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0	 Abstract

► Il
This research was undertaken to demonstrate that improved efficiencies for low frequency

gratings are obtainable with the careful application of present technology. The motivation

for the study was the desire to be assured that the grating-efficiency design goals for

m	
potential Space Telescope (ST) spectrographs can be achieved. For example, one

111	
spectrograph design studied during phase B required for effective operation an echelle and

111 111 	
predisperser grating both with a minimum efficiency of 25% at Lyman Alpha. As Hyperfine

r had ruled a predisperser grating for the WE spectrograph (1 ° blaze, 369 gr/mm) that had an

efficiency of 57% in first order at Lyman Alpha, and as the ST Phase B studies indicated

the need for high efficiency gratings, the ST Project Office funded this study to develop

Il	
the technology needed to produce echelles of as high efficiency as possible. The contract

^j work was organized to compare gratings made with changes in the thrc a specific

parameters: the ruling tool profile, the coating material, and the lubricants used during

the ruling process. A series of coatings and test gratings Aere fabricated and were

examined for surface smoothness with a Nomarski Differential Interference Microscc.pe

and an electron microscope. Photomicrographs were obtained to show the difference in
I

`	 smoothness of the various coatings and rulings. Efficiency measurements were made for

,.	 those test rulings that showed good groove characteristics: smoothness, proper ruling

depth, and absence of defects (e.g., streaks, feathered edges and rough sides). Ill)

intuitive feeling that higher grating efficiency should be correlated with the degree of

smoothness of both the coating and the grating groove is supported by the result3.
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H
I. Introduction

	

u	 Rrough extensive discussions with Goddard Space Flight Center personnel, it was agreed
that the research would be done in a series of low frequency test rulings on aluminum,

	

'	 aluminum-silicon alloy, and gold coatings. The coatings for ruling and the rulings actually

I	 made are listed in Ap pendix A. This list shows the aramenters that were varied — rulin gPP	 P	 g

metal, deposition method, diamond tool shape, ruling lubricant, groove frequency
together with coating thickness. Appendix A characterizes most of the micrographs used

	^J	
in the figures of this report.

The test echelles were required to have a ruled width of 30mm and a groove length of
100mm to permit replication for electron microscopy and for testing efficiency.

A groove frequency of 300 gr/mm was selected for initial work because overcoming any

	

j	 difficulties at this frequency was expected to guide Hyperfine in ruling 100 gr/mm

r^
echelles. The final required step in the program was to be a more restricted study of
100 yr/ mm echelles.

At Hyperfine the practical goal of the present contract was to demonstrate efficiencies
i	 greater than 50% at wavelengths somewhat less than 0.2,um.

PAGE k^
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Grating Technology

To produce gratings of acceptable quality for vacuum ultraviolet (VUV) spectrography, the

following crafts contribute significantly: figuring the master grating blank, depositing the

coating on the master blank, sharpening the diamond burnishing tool, diagnostically

examining test rulings, ruling the grating, replicating the grating, and testing the product

replica for optical efficiency.

Blank figuring is an art with long tradition'. Vacuum deposition techniques and

' equipment for making thin coatings are well described by Holland 2 . Procedures for

making coatings thicker than 1 um are still being developed. Diamond tools used for ruling

gratings are prepared by specialists; Hyperfine tools were made by J. Robert Moore C0.3

Stroke° has described grating technology including engine descriptions, grating and

I echelle theory, ruling procedure, test ruling examination by interference and by electron

microscopy, optical efficiency measurement and replication of product grerings. The

electron microscopy process used at Hyperfine was reported by Griffln s to the Electron

Microscopy Society, but the process has not been published in a r,y journal.

An echelle grating (deep grooves, uEually low frequency) can, when used in Conjunction

with a predisperser (shallow grooves, also low frequency) with its ruling orthagonal

(crossed) to those of the echelle produce spectral orders positioned one above the other.

Such an optical system has been chosen both for the two spectrographs of the IUE

(International Ultraviolet Explorer 6 ) and for the High Resolution and Faint Object

Spectrographs of the ST (Space Telescope').

