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"CHAIN POOLING" MODEL SELECTION AS DEVELOPED 

FOR THE STATISTICAL ANALYSIS OF A ROTOR 

BURST PROTECTION EXPERIMENT 

by Arthur G. Holms 

Lewis Research Center 

SUMMARY 

A statistical decision procedure called chain pooling had been devel­

oped for model selection in fitting the results of a two-level fixed effects 

full or fractional factorial experiment not having replication. The basic 

strategy included the use of one nominal level of significance for a pre­

lumiary test and a second nominal level of significance for the final test 

The subject has been reexamined from the point of view of using as 

many as three successive statistical model deletion procedures in fitting 

the results of a single experiment. The new investigation consisted of 

random number studies intended to simulate the results of a proposed 
aircraft turbine engine rotor burst protection experiment. As a conser­

vative approach, population model coefficients were chosen to represent 

a saturated 24 experiment with a distribution of parameter values un­

favorable to the decision procedures. 

Three model selection strategies were developed, namely, (1) a 

strategy to be used when the experimenter anticipates a large error 

variance (coefficients of variation in the neighborhood of 65 percent), 

(2) a strategy to be used when the experimenter anticipates a small 

error variance (coefficients of variation of 4 percent or less), and (3) 

a security regret strategy to be used in the absence of such prior 

knowledge. 
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INTRODUCTION 

The two-level, fLed effects, full or fractional-factorial design of 

experiment, without replication, is the appropriate design for those 

situations where the experiment is very expensive or tne consuming. 
An example of costly experimentmg is provided by the destructive test­

ing of simulated aircraft components, as m the rotor burst protection 

testing described by Mangano (1977). New rotor burst protection mves­
tigations are planned to measure the containment efficiencies of com­

posite structures. One such investigation is planned as a two-level 
fractional-factorial experiment. The description (Holms 1977) of that 
experiment is illustrative of one area of applicability of the results of 

the present investigation. 

If such an experiment is performed and t observations are obtained 

from t orthogonal experimental conditions, the appropriate emprical 

equation for representing the results can have as many as t terms, 

each with a coefficient that has been fitted to the data. When this is done, 
a question that should be asked is: "Can the predictive accuracy be un­

proved if some of the terms are deleted?" The fact that some of the 
terms might degrade the predictive accuracy of a fitted equation was 

recognized by Walls and Weeks (1969) but they gave no procedure for 
identifying such terms 

A method for the sequential deletion of terms that was intended to 

reduce the prediction error was given by Kennedy and Bancroft (1971). 

Their method assumed that the experimenter has a prior established 

order for subjecting the terms to a sequence of significance tests. Un­

fortunately, in many experimental situations, there is no basis for estab­
lishing a prior order, and in such cases an order statistics procedure is 
appropriate. An order statistics approach for significance testing was 

used in a pair of related papers by Daniel (1959) and by Birnbaum (1959). 

They were not then seeking to minmize prediction errors. 

For model selection procedures used with small saturated experi­

ments (experiments designed to have only as many experimental condh­
tions as there are model parameters to be fitted), the analysis should 

begin with a minimum number of estimable terms being sacrificed to 
form a denominator for the test statistic. A procedure using m-terms 

sacrificed, where in can be as small as one, was investigated by Holms 
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and Berrettom (1969). The procedure was a form of subset regression 

using backward elinnmation The object was to delete terms in a manner 

where some control was maintained over the probabilities of Type 1 or 

Type 2 decision errors. The procedure was called chain pooling and 

used a strategy (inp, ap, af)where m was the number of terms im­

tially sacrificed to the test statistic, ap was the nominal level of a pre­

limmary test of significance where "insignificant" resulted in another 

term (mean square) pooled into the denominator of the test statistic, and 

af was the nominal level of the final test of significance, for the inclu­

sion of terms in the model. 

The mnimizing of prediction error was the object of further inves­

tigation of the chain pooling strategy (mrp, aP, U) as described by Holms 

(1974). Whereas that investigation had assumed that only one cycle of 

analysis would be used, a suggestion given by Holms and Berretom (1969) 

was that more than one cycle of analysis should be used. The specific 

suggestmon was that an analysis be performed with the strategy (map, p, 

of) where mp = 1 to obtain an estimated number of null mean squares, 

R, tacitly assuming that the population number of null mean squares is 

greater than zero. A second analysis would then be performed with a 

strategy (mp, p, af)where mp is an integer approximation to the 

product r fl where rI had been empirically optnnzed at about r, = 0.7. 

The purpose of the present investigation is to use Monte Carlo 

methods to optimize a combined procedure that might contain more than 

one analysis cycle, where the procedure is to be optimized for minimum 

prediction error. Such a procedure would seem to be worthwhile in view 

of the large number of aerospace research and development programs 

where: 

(1) There are a large number of controlled variables 

(2) The experimenting is time consuming or expensive 

(3) The dependent variable has an error variance that might be large 

Based on the results, some specific model selection procedures are 

recommended.
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PRIOR WORK 

An early practice described by Davies (1956, p. 286) consists of 

pooling some arbitrary number of those mean squares that represent 

higher order terms into an estimate of error variance. When this is 

done, some terms of important predictive value might be deleted from 

the model. Furthermore, such mean squares might unduly inflate the 
estnnate of the error variance, thus reducing the sensitivity of the sub­
sequent procedure, and resulting in the deletion of additional important 
terms from the model. 

The preservation of sensitivity, when pooling mean squares into the 

estimate of error variance, has been an object of the procedure of Daniel 

(1959, and of Wilk, Gnanadesikan, and Freeny (1963). 

Daniel (1959) uses the absolute values of the effect estimates as 

order statistics. They are plotted on probability paper and the result 
is called a half-normal plot. In addition to conditional structuring of the 

ANOVA model, Daniel's objectives included the determination of "bad 
values, heteroscedasticity, dependence of variance on mean, and some 

types of defective randomization, . . ." The half normal plot, com­

bined with a background of experience, might provide a method by which 
a skillful user could pass judgement on the results of an experiment. 
Darnel concluded that such a plot can be used to make judgements about 

the reality of the largest effects observed only if a small proportion of 

the effect estnmates represent real effects. Birnbaum (1959) investi­
gated procedures related to half-normal plotting. His results on . . 

the probabilities of the various possible sorts of errors . . ." are 

limited to the single largest order statistic. He surmised that if only a 
small number of effect estimates have nonzero means, the power and 

sensitivity properties will tend to hold approximately. 

The procedure of Wilk, Gnanadesjkan, and Freeny (1963) if used 

with 2 treatments is benefitted if some subjective or prior knowledge 
is used to decide that 7) of the 2 - I mean squares do not contain real 

effects, or that p = 21 7j - I mean squares do contain real effects. As 

was shown by Wilk et al. (1963), the procedure is not robust against 

errors in guessing the value of tj, and ij must be guessed if the prior 
knowledge is lacking, winch is an assumption of the present investigation. 
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Daniel and Birnbaum have limited their results to experiments where 

only a small proportion of the effects are anticipated to be significant. 
On the other hand, situations can exist where the experimenter might use 

a two-level fractional factorial experiment designed such that a large 
proportion of the effects are significant. A need remains for a decision 

procedure that sacrifices only a small number of terms to produce a test 
statistic, and then uses the test statistic to minimize prediction errors. 

Allen (1971) referred to literature that used the residual sum of 

squares as a criterion for choosing regressors. He pointed out that 

there are at least two objections to using such a criterion 

1. Ifthe residual sum of squares were the only criterion, then all 

of the regressors would be used and there would be no motivation for 

subset regression. 

2. The residual sum of squares is not directly related to the 

"natural" loss function which is the mean square error of prediction. 

On the other hand, the methods of Allen obtain a criterion called 

PRESS by predicting each observation from all the other observations. 
The present investigation is concerned with small saturated experiments 

where each observation is more or less crucial to the estimation proce­
dure, particularly for predictions at the set of regressor values corre­
sponding to a given observation. The PRESS criterion is therefore be­

lieved to be inappropmate to subset regression for small saturated ex­

periments. 

MULTISTAGE DECISION PROCEDURE 

Assumptions 

The assumptions are as follows. 

(1) The model to be fitted is linear in the unknown parameters. 

(2) The errors of the observations are independently normally dis­

tributed random variables with a zero mean and a constant variance. 

(3) Orthogonal estimators are available for estimating the unknown 

parameters of the linear model. (This orthogonahty can be the result of 

the design of the experiment that furnished the observations, or it can 
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be the result of an orthogonalizing transformation of the terms of the 

equation, as discussed by Holms (1974).) 

(4) An appropriate criterion of the goodness of a subset regression 

procedure is the smallness of the largest of the prediction error mean 

squares over the points of the expernnent. 

(5) There is no replication available for an estimate of the "pure" 

error variance. 

The first four of the five preceding assumptions are funadmental to the 

rationale of the method; however, data has been given (Holms and 
Berrettom (1967)) for believing that the method is robust against the nor­

mality part of the second assumption. The fifth assumption merely ac­
knowledges the possibility that an altogether different method might be 

preferred m the presence of pure replication. 

The original investigation of chain pooling had been concerned with 

three sizes of experiments, namely, experiments furnishing 16, 32, or 
64 observations (Holns and Berrettoni (1967)). The simulations had 

shown drastically reduced decision error probabilities, or the equiva­
lent, greatly improved information efficiencies, for the larger experi­

ments. Such results suggest that the method of analysis is relatively 
less critical for the larger experiments, and the methods described 
(Holms and Berrettom (1967)) are therefore believed to be adequate for 

producing small prediction errors with experiments providing 32 or 

more observations. 

For relatively saturated experiments that are smaller than 16 obser­

vations, the opinion is offered that such experiments are too small to 

provide both (1) good estimates of model coefficients and (2) a good test 

statistic, in cases where random errors are large enough to call for a 
statistical decision procedure. In other words, saturated experiments 

with less than 16 observations should be fitted with models having a fixed 
number of terms with no use of conditional modeling. 

Consistent with the preceding remarks, the simulations of the pres­

ent investigation were all performed with experiments containing 16 ob' 

servations in the belief that such experiments are large enough to justify 

the use of a statistical decision procedure, but small enough so that the 

precise optimization of the decision procedure would be quite beneficial. 



Strategy 

The generalization of the strategy (mp, ap, af) to be investigated is 

the strategy (inp ap, r 1 , 'p2, r 2 , Cf), where the symbols are defined 

in appendix A. 

SIMULATION PROCEDURE 

Population Model 

The experiment is assumed to be a two-level, fixed effects, 

fractional-factorial experiment, where the independent variables are 

qualitative or quantitative, and they are controlled to have negligible 

error. In such situations, the independent variables are often assigned 

the values of +1 for the "upper" level and -1 for the "flower" level. An 

example of an appropriate model equation for the population mean value 

of the response in the case of four independent variables is 

E(Y) = 0 + alxi + " 2 x 2 + a 1 2x 1 x2 + a3x3 + 013xl?3 + '23x2x3 

+ a123Xlx2a 3 + ' 4 x 4 + a 1 4 xlx4 + ' 24 2 4 + a 1 24 XlX2 X4 

+ a 3 4x 3x 4 + 1 3 4 xlx 3X4 +,234x2x3x4 + '1234XlX2X34 (1) 

The subsequent discussion assumes that an equation such as the pre­

ceding equation will be fitted to the results of a two-level experiment 

where the x's are "design values, " namely, the lugh level of xk is 

represented by xk = +1 and the low level of xk is represented by 

Xk = -1. 

The single observation value of the response is assumed to occur



according to the model



Y = E(Y) + e (2) 

where e is the independently normally distributed random error,with 

E(e) =0; V(e) = 2 (3) 

The experiment is assumed to be a two-level, fixed effects,



fractional-factorial experiment where g is the number of independent
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variables, and the experiment is assumed to be a 2 -h fractional repli­

cate of the full factorial experiment. The observations are assumed to 
result one-for-one from the treatments, and their number is 

t = 2 g-h 

The observations are used to compute estimates of parameters such as 

the parameters of equation (1) and also to compute mean squares, typi­

cally by Yates' method (Davies, 1956, p. 263). 

