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"CHAIN POOLING'" MODEL SELECTION AS DEVELOPED
FOR THE STATISTICAL ANALYSIS OF A ROTOR
BURST PROTECTION EXPERIMENT

by Arthur G. Holms

Lewis Research Center

SUMMARY

A statistical decision procedure called chain pooling had been devel-
oped for model selection 1 fitting the results of a two-level fixed effects
full or fractional factorial experiment not having replication. The basic
strategy mcluded the use of one nominal level of significance for a pre-
liminary test and a second nomanal level of sigmificance for the final test

The subject has been reexamined from the point of view of using as
many as three successive statistical model deletion procedures in fitfing
the results of a single experiment, The new mvestigation congisted of
random number studies intended to simulate the results of a proposed
aircraft turbine engine rotor burst protection experiment. As a conser-
vative approach, population model coefficients were chosen to represent
a saturated 27 experiment with a distribution of parameter values un-
favorable to the decision procedures.

Three model selection strategies were developed, namely, (1) a
strategy to be used when the expermmenter anticipates a large error
variance (coefficients of variation in the neighborhood of 65 percent),
(2) a strategy to be used when the experimenter anticipates a small
error variance (coefficients of variation of 4 pexcent or less), and (3)
a security regret strategy to be used in the absence of such prior

knowledge.



INTRODUCTION

The two-level, fixed effects, full or fractional-factorial design of
experiment, withouf replication, 1s the appropriate design for those
situations where the experiment 1s very expensive or time consuming,
An example of costly experimentmg 1s provided by the destructive test-
mg of sumulated aircraft components, as m the rotor burst protection
testing described by Mangano (1977). New rotor burst protection inves-
tigations are planned to measure the contamment efficiencies of com~
posite structures. One such investigation 1s planned as a two-level
fractional-factorial expermment, The description (Holms 1977) of that
experunent 1s 1llustrative of one area of applicability of the results of
the present mmvestigation,

If such an experiment 1s performed and t observailions are obtained
from t orthogonal expermmental conditions, the appropriate emprical
equation for representing the results can have as many as t terms,
each with a coefficient that has been fitted to the data. When this 15 done,
a question that should be asked 15: "Can the predictive accuracy be mm-
proved if some of the terms are deleted?’ The fact that some of the
terms maght degrade the predictive accuracy of a fitted equation was
recogmzed by Walls and Weeks (1969) but they gave no procedure for
1dentifying such terms

A method for the sequential deletion of terms that was intended to
reduce the prediction error was given by Kennedy and Bancroit (1971).
Their method assumed that the experimenter hag a prior established
order for subjectmg the terms to a sequence of significance tests. Un~
fortunately, in many expermmental situations, there is no basis for estab-
lishing a prior order, and m such cases an order statistics procedure 1s
appropriate. An order statistics approach for significance testing was
used 1 a pair of related papers by Daniel (1959) and by Birnbaum (1959).
They were not then seeking to mimimize prediction errors,

For model selection procedures used with small saturated experi-
ments (expermments designed to have only as many experimental condi-
tions as there are model parameters to be fitted), the analysis should
begmn with 2 minmmum number of estimable terms being sacrificed fo
form a denominator for the test statistic. A procedure using m-terms
sacrificed, where m can be as small as one, was investigated by Holms



and Berrettoni (1969). The procedure was a form of subset regression
using backward elimination The object was to delete terms in a manner
where some control wag mamtained over the probabilities of Type 1 or
Type 2 decision errors. The procedure was called chamn pooling and
used a strategy (mp, ozp, Cy) where m_ was the number of terms i~
tially sacrificed to the test statistic, o, was the nominal level of a pre-
limmary test of significance where "msigmficant™ resulted in ancther
term (mean square) pooled into the denominator of the test statistic, and
0y Was the nominal level of the final test of significance, for the inclu-
sion of terms m the model.

The mimimizing of prediction error was the object of further inves-
tigation of the chamn pooling strategy (m_, L @g) as described by Holms
(1974). Whereas that investigation had assumed that only one cycle of
analysis would be used, a suggesiion given by Holms and Berretoni (1969)
was that more than one cycle of analysis should be used. The specific
suggestion was that an analysis be performed with the strategy (mp, @
o) where m_ =1 fo obtain an estimated number of null mean sqguares,
fi, tacitly assuming that the population number of null mean squares 1s
greater than zero. A second analysis would then be periormed with a
strategy (mp, ozp, o) where m - 1s an integer approximation to the

product rnﬁ where r, had been empirically optimized at about r . 0.7.

The purpose of the present investigation is to use Monte Carlo
methods to optimize a combined procedure that might confain more than
one analysis cycle, where the procedure 1s to be optimized for mimimum
prediction exror. Such a procedure would seem to be worthwhile 1 view
of the large number of aerospace research and development programs
where:

(1} There are a large number of controlled variables
(2) The expermmenting 1s time consuming or expensive
(3) The dependent variable has an error variance that might be large

Based on the results, some specific model selection procedures are
recommended,



PRIOR WORK

An early practice described by Davies (1956, p. 286) consists of
pooling some arbitrary number of those mean squares that represent
higher order terms into an estimate of error variance. When this 1s
done, some terms of important predictive value might be deleted from
the model. Furthermore, such mean squares might unduly inflate the
estimate of the error variance, thus reducing the sensitivity of the sub-

sequent procedure, and resulting in the deletion of additional 1mportant
terms from the model.

The preservation of sengitivity, when pooling mean squares mto the
estimate of error variance, has been an object of the procedure of Daniel
(1959, and of Wilk, Gnanadesikan, and Freeny (1963).

Daniel (1959) uses the absolute values of the effect estimates as
order statistics. They are plotted on probability paper and the result
15 called a half-normal plot. In addition to conditional structuring of the
ANOVA model, Daniel's objectives mcluded the determination of "bad
values, heferoscedasticity, dependence of variance on mean, and some
types of defective randomization, . . .'". The half normal plot, com~
bined with a background of experience, might provide a method by which
a skiilful user could pass judgement on the results of an experiment.
Dantel concluded that such a plot can be used to make judgements about
the reality of the largest effects observed only 1f a small proportion of
the effect estimates represent real effects. Birnbaum (1959) investi-
gated procedures related to half-normal plotting. His results on ', . .
the probabilities of the various possible sorts of exrrors . . .' are
limited to the single largest order statistic., He surmised that if only a
small number of effect estimates have nonzero meang, the power and
sensitivity properties will tend to hold approxamately.

The procedure of Wilk, Gnanadesikan, and Freeny (1963) if used
with 2! treatments 1s benefitted if some subjective or prior knowledge
15 used to decide that 7 of the 9! -1 mean squares do not contamn real
effects, or that p = ol - n -1 mean squares do contain real effects. As
was shown by Wilk et al. (1963), the procedure 1s not robust agamnst
errors 1n guessing the value of 7, and 1 must be guessed 1f the prior
knowledge 1s lacking, which 1s an assumption of the present investigation.



Daniel and Birnbaum have limited their results to experiments where
only a small proportion of the effects are anficipated to be signmificant,
On the other hand, situations can exist where the experimenter might use
a two-level fractional factorial experiment designed such that a large
proportion of the effects are significant, A need remains for a decision
procedure that sacrifices only a small number of terms to produce a test
statistic, and then uses the test statistic o mimmize prediction errors.

Allen (1971) referred to literature that used the residual sum of
squares as a criterion for choosmng regressors, He poimnted out that
there are at least two objections to using such a criterion

1. I the residual sum of squares were the only criterion, then all
of the regressors would be used and there would be no motivation for
subset regression.

2. The residual sum of squares 1s not directly related to the
'natural' loss function which 1s the mean square error of prediction.

On the other hand, the methods of Allen obtain a criterion called
PRESS by predicting each observation from all the other observations.
The present mvestigation 18 concerned with small saturated experiments
where each observation is more or less crucial to the estimation proce~
dure, particularly for predictions at the set of regressor values corre-
sponding to a given observation. The PRESS criterion is therefore be-
lieved to be mappropriate to subset regression for small saturated ex-
periments.

MULTISTAGE DECISION PROCEDURE

Assumptions

The assumptions are as follows.

(1) The model to be fitted 1s linear 1 the unknown parameters.

(2) The errors of the observations are independently normally dis-
tributed random variables with a zero mean and a constant variance,
(3) Orthogonal estimators are available for estimating the unknown

parameters of the linear model. (This orthogonality can be the result of
the design of the experiment that furnished the observations, or it can



be the result of an orthogonalizing transformation of the terms of the
equation, as discussed by Holms (1974).)

(4) An approprate criterion of the goodness of a subget regression
procedure 1s the smallness of the largest of the prediction error mean
squares over the pomnts of the experiment,

{8) There 1s no replication available for an estimate of the "pure"
error variance.

The first four of the five preceding assumptions are funadmental to the
rationale of the method; however, data has been given (Holmg and
Berretton1 (1967)) for believaing that the method 1s robust agamnst the noxr-
mality part of the second assumpfion, The fifth assumption merely ac-
knowledges the possibility that an altogether different method might be
preferred mn the presence of pure replication,

The original 1nvestigation of chain pooling had been concerned with
three sizes of experiments, namely, experiments furmishing 16, 32, or
64 observations (Holms and Berrettom (1967)). The simulations had
shown drastically reduced decision error probabilities, or the equiva-
lent, greatly improved mformation efficiencies, for the larger experi-
ments., Such results suggest that the method of analysis 18 relatively
less critical for the larger experimments, and the methods described
(Holms and Berrettoni (1967)) are therefore behieved to be adequate for
producing small prediction erroxrs with experiments providing 32 or
more observations.

For relatively saturated experiments that are smaller than 16 obser-
vations, the opmion 1s offered that such experiments are too small to
provide both (1) good estimates of model coefficients and (2) a good test
statistic, in cases where random errors are large enough to call for a
statistical decision procedure. In other words, saturated experiments
with less than 16 observations should be fitted with models having a fixed
number of terms with no use of condifional modeling.

Consistent with the preceding remarks, the simulations of the pres-
ent investigation were all performed with experiments contaming 16 ob=
servations mn the belief that such experiments are large enough to justify
the use of a statistical decision procedure, but small enough so that the
precise optimization of the decision procedure would be quite beneficial.



Strategy

The generalization of the strategy (mp, ap, al) to be 1nvestigated 1s

the strategy (mp, o o1 Ty o:pz, Ty, af), where the symbols are defined
in appendix A,

SIMULATION PROCEDURE

Population Model

The experiment 15 assumed to be a two-level, fixed effects,
fractional-factorial experiment, where the independent variables are
gualitative or quantitative, and they are controlled to have negligible
error, In such situations, the mmdependent variables are often assigned
the values of +1 for the "upper" level and -1 for the "lower'" level, An
example of an appropriate model equation for the population mean value
of the response 1n the case of four immdependent variables 1s

E(Y) = Qo T QqXy T QpXg + Ay gXqKg T UgXg + 0 oK Xg + UggXgXg
t O oaX KoXa + QR + 0y X Ky + Qg gXoKy + O ogX1XoRy

F g KRy + O g XqXgXy +,Uoa KoXaXy + 0ggq, K XgXaX) 1)

The subsequent discussgion assumes that an equation such as the pre-
ceding equation will be fitted to the resulis of a two-level experument
where the x's are "design values, " namely, the high level of X, 18
represented by X = +1 and the low level of X 18 represented by
X = -1.

The single observation value of the response 1s assumed to occur
according to the model

Y=E(Y)+e (2)
where e 1sthe independently normally distributed random error, with

E(e) = 0; V(e) = o2 (3)

The expermment 15 assumed to be a two-level, fixed efiects,
fractional-factorial expermment where g 1s the number of mdependent



variables, and the expermment 1s assumed o be a a7h fractional repii-
cate of the full factorial expermment. The observations are assumed to
result one-for-one from the treatments, and their number 18

t =o8"h

The observations are used to compute estmmates of parameters such as
the parameters of equation (1) and also to compute mean sqguares, typi-
cally by Yates' method (Dawies, 1956, p. 263).