Fastie and Mount" have analyzed echelle grating theory and reported the state of the art as

of 1976 both for UV echelles ar,d for their predispersers. They reported efficiencies of 44%

near 0.2jum for one echelle (101.95 gr/mm) and of 50% for another (63.2 gr/mm). These

gratings were ruled in coatings that we re probably as thick as 8,um ana 12pm respectN31y.

The microscopic appearance of these two gratings indicates that the masters were ruled in

aluminum.

Harrison 9 et al has reported on the rulability problems of Au and of Al for large gratings

and echelles. Their reoort favors Al over Au for groove frequencies equal to or less than 300

grlmm where the lesser cumulative groove length, despite the abrasiveness of Al, would

not wear away the diamond shape significantly. Based in part on their report, Hyperfine

recognized that the problems with ruling gold coatings included: (1) "light-scattering

crystal structure where ruled" 9 for some gold coatings, (2) larger loading mass required on

2



a diamond when ruling gold than when ruling aluminum, (3) less predictable adherence of

gold to substrate Notwithstanding these problems, Hyperfine hypothesized that higher

optical efficiency could be achieved for UV echelles ruled in thick gold coatings To

i	 accomplish this, plans were made to be able to use two different diamond radii (Fig. 6) and

different ruling lubricants.

fl
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III. Coatings

IIIA. General

Coatings are normally deposited on the master blank using either resistance heating or

electron bombardment heating (electron-gun). A principal advantage of the electron gun is

that coating thickness is less limited by the amount of metal that can be held in the

evaporant crucible. Resistance fired thick coatings use heavy current through the large

charge of molten metal, use indirect heating or use a turret of filaments fired se, jentially

in the same pump down. Layered resistance fired coatings deposited in a succession of

pump downs have delaminated during ruling. Other methods such as sputtering.

induction heating, or laser heating could conceivably be used.

The chemical, structural, and defect nature of thick metal coatings has not been studied

here. Hyperfine sought to obtain thick gold coatings (as well as thick aluminum coatings)

suitable for ruling. The big problem for thick aluminum is surface roughness that persists

n to some extent after ruling; for gold it is adherence. Other problems for various metals

include low malleability, diamond tool wear, and low specular reflectance after ruling,

thus gold and aluminum are the most suitable master coatings known at this time. Al

U
aNvyed with Si may prove better than pure Ai

IIIB. Adherence

Standard prac0ce to improve coating adherence to glass substrates has been to deposit

} about 30nm of chromium metal prior to depositing aluminum 10 or gold". Chromium was

used as a base layer for all of the thick coatings reported in Appendix A even for the run in

which an aluminum base layer was used under gold.

u	 There is a military specification' z for testing coating adherence using cellulose tape. The

n	 tape test Hyperfine applies to a coating prior to grating ruling is especially vigorous

(yanked vs. pulled) and is repeated in a crossed direction. Vendors would not guarantee

adherence of thick gold coatings. Table I summarizes quotes obtained for thick aluminum

and thick gold coatings.
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Tabi• i. Prices per run quoted for thick Al and Au coatings, adherence not guaranteed.

Thicknesses are in um.

Vendor
	

Al
	

Au

	

Thick	 Price
	

Thick	 Price

1. 10	 $ 800.
	 2.5	 $250.'

2. 5	 2,000.
	 Declined

3. 10	 1,5w "

4
	

10	 $500 "

'Lost all interest in making thick coatings after succesive adherence failures of 2.5um to

3.Oum gold

'Sputtered alloy.

"'Quote for material cost only; provided as promotional effort by supplier of sputtering

equipment.

Because no vendor would guarantee coating adhesion or rulability and because the

material cost per run was a s i gnificant percentage of the entire contract price. Hyperfine

found it necessary to prepare ail of the thick coatings used in the latter half of this

contract.

5



Adherence results based on Hyperfine's experience are
l	 statements:

I1 . Aluminum adherence failures are rare.

2	 Experience has shown that adherence', (lures eventually occur after some number of
replications from the master.

3. An Alloyed aluminum-silicon 101im coating (recommended by John Mangus of NASA)

L^	
had no adherence problem.