Assume that the mean squares ZI have been computed in Yates' 

order and in tis order are labeled Z 1 , Z2 , ... , Zt . The coefficients, 

a' s, of equation (1) are in Yates' order. If they are subscripted in that 

order and then given the symbol Pi , the expectations of the Zi are 

E (Z ) 2 + 2g- h p ) 

i=1, 2,. *.,t 

The random variables Zi/a 2 are noncentral chi-square variables 

having one degree of freedom (Kendall, M. G. and Stuart, A., 1961, p. 

227). Let AI be the noncentrality parameter. It is related to parame­

ters already defined by 
2g-h 2 

X, 
2 
2 

(5) 

A stepwise multiple decision procedure is to be used to delete esti­

mated coefficients from an equation such as the one illustrated by equa­

tion (1). The situation for which the operating characteristics of the 
statistical decision procedure will be optimized is assumed to be as 

follows-

The t single degree of freedom mean squares are assumed to have 

been drawn from t populations. An unknown number, p, of the popula­

tions (aside from the one associated with P,) have real effects (X1 > 0) 

and the ij other populations are null populations (7 populations have 
AI = 0). A number, P, of the populations (other than the one associated 

with Pi) are to be selected for retention of model coefficients in equa­

tions like (1), hoping they have > 0.. 
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The relative magnitudes of the nonzero population parameters to be 

tested can be expressed by dividing squares of the coefficients by the 

mean value of the'sum of the squares, namely, where the quantities 6 k 

give these relative magnitudes, 

__k262 = 2 

134, (6) 
P k 

k=1, 2, p 

From equations (6) 

P 

P k=l 

Unfavorable Population Model 

The basic chain pooling concept was investigated for the purpose of 

minimizing prediction error as described by Holms (1974). That inves­

tigation was concerned with the fitting of models to fractional factorial 

experiments under the condition of population functions of irregular 

shape. The emphasis of the present investigation is on the condition 

where the relative values of the population coefficients are all unfavor­

able to the deletion procedure. For reasons given by Holms and 

Berrettom (1969) this is done by proportioning the squares of the flk 

values to the expected values of the order statistics of a single X(l) 

distribution. 

Where the tk are the expectations of the 2X() order atistics in 

increasing order from a sample of size p5 the K in the order of Yates' 

computation beyond the first were given a decreasing order by setting 

62 = p-k+(8) 

k= I,.. . ) 
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Let X be the arlithmetic mean of the noncentrality parameters. 

PX =1 3 X (9) 
P k=l 

From equations (6) and (9) 

p 2 g-h 2 
Ak =(10) 

P 2~ 

2Using the defintion of of equations (6), 

2 P 

k=1 

From equations (10) and (11) 

2 29k =- (12) 
2g-h 

From equations (8) and (12) 

2 = p-k+lp-2 (13) 
2g-h 

or (2 1/2
flk = - kll) 12(14) 

Expectations of order statistics from a gamma distribution with 
scale parameter one, shape parameter 1/2 and many sample sizes have 

been tabulated (Harter, H. L. (1964)). Multiplying such values by 2 

gives the expectations of the order statistics of the central X21) distribu­
tion. Such expectations, for a sample of size p, provide the values 

called for by the definition of the tk. 
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With the distribution of tk values fixed as just described, the popu­
lation parameters 9k' as given by equation (14), depend only on the 

single observation error variance 2 and the mean, A, of the noncentral­

ity parameters. 

The simulated experinents were performed and the decision pro­

cedures were investigated with 77 mean squares having X. = 0 and with 
p = 2 g-h - 1 - 77 mean squares having the unfavorable set of X1 values 

(eq. (5)) that were just described. 

Observation Simulation 

The number of treatments is 

2g - ht = (15) 

In accordance with model equations such as (1) the t observations re­
sulting from t treatments are given by equation (2) with E(Yk) = pk as 

the variates 

Yl= i + el 

Y2 = + e2 
(16) 

yt= + et 

In the analysis of an experiment, the application of Yates' method 

estimates each of the t parameters that occur in an equation such as (1). 
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Furthermore, from equations (12), the nonzero values of the are 

Pk a2>) (17) 

where 

k=1, 2, 3, . p 

i=1, 2, . ., t 

and 

i=k+ for k=1, , p (18) 

and 1= 0 otherwise Let 

2 (19) 
2g-h 

From equations (17) and (19) 

Pk = 6k (20) 
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Any particular strategy (mp, ap, r!, op2, r 2 , af) will be evaluated 

for an array of populations having mp unique values of p, namely, p.' 

m = 1, 2, . . ., in and kX unique values of the mean noncentrality pa­

rameter, X, namely, "AI A 1, 2, . .. , X, 

Because of the freedom to choose the values X, and because X, is 

a scale parameter on a2 (eq. (17)) an investigation of the effect of varia­

tions in 2 is superfluous, and o2 will be set equal to one, 

As implied by equation (16) the computer program must perform 

operations equivalent to the following: 

Yl = Pl + el (21) 

Y2 = '2 + '2 

(22)
=6Y =116 + e1 6 

As previously stated, the bi are to be computed from the yl by Yates' 

method. With the bi computed, the reversed Yates method of Duckworth 

(1965) is used to compute predicted values of Y, namely, yl The predic­

tion errors are then 

e= yl - I1 (23) 

Conditions Investigated 

As developed in the subsection on strategy in the main section on 

MULTISTAGE PROCEDURE, the statistician's strategy consists of the 
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components (mp' ap,' rl, ap2' r 2 , af). 

As developed inthe subsection labeled Unfavorable Population Model, 
nature's strategy consists of the number, p, of non-null population pa­
rameters, and the mean noncentrality parameter, X. As given by equa­
tion (19) the relation between the mean noncentrality parameter, X, and 
the scale parameter 0 is 

2 A 

2 g-h 

For the experiment with 16 treatments, 2 g-h = 16 and the related values 
of 0 and X investigated are as given in table I. 

In general, the smaller the number of null mean squares, q, the 

greater will be the probability of decision errors. This was illustrated 
m figure 4 of the paper by Holns and Berrettom (1969). Thus the most 
difficult situation arises for 71 = 0. For the 2 g-h experiment with 
g - h = 4, and where the P, term (zero degree term) is not subjected to 
testing, the condition equivalent to 77 = 0 is the condition p = 15. 

A real-life example of a 2 g-h 25-1 experiment with p = 15 was-

presented by Daniel (1959) in figure 19 of has paper. As stated by DanLel 
concerning such a situation: 

"The 15 effects appear to fall into a nearly normal distribution 

with their own variance, much larger than the error variance. 
The reality of many of these terms is proved by later experi­
mental work. There may be some sort of central limit theorem 
analog operating here on the (discrete) population of effects, but 
no success can be reported in its formulation." 

One interpretation of Daniel's discussion is that if an experimenter 

designs his experiment and attempts to select the levels of the controlled 
variables so that measurable effects will be achieved, then a preponder­
ance of the fitted coefficients of the model equation will have absolute 

magnitudes fairly close to some central value, and a very small number 
of coefficients will have much larger and much smaller values, and still 
other coefficients will be scattered between these two extremes. In 
other words, an approximation to the normal distribution should be ex­
pected for the coefficients of a model equation resulting from experiments 
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where controlled variables were set with some degree of prior knowledge 

of their effects. 

In the light of the preceding considerations, a nature's strategy with 
p = 15 and a normal distribution of model parameters would seem to be 
a highly likely strategy, and correspondingly, a statistician's strategy 
optimized against such a nature's strategy should be thought of as an 
approximate Bayes strategy. As developed by Holms and Berrettoni 

(1969), such a normal distribution of model parameters is represented 
by the parameter distributions of table II and these distributions are 
highly unfavorable to the statistical decision procedure. A procedure 
optnized against p = 15 and the distribution of [ of table II may 
therefore also be regarded as an approximate security strategy. Such 
a nature's strategy (table II) will therefore be chosen as the strategy 
against which the statistician's strategy will be optimized. 

Consider the fitting of a model equation such as that illustrated by 
equation (1) to the results of a two-level, fixed effects, full or fractional 
factorial experiment. The independent variables can be standardized so 

that all the x-values are either +1 or -1. With t treatments and t ob­
servations, the estimators of the coefficients are all of the form 

-A aly1 + a2y 2 + . . + a t ytb]. -(24) 
i t 

where the al, a2 , . .. , at all have values of +1 or -1 The single 
observation error variance of the Y-values is assumed to be u2 and 
because the GI are formed from a linear combination of t indepen­
dently distributed Y-values (eq. (24)), the variance of any is 

2 2 
V(b.) =t a (25) 

tt2 t 

With equation (1) written as a prediction equation, the predicted 
value of Y, at any one of the points of the experiment, is a linear com­
bination of t independently distributed b values, each (eq (25)) with 

variance a2t. With appropriate change of notation, the linear combina­
tion implied by equation (1) is written 
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t 

,c 1=± c~S~(26) 

J=1



and from the definition of the x-values in equation (1), the c -values in 

equation (26) are either +1 or -1. Because the bI are independently 

distributed, and because the c are all +1 or -1, the variance of Y1 is 

=t -2 (7 
V(YI) = V(b3 ) t 2 = 2 (27)

LI t;j=1 

From equation (27), the reduction of V(Y ) achievable by deleting terms 
is a for each term deleted. 

On the other hand, if equation (1) is the population model, and if 

the x-values are all +1, the bias in Y is increased by the amount of 

pI for each fll value that is deleted. Thus an optimal strategy to mini­

mize the squared error of f should not only delete all terms for which 

the population 0 is zero, it should also delete at least all terms for 

which the bias contribution to mean square error is less than the vari­

ance contribution. 

As indicated by equation (1), for that point of the experiment where 

all of the x-values have the value +1, the expected value of Y1 would 
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take on its greatest absolute value, which would be 

P 

E(YJmax = 063 
j=1 

f
P

The values of 0 j6 for p = 15 have been listed mn table III. Because 

u = 1, these values are also the values of E (Y )a 

ReciprocalsReipoclsofEof E (Yi) / are here defined as coefficients of vari­1max/ 

ation for the maximum population mean values. From table III such co­

efficients vary from a high of 64.3 percent (at 0 = 0. 125) to a low of 

4 0 percent (at 0 = 2 000). This range of such a coefficient of varia­

tion suggests that the range of 0. 125 < 0 < 2. 000 is an adequately wide 

range of e to represent the situations that an experimenter might 

encounter 

EVALUATION CRITERIA 

Following the selection of terms (where some of the coefficient esti­

mates are set equal to zero), the predicted values of the dependent vari­

able can be efficiently computed for all of the combinations of the inde­

pendent values, by the reversed Yates method of Duckworth (1965). 

Where eoln are the "observation" errors, namely, the pseudo 
oin thnormal random numbers generated in the n simulation, the "observa­

tions" are given consistently with equations (16) by 

(28)Yolemn =JPfm + eo0 

=1, 2, . .. , %, mn= 1, 2, . .. , 1p, 1= 1, 2, . ., t. 

After the model has been fitted and insignificant terms deleted, the 

difference between predicted values, YpiQmn' of the dependent variable 

for the nth simulation and the population mean will be called the predic­

tion error, and thus it is (consistent with eq. (23)) 
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ePimn = Ypgrmn - # m 	 (29) 

A= !1,2, .0. ., m ==O, 2 .. . .,mpin , 1 = 1, 2, . .,t. 

Over the ne simulations, the sample mean square error of predic­
tion for a given treatment is 

ne 

-2 1 e'2 (30)In 	 nE p mn 
n=l



The maximum of such errors over the treatments is 

-2 -2 	 (2\e a=e =ax p m) (31) 
i= , ... mt 

The mean of the squared error over the simulations and over the 

points of the space of the experiment is 

t 
ekm t piln 

m 	 E e (32) 
i=1 

Equations (31) and (32) provide two criteria for measuring the effec­

tiveness of a strategy. The particular set of values of strategy parame­

ters that minimizes ep i, max (as given by eq. ( 31 )) can be called a 

security strategy, and if the points of the space of the experiment are 
assumed to be equally likely of being of interest, the particular set that 

-minimizes -2ern can be called an approximate Bayes strategy. For 

either criterion, the absolute values of squared errors would have been 
the prime consideration. 

