2-53

2.6+ HAL/S

2e6+47+ LANGUAGE FEATURES

HAL/S [INT75b,sMAR74] 3s a high-level aerospace language
developed by Intermeirics for the Spsce Shuttle programe
Although the language is a dialect of PL/I, several of the more
sertous weaknesses in the PL/I language have been elimingted {for
example, HAL/S pointers are futly typed, procedure parameters are
checked for wvalid typesy and the programmer must specify which
parameters will be assigned values by the procedure body).
Extensive subscripting capabilities, matrix and vector operators,
and control structures for real-time <control and concurrent

processes are also providede.
A. Basic Data Types and QOperators

—— i A — —— —

HAL/S has eight basic data types:

INTEGER

SCALAR ~ floa*ing point numbers

VECTOR — 1xN vector of SCALAR objects

MATRIX - NxN matrix of SCALAR objects

BIT ~ bit string

CHARACTER - wvariable length character string

BOOLEAN

EVENT = binary semaphores for process control. An

event may be latched or wuntatched; a Llatched
event holds 1ts wvalue of TRUE of FALSE until
set or resety an unlatched event remains FALSE
untit signaledy whereupon it momentarily
toggles te truey and then reverts back to
FALSE. Process scheduling s invoked any time

that an event is set, reset, or signaled.

Some impticit conversion 1s performed between these basic
data typessy and & set of conversion functions is provided:
the funetions INTEGERs SCALAR, VECTOR MATRIX BIT,



POCCNET Language Study PAGE 2-54

CHARACTER, SINGLE, and DOUBLE provide conversion between the
data types and possible precisions.

The operators and the data types on which they operate
are Listed below:

arithmetic operators (INTEGER,; SCALAR,
and MATRIX operands)

y =y [/

blank ~ multiplication
* -~ cross product
. - dot product

Note: some ctombinations of the operand types

are not permitted.

bit operators (BIT and EVENT operands)
ANDy ORs NOT
CAT - concatenation
SUBBIT {bit-expr) - pseudo-variable for inserting

i T0 3
or extracting bits.

character operators (CHARACTER operands)
CaT - concatenation
char—-expr ~ substring insertion or extraction
T TO j
boolean operators (BOOLEAN operands)
ANDy ORy NOT

relational operators {(all types)

=’ =
<3>3<=4>= - only for INTEGERs SCALAR, or CHARACTER

operands

- IF <expr?> THEN <basic-stmt> ELSE <stmt>;
(Standard conditional, but basic-stmt may not be an
IF statements)

~ DO; <stpt-List> END ;



POCCNET Language Study PAGE 2-55

{Compound statement.)
DO WHILE <expr>; <stmt-List> END ;
UNTIL

(Standard while and repeat ltoops.)

b0 CASE <arith—expr>; { ELSE <stmt>; )
<stmt-1>; +us <stmt-k>; END ;

(Simple case statement.)

PO FOR <var> = <expr-{ist> { IL

WHILE <expr> J;
UNTIL
<stmt-list> END ;
(For—toop with List of values to be assigned to

<var>.)

pO FOR <var> = <expr> TO <expr>

{ BY <expr> 3} { WHILE <expr> } ;
UNTIL
<stmt-List> END ;
(Standard for—~loop with optional WHILE or UNTIL

clausese)

EXIT <label>;
(Exit the DO group specified by the tabel.)

REPEAT <tabel>;
(Continues next iteration of the specified DO group.)}

1

GOTO <label>;
{(Branch to labeit in ecurrent namescope - can not

be used to branch out of a procedure body.)

RETURN { <expr> X;

{Return from & procedure or function.)

CALL <identifirer> { (<expr-List>) 2
{ ASSIGN (<variable-Llist>) 2};
(Call statement for a procedure - onity those variables

in the ASSIGN Llist may be altered by the procedure.)

<proc-name>: PROCEDURE { (<ident-list>) 2

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POCR



POCCNET Language Study PAGE 2~56

{ ASSIGN (<ident-Llist>) 2

{ EXCLUSIVE ¥
REENTRANT

s

<procedure-body> CLOSE <proc-name> ;
(Procedure definition specifying dnput arguments,
output arguments (the ASSIGN List). If the EXCLUSIVE
attribute 1s specified then any concurrent task
attempting to execute the procedure will be blocked as

Long as any other task i1s executing it.)

~ <function~name>: FUNCTION { (<ident-List>) 3}

<type> { EXCLUSIVE 2} ;
REENTRANT

<function body> CLOSE <fuynction name> ;
(Standard function definitiony but fTunction body wmay
not cause stde effects by altering the dinput
parameters (there is no ASSIGN tist). )

. AT <expr2
~ SCHEDPULE <ident> { IN <expr> b2
ON <event expr>
PRIORITY (<expr>) { DEPENDENT 2

{ s+ REPEAT AFTER <expr> }
EVERY

€ UNTIL <event &XBR3 3 ;
UNTIL <expr>
{Scheduling statement for concurrent tasks. A task
may be scheduled immediately, AT a specific timey IN a
certain pnumber of clock ticks, or ON the value of an
event. The PRIORITY is used in scheduling rescdy tasks.
If the DEPENDENT attribute is used then the scheduled
task will be terminated if the scheduling task does.
The scheduling task can be REPEATed AFTER a specified
timesy or EVERY <expr> clock tickse Finally, a WHILE
or UNTIL citause may be attached +to control this

rescheduling.)

- CANCEL <ident-list> ;
(Stop rescheduling of all the tasks in the Llist,

but allow any currently executing tasks to finish.?



POCCNET Language Study PAGE 257

- TERMINATE <ident-~list> ;
(Stop rescheduling of atl tasks in the list, and
terminate any tasks that are currently executinge.)
expr> :
arith-expr> ;

< P
PENDENT ;
<event—-expr>

<arith
- WAIT UNTIL

FOR DE
(Stalis the current process for a certain number of
clock ticksy UNTIL a specific timey, wuntal alt
DEPENDENTs have terminatedy, or until some event

DCCUrSe)

=~ UPDATE PRIORITY <ident> TO0 <arith expr> ;
(Changes priority of a previously scheduled task.)

— SIGNAL <event var> ;
RESET <event var> ;
SET <event var> ;
(Used to alter event variables and thereby schedule or
control taskse SIGNAL is used for wunlatched events;
when an event is SIGNALed all tasks WAITing on that
event are placed in the ready state. SET and RESET
are wused for Llatched events. SET forces an event to
the TRUE state and frees any tasks waiting for the
TRUE wvalue of the eventy RESET forces the value back
to FALSE and frees any tasks waiting for the FALSE

valued)

— UPDATE; <stmt-~bList> CLOSE;

(Update block far controtling access to shared
variables by concurrent tasks. A variable declared
with the LOCK attribute (LOCK (<lock number>} )} may
only be referenced 4in an wupdate block, and a task
executing an update block will be stalled wuntit the
focked wvariables 1in the wupdate block are no longer
being accessed in an UPDPATE block of any other task.)

-~ ON ERROR € <error group> : <error number> 3}
<error group>



POCCNET Language Study PAGE 2-58

SIGNAL
E } {AND SET <event var> } ;

{s
I RESET

ON ERROR { <error group> : <error number> } <stmt> ;
<error group>

OFF ERROR { <error group> : <error number> 3} ;
<error group>
(Similar to PL/I on—-conditionse. Each implementation
will @assign error groups and error numbers to the
standard system errors {(such as division by zeros
1llegal instruction); the wuser may use unassiagned
error groups and numbers for user defined conditions.
The ON and OFF statements obey the HAL/S namescoping
rulesy so azny modifications to the condition handling
environment by an ON or OFF statement is removed on

¢exit from the enclosing block.

— SEND ERROR <error dgroup> : <error number> ;
(Simulates an occurrence of the specified error

numbere)

Cs Pata Structures

Al Aamm St oS am o

HAL/S has three constructs for creating more comnplex data

structures from the basic data types:

(1) structures
The statement

STRUCTURE <template-name> { DENSE » { RIGID ¥ =
ALTIGHNED

<tevel number> <ident> <attribute>;

<level number®> <ident> <atiribute> ;
declares <template-name> to be @ structure template
This template can be used in declaring a structured
variable: PECLARE <ident> <template name>
{ (<arith expr>) J.
A structured variable can be dimensioned, and the



POCCNET Language Study PAGE 2-59

components of a structure are referenced by the dot
ocperator: <jident> .« <component>
The assignment operator and the relational operators

=y "= can be used to copy or compare compatible

structures.

arrays

& declaration of the form
DPECLARE <ident> ARRAY {(<dimension [ist>)

<type specification> ;
declares <ident> to be an array of the specified type.
Array elements, rows, or subarrays are accessed using

the subscript operator <ident> . .
<subscript List>,

where a single subscript can be any of the following:
<#{-of—elements> AT <start-pos>

(Selects 2 range of elements starting

at the specified position.)
<arith-expr> 70 <arith-expr>

{Selects a range of elements.)
<arith-expr>

(Selects a single elements)

. (Selects all elements in the
corresponding dimensions)
The gssignment operator and the relational operators
=, "= ¢an be used to copy or compare compatible

arrayse

(3) pointer variables

HAL/S has fully typed pointer variables declared by
statements of the form:

DECLARE <ident> NAME <type specification> ;
When a pointer of type X is used in an expression or
cn the Lleft hand side of an assignment statement an
automatic dereferencing takes place. For exampley if P

points to & variable of type INTEGER then the



POCCNEY bLanguage Study PAGE 2-60

statement P = P+1; will increment the integer variable
(the value of the pointer P is not attered).

A pseudo variable NAME dJs wused to take the
address of an object or to assiagn a value to a pointer
variables

NAME(<pointer wvar>)
NAHME(<pointer var>)

|

NAME(<non—pointer var>);

il

NAME{(<pointer wvar>)

In the first case the pointer variable is assigned the
address of the non—-pointer variabley in the second
case the pointer variable is simply assigned the value
of the pointer variable on the right hand side. Note
that this implies that & pointer may not point to
another pointer.,

Pointer wvariables may be compared with the
relational operators = and  =. Finally, if a3 pointer
points to a structure then the dot operator may be
used to access the components of the structure, and if
a pornter points to a dimensioned obhject (ARRAY,

MATRIXy or VECTOR) then subscripting may be applied.

HAL/S 1s block structured Llanguage with reserved words, and
comments in /* *f/ pairs. A simple reptacement and a parameterized
macro facility is provided by the REPLACE statement. The language
also provides ™"inline functions"; function bodies as part of

expressions. For example,

STRUCTURE X: /% befine a record */
1 A SCALAR; - /+ structure X. */
1 B INTEGER, .
1 € NAME X—=STRUCTURE; /* Now use it to */
DECLARE XSTRUC X-STRUCTURE; /% declare XSTRUC. %/

XSTRUC = FUNCTION X-STRUCTURE; /* Initialize XSTRUC */
PECLARE Y X~STRUCTURE; /#* using an inline * f
YA = 0; /* function that */
YeB = 0.0 I* returns an object =/
WAMECY.C) = NULL; I* of type *f



POCCNET Language Study PAGE 2-61

RETURN Y; I* X-STRUCTURE. */
CLOSE;
The inline function 1s most powerful when combined with the macro
facility (for example, the idnline function 1in the previous
example could be declared to be a macro called INIT. A statement
of the form XSTRUC = INIT; would +then 1initialize the wvariable
XSTRUC.)
The language has a data declaration facility called COMPOOL
that is somewhat similar to the Fortran COMMON statement:
<label>: CcOMPOOL { RIGID 2;
<data declarations>
CLOSE <label>;
COMPOOL blocks can be compiled independently from other programs,
and the declarations in the COMPOOL btltock can then be dncluded
inte a program by invoking the name of the COMPOOL plock. The
RIGID attribute forces allocation of the data in the order
specified within the COMPOOL block.
HAL/S alse provides for initialization of wvariables 1in
DECLARE statementsy and a CONSTANT attribute for declaring

program c¢onstants. The tanguage does not allow dynamic arrays,

-, -

matricesy or vectorsy but “*7 bounds (as in PL/I) are al{lowed for
formal parameters. Finallysy HAL/S produces a standara output
tisting for all programs (programs are “"prettyprinted® to show
statement nestings and subscripts or superscripts are printed on

separate bLines).

£+ Runtime Environment

HAL/S regquires & run—time stack, 170 routines, and
scheduling routines for activating; suspending, and synchronizing

taskss
Fe SYntax

The BNF grammar for HAL/S has approximately 450

productions.

2ebade CHARACTERISTICS



POCCNET Language Study PAGE 2-~62

A. Machine Depepndence

Except for the SUBBIT operator for extracting bits from an
objects HAL/S is not machine dependent.

B Efficiency

HAL/S is an efficient Languaée. The language does not
provide dynami¢ allocation of structures (as the PLFI ALLOCATE
statement) or dynamic arrays, forbids branching out of procedure
bedies, and has no BEGIN blocks. The high level operators and
statements (matrix multiply, the UPDATE block, the SCHEDULE
statement) should provide room for a great deal of optimization.

In & test performed by Intermetrics as part of the HAL/S
acceptance tests [MAR75], the HAL/S compiler for the IBM 360
series generated code that was faster and required less core than
IBM fortran H (OPT=2). The benchmark included numerical analysis

programs and bit and character processing programs.
C. tevel of the Lancuage

HAL/S is a high level language.
Do S1ze of Language and Compiler

HAL/S ¥s a large Llangusage (comparable in size to PL/I), and

the compiler is written in XPL. The compiter is probably large.

E. Speciagl System Features

HAL/S has many features that would be wuseful 1in systems
programming. The Llanguage allows DO-loop wvariables to be
declared as TEMPORARY varjiables within the loop bodye. Variables
dectared to be TEMPORARY will be allocated in the fastest storage
locations available.

example. DO FOR TEMPORARY INTEGER I = 1,100;

L ]

END;
A variable declared to be a TEMPORARY loop variable <can not be



POCCNET Language Study PAGE 2-63

accessed outside the Lloop body.

To atlow for special extensions (possibiy machine dependent)
to HAL/S, a type of procedure or function catled the X-matro was
added to the Language. 4-macros may be implemented by inline
substitution of the procedure body or by standard procedure cattl.
As an exampley the Z-macro ZHAMECOPY(A,B) will assion the pointer
variable B to the pointer wvariable A without regquiring type
checking (thereby allowing any structure to be overlayed on any
other structurel.

HAL/S atso has the RIGID attribute for COMPOOL or
STRUCTUREs, the STRUCTURE and NAME typesy the SUBBIT operator,
the exception handiing statements (ON, OFF; SEND ERROR),; the
UPBPATE block Tfor shared varijables, and the extensive real-time
processing statements (SCHEDULE, WAIT, CANCEL, TERMINATE). All

of these features would be very helpful in systems programming.

F« Error Checking and Debugaing

e A S e

HAL/S is fully typeds so many compile time c¢hecks <can be
performeds The ON and OFF ERROR statements would be useful 1in
monitoring runtime errorse.

The lLanguage manual does not indicate +that any special

debugging aids are available.
G. Design Support
{(2) modularity

HAL/S 1is quite modular. The COMPOOL block would be wvery
useful in insuring that separately compiled programs use the same
data structures. The LOCK and ACCESS attributes for progran
variables permit controlled sharing of program variables.
Finallyy HAL/S programsy procedures, functions, or COMPOOL blocks
can be compiled indepencgently {(the first three generating object
modules; the fourth generating an entry in the library of COWMPOOL

blocks for the installation).

(b) modifiability



POCCNET Language Study PAGE 2-64

The language has a number of features that woutd make HAL/S
programs easy to modifye. The REPLACE statement provides simple
and parameterized macro replacementy, the CONSTANT attribute can
be wused to declare program constants,y, and the COMPOOL feature
allows a programmer to make minor changes to a data structure
used by all programs 1n a project simply by changing 2 single
CoMPOOL blocke Finatllys the high level operators and structured
preogramming constructs would also make program modification

easier.
(c) reliability

According to its implementors, HAL/S was designed to improve
software reliability. The language allows full type checking to
be performed at compile timey and provides many structured
programming constructs. The LOCK attribute 1in conjunction with
the UPDATE block permits reliable data sharing, and the SCHEDULEs
WAIT, CANCEL and TERMINATE statements provide high level features
for real-time processinge. The formatted output listings would

also enhance retiability.
He Use

HAL/S has been implemented on the IBHM 360 seriesy the Data
General NOVA, and the Shuttle flight computer (IBM AP-101). The
compiler is written in XPL, so it shouldn”™t be terribly difficult
to transport HAL/S to other machiness. The language was designed
and implemented by Intermetricsy and has been used extensively by

NASA in the Space Shuttle program.



POCCNET Language Study PAGE 2-65
el INTERDATA FORTRAN V
2e7+¢1e LANGUAGE FEATURES

INTERDATA FORTRAN v CINTE74a,INTET4b,INTET4c] is an
extension of ANSI Standard Fortran, the major extensions being
the ADDRESS (pointer) type and the ENCODE and DECODE statements
for memory to memory date transfers under format control. The
Fortran Llanguage; which was originatly designed 4in the late
19507s, was the first algorithmic language to achieve widespread
acceptancee. The Language has been used extensively for
scirentific programming, but the limited number of data types and
control structures has hindered the  wuse of Fortran for
system-oriented problems. Tuo Fortran preprocessors (FLECS and
PREST4) which allow the programmer to use structures programming

control structures have also been included in this reporta.

A- Basic Data Types apd Operators

_— I e e - —_— e e o LD

FORTRAN V supports the five basic data types of ANSI Fortran
(INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGICAL) as well
as the pointer type ADDRESS. The language has no character or
string data typey so alphanumeric data must be packed into
INTEGER wvariables, Fortran Vv allows mixed mode expressions and
will automatically convert between INTEGER, REAL, and DOUBLE
PRECISION values. Character and address constants can be used in
INTEGER expressionse

FORTRAN V allows the following types of constants to be used
in expressions: integery floating’ pointy double precision
floating pointy complexy Llogicaly data or statement addresses,
charactery and hexadecimal. The operators and the data types on

whrch they operate are listed below:

arythmetic operators (INTEGER, REAL, DOUBLE PRECISION,
COMPLEXy and ADDRESS operands)
+y =y *y [y xx -~ Standard arithmetic operators. ADDRESS

type can only be used in INTEGER



POCCNET Language Study PAGE 2-66

expressionse FORTRAN V also has a
extensive library of mathematical

functions.

relational operators

vEQey oeNEoy oLTey o6Tey «LEey +GEs

logical operators (LOGICAL operands only)
.NOTO, UAND.’ OOR.

pointer operators and functions

A"<name>” - Yields the address of the object
<name>, where <name> can be & simple
variable namey array, array element,
or & statement label.

IVAL(<address expr>)

FVAL(<address—expr>)

PVAL(<address—expr>)

- Functions for obtaining the INTEGER,

REALs or DOUBLE PRECISION value
pointed to by the address expressione.
It is the user”s responsibility to
insure that the address expression is
pointing to meaningful data. Note:
there is no way to alter the value
of the object pointed to by the address

expressions.