L	 4. Gold adherence diminished as coating thickness increased; internal stresses are
suspected.

L '	 5. Coating separation of gold usually occurs at the chromium-gold interface.

H6. The likelihood that 10um Au coatings will endcre the tape test has increased to an

 estimated 50%.

7. All of the rulings made for this contract were successfully replicated for electron
[I	 microscope examination and for efficiency testing.

i,

IIIC. Equipment

Fig. 7 through Fig. 9 are photographs of the coater (shown open), the turret filament

system, and the planetary substrate holders (an echelle blank is at the top rear). The ability

to rotate the master blank both around the system axis and the grating blank axis during

deposition was believed essential in order to obtain good coating uniformity in accord

with the principles described by Strong' 3 while inhibiting preferential dendritic growth

during deposition. The turret filament system was used for the chromium base film
followed by a succession of evaporant depositions. The evaporant was premelted on the
filament while a shutter covered the whole assembly. This protected the blanks from any
violent eruptions that occur during the initial melting phase. Once the melt had stabilized
visually, the shutter was opened and evaporation begun, until the correct thickness had
been achieved. The coating thickness was monitored with a commercial system that
correlates the frequency change of a quartz crystal (circular unit, lower center of Fig. 9)

due to the added mass deposited: this system had been cross checked to at least 2.5% for
thinner films using an interference microscope.

OR1G►'-`1AL PAGE
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IIID. Coating Smoothness

Electron microgi iphs of all of the coatings ruled in this contact are presented in Fig. 1 or

I(`
	

Fig. 2. Fig. 1 prov ► Jes a comparison of various thicknesses of At coating deposited from

I resistance neated fliaments or deposited using an slectron-gun. Fig. 1d shows the surface

of the thicK AI-Si alloy coating prepa!ed by Hyperfine. The composition of the alloy before

evaporation was 98% At and 2% Si. The final composition of the coating is not known.

Fig. 2 contrasts different thicknesses of Au and At deposited, using resistance heated

filaments.

Remarkable surface differences are apparent

1 . Surface roughness increases with coating thickness

2	 At is rougher than the AI-Si alloy.

3	 Both At and the AI-Si alloy are much less smooth than Au of comparable thickness.

4 The one run of a-gun deposited Al was rougher than resistance fired Al. The a-gun was

not used for other runs.

5. Diffuse reflection by At appears visually to increase as a stronger function of thick-

riess than for Au.

I As noted in 4, above, the a-gun deposited At coating was rougher than the resistance fired

coating. However, contrary to our expectations, the grooves in the a-gun At were smoother

than those in the resistance fired At

IV.	 Rulability

IVA	 General

The principal process in grating technology is ruling smooth, sharp, accurate, consistent

grooves. Rulability is, granting adherence, the most significant property of the coating in

which an echelle is to be ruled.

There are some internal metallurgical characteristics that make certain metals unsuitable

for ruling purposes. In previous trials, palladium haF domed extremely abrasive, inconel

has seemed unmalleable, and indium has seemed to undergo some changes of phase

when ruled. Even gold in some instances has had inhomogeneity grains that were being

dislodged and dragged by the diamond, producing ruling streaks. Aluminum and gold

(when free of inhomogeneities) are excellent metal coatings in which to rule deep grooves.

Hyperfine compared the rulability of these metals in this contract.

7
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f The physical pro ss of ruling a groove Is complex because material is displaced and

partly rased, not removed, while the tool is dragged through the metal layer to burnish its

surface. The tool is a diamond cemented to a cylindrical rod clamped in a hinged holder

that can be lifted away from the gating while the tool is being returned for its next

groove. Mass is added to the tool assembly to cause the tool to float deep,: , In the metal, a

static condition. The ruling of each succeeding groove generates a wave (a kinetic effe::t)

that causes some change of the optical face of the groove previously burnished. By

orien,:ng the too' optimally, it is possible to minimize this groove -to - groove interaction.