An example of a situation where such defnitions of error would be 
appropriate occurs if the experinentor seeks to maximize some pre­

dicted response, such as the strength of a structure as a function of its 
geometric variables. For such an example, the region of the space of 

the experiment of greatest interest would be the region in the vicinity of 
the maximum point, where the function would most likely have its sharp­
est curvatures and largest errors due to lack of fit. For such an example, 
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the appropriate criterion to be minimized for the choice of a strategy 

would seem to be the quantity -m, max of equation 31) 

The criteria of equations (31) and (32) were evaluated using computer 

simulations using (in most cases) 1000 experiments. Thus the long run 

mean squared error of the decision procedures was evaluated. This 
leaves open the question of how badly a decision procedure might perform 
in individual cases. One approach to this question is to evaluate the sta­
bility of the mean squared errors observed in the simulations. Thus in 

addition to the critena of equations (31) and (32) two other criteria for 
the effectiveness of a strategy were investigated. They are concerned 

with the stability of the quantities defined by equations (31) and (32). The 
instability of these criteria can be measured by the variance of the square 

of the prediction error. If Y is a random variable, the unbiased esti­
mate of the variance of Y from a sample of size ne is given by 

/nn
V() - I n - I / . 

The random variate of interest is the squared error of prediction, namely, 
2 2epi~mn. From equation (33) the estimate of the variance of e2 mn is 

rne 
ne 

22V2___1 e21.m (34)t(e2mV p- ) 1-1 >pmn ne j(
 
e e\n~1 


Equation (34) gives an unbiased estimate of the variance of the squared 

error over ne simulations. The maxinum of this quantity over the 
space of the simulated experiments is defined by 

V(e 2 )ma = V(ekm) = max [VLep3m) (35) 

The arithmetic mean of the variance of the squared error over the 
space of the experiments is defined by 
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t 

E V ( pll6j2m - 1=1 (36) 

Two features not present in the computer program POOLES (Holms 

(1974)) were added to the present program (POOL6U). One of them com­
putes the average number of terms, pIm' selected by the strategy (map, 
apl, rl ap 2 , r 2, Uj) for each of the values of 0,O 2 = . .... k and 

for each of the population values of Pr' m = 1, . . ., in p. The other 

feature computes the ratio of the maxnnum prediction error to the scale 

parameter 0. The ratio is computed from 02 and from the ema x of 

equation (31) 

Cee, mx(0 ' =p)etfm, max (37) 
Of 

COMPUTER PROGRAM 

Outline of Program 

Computations were performed according to the FORTRAN-4 program 
POOL6U as listed in appendix B. The antecedents of the program were 
POOL3U (Holms (1966)), POOLMS (Amlmg and Holms (1973)), and POOLES 

(Holms (1974)). The program is outlined and the parts of FOOL6U from 

the earlier programs are identified by the section numbers and titles of 

appendix B in the table that follows. The table shows that only minor por­
tions of POOL6U were not previously described. The detailed description 

of POOL6U is mainly lited to sections that are new. Illustrative output 

is given in appendix C. 

Section number Section title Prior program 

1A DECLARATIONS AND TABLES POOLMS 

In INPUTS AND CONSTANTS POOLES 
1C POPULATION MEANS (new) 

ID STRATEGY (new) 
2 SIMULATIONS AND MODEL POOL3U 

FITTING 
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Section number Section title Prior program 

3 CONSTRUCTION AND ORDERING =OOL3U 

OF MEAN SQUARES 
4 DELETION OF TERMS (new) 
5 PREDICTIONS POOLES 
6 ACCUMULATION OF ERRORS POOLES 

7 DETERMINATION OF MAXIMUM POOLES 
AND MEAN SQUARED ERWORS 

8 OUTPUT (new) 
9 YATES' METHOD SUBROUTINE tOOLES 

Details of Program 

Section 1A. - Declarations and tables. - The input of the critical 

point values (the statistical tables) is the same as m POOLMS (Amling 
and Holms (1973)). The declarations are similar to POOLES (Holms 

(1974)). The NAMELIST output was incorporated to facilitate checking 
of the program and was not otherwise used. 

Section lB. - Inputs and constants. - The constants defining the 

populations, the experiments, and the sequential deletion strategy, are 

read from data cards in the following order, with the order of the fields 

being the same as the order of the symbols in the following description. 

Format 	 Description 

(13A6, A2) 	 REMARK (I), arbitrary literal information such as 

particular use of program, date of last change, and 
so forth. 

(415) 	 LGMH, NE, MRHO, KODE 

(I8,6FS.3) LTH, (THETA(L), L=l, LTH) 

14/ KTEM 

(1OF8.5) 	 (DELTA(K,M),K=1, KTEM) 
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Format Description 

There are as many (1OF8.5) cards as are necessary to 

read (DELTA(K, M), K=1, KTEM). Furthermore, the 
card sequence for KTEM and DELTA (K, M) is repeated 

as many tnnes as necessary to satisfy the statement 
(appendix B) "DO 5 M=, MRHO." 

(415, 2F5.3) MP, KP(1), KP(2), KF, RE TA(1), RETA(2) 
(The associated BEAD statement is actually in 

Section ID.) 

Section 1C. - Population means. - After the initial constants have 

been read, the next major operation is the formation of the population 
mean values. The number of population sets to be examined during the 

investigation of a strategy is the number resulting from all combinations 
of the number, inp, of p-values, and the number, 10, of 0-values. 

With respect to equation (1) all the population model parameters are 
first set equal to zero with the DO-loop ending at Statement 10. The non­
zero values of the 9l are initially set equal to 61, m using the DO-loop 
ending at Statement 20. The DO-loop ending at statement 20 serves the 

purpose of equation (20) with u = I and 0 = 1. The value of a = I is 

retained, but the adjustment for 0 is made after the population mean 

values have been computed. 

With the population fl-values (aside from 0) established at state­

ment 20, the objective is to compute the population mean values from the 
fl-values by the reversed Yates' method (Duckworth (1965)). The first 

step is to reverse the order of the fl-values, which is completed at state­
ment 22. The use of the reversed Yates' method then yields the array 
YMtUM (I, lvi) as completed at statement 40 for all the values of p. 
YMUM (I,M) is therefore an array of population means ,m. This 

array of population means is to be expanded over the mean noncentrality 
parameters, XL, to give the effect of equation (20). This effect is pro­
duced on the population mean values by the multiplication 

/',2 a= Pi * 
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and this operation is completed with the creation of the array YMU (I, L, M) 

at statement number 49. 

The values of YMU are thus indexed over treatments i, i = 1, ... , t 
over arbitrary values of 02; A = 1, . . .O: o and over the different values 

of Pro; M1l1 . . ., n 

Section iD. - Strategy. - In terms of mathematical symbols previously 

defined, the strategy parameters are functions of numbers that are read at 

statement 50 as follows: 

Argument Function 

FORTRAN symbol mathematical symbol 

MP mp 

KP(1), " 

RETA(1) r1 

KP(2) ap2 

RETA(2) r 2 

KF af 

For each strategy investigated, the contents of the error arrays are 

first set equal to zero withthe DO-loop ending at statement 99. 

Section 2. - Simulations and model fitting. - This section is essen­

tially the same as that described for POOLES by Holms (1974), except 

that in POOL6U the experiments are simulated and fitted as if they are 

full-factorial experiments. 

Section 3. - Construction and ordering of mean squares. - This sec­

tion is essentially the same as that described for POOLES by Holms 

(1974). 

Section 4. - Deletion of terms. - This section contains the major 

changes between POOL6U and POOLES. The major distinction is the 

provision for more than one iteration of sequential deletion, the maximum 

number of iterations being three. The new strategy parameters axe r l , 



24



r2, and ap2 . The flow chart for the iterations is shown by figure 1. 

The statements from "DO 415 J=I,MPX" to "420 JETA = J-1" are 
essentially the same as those in rCOLMS (Amling and Holms (1973)) 

from "DO 15 J=l, M" to "20 JETA = JA-1. 71 

The statements beyond 420, and up to and including statement 424 

provide for the revision of the number of mean squares initially pooled 
in the given sequential deletion strategy in accordance with the value as­
signed to r. or r 2 . 

The statements beyond 424 and terminating with statement 429 set 

the insignificant model parameters equal to zero, as was done in state­
ments 416 through 419 of POOLES (Holms (1974)). 

Section 5. - Predictions. - This section is an abridgment of that 

described for POOLES (Holms (1974)). 

Section 6. - Accumulation of errors. - This section is the same as 
that of POOLES (Holms (1974)). 

Section 7. - Determination of maximum and mean squared errors. -

This section is the same as that of POOLES (Holms (1974)) except for the 

computation of the arithmetic mean, ;, of the number of terms (beyond 
the zero degree term) that are retained by the decision procedure, and 

the computation of COERMX. 

Section 8. - Output. - The output is illustrated in appendix C. The 

NAIVELIST output was incorporated only for program checking. 

Section 9. - Yates' method subroutine. - This subroutine is essen­

tially that of part of the main program of POOLMS (Amling and Holns 
(1973)) except with the last few statements modified so that the subroutine 

can be used for the direct Yates' method and also for the reversed Yates' 
method; as was also done in POOLES (Holms (1974)). 

The program POOL6U contains some statements from POOLES that 

are not essential to the present purposes of POOL6U. 
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SIMULATION RESULTS 

Monte Carlo Sample Size 

Results of a preliminary investigation of the effect of Monte Carlo 

sample size on the stability of the empirical results are shown by figure 2. 

In general, the results converge to a constant when the number of sampled 

experiments is 1000 or more. Variability of results occurs as the number 

of sampled experiments is reduced below 1000. All of the strategy com­

parisons were performed for 1000 sampled experiments. 

Large Coefficient of Variation 

One of the conclusions of Holms (1974) was that a widely useful three 

parameter strategy of sequential deletion for mmnnizing prediction errors 

consists of the strategy (mp, Up, af) = (1, 0.75, 0.10). The possibility 

of performing two analyses in sequence had been suggested by Holms and 

Berrettoni (1969). That suggestion had included performing an imtial 

analysis with the strategy (rp, ap, af) with np = 1. The values of ap 

and af would be selected according to some attempt to control the proba­

bilities of type 1 or type 2 errors. The initial analysis would yield an esti­

mate of 7. Then based on table 3 of Holms and Berrettoni (1969), a second 

analysis would be performed with mp approximately equal to 0.67 or 0.75 

times the 7 from the first analysis. The joint implications of the preced­

ing two sets of results are that for the present investigation with six param­

eters, a useful strategy might be as follows. (mP, ap1" r 1 P2) r 2 1 af) 

(1, 0.75, 0.700, 0.75, 0.700, 0.10). Some Monte Carlo experinentingwas 

started with strategy parameters in the inmediate vicinity of the set just 

listed. 

The most adverse value of p among nature's strategies is the value 

p = 15 Using this value of p, the sinulations were performed for all 

the listed values of 0 of table I. 

The strategies were most often compared in terms of the maximum 

coefficient of error, Cee, mx defined at equation (37), The largest values 

of Cee , mx occurred at 0 = 1.125. The better strategies for 0 = 0.125 

are listed in table IV which also lists the values of Cee m x for both 

0 = 0.125 and 0 = 2.000. 
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The best strategies of table IV for Cee, mx (0. 125) for each value 

of mp are listed in table V together with additional information on the 
operating characteristics of these strategies. These strategies are all 

good strategies at 0 = 0. 125, which represents the situation where the 

model parameters are relatively small (table III) in comparison with the 

error standard deviation (o-= 1. 0). (From previous discussion in the 

section on simulations and from table III, the ratio of the maximum popu­

lation value of the dependent variable to the standard deviation at 0 = 

0.125 is 1.556 whereas that ratio at 0 = 2.000 is24.898.) 