—— e - -0 . S R

- IF (Klogical-expr>) <stmt>
(Simple conditional statement with no provision for
an ELSE part.) ~

~ IF (Karith-expr>) <label-1> , <label-2> 4 <label-3>
(Three~way arithmetic if statement. A transfer s
made to Llabel-1, Label—-2y or label~3 depending on
whether the arithmetic expression is negativey; zeroy

or positives.)



POCCNET Language Study PAGE 2-67

-~ b0 <stmt—-no> <var> = <var-1>, <var-2>,; <var-3>
<stmt-Llist>
<stmt-no> CONTINUE
(For Loop. The variables var—-1, var-2, var-3 must be
INTEGER variables, and their values must be greater
than 0.2

- 6070 <stmt-no>
60T0 <assign-var>
GOTO (<stmt-no~1>y seey <stmt-no-k>), <var>
(Unconditional, ASSIGNED, and computed goto
statements.)

- <type> FUNCTION <func—-name> (<paremeter—List>)
<stmt-{i1st>
END

SUBROUTINE <subr—name> { (<parameter-iist>) 2}
<stmt-Llist>

END
(Standard function and subroutine definition.
Neither can be recursive. Both funetions and

subroutines can have nultiple entry points.)

-~ RETURN

- {Return from a2 function or subroutine.)

— CALL <subr-name> { (<Largument-Llist>) 2
<func~name> (<argument—list>)

(Invoke a subroutine or function.)

Ce Data Structures

Pl . . < N~ S

FORTRAN V has only one feature for building more complex
data types: arrays of up to three dimensions. The declaration
<type> <ident> (<dimension-tist>)
declares <ident> to be an array of the specified type. The type
can be any of the basic types, and array elements are extracted

using the subscript notation <ident> (<subscript-List>) .



POCCNET Language Study PAGE 2-68

D. Other Features

INTERDATA FORTRAN V has an extensive Ltibrary of built-in

functions and subroutines including

BCLR - Bit ctlear,
BCMPL <~ Bit complement.
BSET -~ Bit sete.

BTEST -~ Bit test.

ICBYTE - Byte clear.

ILBYTE = Byte Lload.

INBYTE - Byte complement.

ISBYTE - Byte store.

IAND —~ Bitwise AND, ORy exclusive ORs complement,
I0R and shifte.

IEOR

NOT

ISHFT

FORTRAN V does not reguire that scalar variables be
declared. £ varijable that is not explicitly declared is assumed
to be INTEGER or REAL, the <choice depending on the Tfirst
character in the variable name.

FORTRAN V has formattea and wunformatted sequeniial and
direct access I/0 facitities. In addition, the ENCODE and DECODE
statements provide @ means of transferring data for one memory
buffer to anothery, the data being translated according to format
control. The ENCODE and DECODE statements c¢an be used for
converting between character data and the six basic types.

Finally, FORTRAN V has a conditiaonal compilation feature.
Any statements with an X 1n card column 1 will be treated as
comnents unless the compiler debug option is ony, in which <case
they are compiled as ordinary statementss The conditional
compilation feature is very helpful for 4dnserting debugging

statements into a program.

E. Runtime Environment

- RN LI g A

FORTRAN V requires no runtime stack or dynamic storage



POCCNET Language Study PAGE 2-¢9

allocator. Howevery, the language does have fairly complex 1/0
facilitiesy, so FORTRAN will require 2 number of I/0 routines.
Stilly the runtime environment for FORTRAN will be considerably
simpler than the runtime environment for HAL/S, SPL, or JOVIAL.

Fe Syntax

FORTRAN V probably has a BNF syntax, but compilers would not
use ite FORTRAN statements are easy to parsey and most FORTRAN

compilers use ad ho¢ parsing technigues.

2e7+2s {CHARACTERISTICS

A g oy - - b - a—

FORTRAN is as machine dependent as any of the other widely
used programming Languagese Almost all commercialt computer
systems provide a FORTRAN compilery, and FORTRAN programs can
usually be transported to other facilities with ocut a great deal
of effort. Note:r one of the sources of difficulty in
transporting FORTRAN programs s the difference in vord sizes
between the two machines. Since FORTRAN has no character or
string data typey programs wusing character data must pack
characters into INTEGER variabless. Unless the packing density is
set at one character per word (very expensive if there 1is nmuch
character datal), the resulting programs will not be transportable

to other machines without modification.

Be Efficiency

e i e ey W —

Optimized FORTRAN programs compare favorably with assembly
language programs. The only operation in FORTRAN <that is
inefficient s formatted 1/0, which must be dinterpreted at

runtimes
€. Level of the Language

Fortran is a medium level language.

REPRODIKHBHJTY’OF
ORIGINAL PAGE IS POOR



POCCNET fanguage Study PAGE 2-70

Fanl i e amw

The FORIRAN Language is moderate in size, and the compiler
should be too.

FORTRAN V has a very Llinited form of pointer variables, and
many togical (bit and byte) Tfunctions. The EQUIVALENCE and
COMMON statements ¢an be used to access a bloeck of core under

various formatse.
F. Error Chegking and Bebuggipg

FORTRAN compilers have traditionally had poor <compile and
run time diagnosticss The tack of a character data type requires
the compijler to accept character strings as part of INTEGER
expressions - no type checking can be performed for characters.
The pointer type ADDRESS can be used to point at any data item or
statement 1in @& FORTRAN program, and no type checking can be
performed. It is therefore the user”s responsibility to dinsure
that pointers are used in a8 proper manner.

The INTERDATA 1implementation of FORTRAN V provides the
following debugging features:

scomp - Turns on tonditicnal compilation of source
statemnents with an X in column 1.

$TRCE -~ Turns on trace of all or selected program
variables.

$TEST - Turns on checking of array subscripts and

_ boOo-~loop indices for 0 or negative values.

(a) modularity

FORTRAN V supports independent compilation of subroutines
and functionss bata sharing +is provided by the COMMON and
EXTERNAL statements. FORTRAN is seriousty lacking in structured

control structures,; however.



POCCNET Language Study PAGE 2-71

{b> modifiability

FORTRAN V has no macro processor, no CONSTANT statement for
defining program constantsy no INCLUDE feature for including
source files into a program, and no data structures other than
arrayses FORTRAN programs are often hard to read because of the
lack of control structures. FORTRAN programs wotld be

considerably harder to modify than programs written in PASCALy
for example.

{(c) reliabality

FORTRAN V can not perform any compile~time type checking of
subroutine or function parametersy or check that variables
declared in one COMMON bteock are consistent with variables
declared in the same COMMON block by another function or
subroutine. The ADDRESS tvype 1in FORTRAN V regquires careful
programming. It ds the wuser”s responsibility to insure that
pointers are pointing to objects of the correct type. Also, the
lLack of control structures means that IF and G070 statemenis must
be wuse to simutate Jf-then-else statementsy, while and until
Loopss and case stetements. This can greatly obscure the
structure of a program. Finally, FORTRAN has no bit or character
data typesy, requiring any program that uses these data types to
pack characters or bits into words.,

He Use -

FORTRAN V 3Js 1implemented on the INTERDATA series of
minicomputerse The FORTRAN Language has been implemented on
almost att commercial computer systems (although the
implementatifons are all slightly different), and in the past few
years a number of preprocessors have been written that permit the
use of structured programming control structures n FORTRAN
programss. The languages FLECS and PREST4 discussed 1in this

chapter are two examples of this type of preprocessor.



POCCNET Language Study PAGE 2~72

2.8+ JOSSLE

2.8¢1e LANGUAGE FEATURES

JOSSLE L[JOH73,PRE731 is a high tevel language developed by
John White and Leon Presser at the University of California.
Although it was designed to be used in dimpiementing compilers,
the language 1s generazl purpose (JOSSLE is loosely based on PL/I)
and could be @applied fo most system-oriented problems. JOSSLE
provides some special features for managing shared data in
programs, and a hierarchical control structure that tends to

force top—down development of programs.

A. Basitc Data Types and Operators

et -~ a1 —_—— e —— il ——

JOSSLE has four basic data types:z INTEGER, REAL, CHAR
(character string)y and BIT (bit stringl. Complete type checking
is performed at compile time, and no automatic type conversion is
peformed between the basic types. However, the language does
provide a function CONVERT for requesting explicit data
conversionse.

The operators and the data types on which they operate on

are listed below:

Logical eperators (BIT operands)
T <expr> - Bitwise complementy AND, and OR.
<expr> & <expr>
<expr> ' <expr>

relational operators (all basic types)
=y = - Operands can be INTEGER, REALy CHARs
BiIT. Both operands must have same
type.
<y >y <=4 >= - Operands can be INTEGER, REAL, or BIT.
Both operands must have the same {ype.
Note that there is no implicit ordering

of the charzcter set.



POCCNET Language Study PAGE 2-73

arithmetic operators (INTEGER and REAL operands)

Fy—gkof - Operands can be INTEGER or REAL, but
both must have same type.

itop - Modulo operator. Operand must be
INTEGER.

character operators and functions (CHAR operands only)

~ Concatenation.

SUBSTR ~ Substring function. SUBSTR is not a
pseudo—variable in the PLSI sense -

it can not be used on the left-hand

side of an assignment statemente.

Be Contrcl Structures

e w SR e e e i — R

BEGIN <stmt-list> END;
(Compound statement.)

~ IF <bit~expr> THEN <stmt> { ELSE <stmt> )} ;

(Standard conditional statement.)

- LOOP <stmt-List> END LOOP;
(Unbounded repetition of the <stmnt-list>. Each LOOP
statement must contain an EXIT statement to provide

termination of the (oop.)

- CASE <integer-expr> OF
<stmt~1>;

<stmt—-k>;
END CASE;
(Simple <case statement. If the value of the
expression s 1 then the i-th statement 1s executed.
- A runtime error message 1s produced if § is less than

1 or greater than k)

- EXIT € IF <bit-expr> 2} ;

{(Unconditional and conditional exit of innermost



POCCNET Language Study PAGE 2-74

LOOP statements)

- RETURN;

(Return from a procedurea.)

~ RETURN WITH <expr>;

{Return from a function with a result,)

- CALL <proc-name> { (<parameter—list>) };
<function—-name> { (<parameter-list>} };

(Invoke 2 procedure or function.)

- PROCEDURE <proc-name> { (<argument-list>) %
<procedure-body>
END PROCEDURE <proc-name>;

gy

PROCEDURE <func-name>
{ (<argument—iist>) } RETURNS <type>

-0

<function-body?>
END PROCEDURE <func-name> ;
(Standard procedures and functions. Neither can be

recursivey and all parameters are passed by value.?
Note: JOSSLE has no GOTO statement.

C. Bata Strugctures

L I TR SR - A

JOSSLE has a number of constructs for creating more complex

data structures from the basic types:

{1) one-dimensicnal arrays
The statement
<tdent>» LINLIST (<number-of-elements>) 0OFf <type>;
declares <ident> to be a one-dimensional array. The type
can be any one of the basic types or a record structure
detined by the user. Array elements are accessed using the
subscript operator <ident> (<subscript>) ,l and the

assignment operator <— can be used to copy an entire arraya.

() record structures

The user can define record structures wusing the NEUWTYPE



POCCNET Language Study PAGE 2-T75

Statement:
<type-ident> = NEWTYPE
<member-1> <type-1>;

<member-k> <{type-k>;
END NEWTYPE;
The <type-rdent> can then be used anywhere that a basic

type czn be used., For example:

ERRQRMSG = NEWTYPE /* pefine record structure =/
TEXT CHAR(ZD); /* for an error messagee. xf
ERROR—-NO INTEGER;

PRINT-FLAG BIT(13;
NEXT-MSG PTRZ2A ERRORMSG;

END NEWTIYPE;

DECLARE /* Now use the structure *f
SIZE-ERROR ERRHMSG; I* to declare some things. */
OTHER—-ERRORS LINLIST(10) OF ERRMSG;

END DECLARE-

The syntax for referencing structure components is
<structure-var> : <member-name> { . <member-name>> « The
assignment operator <— can be used to copy an entire record

from one variable to another.

(3) typed pointers
The declaration
<ident> PTR2A <type>;
declares <ident> to be a2 pointer to an object of type
<type>. The type tan be a user defined record structure
Atl peointer varjables are initialized to the constant NULL.
The following operators and JOSSLE statements are provided

for manipulating pointer variables:

.

=y y - Equality and inequality.
<ptr-var> :> — Object pointed to by the pointer
variable. Can appear on either side

of an assignment statement.



POCCNET Language 5tudy PAGE 2-76

<ptr—-var> :> <structure-member> { . <member> 3}
«~ Component in & structure pointed to by
the pointer variable,
ADDRESS (<variable>)
- Yields address of the variable.
CONTERTS(<ptr-var>)

- Yjelds value of object pointed to by
the pointer variable. C€an not appear
on the left—hand side of an assignment
statemento

ALLOCATE <type> SETTING <ptr-var>;

~ Attocate statement that causes dynamic
allocation of an object of type
<type>, and the setting of <ptr-var>
to the address of the new object.

FREE <type> PTDZ2BY <ptr-var>;

- Statement that deallocates the core
block, pointed at by the pointer
variabley and sets the pointer to
NULL .

(4) stacks and queues
The JOSSLE declarations
<ident> STACLK OF <type> ;
<ident> QGUEUE OF <type> ;
are used to define stacks and queues. The type can be any
basic type or & user defined record structure. Stacks and
gqueues are initially empty; and objects can be pushed on or
popped off a _stack or gqueue with the Tfollowing tuwo
operators:
<pte—~var> <== <stack-por-gqueue-var>
- Sets <ptr-var> to the address of
the object in the stack or queue
and then pops the cbject off the
list. If the stack or gqgueue 1S

inittally emonty the pointer is



POCCNET Language Study PAGE 2~77

set to NULL.
<stack—-or—queue-var> <== <ptr-var>
- Pushes the object pointed to by the
peinter variable onto the stack or

GUEeUE o

e S - o

JOSSLE provides several features for managing shared data
and for structuring systems of programs. JOSSLE permits dinternal
procedures (that is, nested procedures), but unlike other block
structured languages an internal procedure does not automatically
inherit all wvariables decltared in outer blockse An internal
pracedure c¢an request the use of such variables using the KNOWN
statement:

KNOWN
<identifier~List>
END KNOWN.
This feature prevents internal procedures from modifying a
variable declared at an outer tevel wtithout gaining explicit
permission to use ijt.

A system of JOSSLE programs s formed by c¢creating a
COMMUNICATION REGION specifying the member programs in the system
and the data to be shared among the programse The syntax for a
COMMUNICATION REGION is as follows:

COMMUNICATION REGION <ident>
<recgord-structure-~definitions>
<shared-variable~declarations>
MEMBERS

<main-program>
<sub-program-List>
END MEMBERS;

END COMMUNICATION REGION <ident>;

The statement defines <ident> to be a “task™ composed of a main
program and a List of subprograms uhich communicate only through
the variables in the <shared-variable-list>. A  MEMBER program

can onty be calied by other programs in the same COMMUNICATION



POCCNET Language Study PAGE 2-78B

REGION. Each MEMBER program <¢an be an independently compiled
JOSSLE oprogram or another COMMUNICATION REGION. A COMMUNICATION
REGION is activated by a call to the identifier <ident>, which
causes control to pass to the main program in the MEMBERS Lliste.
JOSSLE has a CONSTANY dectaration for declaring program

constants, and primitive 1/0 facilities.

T e e e e - —

JOSSLE prohibits recursive procedures; so no runtime stack
is requirede. However, JOSSLE does reqguire a dynamic storage
allocator and some form of garbage collector for compacting the

dynamic storage area.
Fe Synteax

JOSSLE has a BNF grammar with approximately 150 productions.

2e8.2¢ CHARACTERISTICS -

A. FMachine Dependence

JOSSLE has no machine dependent features and could be

implemented on almost any machinee.

Be Efficiency

JOSSLE has no recursion (and therefore no runtime stackly
and the lLlanguage does not permit dynamic arrays or varying length
character or bit strings. Procedure parameters are atl passed by
valuee. These restrictions would tend to make JOSSLE efficient.
Howevery JOSSLE programs that use pointer variables to
dynamically allocate storagey or that perform a great deal string
concatenation will require a dynamic storage allocator and

garbage collector. 6Garbage collection can be very expensive.
Co Level of the Language

JOSSLE is a high level language.



POCCNET Language Study PAGE 2~79

be Size of the Language and Lompiler

—— e e e b o ———

JOSSLE 1s a fairly large lLanguage, and the <compiler will
also be targe.

E. Special System Features

JOSSLE has record structures; bit and character strings,
fully typed pointer variables, dynamic storage allocation, and
the STACK and QUEUE data structureso. ALl of these features would

be helpful in systems programming.

S e e S mn —_—— aim e

JOSSLE performs complete type checking at compile time and
performs ne automatic cenversions betueen the data types.
pefault runtime checks include array subscript checking, CASE
expression out bounds, data conversion errors fronm the CONVERT
functiony and substring lemath errors.

The JOSSLE manual does not dindicate that any special

debugging features are availables
G. Design Support
(a) modularity

Wodularity in JOSSLE is excellent. The tlanguage provides
the COMMUNICATION REGION concept, dindependent compilation of
programs and COMMUNICATION REGIONS, and restricted inheritance of
global variables. JOSSLE atso has a small number of structured

programming control structures.
{b) modifiabiltty

JOSSLE programs should be very well structured because of
the COMMUNICATION REGION concept and the declarations for
controlling shared data. Howevery, the Ltanguage has no macro
processory, and the set of control structures is fairly Limited
(no WHILE, FORy or REPEAT UNTIL loops, and only a simple form of
the CASE statement). Because of this, JOSSLE programs will be
harder to modify than programs written in HAL/S or PASCAL.



POCCNET Ltanguage Study PAGE 2-80

(e) retiability

JOSSLE performs complete type <c¢hecking at compile time.
This permits & large number of errors to be detected at compile
time that would go undetected in a language Like Fortran. Like
most Llanguages with pointer variables, however, JOSSLE requires
careful programmings There is nothing to prevent a wuser from
using the ADDRESS function to point at a static variable, and

then subsequently attempting to free that variable using the FREE
statement. ¢

He Use

JOSSLE is implemented on the IBN 360 and 370 series,
However, the tanguage %5 machine independent and could be

implemented on other machines.



POCCHNET Languacge Study PAGE 2-81

v

2.9« JOVIAL/J3B

2e9e1e LANGUAGE FEATURES

JOVIAL/J3B LREIV5,50F75] is & high level language developed
by SofTech for wuse 1in aviontcs applitations. The language 1s
based on JOVIAL/J3, the Air Force standard tanguage for command
and control applications. JOVIAL/J3B has been used extensively in

the B—1 Stretegic Bomber program. .

A. Basic Data Types and Qperators

_— e, —r e emAm A b e - ———

JOVIAL/J3B has seven basic data types: signed 1integer,
unsigned integer, fixed pointy, single and double precision
floating point,; bit stringy and character string. The length of
bit strings is limited to the implementation dependent number of
bits in 8 computer worde. Automatic conversion 1is performed
between 1integer and floating point expressions. The following
types of {iterals are permitted in JOVIAL/J3B expressions:
integer; fixed point, single and double precision floating point,
and hexadecimal and character stringse.

The operators and the data types on which they operate are

Listed below:

arithmetic operators
tg =5 *g fy k%
ABS - Absotlute value.
INTR — Extracts a bit string from an arbitrary

expression and converts the string to integer.