Assume that the mean squares Z, have been computed in Yates'
order and 1n this order are labeled Zl’ 22, v e ey Zt' The coefficients,
a's, of equation (1) are 1in Yates' order. If they are subscripted in that
order and then given the symbol ﬁl, the expectations of the Z, are

E(Z) = o” + 28707
(4)
i=1,2,.,..,t

The random variables Zl/crz are noncentral chi-square variables
having cne degree of freedom (Kendall, M. G. and Stuart, A,, 1961, p.
227). Let A, be the noncentrality parameter. It is related to parame-
ters already defined by

g=h .2
A = A

t 2
a

(%)

A stepwise multiple decision procedure is to be used to delete esti-
mated coefficients from an equation such as the one illustrated by equa-
tion (1), The situation for which the operating characteristics of the
statistical decision procedure will be opfimized 15 assumed to be as
follows:*

The t single degree of freedom mean squares are assumed to have
been drawn from t populations. An unknown number, p, of the popula~
tions (aside from the one associated with B,) have real effects (A, > 0)
and the 1 other populations are null populationg (n populations have
A =0). A number, p, of the populations (other than the one associated
with g,) are to be selected for retention of model coefficients 1n equa-
tions hike (1), hoping they have A > 0.




The relative magmtudes of the nonzero population parameters to be
tested can be expressed hy dividing squares of the coefficients by the
mean value of the sum of the squares, namely, where the quantifies 6§
give thege relative magnitudes,

2
52o Tk A
2
15 2
=), ) (6)
P k=1
k=1, 2, .o 7
From equations (6)
R
L Z 6 =1 )
P k=1

Unfavorable Population Model

The basic chain pooling concept was investigated for the purpose of
mimmizing prediction error as described by Holms (1974). That waves-
tigation was concerned with the fitting of models to fractional factorial
experunents under the condition of population functions of irregular
shape. The emphasis of the present mvestigation 1s on the condition
where the relative values of the population coefficients are all unfavor-
able to the deletion procedure. TFor reasons given by Holms and
Berrettom (1969) this 18 done by proporfioning the squares of the 5
values to the expected values of the order statistics of a single X?l)
distribution,

Where the &, are the expectations of the X?l) order statistics in

mereasing order from & sample of size p; the 512: m the order of Yates!
computation beyond the first were given a decreasing order by setting

2 _
O = &p-kc+1
(8)
k=1, ...,p
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Let A be the arithmetic mean of the noncentrality parameters.

1
A== A 9
> ) M (9)
k=1
From equations (5) and (9)
P o8-hy2
_1 E A
A=l E (10)
p 2
k=1 ¢

Using the defimtion of 612{ of equations {6),

P
AL SN ay

k=1
From equations (10) and (11)
5 6§A02
By = (12)
28-h
From equations (8) and (12)
2
2 g
By =A —— ¢ _ (13)
k Zg“h p k+1 .
or
9 1/2
B =(r"—r_ (14)

Expectations of order statistics from a gamma distribution with
scale parameter one, shape parameter 1/2 and many sample sizes have
been tabulated (Harter, H. L. (1964)), Mulfiplying such values by 2
gives the expectations of the order statistics of the central x‘(zl) distribu-
tion. Such expectations, for a sample of size p, provide the values
called for by the definifion of the &



11

With the distribution of &, values fixed as just described, the popu-
lation parameters Bk, as given by equation (14), depend only on the
single observation error variance 02 and the mean, A, of the noncentral-
1ty parameters.

The simulated experiments were performed and the decision pro-
cedures were mvestigated with 1 mean squares having 7\.1 =0 and with
g-h_ 1 - % mean squares having the unfavorable set of A values
{ed. (5)) that were just described.

p=2

Observation Simulation

The number of treatments 1s

=080 (15)

In accordance with model equations such as (1) the t observations re-
sulting from t treatments are given by equation (2) with E(Yy) =y as
the varates

yp=Hptep )

Yo = Uy €y
(16)

Sp=Hte )

In the analysis of an experiment, the application of Yates' method
estimates each of the t parameters that occur in an equation such as (1).
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Furthermore, from equations (12), the nonzero values of the f , are

1/2
hcrz
B, = 8 (17)
9&-h
where
k = 19 23 35 ] LR P
1 =1, 2, , t
and
1=k+1 for k=1, . s P (18)
and Bl =0 otherwise Let
- (19)
28-h

From equations (17) and (19)

By = 005 (20)
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Any particular strategy (mp, ozpl, Ty ozpz, Tos af) will be evaluated

for an array of populations having mg, unique values of p, namely, Py
m=1,2,,..,m_ and 2;\ unique values of the mean noncentrality pa-
rameter, A, namely, kﬂ, £=1,2,,.., ﬂh.

Because of the freedom to chooge the values hﬂ and because IR
a scale parameter on o (eq. (17)) an investigation of the effect of varma-
tions m 0‘2 1s superfluous, and 02 will be set equal to cne,

As implied by equation (16) the computer program must perform
operations equivalent to the following:

Yl = Hl + el (21)
Yo =ty + &g
Y16 = H16 T 16 (22)

As previously stated, the b | are to be computed from the ¥, by Yates!
method, With the f)l computed, the reversed Yates method of Duckworth

(1965) 1s used to compute predicted values of Y, namely, y, The predic—
tion errors are then

=y, - K 23)

Conditions Investigated

As developed 1n the subsection on strategy in the main section on
MULTISTAGE PROCEDURE, the statistician's strategy consists of the



14

components (mp, oapl, rys apz, Ty, a:f).

As developed mn.the subsection labeled Unfavorable Population Model,
nature's strategy consists of the number, p, of non-null population pa-
rameters, and the mean noncentrality parameter, A. As given by equa~-
tion (19) the relation between the mean noncentrality parameter, A, and
the scale parameter 6 18

2 A
98-h

For the expermment with 16 treatments, 280 = 36 and the related values
of & and A mvestigated are as given in table I.

In general, the smaller the number of null mean squares, i, the
greater will be the probabiity of decision errors. This was 1llustrated
m figure 4 of the paper by Holms and Berretton: (1969). Thus the most
difficult situation arises for 1 =0, For the Zg"h expermment with
g -~ h =4, and where the Bl term (zero degree term) 18 not subjected to
testing, the condition equivalent to 7 = 0 1s the condition p =15,

A real-hife example of a 28-h - p5-1 expermment with p =15 was

presented by Daniel (1959) m figure 19 of ns paper. As stated by Daniel
concerning such a situation:

"The 15 effects appear to f£all wnfo a nearly normal distribution
with their own variance, much larger than the error variance,
The reality of many of these terms 1s proved by later experi-
mental work., There may be some sort of central limit theorem
analog operating here on the (discrete) population of effects, but
no success can be reported in 1ts formulation."

One mterpretation of Damel's discussion 18 that if an experimenter
designs s experment and attempts to select the levels of the controlled
variables so that measurable effects will be achieved, then a preponder-
ance of the fitted coefficients of the model equation will have absolute
magnitudes fairly close to some central value, and a very small number
of coefficients will have much larger and much smaller values, and still
other coefficients will be scattered between these two extremes, In
other words, an apprommat{fon to the normal distribution should be ex~
pected for the coefficients of a model equation resulting from experimenis
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where controlled variables were set with some degree of prior knowledge
of their effects.

In the light of the preceding considerations, a nature's gtrategy with
p =15 and a normal distribution of model parameters would seem to be
a highly Iikely strategy, and correspondingly, a statistician's strategy
optimized agamst such a nature's strategy should be thought of as an
approximate Bayes strategy. As developed by Holms and Berrettoni
(1969), such a normal distribution of model parameters 1s represented
by the parameter distributions of tablie IT and these distribufions are
ighly unfavorable to the statistical decision procedure. A procedure
optmmized agammst p = 15 and the distribution of §J of table II may
therefore also be regarded as an approximate security strategy. Such
a nature's strategy (table II) will therefore be chosen as the strategy
against which the statistician's strategy will be optimized.

Consider the fitting of a model equation such as that illustrated by
equation (1) to the results of a two-level, fixed effects, full or fractional
factorial experment. The imndependent variables can be standardized so
that all the x-values are either +1 or -1. With { {reatments and t ob-
servations, the estimators of the coefficients are all of the form

A A Y. FasYe t. . . FAY
b =171 "272 t't (24)
1
t
where the a;, a5, . . ., a;, all have values of +1 or -1  The single

observation error variance of the Y-values 18 assumed to be 02 and
because the Bl are formed from a linear combination of t indepen-
dently distributed Y-values (eq. (24)), the variance of any 61 18

N 2 2
Vib) =t "—2 = Et—- (25)

t

With equation (1) written as a prediction equation, the predicted
value of Y, at any one of the points of the experiment, is a linear com-
bination of t mdependently distributed b values, each (eq (25)) with
variance o /t With appropriate change of notation, the linear combina-
tion 1mplied by equation (1) is written
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Y, = z GJSJ (28)

and from. the definition of the x~values 1n equation (1), the c_-values in
equation (26) are either +1 or -1. Because the EJ are 1ndependently
distributed, and because the c] are all +1 or -1, the variance of 5?1 18

g
2

+ I _,0 _ 2
V(Yl)—z V) =t L= (27)

=1

From equation {27), the reduction of V(fl) achievable by delefing terms
1S Uz/t for each term deleted.

On the other hand, if equation (1) 1s the population model, and if
the x-values are all +1, the bias in ¥ 1s mereased by the amount of
B, for each Bl value that 1s deleted. Thus an optunal strategy to min-
mize the squared error of ¥ should not only delete all terms for which
the population B, 1s zero, it should also delete at least all terms for
which the bias contribuftion to mean square error 18 less than the vari-
ance contribution.

As mdicated by equatton (1), for that point of the experiment where
all of the x-values have the value +1, the expected value of Y1 would
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take on its greatest absolute value, which would be
P
E(Y = z 06
S PR L
1=1

p
The values of z g GJ for p =15 have been listed 1n table III. Because
=1

o =1, these values are also the values of E(Yl) /0'. .
max

Reciprocals of E(Yl) /0' are here defined as coefficients of vari-
max

ation for the maximum population mean values. From table III such co-
efficients vary from a high of 64,3 percent (at 6§ = 0,125) to a low of

4 0 percent (at 6 =2 000). This range of such a coefficient of varia-
tion suggests that the range of 0.125 < 6 < 2.000 1s an adequately wide
range of 8 to represent the situations that an experimenter might
encounter

EVALUATION CRITERIA

Following the selection of terms (where some of the coefficient esti-
mates are set equal to zero), the predicted values of the dependent vari-
able can be efficiently computed for all of the combinations of the inde-
pendent values, by the reversed Yates method of Duckworth (1965).

Where e 2re the "observation' errors, namely, the pseudo
normal random numbers generated in the nth simulation, the "observa-
tions'" are given consistently with equations (16) by

Youmn =~ M¢m + eo 1n (28)

L =1, 2, . ..,26,m=1, 2, .. .,mp,1=1, 2, ..., t

After the model has been fitted and mnsignificant terms deleted, the
difference between predicted values, ¥ wmp Of the dependent variable
for the nth simulation and the population mean will be called the predic-
tion error, and thus it 18 (consistent with eq. (23))
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®oitmn = Ypmn ~ Mem (29)

£=1, 2, .. .,.0.3, m=1, 2, .. .,mp,, 1=1, 2, . .., t.