Internal characteristics of the metal when stressed well beyond its elastic limit are

believed to influence the extent of the displacing wave. This remute ir,teracticon of the tool

on the metal could be thought of as the marroscopic aspect of rulability. Having

minimized the magnitude of this ruling problem by rotating the tool on its axis, the

remaining change can be compensated during set-up by c'ianging the tilt angle of the tool,
r^

The development of a "feather edge" or burr along the ridge between adjacent grooves could

be thought of as the microscopic aspect of rulability. This burr complicates replication

I take-apart. Odd-generation replication product gratings invert the grooves and bury the

burr to diminish its optical significance. Overloaded tools produce exaggerated "feather

edges."

Another aspect of rulability is the change of surface smoothness before and after ruling.

This depends at least on the initial smoothness of the unruled surface and on the

malleability of the film material. The residual roughness appearing in each groove often

near the top and on the unblazed face varies randomly across the grating

The wear of the diamond tool by the metal being burnished has already been mentioned

and should be classified as a rulability limitation because the last grooves can differ

significantly from the first grooves. This is a systematic defect that is evidenced by

progressive grating efficiency reductions. One of the expected advantages of gold over

aluminum was the reported `' low abrasiveness of gold.

AL ^' XGE IS
OItIG1'.̀ I UALI'I'Y
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IVB. Observation of Rulabillty-Microscopy

There are contrasting methods of studying grating rulabllity problems: direct examination

of the grating grooves using microscopes and indirect examination using the

spectrographic performance as an indicator of the Integrated average of the ruling erytits.

Th9s second method is more difficult and less diagnostic, though more significant.

Individual grooves of low frequency gratings and echolles can be studied using optical
Interference microscopy. Hyperflne uses a Leltz Interference Microscope mainly for
assaying test rulings during set-up. It can clearly show the difference between the terminal

groove and the rest of the grating grooves (macroscopic problem). A Zeiss Nomarski

Differential Interference Microscope is also used during set-up to assess the smoothness
"	 of the burnishing and of the unruled coating. Optical microscopy is not nearly as sensitive

j

	

	 as electron microscopy to surface roughness and this report presents electron microscope
pictures exclusively.

j	 Aluminum oxide replicas (Grlffln 5 ) were used for electron microscopy of 300 gr/mm
1 grooves and surface texture of the 2.5um and 3,um thick coatings; conventional collodion

repRh2 v.'9re used for 100 gr/mm grooves and for the 10um thick coatings, because these

dew :ar grooves and thicker coatings were too rough for non -plastic replica films.

Fig. 10 Is a photograph of the inside of the coater used at Hyperfine for forming and

shadowing electron micrograph replicas. Fig. 11 Is a photograph of the electron

microscope used for the work reported here. Fig. 12 is the projection system used to

9
	 measure groove profile details.

l

p	 I	 ^7

IVC. Ruling Lubdrant and Tool Shape

A puddle of fluid ordinarily is flowed across the grating blank to facilitate the burnishing
process. Two lubricants were used in this work: Dow Corning Silicone ,04 and
Clndol 3401.

Test Echelle number 3B (300 gr/mm In 2.51im gold) used no lubricant. Attempts to rule
100 gr/mm test echelles in gold without a liquid were unsuccessful.

9
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The first experimental task of this contract compared the smoothness of grooves In 3mm AI

when, each of three variables had two options: (1) the coating was resistance fired vs.

e-gun, (2) the diamond tool had an 18mm radius vs 6mm, (3) the lubricant was Silicone

704 vs Cindol 3401.

Figs. 3a through 3h are electron micrographs of the eight combinations of these options.

These figures show:

1	 The 18mm radius diamond burnished a little more smoothly than the 6mm radius

diamond. (the 18mm radius was used thereafter).

2. Silicone appears to be as good a lubricant as Cindoi. (The difference does not appear

significant. Silicone was used for most of the other test echelles.)

3. The grooves in a-gun Al seem more fully burnished than those in the resit"ante Al.

All subsequent test echelles were for consistency ruleh in resistance fired metal using the

18mm radius tool; all test echelles except 313 and 3C used Silicone 704.