INTER =~ Converts a fixed point expression to integer.
FIX - Converts an integer expression to fixed point.
SCALE - Scales a fixed point expressione.

relational operators
=, <Py, <4 >4 <=, >=
-~ ALl the relational operators can be used to compare

numeric expressions, but character expressions can

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR



POCCNET bLanguage Study PAGE 2-82

only be compared using = and <> (there is no
explicit ordering of the character set)., Bit
expressions can not be compared using the

relational operatorse.
ALl the relational operators vyield a bit

string result.

bit operators
NOT, AND, OR,s XOR
SHIFTL - Left shift.
SHIFTR - Right shift.
BIT ~ Pseudo-variable for accessing bit strings. The
BIT function can appear on the left-hand side of

an assignment statemente

character operators
BYTE - Pseudo-variable for accessing a sequence of
bytes (characters). Can appear on left-hand side

ef an assignment statement.

Bs. Control Structures

— e 2 e me e e e e D

|

BEGIN <stmit-List> END

(Compound statements)

- IF <bit—expr> ; <stmt> ; { ELSE <stmt> > ;
(Standard conditional statement with opticnal ELSE
parts 1T the value of fthe <bit-expr> is known at
¢compile time then no code 1s generated for the
bypassed THEN or ELSE <stmt>.)

WHILE <bit-expr> ; <stmt> ;
(Standard white loops)

FOR <var> {(<injt~expr> BY <incr-expr>
{ UHILE <bit=expr> 3} ); <stmt> ;

(for loop With opticonal WHILE clause.)

FOR <var> (<init—-expr> THEN <next-expr>
{ WHILE <bit~expr> } J; <stmt> ;



POCCNET Language Study PAGE ?2-83

(Atternate form of for loops The <var> is assigned
the value of the <init-expr> on the first iteration of
the Loopsy and the wvalue of <next-expr> on all
subsequent 1terations. The <next-expr> can be any
integer expression, and it 1is evaluated on each

1teration of the loop.)

-~ GOTO <tabel> ;

{Unconditional branch to label in current namescopes)

- BOTO <switch-name> (<integer-expr>) ;
{Computed gotos The <switch—name> must have been
declared with a statement of the form
SHITCH <switch-name> = <label-list> ;
On execution of the G070 statement the vatue 1 ¢of the
<integer—expr> is used to select the i-th label, and a
branch is made to the selected label.)

~ RETURN ;

(Return from a procedure or function.)

— { PEF » { RENT } PROC <proc-~name>
({ <input—parameters> } { : <output-paramelers> })
{ <function-type> X} ;
BEGIN
<tocal-declarations> ;
. <stmt-list> ;
END
(befinition of a proctedure or function. If the RENT
cption is selected then reentrant code will be
generated for the procedure {recursive calls are not
permitted, however), The DPEF option permits the
<proc-name> to be called from other external
procegures. Any Labels appearing in the <stmt-list>

must be declared in the <local-declarations® sectione}

- <proc-name> ({ <input-arguments> 3}
{ : <output-arguments> 2}) ;



POCENET tanguage Study PAGE 2-84

{Invocation of a procedure cor function. The method
used tco pass parameters (such as call by value,
value-result, or reference) is implementation
dependent.

Internat procedures «can be declared as *intine®

routines uith @ statement of the form INLINE
<proc-name> : Each invecation of an 1inline
procedure causes the body of procedure to be

substituted inline at the point of invocation.)

Ce Data Siructures

e v e -

JOVIAL/J3B has three constructs for creating more complex

data structures from the bastc data types:

(a) arrays

Arrays are declared with 2 statement of the form

ARRAY <var—-name> (<dimension—-Llist>} <type> ;
The array type can be any of the basic data types or a
pointer 1; a table. Arrays can have up to three dimensions,
and array dindexing starts at 0. The elements in an array
are referenced using the standard subscript operator
<var-name> {(<subscript-List>?

{b) tables
The JOVIAL Language has extensive facititres for
constructing data tables (linear lists of record

structures). A "template" {for the entries in a table is

declared using the TYPE statement:

TYPE <new-template> TABLE () { g }
{ LIKE <otd-template> )}
BEGIN <i1tem~declarations> FRKD ;
The options M and D affect the packing density of the 1items
within the individual table entries (M-mediumy D-dense)d.
The LIKE option allows a previcusly defined table template
to be used 1in the definition of a new templates The items



POCCNET Language Study PAGE 2-85
in the <new~template> will consist of all dtems 1din the
<item-declarations> Llist, preceded by the items in the
<old-template> 1f the LIKE option was used. The type of the
items in the <jitem~declarations>» Llist can be any of the
basic data types or a pointer to a table.

The table templates can then be used to declare data
tables:

TABLE <table-name> (<pumber-of-entries>} { P 3 { E } ;

BEGIN <item—declarations> END ;
The M and D options have already been described. The
default method for allecating storage for a table is by
table entry: for each table entry there 1s a contiguous
block of <core that i1s Long enough to contain all the items
in the <item—-declarations> Llist. if the P option 1is
specifiedy howevery the table is allocated in a "parallet®
fashion: there is & contiguous block of core for the f{first
item 1in all the table entries, a block for all the second
items, and so forth.

An alternate version of the table declaration gives the
programmer complete control over placement of items within a
table entry. The number of words per table entry and the
placement of each ditem f(word position and starting bit
within the word) is directly specified. The storage for
items can overlap.

Individual items in a directly declared table (declared
without 2 template) are accessed using subscript notation:

<table-item> (<table-entry>)
An entire table entry can be compared with or assigned the
value of another table entry using the ENTRY function. For
exampte,

ENTRY(MSG.TABLE(I)) = ENTRYCERROR.MSG(4)) ;
Table entries or i1tems within a table entry of any table
declared with a template c¢can only be accessed using
pointers. Fointers will be digscussed in the next section.

Note: There are a large number of restrictions on the

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR



POCCNET Language Study PAGE 2~86

way that tables can be declared and used,
(c) pointers to table entries

A pointer js declared with a statement of the form
ITEW <pointer-~var> P { <template> } ;
Pointers declared with a template can only be used to access
table entries having the same templatey, pointers declared
without a template can point to any entry.
The following pointer functions and operators are
available:
POINT(<table-name>y <subscript>)
~ Yields a pointer to the specified entry
in the table.
NEXT (<entry-pointer>y <table-nanme>, { <index> 3})
- Yields a pointer to the next table entry
foltowing <entry-pointer>. The <index>
tan be used to obtain a pointer to some
table entry relative to <entry—-pointer>.
Faor exampley,
NEXT(HMSGPTR4MSG.TABLE)
NEXT(MSGPTRyMSG«TABLEy~2)
<table—-item> (<entry-pointer>)
- Accesses the sSpecified ditem in the table

entry pointed at by the <entry-pointer>.

The relational coperators =, <>, <, >y <=, >= can be used to
compare compatiblte pointerss and the assignement operator =

¢tan be used to copy a pointer. -

e e - - e -

JOVIAL/J438 has a number of features that would be helpful
for programming Large systems. Source files containing JOVIAL
statements can be inserted inte a program using a statement of
the form LOPY <file-spec> ; Program constants can be
declared using the CONSTANT statement:

CONSTANT <constant-name> <type> = <yalue> ;



POCCNET Language Study PAGE 2-87

The <constant-~pname> can be used in any expression, but it can not
be assigned & new value by an assignment statement or a procedure
calte.

The tanguage also has a simple replacement and a
parameterized macro Tacility. Macros are declared with the
statement

DEFINE <macro-name> { (<parameter—List>} 3}
<replacement-~string> ;
The <replacement-string> tan contain other macros.

JOVIAL/J3B has a CONPOOL feature that {is similar to (but
more awkward than) the HAL/S COMPOOL blocke. A JOVIAL COMPOOL
file can contain constant and macro definitions, declarations of
external procedures and functions, templates for tables, and
references to BLOCK definitions (BLOCK definitions are used for
declaring sharedsy external data; they are a combination of the
Fortran COWMON and BLOCK DATA statements.) The COMPOOL fite can
be 1nvoked by any program that requires the declaraticns and
templates.

The language has an OVERLAY statement that is similar to the
Fortran EQUIVALENCE statement. JOVIAL/J3B has no I/70 facilities.

e e A winn ey D e aly i e S gt e

JOVIAL/J3B requires a runtime stack for any procedures
declared to be reentrant. Other than thisy the language reguires

little in the way of runtime environment.

The BNF grammar for JOVIALS/J3B has approximately 500
productions (the SofTech grammar for the language includes type
restrictions and is considerably more precise than typical BNF

grammars) .

2.9.2+ CHARACTERISTICS

A. Machine Dependence



POCCNET Language Study PAGE Z2-88

JOVIAL/J38 has a Large number of dimplementation dependent
featuresy 1including the method wused +to pass procedure and
function parameters, the maximum length of bit strings (limited
to one computer wWord), the functions INTRy BIT, and BYTE used for
sccessing bit and character stringsy the OVERLAY statement,
programmer specified table &altocation <(word position and bit
pasition within a word)y the restriction that all ftems in 2
table dectared with the parallel (P} attribute occupy a single

word, and the l[ack of a collating sequence for the character set.

The Language should be as efficient es Fortran for programs
using non-reentrent procedures. ALl cgataz areas can be allocated

stetically.
C. Level of the Language
JOVIAL/J3IB is a high level language.

be Size of the tanguage and Compiler

e e e am iy -

JOVIAL/J3B 1is a Large Llanguage With complicated data
structures (the TABLE n particularl. The compiler will alsoc be
larges

E. Spgcial System Features

The language has bit and character data types, the INTR,
BITy and BYTE functions for accessing bits and characters,
reentrant procedures and functtonsy the OVERLAY statement for
equivalencing data storage, and the TABLE data structure. ALl of

these features would be helpful for system programminge.

Fe Error Checking and Debuggoing

Al e i AL am w e ——— o Se e Al me e

The JOVIAL/J438 language is strongly typed, so many program
errors can be detected during compilation.
As discussed 1n section B. Control Structuresy no code is

generated for the bypassed section of an IFf statement when the
value of the <bit-expr> 1s known at compile times This feature



POCCNET Language Study PAGE 2-B9

pernits debugging code to be maintastned in a JOVIAL/J3B program
without any expense in execution time or spaces. For examnples

DEFINE DEBU6 = X717;

IF DEBUG ; BEGIN <debug-statements> END;

The language manual does not indicate that any other debugging
features are available.

G. Design Support
(2) modularity

Modutarity in JOVIAL/J3B 1is goode The fanguage has
proceduresy functionsy, and the basic control structures for
structured programming. The language permits independent
compiltation of procedures, Tfunctions, and COMPOOL files. The
COMPOOL and COPY files can be wused to store commonly used
declarations or source texty and the BLOCK statement permits

sharing of external data .«
(b) modifiability

JOVIAL/J3B has a number of features which would aid in
program modification, 1including the CONSTANT declaration, the
DEFINE statement for defining macros, the COPY statement for
inctuding source filesy, and the CoOMPOOL fTiles. The lLanguage also
has & structured <control structure which will tend to make

programs more reazdable.
(c) reliability

The pseudo-variables BIT and BYTE for accessing bit and
character strings need to be used carefully, since they can be
used to alter any portion of a data 1teme The OVERLAY statement
and user—~specified table atlocation alse require careful
programming. In generaly howevery it should be considerably
easter to write reliable progrems in JOVIAL/J38 than iIn a

Language like Fortrane. JOVIAL/J3B has structured conirol



POCCNET Language Study PAGE 2-90

structures, array and table data structures, a Llarge set of basic
data types, several features that can improve the readability of
programs (macros and CONSTANT items), COMPOOL and COPY files to
insure that separately compiled programs employ the same data

dectarations, ana strong type checkinge
He Use

JOVIAL/J3B has been implemented on the IBM 370 series and a
number of special purpose minicomputers including the SKC 2070,
SKC 2000, 1M 4T y and the LITTON 4516Da. The compiler was
developed by SofTech using the AED language. JOVIAL/JI3B has been

used extensively in the B-1 Strategic Bomber program.

REP OD
e,
OR Iy
IGRWH;PA EIBCW’THE
O0R



POCCNET Language Study PAGE 2-91
2.10. LITTLE
2.10.1. LANGUAGE FEATURES

LITTLE [SHI?4] was developed at NYU in 1968 in an attempt to
produce an efficient but machine independent systems
implementation Llanguage. The only data type supported by the
tanguage is bit strings of arbitrary (but not wvarying) Llength,
and ‘no type checking is performeds, LITYLE dis essentyally a

Fortran language with scme structured programming constructss

Ae Basic Data Iypes and Operators

LN - V- ——— e

LITTLE §s a typeless language that operates on bBit strings
of arbitrary length. The lznguage allows five types of constants
t¢ appear in expressions: unsigned dintegersy octal numbers,
binary numbersy mixed binary/octal numbersy and character strings
(including the empty string). Note that floating point numbers
are not provided., The following operators are provided:

bit string operators
«eORey +AND ey EXOR
Bitwise GRs AND, and exclusive OR of two expressionss.
The shorter operand is padded on left with zeros.
oNOT &
«FE.
Position of leftmost 1-bit in expression.
«NBa
Number of 1-bits in expressione
Lo
Bitwise concatenation of two operands.
:E: <start bit> <number of bits> <expr>

Pseudo variables for inserting or extracting bits.
The <E. operator must be used for operands extending

across word boundaryse

arithmetic operators



POCCNET Language Study PAGE 2~92

ty =y *y [/

Integer arithmetic operators.

relational operators
oEQt, UNE;’ nLTor bGT" oLE-y .GEI

character operators

<string-1> +IN. <string-2>
Index of <string-1> in <string-2>.

+S5e« <start character> <number of characters> <string>
Pseudo variable for inserting or deleting character
stringse

«CHe <character number> <string>
Pseudo variable for inserting or deleting singte
characters.

<string~1> CC. <string-2>

String concatenation.

Bs Control Structures

e e L A

- IF (Kexpr>)} <stmt> ;
{Simple if statement.?

~ IF <expr> THEN <stmt-~Llist> { ELSE <stmt~list> 2} END IFf;
(Compound if.)

<expr> ;

<stmt—-{ist>

END WHILE ;
UNTIL

(Standard while and repeat loops.)

~ b0 <var> = <expr-1> TO <expr—2> BY <expr-3> ;
<stmt-list>
END DO ;
(Standard for Loop.?

- GOTO <lLabel> ;
GOBY (<expr>) (<label=1>; «e~; <label~k>) ;

(Unconditional and compuled goto.)



POCCNET Language Study PAGE 2-93

- SUBR <ident> { (<parameter—List>) 2
<stmt—-list>
END SUBR ;

LT

FNCT <ident> { {(<parameter~Llist>) 32
<stmt=-List>
END FNCT ;

(Fortran like subroutines and functionse. Neither can

9

be recursive. A function may not assign values to its

input parameters.)

= CONT { <specitfier> 2 ;
(Continue next 1teration of the innermost or

specified DOy WHILE,y or UNTIL Loopes)

- QUIT { <specifier> } ;
(exit the innermost or specified loopd)

— RETURN ;

(Return from & subroutine or function.)

Cs Data Structures »

_—————n e o e SR e e e 20

The only data structure supported by LITTLE is the

one~dimensional array. The statements

SIZE <ident> (<length in bits>) ;

bIMS <jdent> (<number of elements>) ;
declares <ident> to be a one~dimensional array, each element of
which is a bit string of length <length in bits>. Array elements
are accessed using standard subscript notation:

<ident> (<subscript>) .

Pe OGther Features

AL A e A G e e —

LITTLE is a typelessy Fortran—lLike language with no block
structure and comments in J/* %/ or § to end-of-Line pairs.
LITTLE has a DATA statement for initializang variablesy and a
NAMESET feature similar to Fortran COMMON. The language also has
a simple and a parameterized macro facility allowing recursive

macro expansion,



POCCNET Languagce Study PAGE 2-94

£+« Runtime Environment

i 4L B i - —— -

Because LITTLE forbids recursive subroutines or functions,
the Llanguage does not require 2 runtime stack. There 4s also no

need for any form of dynamic storage altccator.
Fe Syntax

The BNF grammar for LITTLE has approximately 80 productions.

2.10.2+. CHARACTERISTICS

A. Machine Dependgnce

L. ITTLE has no machine dependent features and could be
implemented on most machines. However, because of the arbitrary
length of operands, there are few machines that could implement

LITTLE efficiently for operands Longer than the word sizee«

Bs Efficiency

e . ———

LITTLE should be efficient for programs using variabltes that
match the word size of the host machine. Intine <code can be
generated for most operatorss there 18 no need for a runtime
stacksy and there 31s no block entry or dynamic storage allocations
For expressions involving operands longer than a single wordg
howevery, LITTLE may execute considerably s{owepr than hand-coded

assembly language.
Ce Level
Do Size of Language and Compiler

LITTLE ig & small languages and the compiler shoutd also be

SmaLla

(n
.
| {7¢]
o]
I
10
(B
1]
jr—
e
I~
5
r+
1]
=]
art
0
&
(2
“
“¥
D
{F}

o e o e e O



POCCNET Language Study PAGE 2-95

Fs Error Checking and Debugg

- ol e Ll A

[t

ng

Because of the lLack of data types, LITTLE can perform no
compile or runtime type checking. Other runtime checksy such as
subscript errors or expression out of range in a GOBY statement,
will be performed if the debug option is specified.

The ¢pC 6600 implementaion of LITTLE provides the following
debugging facilities: (1} trace of assignments to selected
variables; (2) catling history of subprograms; (3) statistics on
number of statements executed by statement type; (&) subscript
thecks for arrays; and (5) verification that certain assertions

(LITTLE expressions involving program variables) are true.

G.Des

s

gn support
(a) modularity

LITTLE allows 1independent compilation of modules, and
provides communication through NAMESETYT (Fortran COMMON) bleockse

(b} modifiability

LITTLE has a fairly powerful macro processocr, the standard
structured programming constructsy and a feature for conditional
compilation of source texts These would be & great help 1in
modifying LITTLE programse. However, the tack of any features for
constructing new data types {(other than one-dimensional arrays)
means that all data structures would have to be implemented by
the LITTLE programs themselves. Subsequent changes to the data

structures gould require large scale revisions of the program.
(c) retiabitity -

Because LITTLE is a typeless languagey the compiler performs
no compile or runtime checks to insure that the bit pattern 1n an
operand is meaningfule. Type checking 1is therefore the wuser”s
responsibility. In additiony the QLlack of data structures
requires LITTLE programs to simulate the data structures with
LITTLE statements. LITTLE programs wiltlt then be Llonger, more

complexy and harder to understand than @ program written in a



POCCNET Language Study PAGE 2-96

language with more data structuring facilities,
He Use

LITTLE has heen implemented on the ¢bPC 6600, the IBM 360
seriesy and the Honeywell 512. The compiler is written in LITTLE

itselfy and could easily be bootstrapped onto other machines.



POCCNET Language Study PAGE 2-97

2.71« PASCAL

211417 LANGUAGE FEATURES

PASCAL [JEN74,RIC763 1is a general purpose, high Llevel
tanguage designed by Niktaus Uirth as a successor to ALGOL 40.
The language has a full set of control structures for structured
programmingy and many facilities for data structuring including
arrayssy recordsy setsy and typed pointers. PASCAL has been wused
for a number of systems-oriented problems including the compilers
for PASCAL and CONCURRENT PASCAL, and the SOLO operating systen
(a single-user operating system for the PDP 11/45).