Over the n, simulations, the sample mean square error of predic-

tion for a given treatment 1s

n
e
-2 1 z 2
e = e 30
pim py¥ mn (39)
e n=l

=2 _=2 _ -2
€nax = epp_m, max —Max (epﬂl m) (31)

The mean of the squared error over the s1mulations and over the
pomnts of the space of the experiment 1s

t

—2 _1 5 =2
epim-—t— L eplﬂm (32)
1=1

Equations (31) and (32) provide two criteria for measuring the effec-
tiveness of a strategy. The particular set of values of strategy parame-
ters that minmmizes Eiﬂm, max (28 g1ven by eq. (31)) can be called a
security strategy, and if the points of the space of the expermment are
assumed to be equally likely of being of interest, the particular set that
mimmizes & m ©anbe called an approximate Bayes strategy. For
either criterion, the absolute values of squared errors would have been

the prime consideration,

An example of a situation where such defimtions of error would be
appropriate occurs if the experimmentor seeks to maximize some pre-
dicted response, such as the strength of a structure as a function of its
geometric variables. For such an example, the region of the space of
the expermment of greatest interest would be the region in the vicmity of
the maximum point, where the function would most likely have 1ts sharp~
est curvatures and largest errors due to lack of fit. For such an example,
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the appropriate criterion to be mimimazed for the choice of a strategy

would seem to be the quantity Eg.ﬂ of equation (31).

m, max

The criteria of equations (31) and (32) were evaluated usmg computer
smmulations usmg (1n most cases) 1000 expermments, Thus the long run
mean squared error of the decision procedures was evaluated., This
leaves open the question of how badly a decision procedure might perform
1 1ndividual cases. One approach to this question 1s to evaluate the sta-
bility of the mean squared errors observed in the simulations. Thus mn
addition to the criteria of equations (31) and (32) two other criteria for
the effectiveness of a strategy were mvestigated. They are concerned
with the stability of the quantities defined by equations (31) and (32). The
instability of these criteria can be measured by the variance of the square
of the prediction error., I Y 1s a random variable, the unbiased esti-
mate of the variance of Y from a sample of size n, 1s given by

-
n, n, 2

W) = —2 2 2oL\ Ty (33)

ne—l

n=1 n=}1

Tzhe random variate of mterest ig the squared error of prediction, namely,
epiﬁmn‘ From equation (33) the estimate of the variance of ep]!ln:ln 18

n 2

n
e e
(2, ) =2 (2, VoL [N
pim n -1 pmn n / pi mn
© t n=1 ¢ n=1

(34)

Equation (34) gives an unbiased estimate of the variance of the squared
error over n, simulations, The maximum of this quantity over the

e
space of the symulated experiments 1s defined by
2 YR B a (2
V(e )max B v(\eﬁ. m)max - ii‘x . lzv(eplﬂm)} (35)

The arithmetic mean of the variance of the squared error over the
space of the expermments 1s defined by
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t
=2 | _1 &2 N
V(eﬂm) —; Z V(eplﬂm (36)

Two features not presgent in the computer program POOLES (Holms
(1974)) were added to the present program (POOL6U). One of them com-
putes the average number of terms, Hﬂm’ selected by the strategy (m ,
Uy r, apz, ry, Qg for each of the values of ﬂﬂ, £=1, ..., BB and
for each of the population values of Pprm=1, ..., m,,. The other
feature computes the ratic of the maxmmum prediction error to the scale
parameter 8. The ratio 1s computed from 9, and from the Em ax Of
equation (31)

— m, max
Cee, mx®: P} = (37)

9y

COMPUTER PROGRAM

Qutline of Program

Computations were performed according to the FORTRAN~4 program
POOL6U as histed 1n appendix B, The antecedents of the program were
POOLS3U (Holms (1966)), POOLMS (Amling and Holms (1973)), and POOLES
(Holms (1974)). The program 1s outlined and the parts of POOL6U from
the earlier programs are 1dentified by the section numbers and titles of
appendix B in the table that follows. The table shows that only minor por-
tions of POOLSU were not previously described. The detailed description
of POOL6U 18 mainly limited to sections that are new, Illustrative output
1s given 1n appendix C.

Section number Section title Prior program
1A DECLARATIONS AND TABLES POOLMS
iB INPUTS AND CONSTANTS POOLES
1C POPULATION MEANS (new)
1D STRATEGY (new)

2 SIMULATIONS AND MODEL POOL3U

FITTING
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Section number Section title Prior program
3 CONSTRUCTION AND ORDERING PCOL3U
OF MEAN SQUARES
4 DELETICN OF TERMS (new)
5 PREDICTIONS POOLES
] ACCUMULATION OF ERRORS POOLES
7 DETERMINATION OF MAXIMUM POOLES
AND MEAN SQUARED ERRORS
OUTPUT (new)
YATES' METHOD SUBROUTINE POOLES

Details of Program

Section 1A, - Declarations and tables. - The mput of the critical
pomt values (the statistical tables) 1s the same as i POOLMS (Amling
and Holms (1973)). The declarations are similar to POOLES (Holms
(1974)). The NAMELIST output was incorporated to facilitate checking
of the program and was not otherwise used,

Section 1B, - Inputs and constants, - The constants defining the
populations, the expermments, and the sequential deletion strategy, are
read from data cards in the folilowing order, with the order of the fields
being the same as the order of the symbols in the following description.

Format Degcription

(13A6, A2) REMARK (I), arbitrary literal information such as
particular use of program, date of last change, and
go forth,

(415) LGMH, NE, MRHO, KODE

(18, 6F8.3) LTH, (THETA(L), L=1, LTH)

14/ KTEM

(L0FS.5) (DELTA(K, M), K=1, KTEM)
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Format Description

There are as many (10F8.5) cards as are necessary to
read (DELTA(K, M), K=1, KTEM). Furthermore, the
card sequence for KTEM and DELTA (K, M) 1s repeated
ag many times as necessgary to satisfy the statement
(appendix B) "DO 5§ M=1, MRHO."

(415,2F5.3)  MP,KP(1),KP(2),KF, RETA(1), RETA(2)
(The associated READ statement 15 actually in
Section iD,)

Section 1C, - Population means., - After the imfial constants have
been read, the next major operation 1s the formation of the population
mean values. The number of population sets to be examined during the
mvestigation of a strategy is the number resulting from all combinations
of the number, mp, of p-values, and the number, £ 0° of p-values.

With respect to equation (1) all the population model parameters are
first set equal to zero with the DO-loop ending at Statement 10. The non-
zero values of the Bl are mitially set equal to 61’ m usmg the PO-loop
ending at Statement 20. The DO-loop ending at statement 20 serves the
purpose of equation (20) with o=1 and 6 =1, The valueof =1 1s
retained, but the adjustment for ¢ 1s made after the population mean
values have been computed.

With the population S-values (aside from 60) established at state-
ment 20, the objective 1s to compute the population mean values from the
p-values by the reversed Yates' method (Duckworth (1965)). The first
step 1s to reverse the order of the p-values, which 15 completed at state-
ment 22, The use of the reversed Yates' method then yields the array
YMUM (I, M) as completed at statement 40 for all the values of p.
YMUM (I,M) 1s therefore an array of population means Py m* This
array of population means 1s to be expanded over the mean noncentrality
parameters, Ay, to give the effect of equation (20). This effect 1s pro-
duced on the population mean values by the multiplication

"ﬁ,.ﬁ,m = 'ul,m*e.&
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and this operation 1s completed with the creation of the array YMU (I, L, M)
at statement number 49,

The values of YMU are thus indexed over treatments 1, 1=1, ..., t

over arbitrary values of @ 93 £=1, ..., 4% g* and over the different values
of ppsm=1, ..., m,.

Section 1D, - Strategy. - In terms of mathematical symbols previously
defined, the strategy parameters are functions of numbers that are read at
statement 50 as follows:

Argument Function
FORTRAN symbol mathematical symbol

MP ‘ mp
KP(1), cup 1 ‘
RETA(1) ry
KP(2) ap 9
RETA(2) Ty
KF Qg

For each strategy investigated, the contents of the error arrays are
first set equal to zero with.the DO-loop ending at statement 99,

Section 2. - Simulations and model fitting. - This section 1s essen-
f1ally the same as that described for POOLES by Holms (1974), except
that 1n POOL6U the experiments are smimulated and fitted as if they are
full-factorial experiments.

Section 3, - Congbruction and ordering of mean squares. ~ This sec-
tion 1s essentially the same as that described for POOLES by Holms
(1974).

Section 4. ~ Deletion of terms, - This section containg the major
changes between POOL6U and POOLES. The major distinction 18 the
provision for more than one iteration of sequential deletion, the maximum
number of iterations being three., The new sirategy parameters are rys
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Ty, and @ The flow chart for the iterations 15 shown by figure 1.

The statements from "DO 415 J=1, MPX" to "420 JETA = J-1" are
essentially the same as those imm POOLMS (Amling and Holms (1973))
from "DO 15 J=1,M" to "20 JETA = JA-1."

_The statements beyond 420, and up to and including statement 424
provide for the revision of the number of mean squares mitially pooled
n the given sequential delefion strategy in accordance with the value as-
signed to Ty Or T

The statements beyond 424 and terminating with statement 429 set
the msignificant model parameters equal to zero, as was done 1n state—
ments 416 through 419 of POOLES (Holms (1974)).

Section 5. - Predietiong, - This section 18 an abridgment of that
described for POOLES (Holms (1974)).

section 6, - Accumnulation of errors., — This section 1s the same as
that of POOLES (Holms (1974)).

Section 7, - Determination of maximum and mean squared errors. -
This section 1s the same as that of POOLES (Holms (1974)) except for the
_ computation of the arithmetic mean, p, of the number of terms (beyond
the zero degree term) that are retamed by the decision procedure, and
the computation of COERMX,

Section 8. - Output. — The output 1s 1llustrated in appendix C. The
NAMELIST output was incorporated only for program checking,

Section 9. - Yates' method subroutme. - This subroutine 1s essen-
tially that of part of the main program of POOLMS (Amlmg and Holms
(1973)) except with the last few statements modified so that the subroutne
can be used for the direct Yates' method and also for the reversed Yates'
method; as was also done 1n POOLES (Holms (1874)).

The program POOL6U contains some statements from POOLES that
are not essential fo the present purposes of POOL6U.
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SIMULATION RESULTS

Monte Carlo Sample Size

Results of a preliminary mvestigation of the effect of Monte Carlo
sample size on the stability of the empirical results are shown by figure 2,
In general, the results converge to a constant when the number of sampled
experments 1s 1000 or more. Variability of results occurs as the number
of sampled experiments 15 reduced beiow 1000, All of the strategy com-
parisons were performed for 1000 sampled expermments,

Large Coeifficient of Variation

One of the conclusions of Holms (1974) was that a widely useful three
parameter strategy of sequential deletion for minimizing prediction errors
congists of the strategy (mp, ap, og) = (1, 0.75, 0.10). The possibility
of performing two analyses in sequence had been suggested by Holms and
Berrettom (1969), That suggestion had included performing an 1mtial
analysis with the strategy (mp, oap, o) with . = 1. The values of «
and g would be selected according to some attempt to control the proba-
bilities of type 1 or type 2 errors. The 1nifial analysis would yield an esti~
mate of 7, Then based on table 3 of Holms and Berrettoni (1962), a second
analysis would be performed with m,, approxamately equal fo 0.67 or 0.75
times the 7 from the first analysis. The jomt mplications of the preced-
mg two sets of results are that for the present imvestigation with six param-
eters, a useful strategy might be as follows. (m ~ o St Ty apz, Ty, Of) =

(1, 0.75, 0.700, 0.75, 0.700, 0.10). Some Monte Carlo experimenting was
started with strategy parameters in the immediate vicinity of the setf just
listed.

The most adverse value of p among nature's strategies 1s the value
p =15 Using this value of p, the simulations were performed for all
the listed values of 6 of table I.

The strategles were most often compared in terxms of the maximum

coefficient of exror, C defimed at equation (37), The largest values

ee, mx
of C ee. mx occurred at 6 = 1.125. The better strategies for 8 = 0,125
are listed 1n table IV which algo lists the values of C for both

ee, mx
0 =0,125 and & = 2.000.
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The best strategies of table IV for C ce, mx (0.125) for each value
of m, are listed m table V together with additional information on the
operating characteristics of these strategies. These strategies are all
good strategies at 8 = 0.125, which represents the situation where the
model parameters are relatively small (table III) in comparison with the
error standard deviation (o = 1.0). (From previous discussion in the
section on sumulations and from table III, the rafio of the maximum popu-
lation value of the dependent variable to the standard dewiation at 8 =
0.125 1s 1.556 whereas that ratio at 6 = 2,000 15 24,898.)