Test echelles 3A, 313, 3C, were ruled in 2.5Nm Au using Silicone 704, no oil, Cindol

respectively to compare their relative merit in Au. Fig. 4 depicts, these rulings which were

made using a load of 29 grams suitab:e for Al but insufficient for Au. Fig 4d shows a full

depth ruling in the same coating; the load here was 40 grams. A third test echelle was

ruled in this same coating with a 35 pram load. Efficiency data for Al replicas of these test

echelles are reported in Appendix B as #4A1 and M3A1 respectively. The sharp diagonal

line nearly centemd in Fig. 4d is the groove bottom (diamond ruling edge) separating the

smooth (brigh, ')laze f&ce from the residually rough (dark) unblazed face of the groove.

Please note that the unblazed face has been steepened and appears narrower than the

blazed face in contrast to Fig. 4a.

Fig. 4 is interpreted to show

1 . Groove depth was greatest with Cindol, inte rmediate with no oil, least with Silicone.

2. Groove smoothhness appeared better for Silicone than for Cindol or no lubricant; there

did not seem to be a significant difference between dry ruling and Cindol.

3. The tull depth ruling picture shows as smooth a blaze face as any ever studied by

Hyperfine. This test echelle was found to have the largest optical efficiency of any

measured to this time.

PA	
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i	 IVD. 10jum Coatings, 100 gr/mm Test Echelles

Fig. 5 contrasts 300 gr/mm grooves in 2,5- 31im metal (a, b, c) with 100 gr / mm grooves in

10uin metal (d, e, f). It also contrasts grooves ruled in Al (a, b, d, e) with grooves ruled in

Au (c, f). The 300 gr/mm grooves were photographed at highest magnification.

Fig. 5 is interpreted to show:

1. The grooves in Au are very much smoother than the grooves in Al or in AI-Si alloy.

2. The 100 gr/mm grooves in the AI-Si alloy (Fig. 5d) appea • to be less rough than those

in non-alloyed Al (Fig. 5e).

3. The lower frequency g rooves in thicker (rougher) metal exhibit more residual

roughness in each case.

4. The blaze face of the grooves in the 10um Au appear to be quite smooth, not as smooth

as in the 2.5,um Au but nearly so.

L^	 V. Optical Efficiency

C

VA. Apparatus Uesc: ription

A deuterium source was used with a Trope monochromator Model N-2 to produce

ultraviolet radiation with about 5A bandwidth for illuminating the test rulings. The test

i echelles were mounted in an Ebert configuration. The detector was a 1P28 RCA

photomultiplier. Suitable apertures were used to prevent overfilling the mirror that focused

the dif f racted light on the detector. The elect rometer was a Model 110 Laboratory

Photometer manufactured by Pacific Photometric Instruments. This apparatus was used

for the 300 grlmm test echelles as reported herein. The bandwidth of this system was too

large to permit the orders of the 100 gr/ mm test echelles to be separated.

Fig. 13 is a photograph of the apparatus as used to measure the efficiency of the

100 gr/mm test echelles. A 4 watt Hg line source had to be substituted for the continuum

deuterium source. The source is mounted at the left in Fig. 13; its radiation is processed

by the monochromator shown as the elongated box supporting the source. Radiation

leaving the monochromator is deflected by a p l ,ine mirror into the square concave mirror at

the rear of the table This mirror collimates the light and sends it onto the test echelle

shown mounted on the rotary table in the foreground. The spectrum diffracted by the test

echelle i s contained by the circular concave mirror at the rear of the table and focused via a

small plane mirror into the photomultiplier clamped on the table. The electrometer appears

at the right.

11
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The reference basis for establishing grating efficiency was a plane At mirror. Tt'erefore all

► __^	 efficiency values reported are relative to the specular rerlectance of At at the same

wavelength. All test echelles measured had Al aurfaces as the Au test echelles were4	
measured only after replication in Al.