Small Coefficient of Variation 

If the statistician's loss function is the maximum relative error 

over the space of his experiment, Cee, mx' then the strategy that is 
optimal for 0 = 0. 125 is a security strategy because within the present 

investigation Cee, mx is larger for 0 = 0. 125 than for any other value 

(table I) of 0 investigated. 

On the other hand, if the statistician's loss function is simply the 

absolute value of the maximum squared error over the space of Is 
-2experiment, namely, -emax as defined by equation (31) then that quantity 

is a maximum within the present investigation at 0 = 2. 000 and thus the 

security strategy for such a loss function would be the strategy that mini­
mizes Cee m a x (2. 000). The strategy that minimizes Cee, max (2. 000) 

is the strategy with no deletion which is symbolized as (mp, apl r.. 1 , 
op2. r 2, Uj) = (0 , , ). Some other strategies 

that were good with inp = 1, ap = 1.00, and af = 1.00 are listed with 
resulting values of Cee, mx (0. 125) and Cee, mx (2. 000) in table VI. 

Admissible StrategLes 

For the purposes of the present investigation, a strategy will be 

classed either as admissible or as dominated according to its values of 
Cee rex(0) at both 0 = 0. 125 and 0 = 2. 000. A strategy will be said to 

be dominated if for 6 = 0. 125 there is another strategy with the same or 
lesser Cee , mx (0. 125) and with a lesser Cee,mx (2. 000). A strategy 

will also be said to be dominated if there is another strategy with the 

same or lesser Cee, mx (2. 000) and with a lesser Cee mx (0. 125). 
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Any strategy that is not dominated is defined as being admissible For 

example, witnm table V, the strategies for m = 1, m = 3, and m = 5 

are admissible, whereas the other three strategies are dominated 

In addition to the strategies listed m tables IV and VI for apl = 1.00 

and &f= 1.00, many strategies with smaller values of ap1 and Cf 

were investigated. Among all of the strategies investigated, the admissi­

ble strategies, together with some of their operating characteristics are 

listed in table VII. 

Security Regret Strategy 

The strategies of table VII include the strategy mp = 0, which re­

sulted in the smallest observed value of Cee mx (2.0), namely, 0.5282, 

and they include the strategy (5, 1.00, , 0.05, 0. 675, 1.00) which 

gave the smallest observed value of Cee, n x (0.125), namely, 7.689. 

The regret function of a statistical decision procedure, as a function 

of a parameter 0, is here defined as the excess loss occurring with the 

procedure at a particular value of 0 as compared with the loss that 

would have occurred had the best statistical decision procedure been used 

for that particular value of 0. For the purposes of the present investiga­

tion a regret function R(O) is defined for 0 = 0. 125 as being the Cee, mx 

(0. 125) for any strategy divided by the value of Cee ' mx for the best 

strategy for that value of 0, namely, 7. 689, and R(O) is defined for 

0 = 2. 000 as being the Cee, mx (2. 000) for any strategy divided by the 

value of Cee, mx for the best strategy for that value of e, namely, 
0.5282. 

Thus, 

R(0.125) = Cee, mx (0.125)/7. 689 

and 
R(2. 000) = Ceemx (2. 000)/0.5282 

The single strategy that has the smallest regret function over both 

a = 0. 125 and 0 = 2. 0 is defined as the security regret strategy. The 

security regret strategy is thus the sequential deletion procedure which 
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produces the least increase mn prediction error for p = 15 and an un­

favorable distribution of parameters over that prediction error which 

could have been achieved if the best strategy had been chosen for the2 
given (unknown) value of error varilace, cr . 

Examination of the R(9) values of table VII shows that the parame­

ters of the security regret strategy (mp, apl r1, a!p2' r 2 , af) are (1, 
1.00, , 0.75, 0.360, 1.00) for which the values of R(9) are 1.0966 
for 0 =0.125 and.0682 for 0 =2.000. 

Selection of a Strategy 

In summary, if the experimenter wishes to minimize the maximum 

prediction error over the points of the experiment when the variance 
error is relatively large (0 = 0. 125) the statistician' s strategy should be 

(5, 1.00, , 0.05, 0.675, 1.00), winch miniizes Cee, mx (0.125), 

(tables V and VII). If the experimenter wishes to mimmize the maximum 

prediction error over the points of the experiment when the variance 

error is relatively small (0 = 2. 000), the satistician should use the 

strategy mp= 0, which is to say that no model deletion will be performed, 

which minimizes Cee ' mx (2. 000) (table VII). 

If the experimenter has no basis for a choice between the two pre­

ceding extreme strategies, a security regret strategy with (mp, ap1 , r1 , 
a.2, r 2, Up = (1, 1.00, , 0.75, 0.360, 1.00) shouldbe used, in 

which case the values of the regret function (from table VII) will be R(O) = 

1.0966 if 0 =0.125 and R() =1.0682 if 0 =2.000. These va]ues of the 

regret function show that the relative prediction error standard deviation 

will be increased by at most 9.7 percent over what it would have been if 

the worst value of 0 had occurred and the best strategy against it had 

been used. Thus the security regret strategy of (m, apl r,, 'io2 , r 2, 
af) = (1, 1.00, , 0.75, 0.360, 1.00) must be concluded to be a widely 

useful strategy. 

Variance of Predicted Squared Error 

The three strategy selections described in the preceding section are 

based on a Monte Carlo investigation that reported mean values of pred-c­
tion errors over 1000 simulations. The quoted results thus tell what the 
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mean long run results will be as a function of strategy selection. The 

subject of short run results was not discussed. Some insight into the 
short run performance can be gamed by examining the observed values 

.of V(e2)mx This quantity gives the observed variance, for samples of 
size 1000, of the maximum squared prediction errors over the simula­
tions, as defined by equation (35). If this variance is relatively small, 
then operating characteristics such as Cee(W)mx are relatively constant 

from simulation to simulation. But if V(e2) nx is relatively large, then 
the short run performance of a strategy could be erratic. 

In the case of large coefficients of variation (small values of 6) the 

strategy performance was not erratic - the values of V(e2). were 

small for all the strategies of table VII for 0 = 0. 125. The strategy per­
formance can be erratic for small coefficients of vanation (large values 

of e). Thus the values of V(e2)mx were large or small for 0 = 2.000, 
depending on the strategy (table VII). This response to 0 shows that the 

bias component is the component of the prediction error that can be 
erratic. 

The response of V(e2)mx to the strategy parameters is to be exam­
ined, and this will be done for 0 = 2. 000. First of all, the parameters 

apl and r I are relatively unimportant, Namely, examination of ta­
ble VII shows that identical operating characteristics are often obtained 

despite wide variations of a p and r 1 . Furthermore, the three specific 

strategy recommendations of the preceding section all use cp 1 = 1. 00. 
p 2

For these two reasons, the influence of strategy parameters on V(e )mx 
was examined only for cases with apl constant at ap = 1. 00. Thus the 

only strategies of table VII that were examined for their influence on2 
V(e )tx were those that initiated the first analysis cycle as specified by 
mp and aIp 2 and then did or did not perform a second analysis cycle as 
specified by r 2 and af. 

Using results from table VII with 0 = 2. 000 and ap = 1.00, an arbi­

trary second degree polynomial was fitted. The form of the polynomial 

was: 
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+
In V(e2)mx] = 10 + 91mp + 2 c' 2 flr 2 + / 4 af + 5m 2 

"+6p + /kr2 + !38 c4 + / 9 map2 + PI10  r 2 +1 11 p 2r2 + 1 1 2 ny & 

" &g13'p2'f+ 014r 2af (38) 

The fitting used the backward deletion procedure of Sidik (1972) with a 

nominal significance level of 0.01. Results rounded to two significant 

figures are as follows: 

InV(e2)i,]= 9.1- 0.44 mp +5.5 a 2 

6.7 tlfl- a 2 2 (39) 

The coefficients of equation (39) show that the variability of 
Cee(2.000) x decreases with increasing mp, decreases rapidly with 

increasmg ap2' increases rapidly with r2 , increases with the product 

of np and p2 and decreases with increasing af. The range of mp 
included the values mp = 1, 2, 3, 4, 5. Thus even for mp = 5 the 

cross product term inmnpup2 together with the irst degree term in 

ap2 are of slightly less influence than the seconddegree term ina p2 

The values of the strategy parameters all serve to control the num­

ber of terms deleted, which fixes the number, p, of terms retained. 

Thus a given value of P can result from many different combinations of 

values of the strategy parameters. From the results exibited by equa­

tion (39) the conclusions as to what combination of strategy values would 

result in a given while immizing V(e2)mx are. inp is unimportant,
'.2 should be small; r 2 should be small; and af should be large. 

Thus to mnaunize both Cee(o)mx and V(e2)inxI a strategy should 

use cf = 1.00 and the smallest values of ep2 and r 2 that give accept­

able values for Cee()mx over appropriate values of 0. The choice of 

mp is not critical, and the use of apI = 1. 00 is generally acceptable. 

http:9.1-0.44


31


CONCLUSIONS 

An investigation was conducted to determine what statistical tech­
niques should be used for model fitting to the results of a two-level, 
fixed-effects full- or fractional-factorial, orthogonal experiment with 
16 treatments. Multiple sequential deletion strategies involving as many 
as two preliminary tests and one final test were evaluated, using Monte 
Carlo techniques, under the criterion of minimum prediction error. 

Three strategies were identified as being appropriate depending on 

the extent of the experimenter' s prior knowledge. 

1. If the experimenter has pnor knowledge that the relative error is 

relatively small (coefficients of variation of 4 percent or less) then no 

deletion should be used. The strategy is (map, ap1 r1 !p2 r2 , af) = 
(0, _ _ _, , , , __ _,) 

2. If the experimenter has prior knowledge that the relative error 
is quite large (coefficients of variation in the neighborhood of 65 percent) 
the strategy should immediately delete the five smallest absolute value 
terms and then test with continued pooling at a nominal test level of 0. 05 
to estimate a number 73 of insignificant terms. The number of terms 
deleted from the model should then be the integer value of 1 + 0. 675 ?'. 
The strategy is (rp, apl rl, ap21 r 2, af) = (5, 1.00, , 0.05, 

0.675, 1.00). 

3. Without prior knowledge about coefficients of variation, a security 
regret strategy should be used. It consists of beginning the sequential 
deletion with the single smallest absolute value term sacrificed to the 
test statistic. Testing is done with continued pooling at a nominal test 
level of 0.75 to estimate a number 7 of insignificant terms. The num­
ber of terms deleted from the model should then be the integer value of 
1 + 0.36 3. The strategy is (mp, p . r1 , ap2 r2 of)= (1, 100, 

0.75, 0.36, 1.00). 
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APPENDIX A 

SYMBOLS 

FORTRAN Description 


name 


B(I) estnnate of /3 

COERIMX ratio of maximum prediction error to 

scale parameter, eq. (37) 

expectation of . . . 

RN(I) 	 single observation random error 

ERSQMX maxinum over treatments of mean 

square prediction error over smu­
lations 

number of independent variables 

LGMH 	 experiment contains 2 g-h treatments 

experiment contains ( h t/2)itmes num­

ber of treatments in full factorial 
experiment 

I, J, K 	 subscripts 

LM,N 

KF index number for af, Amang and 
Holms (1973) 

KODE amount of NAIVELIST output 

desired 

KP index number for p, Amling and 

Holms (1973) 

LTH number of 0 values investigated in 

any computer run 

IP number of mean squares pooled before 
testing begins 
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Mathematical FORTRAN Description 

symbol name 

inp MRHO number of p values investigated in 

any computer run 

n e NE number of simulated experiments in 

any computer run 

r RETA(1) number of mean squares pooled for 

testing at level ap2 is integer 

value of 1 + rl], fig. I 

r 2 RETA(2) number of mean squares pooled for 

testing at level af is integer value 

of 1 + r 2 71, fig. 1 

t I T number of treatments 

V(. . variance of . . . 