Small Coefficient of Variation

If the statistician's joss function 1s the maxymum relative error
over the space of his experiment, C ee, mx’ then the strategy that is
optimal for ¢ =0.120 1s a security strategy because within the present
mvestigation C, e, mx 1s larger for 6 = 0.125 than for any other value
(table I) of 6 1nvestigated.

On the other hand, if the statistician's loss function 1s simply the
absolute value of the maximum squared error over the space of his
experiment, namely, Exznax as defined by equation (31) then that quantity
18 a maximuim within the present mvestigation at ¢ = 2,000 and thus the

security strategy for such a loss function would be the strategy that mim-

mizes Cee,max (2.000). The strategy that mimmizes Cee,max {2.000)
1s the strategy with no deletion which 1s symbolized as (mp, O"pl’ r’nl’
O"p2’ rnz, af) = (0, s R s s ). Some other strategies

that were good with mp =1, apl = 1.00, and op = 1.00 are listed with

resulting values of C (0.,125) and C (2.000) 1n table VI.

ce, mx ec, MX

Admissible Strategies

For the purposes of the present investigation, a strategy will be
classed either as admassible or as dominated according to its values of

Cee mx(e) at both 6 =0.125 and 8 = 2.000. A strategy will be said to
v

be dominated if for 6 = 0.125 there 1s another strategy with the same or

lesser Cg,o 1, (0. 125) and with a lesser C (2.000). A strategy

ee, mx
will also be said to be dominated if there 1s another strategy with the

same or lesser C (2.000) and with a lesser C 0.125).

ee, mMX ee, mx (
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Any strategy that 1s not dominated 1s defined as being admissible For
example, within table V, the strategiesfor m_=1, m_=3, and mp =5
are admissible, whereas the other three strategies are dominated

In addit:on to the strategies listed m tables IV and VI for O"’pl =1,00
and @ = 1.00, many strategies with smaller values of ozpl and Cp
were nvestigated, Among all of the strategies investigated, the admissi-
ble strategies, together with some of their operating characteristics are
lListed 1n table VII,

Security Regret Strategy

The strategiles of table VII include the strategy m_ =0, which re-

sulted 1n the smallest observed value of C ce. mx (2.0), namely, 0,5282,

and they include the strategy {5, 1.00, , 0,05, 0.675, 1.00) which

gave the smallest observed value of C (0.125), namely, 7.689,

ee, mx

The regret function of a statistical decision procedure, as a function

of a parameter €, 1s here defined as the excess loss occurring with the
procedure at a particular value of 8 as compared with the loss that
would have occurred had the best statistical decision procedure been used
for that particular value of ¢#. For the purposes of the present investiga-
tion a regret function R(9) 1s defined for § =0.125 as bemngthe C, e, mx
{0.125) for any strategy divaded by the value of C ee, mx for the best
strategy for that value of #, namely, 7.689, and R{(f) 1s defined for

0 =2.000 as bemg the C (2.000) for any strategy divided by the

ee, mx
value of C, for the best strategy for that value of 8, namely,
0.5282,
Thus,
R(0.125) =C,, .. (0.125)/7.689
and
R(2.000) = Cgq o (2.000)/0.5282

The single strategy that has the smallest regret function over both
# =0.125 and 6 = 2.0 1s defined as the security regret strategy. The
security regret strategy 1s thus the sequential deletion procedure which
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produces the least increase in prediction error for p =15 and an un-
favorable distribution of parameters over that prediction error which
could have been achieved if the best strategy had been chosen for the
given (unknown) value of error variance, 02.

Examination of the R(#) values of table VII shows that the parame-
ters of the security regret strategy (m P’ o'} 12 Ty ozpz, Ty, oef) are (1,
1.00, , 0.75, 0.360, 1.00) for which the values of R(f) are 1.0966
for 6 =0.125 and 1.0682 for ¢ = 2.000.

Selection of a Strategy

In summary, if the experimmenter wishes to mimimize the maximum
prediction error over the points of the experiment when the variance
error 1s relatively large (0 = 0.125) the statistician's strategy should be
(5, 1.00, ___, 0.05, 0.675, 1,00), which mimmizes Cee,mx {0.125),
(tables V and VII). If the expermenter wishes to minimize the maximum
prediction error over the points of the experimment when the variance
error 1s relatively small ( = 2,000), the satistician should uge the
strategy m, = 0, which 1s to say that no model deletion will be performed,

which mimimizes Cee, mx (2.000) (table VII),

If the expermmenter has no basis for a choice between the two pre-
ceding extreme strategles, a security regret strategy with (m_, « 10 T1s
ozpz, To» ozf) =(1, 1.00, __ , 0.75, 0.360, 1,00) should be used, m
which case the values of the regret function (from table VII) will be R(8) =
1.0966 if 8 =0.125 and R{@) = 1.0682 1f 6 = 2.000. These values of the
regret function show that the relative prediction error standard deviation
will be mncreased by at most 9.7 percent over what 1t would have been if
the worst value of ¢ had occurred and the best strategy against 1t had
been used. Thus the security regret strategy of (mp, Qs Tys Oo, To,
ap) = (1, 1.00, ____, 0.75, 0.360, 1.00) must be concluded to be a widely
useful strategy.

Variance of Predicted Squared Error

The three strategy selections described 1n the preceding section are

based on a Monte Carlo mnvestigation that reported mean values of predic-
tion errors over 1000 simulations. The quoted results thus tell what the
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mean long run results will be as a function of strategy selection. The
subject of short run results was not discussed. Some insight into the
short run performance can be gamed by examinmng the observed values
of V(ez)mx. This quantity gives the observed variance, for samples of
size 1000, of the maximum squared prediction errors over the simula-
tions, as defined by equation (35). ¥ this variance 1s relatively small,

then operating characteristics such as C e are relatively constant

e@mx
from simulation to simulation, But if V(ez)mX 1s relafively large, then
the short run performance of a strategy could be erratic,

In the case of large coefficients of varation (small values of 6) the
strategy performance was not erratic - the values of V((:'zz)mlx were
small for all the strategies of table VII for 6 = 0.125. The strategy per-
formance can be erratic for small coefficients of varmation (large values
of 6). Thus the values of V(ez)mX were large or small for 8 = 2,000,
depending on the strategy (table Vil). This response to 6 shows that the
bias component 1s the component of the prediction error that can be
erratic.

The response of V(ez)mx to the strategy parameters is to be exam-
med, and this will be done for ¢ =2.000. First of all, the parameters
apl and r, are relatively ummmportant. Namely, examination of ta-
ble VII shows that 1dentical operating characteristics are often obtained
despite wide variations of o 1 and ry- Furthermore, the three specific
strategy recommendations of the preceding section all use ozpl =1, gO.
For these two reasons, the influence of strategy parameters on V(e Mnx
was examined only for cases with « 1 constant at « , = 1.00. Thus the
only strategies of table VII that were examined for their influence on
V(ez)mx were those that imtiated the first analysis cycle as specified by
m, and o:pz and then did or did not perform a second analysis cycle as
specified by r, and .

Usmg results from table VII with 6 = 2,000 and @1 = 1,00, an arbi-
trary second degree polynomaial was fitted., The form of the polynomaial
was:
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In [V(ez)mx] =By + Blmp + Bzczpz + BaTy + By + ,85m§

2 2 2
+ BGOJPZ + BTy + Ba0f + ﬁgmpoapz + ﬁlomprz + Bllapzrz + ,Blzzm_pogf

+ Blgoepzozf + 314r2af (38)

The fitting used the backward deletion procedure of Sidik (1972) with a
nominal sigmficance level of 0.01. Results rounded to two significant
figures are as follows:

In Ef(ez)mx] =9.1-0.44m +5.5a,

2 2
~ 6.7 ap - 11.2 oo+ 9.1, +1.0 m oo (39)

The coefficients of equation (39) show that the variability of
Ce e(2.000)mX decreases with mcreasmmg m_, decreases rapidly with
increasimg ozpz, mereases rapidly with r,, Increases with the product
of m, and @ , and decreases with mcreasmng Qg The range of
mcluded the values mp =12, 3, 4, 5, Thusevenfor m_=5 the
cross product term m m_o , together with the first degree term in

4} 02 are of slightly less influence than the seconddegree term 1 « 02"

The values of the strategy parameters all serve to control the num-
ber of terms deleted, which fixes the number, p, of terms retamned.
Thus a given value of 5 can result from many different combinations of
values of the strategy parameters. From the results exhbited by equa-
tion (39) the conclusions as to what combination of strategy values would
resulf in a given p while mimmizing V(ez)mx are. m_ 15 umimportant,
oepz should be small; Ty should be small; and Cp should be large.

I

Thus to mmimize both C_ (0),,,, and V(ez)mx’ a strategy should
use o =1.00 and the smallest values of « , and r, that give accept-
able values for C ee@mx Over appropriate values of . The choice of

m 18 not critical, angl the use of ozpl = 1. 00 1s generally acceptable.
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CONCLUSIONS

An mvestigation was conducted to determine what statistical tech-
mques should be used for model fitting to the results of a two-level,
fixed-effects full- or fractional-factorial, orthogonal experiment with
16 treatments, Multiple sequential deletion strategies involving as many
as two preliminary tests and one final fest were evaluated, using Monte
Carlo techmques, under the criterion of minimum prediction exror,

Three strategies were 1dentified as being appropriate depending on
the extent of the expermmenter's prior knowledge.

1. I the experimenter has prior knowledge that the relative error 1s
relatively small (coefficients of variation of 4 percent or less) then no
deletion should be used. The strategy is (mp, apl’ Ty ozpz, Ty, Q) =

(0: 3 E} ] ] :)-

2. If the experimenter has prior knowledge that the relative error
15 qute large (coefficients of variation in the neighborhood of 65 percent)
the strategy should immediately delete the five smallest absolute value
terms and then test with continued pooling at a nominal test level of 0,05
to estimate a number 7 of nsignificant terms. The number of terms
deleted from the model should then be the integer value of 1 +0.675 7.
The strategy 1s (mp, apl’ rys czpz, Ty, af) =(5, 1.00, __ , 0.05,
0.675, 1.00).