——— g ——— —t s i S

PASCAL has four basic data types: INTEGER, REALy; BOOLEAN,
and CHAR {(single character). Full type checking is performed at
compile times and no automatic conversions are performed betueen
the basic types. The following types of constants are permitted
in expressions: integer, real, boolean, character, and string
(treated as an array of characters).

The operators and the data types on which they operate are
listed below:

arithmetic operators and functions (INTEGER and REAL operands)
ty =y *y / - Standard arithmetic operators for
INTEGER or REAL operands. The

division operator returns a REAL result.

bIV, MNOD ~ Division and modulus operators for
INTEGER operandss
ABS{<expr>) -~ Absolute value of REAL or INTEGER

exXpression.

SQR(Lexpr>) - Square of REAL or INTEGER <expr>.

The following functions are available for INTEGER

operands:

opbk (<expr>2 — Function returning true if the expression



POCCNET Language Study PAGE 2-98

is odd.
suCC{<expr>) - Functions yielding successor and
PREDP{ (<expr>) predecessor of the expression.

The following functions are available for REAL operands:

TRUNC(<expr>) = Functions yielding INTEGER result of
ROUND (<expr>) truncating or rounding a2 REAL <expr>.
SIN, COS, - Standard mathematical functions,
ARCTAN, LN,

EXPs SQRT

logical operators (BOOLEAN operands)
ANDy ORy NOT — The BOOLEAN gperators yield
a BOOLEAN result.

retational operators (atl basic types)
=y €3>, €, B>, €=, >=
- The two operands must have the sanme
type. The relational operators vield
a BOOLEAN resulte.

character cperators
SUCC, PRED

CHR (<expr>) ~ Yields i-th character in the character

Successor and predecessor funciionss

sety where 1 15 the value of <expr>.
ORD {(<char?>) - O0rdinat position of the character in the

character sets

ot D b W Al cme i S W o e

BEGIN <stmi=-Llist> ERND

{Compound statement.)

- IF <boolean—expr> THEN <stmt> { ELSE <stmt> %}

{Standard conditional with optional ELSE clauses)

i

WHILE <boolean—expr> B0 <stmt>
{(While loop,)

t

REPEAT <simt-List> UNTIL <boolean-expr>

REPRODUCIRILITY_OF THE
ORIGINAL PAGE IS POOR



- FOR

POCCNET Language Study PAGE 2-99

(Until loop. The body of the loop will be executed

at least once.)

<var> := <expr~1> T0 <expr—2> DO <stmt>
POWNTO

(For Loops with implied increments of 47 and -1.)

— CASE <scalar—-expr> OF

<constant-list-1> ¢ <stmt-1>

@ L]
[ 3
L} ]

<constant—Ltist=-k> : <stmt=-k>

END

{Case statement. The <scalar—expr> c¢an be INTEGER;
CHAR, BOOLEAN, or any user—defined scalar or subrange
type (scalar and subrange types wilt be described
later 1in Section €). The constant Llists must contain
constants of the same type as the <scalar—expr>. The
<scazlar—expr> is evaluated, and the constant lLists are
scanned fto find & constant equal to the expressiorn.
IfT a mateh is found then the corresponding statement
is executed; if no match 1s found then none of the

statements are executed.)

~ WITH <variable-list> PO <stmt>

(Executes <stmt> using the record variables 11n the
<variable—lListe> Any expression in <stmt> msy refer to
subcomponents of the records without fully qualifying
the subcomponent. For exzmple, if X is 2 record with
subcomponents Ay B¢ and C, then

HITH X PO BEGIN

A = A+ 1.0;
B = A < 10.0;
¢ == 767

END

is equivalent to
Xeh = XA + 1.0;
XeB 2= XoA < 10.0;



POCCNET Language Study PAGE 2-100

~ G070 <labeti>;
(Unconditional transfer to a statement in the current

hamescopes PASCAL requires that all Llabets be
declared with the LABEL statement.?

~ PROCEDURE <proc-name> { (<parameter—{ist>) }; <proc-body>

FUNCTION <func-name> { (<parameter—-List>) 3} : <type>
<func—-body>
(Procedure and function definitions. Both may be
recursivea. The wuser can request that parameters be

passed by value or by reference.)

- <func-name>» { (<argument-{ist>) 3}
<proc-name> { (<argument—List>) 2

(Invoke a function or procedure.)
C. Data Structures

PASCAL has seven constructs for creating more complex data

structures from the basic data types:

(1) scalar type
The scalar type statement
TYFE <type—-ident?>

{<object=1>y «esy <object-k>} ;:
defines an ordered set consisting of <object~12y 4y
<object—k>a For example:
TYPE MONTH = (JAN,FEByMARAPR:MAY;JUN,JUL,AUG,
SEP+OCT¢NOV,DEC) ;

The set is ordered., so the relational operators =, <>, <, >,
<=y >=, the assignment operator :=, and the functions SUCC,
PRED, and ORD can be applied to any scalar type. HNote: the
basic types INTEGER, CHAR, and BOOLEAN are predefined scatar
typess

(2} subrange types

Subrange types are subranges of scalar types, and they



POCCNET Language Study PAGE 2-101

also form ordered sets of objects. The statement

TYPE <type-ident> = <object-1> .« <object—-m> ;
defines a subrange type. There must be a scalar type
containing both objectsy and the first object must be less
than the second. For example:

TYPE SPRING = MAR .. MAY;

TYPE DIGIT 07 .. 797;

TYPE INDEX 0 «= 100;
AlL the operators for scalar types <c¢can be applied to
subrange types.

i

(3) arrays
The statement
TYPE <type-id> = ARRAY [<dimension-list>] OF <type> ;

defines an array type. Arrays can have an arbitrary number
of dimensions, and the <type> can be any basic type or one
of the types discussed in this section. The dimensions are
specified by subrange types. For example:

TYPE MATRIX = ARRAY[1..3; 1..31 OF REAL;

VAR VECTOR : ARRAYL1..10]1 OF REAL;

VAR JOBSRUN : ARRAY[1%6B..1973, JAN..DEC] OF INTEGER;
The assignment operator = may be wused to copy entire
arrays, and array elements are referenced by Llisting the
subscripts in brackets:
<ident> [<subscript-list>l .

(&) sets
The statement
TYPE <type-ident> = SET OF <base~-type> ;

defines a type consisting of all possible subsets of the

<base-type>, which must be a scalar or subrange type. For

example:
TYPE DAY = (MT,W,TH;TSA,8); {befine scatar typel
VAR DAYSOFF :© SET OF DAY; {Now use it for a setl

VAR DIGITS : SET OF Uco9;
The following operators are avajlable for maniputating set

types:



POCCNET Language Study PAGE 2-102

L <element-List> 3

Set ctonstructor yielding set.
The List may be emptys
ey —y % ~ Set unions difference, and

intersectione.

=, <> ~ Tests on equality or inequality.
<=, >= - Tests on set inclusiona
IN -~ Membership operator yielding

true if element is in sete.

(5) typed pointers

Pointer types are defined with 2 statement of the form

TYPE <type-ident> = = <type> ;
where <type> is any type. There is no "address®™ function 1in
PASCAL - it is not possible to obtain the &sddress of a
variabliece. Instead, all pointers din PASCAL point into a
dynamic storage area, and new pointers can only be <created
by requesting the allocation of some new data object in this
storage area.

The foltowing pointer operators and functions are
available (Assume that pointer P is declared as VAR P : 7 X;
. )

NEW(F) — Allocates enough space for an object of

type X, and sets P to the address of

the space.

f

DISPOSEL(P) pbeallocates the object pointed to by P

and sets P to NIL.

P ~ bereference operator yieslding object
pointed at by P. May zppear on the
left-hand side of an assignment

statement.

It
-g

<> ~ Tests on pointer equality.

It

e

-~ The assignment operator can be

to copy pointers.,

(6 file type

The statement
TYPE <type-ident> = FILE OF <type> ;



POCCHNET Language Study PAGE 2-103

defines a sequential file of objects of type <type>. The
declaration of a wvariable wusing this type (i.e., the
dectaration of a file) causes the 1mplicit declaration of a
variable X", where X 1s the name of the file variable. This
variable X" has type <type>, and acts as the buffer pointer
for the file. The basic file functions are

RESET(X) ~ Sets X™ to the first record in the file X.
REHRITEC(X)D - Prepares fiie X for rewriting.
GET (XD — Gets the next record and assigns it to X%

!

PUT(X) Writes out X7 3dnto the fitle.

(7) record structures
A record type is declared with a2 statement of the form
TYPE <type—ident> = RECORD
<member-1> :© <type-1>

<member—~k> : <type—-k>
{ CASE <tag-field> 1 <type> OF
<case~Label~list~1> : (Kvariant—~Llist=-1>);

[ »
» ]

<case—-label-list~k> : {(<variant—~list—k>) 32
END ;
Records can ceontain an arbitrary number of members;y; and each
member can be of any type. PASCAL records can also contain
a "variani™ part at the end of the record. This varitant
part permits records of the same type to contain a different
number and gifferent tvypes of members. The wvalue of the
<tag-field> determines what is stored in the variant portion
of the record. For example:
TYPE LINK = = PROCDESCRIPTOR;
PRIORITY = T..6;
PROCDESCRIPTOR =
RECORD {befine a process descriptor.r
FLINKyBLINK : LINK; {Forward/backward ptrs}



POCCRET Language Study PAGE 2-104

(1]

GPR ARRAY [0..7]; {General registers)}
PSW INTEGER; {Program statusl}
CASE PR : PRIORITY OF {variant partl)
192943 = (HAXTIME,
MAXPAGES : INTEGERS;
L& - C);
5,6 = (BUFFER : ARRAY[{D..1283 OF INTLGER)

"

END

The dot operator "." 15 wused to reference members of a
record. For example:

VAR P : PROCDESCRIPIOR;

VAR I : INTEGER;

FOR I := 0 T0 7 00 P.GPRLI] := 0;

P«PR == 2;

PeMAXTIME := 5;

P.MAXPAGES == 1000;
The WITH statement discussed in Section B <can be used to
avoid qualifying each member of a reccrd with the record
name. The assignment operator == can be wused to copy an

entyre record.

De Qther Features

e ey i  ———— ———

PASCAL requires the dectaration of all varisbtes, functions,
procedures, and Llabels. PASCAL has a declaration of the form
CONST <ident> = <expr>;
for declaring pregram constantss The ijdentifier can be wused 1in
any expressiony but the wvalue of the didentifier can not be
altereds PASCAL does not provide dynamic arrays or even array
dimensions as parameterss as in the following FORTRAN segment:
SUBROUTINE XYZ{ARRAY ,N,M2
INTEGER N;M,ARRAY (N M)
Thus, it 1is not possible to write a PASCAL program that
manjpulates arrays of arbitrary s1zese.
Finally, the language does not permnit external functions or
procedures: a PASCAL program consists of a main program and an

arbitrary number of nested functions and procedures, and the



POCCNET Language Study PAGE 2-105

entire program must be compiled as a unit.

E. Buntime gFnvironment

— - —— s

PASCAL reguires a runtime stack (atb l functions and
procedures are potentially recursive), I1I/0 routines, and a
dynamic storage allocator. Some implementetions may provide a

garbage collector for repacking the dynemic storage area.

PASCAL has a BNF grammar with approximately 150 productions.

2+1142. CHARACTERISTICS

PASCAL is not machine dependent and has been implemented on

a Large number of machines.

B. Efficiency

PASCAL is moderately efficient. The language does require a
runtime stacks and dynamic storage altlocation 1s regquired in any
program using pointers or files. Howevery, the language features
have been carefully selected to permit efficient implementation
of the language. Sets can be represented by bits strings; the set
uniony intersectiony and difference operators can then be
implemented in just a few dnstructions. Scalar and subrange
types are equivalently simple. The structured control structures

also permit better code optimizatione.

C. Level

S e el

The PASCAL tanguage is moderate in size. The compiler, which
is written in PASCAL ijtself, is only 8500 statements.



POCCHNET Language Study PAGE 2-106

E. Special System Fegtures

= e g as

PASCAL hkas typed pointers, dynamic storage aliocation,

recordsey and the set type {(which can be viewed as bit strings).

PASCAL performs fulli type checking at compile tinme. In
additiony pointers are fully typed and all pointers point into
the dynamic storage area. This prevents pointers from pointing
to objects of the wrong typey pointers containing jliegal machine
addresses, attempts to deallecate storace that was never
allocatedy or attempts to access data in declliocated areas. The
subrange types also allow the implementation to perform runtime
checks on variables to insure that the values are within the
subrange. Such & feature would be very helpful in a diagnostic
compiler.

The PASCAL manual does not findicate that any special
debugging tools are avaitable.

(2) modularity

fodularity 1n PASCAL is fair. The language has a full set of
structured control structures, and initernal procedures and
functions @are provided. Howevery PASCAL does not permit external
procecdures or functions. This makes 1t costly to use existing
programs (in @& system librarys, for example), since the programs

must be recompiled each time they are used.
(b) modifiability

As discussed previously, PASCAL has no provisions for
external procedures or functionse. This would be a serious
weakness in large systems (10,000 Lines); where the most trivial
moedification in one of the gproeograms would require the
recompilation of the entire system. However, PASCAL does have
the CONST feature for declaring program constants, high level

data structures and operatorsy the subrange type,y, and the control



POCCNET tLanguage Study PAGE 2-107

structures for structured programming. AtlL these features make

programs easier to read and modify.

(¢) reliability

PASCAL performs conplete type <checking at compite time
(including procedure and function parametersy, and pointer
variables)Y. PASCAL is also a high Llevel and well structured
Language, S0 that programs should be smaller and more
self-documenting than programs written in languages with fewer
data or control structures. It should be considerably easier to
write reltiable programs in PASCAL than Jin a language Llike
FORTRAN.

He Use

PASCAL has been implemented on almost all commercial
computer systemsy including the PDP 10y PDP~11 series, B6700,
UNIVAC 1100 series, IBM 360 and 370 series, and the CpC 3000 and
6000 series. The compiler is written in PASCAL itselfy so the
compiler could be transported to other machines wusing standard

bootstrapping technigues.



POCCNET Language Study PAGE 2-108

212+ PRESTYH

2+12,1. LANGUAGE FEATURES

PREST4 EKAF751 4s a preprocessor for fortran that was
developed by & group at Ohio State University during the period
1973-1975. The tenguage provides a number of structured
programming constructs, as well as some statements for
controlling the output listings of PREST4 source programs. The
structured programming constructs are not preceded by special
characters (e.0. %y %)y, a technique that has been used by ather
fortran preprocessorse. In the remainder of this section, the
PREST4 Language is considered to be Fortran IV augmented by the
PREST4 preprocessore

S g - o ——

PREST4 supports the ftive basic data types of Feortran 1v:
INTEGERs REAL, DOUBLE PRECISION, COMPLEXy and LOGICAL. The
language permits mixed-mode expressions and willbt automatically
convert between integer, reals and double precision numbers.
fonstants used in expressions <can have the following types:
integery realy, double precisiony complex,y lagital, occtal, and
character strings f(charecter strings must be delineated by
apostrophesy since PREST4 does not permit the H specification
used by Fortran IV).

The operators and the data types on which they operate are
listed betow:

arithmettec operators (INTEGER, REAL, and DOUBLE
PRECISION operands)

ty —y *y [y x%

togical operators (LOGICAL operands)
oNOTese oANDwsy «CR«

relational operators
+EQey «NE. ALL types.



POCCNET Language Study PAGE 2-109

oL Tey «LEs; oGToy, GE. INTEGER,y REALy or DOUBLE
PRECISION operands only.

B Control Structures

———— dm e . X i e —p e ST

-~ IF <expr> THEN <stmt> { ELSE <stmt> }

(Standard conditional.)

- DO <stmt-List> END

(Compound statement.)

- DO E <expr>

WHIL
UNTI
<stmt-Llist>

END

(Yhale and repeat Loopse)
=~ D0 <var> = <expr=1> { STEP <expr—2> } WHILE <expr—3>
UNTIL
<stmt-list>
END

(Standard for Loops.)

Note: PREST4 does not permit use agf the Fortran IV forms of
the IF and PO statements; aonly the structured forms may be

usede.

~ G0TO <stmt-number>
6G0T0 <essiga—-variable>
GOTO {(<stmt—-number-1>; ¢cesy <stumt—-number—-k>), <var>
(Unconditional, ASSIGNed, and computed goto

statementsa.)

~ READ (<umnit-number>, <format-number>, END: <stmt> )
<input-variable-ti1st>
(Standard Fortran READ stetement with different syntax
for the end—of~-file <conditione. The END: <stmt>
provides a2 means of dntercepting an end-of-file

condition without introducing a GOTO statement.)

~ <type> FUNCTION <ident> (<parameter-list>)



POCCRNET Languagyge Study PAGE 2-110

<stmt-Llist>
END

SUBROUTINE <ident> { (<parameter—Llist>) }
<stmt~List>

END
(Standard fortran function and subroutines. Neither
can be recursive. Both functions and subroutines can

have multiple entry points.)

C. Data Structures

PREST4 has only one feature for building more complex data
types: arrays of up to 7 dimensions. The declaration
DIMENSION <ident> (<dimension-list>)
declares <ident> to be an array. FElements of an array are
accessed using standard subscript notaticn <ident>
{<subscript—-List»).

D, Other Features

PREST4 s essenzially a Fortran language with some
additional constructs for structured progremming. The language
has no block structure or recursien. PRESTL provides statement
functions, EQUIVALENCE, COMMON, and DATA statements, and the
Fortran I/0 statements. Comments are denoted by an asterisk in
the first column ot the input card. PREST4 also provides a numper

of control statements for affecting the output listings of &
PREST4 program:

ZLIST - Begin Listing source program.

XXLIST ~ Stop Llisting source programe

ZPAGE -~ Page eject.

ZSKIP <count> -~ Skap specified number of lines.

ZpocC - Places comments 1in boxes of asterisks.
XDOCEND

A controf statement XZCOPY <file-name> 1is alsa provided for
inserting program text into & PREST4 program from a files. This

feature would be very useful for inserting varijable declarations



POCCNET tanguage Study PAGE 2-111

or COMMON blocks into a proaram.

Ee Runtime Environment

—— s e - b g A aae s v

PREST4 has no dynamic storage allocation or recursion, S0 no
stack or heap is needed. E£xcept for I1I/0 and type conversion

routinesy PREST4 should run on a bare machine.
Fo SYntax

Fortran 1v (and therefore PREST4Y has a BNF grammar, but a
compiter would probably not use 1t. Fortran compilers tend to use

ad hoc compiling techniques.

2.12.2« CHARACTERISTICS

Ae Machine bPependence

PRS- AL L. T

ANSI standard Fortran IV (and therefore PREST4)Y 1is fairly
machine independent. Fortran programs can usually be transported
to different machines with only minor modifications (e.ge
different I/0 unit numbers).