VB. Efficiency of 300 grlmm Test Echelles

Fig. 14 shows the efficiency as a function of wavelength in the 24th order blaze (with the

wings of the 23rd and 25th orders) for two aluminum masters M1 and M2 and their respective

first-generation replicas ( K1 Al. #2A1). Master M1 was ruled in resistance fired aluminum

using an 18mm radius diamond and Silicon3 704 lubricant; its groove character appears in

Fig. 3a. Master N2 was ruled in a-gun fired aluminum using an 18mm radius diamond and

Silicone 704 lubricant; Its groove character appears in Fig, 3e. The actual data are

tabulated in Appendix B.

l^
Fig. 15 shows the same interference orders of the first generation all-ainum replica of the

Il	 best test echelle ruled in the 2.5pm Au of Fig. 2b; grooves of this grating are shown in

Fig. 4d. This test echelle was marked #4A1, and its data are given in Appendix B. This is a

refinement of an earlier ruling (03A1) in the same coating; data for this prior test echelle

are also listed in Appendix B.

Fig. 15 shows that the 24th order of the test echelle whose grooves are shown in Fig. 4d

had a maximum relative efficiency of 67% at .195om, corresponding to 61% absolute

efficiency. This is the highest efficiency Hyperfine has obtained, and the grooves were the

smoothest yet. Neither the 23rd nor the 25th orders had as much as 5% efficiency at

.195om. The energy was predominantly concentrated In the 24th order.

00
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f 100 gr / mm Test Echel les.

Data for the three 100 gr/mm test echelles were taken at four strong Hg lines between

.2537 and .4047 um. The resuits are tabulated below:

Table II. Relative Efficiency Data for 100 gr /mm Test Echelle Replicas.

Order	 Aluminum	 AI-Si Au (Alum. Replica)
(pm)	 (Fig 5e)	 (Fig. 5d) (Fig. 5f)

.2537	 55	 5	 6 4

56	 39	 35 21

tJ 57	 8	 8 39

58 5

.3131	 44 6

t)l J 45	 30	 30 17

46	 24	 23 40

47 6

.3650	 38	 10	 12 8

39	 34	 34 42

40	 10	 10 10

. 1 047	 34	 7

35	 44	 42

36	 12	 12 52

37	 6

The sum of the energy in the observed orders for the UV light is significantly larger for the

Al replica of the gold test echelle than for the replicas of the Al test echelles, which we

believe .esults from groove smoothness differences.

The data shows that the ultraviolet energy is not concentrated in a single order. This

concentration is better for the Au grating than for the Al or Al-Si alloy test echelles, which

may indicate that the Au grooves are less cuNed.

The incomplete concentration of radiation in one spectrum order implies that the blaze

surface of each groove is not accurately plane. For a given groove profile. the groove slope

error increases with width. Moreover, the ruling of grooves 3 times deeper and wider in

coatingF inat are less smooth may seriously compourd the dispersal of radiation into

several orders.

0RIGINttL PAGE IS
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The data furthermore seems to show even less favorable concentration at shorter

wavelengths. The extrapolation of this behavior to Lyman Alpha is evidence that there is

much room for improvement.

VI. Conclusions

Observations of coating and test echelle characteristics have been reported throughout

^.J this report. Hyperfine accepts most of these observations only as working hypothesis and

prefers not to treat them as conclusions. We believe it significant that the same test

echelle had the smoothest grooves and the highest spectral efficiency in support of the

intuitive feeling that smooth grooves are needed for high grating efficiency. We further

believe that gold shows important promise as a metal in which master echelles for

ultraviolet use could be ruled. 300 grlmm test echelles can, with maximum care, have

absolute efficiency in the 60% neighborhood for .2um radiation.
fl

The 100 grlmm test echelies made to date fail to concentrate UV radiation in a single

order. Here again, however, Au was better than Al or the AI-Si alloy.

[J
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APPENDIX A — Table of Test Echelles and Coatings, cross-referenced to Eleciroi.-Micrographs and Efficiency Figue

Coating (0)
Echelle (a)	 Metal

Thick
um

3

Coating
Method Coating

Fig. Numbe,a
Grooves	 I

3a

Efficiency

14a, c1A	 Al Res. lb

1A' 3b
and

1B 3c

1 B'	 I 2e 3d

1C	 Al + Au 3 +	 .5 a	 Res.