3. Without prior knowledge about coefficients of variation, a security
regret strategy should be used, It consists of beginning the sequential
deletion with the single smallest absolute value term sacrificed to the
test statistic. Testing 18 done with continued pooling at a nominal test
level of 0.75 to estimate a number %4 of insignificant texms. The num-
ber of terms deleted from the model should then be the mteger value of
1+0,36 ﬁ The strategy 1s (mp, apl’ rys oapz, Tos aef) =(1, 100, __ ,
0.75, 0.36, 1.00).
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APPENDIX A
SYMBOLS
FORTRAN Description
name
B() estimate of §;
COERMZX ratio of maximum prediction error to
scale parameter, eq. (37)
expectation of . . .
RN(D) smgle observation random error
ERSQMX maximum over treatments of mean
square prediction error over smmu-
lations
number of mdependent variables
LGMH experiment contains 2870 ireatments
experiment contains (1/2)h times num-
ber of treatments in full factorial
experiment
LJ,.K subscripts
L,M,N
KTF mndex number for Cig, Amling and
Holms (1973)
KODE amount of NAMELIST output
desired
Kp mmdex number for ey Amling and
Holmsg (1973)
LTH number of @ values investigated 1n
any computer run
MP number of mean squares pooled before

testmg bemns
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FORTRAN
name

MRHO

NE

RETA(1)

RETA(2)

IT

VESQMX

YOBS(D)

Z(1)

B

DELTAK, M)

33

Description

number of p values wnvestigated in
any computer run

number of simulated experiments
any computer run

number of mean squares pooled for
testmmg at level o 5 18 mteger
value of 1+ rlﬁ, fig, 1

number of mean squares pooled for
testing at level o 1s mteger value
of 1+rgn, fig, 1

number of treatments
variance of . . .

maximum over treatments of sample
variance of mean square prediction
error over simulationg, eq. (35)

10 independent variable

gonceptual value of dependent variable
observed value of dependent variable
mean squares m Yates' oxrder
nominal significance level of final test

nominal significance level of first pre-
irminary test

nominal significance level of second
prelimmmary test

regression coefficients m Yates' order
parameter determining relative magni-

tudes of coefficients 1n population
model, egs. (6) and (8)
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FORTRAN
name

ETA

THETA(L)

YMU(, L, M)

KTEM, KRHO (M)

AVRHO
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Description

th

expectation of j° order statistic of

of a X?l) varLable

number of mean squares having non-
centrality parameter of zero

number of mean squares concluded to
be null during any analysis

scale parameter

mean over experment of noncentrality
parameters, ed, (9)

noncentrality parameter

population mean value of Y, for 1t

treatment

number of non-null coefficients (num-
ber of ;. values) beyond zero order
term 1 population model

numbexr of coefficients concluded to be
non-null 1n any analysis 1iteration

mean number of coefficients concluded
to be non-null m a strategy mmvestiga-
tion

standard deviation of e
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APPENDIX B

PROGRAM LISTING

18.~ FECLARATIQMS AND TABLES

DINENSTON REMARK (143, ALPHA{11), TB{64,15}, RN(1E&)}, INDI16},Z{161,
ITHETA{6}y KRHOU(3), DELTAT1E,43Yy YMUM{1I643), YHUL16,6,3)y
2AVRHOUG643)y ERSC(164643)y ERSOSQUI&E+693)y ERSCMXLG43),,CO0ERMX{GE,71y
JAVERSCG{6,3)y VESOMX(E,3)y AVVESQUE,3)y KPI2)y RETA(ZY, ALFA(2}

CCHMON KK, YORS(1h)}s ®L16])

DATA {MLPHA(I)I=1,11)1/0e0014Le002,7005,0,01,0.025¢0e05¢0410
10.25405%,0.75,1,0/

DATA {UTB(T,J)}4JdTk 1004113243/ 20300040 e, 0,2, 0eC4C+C+040,0e0,C.0
13Ce042:000021+499999,1 +99997,1.99986,31.99G51741.99687,1.9877y1.923,41
2lTC6’10382’2|9976720996&,2-99;"12-99149’2 «251 4294 '2 .8;6'?.527 2o
386'1068833-9?6‘3.952' 1.925 g3-97b'3- 76(’,3-&251 3.412 1209“91203q5’1¢9
Hbl,‘i.PBT,’i.EQS,H.TSE,u.SSv‘t-'-Ht-,LI.ZI 23489 134287324658 g2-184|5-7‘¥'5-
55345 et6 55031 48.99,4468,8,28,3.8732.893,32.371,6e51,6.33,6.11,5.57,5%
6 elb g5 a9 1 8ab1 330833011 ,2454 702016496456 465+6:3545.868,5.080,4.91,4,
TOE3e258 ;12603 T7aBl a7 o523 7ellrbe7R 3002645078454 1T +4a2T43.4542.82,8.3
BY B LYy Te53374¢1736+59 3Eali3,Fe81,4.85,346Ly2495;8482,8.44,7.95,7.52
D beB8G46.428,5.06]1 38673 30TU3etT 990264808 3Ba33,748T47+41346.50,5.81,
Al 77330873341 739e67:942138.6848al6:7037:6+71,5499,4.92,3,99,3.27,1
BLunS30e55 38,00, 8.82,7 e58 464013601 345alh,8210,3037,31N40,9.8649477,
C3 .66,7-79,7-07’603015017,".2013."16'1:t?Z’ilcilqtglq3'808317'9bl7'23
Dy balil 5,79, 8.3u93e8%, 11,01 ,30.0T,906U,F¢{0Bs12,T7ue384645T45:04044.3
EQ43:63,11,29,10.60,9,R8,9,37,8.2847.52,645%,5.50L44448,3,77,11.57%,1
FLeB86310+0339+3838a43 3 TaE0 30 aBleSabl 14256423077 911aT6911aZ:91502245%
G514 ulB s TuTl 160295465 gluabe3ebUelleTR 31102810 alC4T+6T42aT297490y
HT sl Zg a0 gt e T192e9041215,311 488410008, 0a8Ty8aFE9Bal29Tel395408T745.7
10 43aS691203931146B 32007657079 9845F1Re1297e23354F0 4080440241258,
J11eBT 310093 ¢l0eltygPel 245228y 7a3396¢39409214¢ 67

DATA (UTBAEI )4 J31 4100 IZ25,47) /1247631247531 1.3041G42%49.2348.74,
174824 €all o984 418,]12e9341202231102091044339 43890 849745146 e1F45a
20U b 193134094124 38 31 1a81y17e5699 a8 48 45U3T7e6 910425,5.10,5424,13.2
3312053411 aC531C a8 ¢F 50,8 ,63,376B+603245e16,584309134239312.68,11.6
B8 e1CaT8 396U 4BaT297aTbpbe3Bs5¢22+U035913453917482411,.8C,1C.88,49.74
5 ¢8s 813 TaB34g6+8845a2F 3 0at8041326714124e96311eF1317e9E,4%a82,.89,7.97456
6 el 38 o33, 8al854134P0413e09412401311e" 73909298979 705T+6456395+38454.5
70313:53513e21512410,11 .16,9,99:F:04,48.00 46,62 ,5.83,44.54,14.05,12.3
8B2¢12+19511225310071739 0114841145068, 5448 48258, 10.17,13.,483,12,27,11.
93y 10e153P4184Bal7 100785453 UabB2 418029513053 412.35411483,1042249.
A25’8.23'6-8n'5.53'1’I.6'6'14-“1‘13!63'12.“3']1.51'1(‘.29,9.31'8.29,6.8


http:48,IC.78,9.64,8.72.7.76,6.38,5-22,4.35.13.53,1,-.82,11.8ClC.88,9.74
http:9,6.89,6.28,5.61,4.62,3.74,3.L7,9.26,8.84,9.33,7.87,7.13,6.5,'.5.Al
http:84,8.CI,7.53,7.17,6.59,6.C,3,r.41,4.45.3.6L,2.95,8.P2,8.44,7.95,7.E3
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RS b o3, .T70418a539130735124514911e5941003639e373843546490:546T744 T4
Cyll ubligl 382912459311 0679 1008339483 8,41 36495 ,5.TE4878414,.75,13.9
D1 4126741107591 0a50,94e840,8 8636:99,5.754.82,14.85,14,00,12.75,11,
EB3410e57 195548451 3700335079 8:86518e95914:09412.83411.,90,10.64,9.
FElyBab63TalT 548338430, ,15,05418e17912¢90311:97910e70539e6T738e6157.1
G195 B T34 ¢e98 4150151802541 2e9T7912e08410e76¢9:7248:66,7+415435+9144.98
HelSeZ2UelUa33913a05¢12 01 gl0sB29F9aTTsBeT19T7019 454959501415 +33514-44
I0413.12512e18510088,9¢82,8.T7647¢233569945.08,15.82,14.47,13.19,12.
253 10 eT8 98T 48481 ,7e27,6.03,5.07/

DATACITB I Yy d=i, 103, T-08,604)/15.50,14.58,13.26,12432,11.00,9.92,
18 '85}7.31'6'0715'10'15058,1“-65.13.32'12-38'1100679-97’8-89’7.35|6
2211953311 5¢66918 4669133841284, 11.11,1Ce02;8e93537e39,6.14,5,16,1
30673910 e729 13l g12450 011016410007 48a57 9T el336e1 795419915480 914479
4913457 9172456041142Y,310G412,9a01 37l T73002055422915¢87,14485,13656,12.
567511 e26310e¢17349405,74513622335e25,15.93,18.91,13482,12.,68,11.31,1
606219009 g T e 4B a26:5 2831549941808 7431367312 eT73:31.364310+25;5;913,
TT o5 9469454314 16e05915e03 5134724124783 1+804310e299941T97ab336a32,
BHe3U,16411915e10913.77,12,83,11.84,10433,9.21,746746.35,5.37,416.17
G310 016913082912 488411 4088510037 9F025¢47eTlsb6e¢3845eH0,16,234154224913,
AB741Z2.93:311e52,1048139:e29 37473360 U135.03,16e2%9:15.28,13.92,12.97,41
B1.5641000590a33 4776364045865 1630515.34,13.97,13.01,11.60,10.49
CaOu3TsTeT00beliT 548, 16,359,15,80,14.,02,13.C5411.6U4,10.53,9.41,7.82
quaSC,S.SUglﬁnqq'ls-46,14a06313-E9111-67p13-57,9.q5|7o85g6-53,5-52
E,LC. C’[‘OC'O.B’EIE'D.E’EDC,BOG'BOQ'C.E"DDDI

NEMELIST /0UT1/ M /0UT2/ YOBS J0UT3/ Y MM J0UTHS Ml
NEMELIST /0UTH/ Y My /JoUTes N JOUTT/ RN

NAMELIST /O0UTB/ J,INDX

NAMELIST 0UTS/ MP X KPX.KF

NAMEELIST /0UT 10y B

NAMELIST /0UT11/ IND,Z,.B

NAMFLIST /JOUT13/ NgMyet FOUTIH/ JydNy TEM /0UTLIS/S ETA
NAMELIST /0UT16/ NC

NAMELIST / /0UT20/4 ETA,AVRHO

NAMELIST / Joutzzy/ ERSQ 1FRSQSO

18, - TNPUTS AND CONSTANTS

READ(S5,850) (REMARK IT),Tz1,14)
WRITEl64s801) (REMARK(TI),I=1,1%4)
READ(S,802) LG6MHy NE, MRHO, KODE

KG= LGMH

I¥= 2#%L6MH

WRITE(64803) KG, 1T, MRHG, NE

ITH1= 17=-1

ITH2 = IT1-2

FIT= 1%

FITHMI = ITM1

FNE= NE

IF INE.EC.0) FNE T 1.8

NEM! = NE - 1

FNEMI = NEMI

IF ENFM1 JEOQ. O) FNEMI = 1.0
READIG,804) LTH, ¢(THETALL)Y, L=1,LTH)
DO & M=1.MRHD

READIS,8063 KTEM (DELTA{K yH}y K-T14KTEM)
KRHO{M)YT KTEM


http:D,b.SC,5.5O,16.44,15.46,14.06,13.r9,11.67,fI.57,9.45,7.85,6.S3,5.52
http:C,9.37,7.79,6.47,5.48,16.39,15.40,14.02,13.CS,11.64,10.53,Q.4a,7.82
http:13.IJ1,11.60
http:81.56,1U3.45,9.33
http:11.48,1U.37,9.25,7.72,6.38
http:85.34,16.11,1S.10l,13.77,12.83911.44,10.33,9.21,7.67,6.35,S.37,16.17
http:6.29,5.31,16.D5,15.03,13.72,12.l8,1.sD,10.29,9.17,7.63,6.32
http:l,9.09,7.55,6.26,5.28,15.99
http:562,11.26
http:DATAC(1BC1,J),J=1,lr,),148,64,/15.s0,li.s4,13.26,12.32,11.oo,9.92
http:r,13.12,12.18,l0.88
http:G1,5.87,4.94,15.15,ll4.25,12.91,12.DtI,10.76,9.718.66,7.15,5.91,4.98
http:F61,8.56,7.0?,5.83,4.90,15.05,14.17
http:5.75,4.82,14.85,14.00
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WEITELELB07F KTEM, (DELTAtK M), KZ1,KTEM)

CONTINUE

IF= 2%%KG

FiPr = 1P

IPpl1= IP + 1
FENBIF - FNEXF]IP
FEM1Ir = FNEMI%FIP

iC.- POPULATION MEANS

KWKz W~

O¢ 40 M=1,YPHO
INDYM - M

oC 17 Izi.IP
BAIY - o.C
CONTINUE

KTEMZ KRHO{M)