V(e2)max VESQMX maximum over treatments of sample 

variance of mean square prediction 

error over simulations, eq. (35) 

xk kth independent variable 

Y I conceptual value of dependent variable 

Yi YOBS(I) observed value of dependent variable 

ZI Z(I) mean squares in Yates' order 

Clf nominal significance level of final test 

a Pinominal significance level of first pre­

liminary test 

ap2 nominal significance level of second 

prelimiary test 

P1 B (I) regression coefficients in Yates' order 

Sk DELTA(K, M) parameter determining relative magni­

tudes of coefficients in population 

model, eqs. (6) and (8) 
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Mathematical FORTRAN Description 

symbol name 

53 expectation of jth order statistic of 

of a 2 variable 

7number of mean squares having non­

centrality parameter of zero 
A 

?7 ETA number of mean squares concluded to 
be null during any analysis 

6 THETA(L) scale parameter 

A mean over expermient of noncentrality 

parameters, eq. (9) 

XI noncentrality parameter 

p1 YMU(I, L, M) population mean value of yr for Ith 

treatment 

p KTEIM, KRHO (M) number of non-null coefficients (num­
ber of 6 k values) beyond zero order 

term in population model 

p number of coefficients concluded to be 
non-null in any analysis iteration 

p AVRHO mean number of coefficients concluded 

to be non-null in a strategy investiga­
tion 

a standard deviation of e 
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APPENDIX B



PROGRAM LISTING 

c 
c iA.- rECLARA71DVS AND TABLES


c 

DIMENSTON IZEKARK(14), ALPHA(11), TBC64,10, RNUC-), I"D(161,Z(16), 
1714ETA(6), KRHC(3), DELTA(16,31, YMUM(26,3), YMU(if,,6,3)1


2AVRHO(6,3), ER50(16,6,3), ERSQSQfl6,6,3), ERSCVXC6,3),C0ERMXf6,!),


3AVERSC)t6,3), VESQ"X(6,3), AVVE$Qt6,3), KP(2), RETA(Z), ALFA(2)



c 
CCMMON KK, YCeS(16), Qtl6)



c 
DATA (ALPHA (I) I=I, 11 n.ocs r.c)i o.L2s,o.os,o. 10, 

DATA 
IC.0,2.()000,1.999q9,1.9q997,1.999A6,,1.99917,1.99687,1.9877,1.923,1 
2.7C6,1.382,2.9976,2.996E,2.99Z4,2.9 U9,2.951,2.9,4,2.8 ,6,2.527,2.­
386,1.688,3.976,3.962,3.029,3.P7u,3.76t',3.625,3.412,2-949,2-305,1-9


461,4.P87,4.t'45,4.75e,4-65,14.44,4.21,3.89,3.287,2.658,2.184,5.74.5. 
563,5.46,5.31,4.99,4.68,4.28,3.57,2.893,2.371,6.51,6.33,6.11,5.67,S 
6.46,5.rg,4.61,3.A3,3.11,2.54,7.2 ,6.96,6-65,6.35,S.88,5.44,4.91,4.


706,3.29,2.60,7.81.7.52,7.11-,6-78,6-26,S-7 ,5.17,4.27,3.45,2.82,8.3


84,8.CI,7.53,7.17,6.59,6.C,3,r.41,4.45.3.6L,2.95,8.P2,8.44,7.95,7.E3


9,6.89,6.28,5.61,4.62,3.74,3.L7,9.26,8.84,9.33,7.87,7.13,6.5,'.5.Al.


A4.77,3.87,3.17,9.67,9.21.8.68,8.16,7.37,6.71,S.99,4.92,3.99,3.27,1



CS.66,7.79.7.07,6.30,5.17,4.20,3.46,1-.72,IC.14,9.4-7,8.F3t7-96,7-23


D,(-.44,5.29,4.3o,3.5 ,11.Cllu.4P,9.64,9.,C,8.12,7.3ft,6.57,5.4L,4. I


E9,3.63,11.22,10.64,9.P4.9.17,8.28.7.52,6.69,5.5t,4.48,3.7-,11.5',1 
FC.86,1 ,.t)3,9.34,8o43,7.65,C.81,5.6r,4.56,3.77,il.76,1!-Z,,l .22,r,. 

IP,3.96,12.39,11.6Lk,10.76,9.99i8.99,1.1::,7.23,E.9Eti.65,Ll. 2,12. -8, 
JII.87,IC.93,lC.14,9.12,A.24,7.33,6.r3,4.92,4.-B/


VAIA



17.q2,E.11,4.98,4.14,12.93,1,-.22,11.26,10.43,9.34,P.44,7-51,6.lP,5.


2[,4,4.19,13.09,12,78,11.41,lr.56,9.44,8.54,7.6-,6.25,5.lcU.24,13.2 
34,12.c3,11.55.IC.68,9.54,9.63,7.68,6.32,5.16,4.3 j,13.39,12.68,11.6 
48,IC.78,9.64,8.72.7.76,6.38,5-22,4.35.13.53,1,-.82,11.8ClC.88,9.74 
5,8.81,7.93,6.44,5.2P.4.40,13.67,12.96,11.cl,12.9E,9.8- ,P.89,7.91,6


6.FL.5.33,4.45,13.PD,13.29,12.Llll. 7,9.91,8-97,7.97,6.56,5.38,4.5


70,13.';3.13.21,12-10,11.16,9.99,9.04,8.C4,6.62,S.43,4.54,14.15,1 .3


82,12.19,11.25,lr.-7,9.11.8.11.6.6P,5.48.4.5P,14.17,13.43,12.27,11.


934,20.15,9.18,8.17,6.74,5.53.4.62,14.29,13.53,12.35,11.43,10.22,9­
A25,8.23,6.8-,5.58,4.(>6,14-41.13-63,12.43,11.51,IL.29,9.31,8.29.6.8



http:48,IC.78,9.64,8.72.7.76,6.38,5-22,4.35.13.53,1,-.82,11.8ClC.88,9.74
http:9,6.89,6.28,5.61,4.62,3.74,3.L7,9.26,8.84,9.33,7.87,7.13,6.5,'.5.Al
http:84,8.CI,7.53,7.17,6.59,6.C,3,r.41,4.45.3.6L,2.95,8.P2,8.44,7.95,7.E3
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RS,5 .63,4 .10,14.53,13.13,12.5111.*5910.36,9.37,8.35,6.90,5.61,4 *74


C.1lI.6(,13.82,12.5911.67,1O.43,9.I3,8.41,6.95,S.71,4.78,14.7S,13.9


01,12.67,11.75,10.50,9 .49,8S46,6.99, 5.75,4.82,14.85,14.00, 12.75,11.


E83, 10.57,9.55,8 .51,7.03.5 .79,ft.86,14.95, 14.09 ,12 .83,11.90,10.64,9.


F61,8.56,7.0?,5.83,4.90,15.05,14.17, 12.90,11.97,10.7l,9 .67,8.61,7.1


G1,5.87,4.94,15.15,ll4.25,12.91,12.DtI,10.76,9.718.66,7.15,5.91,4.98


H,15.24,14.33,13.05,12.iiIO.82,9.77,8.1,1.19,5.955.t15.33,14-4 
Ir,13.12,12.18,l0.88 ,9 .82,8.16,23,5.99,5.04, 15.4t2,14 .47, 13.19, 12. 
J25,lC .94,9. 81,8 .81, 7. 21,6 *03.5 .07/


DATAC(1BC1,J),J=1,lr,),148,64,/15.s0,li.s4,13.26,12.32,11.oo,9.92,



18.8 5,7.31,6.07,5.l0,15.58,14.6013t3.32,12.38,11.06,9.97,8.89,7.35,6


2.11,5.13,15.66,14.66,13.38,12.44,11.11,1C.02,8.93,7.39,6.14,5.16,2


35 .73,1Q.72,13.44,12.5s0,11.16,1D.07,a.9y,7.43,6.17,sa19,15.80, 14 .79


4, 13 .5r1Z .56, 11.21, 10. 12,9 .01,7.47,6 .20, 5.22, 15.87, 14 85,13. 56, 12.


562,11.26 .10.17, 9.05 ,7.*51,6 .23,5.25, 15.93, 14 .91,13.62, 12.68, 11.31,1


60.2 l,9.09,7.55,6.26,5.28,15.99, 14.97,13.67,12 .73,11.36,10.25,9.13,


77.59,6.29,5.31,16.D5,15.03,13.72,12.l8,1.sD,10.29,9.17,7.63,6.32,


85.34,16.11,1S.10l,13.77,12.83911.44,10.33,9.21,7.67,6.35,S.37,16.17


9, 15 .16,13.82,12.88 ,11.48,1U.37,9.25,7.72,6.38 ,5.40,,16.23915.22,13.


A87,12.93,11.52,10.41,9.29,7.13,6.41,5.43,16.29,15.28,13.92,12.97,1


81.56,1U3.45,9.33 .7.76,6 .44,5.46, 16.34,15.34,13 .97 ,13.IJ1,11.60, 10.4'?


C,9.37,7.79,6.47,5.48,16.39,15.40,14.02,13.CS,11.64,10.53,Q.4a,7.82


D,b.SC,5.5O,16.44,15.46,14.06,13.r9,11.67,fI.57,9.45,7.85,6.S3,5.52


E vc.Cc.C,0.0,U.0,0.0Doc.,000,U0f



C 
NAMELIST 1011111 M410112/ YOBS IOUT3/ YMAUM /OUT4I M,L 
NAMELIST IOUT5/ YMU 101116/ N IOUTT/ RN 
NAMELIST IOUTSI J,INDY 
NAMELIST /OUT 9/ MPX,KPX,KF 
NAMELIST /OUT 10/ B 
NAMELTST /011111/ TNP,Z,B 
NAMFLIST /011T13/ N,MIL 10U1T14/U,JN,TEM /OUT1S/ ETA 
NAMELIST /011116/ NC 
NAMELIST / 1011120/ ETA,AVRNO 
NAMELIST / /OUT2Z/ ERSO FrRScSO 

C


C 10*- INPUTS AND CONSTANTS


C



REAOCS,*8t0) (REMARKI(I),1r1,14)


WI TE (6,801) (REMARXCI) ,I=1, 1'4)


READ(5%8O21 LGMH, NE, MRHO, KC)OE


KG= LCMH


IT= 2**LGMH


WR1TE(6,803) KG, IT, MR-O, NE


ITMI: IT-i


TTM2 =TT-2


FIT= IT


FITMI = TI


FNEt NE


IF (NE.EGO) FNE = 1.0l 
NEM1 NE - 1 
FNEM1 NEM!