2A	 At 3 e-gun 1C 3e 14t), d

2A' 3f

2B 3g

213' 3h

2C	 Al + Au 3 +	 .5 + Res. - -

3A	 Au 2.5 Res. 2b 4a 2

3B 4b

3C 4c

3D 4d 15

4A	 Au 6 Res.

5A	 Al
I

10 Res. 1 e, 2f 5e Tab. II

6A	 Al, Si 10 Res. 1d 5d Tab. II

7A	 Au 10 Res. 2c 5f Tab.11

For more information on the data contained in this chart, see the following page.
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Fig. Numbers
Grooves	 Efficiency

3a	 14a, c

3b

3c

3d

3e 14b, d

3f

3g -

3h -

4a -

4b -

4c -

4d 15

5e Tab. II

5d Tab. II

5f Tab. II

Ae

'AL PAGE 5
)R QUALITY

Comments

Dow Corning Silicone 704

Dow Corning Silicone 704

Cindol 3401

Cindol 3401

Al + Au interaction blistered

Al + Au interaction blistered

Ruled part depth with load appropriate for Al

Ruled part depth with load appropriate for All

Ruled part depth with load appropriate for Al

Full depth ruling

Tape test OK. Ruling tore up.

OMMM MAMM

Inifial alloy 2%

letron-Micrographs and Efficiency Figures.

Frequency
gr/mm

Oil Tool
r (mm)

18300 Sil

300 Sil 6

300 Cin 18

300 Cin 6

300 Sil 18

300 Sil 6

300 Cin 18

300 Cin b

300 Sil 18

300 None 18

300 Cin 18

300 Sil 18

300 SO 18

100 SO 18

100 Sil 18

100 SO 18
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Appendix A2

Coatings identified in the preceding table by the numbers 1, 2, and 3 (each with letter

suffices) were made by Evaporated Metal Films, Inc. of Ithaca, N.Y. Coatings numbered 4,

5, 6 and 7 were made at Hyperfine in single pump-downs.

l	
All of the echelles were ruled by either of two diamond tools made by the J. Robert

l Moore Co. of Petersham, Mass. ir. accordance with the specification of Fig. 6. The tools

were symmetrical and had a 90° dihedral angle or ruling edge. The side profile of the ruling

edge was an 18mm radius for one of the tools. 6mm for the other. The tools were each

oriented to burnish the plane smooth; specular, "blazed" face of the V-groove at a 45°

(1	 angle from the plane of the grating blank

Successive trials and tests were used during each ruling set-up to achieve optimum full-

l i	
depth grooves. There is a trade-off of residU31 unruled surface on the one hand and

j irregular burnishing burr on the other. Final records of the too' loading masses were not

kept for each ruling. Approximate masses for gold were 40 grams for 300 grlmm test

echelles and 250 grams for the 100 gr/mm test echelles. The corresponding approximate

masses used when ruling aluminum coatings and the 10um aluminum-silicone alloy

coating were 29 grams and 105 grams. The rulings into a-gun evaporated aluminum

required only 22 grams for full depth at 300 grimm.

Coating runs 1 and 2 each contained three blanks (A. B, and C). The A blanks were ruled

using Dow Corning Silicone 704, and the B blanks were r uled using Cindol 3401

(E.F. Houghton & Co.). Separate areas of each of the A blanks and each of the B blanks

were ruled using the two diamond tools; this is indicated in the table by unprimed and

primed letters.
r^

The C blanks from coating runs 1 and 2 were overcoated by Evaporated Metal Films, Inc. in
a third (unnumbered) coating run with .5um gold. These coatings could not be ruled

j	 because the aluminum and gold interacted and the surface erupted with t listers.
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APPENDIX B — 300 gr/mm Efficiency Data.

Aluminum masters and aluminum replicas (A1 suffix).

Readings under 5% are omitted.