KTEKRPZ> = KTFM + 2

DC 27 IZ1.KTEM

F{L+11= DELTA(I M}

COCNTI'UE

IF (KCDE «&T. o ) WRITF (6, QUT]
pro22 TzZ1,IP

iIFPIMIZ IPPY -~ T

YOES(TIY: BP(IPPIMLY

COMNTINUE

I (K"DE .GT. Y} } WRITE (6, CUTZ
CALL YATES

oe 37 ITi,Ip

IPPIMIC IPPY - 1

YHUM LTI REIPPIPID

CONTINUE

COMTINUF

IF (KODE .6T. 2 )} WRITE (g, OUTZ
DO 49 HMI1,MkHO

I"0Xp T M
DC 48 L=Z1,LTH
INDXL = L

IF {KODE GT. 3 )} WRITE (6, OUTH
pDe 47 I=1,1f

YrUtTIJLeME = YMUMII MHIXTHETA{L)
CCRTIMUE

CONTINUE

CCNTINUE

IF (HKODE .GT. & Y} WRITE (6, OUTS

Il'e - STRATEGY

READ {S,8C84,END = BG9O) MPKPIL),KPL(2),

NG 55 NCT1,2

KPX= KPINC)
ALFACHCYIS ALPHA(KPX)
CONTINUF

CALL SaAND (XS}

DC 99 M=1,MRHO

DC 98 L=1,LTH
AVRROILyM)Z CWC

KF,RETAL1},RETALZ)



Yy

ST
9E
a9

213

3Ty

3ire

e 97 1IZ1,IFP
ERSO{(I,L,M}¥x DO,
EPSCSOIT fL,¥} = J,0
COGNTINUE

CONTINUE

CONTINUF

”
-
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Ze= STMULATTONS AND MODFL FITTING

PP 69¢  NZ1.NE
INCAN = N

IF (KODE +6GT. 5 ) WRITE (64 QUTE )

IF (MTLEQ.DY CO0 TO 224G
TC 212 TT1,17

CatL "ANTI(RNIT)}
CCNTINUE

IF (K"DEF .GT. &6 ¥ WRITE (6, OUTT )

5C 21Y IZI'IT,Z

F- SORT(-2.7%ALOG(RALITI})
T 6.2831853*RN(TI+]1)
RMITD)Z EXCOSLD)

IRN(T+13T EFSININY)

CCNTIMNUF

IF tKCDF GT. & ) WRITL (6, OUTT 1}
GC TO 201

B0 229 Iz1,.1T1
RNETIY = T.8
CCONTINUE

Pe 697 MZ14MRHO
INDYXYP = M

DC g8C L-1,LTH
IMDXE = L

FK= LE&MH

IF (KODE +GT. 12} WRITE (&6, OUT13)

PC 2318 I=1,.1I7
YOESELIZ YMUE{I4L4M) +FNL]I)
CONTINUE

IF (KCBE .GT. 1 J} WPITE (6, OUTZ )

CALL YATES
60 TO 3B2

3.~ CONSTRUCTION AND ORDERING

DC 357 121,17

IND(TIC T

Z(I)= BHI+1)BITI+1)/FIT
B(IY - BLT) 7 FIT
CONTINUE

OF MEAN SQUARES

IF {KODE .GT. 13) WRITE (6, 0UT11}

IF (MP 4LT, 11 G0 TO 432

DC 313 J-1,ITM2

TEST= Z{ITM1)

INT ITHMI

DO 312 NATZTJ,ITMZ
IF(TEST-Z(NA}} 31243124311
TEST = Z{NA}



332

313

419

42t
422

421
424

39

IK= N&

CONTINUE

TTEHMZ INDEIN)
TEMZ ZUIN}
INDLINIT INDCJSD
ZUINY= ZUd)
IND{JI= ITEM
ZiJy = TEM

CONT INUE

IF {KODE «GT. 10} WRITE 6, OuUTL11)

4 .- DELEYION OF TERMS

MPXZ MP

IF (KODE .GT« 123} MRITE (64 OUT13)}
DC 428 NMC = 1,42

INDXNC = NC

IF (KCDE 67« 15) WRITE (6, OUT16}
KPX = KPINC}

IF {KCDE +6T. 8 ) WRITE (6, OUTS }
TF {KPX LEQ. 11} GO TO 424

MFPI- MPX + ]

JN= MPP1

TEMZ .0

De 415 J = 1,HMPX

INDXJ = J

TEM = TEH + Z2{J}

IF (KODE oGT. 13) WRITE (6, QUT14)
CCNTINUE

g 419 J-MPP1,ITM1

INDXJ = J

FJAN = JN

TEST = FJUNRZUJSIZLTERN « 20U}

IF ETEST = TRUJNGJKPXY)I)Y 416,816,420
TEM = TE® + Z{J)

JA =T JUN + ]

IF (KORE «GT« 13) WRITE (&, OUT14)
CCNTINUE

JFTA = TTuMl

GC TO 422

JETA = J-1

ETA = JETA

IF tKODE .GT. 14} WRITE {6, OQUT15?
IF €KODE «6Te 12) WRITE (&5 OUTL3)
IF ERFTAINC) +LT. 1.0) GO TO 421
MPX = JETA

GO TO 424

MPX = 1 + IFIX(RETAINCI®ETAY
CONTINUE

IF {(KODE +GT, 8 )} WRITE (64 OUT9 }
MFP1 = MPX + 1

JN = FPP1

TEM = 0.0

BO 42t J=l MPy

INDXae = J

INDY = INDUGJ)+]1

B{INDX}= 0.0



(o R

825

428

429

4370

g1

432

4 34
433

570
54@

546

6%
680
696

40

TEM = TEM + 2(J}

IF {KODE «GT« 7 )} WRITE (64 OUTS )
IF {KODE «GT. 9 } WRITE (6, OUT1D}
CONTINUE

IF  KF JEQ« 11 ) GO TO 434

DG 429 J-HPP1,ITM1

IMDXJS = 4 -

FJUN = JN

TEST = FJUNRZ(JI/ELTER + Z2{(.J4))

IF (TEST = TBUJN,KF)) 428,428,430
INDX = INDEJY + 1

IF {KNDE +GT+ 7 ¥ WRITE (6, OUTR 1}
RE{INDXYY = 0,0

IF {KODE .6T. ¢ )} WRITE (&, OUT1{)
CoNTINUE

ETA = FTITH1

GC TO BZ3
JETA = J-1
ETA = JETA

IF © KODE +LT. 8 } GO TO 433

IF {(KODE .57, 14} WRITE (6, QUTIS}
BC 431 JSJETALIT

ThDXd = U

INDXY = TNDCJ)+]

IF {(KODE «G6T. 7 )} WRITE (6, 0UTS 1}
CONTINUE

TF (KODE «GT. 9 )} WPITE {6, QUT10}
GO TG 433

ETA = 0.0
GG TO 433
ETA = MPX

AVRHOtL,M) = AVRHO{L,M} + FITH]l - ETA
5.~ PFEDICTIONS

KK = KG

DC 546 T-1,1IP

IPPIMI = IPPI-1

YGBS(TY = B(IPP1MT)

CONTINUE

IF (KPDE «GT. 1 ) WRITE (6, OUTZ2 )
CELL YATES

IF (KODE «GT« 9 ) WRITE 6y OUTI1DY}
GC 70 DG

6+~ ACCUMULATION OF EPRORS

DC 609 I=1,IP

IPPIMT = IPP1-I

TEMZ (BEIPPIMI) =~ YMU(I4L o M}I%%2
EPSQEI,LyM} = ERSOCT,L M) + TEM
EPSCSO(T gL oMI= FRSQSQ{TI L yM) + TEM¥*2
CoNTINUE

CONTINUE

€ ON TENYE

IF (KODE .GT., 19} WRITE (6, OUT20}

IF (KODE «GT. 21) WRITE (64 OUT22)



s NaNe!

41

IF {NEF «EQ. B} GO TD 7{R
699 CONTINUE

7+~ DETERMINATION OF MAXIMUM AND MEAN SQUARED ERROFRS

TRG BC 797 MI14MRHO
0DC 787 L=Z1,LTH

[ &)
e
5C I=141P
S APAXI(CLERSCII L 4M}}
Z D + ERSO(I4L4M)
EMZ FRSOSQ{I,L M}~ ({ERSQO{I, L M)} *x*2)/FNE
= AMAX1(E,TEH)
F - F + TEH
T4 CGOGNTINUE

ERSOMX{L M} = C/FNE
COERMXIL M) = (SQRTH{ERSOMX(L,M)}}/THETALL)
AVERSOUL 4M) = DJ/FENBIP

TF (MNE LEQ. ©) BO TO 780
VESOMY(L,M)T E/FNEMI1
AVVESOIL ,M)= F/FEMITP
AVRHOIL, M) = AVRHO{L,M)/FNE
782 CONTINUE
79D CCNTINUE

B .- QUTPUT

WRITE (6,809) tMP, ALFALL1l}, RETA(1), ALFA(Z2), RETAL{Z2), ALPHAIKF))
WRITE (6,811) (KRHO(M),; M=1,MRHD}
WRITE (64813}
WRITE (65,8151}
WRITE (64817) (THETA{LYy(AVRHO (LMY MZ1,MRHO }, L1t THY
WRITE (54831}
WRITE (64,8171 (THETA{L),(ERSOMXIL,M} MZ] MRHO},L=1,LTH)
WRITE (6,835}
WRITE (6,817} {(THFTAL{L)Y,{AVERSOI(L,M} ,MZ1,MRHO},L =1 ,LTH]}
KRITE (648361
WRITE (64+4817) (THETA{L) y(VESOMX{L yH} M1 yMRHO J4E. =141 TH)
WRITE(6,837)
WRITE {64817) {THETALL)(AVVESQIL MY, M1 MRHO}yL=1,4LTHI}
WRITE {6,838}
WRITE 16,817 (THETA(LYL(COFR¥FXIL,M} ,MZ1 MRHO),L=1,LTH)
GO T0 5C

809 STOF

8C0 FORMAT (13A6,A2})

8C1 FORMAT (1H1,//10X,13A6,A2//)

802 FORMAT (4151

803 FORMAT  (1HO¢3Xs6HKG =I5,5X 4HIT =I5,5X 6HMRHPO ZI5,5X,4HNE =I5)
8ry FORMAT (18,6F8,3)

86 FCRMAT (Iu/(10F845))

807 FORMAT €1MO,5HRHO =15,5%,7THDELTA =//(1X,10F1G.5)}

808 FORMAT (415, 2F5.3)

8C9 FORMAT C1H1//41X93HMP=IS,5X,9HALPHAP] =F6.345X,THRETA]l =F6.345X,



[aBalel

611
813
815
a17
B3l
gzs
&35
837
88

906

907
908

209

TQHALPHAP? =FE.345X s7THRETAZ
FORMAT (1HO,SHRHO =3113//7)})
FOGRMAT (1HO,SHTHETA)

FORMAT (1HD 20X 4 SHAVRHO/ /)
FORMAT (1X4F8¢343E1444)
FORMAT (1HO 20X 46HERSQMX/ /7))
FORMAT {1HOD.20X4,6HAVERSCG//)
FORMAT (1HO,Z20X46HVESQHX//)
FORMAT (1HC ,20X+6HAVVESQZ/ )
FCRMAT (1HG 20X 4B6HCOERMX/ /)
EMD

SUBROUTINE YRTES
Qa= YATES METHOD SUBROUTINE

COMMON KK YE161481(16)
IT = 2%3%KK

11082 = 11/2

KKMY! — KK-1

DO 908 KZI KKM1

0o 906 1:1.]1;2

IP1D2 = (1+11/2
B{IPIDZ)Y - YiII+1)+Y{I}
Lt = IPi1D2+11DB2Z2
BELLY = Y(I+1)-Y{T}
DO 907 1I=1.11

Y{I¥} - B(1}

CONTINUE

Do 909 1=1,11,2

IP1D2 = (1+1Y/22
BLIPIDZ2Y = Y(I+1)1+Y¥{(1?
LL = IPIDZ+1I1DRZ
BELEY = YI(I+1)-Y(1)
CONTINUE

RETURN

END

42

ZF6.3,5X 4 BHALPHAF

SFE.3)