Bs Efficiency

Fortran IV formatted I/0 must be performed dinterpretively
and 1is therefore quite stowe In all other respects fortran 1V
and PRESTL are efficent programming languages. We note, howvevers
that the additional structuring of PREST4L programs that would be
very helpful to & code optimizer 1s not availablte to the Fortran
compiter; all the structured statements are converted to If and

60TD statements bhefore reaching the compilers.

D. Size of Language and Compaler

——tm Za S

Because of the FEQUIVALENCE statementsy the wunstructured

nature of Fortran programs foptimization is difffcult), and the



POCCNET Language Study PAGE 2-112

preprocessor pass, PREST4 will reguire a fairly large compiler.

(&1

E. Speccial System Features

= o e

Although PRESTS is described as "A Highly Structured FORTRAN
Language for Systems Programming', the Language has no special

system featuress.

Fe Error Checkipg and Debugaing

Fortran compilers have traditionally had very poor conmnpile
and runtime diagnosticsy so PREST4 diagnostics will probably be
poor. The preprocessor phase of PREST4 does print error messages
when illegal PREST4 statements are detectede.

PREST4 has two control statements for debugging programse.
The statement XZIDENT <message> will cause <message> to be printed
eacth time the IDENT statement is encountered during execution of
the program. A fTull statement trace can be dnitieted with the
ZTRACE statement.

G. besiaon Suppert

= LU~ A

(a) modularity

PREST4 supports independent compilation of subroutines and

functions, and communication through COMMON blocks.
(b) modifiabality

PREST4 has a [imited number of structured programming
constructsy and an dinclude feature {(%COPY} to insert source
statements into a PREST4 program from & file. However, the
language has no macro processory no feature like the PASCAL
constant statement for decltaring program constantsy and no
significant features for —constructing complex data structures.
PREST4 programs uwould be easier to modify than ordinary Ffortran
iv programsy but more difficutt than programs written in
ftancuages like PASCAL or HAL/S.

{¢) reltiabiltity



POCCNET Language Study PRGE 2-113

The structured programming constructs make PPREST4 a great
improvenent over Fartran IV. However, PREST4 has no character or
string operators and data types, and does not have sufficient
data structuring capabilities. The Lack of these features
requires PREST4 programs to simulate any character processing,
list processingy or record processing with Fortran code. PRESTS
programs will therefore tend tc be longer than necessary and more

difficult to understand.
He Use

PREST4 1is implemented on the PPP-10, but the preprocessor

could be implemented on almost any machines



POCLNET Language Study PAGE 2-114
2-13: SIMPL""T

213+1. LANGUAGE FEATURES

SINPL-T [BAS74,8BA876a]1 1s a smally procedure oriented,
non-block structured ltanguage developed by Victor Basili and Joe
Turner at the University of Marylande. The Llanguage provides
features for arithmetic, charactery and string processing, and
includes a number of structured programming constructss SIMPL-T
is the basis language for a family of languages that includes
SIMPL-S and SIMPL-XI (systems programming Llanguages far the
Univac 1100 and the DEC PDP-11 series}), GRAAL (a graph algorithm

lancuage)s and SIMPL-R (a language for scientific programening).

A. Basic

i —————

S1I¥PL-T has three basic data types: INT (integer), CHAR
(single character), and STRING f(variable Llength <character
strings). Complete type checking is performed at compile-time,
and 1in general no automatic type conversions are performed.
SIMPL-T aliows six types of constants: 1integery character,
stringy binarys octaly and hexadecimals.

$IMPt~-T provides the following operators and functiens for

manipulating the basic data types:

arithmetic operators (INT operands only)d

+y ~y %, [, unary -

relational operators (INTy CHARy; or STRING operands)
=y &>y Ky >, €=, >=
The operand {ypes must be the same. The retational
eperators yield an integer result (0 — false,

1 - trued.

string operators & functiens
<string>» +CON. <string>
Concatenation of strings.
<string> {<start-position>,; <number-of-chars>l]

Substring ovperatore. May appear



POCCNET Language Study PAGE 2-115

on the left~hand side of an

assignment statemente.
LENGTH (<string>) Current length of string.
MATCH (<string-1>,<string-2>)

Position of <string=-2> in

<string-1>.

INTF (<string>) Converts string to integer.
STRINGF (<integer>) (onverts an nteger or a
<char
character to a strainge.
TRIM (<string>) Trims trailing blanks.
LETTERS (<string>) Predicate returning true i

<string> contains only letters.
DIBITS (<string>) Similar predicate for digitse.
CHARF (<string>) fonverts from string to

charactere.

togical operators (INT operands)
oAND.y vORey oNOT.

The logical operators all return an integer
result (0 or 1).

bit and part-~word operators (INT operands)
<integer-expr> :t%: <number—of-bits>
TRA:
teft logical, Lleft circulary right bLogical, and
right arithmetic shifts.

A
<int~expr> V. <int-expr>

Bitwise ands ory and exclusive or.

«Ce <int-expr>
Bitwise complement.

<int-expr> [<bit-position>y<number-of-bits>]
Part~vord selector. May appear on Left-hand side

of an assignment statement.

character functions
INTVAL (<char>)



POCCNET Language Study PAGE 2-116

ASCII code for the character.
CHARVAL (<ASCIl-code>)
Character corresponding to the ASCII code.
INTF (<char>)
Converts a character {(which must be a digit)
te an integer.

CHARF (<integer>)
<string>

Converts an integer or a string to character.
PACK {(<char—-array-variable>,<string-expr>)
UNPACK (<strling-expr>,<char—array-variablie>)

tonversion between strings and character arraysa.

Be Lontrol Structures

~— IF <expr> THEN <stmt-list> { ELSE <stmt~List> )} END
(Standard conditional with the required terminator

ENDW)

-~ { !'<tazbelt>! } WHILE <expr> DO <stmt-list> END
(khile toop with optional label. The lazbel may only be
referenced by EXIT statements; SIWNPL-T has no GOTQ

statement.) 1

— CASE <expr> OF
<case-expr-lList> <stmt—{ist>

<case-expr~Llist> <stmt-List>
{ ELSE <stmt-List> }

END
{Case statement. The <expr> is compared sequentially

vith the values 1in eacth <case—expr-List> ; the
<stmt-list> whose <case-expr-Llist> contains the <expr>
is executed. The <expr> and <cese-expr-List>’s pgust
alt be of the same typey but can be INT or (HAR. The
<gtmt=-Llist> of the optional ELSE clause 1is executed

only if no <case-expr~list> contains the <expr>.)



POCCNET tanguage Study PAGE 2-117

- PROC <jdent> { (<parameter—ilist>) )}
<proc—body>

<type> FUNC <ident> { (<parameter-List>) }
<function-body>
(Procedure and function definition. Both can be
recursive, and both <can receive their arguments by
value or by reference. ALL scalar parameters are

passed by value unless the REF option is specified.)

- EXIT € (<Label>) %

(Exit innermost or label while Lloops?

- CALL <ident>) { {(<argument-{ist> 2

(Call a procedures)

- <jdent> { (<argument-Llist>} 3

{(Invoke a2 TfTunctione.?

~ RETURN

{Return from a procedure.)

RETURN (<expr>)

{(Return from a function with a2 result.?

ABORT

(Terminate execution abnormally.)
Note: SIMPL-T provides no GOTO statement.

C« Data Structures

e Al Ra a e S A - S

The only data structure supported by SIMPL=-T 1is the
one-dimensional array. The declaration

<type> ARRAY <ident?> (<number-of-elements>)
declares <ident> to be a one-dimensional array of the specifed
type. The type can be any of the three basic types (INT, CHAR,
or STRING). Array elements are referenced wusing standard
subscript notation:

<jdent> (<subscript-List>) .



POCCNET Language Study PAGE 2-118

De ODther Features

. G e e i L e s B

SIMPL~-T has a parameterized macro facility of the form
DEFINE <ident> = <define-string>
where the <define-string> is any character string. Parameters in
.the string are denoted by 8&ny where n 15 any 11nteger between 1
and 9. For example:
DEFINE NUL = “CHARVALC(CO)”, /* control characters =*/
LF = “CHARVALCIDY
MOD = “&1-(8&1/&2)%827 /* mod function */

The language also has simple I/0 facilities.

E. Runtime Environment

T . S e e e e e oy i T

SIMPL-T reguires a runtime stack for recursive procedures
and functions, and for evaluatioen of string expressions.

Houevery, no dynamic storage allocator is required for arrays or

strings.

The working BNF grazmmar for SIWMNPL-T has ~pproximately 150

productions.

2:13.2. CHARACTERISTICS

SIMPL~T has few machine dependent features and could be

implemented on ailmost any machine.
Be. Efficiency

SIMPL-T has no dynamic arrays, and no automatic type
conversione. ALl type checking is performed at compile time, and
the default passing mechanism for procedure or function calls is
by wvalue. This atlows a great deal of work to be done a compile
time rather than at execution time. The Univac 1100 series

implementation of SIMPL-T generates code that is as efficient as



POCCNET Language Study PAGE 2-119

Univac Fortran V.

The compiler for SIMPL-T 1s moderate in size.

E. Special System Features

SIMPL-T has no special system featuresy although the two
system proocramming languages 1in the SIMPL family (SINMNPL-S and
SIMPL-XI) provide a number of system features. SIMPL-XI [HAWM76],
for example, provides indirect and absolute addressingsy access to
machine registerss and interrupt procedures (procedures activated
when a specific interrupt occurs). A gne-dimensional array MHENM
1s used to provide the absolute addressing feature: HMEM(I)
accesses the I-th word in main memory. A similar array HMEMB s

provided for accessing bytes.

Fe Error Checking and Nebugoing

—— e e e e aa

SIMPL-T performs complete type-checking at compile time, and
no implicit conversion between data types is permitted. SIMPL-T
can therefore detect many errors at compile time that can not be
detected by other Languages {(such as Tortran; LITTLE, or BLISS).

A number of compiler directives are also available for
debugging SIMPL-T programsy 1ncluding:

(1) subscript checking

(2) case statement checking

(3) calling history

(4) static and runtime statistics
{Such as number of statements executed,
timing estimates for procedures; and so
forth.)

(5} value tracing for program variables

(6) compilable comments

(the form of a compilable comment is



POCCNET Language Study PAGE 2-120

I+ <indicators> <SIMPL-text> +/

where an <indicator> is an integer that can be turned
on cr off with other compiler directives. For example;
I+ & WRITE ("DEBUG: ON ITERATION" s I,"X =",X) +/

{7) cross reference and attribute Listingse.

(a) modutarity

SIMPL-T allows 1ndependent compilation of program modules,

and communication through external variables and entry points.

{b} modifiabilaty

SIMPL-T has a fairly complete set of structured programming
constructs ancd a powertul macroprocessor. SINMPL-T programs should

be fairly easy to modify.
(c) retiability

The lack of constructs for building more camplex data
structures may make SIMPL-T programs longer than necessary and
difficult to read. SIMPL-T has no record structure, and arrays
can only have one dimension. A Large portion of a SIMPL-T
program that operates on compley data structures will therefore
be taken wup by segments of SIMPL statements providing access
methods for the data structuress. Languages with more complex
data types would provide these access methods automatically. In
HAL/S, for exampley if A and B are compatible record structures
then the statement A = B; will copy all of record B into record
Ae In SIMPL-T @ transfer of thais type would have to be simulated

by a number of assignment statements.
He Use

SIMPL-T has been 1mplemented on the Univac 1100 ser1es} the
PbP 11/45, the Data General NOVA, and the CDC 6600. A version
for the 18M 360 series 15 under developmente The compiler 1is

written n SIMPL-T 1tselfy so the compiler can be transported to



POCCNET Language Study PAGE 2~121

other machines using standard bootstrapping techniques. 1In fact,
the same front end (scanner and parser) is used on all
implementations of SIMPL~T. This oprovides standard error

diagnostics for incorrect programses



POCCNET Language Study PAGE 2-122

2.14. seL / Maf‘k 1v

2141« LANGUAGE FEATURES

SPL LSDC703 1s a large, high Llevel language developed by
System Dbevelopment Corporation 1in the period 19267-1970. The
language was designed for aerospace applications and combines
many of the features in the PL/I and JOVIAL tanguages. SPL offers
high 1level features ike data tables and matrix arithmetic, as
wetl as low levely, machine—oriented features like inline assembly
language and access to machine registers. SPL has five
application oriented subsets; the subset chosen for this report
(SPL [/ Mark IV) was desighed for ground-based support computers.
In the remainder of this section SPL / Mark IV will be referred
to as SPL.

A. Basic Data Iypes znd Operators

SPL has nine basic data types: INTEGER; FIXED, FLOATING,
BOOLEANy LOGICAL (bit stringl)y TEXT (character string),y STATUS
{ordered sets of "states"), LOCATION (typed pointers), and
CONTEXTUAL (a2 "universal" typel). The STATUS type 1s equivalent
to the PASCAL scalar type. CONTEXTUAL items can be assigned a
value of any type. When a CONTEXTUAL item X is assigned a value
of type Ty the type of the item X is assumed to be T untit X is
assigned a new value of different type on some subsequent {ine in
the programe CONTEXTUAL items are intended to be used for
temporary storage of variocus types of jtems.

The following types of constants can appear 1in an SPL
expression: integer, fixed point, Floating pointy boolean,
binary, octaly, hexadecimaly; and character string, Llocaticn, and
status. Mixed mnode expressions are permitted and automatic
conversion is provided between all of the basic data types.

The operators and the data types on which they operate are
listed below:

arithmetic operators



POCCNET Language Study PAGE 2-123

Fy —y ke 1y E%

REM ~ Remainder function.

ABS - Absolute vatue.

LSH - Left arithmetic shift.

RSH - Right arithmetic shift.

SCL — Scales an arithmetic expression.

SCLR +~ Scales and rounds an arithmetic expression.

logical operators
LAND, LOR,y LXOR,; LSH,y RSH
— Bitwise and, ors exclusive or, and left and right
Logical shift.
BIT - Pseudo-variable for accessing bit strings in any
type of item. €an appear on Left-hand side of

an assignment statement.

boolean operators
NOT, AND, OR, EQUIV

-~ ALL the boolean operators yield a boolean resulte.

rebational operators
EQy N@y GRs LS, G2, L@

- The retational operators yield 2 boolean result.

character operators
BYTE - Pseudo-~varisble for accessing bytes in a

textual item. Can appear on teft-hand side

of an assignment statement.

tocation operators
LocC ~ Yields leocation of an item.
IND - Pseudo~-variable for performing 1ndirect
addressing., Can appear on left-hand side

of an assignment statemente.

B. Control Structures

— - ————n e T ————

~ IF <boolean—expr> <stnmt-~-list>

(Simple conditional statementa)



POCCNET Language Study PAGE 2-124

~ IF <boolean-expr> THEN <stmt-list>
{ ORIF <boolean-expr> <stmt-list> >

[ 3 [ ]
- -
[ ] (.

{ ORIF <boolean-expr> <stmt-tist> }
{ ELSE <stmt-list> 2

END

— CONDITIONS

{(€onditicnal statement. If the initial boolean
expression 1is Talse then the boolean expressions in
the ORIF clauses are evaluated in order until a true
one is found. If atl the boolean expressions are

false then the ELSE statement is executed.)

<boolean-expr> <indicator—list>

o L
] L J
»

<boolean-expr> <indicator-list>
ACTIONS
<stmt> <indicatior—-List>

<stmt> <indicat5r-tist>

ELSE <stmt>

END

(becision table for creating a tabular solutfon to a
complex decision problemn. The table describes the
conditions applicable to the problem and the actions
to be taken 1in response to the conditions. The
indicator Lists in the CONDITIONS and ACTICNS sections
are composed of indicators Y (yes), N (no), and blank
(doesn”t apply). The 1ndicator N can only be used 1n
the CONDITIONS section.)

~ FOR <var> { = <init-value> } { BY <incr-expr> 1}
{ WHILE <boolean-expr> } { UNTIL <boolean—expr> }

<numeric—expr>

<stmt—-list> END



POCCNET Language Study PAGE 2-125

(For Lloop. If the <init-value> <clause is not
specified then the current value of the Loop variable
is used, and 31f the BY clause 15 not specified the
toop variable is not automatically incremented on each
iteration of the loop. The value of the leoop variable
and the <incr—-expr> can be altered by the Lloop body.
The clause UNTIL <numeric-expr> is equivalent to UNTIL
<var> EQ <numeric—expr>.

An abbreviated form of the FOR loop 4s provided

e
fer processing tables (discussed in section D« Dat

i

Structures)e The statement

FOR <var> = <table-name> <stmt-list> END
is equivalent to

FOR <var> = <length—of~table> - 1 BY -1

WHILE <var> GQ 0 <stmt—-list> END .J

3
-,
FOR <var> = <for-clause> R
ALSO <var> = <for-cltause>
o -3 =
- [ 3 -
ALSO <var> = <for-clause>

<stmt—-list>

END

(Parallel FOR loop. ALL of the Ltoop variables are
incremented on each iteration of the loop. The
<for-clause> contains the <init-value>, BY, WHILE, and
UNTIL clauses of the ordinary FOR statement.)

-~ LOOP WHILE <boolean—expr> <stmt-1ist> END

UNTIL
(¢hile and until loop with the test performed before

execution of the loop body.)

= ON <boolean-expr> <stmt-list> END

<interrupt—-name>
(feature for handling abnormal conditionse. The
<boolean-expr> 15 automatically evaluated whenever the

first operand din the expression (which must bhe a



POCCNET Language Study PAGE ?2-126

varijable) is assigned a new value. The wvariable can
be assigned a new value by an SPL statement or by some
harduare event. If the <boolean-expr> evaluates to
true or if the specified interrupt occurs then the
<stmt-{ist> 1is executed . The SPL ON statement is
similar to PL/I ON~conditions, although SPL provides
no vay of selectively enabling or disabling ON
variablesy or for <chancing the <stmt-list> to be

executed for a given condition or interrupt.)
- UNLOCK <interrupt-name>
LOCK

(Enables or disables the specified nterrupts. The
LOCK and URLOCK statements <c¢an also be used for

reserving hardware registers.)

GOTO <tabel>
<lpcation~variable>

{Unconditional transfer. The location wvaraiable 1is
assumed to contain the address of some SPL statement
label.)

GOTOo <switch-pame> (<integer—expr>)
{(Computed gotl0Co The <switch—-name?> must have been
declared with a statement of the form
) SWITCH <switch-pname> = <lLabel—~{ist>
en execution of the GOTO statement the value 1 of the
<integer—expr> is used to select the i-th lazbel, and a

branch is made to the selected label.)

~ RETURN { (<result-expr>) }
(Return from @ procedure or function with an

optional result.)

- $TOP { (<label>») }
(Halts execution. A "“continue operation® after the
execution of a STOP statement will result 1in a
transfer of control to the statement fTollowing the
STOP statement, or to the specified label.)



- TEST

- WAIT

-~ PROC

{

<d
ENDD
<s

EXIT

POCCNLCT tanguage Study FAGE 2-127

{ {(<FOR-lLoop-variabie>) }

(Continues the next iteration of the innermost WHILE,
UNTILy or FCOR toops or the innermost FOR Loop having
the specified lLoop variable.)