Aluminum Masters Gold Masters

/Order M1 #1A1 M2 ff2A1 M3A1 M4A1

.187

23 10 10 7

24 29 37 24

25 30 28 45 41 61 65

.188

23 4

24 39 36 28 W

25 15 18 38 35 60 67

.189

23 5

24 42 43 36 37 21

25 14 33 29 50 57

.190

23 5 5 5

24 49 46 43 43 30 27

25 8 8 25 21 47 51

.191

23 7 7 7

24 51 46 48 47 38 37

25 4 18 15 41 44

.192

23 8 9 4

24 48 41 52 50 49 50

25 4 9 7 31 32
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APPENDIX B — Continued

i^

^I

^I

fI

I

1

11

Aluminum Masters Gold Masters

/Order N 1 01 A l 02 02A 1 M3A 1 N4A 1

193

23 13 14 12 8

24 45 47 54 50 58 60

25 20 20

19a

22 8 7

23 19 25 15 15

24 38 38 51 49 60 64

195

23 26 35 20 21

24 30 30 47 48 61 67

196

23 38 37 27 29

24 15 18 40 37 60 64

.197

23 41 38 33 35 19 15

24 15 14 33 29 55 60

198

23 46 50 37 41 27 20

24 8 10 25 23 48 53

.199

23 50 54 45 45 33 34

24 20 17 40 45

200

23 51 52 50 50 42 42

24 14 12 34 34

.225

20 30 36 23 28 12

21 23 22 38 37 55 60

.250

18 31 29 26 30 13 10

19 22 18 34 34 50 55

w
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Figure 1, Aluminum coatings

a) .3,um resistance, b) 3um resistance, c) 3,um E-gun,

d) 10 pm AI-Si (2%?) resistance, e) 10 ^jm resistance,

f) 10 Um E-gun, Mag	 14.000 X.
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Figure 2, Au vs. Al resistance fired coatings

a) .3 Um Au, b) 2.5 pm Au, c) 10 dam Au. d) .3 pm AI.
e) 3 pm Al, f) 10 pm Al.

Mag "' 14.000 X.
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Figure 3, 300 gr/mm test echelles in 3 yam Al.

Resistance (a-d) and E-gun (e-h) ruled with Silicone 704 (a, b, e, f)

and Cindol 3401 (c, d, g, h). The 18 mm radius tool was used for

a. c, e, g; the 6 mm radius tool for b, d, f, h. Each groove is 3.33um wide.
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Figure 4, 300 gr/mm rulings it 1.5 Nm Au

a) Silicone 704, b) no oil, c) Cindol 3401 ruled with underloaded

diamond; note unruled surface. d) Full depth ruling with Silicone 704 —

best test echelle obtained.

a
	 a, band c ruled portion approximate 112 depth = 1 .6661im

d, full depth 3.33,um wide.
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Figu-e 5, Al vs. Au rulings.

a) 300/mm in 3 um E-gun Al, b) 300/mm in 3 pm resistance fired Al,
C) 3001 mm in 2.5 um resistance fired Au, d) 100/mm in 10 pm
resistance fired AI-Si (2%?) alloy, e) 100/mm in 10 um resistance
fired Al. f) 100/mm in 10um resistance fired Au.

Groove width of a, b and c is 3.3um , of d, e and f, 10pm.

ORIGINAL PAGE IS
OF POCUt QUALrm



[l

u
n
n

^u

Il

I I	 .1562" f .001
'	 DIAMETERi

i

1 .	 I

I

r

t	 I

l

SIDE VIEW

"5°

I

FRONT VIEW

I

DIAMOND
SECTION

45"

nRIGINAL PAGE U1
CAF Pow (lUA.L TIT

Figure 6, Diamond Tool Specification.
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Figure 9, Planetary substrate holders, master blank, and monitor.
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Figure 12, Projection system for measuring groove profiles.
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Figure 14, Relative efficiency of 23rd order (x), 24th order (o), and 25th

order (C)) of 300 gr/inm aluminum test echelles and their first generation
replicas.

#1 and #1A1 are for the master and replica of resistance fired aluminum.
#2 and #2A1 are for the master and re p lica of a-gun fired aluminum.
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Figure 15, Relative efficiency of the first generation aluminum replica of

the best test echelle ruled (Au master).

x 23rd order

c 24th order

U 25th order
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