RHO = 11

1.98710
«180 10

RHO = 13

2+.0%280
»30920

RHOD = 15

2.10819%
+M43685

AUG 20,

17 =

DELTA

1.51950

DELTA =

l.59840
«21630

DELTA =

166452
35211

1977 1F {NEM1 WAS IF
16 MRHO = 3
1.25680 1.04300

1.33540 1.14090
12370

1.4C97%9 1.22186 1
«269R5 «18921

(FNEM1

NE =

27550

«98200

« 06945
«10835

IF (RETA

1000

»T2980

«84470

+93855

SUBSCRIPTED JULY 29,

«59850 «47710
. 72200 60950
«82213 « 71606

19717

36260 25260

«50440 40480
\

61764 52503

INdIN0 HALLVALSNTII

O XIGNAdd Y

£%



HP= 1

RHO =

THETA

«125
257
+50C
1.00C
‘2eCCL

«125
250
«S0C
1.00¢0C
2.00C

$125
W 2510
+50C
1.08C
2.00C

«125
«250
«50LC
1.£0C
2800

ALBHARY =

11

AVRHG

«1366+02
«1368+02
«1370+L2
«1379+02
«1381+N2

FRSOHMX

«1112+01
«11065+01
+1150G+01}
+1099+01
«1116+01

AVER SO

e1005+E)
L1006+01
+1008+01
+1006+01
«1004+01

VESQPFX

«230%9+01
« 2250401
«2302+01
«2289+0C1
«2306+01

RETAL

13

«1371+02
«1370+02
1375302
213754012
«1385+02

«1112+01
«11G6+01
«1116+01
«1096+01
»1112+011

1005401
1007401
«1010+01
+1010+01
1011401

2284+01
«23184+01
2317401
«2310+01
«2335+01

L0060

15

«137140G2
1372402
1367402
«1368+02
1372402

«1111+01
«1110401
«1112+D1
«1120+01
1273401

«1005+01
«1007+01
«1058+01
L1045+01
1129401

«22T6+01
«2301+01
+2401+01
«2513+01
«3827+01

ALPHAF =

4



«125
+ 250
«5CC
1.82C
2000

«12%
«25¢(
«S0L
l1«00C
2.040¢C

AVVE $0

«10894+11
«1988+01
«2006+0]
L2000+C0]
« 1980+ "]

COERKX

«B8834+01
«4205+C1
«20%8+01
«1048+(1
«5282+00

WJA986+01
«1992+0]
«2915+0N1
20048401
L024+40)

8438401
4237401
«2113+01
<104T7+01
S2724 00

«1992+01
«1997+01
«Z55+01
WZ2165+C1
«25B7+01

«BU3IZH+GL
42148401
«21C9+0%
+1058+D1
S6Y2+NG
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TABLE I

INVESTIGATED VALUES OF SCALE PARAMETER
AND ASSOCIATED VALUES OF MEAN
NONCENTRALITY PARAMETER

Scale parameter, Mean noncentrality parameter,

6 A
0.126 0.256
. 250 1.00
.500 4.00
1.000 16.00

2,000 64,00
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TABLE II

UNFAVORABLE DISTRIBUTIONS OF RELATIVE
VALUES OF MODEL COEFFICIENTS

J P
15 13 11

1 1 1

£ 5 = =

2 gj 1 2 ;] 51 9 gJ 61
11 0.00587 | 0.10835 | 0.007656 | 0.1237 | 0,01038 | 0.1441
2 01790 . 18921 . 02339 .2163 . 03190 . 2526
3 .03641 . 26985 . 04782 .3093 .06574 . 3626
41 .06199 .35211 . 08195 .4048 .11382 LA771
5 . 09542 .43685 .12721 .5044 | .17912 .5985
6 .13783 .52503 . 18572 .6095 . 26634 .7298
7 + 19074 . 61764 . 26062 . 7220 . 38328 .8755
8 . 25637 . 71606 . 35677 . 8447 .54390 | 1,0430
9| .33795 .82213 .48212 . 9820 L7674 | 11,2464
i0 44044 . 93855 .65081 | 1,1409 1.15440 ; 1,5195
11} .57186 | 1,06945 .89158 | 1.3354| 1.97435 | 1.9871
12| ,74647 | 1,22186 | 1.27744 | 1.5984 | ————— | —===—=
13 .99319 § 1.40939 | 2,10691 | 2,0528 | —==wmmm | —=———
14} 1.38532 { 1,66452 | memmmem | cmmeee | e ] e
15§ 2.22223 | 2,10819 | ——emmmm -




PARAMETER COMBINATIONS, Bk =86, p = 15
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TABLE I

|

k Oy 6
I ]
0,125 10,250 | 0.500 | 1,000 ! 2,000
1 2.1082 | 0.2635 {0,5270 { 1,0841 | 2.1082 | 4,2164
2 1.6645 | .2081 | .4161| .83221 1.6645| 3.3290
3 1.4094 | ,31762 { .3524 | .7047 | 1.4094 ] 2.8188
4 1.2219 | .1527 | .3055 | .61101{ 1.2219( 2.4438
5 1.0694 | ,1337 | .2674 | .5347 | 1,06941 2,1388
6 .9386 | L1173 { .2346 | .4693 .9386! 1.8772
7 8221 | .1028 | .2208 1 .4110{ .82211! 1.6442
8 L7161 | .0895 | .1790{ .3580 | .7181! 1.4322
9 L6176 { .0772 | .1544 ] .30881) .61761! 1,2352
10 .5250 | ,0656 | .1312! ,2625) ,5250{ 1.0500
§

11 .4368 | .0546 | ,1092 - ,2184 | ,4388] ,8736
12 .3521 | .0440 1 .0880 | .1760| .3521| .7042
13 L2699 | .0337 | .0875{ .1350] .2699| .5398
14 .1892 | .0237 1 .0473] .0946] .1892| .3784
15 ; L1084 | .0136 1 .02711 .0542 1 .1084! .2168

15

15

24 5: 12,4492 .

k=1

12,4492 9 1.556 3.112 6.225 12,449 24.898
(12.44929)“1- 0.643 0.321 0.161 0.080 0.040
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TABLE IV

VALUESOF C ee, mxl®) FOR STRATEGIES NEIGHBORING BETTER
¥
STRATEGIES AT ¢ =0 125

[2,, =100, o =100, p=15,n, =1000 )

p2 Iz
0 650 0 675 0 700 0 725 0 750
8

0 125| 2 ooe| 0 125 2 eoo| o 125{ 2 00¢] ¢ 25| 2 000| 0 125| 2 oGO
001} 7 759{4 964{ 7 730( 6 038] 7 730| 6 033 7 731] 6 038| 7 961| 7 263
002| 7 760 | 4 957| 7 730{ 6 029] 7 730| 6 029| 7 731| 6 020| 7 960| 7 252
005|7 751 |4 942| 7 718] 6 011 7 719| 6 011 7 723] 6 0L1| 7 943| 7 230
01 |7 758 |4 933| 7 740| 5 999| 7 741| 5 009 7 745] 5 999| 7 986} 7 216
0257 765 |4 882| 7 762| 5 938 7 764| 5 938( 7 761|5 938| 7 992 7 142
05 (7 792|4 802|7 851| 5 840| 7 854| 5 840 7 870 |5 840] & 049] 7 024
0017 7594 o64| 7 730| 6 038| 7 730| 6 0387 73%|6 038{ 7 961| 7 263
002 |7 760 |4 962( 7 730| 6 035| 7 730| 6 0357 730 |6 035 7 962| 7 259
005 |7 753 4 956( 7 725| 6 029| 7 726 6 0297 729} 6 020{ 7 949| 7 25L
01 |7 757 |4 95¢( 7 742| 6 026| 7 744| 6 026 | 7 748 |6 026 7 972| 7 248
025 |7 7614 932{7 732| 6 000| 7 733| 6 000 |7 730 |6 0oo| 7 952] 7 217
05 |7 775 |4 901{7 820 5 961| 7 824| 5 961} 7 840|5 961| 8 013] 7 170
002 |7 762 {4 964]7 719| 6 038| 7 719| 6 038 |7 719 |6 038| 7 952] 7 263
005 7 763 |4 962| 7 T4| 6 035(7 715| 6 035} 7 738 |6 035} 7 941 7 259
01 |7 761 |4 959|7 77| 6 032| 7 716} 6 032 |7 722 |6 032] 7 955| 7 256
025 |7 774 |4 954|7 710| 6 0267 711| 6 026 |7 708 |6 026} 7 041| 7 248
05 |7 787 |4 942|7 73] 6 011| 7 743| 6 011|7 760 (6 011} 7 956| 7 230
005 |7 768 |4 964 |7 712] 6 038 |7 713| 6 038 )7 7166 0387 939( 7 263
01 |7 707 j4 064|7 711| 6 0387 713{6 038 |7 717|6 038] 7 950| 7 263
025 |7 778 |4 9647 6996 038 |7 701 6 038 |7 697 |6 0387 933| 7 263
05 [7 786 |4 962|7 706|6 035)7 709|6 0353]7 726 |6 035] 7 939 7 250
10 |7 812 |5 9507 818 |6 0217 813{ 6 02L{7 804 |G 021] 8 005| 7 242
005 |7 768 |4 964 |7 712|6 038 |7 713|6 038 {7 716 |6 0287 939| 7 263
o1 |7 767 |4 964]7 7176 038]7 719]6 038 |7 723 |6 038 |7 953( 7 263
025 |7 772 |4 964 |7 711|6 0387 712]| 6 038 |7 709 |6 038 |7 937|7 263
06 17 774 |2 9647 6896 0387 6916 03§ |7 708 [6 038 |7 920| 7 263
10 |7 800 |4 9627 786|6 0367 7776 036 |7 770 |6 0367 9797 259
01 17 767 |2 964 {7 717 |6 038 |7 719]6 038 |7 723 |6 0387 953 (7 263
025 |7 772 |4 964 |7 7126 038 |7 7146 038 {7 710 [6 038{7 936(7 263
05 {7 772 |4 9647 699}6 0387 701|6 038 |7 719 |6 038{7 9397 263
10 |7 791 |4 9647 788 |6 038 |7 779]6 038 {7 774 |6 0387 995(7 263
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TABLE V

ADDITIONAT, PROPERTIES FOR STRATEGIES
THAT WERE GOOD AT 0 =0.125

[,y = 1.00, @5 =1.00, p=15,n, =1000.]

mp ap2 Ty ¢
0.125 (2,000 | 0,125 | 2,000 {0,125 | 2,000

- 2

p V(e dmx Cee, mx®)

1 0.00510.6751 4,079 |4.08612,0251372,4|7.718 16,011
2 0051 .6751 4.05814.02612.026]248,2|7.725 | 6.029
3 L0253 .725(4,152]14,.032(1.996{268.47.708!6,026
4 L0251 ,725{4,11214.,0001.995]185.41}7.697]6.038
5 .05 675 4,225 14,000 [1.973|185.47.689 6,038
6 .05 .67514,171(4.000[1.980]185.4:7.699!6,038




VALULS OF

c

TABLE VI

ee,m\(@) FOR STRATEGIES WITH ‘.mp =1, Otpl =1 (0, AND Q= 100
Iy Op2
076 0 B0 025 ¢ 30 0 05 0 025 ¢ 01 0 005 0 002 0 001
&