(Repeats execution of an If, WHILE, or UNTIL statement
untit the conditjonat expression is satisfied. The
statement 1s imntended to he used teo halt the execution
of a program until some external event has occurred.
For examplesy

IF STATUSREG EQ X72C7 THEN WAIT )

s<prac-name> { (<input-parameter—list>
= <output—parameter-tist>} 7
<type> ¥ { §§%£¥EANT b
RECURSIVE

ata~declarations>
ATa
tmt—-List>

{ (Kresult-expr>) %
{Procedure or function definition. Procedures,
functionsy and statement 1labels can be passed as
procedure paranheterse. Atternate exits from a

procedure are possible by branching to &2 statement
label parameter. Both procedures and functions can
have multiple entry points. The EXIT clause at the
end of a function definition indicates the expression
ta be returned by the function, although the EXIT

expression can be overridden by a RETURN statement.)

—~ e«<proc-nane> { {(<input-arguments> = <putput-arguments>) }

~ CLOS

{Iinvoke a2 procedure or function.)

£ <close-name> <stmt—-Llist> END

(Parameterlessy internal subroutine that can be



POCCNET Language Study PAGE 2-128

defined within another procedure. ?

~ GDTO <close-name>
(Call a2 CLOSE subroutine. Control will resume at the

next statement when the CLOSE routine has finished

execution.?’

€+« bata Structures

—_—a am il e A Aemm e - ——

SPL has three features for constructing more complex data

4

structures from the basic data types:

(a) arrays

Arrays are declared with a statement of the form

ARRAY <ident> (<dimension-=list>) <type> { géﬁégm 3

The <type> can be any of the basic data typesy and the
options MEDIUM and DENSE affect the packing density of the
arraye. Arrays can have an arbitrary number of dimensions.
The <dimension—-tist> can optionatly contain dimplicit
subscripts for each of the dimensionse. These implicit

subscripts are used &as the defaukt subscripts whenever an

array variable is used without explicit subscriptse For
example:

ARRAY M(I 10, 4 10) INTEGER "™ Matrix with implicit "

FOR I = 0 BY 1 UNTIL 10 ¥ csubscriptss "

ALSO 4 = 0 BY 1

m =1 * Egquivalent to "

END "OM(Ied)? =1 . i

Array indexing begins at 0, and array elements are

referenced wusing the standard subscript operator <jdent>
(<subscript~tist>) « The following operators are availabtle
for manipulating arrays, matrices (2 dimensional arrays or 2
dimensional subsets of arrays), and vectors {(rouws or columns

of matrices):

"
I

Assignment.

It
3]
1

Exchange.



POCCNET Language Study PAGE 2-129

+y - -~ Vector and matrix addition.

* -~ Vector and matrix dot producte

k-1 - Matrix inverse.

TPOSE - Matrix transpose function.

/* - Cross product for 3-D vectorses
(b} tables

SPLL has a table data structures almost iddentical to +the

JOVIAL/J3B table. Tables ere declared with z statement of

the form
TABLE <ident> { (<implicit-subscript>) } <table-tength>
MEDIUM
{ SERIAL > { DENSE )} <item~declarations>
TIGHT -

The implicit subscript 1s used whenever the table identifier
is used a subscript. The default method for allocating
tables is by "“columns®, that is, there 1s a contiguous block
of core for the first item in all table entriesy another
block for all the second items,y and so forth. If the SERIAL
cption is specified, however, the table will be allocated by
table entrye For each tabte entry there will be 2 block of
core Llong encugh to contain alt the items in the entry. The
options MEDIUM, DENSE, and TIGHT affect the packing density
of the table. The items in the <item-declarations> list can
be any of the basi1c data typessy but item names must be
distinct between tables.

An alternate version of the table declaration gives the
programmer complete control over placement of items within a
table entrye. The number of words per table entry and the
placement of each 4item <{word position and starting bit
within the word) is directly speci1fiede The storage for

items can overlape.

Tabtes can be accessed in any of the following four ways:
<table-name> - Accesses entire table,
<table-name> (<subscript>) - Accesses all of the specified

entry in the table.



POCCWET Language Study PAGE 2-130

<item~name> - Accesses an entire column of
the table.
<item—-name> (<subscript>) - Accesses a single item in the

specified table entry.
The assignment operator =y the exchange operator ==; and the
relational operators EQ; NQ@ can be used to copys exchanges
or compare tables or table entries. The assignment operator
can also be used to copy columns of a tables. Finallys the
functions NENT and NWDSEN are provided for determining the
number of entries 1in a table and the number of words in a

table entry.
(c) record structures

Record structures are declared with the statement

<ident>. DECLARE <member-declarations>
The members in a record can be arrays, tables, or any of the
basic data types. The identifiers used for members need not
be distinct from dJdentifiers declared elseuhere. The ~
operator is used to access members im a record:

<record-name> “ <member-name>

be Other Features

————— T ——— i ——

$PL has an OVERLAY statement that 1is equivalent to the
Fortran EQUIVALENCE statement, and extensive facilities for
sequential 1I/0 (including programmer specified blocking Tfactors,
record format, error exits, data conversion, and statements for
opening and closing files)e

Simple replacement macros can be defined tusing the DEEINE
statement

PEFINE <ident> AS <character-strang>

ALl occcurrences of the identifier are replaced by the character
string. SPL also has a CONSTANT declaration for declaring
program ctonstants, and an dimplementation dependent COMPOOL
feature that is similar to the JOVIAL COMPOOL file.

The Ltanguage provides default declarations for undeclared
variables, and the programmer can change the default to any of



POCCNET Language Study PAGE 2-131

the basic date types at any point in an SPL program. Finally,
the 5SDC implementation of SPL / Mark IV has compiler directives
permitting the wuser to write portions of an SPL program in the
JOVIAL language.

Es« Runtime Environment

i g e e B s e me e s e e e

SPL reqguires a runtime stack for programs using recursive or

reentrant procedures and functions, and sequential I/0 routines.
Fo Syntax

The BNF grammar for SPL has approximately 400 productions.

2aifade CHARACTERISTICS

SPL has a Llarge number of machine dependent features,
including the function BIT for accessing b1t stringsy; the OVERLAY
statement,y user specified table allocation (word position and bit
position within 2 word), the hardware statement, and inline

assembly languages

= —— s i T

SPL permits efficient programming. The Llanguage provides
high Llevel operators C(inclucing matrix arithmetic and direct
assignment of arrays and tables), a structured control structure
that permits better optimizations many features for minimizing
storage reqguirements (the OVERLAY statement, user defined tables,
packing densities),; the INDEX statement for Trequently accessed
vartiablesy; and the abi{ity to generate inline assembly code. No

runtime stack is required for non-reentrant proceduress
C. Level of the Language

SPL is a high Level language, although it also provides a

large number of Low level features.

bs Size of the Language

_— o ah h e e b s —



POCCNET Language Study PAGE 2-132

SPL ia 2 large language and will require a large compiler.

E. Special Systiem Ffeatures

- ——

SPL has many features that would be helpful $n systems
programming, incltuding

(a) Pointers, tables, and record structures.

(b) Recursive,y reentrant, or inLine procedures. Procedures can
have wmultiple entry points and alternaste exits. A programs
can abort to a procedure many "levels®™ back up the calling
chain by branching to a statement label passed as an input
parameteros

(d) The OVERLAY statement, and wuser defined table allocation
pernitting the overlaying of data dtems and access to a
btock of core under varying data formats.

(e) The ON statement for intercepting interrupts and abnormal
conditionse

(f) The HARDWARE statement for defining machine registers and
other hardwar2y and the DIRECT statement for inline assembly
Language.

€g) The LOCK and UNLOCK statements for reserving hardware
registers, enabling and disabling interrupts, and
establishing read/write protection for areas of memory (for
mathines having & memory protection facilityd.

{h) The 1INDEX statement for requesting that frequently accessed
varijables be allocated 1in the fastest storage Llocations

availablee.

—_—— e T ———— —_—= e-m—

In generaly SPL requires careful programming, Automatic
conversion is peformed bewteen the basic types, and default
declarations are provided. This will tend to hide a number of
programming errors such as misspellings. Location variables can
be used to alter instructions or to branch dJnto a data areao
Finallyy, the language has many system features the permit the
user to directly access hardware facilitiese.

SPL has two compiler directives that would be helpful 1in



POCCNET Language Study PAGE 2-~133

debugging and improving SPL programs. The TRACE directive is
used to trace the value of selected program variables and the
flow history of statement labels for selected areas in a programe.
The TIME directive enables the progranmer to determine the

execution time of any block of SPL statements.
6. pesign Support
(a) modularity

SPL s cquite modulare. The language has internal and external
procedures and functionsy the CLOSE routine for nested
proceduresy a structured control structure, and the COMPOOL filea.

Independent compilation of procedures and functions is perpitted.

(b) modifiability

The language has a variety of basic data typess high Llevel
operators, the CONSTANT attribute for declaring program
constants, the PEFINE statement for declaring simple macros, and
a structured control structure. ALl of these feastures would make
SPL programs easier to read and modify.

Howevery SPL also has many machine dependent features that
permit bit packingy overlaying of data areasy and inline assembly
tanguage. Use of these features in a program would make
modification or transportation fo other machines difficults. The
language also permits programs to be written that are not "self
documenting®. Implicit subscripts are provided for arrays and
tabtes, automatic type conversions are performed, and default
declarations are provided for wundeclared variables, The
statement GOTO A in an SPL program can be an unconditional branch
to the statement tLtabeled A or a call of a parzmeterless
procedure.

{(¢) retiabitity

SPL provides many low level features that permit efficient,
machine dependent programming at the expense of reliability. ALL

of the system features require careful programming. Aufomatic



POCCNET Language Study FAGE 2-134

type conversions and default declarations will alse tend to hide

program errorsSe
He Use

SPL has been implemented on the IBM 360 and 370 series and
on the CDC 6000 series. The compiler was developed by SDC using
the translator writing system CWS.



POCCNET Language Study PAGE 2-135
2+15. STRCMACS
2e15:.17. t ANGUAGE FEATURES

STRCMACS [BARY41 is 2 set of macros providing structured
programming constructs for IBM 0S/360 assembly language. The
macrosy which were developed by C. Wrandle Barth at Goddard Space
FLight Center, are placed in the 0S/360 macro library and invoked
automatically during the assembly of an STRCMACS programe No
preprocessor step ¥s required. In the remainder of the sectiony
STRLMACS will be considered to be the structured programming
macros plus all the facilities of 05/360 assembly tanguage.

T e

STRCMACS is a macro assembly language operating on 32-b1t
wordsy and no type checking is performeds The operators are the
05/360 assembly Llanguage instructionse The dnstruction set
provides instructions for maniputating bitsy, charactersy
integers, and floating point, double precisiony extended

precisiony, and decimal numbers.

B. Control Structures

e e A AL Rl L e e e ——

-~ BLOCK
<instruction-1>

[}
[ 3

<instruction~k>
BLEND

(Compound statement or code blocks)

~ If <test expression>
<instruction Llist>
{ ELSE
<instruction tist>
FI
(Standard conditional statement. The <test expression’>

is composed of machine instructions for setting the

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POCR



POCCNET Language Study PAGE 2-136

condition code and mnemonics {(from the extended

branch-on-condition mnemonics) specifying under what

conditions the "then" part of the if statement is

be executeds Tests 1in the test expression may
ctombined using the connectives AND and OR.

examples

IF (LTR,3,:3,P) ~ if register 3 > O

IF (TMy8(1)4X"80740)40R, (CLC,SIZE,=C"MAX 7,EQ)

- 3f high order bit of

word at B(1) is set,

or if SIZE = “MAX 7

b0 FOREVER
<instruetion-iist>
0D
(Unbounded repetition,)
PO WHILE, <test expression>
UNTIL
<instruction Llist>
oD

{Standard while and repeat toopsa The <test

expression> 1is jdentical to the one described for the

IF constructe)

DOCASE <case var>
CASE <instruction List> ESAC

-
L]

CASE <instruction List> ESAC
ESACOD

DOCASE <case var>
CASE <case value List> <instruction tist> ESAC

-
[ ]

L]
CASE <case value list> <instruction list> ESAC

ESACOD

DPOCASE
CASE <test expression> <instruction Llist> ESAC



POCCNET Language Study PAGE 2~137

-
.

CASE <test expression> <instruction Llist> ESAC
ESACOD
(Case and Select constructse. In the first twe forms
the <case wvar> is used to select one of the CASE
blocks for execution. The <case wvar> can be a
register or @a memory Llocation, and can be a bytey
halfword, or fullword in Length. In the first form of
the DOCASE the <case var> is used directly to select a
CASE block (if <case var> = i then the i-th CASE block
is executed). In the second form, the <case wvar> 1is
compared sequentially with the <case value List>s; the
CASE block whose <case value list> contains the <case
var> is executed. In the third form of the DOCASE
there 1is no <ctase var>; the <test expressions> are
executed sequentiatly until one of the tests succeeds.
The CASE block containing the succeeding test is then
executedeo
In any of the three forms of the DOCASE construct
one of the CASE blocks can have the MISC operand (for
miscellaneous), A CASE block with this attribute is
executed if no other CASE blocks 1in the DOCASE are

executed.

exanple:
case block block will be executed if
CASE 2 <case var> = ¢
CASE 34+(5,12) <case var> = 345,604s00412
CASE "=7,7<>7 <case var> = "= or <>
CASE (“117:;7157) <case var> = “117,40e,7157
CASE (LTRy8,842) register 8 = ( )

~ <label> PROC { <options> )
<instruction list>
CORP <iabetl>
(Procedure construct. The procedure can be called

using the 0S8/360 CALL macro. The <options> operand



POCCNET Language Study PAGE 2-138

allows the user to specify standard or non-standard
tinkages; dynamic saveareass a Drocedure identifier

string, base registers, and so forth.)

- EXIT <label>
(Exit the specified block.)

- ONEXIT
<instruction list>
{ ATEND
<instruction list> 2
obp
{STRCMACS distinguishes between normal exit of a DO
loop by failure of the loop test and abnormal exit by
the execution of an EXIT macros. The ONEXIT oes ATEND
construct can be appended to any of the DO loop
constructs. 1If the loop is terminated abnormally then
the ONEXIT <instruction List> 1is executed and the
ATEND <instruction list> 1is <skippeds IF the loop
terminates normally onty the ATEND <instruction Llist>

is executeda)
C. pata Structures
STRCMACS has no high level data structures.
De Other Features

An STRCMACS program can wuse atl of the 05/360 assembtly

language instructions.

E. Runtime Environment

The STRCMACS macros are translated into assembly language by
the 05/360 assembler. There is no compiler for STRCMACS.

2152, CHARACTERISTICS



POCCNET Language Study PAGE 2-139

As Machin

-—-—

Dependence -

The STRCHMALS macros are designed for the IBM 360 series.

However, similar macros could be designed for any machine.

Bs Efficiency

. — —— — iy —

C. Level

- ————

STRCMACS is a very low level language.
br Size of Language and Compiler

STRCMACS is implemented by 3 small number of macros, and is
therefore quite smallo

Es Special System Features

STRCMACS has no special constructs or data structures for
systems programming. However, the user has access to the full set

of 05/36C assembly language instructionse.

Fe Error Checking and bebugging

The STRCMACS macros will produce diagnostic messages at
assembly time if an error is detected. Howevery No runtime error
checking is performed. A few features are provided for debugging
STRCMACS programse Any PROC can specify the following debug
options: (1)} LISTBLOCKS - Llists the static nesting, name, and
block number of all blocks in the PROC; €2) PROCNAMES -~ generates
an in-Lline character string for the procedure name to aid in
locating procedures in an ABEND dump; (3) PROCCOUNTS, BLOCKCOUNTS
=~ counts the number of times that each block in the PROC 1is
executed; (4) PROCTRACE — maintains the c¢alling history of the
last 257 blockse.

(a) modularity

STRCMACS supports 1independent assembly of programs, and



POCCNET Language Study PAGE 2-140

provides communication through external wvariabltes or COMMON
blockse The language is also caonsiderably more structured than

ordinary assembly lancuages
(b) modifiability

STRLMACS is essentjally an assembly language. Although the
structured programming constructs are a vast improvement over
ordinary assembiy Llanguagey STRCMACS programs will still be
difficult to modify.

(c) reliabitity

Although the structured constructs are an 3Jmprovement,
STRCMACS will statl have the same reltiability problems as
assembly language. No type checking of any sort 1is performed,
all the operators {(machine instructions) are low tevel, and there

are no data structuring facilities.
He Use

STRCMACS is implemented on the I1BM 360 series. Since the
structured programming constructs are not machine dependent, and
since the number of macros 1is small, STRCMACS could be

implemented on other machines without any significant effort.



POCCNET Language Study PAGE 3~1%

3. POCCNET REQUIREMENTS

In this chapter we examine the specific requirements of
POCCNET EDES76a,DEST6bY and its appltications software. POCCNET
is a hardware/software system that will support the development
and operation of Payload Operations Control Centers {(POCCs)
during the 1980°s. In order to implement the POCCNET systemy
software must be developed for the distributed computer network
and the standardized applications software. Wer will therefore
give a brief description of each of these arease.

The POCLNET network is composed of five functional
subsystems: an Applications Processor (AP subsystemns, an
Interprocess (Communication (IPC) subsystem, a Data Base (pB)
subsystem, an Interface subsystem, and 3 Control subsystem. The
AP subsystem 1is composed of general purpose minicomputers with
operating systems capable of running POCC software. The IPC
subsystem handles all message transfers within the network,; and
the DB subsystem provides on-line storage for the POCCs and the
network. The standardized applications software for POCCNET is
also managed by the DB subsysteme. The Interface subsystem
provides communication between POCCNET and the outside world
(uhich includes human users, telemetry and commands, and other
computer systemsle. Finallysy the Control subsystem directs and
monitors the operation of the entire POCCNET system.

The package of standardized applications software will
provide software that implements functions common to many POL(s.
Thts includes POCC application programs, progranm development
tools,; and related software.

The 1implementation Llanguage (or group of languages) for
POCCNET will therefore have to support altl of the follouwing
application areas: (1) general systems programmingy which is
required throughout POCCNET; (2) real-time processing for
time~critical operations in the IPC and Interface subsystems; (3)
data-base processing for the DB subsystem; (4) numerical

processing for massaging spacecraft datay, simulating telemetry,



POCCNET Language Study PAGE 3-~2

and so forth; (5) data formatting and conversjon for the
Interface subsystem. This invelves primarily bit and character
string processinge.
For each of these application areas we would Like a
programming language that provided the following features:
(1) general systems programming
(a) bit and character string manipulation
(b) some ability to perform absolute and indirect addressing
(such as pointers or the SIMPL-X! MEM array)
(c) record structures and one—dimensional arrays
(g) ability to suppress type checking, so that a block of
core can be accessed under various data formats
(e) exception handling by ON-conditions or dinterrupt
procedures
(f) reentrant or recursive procedures and functions
(g) dynamic storage allocation
(h) concurrent processes and controlled data sharing between
processes

{i) access to operating system facilities

{2) real-time processing
(a) atl of the features of general systems programming
{b) high efficiency
(¢) real-time scheduling of processes (schedule at a certain

timey in & certain number of clock ticks, and so forth)

(3) data-base processing
{a) protection mechanism for files and 1individual data
- elements -
(b) various file organizations and access methods
(c¢) good data structuring capabilities, possibly a data
abstraction featurea

(d) facilities for defining a data—-base management system

{4) numerical processing
(2) varjety of arithmeti¢ data types and precisions

(b) user control over precision



POCCNET Language Study PAGE 3~3

(¢) ability to intercept underflow and overflow conditions
{d) array, matrix, and vector data structures

(e) library of mathematical functions and subroutines

(5) data formatting and conversion

(a) bit and character string manipulation

In addition to the requirements for the separate application
areasy there are a group of features that should appear 1in any
POCCNET implementation Llanguage. These features include integer,
ftoating pointy and charatter data types; control structures for
structured programming; arrays and record structures for building
data structures; a macro processor; and some form of INCLUDE
statement for copying commonly used source files into & program.
A data abstraction facility would also be very helpful, although
£S~4 and Ceoncurrent Pascal are the only languages 1n this study
that provide such a features

In addition to having altt of the above capabilitiesy the
scientifaic programm;ng notation should possess certain
characteristics. Among other things it should support ease of
program expression, the writing of correcty efficienty and
portable code, and the reuse of algotithms written in it. Let us
consider these characteristics one at a(time.