IF (NFM1 .EO. 0) FNCMI =1.0


REAOIS,8ftl LIII, (IHETAIL), LZ1,LTH)


DO 5 M1J,MPHO


READIS,806) KIEM, (DELTA(K ,M), KflICKTEm)


KRHOIM)Z KTEM



http:D,b.SC,5.5O,16.44,15.46,14.06,13.r9,11.67,fI.57,9.45,7.85,6.S3,5.52
http:C,9.37,7.79,6.47,5.48,16.39,15.40,14.02,13.CS,11.64,10.53,Q.4a,7.82
http:13.IJ1,11.60
http:81.56,1U3.45,9.33
http:11.48,1U.37,9.25,7.72,6.38
http:85.34,16.11,1S.10l,13.77,12.83911.44,10.33,9.21,7.67,6.35,S.37,16.17
http:6.29,5.31,16.D5,15.03,13.72,12.l8,1.sD,10.29,9.17,7.63,6.32
http:l,9.09,7.55,6.26,5.28,15.99
http:562,11.26
http:DATAC(1BC1,J),J=1,lr,),148,64,/15.s0,li.s4,13.26,12.32,11.oo,9.92
http:r,13.12,12.18,l0.88
http:G1,5.87,4.94,15.15,ll4.25,12.91,12.DtI,10.76,9.718.66,7.15,5.91,4.98
http:F61,8.56,7.0?,5.83,4.90,15.05,14.17
http:5.75,4.82,14.85,14.00
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WRITE(6,8071 KTEM, (DELTA(KM), K:rKTEM) 
C ON TINUE 
IPZ 2**KG 
FIP = IP 
IPpI: IP + 1 
FENPIP = FNF*FIP 
FFEMIr T FN-MI*FIP 

C


C IC.- POPULATION MEANS


C



KK: "


F,C 40 M=I, vPI4O 
re O ?4%1:,PO 

DI 12: Ir,] 

1F;CPNIIUE


KTEP- KRIO(M) 
KTEfP," = KTFM + 2 
OC 2' II,KTEM 
F(1+1)= DELTA(I,M) 

2" CCNTIIUE 
Ic (KCDE oGT. D- ) WFITF (6, OUll 
Pf 22 T=I1,P 
IrPIMI: IPPI - T 
YOS(I): P (IPplMI) 

22 CONTINUE 
Ic (K4DE .GT. 1 ) WRITE (6, OUT2 
CALL YATFS 
DC 3.C IZ1,IP 
IPPIMI: IPPI - I 
YtAL"IT,P): P (IPPITI 

C4CON TI UE 
4t CONTI UF 

IF (RODE .GT. 2 ) WRITE (6, OUT3 
DO 49 M:1,HHO 

IPOX' = M 
DC 48 L--1,LTH 
I\DXL = L 
jr (KCDE .GT. 3 ) WRITE (6, OUT4 
D 47 InIIP 
YtU(I,LMI : YMUH(I,M)*THETA(L) 

47 CONTIrUE 
48 CCNTINUE 
49 CCNTINUE 

IF (KnDE .6. 4 1 WRITE (6, OUTS I 
C 
C iC. - STRATEGY 
C 

Cr1 READ (5,80S,END 899) MPKPII),KP(2), KF,PETA(1),RETA(2) 
DC 55 NCZ1,2 
IPX KP(NC) 
ALFA ('IC}r ALPHA(KPX) 

55 CCNTINUF 
CALL SAND (YS) 
Dr 99 MnI,MRHO 

DC 98 LnILTH 
AVRHO(L,M)= sCo 
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rC 97 I-IIP


EPSC(I,L,M)7 0.'


EPScSO(TLM) = 0.0



q7 CONTINUE


98 CONTINUE


)9 CCNTILUF 

C 
C 2.- SIMULATTONS AND MODFL FITTING 
C 

Pr 69c N=j,NE


Okr~l = N



IF (KODE .GT. 5 ) WRITE (6t OUT6


IF (,F.EQ.O) -O TO 2:;C


IC 213 171,IT


CALL nANrBRNCT)



213 CONTINUE


IF CK"DE .GT. 6 1 WPITE (6, OUT7 I


n," 21r :1,IT,2



F: SOPT(-2.r*ALOG(RN( I)1


[: 6.2831853*RN(I+1I


RP(I)z E*COs (D)


k(TI~): E*SIN(n
 


215 CONTIKUF


IF KCDF .GT. 6 ) WRITE (6, OUT?


GC TO 201



2%t D0 2Z9 1:1,1T


P\(II = .0



2"9 CONTINUE


2-1 DO M=I,MRHO
6 9 r 
 

INDXP 0


r
DO 68 LZ1,LTP



IIDXL L


VK LFMH


IF (NODE .GT. 12) WRITE (6. OUT13)



2r4 PC 214 I:lIT


YCBS(I) YmtI(I,L, M) +PN(I)



214 CCNTINUE


IF (NODE CT. 1 ) WRITE (6. OUT?


CALL YATES


GO TO 3OQ



C 
C 3.- CONSTRUCTION AND ORDERING OF MEAN SQUARES



C


3ru 	 DO 3ZQ J=1,1T



IND(I): I


Z (1): B(11)*B I+1 )/FIT


B(11I : ( I FIT



3CQ 	 CONTINUE



IF (NODE .GT. 10) WRITE (6, OUT11)


IF (MP .LT. 11 GO TO 432
 


C


DC 31 J:1,ITM2


TEST: Z(ITI)


IN-- ITMI


00 312 NA=J,ITM2


IF(TEST-Z(NA)) 312,312,311



311 	 TEST Z Z(NA)
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IN= 	 NA 
312 	 CONTINUE



ITEM: IND(IN)


TEM: ?(IN)


IKD(IN)- IND(J)


Z(INI- Z(JI


IND(J): ITEM


Z(J) = TEM



313 	 CONTINUE


IF (KODF .6To 10) WPITE 16, OuTll



C 
C 4.- DELETION OF TERMS


C 

MpX MP 
IF (KODE .GT. 12) WRITE 16, OUT13) 
DO 424 NC = 1,2 
IhDXNC = NC 
IF (KODE .GT. 15) WRITE (6v OUT16) 
KPX = KP4NC) 
IF (KODE .GT. a ) WRITE (6, OUT9 
TF (KPX EQ. 11) GO TO 424 
MPP1- MPX I1 
JN: 	 MPP1 

TEM= C.0


DC 415 J 1,MPX


INDXJ = J


TEm = TEM + Z(J) 

IF (KODE .GT. 13) WRITE (6, OUT14) 
415 CONTINUE 

PO 419 J-MPPIITMI 
INDXJ = J


F JN : JN


TEST: FJN*Z(J)/CTEM + Z(J)) 

IF (TEST - TP(JNKPX) 416,f16,t20 
416 TEN TEM Z(J) 

J: JN + 1 

IF (KODE .5. 13) WRITE (6, OUTl') 
419 CONTINUE 

JFTA ITMi 
GO TO 422 

42C JETA J-1 
422 ETA = JETA 

IF (KODE .GT. 14) WRITE (6, OUT151 
IF IKODE *GT. 12) WRITE 16, OUT13)


IF iRFTA(NC) .LT. 1.0) GO TO 421
 

MPX = JETA


60 TO 424



421 	 HPX = 1 + IFIX(RETAINC)*ETAb 
424 	 CONTINUE 

IF (KODE .GT. 8 ) WRITE (6w OUT9 
MPPI : MPX + 1 
JR FPP1 
TEm = 0.0 
DO 42E J-1,MPx


INDXJ = J 
INFX = IND(J)+I


B(INDX) 0.0





4-0



TEM = TEM + 2(J)


IF (KODE .GT. 7 1 WRITE (6, OUT


IF (KODE .GT. 9 ) WRITE (6, OUTI)



425 	 CONTINUE



IF f KF .EO. 11 1 GO TO 434 
DO 429 JZMPPI,ITMI 
INDXJ = J 
F JN JN 
TEST = FJN*Z(J)/ITEM + Z(J)) 
IF (TEST - TB(JNKF)) 428,428,430 

428 	 INDX = IND(J) + I


IF (KnDE .GT. 7 Y WRITE (69 OUT8


P(INDX) : 0.0



IF (RODE .GT. 9 ) WRITE (6, OUTIC)


429 	 CONTINUE



ETA = FTTMI


GC TO 433



47j 	 JFTA = J-1


ETA JEJA


IF RODE .LT. 8 GO TO 433


IF (RODE *GT. 14) WRITE (6, OUTis 

DC 431 JZJETAIT 

INDYJ z­

1NDX = T\D(J)41 

IF (KODE .GT. 7 ) WRITE (6, OUT8 I 

431 CONTINUE 
IF (KODE .GT. 9 ) WPITE (6, OUTID) 

GO TO 433 
432 ETA = V.0 

GO TO 433 

434 EIA = MPX 
433 AVRHO(L,M) = AVRHO(LM) + FITMI - ETA



C



C S.- PPEDICTIONS


C



5-rO K = KG


540 D0 546 12v1P



IPPIMI = IPPI-I


YBS(T) z B(IPPIMI)



546 CONTINUE


IF (KPDF .GT. 1 I WRITE (6, OUT? )


CALL YATES


IF (KODE .GT. 9 1 WPITE (6, OUT10)


GO TO 600



C


c 6.- ACCUMULATION OF ERRORS


C



6CC 	 DC 6r9 Il,IP


IPP1;T = IPPl-I 
TEM-- (B(IPPIMI) - YMU(I,L,M))**2 
EPsO(I,LM) = ERSO(I,LM) * TEM 

EPSCSg(IL,M)= ERSOSQ(IL,M) * TEM**2 
6C9 	 CONTINUE


680 	 CONINUE



690 	 CONTINUE


IF (KODE .GT. 1Q) WRITE (6, OUT20)



IF (KODE .GT. 21) WRITE (6, OUT22)
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IF (NE .EQ. 0) GO TO 701


699 CONTINUE



C


C 7.- DETERMINATION OF MAXIMUM AND MEAN SQUARED ERROPS


C



7PU 	 DC 79r Ml,mRHO


DC 78: L:1,LTH


C 	 C.0 
D : .0


E= C.(-


F= C.O


DO 75C 11,IP


Cr AMAXI(CERSO(1,LM))


0 r D + ERSO(ILM)


TEM: ERSOSQ(IL,M)- ((ERSUQILM))**2)/FNE


E = AmAXI(E,TEM)


F = F + TEM



7YG CONTINUE


EPSOMX(LM) : C/FNE


COERMX(LM) = (SQRT(ERSOMX(LM)))/THETA(L}


AVERSCNLM) = D'/FENBIP


IF (NE .EQ. 01 60 TO 780


VESOMX(L,M)= E/FNEM1
 

AVVESO(LM)z F/FEMITP


AVRHO(LM) Z AVRHO(LM)/FNE



78i CONTINUE


709 CCNTINUE



C 
C 8.- OUTPUT
C 

WRITE (6,809) (MP, ALFA11, RETA(), ALFAC2), RETA(2), ALpHA(KF))


WRITE (6,811) (KRHO(M), MI,MRHO)


lwPITE (6,813)


WRITE (6,81}


WRITE (6,817) CTHETA(L) (AVRHO (LM)tM1,tMRHOY)Ln1sLTHJ


WRITE (6,831)


WRITE (6,817) (THETA(L),(ERSQMX(L,M),Mrl,R1O),LrI,LTH)


WRITE (6,83q)


WRITE (6,817) (THFTA( ),(AVERSO(L,M),M=I,MR4O),L=ILTH)


WRITE(6,836)


WRITE (6,817) (THFTA(L),(VESOMX(LM,Mrl MRHO),LILTH)


WPITE(6,837)


WRITE (6,817) (THETAI), (AVVESQ(LM),MnIMRHO),LnlLTH)


WRITE (6,838)


WRITE (6,817) (THETA(L1,(COFRMX(L,M),M=I,MRHO),LZ1,LTH)


6C TO SC



8Q9 STOP


C 

8C0 FORMAT (13A6,A2) 
801 FORMAT (IH,/1OX,13A6,A2/1/) 
802 FORMAT (415) 
803 FORMAT (IHO,3X,4H1KG rIS,5X,4HIT rI5,SX,6HMRIO rI5,5X,4qHNE rI5) 
8'r4 FORMAT (18,6F8.3) 
8C6 FORMAT (I4/(IDF8.5))


8,7 FORMAT E1HO,5HRHO =IS,5X,7HDELTA r//(IX,IOF1O.5))
 

808 FORMAT (415, 2F5.31


8C9 FORMAT IHI//,IX,3HMP:IS,5X,9HALPHAP1 rF6.3,5X,7HRETAI rF6.3,5X,
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19PALPHAP2 ZF6.3.SX,7HRETA2 rF6.3,5X,8HALPHAF :F6.3) 
811 FORMAT (1HO,SHRHO =3113//l 
813 FORMAT (IHO,SHTHETA) 
815 FORMAT (1HO,2GX,5HAVRHOI/) 
P17 FORMAT (IXFOB3,3EI4.4) 
871 FORMAT (IHO,20X,6HERSQMY//) 
875 FORMAT (IHO,23X,6RAVERSO//) 
836 FORMAT (IHD,2Lx,6HVESCMX//) 
837 FORMAT (IHc,2CX,6HAVVESQ//) 
8!8 FCRMAT (1HO,20X,6HCOERMX//) 