125 (2 000 Jo 125 {2 000 |0 125 |2 000 |0 125|2 000 {0 125 (2 000 |0 125 |2 000 [0 12572 000 [0 125 |2 000 [0 125)2 000 | 0 125 2 000
0 100 444 | 0 5339{8 459 |0 5431|8 447 |0 5687|8 449 | 0 5800(8 445 | 0 58298 446G | 0 5829|8 446 [ 0 58428 444 | 0 684HB 444 | 0 584948 444 | 0 5850
200 450 | 5339]8 458 571318 430 6483(8 433 68158 427 69398 423 6990(6 424 7012|8 423 | 701418 422| T0238 422 7031
300 448 5410|8 439 | B013|8 383 {1 1563 |8 322| 1 295 |8 286 | 1 338 (8 265 |1 355 (8 262 |1 370 |§ 257 |1 872 |8 2581 375 (B 258| 1 376
400 434 5786/8 386G |L 033 8 332 |1 530 |8 2571 768 {9 2165|1823 (8 195|1 650 |6 88| 1 870 |8 1831 873 |8 186(1 877 |8 185]| 1 879
500 423 K613|8 361 {1 573 (8 275 (2 566 |8 167 (2 977 (8 139 (3 096 |8 1113 146 |8 076] 3 180 |8 077 | 3 1868 077 | 3 196|8 078 3 199
600 417 7277|8 849 (2 083 [8 070 |3 926 |7 943 ({4 613 |7 801 |4 BOZ |7 769 |4 882 |7 758 |4 933 |7 750 |4 9427 757 (4 957 |7 756| 4 964
700 411 8370(8 304 {2 586 7 985 |4 770 |7 930 |5 608 |7 854 |5 840 [7 764 |5 938 |T 7T41|5 999 (7 719|6 011 |7 730( &6 029 |7 730| 6 038
800 399 9670{8 206 {3 386 (8 073 |5 772 |8 086 |6 745 [8 052 (7 024 |7 990 |7 142 |7 9857 216 |7 948|7 230|7 956{ 7 25277 957| 7 263

ge
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TABLE VII
PROPERTIES OF STRATEGIES ADMISSIBLE FOR 6 =0 125 AND FOR 8 =2 000
[R(0 125) =Gy 1o /7 689, B2 000) =Cpp /0 5282, p =15, n, = 1000 ]

mp O:'pl rl ﬂ!pz I‘z Glf

0125 2 000 125 2 000 125( 2.000 125 | 2 000

) V(ez)mx Cee,mx R(®)

0 |- ———| =] - —-| 16 00 | 15 00 282 2 282 451 0 5282 0991} 1 0000
1|1 00)-—- 073| 0 075|1 00f13 99 | 14 00 209 | 2615 448] 5316 1 0987| 1 0064
1|1 00] ———- 75 12511 00 13 86 | 13 97 294 2 869 446 5327 08851 1 0085
1|3 00 wmm—m 75 07711 00/ 13 98 | 13 99 298 2 617 445 5330 08983] 1 0091
(300 =mmmm T8 0841 00{ 13 98 | 13 99 298 2 633 444 3337 0982 1 0104
3 1100f - T3 200110011370 1371 296 2 968 441 5477 0978| 1 0369
1|1 00——f 75 350|1 o0j13 72 | 13 72 275 | 3 497 435| 5612 1 0970| 1 0625
1 75| 0 3350 75 350|212 00|13 72 | 13 72 275 3 477 439 5612 0870 1 0625
1{100|—-— 75 360|1 00|13 71 | 13 72 276 | 3820 432| 5642 | 1 0966; 1 0682
1 (1 00|-——- 75 410{1 00{ 13 67 | 13 68 288 | 5 226 426 | 5829 | 1 0959 1 1036
2|1 00— 75 35011 0013 32 | 13 38 281 | 5 038 424 | 6136 1 0956| 1 1617
21100 —-——- 5 400{1 00(13 27 | 13 34 230 T 758 422 6442 0953| 1 2196
4 11 00 -———- 5 300 (1 00/ 12 51 ] 12 58 240 5 800 414 6660 0943 1 2609
2 J1 00) ~u—um 75 450 (1 00{13 18 | 13 23 300 | 12 52 8 413 7003 0942| 1 3258
3|1 00|-—| 5 4001 00|12 49 | 12 57 257 | 11 32 406 7269 | 1 09232| 1 3762
11 00]—=—w= 75 400 75|13 25 | 13 26 301 | 60 36 8 405 7737 0931| 1 4648
1§ 75{ 700| 75 400| 75{13 25 | 13 26 301 | 60 36 8 405 7737 | 1 0931 1 4648
211 00(——- 75 300 75|12 81 | 12 91 204 | 24 20 400 7945 0925| 1 5042
2 (1 00{ === 75 50011 00) 12 39 | 12 48 299 | 27 70 397 7995 0821} 1 5136
4 |1 00 mmm—— 75 40011 00|12 24 | 12 27 243 | 16 17 375 8204 0892[ 1 5532
3 (100 - 7% 300 70012 41 | 12 52 a83 | 31 87 356 8912 0867 | 1 6872
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TABLE VII - Continued

mp O!Pl I‘l (!pz 1‘2 tl’f

0125 2 000 1251 2 opoo 1250 2 000 | 0 125 | 2 000
— 2
e V(e Imy Cee,mx ROy

11100 |- 0 025 250 00/ 11 12 § 11 10| 2 305 11 40 340 |0 9653 | 1 0847 | 1 82756
1 10 { - 005 250 00] 11 02 | 11 03 306 11 45 339 9760 | 1 0845 | 1 8478
4 100 { ——r 78 300 75| 11 64 11 82 243 39 26 328 9846 | 1 033111 8641
4 100 | ——— 73 500 00| 11 13 11 20 209 68 TO 290 |1 169 1 0782]2 213
4 100 | —wae 75 400 75] 11 28 11 38 207 159 9 288 |1 310 1 0779 |2 480
1 100 [ - 05 325 0o0{ 10 40 | 10 28 265 22 70 2851 338 107752 533
1 | 100 [wmmum 025 325 00| 10 16 | 10.13 260 21 81 264 (1 355 | 10748 |2 585
1 {100 |=m=— 01 300 00|10 07 | 10 05 266 21 35 262 {1 370 |1 0745 |2 594
1 05 | 0 500 01 200 001 10 07 10.05 266 21 35 26211 370 |1 0745 )2 594
1 100 | =e——— 005 300 00] 10 03 | 10 04 261 21 20 257 |1 372 11 07392 598
5 | 100 |--——-m ] 400 00}10 72 | 10 11 257 55 52 241 (1 594 |1 0718 | 3 018
5 {1400 | —- 75 §00 00| 9 883] 10 09 270 | 211 0 226 §1 647 |1 0698 |3 118
4 100 | ——— 25 400 00] 10 01 9 286 237 43 37 213 |1 820 1 0681 [ 3 446
1 100 | =—==== 025 400 00| 9 202 9 161 215 39 96 185 |1 850 1 0658 | 3 502
L 025 400 025 400 00| 9 202 9 161 215 39 96 B 195 (1 850 1 0658 | 3 502
1 100 | ——=wm 01 400 00| 9 077 9 063 213 37 37 188 j1 8§70 1 0649 | 3 540
. 1 100 | ~—-— 005 400 00} 9 034 9 044 218 36 TT 183 |1 873 1 0642 | 3 546
4 100 | wemmm 75 600 75] 9 794| 9 889 218 | 752 0 170 2 036 |1 0626 | 3 855
4 100 | —~=um 75 800 00| 9 612| 9 748 296 {1298 0 150 12 138 1 0600 | ¢ 048
5 | 100 |wm—wum 50 400 78| 9 577| 9 106 100 | 346 1 43 12 250 (1 0591 | 4 260
5 100 [ — 75 600 75] 8 869| 9 134 167 910 9 140 12 337 1 0587 |4 424
1 05 500 05 300 50| B8 589 8 553 118 385 0 080 (2 436 1 0509 |4 612
2 05 700 05 300 50| 8 398 8 333 140 360 8 059 (2 474 1 0481 |4 684
1 005 800 o1 300 50| 8 159( 8 267 140 366 6 0s1 (2 491 1 0445 [4 716
1 100 | ———- 025 400 50] 7 250 r 281 924 701 6 9589 |3 234 10390 |6 123
1 Q25 800 0625 400 50| 7 250 T 281 924 701 6 989 (3 234 1 0390 |6 123
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TABLE VII - Concluded

mp ﬂtpl ry ap2 ry o [

0 125 2 000 ¢ 125 2 000 0 125 2 000 0 125 2 000
- 2
s VI D Coe,mx R@)

2 100 |=-=== |0 025 400 |0 507 152 | 7 143 1 906 677 4 T 971 |3 262 | 1 0367 6 176
2 025 [0 800 025 400 507 162 | 7 143 1 906 677 4 7 971)3 262 | 1 0367 6 176
1 50 600 005 400 507 057 7 131 | 1 907 670 4 7 9603 270 i 0352 & 191
2 01 885 01 350 5047 082 | 7 097 1911 665 8 7 958113 276 | 10350 | 6 202
2 01 825 | .025 375 G077 082 | 7 097 1 908 665 8 7 958 |3 276 1 0350 6 202
1 05 800 01 300 25)6 901 | 6 798 1 920 1323 0 7 927 |3 637 1 0310 6 886
1 005 850 005 300 2516 849 | 6 779 1 9237 1318 0 7 916 |3 638 1 0285 6 888
2 05 850 [tk § 300 2616 858 6 744 | T 929 1310 ¢ 7 912 (3 644 | 1 0290 6 899
1 100 [==== 01 575 |1 006 123 6 100 1 967 166 7 7 896 |3 997 1 0269 | 7 567
1 100 j——— 005 575|1 006 054 6 069 | 1 947 150 7 7 893 |4 005 1 0265 7 582
1 002 800 005 500 7515 921 | 6 089 1 936 810 7 7 839 |4 029 1 0195 7 628
1 1006 |-~ 05 6501 00|5 883 | 5 5506 | 1 882 724 8 7792|4802 | 10134 9 091
1 100 |- 025 650 |1 005 3587 5 285 | 1835 454 0 776514 882 [ 10099 | 9 243
1 10 600 025 6501 005 307 5 285 1 835 454 0 7 765 14 882 10099 | 9 243
2 1 00 [===== 025 65011005 221 | 5 096 | 1825 264 1 7 W6l |4 932 10094 ) 9 337
2 10 600 025 65011 00]5 221 | 5096 | 1825 264 1 7 Y6l |4 932 L 0094 9 337
1 100 |===-— 01 6001 00|65 167 | 5 113 | 1 824 270 6 7 768 |4 933 1 0090 3 339
1 100 |- 01 6501 00|55 138 | 5 113 | 1 825 275 6 7 798 |4 933 100901 9 332
i 10 600 01 650 |1 005 139 | 5 113 | 1 825 295 6 | 7 758 |4 933 | 10090 9 339
i 0l 700 01 6001 00)5 157 5 113 1 824 275 6 T 758 |4 933 1 0030 9 339
1 (100 |—emem 005 600|1 005 073 | 5 0%8 | 1 817 238 2 | 77504 942 {1 0080 9 358
1 01 700 005 600 |1 00|5 073 | 5 078 1817 238.2 7 750 |4 042 1 0080 9 356
1 100 |ww—ma 01 67511 00|4 170 | 4 124 | 2 015 454 7 T 740 |5 998 1 0066 | 11 357
2 100 |——— 025 7251 00)4 243 | 4 104 | 2 012 430 4 7T 730 [ 6 000 1 0033 11 358
1 005 750 01 6751 004 0B84 | 4 086 | 2 025 372 ¢ T 716 |6 011 1 0035 |11 380
1 005 8560 0i 675|1 004 084 | 4 086 | 2 025 372 ¢ 7 716 {6 011 1 0035 |11 380
3 25 500 025 72601 004 179 | 4 Q41 | 1 996 288 0 | 7 709]6 023 | 1 0026 |11 403
3 100 |-mm—- 025 72611 00)4 152 | 4 032 1 996 268 4 7 708 |6 026 1 0025 |11 409
3 25 700 025 72561 004 152 | 4 032 1 996 268 4 T 70816 026 1 0025 |12 409
4 100 |==——- 05 675611 004 304 | 4 008 1 987 206 5 7 70616 035 1 0022 |11 426
5 100 |-——- 05 6751 004 225 4 000 1 973 185 4 7 689 |b 038 1 0000 | 1F 431
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