One would like to express the algorithms 1in a natural
manner. This implies the notation should be naturat to the
problem area. For example within the general problem area of
mathematics there is a specialized and different mathematical
notation for the algebraist and analyst. Each aids in expressing
the problems of the particular area explicitly and precisely and
in an easy to communicate forme

Correctness of & program is defined as the ability of the
program to perform consistantly with what we perceive to be 1its
functional specificationss The programming Language should
support the writing of correct programse The Language should
simptify rather than complitate the understanding of the problem
solution. The complexity in understanding a program should be

due +to the complexity inherent in the algorithms, not due to the



POCCNET Language Study PAGE 3-~4

notation usede. The notation should be clear and simple. A
language natural to the problem area aids in correctness as it
makes the statement of the solution easier to read and
understand. The easier it is to read and understand a solution
algorithm, the easier it is to certify its correctness. Aids 1in
making a program readable are structuring it from top to bottom
and breaking it into small pieces. In order to achieve the goal
of supporting correctness,y a language should be simple, contain
well—understood control and datas structures, permit the breaking
up of the algorithm 1inte small pieces using procedures and
macrosy and contain high-Level problem area oriented language
pramitives.

A program is considered efficient if it executes at as fast
g speed and in as small a space as i5 necessary. The {anguage
should permit the efficient execution of programs written in ite.
The higher tevel the atgorithm, the more informatien dis exposed
for optimization and the better job a compiler c¢an do on
improving the code gencrated. On the other hand, high Level
often 1implies general applicability 1im order to handle the
majority of casese This can often imply 2n Jinefficiency for a
particular appltication. For example, consider a language in
which matrices have been defined as 2 primitive data type with a
full set of operators dncluding matrix multiplication. The
multiplication operation has been defined for the general case.
Suppose the particular subproblem calis for the multiplication of
two triangular matrices. Using the standard built in operator is
inefficient. one would Ltike to be ahle to substitute a more
efficient multiplication algorithm for the particular case
involved. sut this implies that the Llanguage permits the
redefinition of lancuage primitives at Lower tevels of
abstraction. That 1isy the programmer should be able to express
the algorithm at a hich Level and +then alter the Lower Llevel
design of the atgorithm primitives for a particular application
when 1t is necessary for reasons of efficiencye.

A language supports portabjlity when it permits the writing

of algorithms that can execute on different machines,



PUGCCNET Language Study PAGE 3-5

Portability 1s a difficutt, subtle probltem that involves several
diverse subproblems. The numerical accuracy of arithmetic
computations can vary even on machines with the same word size.
Techniques for dealing with this problem include variable Llength
arithmetic packages or a minimum precision (modulo word size)
specificationse. Another problem area of portability is text
processinge One way of dealing with this problem is to define a
high-level string data type which is word size independent. A
third areas of problems involves interfacing with a varjety of
host machine systems. One method of handling'this is to define
programs to run on some tevel of wvirtuat machine that 1is
acceptable accross the various machine architectures and systems
and then to define that virtual machine on top of the host system
for each of those architecturess This is commonly done wusing a
runtime library. 1In general the higher level the algorithms, the
more portable they are. However, more portability often means
tess efficiency. A language that supports portabiltity should
contain one of the above mechanisms for transporting numericatl
precision accross machine architectures, hiah level data types,
the ability to keep nenportable aspects in one place, and a macro
facility for parameterizing packets of information modulo word
size.

Software is reusable if it <can be wused accross several
different projects with similar benefits. 1In order for software
to be reusable, 1ts function must be of a reasonably general
naturey e.gey the sguare root and sine functions, it must be
written in 2 general way @end it must have a good, simplte,
straightfoward set of specifications. The area of scientific
programming has a better history of reusable software than maost.
Consider as examples some of the Libraries of numerical analysis
routines. This is due targely to the easily recognizable,
general nature of many scientific functions and the simplicity of
their specifications. Howevery there are whole areas of
scientific software development that do not have a histroy of
reusey such as telemetry software.

Software Written in a general way may perform less



POCCNET Language Study PAGE 3-6

efficiently than hand~tailored software. Howevery 3f it is well
wuritten it should be possible to measure it and based on these
measures modify it silightly in the appropriate places to perfornm
to specification for the particular application.

A good, simpley straightfoward set of specifications is not
easy to accomplish, especially when the nature of the function is
complex. A good high tevel algorithm can help in eliciting that
specification. Specifications Ffor software modules should also
include an analysis of the algorithmy e«gsy, the efficiency of the
atgorithm with respect to the size of the ihput datae The
language should support the development of a good tibrary of
well-specified software modules that are easy to modify 1if the
time and space requirements are off. It should also be capable
of interfacing effictently with other languages and of expressing
algeorithms so that the essential function 1is <c¢lear and of a

general nature.



POCCNET Language Study PAGE 4-1

4., LANGUAGE FEATURE TABLES FOR THE LANGUAGES

4.17. INTRODUCTION

Chapter 2 contained a discussion of the criteria wused for
evaluating the fifteen languages, and the preliminary evaluations
of the LlLanguages themselves. This chapter contains a series of
tabtes that summarize the evaluations in Chapter 2y as well as
adding some new information about +the Llanguzaes and POCCNET
requirements discussed in Chapter 3. Each table 1is devoted to
one of the following POCCNET reguirements: modularity,
modifiabitlityy reliabpility, data structuringy character string
processing, bit string processing, numerical processingy
efficiencyy special system featuresy and error checking and
debugging. Each table contains the primary language features
that influence the POCCRNET requirement, and iJndicates for each
tanguage feature the presence (X) or absence (.} of that feature
in the languages. Footnotes are added to the end of some of the
tables to provide additional information about a tanguage or
tanguage feature.

The following abbreviations are used for the 1lancuages 1n
the tables: BL {(BLISS-11)y ¢ (C)y CP (CONCURRENT PASCAL), FL
(FLECS), HS (HAL/S), IF (INTERDATA FORTRAN V), JS (JOSSLEY, 4V
(JOVIAL/J3B)Y, LI (LITTLE), PA  (PASCAL), P& (PREST4L), S1
(SIKMPL~-T); and SP (SPL / Mark IV)s. The language STRCMACS is not
included 1in the tables because 1t only provides structured

control structures (no data types or data structuresl.



POCCNET Language Study

4e2. HMODULARITY

Language Feature

Structured control structure

Independent compitation of
programs

INCLUDE feature [1]
COMPOOL files
Global or COMMON data

Controlled access to shared
data [23]

pata abstraction facility
Btock structure [31

Notes:

BL

P C4
X

X
X

Languages
FL HS IF J5 JVv L1
e X X X
X
L -] - [+ x -
L - x ° L] x L ]
X X X X X X
- x o =5 L -3 L 3
k-4 L] -3 -] L] o

£1] Some feature permitting source text from a program

Library to be included into a program.

[23 Such as the HAL/S UPLATE block.

£33 JOSSLE 4s a8 block structured tanguage, but it restricts

the inheritance of giobal variables.

See discussion of

KNOWN statement in the Chapter 2 evaluation of JOSSLE.

PAGE
PA P4
X
« X
. X
X X
X =«

42
$1 SP
X

X

° X



POCCNET Language Study

4.3, MODIFIABILITY

Language Feature

Structured control structure
INCLUDE feature L[1]

CompPOOL files

Data abstraction facilaity
Simple replacement macros [21]
Parameterized macros

Conditional compilation of
scurce text

High level data structures
and coperators

CONSTANT declaration

Notes:

BL

> M

cp

Languages

FL HS IF Js JV

X X « X
-] o L4 L3
- x -] " L)
-3 x L3 &
e X o e
o [} x »
o X o X
e X o X

£1] Some feature permitting source text from 2 program

Library to be included 4nto a programe.

£2]1 Macros that do not permit parameters.

et

M Do

LI

a0

-]

PAGE

P&

4-3
SI S§p
X X
o x
X X
X .
X e
. X
. X



POCENET Language Study

behe RELIABILITY

Languege Feature

Structured control structure
Futl type checking [13
INCLUDE feature [23

Data abstraction facility
COMPOOL files

High [level data structures
and operators

CONSTANT declaration

Few machine—~dependent features
Standardized output Listings
bPebugging aids [31

Few compiler—-supplied defaults

Notes:

£1) Including type checking of procedure parameters.

[21 Some feature permitting source text from a progranm

BL

o

o

P C4
X X
X

X X
X X
X X
X X
[ -
« X
X

Library to be included into & programe.

£33 LITTLE and SIWPL-T provide many debugging aids, the

other languages provide only a fews.

> M 0

]

X

o>

[

X
X

lLanguages
FL HS IF JS

JV

X

PA

PAGE

S1

4~4

5P



POCCNET Language Study PAGE

4.5, DATA STRUCTURING FEATURES

Language Feature

Array data structure
Array assignment operator

Arraé comparison operators

Record data structure [1]
Record assignment operator

Recogducomparison operators

Untyped pointer variabtles [2]
Typed pointer varijables (3]
Address functicon for pointers

Bynamic storage allocation
uUsing pointers

Set data type
Set assignment operator

Set relational operators
= and "=

Various set operators E£53

Data abstraction facility

Notes:

BL

[1] JOVIAL only has a table data

from simple itemsy so that a JOVIAL table can not contain another

Languages
€C CP C& FL HS IF JS JV LI PA P& SI

AO0X X X X X X X x X X X

'] x - L) [ -4 - L & L3
x x X -4 x - [ e LJ
-] x L L] x x & < Ld
o x L x L) L] x o - L3
[ 3 -] ] L4 o x L -3 e L] L] L3

1 x * - - L] - a - -
-] x ® - -» - L J - - L]
L] x ¢ L ] L] * o - L]
- x L4 - [ - *» L ] x L ] L
- - L] - - * > - - -

structure {(tables can only be formed

table or an array as one of i1ts items)e.

21 Pointers in INTERDATA FORTRAN V can onty be used to fetch data

indirectly, they can not be used to store data indirectlye.

£2] The JOSSLE pointer type is really a table index (subscript) and

not & general pointere.

£4]) Such as the JOSSLE ALLOCATE statement or the PASCAL function NEW.

E5] Such as set union, intersection, complement, and membership.

4=-5

SP



POCCNET Language Study PAGE

4.6 CHARACTER STRING PROCESSING

Language Feature Languages

BL C CP C4 FL HS IF JS JV LI PA
Character data type [13] e X X & & & o ® & o X
Character string data s o s X e X & X X e s
type [21 .
Assicnment operator for 5 o s X o X o X X X .
strings
Concatenation cperator s o o X & X & X o« X =
Substring pseudc~operater [31 . +» o X o« X & o X X o
Substring function only 6 e o o o o s X &« e o
Length function . o e e X o« X & s o e =
Egﬁggg§er search function e ¢ © e o X o oo e X e
Relational operators =, T= X X X X %X X X X X X X
§§:a§ional operators <, > X X X « X X x o« o X

Conversion between character X X X X « X - X X x X

and integer datz type

Notes:

L1] Fortran has no character data types Dut permits characters
to be packed into INTEGER variables. LITTLE is typeless but

. provides character string cperators.

P4 S1
e X
o X
e X
e X
« X
» X
X X
X X
e X

{23 Cy CONCURRENT PASCAL; and PASCAL have no character string data

typey but they do permit character arrayse.

[3]1 A substring pseudo-operater can appear on the left~hand side of

an assignment statemente.

4-6

sP



POCCNET Language Study

4.7. BIT STRING PROCESSING

Lanauage Feature

Bit data type L[11

ANDy ORy NOT functions

SHIFT function

Bit substring pseudo-operator
Concatenation operator
Relational operators =, 7=
Relational operators <, »

<=, >=

Notes:

{13 BLISS-17 is typeless but

e ©o o o o
X X s o e
X X o &
X e e 8
N N
X o o 2 @
X o e o o

it provides bit manipulating operators.

X
X

> X

» Oox =

X
X

l.anguages
BL C CP C4& FL HS IF JS

JV L1
X X
X X
X
X X
o« X
« X
« X

PA

PAGE 4-7
P4 SI 5P
[ L. x
o X X
s X X
+» X KX
e X
. X

INTERDATA FORTRAN V and SIMPLT-T have no bit data type but they

provide operators or functions for mamniputating Dits in dinteger

expressions.



POCCNET Language Study PAGE

4,8. NUMERICAL PROCESSING

Language Feature Languages
BL € CP €4 FL HS IF JS JV LI PA P4
Integer data type X X X X X X
Floating point data type « X X X X X X X X
Fixed point data type e o 2 X & o &+ s X & e
Complex data type o e « X e X & &+ &« = X

bouble precision floating e X o e« X X X &« X & e X
point type

Variable DPECiSiUn for all 2 - . X ° ° [ 3 3 ° [ a
numeric data types

Automatic conversion between a X L+ X X X X . X . & X
the numeric types

Generic numerical functions e s X X & X o X X o X .

Ability to intercept underflow ¢« « « X & X & o =« o « «
or overflow conditions

Matrix or vector data type [1] &« &« ¢ X o X o & & & = &

Matrix and vector assignment s = e« X o X ~ . . . . .
operator
Matrix and vector relational e o o X & X & « s & s e

operators =, =
Matrix and vector dot product « ¢ o X o X ¢ o o « s o

Vector cross product s o6 o X o X s s & e s o

Matrix inversey transpose, and « « « X o« X o & ¢ ¢ s &
trace .

FOR or DO loops £21 X X X X X X X - X X X X

Notes: . -

[13 SPL has no matrix type,y, but it provides many cperaters for
manipulating 1 or 2-dimensional sections of arrayse.

£21 FLECS, INTERDATA FORTRAN V, LITTLE, and PREST4& require the
90 Loop increment to be positive. CONCURRENT PASCAL and PASCAL

enly permit 41 or -1 as the loop increment.

4-8
SI sp
X X
« X
« X
« X
- X
X
- x
+ X
« X
« X
o X



POCCNET Language Study

490 EFFICIENCY

Langquage Feature

Uses runtime stack
Uses dynamic storage allocator

Uses system monitor for
runtime scheduling

Structured control structure

High level data structures
and operators

User requested packing
densities

Bit packing feature in tables
or structures (2]

OVERLAY or EQUIVALENCE stmt

INLINE attribute for
procedures and functions [3]

Compilter directives for
requesting fast storage 4]

Inline assembly lLanguage

Notes:
£13
[23

word and bit pesition.
£31

BL

tp L4
« X
X X
X X
« X
] -
« X
= X

[y
Such as the tasble or record attributes MEDIUM,

tlser allocation of data 3tems within tables or

PAGE 4=9

L.Languages
FL HS IF JS JV LI PA P4

e X « X X « X « X X

L] - (3 X - - x o -» &
-] x - - - [ ] - L] o [
X +« X X X X

v X e X s o X

s ¢ o & X & & o o X
X o X o s e« X & X
s & o o X s e e s X
e X & e + s« e o o X
s s X & o+ o e o +« X

DENSE, TIGHT.

recordsy including

INLINE attribute to force procedures or functions to be expanded

inline instead of generating a calling secuence, -

€43

Such as the HAL/S TEMPORARY statement and the € REGISTER statemente.



POCCNET Language Study PAGE 4-10

4.10. SPECIAL SYSTEM FEATURES

Language Feature l.anguages

BL € CP C4& FL HS IF J4S Jv LI PA P& SI SP

Record structure [11] e X X X o X s« X X e X o
Bit manipulating features X X & X &« X X X X X e o
Character _manipulating X X X X X X X X X X X X X
features [21]

Pointers or indirect X X o o o X X X o o X o « X
addressing

Access to machine registers ¥ o o X & e & © © & & &= »
Inline assembly language X o o X o o X & & o & o =»
Reentrant or recursive X X X X <« X & & X & X & X
procedures

Exception handling X « e X e X o e e e « = « X
constructs E43

Special subroutine X o e X o X o a e o s+ e & =
Linkages

pynamic storage altlocation [6T « « o o o ¢ o X « o X o o =
Concurrent processes e e X X o X s o - . . e . .

Reat-time scheduling of e o s+ X « X & o & « & = s =
processes

Ability to access a block of X o« X X X X X +« X X « X « X

ggg;aggde;jvarying data

Notes:

11 JOVIAL only has a table data structure (tabies can only be formed
from simple items, so that a2 JOVIAL table can not contain another
table or an array as one of its items).

[2) The Fortran languages FLECS, INTERDATA FORTRAN V, and PREST4
provide inadequate character manipulating features,

[33 Pointers in INTERDATA FORTRAN V can only be used to fetch data
indirectly, they can not be used to store data indirectly.

[4] Such as ON-conditions or signal handlerse

[51 Subroutine linkages to other languages {(like Fartran, PL/I,
assembly ltanguage), or user control over the subroutine {inkage

{how arguments are passedy which registers are altered, how result



POCENET Language Study

s returned, and so forth)e.

PAGE

£63 such as the JOSSLE ALLOCATE statement or the PASCAL function NEW.
C7) Without using assembly language rcoutines.

4,11+ ERROR CHECKING AND DEBUGGING

tanguage Feature

Complete type checking T13]
Partial type checking only

No automatic conversions
between the basic data types

No default type declarations

Exceptiron handling
constructs

bebugging aids:

Subscript checking
Variable tracing

Calling history
Execution-time statistics
Conditional compilation
feature

Notes:

BL

cp

c4

FL

Languages

HS IF JS
X « X
L4 x -]
o « X
L ] ° x
x -] (-]
s X X
* x -
* x -

JV LI
X
» X
s X
s X
« X
« X
+ X
X

£E1) Including procedure parameters and pointer variables,

{21} Such as ON—ceonditions or signal handlers.

BA

P4 SI
« X
X e
a X
« X
+ X
X X
. X
« X
e X

4-11

5P

M = X



POCCNET Lahguage Study PAGE 5-1

S« RECOMMENDATIONS

501. Introduction

Based on our study of POCCNET requirements and our
evaluation of the languazgesy we have concluded that none of the
fifteen languages can satisfy all of the requirements. The
applicetion areas within POCCNET are diverse and there are too
many additional constraints on the implementation language.
Since none of the tfanguages satisfy atl the requirementss a
Language {or group of lLanguages) should be chosen that satisfies

most of the POCCNET requirements st a low cosStoe

The reguirements of the POCCNET implementation language were
discussed in Chapters 25 3y and 4. They included support for the
five application areasy and additional constraints such as
machine independence, efficiency, and modifiability. However, we
should also consider the <costs associated with each of the
fifteen Llanguagese. Language c¢osts ¢an be subdivided into
start-up costs, development and testing costs, and maintenance
costs. The start—~up costs for the POCCNET language dnclude the
cost of obtzining compilersy +training personnel in the new
tanouage and design methodotooy, and developing other Llanguage
tocls (such as macro processors, debugging aids, and special
tinkers or loaders). Start-up cost will therefore be directliy
affected by the complexity of the language and the availability
of compilers for the language.