END



SUBROUTINE YATES


C


C Q.- YATES METHOD SUBROUTINE


C



COMMON KK,Y(16),B(161


11 = 2**KK


IIDB2 = 11/2


KKMI = KK-

DO 908 K=I,KKMI


00 906 I=1,11,2


IP1D2 = [1*II/2


BRIPID2) = Y(141)+Yt1i


LL = IP102.IIDB2



906 B(LL) : Y(11)-Y(1i


00 907 I11II



907 Y(IJ = BCl)


9DB 	 CONTINUE



DO 909 l:1.11.2


IPID2 = (1+11/2


B(IPID2) = Y(II)*Y(i


LL = 1PID2*IIDB2


BLLI = YCII+)-Y(IR



909 	 CONTINUE


RETURN


END





AUG 24, 1977 IF (NEM1 WAS IF (FNEMI IF (RETA SUBSCPIPTED JULY 29, 1977 

K6 Ii IT=r 32 MRHO 3 NE 1000 

RHO = 11 DELTA 
i­

1.9871n 1.51950 1.24640 1.04300 .87550 .72980 .59850 .47710 .3626G .25260 ' 

RHO 13 DELTA: 

2.0g280
.30930 

1.59840 
2163G 

1.33540 
.12370 

1.14090 .98200 .84470 .722D0 .60950 .50440 .4L1480 (7i
H 

RHO i5 DELTA z 

2.10819 1.66452 1.4C919 1.22186 1.06945 .93855 .82213 .71606 .61764 .52503 
.43685 .35211 .269R5 .18921 .11835 



MP= I ALPHAP1 = 1.000 
 

RHO = 11 
 

THETA



AVRHO



.125 .1366+02 
 

.29C .13684Z2 
 

.5cC .1370+C2 
 
1.VO .1379+02 
 
'2.COC .1381+92 
 

ERSOMX



.125 .1112+01 
 

.290 o1105+01 
 
•50C *IIGG+Cl 
 

1.OCC .1099401 
 
2.000 .1116+ri 
 

AvERSO



.125 ,lor5+Cll 
 

.25[ .10O6+r1 
 
•5 c .100S+01 
 

1.00C .1066+01 
 
2.00C .1004+01 
 

VESQFX



.125 .2309+01 
 

.2SG .2290+01 
 

.5n[ .2302+01 
 
I.CoC .2289+01 
 
2.00L .2306+01 
 

RFTAX 
 

13 
 

.13 71+n2 
 

.1370+r2 
 

.1375+02 
 

.1375402 
 

.1385+02 
 

.1112401 
 
.1106+131 
.1116+01 
 

.1096+01 
 

.1112+01 
 

.i005+ 0 1  
 

.1007+01 
 

.1010+01 
 

.1010+01 
 

.1011+01 
 

.2284+01 
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TABLE I



INVESTIGATED VALUES OF SCALE PARAMETER



AND ASSOCIATED VALUES OF MEAN



NO NCENTRALITY PARAIE TER



Scale parameter, Mean noncentrahty parameter, 

0 x 

0.125 0.25


.250 1.00



.500 4.00


1.000 16.00



2.000 64.00 
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TABLE II



UNFAVORABLE DISTRIBUTIONS OF RELATIVE



VALUES OF MODEL COEFFICIENTS



15 13 11 

1 1 1 
211 21 1 2~ 1 

1 0.00587 0.10835 0.00765 0.1237 0.01038 0.1441



2 .01790 .18921 .02339 .2163 .03190 .2526



3 .03641 .26985 .04782 .3093 .06574 .3626



4 .06199 .35211 .08195 .4048 .11382 .4771



5 .09542 .43685 .12721 .5044 .17912 .5985



6 .13783 .52503 .18572 .6095 .26634 .7298



7 19074 .61764 .26062 .7220 .38328 .8755



8 .25637 .71606 .35677 .8447 .54390 1.0430



9 .33795 .82213 .48212 .9820 .77674 1.2464 

10 .44044 .93855 .65081 1.1409 1.15440 1.5195 

11 .57186 1.06945 .89158 1.3354 1.97435 1.9871 

12 ,74647 1.22186 1.27744 1.5984------------­

13 .99319 1.40939 2.10691 2.0528------------­

14 1.38532 1.66452-------------------- -----­

15 2.22223 2.10819 
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TABLE III 

PARAMETER COMBINATIONS, 9k = 06 k, p = 15 

k 6k ,0 

0.125 0.250 I 0.600 1,000 2.000 

1 2.1082 0.2635 0.5270 i1.0541 2.1082 4.2164 

2 1.6645 .2081 .4161 .8322 1.6645 3,3290 

3 1.4094 ,1762 .3524 .7047 1.4094 2.8188 

4 1.2219 .1527 .3055 .6110 1.2219 2.4438 

5 1.0694 .1337 .2674 .5347 1.0694 2.1388 

6 .9386 .1173 .2346 .4693 .9386 1.8772 

7 .8221 .1028 .2205 .4110 .8221j 1.6442 

8 .7161 .0895 .1790 .3580 .7161! 1.4322 

9 .6176 .0772 .1544 .3088 .61761 1.2352 

10 5250 .0656 .1312 .2625 *5250 1.0600 

11 j 4368 .0546 .1092 .2184 .43681 .8736 

12 .3521 .0440 .0880 .1760 .35211 .7042 

13 .2699 .0337 .0675 j.1350 .2699 .5398 

14 .1892 .0237 .0473 .0946 .1892 .3784 

15 .1084 .0136 .0271 .0542 .1084 .2168



15



k: 12.4492 
k=1



12,44920 1.556 3.112 6.225 12.449 24 898



-
(12.4492 0)1. 0.643 0.321 0.161 0.080 0.040
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TABLE IV



VALUESOF 0 eex(0 
) FOR STRATEGIES NEIGHBORING BETTER



STRATEGIES AT 0 = 0 125 

[apl 1 00, f=l 00, P-=15ne =1000] 

mp ap 2 r 2 

0 650 0 675 0 700 0725 0 750 

0 

0 125 2 000 0 125 2 000 0 125 2 000 0 125 2 000 0 125 2 000 

1 0 001 7 759 4 964 7 730 6 038 7 730 6 038 7 731 6 038 7 961 7 263 
002 7 760 4 957 7 730 6 029 7 730 6 029 7 731 6 020 7 960 7 252 
005 7 751 4 942 7 718 6 011 7 719 6 011 7 723 6 011 7 943 7 230 
01 7 758 4 933 7 740 5 999 7 741 5 999 7 745 5 999 7 986 7 216 
025 7 765 4 882 7 762 5 938 7 764 5 938 7 761 5 938 7 992 7 142 
05 7 792 4 802 7 851 5 840 7 854 5 840 7 870 5 840 8 049 7 024 

2 0 001 1 75D9 4 964 7 730 6 038 7 730 6 038 7 7S1 6 038 7961 7 263 
002 7 760 4 962 7 730 6 035 7 730 6 035 7 730 6 035 7 962 7 259 
005 7 753 4 956 7 725 6 029 7 726 6 029 7 729 6 029 7 94S 7 251 
01 7 757 4 954 7 742 6 026 7 744 6 026 7 748 6 026 7 972 7248 
025 7 761 4 932 7 732 6 000 7 733 6 000 7 730 6 000 7 952 7 217 
05 7 775 4 901 7 820 5 961 7 824 5 961 7 840 5 961 8 018 7 170 

3 0 002 7 762 4 964 7 719 6 038 7 119 6 038 7 719 6 038 7 952 7 263 
005 7 763 4 962 7 714 6 035 7 715 6 035 7 718 6 035 7 941 7 259 
01 7 761 4 959 7 717 6 032 7 718 6 032 7 722 6 032 7 955 7 256 
025 7 774 4 954 7 710 6 026 7 711 6 026 7 708 6 026 7 941 7 248 
05 7 787 4 942 7 739 6 011 7 743 6 011 7 760 6 011 7 956 7 230 

4 0 005 7 768 4 964 7 712 6 038 7 713 6 038 7 716 6 038 7 939 7 263 
01 7 767 4 964 7 711 6 038 7 713 6 038 7 717 6 038 7 950 7 263 

025 7 778 4 964 7 699 6 038 7 701 6 038 7 697 6 038 7 933 7 263 
05 7 786 4 962 7 706 6 035 7 709 6 035 7 726 6 035 7 939 7 259 
10 7 812 5 950 7 818 6 021 7 813 6 021 7 804 6 021 8 005 7 242 

5 0 005 7 768 4 964 7 712 6 038 7 713 6 038 7 716 6 038 7 939 7 263 

01 7 767 4 964 7 717 6 038 7719 6 038 7 723 6 038 7 953 7 263 

025 7 772 4 964 7 711 6 038 7 712 6 038 7 709 6 038 7 937 7 263 

05 7 774 4 964 7 689 6 038 7691 6 038 7 708 6 038 7 920 7 263 
10 7 800 4 962 7 786 6 036 7777 6 036 7 770 6 036 7 979 7 259 

6 001 7 767 4 964 7 717 6 038 7 719 6 038 7 723 6 038 7 953 7 263 

025 7 772 4 964 7 712 6 038 7 714 6 038 7 710 6 038 7 936 7 263 

05 7 772 4 964 7 699 6 038 7 01 6 038 7 719 6 038 7 939 7 263 
10 7 791 4 964 7 788 6 038 7 ?79 6 038 7 774 6 038 7 995 7 263 
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TABLE V 

ADDITIONAL PROPERTIES FOR STRATEGIES 

THAT WERE GOOD AT 0 = 0. 125 


=[apl 1. 00, af 1. 00, p =15, n e = 1000.] 

MP ap2 r. 0 

0.125_2.000 0.125 2.0O0 0.125 2.000 

2
p V(e2)mx Cee, inx(0 ) 

1 0.005 0.675 4.079 4.086 2.025 372.4 7.718 6.011 

2 .005 .675 4.058 4.026 2.026 248.2 7.725 6.029 
3 .025 .725 4.152 4.032 1.996 268.4 7.708 6.026 

.025 .725 4.112 4.000 1.995 185.4 7.697 6.038 
5 .05 .675 4.225 4.000 1.973 185.4 7.689 6.038 

6 .05 .675 4.171 4.000 1.980 185.4 7.699 6.038 



TABLE VI



VALUES OF eM,() FOR STRATEGIES WITH np= i, ap =1 00, AND a =1 00



T2 
 IP2



075 050 025 0 10 0 05 0 025 00 1 0 005 0 002 0001



0 125 2000 0125 2 000 0 125 2 000 0 125 2 000 0 125 2 000 0 125 2 000 0125 2000 0 125 2000 0 125 2 000 0 125 2000 

0 100 8 444 0 53398 459 0 5431 8 447 0 56878 449 0 58008 445 0 58298 446 05829 8 446 0 5842 8 444 0 584 8 444 0 584S 8 444 0 5850 

200 8 456 53398 458 5713 8 430 6483 8 433 6815 8 427 6939 8 423 69908 424 7012 8 423 701 8 422 7022 8 422 7031 

300 8 448 5410 8439 8013 8383 1 153 8 322 1 295 8 286 1338 8 265 1 355 8262 1 370 8 257 1 372 8 258 1 375 8 258 1 375 

400 8 434 67868 386 1 033 8 312 1 539 8 257 1 756 8 215 1 823 8 195 150 8 188 1 870 8 183 1 873 8 186 1 877 8 185 1 879 

500 8 423 66138361, 1 5738 275 2 566 8 167 2 977 8 139 3 096 8111 3 146 8 076 3 180 8 077 3 186 8 077 J 196 8 078 3 199 

600 8 417 72778 349 2 083 8 070 3 926 7 943 4 613 7 801 4 802 7769 4882 758 4933 7 750 4 942 7 75 4957 7756 4 964 

700 8 411 83768304 2 586 7 985 4 770 7 930 5 608 7 854 5 840 7 7645938 7415999 7 719 6 0117 7 730 6 038 

800 8 399 96708 206 3 386 8 073 5 772 8 086 6 745 8 052 7 024 7 990 7 142 985 7 216 7 948 7 230 7 956 7 252 7 957 7 263 



OGTOY - s 

TABLE VII 


PROPERTIES OF STRATEGIES ADMISSIBLE FOR 0 = 0 125 AND FOR 0 = 2 000 


=
[11(0 125) = Cee, rex/7 689, 1(2 000) = C6e, /0 282, p 15, % 1000] 

np 'pi 'I apZ r2 1 0120002 000 32 0o125o0 125 012510 i2-00012000 
~voe'lm Cee, RI(8 ) 

0 -------- -- -- 15 00 15 00 2 282 2 282 8 451 0 5282 1 0991 1 0000 

p 1 00 7 a0 0 075 1 00 13 99 14 00 2 299 2 615 8 448 5316 1 0987 1 0064 

1 01 0 .----- 7 125 1 00 13 96 13 97 2 294 2 669 8 446 0527 1 0989 1 008 

1 1 00 ----- 75 077 1 00 13 98 13 99 2 298 2 617 8 445 5330 1 0983 1 0091 

1 100 - 76 084 100 13 98 13 99 2 298 2 633 8 444 5337 1 0982 1 0104 

3 1 00 ----- 75 200 100 13 70 13 71 2 296 2 968 8 441 6477 1 0978 1 0369 

1 1 00 ---- 75 350 1 00 13 72 13 72 2 275 3 477 8 435 5612 1 0970 1 0625 
1 75 0 350 75 350 1 00 13 72 13 72 2 276 3 477 8 435 5612 1 0970 1 025 

1 1 00 75 360 1 00 13 71 13 72 2 276 3 820 8 432 5642 1 0966 1 0682 

1 1 00 ----- 75 410 100 13 67 13 68 2 288 5 226 8 426 5829 1 0959 1 1036 

2 100 ----- 75 350 1 00 13 32 13 38 2 281 5 038 8 424 6136 1 0956 1 1617 

2 1 00 ----- 75 400 1 00 13 27 13 34 2 280 7 758 8 422 6442 1 0953 1 2196 

4 10 0 ----- 75 300 1 00 12 51 12 58 2 240 5 800 8 414 6660 1 0943 1 2609 
2 1 00 ----- 75 450 1 00 13 16 13 23 2 300 12 52 8 413 7003 1 0942 1 328 
3 1 00 75 400 100 12 49 12 57 2 257 11 32 8 406 7269 1 0932 1 3762 

1 100 ----- 75 400 76 13 25 13 26 2 301 60 36 8 405 7737 1 0931 1 4648 
1 75 700 75 400 75 13 25 13 26 2 301 60 36 8 405 7737 1 0931 1 4648 

2 100 ---- 75 200 75 12 81 12 91 2 294 24 20 8 400 7945 1 0925 1 5042 

2 1 00 ----- 75 500 1 00 12 39 12 48 2 299 27 70 8 397 7995 1 0921 1 5136 

4 1 00 ----- 75 400 1 00 12 24 12 27 2 243 16 17 8 375 8204 1 0892 1 5532 

3 1 00 75 300 75 12 41 12 52 2 283 31 87 8 356 8912 1 0867 1 6872 



REPRODUCIBILITY OF THE 
ORIGINAL PAGE IS POOR 55 

TABLE VII - Continued 

mp, % 1 l r1 a 2 r 2 af 

0 52000 DI1 oo 0 o120ooo0 0125 2000 
CV(e2)ree, R (0) 

1 1 00 ----­0 025 0 250 1 00 11 12 11 10 2 305 11 40 8 340 0 9683 1 0847 18275 

1 1 00 --­ 005 250 100 11 02 11 03 2306 1145 8 239 9760 1 0845 1 8478 

4 1 00 ----­ 75 300 75 11 64 11 82 2 243 39 26 8 328 9846 1 0831 1 8641 

4 1 00 ----­ 75 500 100 11 13 112 0 2 209 68 70 8 290 1 169 1 0782 22 13 

4 1 O0 ---­ 75 400 75 11 28 11 36 2 207 159 9 8 288 1 310 1 0779 2 480 

1 1 00 ----­ 05 325 1 00 I0 40 10 26 2 265 22 70 8 285 1 338 1 0775 2 533 

1 1 00 ----­ 025 325 1 00 10 16 10.12 2 260 21 81 8 264 1 355 1 0748 2 565 

1 1 00 01---Ol 300 1 00 10 07 10 05 2 256 21 35 8 262 1 370 1 0745 2 594 
1 05 0 500 01 00 1 00 10 07 10.05 2 256 21 35 8 262 1 370 1 0745 25 94 

1 1 00 ---­ 005 300 10 10 03 10 04 2 261 21 20 8 257 1 372 1 0739 2 598 

5 1 00 ----­ 50 400 1 00 10 72 10 11 2 257 55 52 8 241 1 594 1 0718 3 018 

5 1 00 ----­ 75 600 1 00 9 883 i0OD 2 270 211 o 8 226 1 647 1 0698 3 118 

4 1 00 ----­ 25 400 1 00 10 01 9 286 2 237 43 37 8 213 1 820 1 0081 3 446 

1 100 ----­ 025 400 1 00 9 202 9 161 2 215 39 96 8 195 1 850 1 0658 3 502 
1 025 400 025 400 1 00 9 202 9 161 2 215 39 96 8 195 1 80 1 0658 3 502 

1 1 00 ----­ 01 400 1 00 9 077 9 063 2 213 37 37 8 188 1 870 1 0649 3 540 

1 1 00 ----­ 005 400 1 00 9 034 9 044 2 218 36 77 8 183 1 873 1 0642 3 546 

4 1 00 ----­ 75 600 75 9 794 9 889 2 218 752 0 8 170 2 036 1 0626 3 85 

4 1 00 ----­ 75 800 1 00 9 612 9 748 2 296 1298 0 8 150 2 138 1 0600 4 048 

5 1 00 ----­ 50 400 75 9 577 9 106 2 100 346 1 8 143 2 250 1 0591 4 260 

5 1 00 ----­ 75 600 75 8 859 9 134 2 167 910 9 $ 140 2 337 1 0587 1 424 

1 05 600 05 300 50 8 589 8 553 2 118 385 0 8 080 2 436 1 0509 4 612 

2 05 700 05 300 50 8 398 8 333 2 140 369 8 8 059 2 474 1 0481 4 684 

1 005 800 01 300 50 8 159 8 267 2 140 365 6 8 Oil 2 491 1 0445 4 716 

1 1 00 ----­ 025 400 50 7 250 ( 281 1 924 701 6 7 989 3 234 1 0390 6 123 

1 025 800 025 400 50 7 250 7 281 1 924 701 6 7 989 3 234 1 0390 6 123 



REPRODUCiBILITY OF THE


ORIGINAL PAGE IS POOR 6 

TABLE TII - Concluded 

Mp pl r1 ap2 r2 -f 0 

0125 2000 012512000 0125 2000 01251 2000 

V(e 2)x Cee, nR() 

2 1 00 0--­0 025 0400 050 7 152 7 143 1 906 677 4 7 971 3 262 1 0367 6 176 
2 025 0 800 025 400 50 7 152 7 143 1 906 677 4 7 971 3 262 1 0367 6 176 

1 50 600 005 400 50 7 057 7 131 1 907 670 4 7 960 3 270 1 0352 6 191 

2 01 825 01 350 50 7 092 7 097 1 911 665 8 7 958 3 276 1 0350 6 202 
2 01 825 .025 375 50 7 092 7 097 1 908 665 8 7 958 3 276 1 0350 6 202 

1 05 800 01 300 25 6 901 6 798 1 920 1322 0 7 927 3 627 1 0310 6 886 

1 005 850 005 300 25 6849 6 779 1 937 1318 0 7 916 3 638 1 0295 6 888 

2 05 850 01 300 25 6 858 6 744 1 929 1310 0 7 912 3 644 1 0290 6 899 

1 1 00 ----­ 01 575 1 00 6 123 6 100 1 967 166 7 7 896 3 997 1 0269 7 567 

1 1 00 ----­ 005 575 1 00 6 054 6 069 1 947 150 7 7 893 4 005 1 0205 7 582 

1 002 800 005 500 75 5 921 6 089 1 936 810 7 7 839 4 029 1 0195 7 628 

1 1 00 ----­ 05 650 1 00 863 5 559 1 882 724 8 7 792 4 802 1 0134 9 091 

1 1 00 ----­ 025 650 1 00 5 357 5 285 1 835 454 0 7 765 4 882 1 0099 9 243 
1 10 600 025 650 1 00 5357 6 285 1 835 454 0 7 765 4 882 1 0099 9 243 

2 1 00 ----­ 025 b5O 1 00 5 221 5 096 1 825 264 1 7 761 4 932 1 0094 9 337 

2 10 600 025 650 1 00 5 221 5 096 1 825 264 1 7 761 4 932 1 0094 9 37 

1 1 00 ----­ 01 600 1 00 5 157 5 113 1 824 275 6 7 758 4 933 1 0090 9 339 
1 1 00 ..... 01 650 1 00 5 139 5 113 1 825 275 6 7 758 4 933 1 0090 9 339 
1 10 600 01 650 1 00 5 139 5 113 1 825 275 6 7 758 4 933 1 0090 9 39 
1 01 700 01 600 1 00 5 157 5 113 1 824 275 6 7 758 4 923 1 0090 9 339 

1 1 00 ----­ 005 600 1 00 5 073 5 078 1 817 28 2 1 750 4 942 1 0080 9 356 
1 01 700 005 600 1 00 5 073 5 078 1 817 238.2 1 750 4 942 1 0080 9 356 

1 1 00 ----­ 01 675110 4 170 4 124 2 015 454 7 7 740 5 999 1 0066 11 357 

2 1 00 ----­ 025 725 1 00 4 243 4 104 2 012 430 4 7 730 6 000 1 0053 11 359 

1 005 750 01 675 10 0 4 084 4 086 2 025 372 4 7 716 6 011 1 0035 11 380 

1 005 850 01 676 10 0 4 084 4 086 2 025 372 4 7 716 6 011 1 0035 11 380 

3 25 500 025 725 1 00 4 179 4 041 1 96 288 0 7 709 6 023 1 0026 11 403 

3 1 00 ----­ 025 725 1 O0 4 152 4 032 1 996 268 4 7 708 6 026 1 0025 11 409 
3 25 700 025 725 1 00 4 152 4 032 1 996 268 4 7 708 6 026 1 0025 11 409 

4 100 05 675 1 00 4 304 4 008 1 987 206 5 7 706 6 035 1 0022 11 426 

5 1 00 05 675 1 00 4 225 4 000 1 973 185 4 7 689 b 038 10000 11 431 



Snc In 

STRATEGY (m xa)

RESULT p 

Figure ~ SRAEG p (rtw(rp1 ax r2 f), 



14 

12 

mp upl r, 0p2 r2 f p 0 

0 1 00-- 0750360 100 15 0125 
10 5 100-­ 05 675 1c 15 125 

a 6 

1:9o I I111 ! 1I11l 
S(aEFFECTOF ne ON P 

220 

t 180­

160 

140] Inp 5 
UI IO 

cq2 
100 -r 2 

af 

005 
0 675 
100 

80­ p 
a 

15 
2000 

60­

20-0 

l , vl l W-IffIilAl+ I I ' llii 
(1)EFFECT OF ne ON V(e 1max 

mp 1
g apl 1oo



- apz 1 00 

0 360r2
of 
 1 00 
p 15 
8 0 125 

I [1I11I1 I iI ll I1111111I 
10 20 40 60 80100 200 400 600 1003 2000 4000 6000 10 000 

n


e



(c) ne ON CeeEFFECT OF rx(O) 

Figure 2 - Effect of sample size on Monte Carlo results 
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