Development and testing costs will be affected by the design
support and debugging features in the {anguage. These include
features supporting reliability, modularity, modifiability,
readability, and error checking/debugging aids. Type checking of
procedure and function parameters will speed the dintegration
testing of program modulese.

#taintenance costs will be affected by the readability and

modifiability of the Llanguage. Languages that are nat machine



POCCNET Language Study PAGE §-2

dependent will require fewer software changes as new hardware is
added to POCCNET. Documentation aids such as cross reference and
attribute Ulisting, static and execution—-time program statistics,
and standardized ocutput Llistings would alse Lower the cost of
maintaining POCCNET software.

Another factor to consider is the relatively long Llife of
POCCNET. The network 1s expected to support BGSFC POCCS
throughout the 19807s. Over such a long period the development,
testingsy and maintenance costs will greatly exceed the start—-up

costs associated with the 1mplementation language.

542+ Language Recommendations

At this point we will discuss our conclusions and
recommendations about the fifteen languages. The languages fall
naturally into five groups: (1) the SIMPL and PASCAL Tamilies;
{¢) the high Level Ltanguages €S-4, HAL/S, JUOSSLE, JOVIAL, and
SPL; (3) the Fortran languages FLE{S, INTERDATA FORTRAN V, and
PREST4; (4) the tow to medijum Level languages BLISS, (4 and
LITTLE; (5 the macro assembly Language STRCMACS. We will

discuss each of these groups in turne.

5¢3. Families of Languages

As discussed previously, there are a number of application
areas wWithin POCCNET. These range from real-time and generatl
systems programming up to numerical and data base processinge
POCCNET poses additional constraints on the implementation
tanguagey including machine 1indegendence, reliability, §nd
modifiability. Based on our evatuation of the languages, none of
them meet all the POCCNET requirements. Moreover, it 1s liketly
that any language that did satisfy alt of the reguirements would
be too Llarge and contain +too many contradictory features
(BAS76bls The runtime environment needed to suppoert such a

Language would be complex and inefficiente What we would Llike

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR



POCCNET tLanguage Study PAGE 5-3

instead is a set of tanguages, each tailored to one particular
subapplication. However, there are several drawbacks to building
a large set of independent languages. For one thing, the design
and development of new programming Languages would be fraught
with many problems since each language would be an entirely new
design experience. Secondiy, if these Llanouages were truly
different in desian, it would require the user to Learn several
totally different notations for solving the different aspects of
the problem. Thirdlys there would be a proliferation of
tanguages and compilers tc maintain.

One possible approach that nminimizes some of the above
drawbacks is the development of a family of programming languages
and compilerse The basic idea behind the family is that allt the
languages in the family contain a core design which consists of a
minimal set of common Llanguage features and a simple common
runtime environment. This core design uefines the base language
for which all the other Languages in the family are extensions.
This also guarantees a hasic common design for the compilers.
The basic family concept can be viewed as a tree structure in
whith each of the languazges in a subtree is an extension of the

fanguage at the root of the subtree. For example:
LG LS Lé
L2 L3
L1

In this case the language L4 = 12 U {new features of L&J).

Using the fTamily approach permits the development of several
application area languages, minimizing the difference between the
languages and the compiler design efforte. Since many of the
constructs for wvarious applications contain a2 similarity of
designh or interact with the environment in similar HaySy
experience derived from one design and development effort can be
directly applied to ancther. Since the best choice ‘of notation
for a particular application area may not be known a priori,; the

family idea permits some experimentation without the <cost of a



POCCNET Language Study PAGE 5-4

totally new language and compiler development.

There are several approaches to minimizing the compiler
development for a family of ULanguages. One <can develop an
extenstble language and build the family out of the extensible
base tanguage. The extension can be made either by a data
abstraction facility as in CLU ELIS74] or by some form of full
language extension as 1in ELF [CHE68J. The family of compilers
can altso be built wusing a translator writing system or by
extending some base core compitery as was done with the SIMPL and
the PASCAL families. A combination of two of the above
techniques is recommended here, and they will be discussed a
Little more fullye.

In the core extensible compiler approach, the base compiler
for the base LlLanguage is extended for each new language in the
family, creating 2 famity of compilers. 1In order to achieve the
resulting Tamily of compilers, the core compiler must be easy to
modify and easy to extend with new features. One experience with
this techniquey the SIMPL famity of languages and compilers, has
proved reasonably successful with respect to extensibility due to
the wuse of specialized software cevelopment technigues during
compiler development.

Using the core extensible compiler approach, the compiler
€(L)Y for a new language in a subtree is built from the compiler
for the language at the root of the subtree. This $s done by
making modifications (mod) to that compiler to permit 1t to
handle the new features of the extension Llanguagee. fFor the
family in the previous example we have

C(L4) = C(L2) mod {L4 fixes} U {new L4 routines}
where the set of L4 routines represents the «code for the L4
extensions to L2, and the set of L4 fixes represents the code for
modifying the L2 compiler to add those extensions. The key to
good extensible compiler design is to minimize the number of
modifications (fixes) and maximize the number of independent
routines.

Using 2 data extension approach, new data types and data

structures can be added to the tanguage using a built-in data



POCCNET Language Study PAGE 5-5
abstraction facilityo In order to achieve reasonable
extensibilr1tyy the facility should be easy to use and permit
efficient implementation. Experience with forms of data
abstraction facilities 11n (€S5-4 and CONCURRENT PASCAL have
demonstrated the benefits of this approache

Here the effective compiler for a new tlanguage is again
built from the compiler for its immediate ancestor in the tree.
This 1s done by adding a new set of Uibrary modules that

represent the new data types and structures and their associated

operators and access mechanisms, respectively. For example,
c{Ls) = ¢(L2Y U {L4 library modulesl.
Each of the two technigues has different assets. The core

extensible compiler approach permits full language extension,
including new controt structures and modifications to the runtime
environment. It offers the most efficiency and permits a full
set of speciatized error diagnostics to be built in. The data
definitional approach can be used only for data extensions, but
these are by far the most common in the range of subapplicatione.
It is also a lot easier to do and can be performed by the average
programmery wWhere the compiler extensions regquire more
speciatized traininge. Idealty, the first approach should be used
far appltication extensions and the second for smaller
subapplication extensionse.

tet us now apply this family concept to the POCCNET systenm
and consider how the wvarious application—oriented Language
features could be distributed across several languages 1in the
familye. There would be a Llanguage din the family for each
applicationy ie€sy @ ‘systems programming tanguage, a numerical
analysis Llanguage, a2 oaata base language, a graphics or display
language, and so forth. E£ach language would be built cut of some
base language (which may in fact be the system Ltanguage). The
application 1language may have several extensions, each of which
adds on some higher level set of primitives. For example, some
set of standardized algorithms could be defined as a set of
primitive operations in the language. The family tree for the

language may take on a form such as



POCCNET Language Study PAGE 5-6

ALCR)

NAL ALCD) bBL
Numerical AEplicat1on bata Base
Analysis anguage lLLanguage
Language

SL
System
Base language Language

In generaly the application languages can be just as high an
extension of AL(1) as is appropriate for the scphistication of
the users The system is then modularized so that each module s
programmed in the eppropriate languagey e.gey a numerical
analysis module in the numerical analysis language NAL. Each of
these modules can interface with the others through an
interfacing system. The jnterface system is part of the basis
for the family of {znouages and contains among cther things the
compilers for the languages. The 1nterface system could be built
into the IPC or Interface Subsystems of POCCNET.

It is clear that the family of langusges concept permits the
incorporation of the wvarious capabilities required for the
POCCNET systems This concept also rates weil with respect to
design support, reliability, efficiency, machine 1independencey
and reusability.

Hith respect to ease of expressionsy atgorithms are written
in a notation which 1is speciatized to the application. Since
each language is reasonably independent of the application level,
primitives in one notation can be fine~tuned without affecting
the primitives of anocther application. This permits a certain
amount of experimentaticon, and primitives c¢an be varted with
experience.

High level, appltication—oriented primitives make 2 solution
algorithm easier to read and understand and therefore easier to
verify as correct. The specialized notation raises the Level of
the executing algorithm to the level at which the sotution is
developed. Debugging features will be improved, because the
compilers for the individual languages <can tailor error

diagnestics and recovery to the particular application.



POCCNET Language Study PAGE 5-7

Each language 1is smallt and relatively simpley so that
compilation of programs is very efficient. Each ltanguage is not
complicated by a mix of features whose interaction may complicate
the runtime environment, and a simpler runtime envirenment
implies mOFe efficient execution. Ltanguage features are
specialized to meet one specific application and don“t have to be
generatized, ineffictent versions of the feature. If necessary,
the programmer can always use one of the lower level {(anguaoes to
improve or fine—-tune an algorithm.

Higher level primitives will make ‘programs more portable.
The hierarchy with respect to the data abstractions permits the
localization of the machine dependent aspects of the program, and
these localized sections can be recoded when the program is
transported to a different machine. And with regard to the
development of reusable softuarey, each application area has 1its
own language. Thus,; needed submodules are written in the target
application notation rather than the host application notation.
This makes it easier to recognize the essential function of the
submodule and easier to write it in a more generally applicable

WaY o .

Qur primary recommendation is that POCCNET be implemented
using a famity of Llanguages. Two such families (PASCAL and
SIMPLY were examined in this study. Howevery since neijther of
these families as they currently exist will satisfy att of the
requirements of POCCNET, we recommend that one of the families be
improved for POCCNET. The compilers for both languages are
written in a high tevel tanguage (PASCAL and SIMPL-T) and both
were designed to be modifiable and machine independent.

The two major deficrencies in the PASCAL family are the lack
of external procedures (programs must be compiled en massed and
the ftack of "Yadjustable™ arrays or strings as formal procedure
parameters. PASCAL requires the length of formal array or string
parameters to be declared at compile timey s0 there is po way to
write a PASCAL procedure that will manipulate arrays or strings
of arbitrary length. We would recommend that external procedures



POCCNET tanguage Study PAGE 5-§

be added to PASCAL, and that adjustable arrays and strings be
provided wusing the "+*"~bound of PL/I or by passing in the array
or string dimensions, as is cdone in Fortran. At Lleast one
implementation of PASCAL on the IBM 360 series atready provides
external procedures and functions [RUST6]. The usefulness of
CONCURRENT PASCAL for systems programming would also be increased
by the addition of a bit string data type.

The SIMPL family could be improved by the addition of record
structures and multidimensional arrays {(both of these extensions
have already been designed). The system features in SINMPL-XI
could alsoc be extended for POCCNET,. The addition of a data
abstraction facility would greatly 1improve the entire SIMPL
family. Finallyy, these <changes would not require complete
revorking of the compiler, since the SIMPL compilter was
specifically designed to be extendible.

5.4. Use of a Single Language

The second alternative for a POCCNET implementation language
i5 to use a single language that meets most of the POCCNET
requirementse. Any of the Llanguages (S-4; HAL/S, JOSSLE,
JOVIAL/J3B, and SPL/Mark IV could be used to 1implement most of
POCCNET.

We recommend that HAL/S be chosen over the other four
Languages. HAL/S has few machine dependent featuresy it 1is
efficient, and it has many system features {dincluding records,
pointers, real-time process schedulingy and exception handling
statements). The language also has features that would dimprove
the reliasbility and modifiability of programs, including full
type checkingy COMPOOL filesy @ macro processory and structured
control structures. HAL/S has been implemented on the IBN 360
sertesy the pData General Nova, and the Shuttle flight computere.

Although the (S~4 language has many nice features (such as
data abstractions)sy the language is currently under development

and no compiler is available. For this reasons we can not



POCCNET Language Study PAGE 5-9

recommend CS-4 for use in the POCCNET system. SPL 4s judged to
be equivalent to HAL/S in power, but the Llanguage has many
features that would decrease the reliability of programs. SPL
provides meny low level and machine dependent features, automatic
type conversion between afl of the basic data types, default
declarations of variables, and "implicit" subscripts for arrayse.
SPL was therefore judged to be inferior te HAL/S. Finallys the
JOSSLE and JOVIAL/J3B languages are proper subsets of HAL/S and

were therefore eliminated.

5.5. Use of Fortran

Because of its widespread use in the computer industry, this
report must discuss the possibility of wusing Fortran as the
POCCNET dimplementation tanguage. Fortran wvariants have been
implemented on almost all commercial computer sSystems. Although
there are many minor differences between the implementations,
atmost all 1implementations support the 1966 ANSI Standard
Fortrane. In additiony, the Fortran language is more widely known
than any of the other languages in this study. Thus, the use of
Fortran as the POCCNET implementation tanguage would probably
permit a shorter start-up time and a lower initial cost than the
other languages. )

bespite the lower initial cost,dwe recommend that Fortran
not be used for POCCNET. Over the course of a long project Llike
POCCNET, it is Llikely that the cost 6f softuware development and
maintenance will greatly exceed the‘initiat start-up cost. This
is crucialy because Fortran provides few features that support
the development or maintenance of programs. The Llanguage has few
control structures, so that GO0TO and IF statements must be used
to simulate if-then-else statementss while loops, case
statements, etc. No bit or character data type 1s provided. Bit
and character data must therefore be stored in INTEGER variables,
and it becowmes impossible to enforce type checking between the

integer, bit, and character data types. Fortran also doesn”’t



POCCNET Language Study PAGE 5-~10

perform type checking for subroutine or function parameters, so
integration testing of Fortran programs becomes more difficult.
The only data structure provided by Fortran is the array: the
language has no record structupre for forming legical groupings of
datas Finallyy Fortran has no macro facilities, no CONSTANT
statement for defining program parameters, and no INCLUDE feature
for copying source files 1into a program. The lack of these
features will make Fortran programs Llonger than necessary and
difficult to ready modifys or debuge.

Finaliyy; Fortran does not provide the system features that
are required of the POCCNET implementaticn language. Fortran has
no pointers, recordsy reentrant procedures, access to machine
registersy concurrent processes, or exception handling features.
Some of these features can be simulated by catling assembly
language routinesy but with considerable loss in efficiency. For
all these reasons, we fee!l that Fortran weould be a peoor choice
for the POCCNET implementation tanguage.

If Fortran is chosen as the impiementation Language (in
spite of our recommendations), we strongly advise that a
preprocessor be used to provide control structures for structured
programming. Two such preprocessors (FLECS and PREST4) were
examined 1in this study. Since PREST4 forbids the use of some
Fortran constructs (FLECS does not) and provides fewer new
control structures than FLECS, we recommend that FLECS be chosen
as the Fortran preprocessore. FLECS is written in fFortran and 1s
avaitlable from 1its authory T. Beyer, at & nominal cost (37100).

Many other Fortran preprocessors are also available [MEI7?5].

5.6. Remaining Languages

The remaining Languages were etiminated early in the study
when it became clear that they did not come close to satisfying
alt the requirements of the POCCNET system. The Languages
BLISS-11 and LITTLE were considered to be too low-level for

general use in POCCNET. Both of these languages are typeless,



POCCNET Language Study PAGE 5-11

systems 1implementation tanguages. While the lLanguage € provided
many Low-level features within a typed, medium level language, it
was rejected because of dits terse and frequently unreadable
syntax.

Finally, some portions of the POCCNET system may be written
in assembly language where time or space efficiency is critical.
for these portions, we re&ommend that the vendor”s assembly
language be augmented by a set of structured macreos similar to
STRCMACS. tiacros of +this type can greattx improve the
readability of assembly language programs. The structured macros
can be expanded during the normal assembly step if the assemoly

Language provides a macro facility, or during a preprocessor pass

if no such facitity existse.

547 Summar)f

To summarize, on the basis of our study none of the fifteen
languages neet all of the requirements for a POCCNET
implementation language. Our primary recommendation is that a
family of Llanguages be developed for PQCCNET by meodifying the
PASCAL or SIMPL families. If a single implementation language is
to be used then we recommend that the NASA Shuttle language HAL/S
be chosen. He recommend that Ffortran not be wused as the
implementation tanguage. Finallys if Fortran or assembly
Language are used in POCCNET then preprocessors should be used to

provide structured control structures.



POCCNET tLanguage Study PAGE 5-12

th-th-that“s all folks!



POCCNET Language Study PAGE \&

A\

on bit strings of arbitrary lengtf.

1

PASCAL ' - A highly structured, genera}
purpese tanguagee.

PREST4 — A Fortran preprocessor.

SIMPL-T i ~ The base member of a highly

structured family of languages.

SPL / MARK 1V¥ -~ A high level Ulanguage with many
machine—-oriented featurese.

STRCHACS - A coliection of structured
programming macros for IBM 0S5/360

assembly langusages

The language evatuations in this report are based solely on the
tanguage reference manuals and other papers Llisted in the
references. UWe have immediate access to the compilers for only
tuwo of the fifteen languages (L and SINPL-TJ).

The criteria for evaluating the Llanguages and the
preliminary evaluations are presented 1n the second chapter of
this reporta Each evaluation 1s composed of two sectionse. The
first section provides a detailed summary of the following

{1) basic data types and operators
€2) control structures

{3) data structures

(4£) other interesting features

(5) tanguage syntax

{(6) runtime environment

The second section of each evatuation presents the
(1) machine dependence
(2) efficiency
(3) level of the language
{(4) s1ze of the Llanguage and compiler
(5) special system features
(6) error checking and debugging

(7) design support (modularitys modifiability, and



POCCNET Language Study PAGE Jf-1

1. INTRODUCFION *

This report presents an evaluation of systems implementation
languages for the Payload Operations Control Center Network
{(POCCNET)y which 15 a gyeneral hardwaref/software concept adopted
by GSFC as a means.pof developing and operating payload operations
control centers in the 19807s. The POCCHNET system
LDES7basbES76D] will provide harduware and software
resource-sharing via a distributed computer network and a package
of standardized applications software. This report develops
criteria for evaluating POCCNET implementation languages, and
then compares fifteen exi1sting languages on the basis of these
critertas

An attempt was made during this study to examine a wide
range of existing langueges, from a low level macro assembler to
the wvery targe and bhigh Llevel Language {(S-4. The following

frfteen languages were examined 1n detail:

BLISS—-11 — & systems implementation Ulanguage
for the PDP-11 serieso

C - The Llanguage of the UNIX operating
systems

CONCURRENT PASCAL

A high tevel tanguage for writing
operating systemss
CS—-4 Base Language - An extensible Language being

developed for the Navy.

FLECS - A Fortran preprocessore.

HAL/S - -~ The WASA Language for +the Space
Shutile progranme.

INTERDATA FORTRAN V ~ An extension of ANSI Fortrane

JOSSLE - A PL/I derivative for writing

compilerse

JOVIAL/J3B -~ A close relative of JOVIAL/J3; the
Air Force standard language for
command and control applicationse.

LITTLE - A Fortran derivative that operates



